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Charged Current Quasielastic (CCQE) reactions
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In the standard model (SM), the CC lepton currents couple to the W± bosons
through the well-known V − A form through the interaction lagrangian

L = −g
2
√
2
[̄
l(x)γµ (1− γ5) νl(x)Wµ(x) + ν̄l(x)γµ (1− γ5) l(x)W †

µ(x)
]

When applying the Feynman rules to obtain the reduced matrix element for the
transition between initial and final states

−iMfi =
(
−i g
2
√
2

)2
cos θc ūr ′(k′)γµ (1− γ5) ur (k) i DW

µν(q) 〈N ′(p′)| JνN(q) |N(p)〉
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Charged Current Quasielastic (CCQE) reactions
where 〈N ′(p′)| JνN(q) |N(p)〉 is the transition matrix element between nucleon (or
nuclear) states driven by the weak CC hadron current. The weak CC JνN(q)
current operator is also of the form V − A, but as the nucleons are not
elementary particles, its structure is more involved than for leptons. It can be
shown that invoking several symmetries that hold for strong interactions, like
invariance under G-parity, time-reversal and the absence of second class currents
in the SM, the vector and axial-vector parts of the current can be written as

V µ
s′s(p

′,p) = ūs′(p′)
[
2FV

1 (q2)γµ + i 2FV
2 (q2)
2mN

σµνqν
]

us(p) (1)

Aµs′s(p
′,p) = ūs′(p′)

[
GA(q2)γµγ5 + GP(q2)

2mN
qµγ5

]
us(p) (2)

where the Dirac and Pauli isovector form factors FV
i = 1

2 (F p
i − F n

i ) can be related
to the electromagnetic ones by assuming that the vector part of the weak CC
currents V µ

cc± = V µ
1 ± i V µ

2 belongs to the same multiplet of conserved vector
currents as the third isospin current V µ

3 entering into the electromagnetic current
Jµem = V µ

3 + 1
2V µ

Y , where the triplet of isospin vector currents is written as
V µ
i = Vµ τi2 , where V

µ carries the Lorentz-Dirac structure and τi the flavor
(isospin) structure allowing transitions among different nucleon states. 4 / 71



Low four-momentum transfer regime=effective Fermi
theory
In the expression for the reduced matrix elementM, the W±-boson
propagator appears, but this can be made to disappear in the low
four-momentum transfer regime, transferring its contribution to the
effective Fermi coupling constant GF .

DW
µν(q) =

−gµν + qµqν
M2

W

q2 −M2
W

−→︸︷︷︸ gµν
M2

W
|q2| � M2

W

Within this approximation the matrix element for the transition reduces to
the Fermi point-like interaction

−iMfi = −i GF cos θc√
2

lµr r ′(k, k
′)
〈
N ′(p′)

∣∣ JN
µ (q) |N(p)〉 ; with GF√

2
= g2

8M2
W

(3)
This limit is widely valid for most of the current and past scattering
experiments, as far as |q2| � M2

W ≈ 6400 GeV2.
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Calculating cross sections: lepton and hadron tensors
The S-matrix transition matrix element can be written as

Sfi = −i (2π)4 δ4(p + q − p′)Mfi

To calculate the differential cross section it is necessary to raise to the
square the probability amplitude for the transition, Sfi , and to sum (or
integrate) over unobserved discrete quantum numbers (or continuum) of
the final state and average over those of the initial state. In this way, when
calculating |Mfi |2 and summing over final fermion polarizations and
averaging over the initial ones, we obtain

|Mfi |2 = 1
2
∑
r r ′

∑
s s′

G2
F cos2 θc

2
(
lµr r ′(k, k

′)JN
µ (q)

)∗ (
lνr r ′(k, k′)JN

ν (q)
)

= G2
F cos2 θc

2

(∑
r r ′

lµ∗r r ′(k, k
′)lνr r ′(k, k′)

)
︸ ︷︷ ︸

(
1
2
∑
s s′

JN∗
µ (q)JN

ν (q)
)

︸ ︷︷ ︸
Lµν(k, k′) w s.n.

µν (p,p′)
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Lepton and hadron tensors
When summing over lepton polarizations, the following trace appears

Lµν(k, k′) = Tr
[
γµ(1− γ5)(/k ′ + m′)γν(1− γ5)/k

]
= 8

[
kµk ′ν + kνk ′µ − gµνk · k ′︸ ︷︷ ︸−i εµναβkαk ′β︸ ︷︷ ︸

]
(4)

sµν aµν

The single nucleon (and hadron or nuclear) tensor has one property we will
use later. It is an hermitic Lorentz tensor. Changing the Lorentz indices is
equivalent to take the complex conjugate.

w s.n.∗
µν (p,p′) = w s.n.

νµ (p,p′) (5)

The above equation implies that the symmetric part of the tensor is real
and the antisymmetric part of it is purely imaginary. And also in the
opposite direction, i.e, the imaginary part of the tensor is antisymmetric
and the real part of the tensor is symmetric.
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Properties of hadron and lepton tensors

Sym
(
w s.n.
µν

)
= 1

2
(
w s.n.
µν + w s.n.

νµ

)
= 1

2
(
w s.n.
µν + w s.n.∗

µν

)
= Re

(
w s.n.
µν

)
Antisym

(
w s.n.
µν

)
= 1

2
(
w s.n.
µν − w s.n.

νµ

)
= 1

2
(
w s.n.
µν − w s.n.∗

µν

)
= i Im

(
w s.n.
µν

)
These properties mean that when calculating the contraction of the lepton and
hadron tensor, sµν will only appear multiplying real parts of the hadron tensor
and aµν only multiplying imaginary parts of the hadron tensor.
Finally, writing the final one-body phase space (for the final lepton) we can write
the inclusive (integrated and summed over the initial and final hadronic states)
cross section:

dσ
dΩk̂′dE ′ = G2

F cos2 θc
4π2

k ′
Eν

(sµν − i aµν) W had
µν (6)

where W had
µν is the inclusive nuclear hadron tensor for a given lepton kinematics

(E ′, k̂ ′), where the initial and final nucleon momenta will be fully integrated and
summed over polarizations to obtain the 1p-1h hadron tensor, or relevant nuclear
responses in a particular frame of reference.
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Reference frame used to simplify the calculations

We assume that the initial nucleus is at rest
and, either it has no spin or, if it has, it is unpolarized. If the nucleus were
polarized, there would be another privileged direction (that of the spin of the
nucleus) and more response functions would enter in the description of the cross
section. The only information the nucleus has about the neutrino interaction is
the energy and momentum transfer it receives.
For each final lepton kinematics (E ′, k̂ ′), we choose q = k− k′ to define the
Z-axis. The X-axis to fix the scattering plane is defined by the transverse
component of the neutrino momentum with respect to the momentum transfer.

kT = k− k · q
q2 q lies ‖ X− axis
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Reference frame used to simplify the calculations

This can be done because it represents a global rotation of the system as a whole
in the scattering plane. This rotation will not change the initial or final lepton
energies at all, nor will change the values of the scalar products involved in the
contraction of the lepton tensor Lµν(k, k′) and the inclusive nuclear hadron one
W had
µν (q). All the involved scalar products between four-momenta appearing in

the contraction can be reduced to the combination k2, k ′2 and k · k ′. And in
addition, this rotation leaves an initial nucleus at rest, remaining at rest.
With these previous assumptions, we can assume that the spatial components of
the hadron tensor W ij

had can be expanded in the tensorial basis composed by

δij , qiqj (symmetric), εijkqk (antisymmetric)

The time-space part of the tensor W 0i
had should be proportional to qi and the

time-time component will be one of the other additional nuclear response
functions. We can write for the above components of the tensor the explicit
expansion:
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Reference frame used to simplify the calculations

W ij = 1
2RT

(
δij − qiqj

q2

)
+ RLL

qiqj

q2 + i RT ′ ε
ijk qk

|q| (7)

W 0i = W 03 qi

|q| ; W i0 = W 30 qi

|q| (8)

W 00 ≡ RCC (9)
Using the properties of the hadron tensor, W µν = W νµ∗, obviously the diagonal
parts of it are real and the W 12 and W 21 components are purely imaginary
satisfying W 12 = −W 21 in the frame where q defines the Z-axis. Normally, the
symmetric transverse part to q is called the T response function

RT = W 11 + W 22,

the antisymmetric transverse part is called the T’ response

RT ′ = −i
2
(
W 12 −W 21)

and the symmetric longitudinal-longitudinal part is called the LL response
RLL = W 33
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Clarifying note
In other approaches, one writes the nuclear hadron tensor in fully covariant
fashion, where the tensor basis for the expansion has 5 relativistically
invariant structure functions (Wi(ν,Q2), i = 1, . . . 5) contributing to the
inclusive cross section (the W6(ν,Q2) does not contribute). At the end, in
both approaches we have the same algebraically independent structure
functions or responses, namely 5. But these invariant structure functions
can be written as appropriate combinations of the components of the
hadron tensor (the 5 response functions) in a reference frame where q
defines the Z-axis.
This apparent paradox, that components of a tensor (which of course are
not invariant under any Lorentz transformation, in particular rotations) in
a particular frame can be used to construct invariant quantities (the
structure functions or the response functions) is somewhat similar to
construct the s-Mandelstam variable from the total energy in the CM
frame of two colliding particles. Of course, individual energies of the
colliding particles are not invariant under Lorentz transformations, but
their sum in a privileged (the CM one) frame is an invariant quantity,

√
s.
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Reference frame used to simplify the calculations
In this frame, the neutrino and the final lepton have the following
four-momenta

kµ = (Eν ,Eν sin θνq, 0,Eν cos θνq)
k ′µ =

(
E ′, k′

)
where k′ obviously also lies on the scattering plane and can be obtained by
performing a rotation around the Y-axis of angle θl over the direction
defined by the neutrino, this θl is the scattering angle of the final lepton
with respect to the neutrino.

k′ = |k′|
Eν
Ry (θl)k =

∣∣k′∣∣
 cos θl 0 sin θl

0 1 0
− sin θl 0 cos θl


 sin θνq

0
cos θνq


=

 |k′| sin (θνq + θl)
0

|k′| cos (θνq + θl)

 ; with k · k′ = Eν
∣∣k′∣∣ cos θl
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Some contractions

The contraction between the symmetric parts of the lepton and hadron tensors
make appear only the symmetric components of the hadron tensor, or, for those
components which have not definite symmetry, like W 03 or W 30, the contraction
makes them to appear in symmetrized form

sµνW µν = VCCRCC + 2VCLRCL + VLLRLL + VTRT (10)

with RCL = − 1
2 (W 03 + W 30), and the kinematical factors that come from the

symmetric part of the lepton tensor can be found, for instance, in PRD 97,
116006 (2018), among other papers.
For the contraction between the antisymmetric parts of lepton and hadron tensor,
only the T’ response survives to the contraction. Nor even appears the
antisymmetrized part of the W 03 hadron tensor component.

aµνW µν = (W 03 −W 30)ε0123 (kxk ′y − kyk ′x )︸ ︷︷ ︸+2 i RT ′(Eνk ′z − E ′kz) (11)

ky = k ′y = 0
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Cross section

So at the end, after performing the contractions, the cross section can be finally
written in terms of the five response functions as

dσ
dΩk̂′dE ′ = G2

F cos2 θc
4π2

k ′
Eν

(VCCRCC + 2VCLRCL + VLLRLL + VTRT ± 2VT ′RT ′)

(12)
where the ± sign in the contribution of the T’ response is for
neutrinos/antineutrinos, respectively.
This is because in the antineutrinos case, the role of the k and k′ vectors gets
interchanged in the reduced matrix elementMfi . The symmetric part of the
lepton tensor is also symmetric under the interchange k ↔ k ′, but the
antisymmetric part of the lepton tensor is precisely antisymmetric under that
interchange of four-momenta and gets a minus sign with respect to the neutrinos
case. This sign gets finally reflected in the contraction with the antisymmetric
part of the hadron tensor.
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QE responses in the RFG
Up to now we have been discussing in general the formalism for inclusive (from
the hadron point of view) neutrino scattering cross sections, where the response
functions RK are the nuclear ones. The QE responses in the RFG model can be
obtained assuming that in the impulse approximation (IA) the W±-boson is
absorbed (and therefore the energy and momentum transfer (ω, |q|)) individually
and incoherently by a single nucleon in the RFG picture of the nucleus.
If all nucleons contribute incoherently to the total cross section, we have to
perform a sum over all of them.
The nuclear one-body electroweak current operator will induce transitions from
the ground-state of the RFG to excited states with one particle above the Fermi
surface and leaving a hole below the Fermi momentum. In this way we obtain
what is usually called the 1p-1h contribution. In this approach we can write (with
our normalizations for spinors) for the nuclear hadron tensor the following
expression

Wµν =
∑
p<kF

∑
s,s′

m2
N

EpE ′p+q
δ(E ′ − E − ω)J∗µ(p′,p)Jν(p′,p)θ(|p′| − kF ) (13)

where the electroweak current matrix element between plane wave states is
Jµ(p′,p) = V µ

s′s(p
′,p)− Aµs′s(p

′,p) (14)16 / 71



QE responses in the RFG
Again the sum over polarizations gives traces over Dirac matrices that, at the
end, will be written in terms of the nucleon vector and axial form factors and
on-shell four-momenta. To be more specific

2w s.n.
µν (p′,p) =

∑
s,s′

J∗µ(p′,p)Jν(p′,p) =

Tr
[
γ0(Vµ(q)− Aµ(q))†γ0

(/p′ + mN)
2mN

(Vν(q)− Aν(q))
(/p + mN)

2mN

]
(15)

where

V µ(q) =
[
2FV

1 (q2)γµ + i 2FV
2 (q2)
2mN

σµνqν
]

(16)

Aµ(q) =
[
GA(q2)γµγ5 + GP(q2)

2mN
qµγ5

]
(17)

Finally, the sum over initial nucleon momenta |p| < kF can be transformed, with
appropriate normalization for the number of nucleon states inside the Fermi
sphere, to give:
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QE responses in the RFG

Wµν = 3Nm2
N

4πk3
F

∫
d3p δ(E ′ − E − ω) θ(E ′p+q − EF )

w s.n.
µν (p + q,p)

EpE ′p+q
(18)

where N is the number of neutrons because for neutrinos, the W + can only be
absorbed by neutron states. For antineutrinos, N → Z . The above integral can
be analytically computed for the relevant nuclear response functions entering in
the cross section, RK (K = CC ,CL, LL,T ,T ′). The final result, instead of being
written in terms of (ω, |q|) can be written in terms of a single variable ψ(ω, |q|),
called the scaling variable 1,2. This can be defined as

ψ ≡ ±
√
ε0 − 1
εF − 1 (19)

where all the kinematic variables are written dimensionless by normalizing to the
nucleon mass,

ε0 = max
[
γ− ≡ κ

√
1 + 1/τ − λ, εF − 2λ

]
(20)

1W.M. Alberico et al, Phys. Rev. C 38, 1801 (1988)
2M.B. Barbaro et al, Nucl. Phys. A643, 137 (1998)

18 / 71



QE responses in the RFG

In the above slide the kinematic variables ω and q ≡ |q| are changed to the
dimensionless ones and combinations of them

κ ≡ |q|
2mN

λ ≡ ω
2mN

}
→ τ = κ2 − λ2 = Q2

4m2
N
, (21)

ηF ≡ kF
mN

, εF = EF
mN

=
√
1 + η2F (22)

And the + sign in the scaling variable applies if λ > τ (what means to be at
energy transfers larger than that at the QE peak position at λ = τ), while the −
sign applies for λ < τ . The meaning of the ε0 variable can be understood in the
next plot, where we place ourselves in two situations, one where there can be
Pauli blocking and other one where there cannot be.
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QE responses in the RFG

Figure: Behavior of γ− as a function of λ in two regimes: (a) Pauli-blocked region
(κ < ηF ) and non-Pauli-blocked region (κ > ηF ). It is also shown the line
Γ = εF − 2λ, which can be larger than γ− for small λ in the Pauli-blocked regime.

20 / 71



QE responses in the RFG

Finally, with the aid of this scaling variable, which is a single function of two
independent ones (λ, κ), one can write the nuclear response functions in the RFG
after having integrated the relevant single-nucleon responses with the momentum
distribution of the Fermi gas. The expressions can be also found, for instance, in
PRD 97, 116006 (2018). I write them now for completeness. All of them can be
written in factorized form as

RK = NξF
mNη3Fκ

UK fRFG(ψ) (23)

where fRFG = 3
4 (1− ψ2)θ(1− ψ2) and ξF =

√
1 + η2F − 1. The step function

appears because ε0 is the lower limit in the final integration over the initial
nucleon energy E , and this value has to be always lower than the Fermi energy
EF for the integral to give a non-zero contribution. This restricts the scaling
variable in the RFG model to be between -1 and 1. The UK can be considered as
"RFG-integrated single-nucleon response functions", and their expressions are:
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QE responses in the RFG in the scaling formalism

UCC = κ2

τ

[
(2GV

E )2 + (2GV
E )2 + τ(2GV

M)2
1 + τ

∆ + G2
A∆
]

+ λ2

τ
(GA − τGP)2

UCL = −λκ
τ

[
(2GV

E )2 + (2GV
E )2 + τ(2GV

M)2
1 + τ

∆ + G2
A∆ + (GA − τGP)2

]
ULL = λ2

τ

[
(2GV

E )2 + (2GV
E )2 + τ(2GV

M)2
1 + τ

∆ + G2
A∆
]

+ κ2

τ
(GA − τGP)2

UT = 2τ(2GV
M)2 + (2GV

E )2 + τ(2GV
M)2

1 + τ
∆ + G2

A [2(1 + τ) + ∆]

UT ′ = 2GA(2GV
M)
√
τ(1 + τ)

[
1 + ∆̃

]
(24)

with

GV
E = FV

1 − τFV
2 ; ∆ = τ

κ2
ξF (1− ψ2)

[
κ

√
1 + 1

τ
+ ξF

3 (1− ψ2)
]

GV
M = FV

1 + FV
2 ; ∆̃ =

√
τ

1 + τ

ξF (1− ψ2)
2κ
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QE responses in the RFG in the scaling formalism

Notice that, despite the factorization form of the nuclear responses, the scaling
variable ψ not only appears in the scaling function, but also in the ∆ and ∆̃, so
the factorization is not complete in the sense of "an integrated single-nucleon
response independent of ψ" multiplied by a scaling function only dependent on ψ.
But the quantities ∆ and ∆̃ are proportional to ξF =

√
1 + η2F − 1 ≈ k2F

2m2
N
� 1,

and represent a small correction.
In any case, the "factorized" expression for the nuclear response functions

RK = NξF
mNη3Fκ

UK fRFG(ψ)

is still useful because one can substitute "by hand" the RFG scaling function by
suitable, either phenomenological or theoretically-based in more sophisticated
models (as the RMF for finite nuclei with scalar and vector potentials), other ones
that describe better the QE electron scattering data than the RFG model.
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Hints on scaling properties of QE electron scattering data
3

Figure: Scaling function f (ψ′) for all
nuclei with A > 12 and all available
kinematics.

Figure: Scaling function f (ψ′) for
12C, 27Al, 56Fe and 197Au at the
same kinematics (q ≈ 1 GeV/c)

3Figures taken from reference T.W. Donnelly and I. Sick, Phys. Rev. C 60, 065502
(1999)
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Some warnings
The RFG model with the scaling variable defined above does not describe properly
the QE electron scattering data. Therefore, in the literature many different
modifications have been done.
In some studies a modified scaling variable ψ′, obtained from ψ by making a shift
in λ (like a separation energy), is used to reproduce the data (as in the previous
figure) and fulfill scaling. Problem with this approach? The shift in omega breaks
gauge invariance and normally people try to restore it at the end.
In other studies, different scaling functions are used for the longitudinal and
transverse responses in electron scattering, fL(ψ′) and fT (ψ′). These functions are
adjusted to data when a Rosenbluth separation between L and T responses can be
done. From these studies it is known that fT > fL. This phenomenon has been
always suggested to be due to the transverse enhancement induced in the T
response due to Meson-exchange currents (MEC) and N-N correlations.
The good point of RMF models with scalar and vector potentials in finite nuclei,
based on the QHD-I model of Walecka, Horowitz and B.D. Serot is that these
theoretical models predict that fT > fL, due to the enhancement of the
lower-components of the relativistic spinors calculated within the theory and
produce the tail seen in the data for ψ > 1. Bad point? The scaling functions do
not scale, i.e, they are not functions alone of ψ. They also depend on q. Solution?
to make again a shift in λ to restore scaling property, at the price of losing gauge
invariance again... 25 / 71



SuSAM* = Super Scaling Analysis with M∗

The SuSAM* collaboration:
I. Ruiz Simo
V.L. Martinez Consentino
E. Ruiz Arriola
J.E. Amaro

Department of Atomic, Molecular and Nuclear Physics of University of
Granada
It is not the first time that somebody tries to describe the QE electron
scattering cross section using a relativistic effective mass. Pioneering
works on this subject are those of Rosenfelder4 and Wehrberger5. But as
far as we know, this is the first attempt to find a scaling function and the
relativistic effective masses by fitting the QE responses in electron
scattering data for the whole database of nuclei we have at our disposal.

4Annals of Physics 128, 188-240 (1980).
5Phys.Rept. 225 (1993), 273-362.
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SuSAM* literature

Global Superscaling Analysis of Quasielastic Electron Scattering with Relativistic
Effective Mass. J.E. Amaro, V.L. Martinez-Consentino, E. Ruiz Arriola, I. Ruiz Simo,
Phys.Rev. C98 (2018), 024627
Quasielastic charged-current neutrino scattering in the scaling model with relativistic
effective mass. I. Ruiz Simo, V.L. Martinez-Consentino, J.E. Amaro, E. Ruiz Arriola,
Phys.Rev. D97 (2018) 116006
Fermi-momentum dependence of relativistic effective mass below saturation from
superscaling of quasielastic electron scattering, V.L. Martinez-Consentino, I. Ruiz Simo,
J.E. Amaro, E. Ruiz Arriola. Oct 13, 2017. Phys.Rev. C96 (2017) 064612
Superscaling analysis of quasielastic electron scattering with relativistic effective mass,
J.E. Amaro, E. Ruiz Arriola, I. Ruiz Simo. Phys.Rev. D95 (2017) 076009
Scaling violation and relativistic effective mass from quasi-elastic electron scattering:
Implications for neutrino reactions J.E. Amaro, E. Ruiz Arriola, I. Ruiz Simo, Phys.Rev.
C92 (2015) 054607
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Walecka model QHD-I (Quantum Hadrodynamics)
The building blocks of this model are the nucleon doublet field

ψ =
(
ψp
ψn

)
and two neutral and isoscalar mesons, one of them is scalar

(σ) and the other one is vector (ωµ). The Lagrangian density for this
model is given by:

L = ψ̄ (iγµ∂µ −mN)ψ + 1
2
(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4FµνFµν + 1
2m2

ω ωµ ω
µ

− gωψ̄γµψ ωµ + gσψ̄ψ σ (25)

where Fµν ≡ ∂µων − ∂νωµ.
The field equations for this model can be obtained from the
Euler-Lagrange ones and these are:(

∂µ∂µ + m2
σ

)
σ = gσ ψ̄ψ (26)

∂νF νµ + m2
ω ω

µ = gω ψ̄γµψ (27)
[γµ (i∂µ − gω ωµ)− (mN − gσ σ)]ψ = 0 (28)
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Mean Field Theory (MFT) description of the model

If we consider the situation in which we have a system of B baryons in a
large box of volume V and we are in the rest frame of the matter, i.e, the
baryon current Bµ = (ρB,B) = ψ̄γµψ has B = 0. If the baryon density
B/V increases, the sources increase as well; and if these are large enough,
one would expect to substitute the meson fields by their expectation
values:

σ → 〈σ〉 ≡ σ0, ωµ → 〈ωµ〉 ≡ (ω0, 0) (29)

Since we are restricting ourselves to stationary situation and uniform
system, σ0 and ω0 are constants completely independent of space and
time. And since the matter is at rest, the three-vector field ~ω = 0.
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Mean Field Theory (MFT) description of the model

We can substitute these meson fields on the Lagrangian density to obtain
the mean-field Lagrangian:

LMFT = ψ̄ (iγµ∂µ −mN)ψ− 1
2m2

σ σ
2
0 + 1

2m2
ω ω

2
0 − gω ψ̄γ0ψ ω0 + gσ ψ̄ψ σ0

(30)
Only the fermion field has to be quantized, and we can particularize the
previous Dirac equation to our MFT problem:[

iγµ∂µ − gω γ0 ω0 − (mN − gσ σ0)
]
ψ(t, x) = 0 (31)

We can see here that the effect of the scalar field is a shift in the baryon
mass from mN to m∗N ≡ mN − gσ σ0, and that of the vector field is a shift
in the energy spectrum.
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Saturation of nuclear matter
σ0 and m∗N need to be solved self-consistently for each kF (or alternatively for each
baryon density)6

σ0 = gσ
m2
σ

〈
: ψ̄ψ :

〉 〈
: ψ̄ψ :

〉
= 4

(2π)3

∫ kF (ρB )

0
d3p m∗N

E∗(p)

where kF and ρB , the baryon density, are connected through the well-known expression

ρB = 2k3
F

3π2

The saturation curve for nuclear matter is obtained (binding energy per particle)
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6B.D. Serot and J.D. Walecka, Advances in Nuclear Physics, 16 (1986), 1-338.
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Mean Field Theory (MFT) description of the model

We can look for plane-wave solutions of the Dirac equation in this MFT
approximation:

ψ
(+)
kλ (t, x) = U(k, λ)eik·x−iε+(k)t , ψ

(−)
kλ (t, x) = V (k, λ)e−ik·x−iε−(−k)t

(32)
Substituting these possible solutions in the Dirac equation, we can obtain
the corresponding Dirac equations in momentum representation:

[k · ~α + m∗Nβ] U(k, λ) = [ε+(k)− gω ω0] U(k, λ) (33)
[k · ~α−m∗Nβ] V (k, λ) = − [ε−(−k)− gω ω0] V (k, λ) (34)

with ~α = γ0~γ and β = γ0 being the usual Dirac matrices.
Eqs. (33) and (34) look like the free Dirac equation of a fermion of mass
m∗N = mN − gσ σ0 with “energy” eigenvalues

E ∗(k) ≡
√
k2 + m∗2N =

{
ε+(k)− gω ω0

− [ε−(−k)− gω ω0]
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Mean Field Theory (MFT) description of the model
Therefore, we can interpret U(k, λ) and V (k, λ) as free spinors of a fermion of mass m∗N
satisfying the Dirac equation with "energy" eigenvalues E∗(k) =

√
k2 + m∗2N . And these

m∗N and E∗(k) are the new "masses" and "on-shell" energies that enter in the
normalization of the new nucleon spinors.
So we can write the nuclear hadron tensor for this model as it if were that of a RFG with
energies E∗ and masses m∗N :

W µν = 3N
4πk3

F

∫
d3p (m∗N)2

E∗(p)E∗(p + q)θ(kF − |p|)θ(|p + q| − kF )

× δ (ω − [E∗(p + q)− E∗(p)]) wµν
s.n.(p′, p) (35)

where now the single-nucleon tensor is given by:

2wµν
s.n.(p′, p) =

∑
s s′

Jµ∗(p′, p)Jν(p′, p) =

Tr
[
γ0(V µ(q)− Aµ(q))†γ0

(/p′ + m∗N)
2m∗N

(V ν(q)− Aν(q))
(/p + m∗N)

2m∗N

]
(36)

And the assumption of the SuSAM* model is that the relativistic nucleon effective mass
m∗N only enters in the model through the nucleon spinors, while the vector and axial
currents are the same as for free nucleons.
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How to take advantage from the RFG formulae?
In principle, one can take the above eq. (36) and explicitly calculate the trace.
One would obtain a single-nucleon tensor which will explicitly depend both on m∗N
(coming from the spinors) and on mN (coming from the vector and axial-vector
currents). These new expressions can again be integrated with the momentum
distribution and Pauli-blocking in the Fermi gas model and the result would be
right, but the final expressions for the nuclear responses RK will contain explicitly
the two masses.
Can we take the expressions obtained for the RFG model and use them with
minimal changes? The answer is yes, but you have to be skilled. For example, if
the vector and axial vector currents were

V µ(q) =
[
2FV

1 (q2)γµ + i 2FV
2 (q2)
2m∗N

σµνqν
]

Aµ(q) =
[
GA(q2)γµγ5 + GP(q2)

2m∗N
qµγ5

]
then you can take the final expressions for the nuclear responses in the RFG
model and use them with the only replacement mN → m∗N everywhere. BUT
these are not the currents we are assuming.
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How to take advantage from the RFG formulae?
Then, how to use the RFG formulae without changing the vector and axial
currents? With this trick, we write the currents with an explicit m∗N but
hiding the free mass mN in a redefinition (or re-scaling) of the FV

2 and GP
form factors.

V µ(q) =

2FV
1 (q2)γµ + i

2FV
2 (q2)m

∗
N

mN

2m∗N
σµνqν


Aµ(q) =

GA(q2)γµγ5 +
GP(q2)m

∗
N

mN

2m∗N
qµγ5


And now we redefine FV∗

2 (q2) = FV
2 (q2)m

∗
N

mN
and G∗P(q2) = GP(q2)m

∗
N

mN
.

Now we can use the final RFG-based expressions with the replacements

mN → m∗N
FV
2 → FV∗

2

GP → G∗P (37)
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How to take advantage from the RFG formulae?
The above replacements imply for the Sachs form factors in terms of which the RFG
formulae are written that now these get modified in the following form

GV
E → GV∗

E ≡ FV
1 − τ∗FV∗

2 = FV
1 − τ∗FV

2
m∗N
mN

(38)

GV
M → GV∗

M ≡ FV
1 + FV∗

2 = FV
1 + FV

2
m∗N
mN

(39)

where all the kinematic variables, λ, κ, ξF , ηF ... now have to be defined, of course, in
terms of the effective mass m∗N . In particular, τ∗ = κ∗2 − λ∗2 = Q2

4m∗2N
.

Something similar happens for the pseudoscalar form factor when related to the axial
form factor via PCAC. In the free case, the relation between them is

GP = 4m2
N

Q2 + m2
π

GA → G∗P = m∗N
mN

GP = 4m∗N mN

Q2 + m2
π

GA (40)

It would seem from the above discussion that, at the end, one can take the RFG
formulae in the scaling approach and substitute all the variables with those with ∗ and
obtaining then a new scaling variable ψ∗. BUT, where is then the free nucleon mass
mN? OK, it will not appear explicitly in the formulae if we make the above replacements,
but it is not absent at all. It is implicitly hidden in the GV∗

E , GV∗
M and G∗P redefinitions.
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Important clarification
Nonetheless, it is worth pointing out that the form factors appearing in the
currents, either if you write them in terms of Pauli and Dirac form factors or
directly from the very beginning in terms of the Sachs isovector electric and
magnetic form factors, are not changed at all in the SuSAM* model. This is
one of the assumptions of the model, that the currents are the free ones with the
same form factors as if the interaction occurred on a free nucleon.
The above replacements are just a trick to avoid calculating again the traces and
to use the RFG-formulae with the minimal changes as possible.
Therefore, at the end we finish with the expression

RK = Nξ∗F
m∗Nη∗3F κ∗

UK fRFG(ψ∗) (41)

Now, our next goal is to find a suitable scaling function (instead of the RFG one)
f ∗(ψ∗) of the new scaling variable ψ∗ (defined with the relativistic effective mass)
in such a way that the experimental electron scattering data scale as better as
possible.
At the end, the best thing we find for the electron scattering data is a dense
cloud of experimental "QE" points that scale within an uncertainty band that we
parametrize as the sum of two Gaussians.
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The SuSAM* approach

The cross section is computed by using the RFG equations with
the above stated replacements to take into account that the
currents do not change by assumption of the model.
But using a phenomenological scaling function fitted to
experimental data.
The experimental scaling function f ∗exp is computed from the data by
dividing the experimental cross section by the "integrated
single-nucleon" contribution

f ∗exp =

(
dσ

dΩ′dε′
)

exp

σMott
[
vL(ZUp

L + NUn
L) + vT (ZUp

T + NUn
T )
] ξ∗F
m∗Nη

∗3
F κ∗

We tune M∗ ≡ m∗N
mN

and kF to find the best scaling of data
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SuSAM* analysis of 12C

(a) M∗ scaling analysis of the
experimental data of 12C
compared to the RFG parabola.
M∗ = 0.8 and kF = 225 MeV/c
Scaling is violated but a large
fraction of the data collapse into
a data cloud surrounding the
RFG parabola
(b): RFG Monte Carlo
simulation of QE data with
relativistic effective mass
M∗ = 0.8± 0.1.
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The SuSAM* phenomenological quasielastic peak

Data selection by computing the
data density
n = number of points inside a
(r = 0.1) circle
All selected points with n > m
are considered “quasielastic”
within an uncertainty band
For the SuSAM* we choose the
case m = 25, where a well
defined data band is obtained
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Phenomenological M∗-scaling function for 12C.

f ∗(ψ∗) = a3e−(ψ∗−a1)2/(2a22) + b3e−(ψ∗−b1)2/(2b22) (Band A)

f ∗(ψ∗) and the uncertainty
band, f ∗min < f ∗ < f ∗max , are
fitted to experimental data.
Well described as sum of two
Gaussians
Only data with density n ≥ 25
inside a (r = 0.1) circle are
included.
' 1000 QE data / 2500 are
described by the band

Data are from
O. Benhar, D. Day and I. Sick,
arXiv:nucl-ex/0603032.
http://faculty.virginia.edu/qes-archive/
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Global fits of SuSAM* parameters

Fits to (e, e′) data for nuclei: 2H, 3H, 3He, 4He, 12C, 6Li, 9Be, 24Mg, 59Ni,
89Y, 119Sn, 181Ta, 186W, 197Au, 16O, 27Al, 40Ca, 48Ca, 56Fe, 208Pb, and
238U.

Separate fits for each nucleus to the 12C scaling function
Global fit of all the data including the scaling function parameters.

Errors ∆M∗ and ∆kF are
computed in a χ2 fit.
Results are compared to the
σ − ω model of
Serot and Walecka,
Adv.Nucl.Phys.16(1986)1.  0.5
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SuSAM* scaling bands

4230 QE data for ALL nuclei: 2H, 3H, 3He, 4He, 12C, 6Li, 9Be, 24Mg,
59Ni, 89Y, 119Sn, 181Ta, 186W, 197Au, 16O, 27Al, 40Ca, 48Ca, 56Fe, 208Pb,
and 238U.

(e, e′) data are scaled with the
best parameters of the global fit
and selected with the density
criterion.
band C (in pink): global fit
band B (in green): 12C band 0

0.2
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1
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Data are from Benhar, Day and Sick http://faculty.virginia.edu/qes-archive/
Parametrization of SuSAM* bands B, C:

f ∗(ψ∗) = a3e−(ψ∗−a1)2/(2a22) + b3e−(ψ∗−b1)2/(2b22)

1 + e−
ψ∗−c1

c2
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Scaling of world data with SuSAM* parameters
2H, 3H, 3He, 4He, 12C, 6Li, 9Be, 24Mg, 59Ni, 89Y, 119Sn, 181Ta, 186W,
197Au, 16O, 27Al, 40Ca, 48Ca, 56Fe, 208Pb, and 238U.

(e, e′) world data scaled with the
best parameters of the global fit

' 9000 / 20000 data inside band C

4230 data are true quasielastic

Points outside of the band are
non-quasielastic (delta-peak,
inelastic, or low-energy regions)

The scaling band estimates the
theoretical uncertainty of the QE
peak description in the SuSAM*
model.
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SuSAM* quasielastic (e, e ′) results for 2H

(e, e′) cross section data
for 2H
Compared to the
SuSAM* QE model
band B
kF = 82 MeV/c
M∗ = 1
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SuSAM* (e, e ′) results for 3H

kF = 136 MeV/c
M∗ = 0.98
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SuSAM* quasielastic (e, e ′) results for 3He

kF = 130 MeV/c
M∗ = 0.98
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SuSAM* (e, e ′) results for 4He

kF = 180 MeV/c
M∗ = 0.86
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SuSAM* (e, e ′) results for 12C

kF = 217 MeV/c
M∗ = 0.8
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SuSAM* (e, e ′) results for 16O

kF = 230 MeV/c
M∗ = 0.8
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SuSAM* (e, e ′) results from light to heavier nuclei

kF = 175 — 238 MeV/c
M∗ = 0.77 — 0.78
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SuSAM* (e, e ′) results for 27Al

kF = 249 MeV/c
M∗ = 0.8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  70  140  210  280  350

d2 σ/
dω

/d
Ω

  [
nb

/M
eV

]

ω [MeV]

ε=2020 MeV, θ =15.022o

 0

 5

 10

 15

 20

 25

 30

 0  90  180  270  360  450

ω [MeV]

ε=2020 MeV, θ =20.016o

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  280  560  840  1120  1400

ω [MeV]

ε=7257 MeV, θ =8o

52 / 71



SuSAM* (e, e ′) results for 40Ca

kF = 236MeV/c
M∗ = 0.8
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SuSAM* (e, e ′) results for 48Ca

kF = 236MeV/c
M∗ = 0.8
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SuSAM* (e, e ′) results for 56Fe

kF = 240MeV/c
M∗ = 0.7
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SuSAM* (e, e ′) results for 208Pb

kF = 233 MeV/c
M∗ = 0.56
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SuSAM* (e, e ′) results for recent new data and predictions
for 40Ar

kF = 217 MeV/c for A = 12
kF = 240 MeV/c for A = 48, 40

Inclusive (e, e′) for 12C, 48Ti and 40Ar
ε = 2222 MeV, θ = 15.541o,
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SuSAM* predictions for CCQE neutrino scattering

Flux-averaged double differential cross section

d2σ

dTµd cos θµ
= 1

Φtot

∫
dEνΦ(Eν) d2σ

dTµd cos θµ
(Eν) , (42)

d2σ

dTµd cos θµ
(Eν): the SuSAM* cross section

neutrino energy Eν .

Neutrino flux: Φ(Eν)
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SuSAM* predictions for MiniBooNE, (νµ, µ−)

Each panel is labeled by
the mean value of cos θµ
in the experimental bin.

Experimental data are
from MiniBooNE
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SuSAM* predictions for MiniBooNE, (ν̄µ, µ+)

Each panel is labeled by the mean value of cos θµ in the experimental bin.
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SuSAM* predictions for MiniBooNE
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SuSAM* predictions for T2K 12C (νµ, µ−)
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Experimental data are from T2K
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SuSAM* predictions for T2K 16O (νµ, µ−)
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SuSAM* predictions for T2K 12C (νµ, µ−)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  11/
A

 d
2 σ/

dp
µ/

dc
os

θ µ
 [1

0-3
9 cm

2 /(
G

eV
/c

)]

pµ [GeV/c]

0.00 < cosθµ < 0.84

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  11/
A

 d
2 σ/

dp
µ/

dc
os

θ µ
 [1

0-3
9 cm

2 /(
G

eV
/c

)]

pµ [GeV/c]

0.90 < cosθµ < 0.94

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8  11/
A

 d
2 σ/

dp
µ/

dc
os

θ µ
 [1

0-3
9 cm

2 /(
G

eV
/c

)]

pµ [GeV/c]

0.84 < cosθµ < 0.90

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  11/
A

 d
2 σ/

dp
µ/

dc
os

θ µ
 [1

0-3
9 cm

2 /(
G

eV
/c

)]

pµ [GeV/c]

0.94 < cosθµ < 1.00

T2K flux-folded double differential CC inclusive cross section per nucleon for νµ scattering on
12C in the SuSAM* model.
Experimental data are from T2K

64 / 71



SuSAM* predictions for T2K 12C (νe, e−)

T2K flux-folded single differential CC inclusive
cross section per nucleon for νe scattering

The neutron binding energy in Q2
QE is EB = 25

MeV.
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SuSAM* predictions for MINERvA Q2
QE distributions

Flux-folded CCQE
(νµ, µ−) from 12C
(ν̄µ, µ+) from CH

The data are from MINERvA

The H contribution is obtained from the elastic
antineutrino-proton cross section divided by
Z = 7.
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SuSAM* predictions for MINERvA CCQE (νµ, µ+)

Flux-folded double-differential cross section d2σ
dp‖dp⊥

Antineutrino
CCQE scattering
from CH
Compared to the
MINERvA
experiment.
The νµ − H cross
section is divided
by A = 13.
θµ < 20o cut
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Conclusions

SuSAM* is a new phenomenological scaling approach based on the RMF
theory of nuclear matter. It depends on M∗ and kF
The phenomenological scaling function is extracted from a selection of (e, e′)
QE data that approximately scale inside a band.
The SuSAM* band has been parametrized and it provides a global description of
the QE (e, e′) cross section for all the nuclei considered.
The width of the SuSAM* band represents the theoretical uncertainty of the
model from effects breaking the factorization of the cross section (such as MEC,
FSI, long and short-range correlations)
SuSAM* has so far been applied to predict CCQE-like neutrino cross sections
together with the theoretical error within the model, as extracted from the
analysis to electron scattering data, but without adjusting any neutrino cross
section parameter (axial mass...).
The model can be improved in several ways: it can be used as it stands now to be
applied to describe CCQE neutrino/antineutrino cross sections and try to fit
additionally the nucleon axial mass. This could provide a global fit to the world
electron and neutrino QE scattering data. We want to collaborate in this line with
the group of JINR.
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Conclusions (continuation)
We also expect to collaborate in the implementation of this SuSAM* model within the
neutrino event generator GENIE.
We can also improve the model by substituting the Fermi momentum distribution (step
function) by a low temperature Fermi momentum distribution. If the integrals can be
done analytically, perfect. If not, the final integral over the initial nucleon energy can be
done numerically and a new scaling function (different of that of RFG) would appear. In
fact, probably the temperature of the momentum distribution could be also fitted to
reproduce electron and/or neutrino QE scattering data.

Comparisons with other scaling approaches: advantages of SuSAM* and weak points
Advantages: We only have a single scaling function to describe a really large quantity of
experimental data.
All the nuclear response functions have analytical expressions in terms of the "integrated
single-nucleon responses" and the scaling function.
The quality in the description of data, especially for the case of neutrino/antineutrino
scattering is similar to other scaling approaches as SuSAv2-MEC7,8, currently being also
implemented (or already) in GENIE. But this SuSAM* approach is far much simpler and
does not need to rely on RMF calculations in finite nuclei like SuSAv2. The code is much
faster and we don’t need to resort to pre-generated tables or parameterizations for the
MEC response functions as in the SuSAv2-MEC model.

7G.D. Megias et al, Physical Review D 94, (2016) 013012 (for electron scattering)
8G.D. Megias et al, Physical Review D 94, (2016) 093004 (for neutrino/antineutrino

scattering)
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Conclusions (continuation)
Weak points of the SuSAM* as compared with other scaling approaches

As this model is purely phenomenological, it is not possible to obtain the
nucleon momentum distributions to generate hadron events within the
Monte Carlo, just because the scaling function appears after integrating over
the initial nucleon momenta and at that point you have lost all the
information about the momentum distribution. From the phenomenological
scaling function it is not possible to obtain the momentum distribution that
hypothetically would generate it. However, in the SuSAv2 and all other
RMF-based models (in finite nuclei), as they calculate the single-particle
wave functions, they can produce the momentum distributions from these
single-particle wave functions.

The SuSAM* band, although it seems quite narrow to describe properly QE
electron scattering cross section data, gets much enhanced when applied
directly to predict neutrino/antineutrino CCQE-like cross sections. This
means that it almost covers every data, just because the uncertainty of the
model fitted to electron scattering gets magnified when translated to
neutrino/antineutrino observables.
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Thank you for your attention!
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