Three particle Levy HBT from PHENIX

Bálint Kurgyis

Eötvös University, Budapest

XIV Workshop on Particle Correlations and Fluctuations Dubna, 3 June 2019

The PHENIX experiment Three particle Bose-Einstein correlations The Levy source Core-Halo model, partial coherence

The PHENIX experiment

- Different collision energies 7.7-200 GeV in $\sqrt{s_{\rm NN}}$ 20-400 MeV in $\mu_{\rm B}$
- Different collision systems p+p, p+A, A+A
- This analysis: 200 GeV Au+Au
 0-30% Centrality pion triplets

$\sqrt{S_{NN}}$ [GeV]	•		a	2	1	CL ^{CU}	<u>Au</u>	Au	00
510	V								
200	V	✓	✓	V	\checkmark	✓	✓	V	V
130								V	
62.4	V			V		\checkmark		V	
39				✓				✓	
27								✓	
20				✓				✓	
14.5								✓	
7.7								V	

Introduction The PHENIX experiment Three particle Levy HBT measurement Three particle Bose-Einstein correlations Results The Levy source Summary Core-Halo model, partial coherence

Three particle correlation functions

• Correlation function:

(

$$\mathcal{C}_3({f k_1},{f k_2},{f k_3}) = rac{N_3({f k_1},{f k_2},{f k_3})}{N_1({f k_1})N_1({f k_2})N_1({f k_3})}$$

• Single particle momentum distribution:

$$N_1(\mathbf{k}) = \int S(\mathbf{k}, \mathbf{r}) |\Psi_{\mathbf{k}}(r)|^2 \mathrm{d}^4 r$$

• Three particle momentum distribution:

$$N_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \int |\Psi_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)|^2 \prod_{i=0}^3 S(\mathbf{k}_i, \mathbf{r}_i) \mathrm{d}^4 \mathbf{r}_i$$

Introduction The PHENIX experiment Three particle Levy HBT measurement Results Summary Core-Halo model, partial coherence

Levy-type source assumption

Assumption for source function \rightarrow Levy-type source

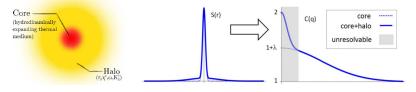
$$S(\mathbf{r}) = \mathcal{L}(\alpha, R, \mathbf{r}) = \frac{1}{(2\pi)^3} \int \mathrm{d}^3 q e^{i\mathbf{q}\mathbf{r}} e^{-\frac{1}{2}|qR|^{lpha}}$$

- Levy-exponent: α (Gaussian $\alpha = 2$, Cauchy $\alpha = 1$)
- Levy-scale parameter: R

The correlation function (without final Coulomb-interaction): $C_3^{(0)}(q_{12}, q_{13}, q_{23}) = 1 + \ell_3 e^{-0.5(|q_{12}R|^{\alpha} + |q_{13}R|^{\alpha} + |q_{23}R|^{\alpha})}$ $+ \ell_2 \left(e^{|q_{12}R|^{\alpha}} + e^{|q_{13}R|^{\alpha}} + e^{|q_{23}R|^{\alpha}} \right)$

Parameters:

- Already known from two particle measurements: α, R
 A. Adare et al. Phys. Rev. C 97, 064911 (2018) arXiv:1709.05649
- Now measured: ℓ_2 , ℓ_3


We are looking for three-particle correlation strength: λ_3

$$\lambda_3 = C_3(q_{12} = q_{13} = q_{23} \rightarrow 0) - 1 = \ell_3 + 3\ell_2$$

Introduction The PHENIX experiment Three particle Levy HBT measurement Results Three particle Bose-Einstein correlations Results The Levy source Summary Core-Halo model, partial coherence

Core-Halo model

- Two component source: $S = S_c + S_h$
 - T. Csörgő, B. Lörstad, J. Zimányi, Z. Phys. C71 , 491 (1996), arXiv:9411307
 - Core: thermalized medium, expanding source
 - Halo: long lived resonances (au > 10 fm/c) ightarrow experimentally unresolvable
- Fraction of core: $f_c = N_{core}/(N_{core} + N_{halo})$
- Two particle correlation strength: $\lambda_2 = f_c^2$
- Three particle correlation strength: $\lambda_3 = 2f_c^3 + 3f_c^2$
- Core-Halo independent parameter: $\kappa_3 = 0.5(\lambda_3 3\lambda_2)/\lambda_2^{3/2} = 1$

Introduction
The PHENIX experiment
Three particle Levy HBT measurement
Results
Summary
Core-Halo model, partial coherence

Partial coherence

• If there are pions emitted coherently:

$$S_c = S_c^{coherent} + S_c^{incoherent}$$

• Fraction of pions emitted coherently:

$$p_c = N_{coherent} / (N_{coherent} + N_{incoherent})$$

- Partial coherence + Core-Halo:
 - T. Csörgő et al. Eur. Phys. J. C9 275-281 (1999) arXiv:9812422

$$\lambda_{2} = f_{c}^{2} \left[(1 - p_{c})^{2} + 2p_{c}(1 - p_{c}) \right]$$

$$\lambda_{3} = 2f_{c}^{3} \left[(1 - p_{c})^{3} + 3p_{c}(1 - p_{c})^{2} \right] + 3f_{c}^{2} \left[(1 - p_{c})^{2} + 2p_{c}(1 - p_{c}) \right]$$

Measurement of Bose-Einstein correlation functions Fitting Example visualization of fits

Analysis details

- 200 GeV Au+Au collisions
- 29 *m*_T bins
- Correlation functions of identified, same charged pion triplets
- Cuts:
 - Event selection: z-vertex, 0-30% Centrality
 - Particle selection: 2σ cuts for PID
 - Single track cuts: 2σ matching
 - Pair cuts: customary shaped cuts for Δz $\Delta arphi$ distributions

Measurement of Bose-Einstein correlation functions Fitting Example visualization of fits

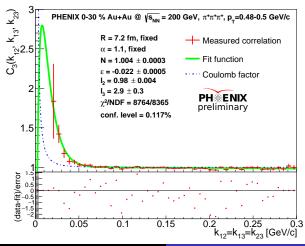
Fit function

Fit function:

$$C_3^{(fit)} = N(1+arepsilon q_{12})(1+arepsilon q_{13})(1+arepsilon q_{23})K_3C_3^{(0)}$$

Background and normalisation: ε , *N* Coulomb-correction:

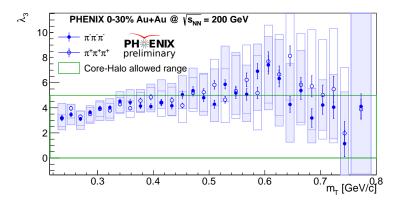
• Generalized Riverside method:


 $K_3(q_{12}, q_{13}, q_{23}) \approx K_1(q_{12})K_1(q_{13})K_1(q_{23})$

• Detailed numerical table for $K_1(q, \alpha, R)$ Fit parameters: ℓ_2 , ℓ_3 , N, ε Already known from 2-particle correlations: α , R

Measurement of Bose-Einstein correlation functions Fitting Example visualization of fits

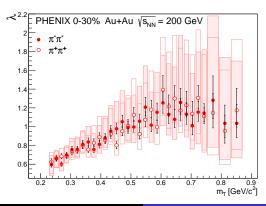
Example fit


• Diagonal visulaization of 3D correlation function

Three particle correlation strength Core-Halo independent parameter Comparison with MinBias results

Three particle correlation strength

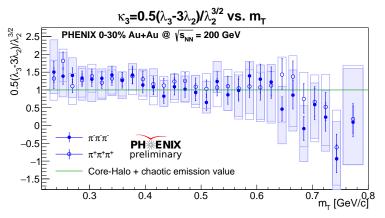
• From Core-Halo model: $0 < \lambda_3 < 5$


Three particle correlation strength Core-Halo independent parameter Comparison with MinBias results

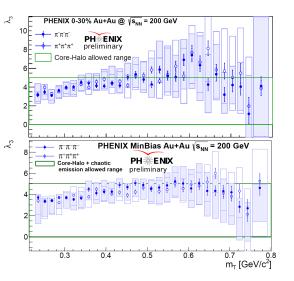
Two particle correlation strength from previous analysis

• λ_2 is from previous PHENIX measurement

A. Adare et al. Phys. Rev. C 97, 064911 (2018) arXiv:1709.05649

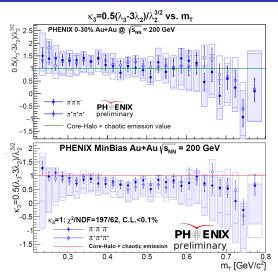

• Let us compare 2- and 3-particle correlations

Three particle correlation strength Core-Halo independent parameter Comparison with MinBias results


Core-Halo independent parameter

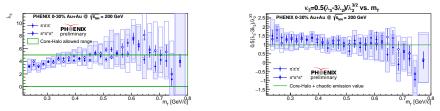
- Independent from f_c
- Expectation: $\kappa_3 = 1$

Three particle correlation strength Core-Halo independent parameter Comparison with MinBias results


MinBias vs 0-30% Centrality: λ_3

- 0-30% Centrality
- Density & size dependence
- Similar to MinBias
- Within Core-Halo range

Three particle correlation strength Core-Halo independent parameter Comparison with MinBias results


MinBias vs 0-30% Centrality: κ_3

- 0-30% Centrality
- Density & size dependence
- Similar to MinBias
- 0-30% compatible with 1

The results of this work:

- $\bullet\,$ Three particle B-E correlation function for 200 GeV Au+Au
- 0-30% Centrality
- Described by Levy fits (α and R from 2-particle correlations)
- κ_3 consistent with 1
- $0 < \lambda_3 < 5$ within errors

Thank you for your attention!

Supported by the ÚNKP-18-1 New National Excellence Program of the Ministry of Human Capacities.