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Introduction

Reasons for choosing the subject of the talk:
Concerns the only missing part for completing the extremely
popular, developed in more than three decades systematic
approaches to the effective field theory (EFT) proposed by
Steven Weinberg

Directly related to the current high-accuracy calculations in
this approaches

A part of the work has been done in Dubna >10 years prior
this EFT was proposed,

That time our PT was applied to high energy physics.
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Nuclear forces from chiral Lagrangians

S. Weinberg: theory of "Nuclear forces from chiral
Lagrangians", Phys.Lett.B 251 (1990) 288,
small energy denominators due to pure-nucleon intermediate
states, 1

E−2
√

m2+p2
= 1

2
√
m2+k2−2

√
m2+p2

= m
k2−p2 ,

shallow resonances → too low convergence energy for
amplitudes.
Use Schroedinger equation where effective potential is defined
as the sum of old-fashioned perturbation theory (PT) graphs,
excluding those with pure-nucleon intermediate states.
Nowadays these potentials are calculated to the higher than
5-th order of the ChPT.
PT is necessary for the corresponding ab initio high accuracy
nuclear studies to systematically account for the motion of the
bound states involved in scattering processes
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On moving bound states

In the study of amplitudes involving bound states (e.g. em and
other currents) it is important to express them in terms of the
bound state wave functions at rest, because just the latter are
much more convenient to model/calculate, than those for the
moving bound state. Wave functions just at rest are also
important for the study of the bound states’ structure (size,
shape etc.).
In the covariant approaches the wave functions in the different
reference frames are related to each other by kinematic
Lorentz transformations.
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Dynamical boost

Unfortunately in the most convenient approaches to the
extensively used Weinberg’s EFT, the TOPT and so called
"Unitary transformation" (UT) method, the boost
transformations are dynamical, i.e. they depend on the
interaction.
To account for this interaction we construct the PT for the
boost operator, which is the only missing part for completing
the developed in more than three decades systematic
approaches to EFT.
Such PT is especially timely in view of the current
high-accuracy calculations of the nuclei form factors in chiral
EFT, E. Epelbaum et al. Phys.Rev.C 103 (2021) 2, 024313.
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Examples of high-accuracy calculations

Corresponding examples of high-accuracy calculations,
Few Body Syst. 65 (2024) 2, 39,
J.Phys.Conf.Ser. 2586 (2023) 1, 012006:

(i) deuteron structure radius, r = 1.9729 + 0.0015 − 0.0012 fm,

(ii) deuteron quadrupole moment,
Qd = 0.2854 + 0.00380.1700fm2, at N4LO
in agreement with very precise experimental datum
Qd = 0.285699fm2

(iii) deuteron structure radius was used to extract neutron charge
radius r2

n = −0.105 + 0.005 − 0.006fm2.
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Previous attempts

Previous ad hoc attempts, though irrelevant for ab initio
studies:
J. Phys. G 28, R37 (2002), Phys. Rev. C 61, 034002 (2000),
Phys. Rev. D 10, 1777 (1974), Annals Phys. 104, 380 (1977),
Phys. Rev. C 55, 2214 (1997), Phys. Rev. Lett. 87, 180401
(2001), Phys. Rev. C 65, 064009 (2002)
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A part of work done in Dubna

Our ab initio PT for boost operator
A.K., A. Khvedelidze, B. Magradze, V. Matveev,
Theor.Math.Phys. 72, 710 (1988); 78 (1989) 162; 78 (1989)
227; 78, 252 (1989)
That time PT was applied to high energy physics using
asymptotic freedom.

The same PT is just what is needed in the low energy physics
based on the chiral EFT.
Recent high precision nuclear studies necessitate missed so far
such PT to complete the low energy nucleon EFT, often called
"the modern theory of nuclear forces"

Here we present such PT for practitioners of the two most
extensively used approaches to "chiral effective field theory",
one based on the TOPT another on the UT method
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PT for boost operator in QFT

Boost generator: M̄ i0 = M i0
0 +

∫
d4xx iHI (x)δ(x

0),
M i0

0 and M i0
I =

∫
d4xx iHI (x) are its free and interaction parts.

Boost transformation operator:
T̄λ = exp(iωniM̄ i0) = exp

(
iωniM i0

0 + iω
∫
d4xnix iHI (x)δ(x

0)
)

where λ is the velocity 4-vector, λ2 = 1, ω = arcsh|λ⃗|, ni = λi

|λ⃗|
.

The operator T̄λ relates the bound state vector |P, l⟩ with
4-momentum P to that at rest, |⃗0, l⟩, with spin variables l ,
|P, i⟩ =

∑
j T̄λ |⃗0, j⟩D(λ, λ0)

j
i ,

where λ = P/M, λ0 = (1, 0⃗) and D(λ, λ0)
j
i is Wigner rotation

matrix.

Sasha Kvinikhidze



PT for boost operator in QFT

To construct the PT for the boost operator we proceed in direct
analogy with the construction of the S-matrix, i.e. we consider the
"evolution equation" for the combination Ā(λ) = T+

λ0T̄λ,
∂Ā(λ)
∂ω = T+

λ0

(
−i

∫
d4xn⃗x⃗HI (x)δ(x

0)
)
T̄λ = i B̄(λ)Ā(λ)

B̄(λ) = T+
λ0

(
−
∫
d4xn⃗x⃗HI (x)δ(x

0)
)
Tλ0 =

− 1
|λ⃗|

∫
d4x(Λ−1

λ x)0HI (Λ
−1
λ x)δ(x0)

= − 1
|λ⃗|

∫
d4xx0HI (x)δ([Λλx ]

0) = − 1
|λ⃗|

∫
d4xx0HI (x)δ(λx)

= − 1
λ0

∫
d4x λ⃗x⃗HI (x)δ(λx) = − ∂

∂ω

∫
d4xHI (x)θ(λx)

The solution to this eq can be written in the three forms presented
in (16,18,19) of Theor.Math.Phys. 72, 710 (1988), all of them
applicable for perturbative calculations,
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PT for boost operator in QFT

Ā(λ) = Tω exp
(
i
∫ ω
0 dω′B(ω′)

)
= T x0

xn
exp

(
i
∫
Ω d4xϵ(x0)HI (x)

)
=

{
T exp

(
i
∫
Ω1

d4xHI (x)
)}{

T exp
(
i
∫
Ω2

d4xHI (x)
)}†

={
T exp

(
i
∫
dxθ(x0)θ(−λx)HI (x)

)} {
T exp

(
i
∫
dxθ(−x0)θ(λx)HI (x)

)}†
=

WRONG =
{
T exp

(
i
∫
d4xθ(λx)HI (x)

)} {
T exp

(
i
∫
d4xθ(x0)HI (x)

)}†

because the boundary condition Ā(λ⃗ = 0) = 1 is not satisfied
Here the orderings Tω and T x0

xn
are defined as

TωB(ω1)B(ω2) = θ(ω1−ω2)B(ω1)B(ω2)+θ(ω2−ω1)B(ω2)B(ω1),

T x0
xn
HI (x

′)HI (x) = θ
(

x ′0
x′n − x0

xn

)
HI (x

′)HI (x) + (x ′ ↔ x)

But "T" stands for ordinary time-ordering!
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Boost operator in TOPT

All three forms given above imply expansion in powers of the
product of velocity λ⃗ by couplings involved in the chiral
interaction Lagrangian therefore it is interesting how do they
interplay in practical calculations

|P⟩ = T̄λ |⃗0⟩ can be written in terms of the
two nucleon wave functions, ΨP(p⃗1, p⃗2) = ⟨p1, p2|P⟩
ΨP(p⃗1, p⃗2) =∫
⟨p1, p2|Ā(λ)Tλ0(1 + GMQT ir

M)|k1, k2⟩(dk)Ψ0(k1, k2).,
T ir encodes all but two-nucleon intermediate states

In the LO A(λ) ∼ 1, T ir
M) = 0 therefore the boost

transformation in the LO approximation is ⟨p1, p2|Tλ|k1, k2⟩ ∼
⟨p1, p2|Tλ0|k1, k2⟩ = δ3(Λ⃗λp̄1 − k⃗1)δ

3(Λ⃗λp̄2 − k⃗2), which
corresponds to the kinematic Lorentz transformation given by
ΨP(p⃗1, p⃗2) ∼ Ψ0(Λ⃗

λp̄1, Λ⃗
λp̄2),
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PT in UT method

Unitary transformation U diagonalises Poincare generators P̄α

Pα = UP̄αU
+ is diagonal in number of nucleons

UT boost operator:
Tλ = UT̄λU

+ = UTλ0Ā(λ)U
+ = (UTλ0U

+)(UĀ(λ)U+) (A)

|uP⟩ = U|P⟩ is bound state vector in UT method
Then bound state current: ⟨P′|Jµ|P⟩ = ⟨uP′|UJµU+|uP⟩

Boosting bound state |P⟩u = T
V⃗
|⃗0⟩u, explicitely, in variables:

ΨP(p′1, p
′
2) =

∫
⟨p′1, p′2|TV|k1, k2⟩d

3k1
2ωk1

d3k2
2ωk2

Ψ0(k1, k2)

⟨p′1, p′2|TV|k1, k2⟩ is calculable perturbatively to any precision
with the help of Eq.(A).
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PT from the two-body Schroedinger equation

The corresponding PT based
only on the two-body Schroedinger equation.
This PT is formulated in terms of NN potentials developed in
great details and extensively used for the analysis of the
scattering amplitudes etc. in both, TOPT and UT method
approaches, rather than in terms of the quantised interaction
Hamiltonian density HI used above.

It is based on the Schroedinger eq for moving bound state with

momentum P,
(
P0 −

√
m2

1 + p2
1 −

√
m2

2 + p2
2

)
ΨP(p⃗) =∫

d3kV (P, p, k)ΨP(k⃗) (P)
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PT from the two-body Schroedinger equation

The proposed PT represents the expansion of the solution to
the Eq(P) around its solution at the rest frame
ΨP(p⃗) = Ψ0(Λ⃗

λp̄) + δΨP(p⃗), where p̄ is "on-mass-shell" 4D
relative momentum of the constituents, p̄ =

(
P⃗p⃗
P0 , p⃗

)
because (P2 ± p)2 = m2 → Pp = 0,
Λλ is the boost transformation reducing the 4-vector
λ = P/M to its rest frame, Λλλ = (1, 0⃗),

Leading order (LO) solution to Eq(P), Ψ0(p), satisfies Eq(P)
for the total 3-momentum set to zero, P⃗ = 0,(
M − 2

√
m2 + p2

)
Ψ0(p⃗) =

∫
dk⃗V (M, 0, p⃗, k⃗)Ψ0(k⃗)
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Extension of the standard time independent PT,
2303.14862 [quant-ph]

[G−1
0 (En)− K0(En)− K1(En)]|ψn⟩ = 0 where K1(E ) is the

perturbation potential with arbitrary E dependence, NOT just
linear.

Green function of the unperturbed eq, Gu(E ), is known
[G−1

0 (E )− K0(E )]Gu(E ) = 1

Unperturbed potential K0(E ) gives rise to a bound state at
energy En, then Gu(E ) has a pole at En,
⟨x |Gu(E )|y⟩ = ϕn(x)ϕ̄n(y)

E−En + Gb
u (E )

Use the factorised form of the pole contribution, |ϕn⟩⟨ϕn|, to
solve the perturbed eq algebraically,
|ψn⟩ = [1 − Gb

u (En)K1(En)]
−1|ϕn⟩
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Boost directly in terms of nuclear forces

Use our extension of the standard PT for δΨP(p⃗),
Ψ′

P(p) = ⟨p|[1 − Gb
uK1]

−1|k⟩dkΨ0(k), (PT )
where

Gb
u (E , p

′, p) = Gu(E , p′, p)− Ψ0(p′)Ψ̄0(p)
E−M ,

⟨p′|Gu(E )|p⟩ = Gu(E , p′, p) is the Green function for the NN
system at rest,(
E − 2

√
m2 + p′2

)
Gu(E , p′, p)−∫

dkV (E , 0, p′, k)Gu(E , k, p) = δ3(p′ − p),

⟨p′|K1|p⟩ = V ′(P, p′, p)I (P, p)− V (M, 0, p′, p)

+δ(p′ − p)
(
M − 2

√
m2 + p2 − P0 +

√
P⃗2 + 4(m2 + p2)

)
P0 =

√
P⃗2 +M2
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Boost directly in terms of nuclear forces

Ψ′
P(p) = ⟨p|[1 − Gb

uK1]
−1|k⟩dkΨ0(k), (PT )

The crucial property of (PT): it is expressed in terms of the NN
potential V , just that which is studied in more than three decades
in great details, to high precision, in both approaches (TOPT and
UT method) and is being extensively used for the systematic
analysis of NN scattering.
This is in contrast to our first version which is expressed in terms of
the interaction hamiltonian density HI (x).
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Thanks

THANK YOU!
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