update

Thessaloniki, Greece, 28 August - 4 September 2016

XIIth Quark Confinement and the Hadronic Spectrum [https://indico.cern.ch/event/353906/overview]

October 13, 2016

Sessions

1. Section A: Vacuum Structure and Confinement

2. Section B: Light Quarks

[Chiral and soft collinear effective theories; sum rules; lattice; Schwinger-Dyson equations; masses of light quarks; light-quark loops; structure functions; phenomenology of light-hadron form factors, experiments.]

- 3. Section C: Heavy Quarks
- 4 Section D: Deconfinement
- 5. Section E: QCD and New Physics
- 6. Section F: Nuclear and Astroparticle Physics
- 7. Section G: Strongly Coupled Theories
- 8. Future Perspectives, Upgrades, Instrumentation
- 9. Statistical Methods for Physics Analysis in the XXI Century
- 10 Poster session

TUESDAY 30 AUGUST 2016

8:30-10:30 Plenary: Session III – Aristotelis, Chair: Gastao Krein

13:00-15:00

8

Lunch

MONDAY 29 AUGUST 2016

7

VACUUM STRUCTURE AND CONFINEMENT A2 Alexandros II Chair: Dmitry Antonov	LIGHT QUARKS B2 Aristotelis II Chair: Nikolaos Stefanis	LIGHT QUARKS B3 Amfitrion II Chair: Jose Luis Goity	HEAVY QUARKS C2 Alexandros I Chair: Antonio Vairo	DECONFINMENT D2 Aristotelis I Chair: Piotr Bozek	QCD AND NEW PHYSICS E2 Amfitrion I Chair: Martha Constantinou, Felipe J. Llares-Estrada, Marco Gersabeck	STRONGLY COUPLED THEORIES G2 Erato Chair: Ilias Kyritsis
Gauge engineering and propagators 17:30 Axel Maas	Meson Form Factors and Deep Exclusive Meson Production Experiments 17:30 Tanja Horn	Roy-Steiner-equation analysis of pion-nucleon scattering 17:30 Jacobo Ruiz De Elvira	Isospin-breaking in the decay constants of heavy mesons from QCD sum rules 17:30 Dmitri Melikhov	The flow paradigm 17:30 Jean-Yves Ollitrault	Perturbative and non- perturbative QCD parameters in Dispersive model. 17:30 Mohammad Ebrahim Zomorodian	Strong dynamics on the lattice 17:30 Daniel Nogradi
From QCD's n-point functions to nucleon resonances 18:00 Gernot Eichmann	Inclusive Cross Sections, Parton Density Functions and the strong coupling at HERA Interesting 18:00 Stefan Schmitt	Unitary coupled channel approach to diffractive scattering and its application to axial vector states 18:00 Ed Berger	D and B mesons masses in chiral perturbation theory with heavy quark symmetry 17:50 Mohammad Alhakami	Overview of experimental results on collective flow with identified particles at RHIC and the LHC 18:00 Panos Christakoglou	Search for heavy resonances in vector boson scattering 17:45 Guangyi Zhang Measurement of the WZ boson pair production cross section at 13 TeV and limits on anomalous triple grange couplings with the ATLAS	Infrared behaviors of two color gauge theory 18:00 Kimmo Tuominen
Three-point functions in Yang-Mills Theory and QCD in Landau gauge 18:30 Adrian Lorenz Blum	Nucleon structure functions and longitudinal spin asymmetries 18:20 Harleen Dahiya	The anomalous triangle singulrity and its implications of threshold enhancements 18:30 Qiang Zhao	Approximate degeneracy of heavy-light mesons with the same L 18:10 Takayuki Matsuki	Collectivity / hydrodynamics 18:30 Wojciech Florkowski	detector 18:00 Dimitrios Iliadis Measurement of the ZZ(*) production cross section in the four lepton channel at 8 TeV and 13 TeV and limits on anomalous triole	Composite Higgs Dynamics on the Lattice 18:30 Claudio Pica
Chiral symmetry breaking in continuum QCD 18:50 Mario Mitter	Pion-photon transition form factor at low-mid momenta within collinear QCD 18:40 Sergey Mikhailov	Pion-eta scalar-isovector 3-coupled channel amplitude fitted to branching ratio as and threshold plus subthreshold parameters 19:00 Robert Kaminski	The bottom-quark mass from non-relativistic sum rules at NNNLO 18:30 Jan Piclum	Overview of collectivity in small systems 19:00 Wei Li	gauge couplings with the ATLAS detector 18:15 Kostas Kordas Break 18:30 Recent progress on QCD inputs for axion phenomenology	Inverse magnetic catalysis in holographic models of QCD 19:00 Kiminad Mamo
Dyson-Schwinger approach to Hamiltonian QCD 19:10 Davide Campagnari	Neutral pion form factor measurement by the NA62 experiment 19:10 Monica Pepe	Properties of exotic and non- exotic quark-bilinears within the Dyson-Schwinger – Bethe-Salpeter equation approach 19:20 Thomas Hilger	Short-distance current correlators on the lattice 18:50 Shoji Hashimoto	Anisotropic hydrodynamics 19:30 Michael Strickland	18:45 Massimo D'elia Controlling quark mass determinations non- perturbatively in three-flavour	Axion cosmology from lattice QCD 19:30 Sandor Katz
	Electromagnetic transition form factor and radiative corrections in decays of neutral pions 19:30 Tomas Husek		Experimental highlights: Heavy Quark Physics in Heavy-lon collisions at RHIC 19:10 Rachid Nouicer		19:05 Patrick Fritzsch Constraining anomalous Higgs couplings at high and low energy 19:20 Emanuele Mereghetti	
					Observation of Anomalous Internal Pair Creation in 8Be: A Possible Signature of a Light, Neutral Boson	

19:35 Attila Krasznahorkay

Precision Physics with QCD

Antonio Pich IFIC, Univ. Valencia – CSIC

DE LE DISTINCT OF DEPART AL MERITE

XIIth Quark Confinement and the Hadron Spectrum Thessaloniki, Greece, 29th August – 3th September 2016

PDG 2015

Precision Physics with QCD

New analysis of ALEPH data

Rodríguez-Sánchez, Pich, arXiv:1605.06830

Method $(V \perp A)$	$lpha_s(m_ au^2)$			
	CIPT	FOPT	Average	
ALEPH moments ¹	$0.339 {}^{+ 0.019}_{- 0.017}$	$0.319{}^{+0.017}_{-0.015}$	$0.329 {}^{+ 0.020}_{- 0.018}$	
Mod. ALEPH moments ²	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319{}^{+0.013}_{-0.010}$	$0.329 {}^{+ 0.016}_{- 0.014}$	
$A^{(2,m)}$ moments ³	$0.336 {}^{+ 0.018}_{- 0.016}$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$	
s ₀ dependence ⁴	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013	
Borel transform ⁵	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+ 0.015}_{- 0.012}$	$0.323 {}^{+ 0.015}_{- 0.013}$	
Combined value	0.335 ± 0.013	$\textbf{0.320} \pm \textbf{0.012}$	$\textbf{0.328} \pm \textbf{0.013}$	

1)	$\omega_{kl}(x) = (1+2x)(1-x)^{2+k}x^{l}$	(k, l) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3)
2)	$\tilde{\omega}_{kl}(x) = (1-x)^{2+k} x^l$	(k, l) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3)
3)	$\omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^{m} (k+1) x^{k-1}$	$x^{k} = 1 - (m+2) x^{m+1} + (m+1) x^{m+2}$, $1 \le m \le 5$
4)	$\omega^{(2,m)}(x)$	$0 \leq m \leq 2$, $1 ext{ single moment in each fit}$
5)	$\omega_a^{(1,m)}(x) = (1 - x^{m+1}) e^{-ax}$	$0 \le m \le 6$
A. Pich	Р	recision Physics with QCD

α_s at N³LO from au and Z

 $lpha_s(m_{ au}^2) = 0.328 \pm 0.013$ $alpha_s(M_Z^2) = 0.1197 \pm 0.0015$

 $lpha_s(M_Z^2)_{
m Z \ width} = 0.1196 \pm 0.0030$

The most precise test of Asymptotic Freedom

 $\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0001 \pm 0.0015_{\tau} \pm 0.0030_Z$

$\alpha_s(M_Z^2)$: 2016 Average

PDG 2015: $\alpha_s(M_Z^2) = 0.1181 \pm 0.0013$

$\alpha_s(M_Z^2)$: 2016 Average

PDG 2015: $\alpha_s(M_Z^2) = 0.1181 \pm 0.0013$

Inclusive Observables: $R_{ee}(s)$

$$R_{ee}(s) = 12\pi \operatorname{Im}\Pi_{em}(s)$$

 $\Pi_{\rm em}^{\mu\nu}(q) \, \equiv \, i \, \int d^4 x \, {\rm e}^{iqx} \, \left< 0 \right| T \left[J_{\rm em}^{\mu}(x) \, J_{\rm em}^{\nu}(0) \right] \left| 0 \right> \, = \, \left(- g^{\mu\nu} \, q^2 + q^{\mu} \, q^{\nu} \right) \, \, \Pi_{\rm em}(q^2)$

$$R_{ee} \equiv \frac{\Gamma(e^+e^- \to \text{hadrons})}{\Gamma(e^+e^- \to e^+e^-)} = \sum_q Q_q^2 N_C \left\{ 1 + \sum_{n \ge 1} F_n \left[\frac{\alpha_s(M_Z^2)}{\pi} \right]^n \right\} + \mathcal{O}\left(\frac{m_q^2}{s}, \frac{\Lambda^4}{s^2} \right)$$

Perturbative series known to $\mathcal{O}(\alpha_s^4)$: $(n_F = 5)$

Baikov-Chetyrkin-Kühn-Rittinger

 $F_{1} = 1 , \qquad F_{2} = 1.9857 - 0.1153 n_{F} = 1.4092$ $F_{3} = -6.63694 - 1.20013 n_{F} - 0.00518 n_{F}^{2} - 1.2395 \eta = -12.805$ $F_{4}^{NS} = -156.608 + 18.7748 n_{F} - 0.7974 n_{F}^{2} + 0.0215 n_{F}^{3} - 14.952 \eta = -80.434$ $\eta = \left(\sum_{q} Q_{q}\right)^{2} / \left(N_{C} \sum_{q} Q_{q}^{2}\right)$

Singlet contributions

A. Pich

Z Hadronic Width

Vector + Axial

$$R_{Z} \equiv \frac{\Gamma(Z \rightarrow \text{hadrons})}{\Gamma(Z \rightarrow e^{+}e^{-})} = R_{Z}^{\text{EW}} N_{C} \left\{ 1 + \sum_{n \geq 1} \tilde{F}_{n} \left[\frac{\alpha_{s}(M_{Z}^{2})}{\pi} \right]^{n} \right\} + \mathcal{O}\left(\frac{m_{q}^{2}}{M_{Z}^{2}}, \frac{\Lambda^{4}}{M_{Z}^{4}} \right)$$

Perturbative series known to $\mathcal{O}(\alpha_s^4)$

$$\left. + \mathcal{O}\left(\alpha_s^2 \, \frac{m_b^4}{M_Z^4}, \alpha_s^2 \, \frac{m_b^2}{m_t^2}, \alpha_s^3 \, \frac{M_Z^2}{m_t^2}\right) \right]$$

Baikov-Chetyrkin-Kühn-Rittinger

Z-pole data (EW fit)

 $\alpha_{\rm s}({\rm M}_{\rm Z}^2)=0.1196\pm0.0030$

Gfitter 2014

Assumes validity of the EW Standard Model

Precision Physics with QCD

au Hadronic Width: $R_{ au}$

Davier et al, 1312.1501

$$\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \begin{cases} \tau & \text{d.s} & \text{w} \\ & \text{w} & \text{w} & \text{w} \\ & \text{w} & \text{w} \\$$

$$\Pi^{(J)}(s) \equiv |V_{ud}|^2 \left(\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s)\right) + |V_{us}|^2 \Pi^{(J)}_{us,V+A}(s)$$

 $v_1 = 2\pi \operatorname{Im} \Pi^{(1)}_{ud,V}(s)$, $a_1 = 2\pi \operatorname{Im} \Pi^{(1)}_{ud,A}(s)$

$$R_{\tau} = \frac{\Gamma[\tau^- \to \nu_{\tau} \text{hadrons}]}{\Gamma[\tau^- \to \nu_{\tau} e^- \overline{\nu}_e]} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$
$$= 12\pi \int_0^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \text{Im } \Pi^{(0+1)}(s) - 2\frac{s}{m_{\tau}^2} \text{Im } \Pi^{(0)}(s) \right]$$

$$i \int d^{4}x \ e^{iqx} \langle 0| T \left[\mathcal{J}_{ij}^{\mu}(x) \mathcal{J}_{ij}^{\nu\dagger}(0) \right] |0\rangle = (-g^{\mu\nu}q^{2} + q^{\mu}q^{\nu}) \Pi_{ij,\mathcal{J}}^{(1)}(q^{2}) + q^{\mu}q^{\nu} \Pi_{ij,\mathcal{J}}^{(0)}(q^{2})$$

$$\stackrel{\mathrm{Im}(q^{2})}{\longrightarrow} A_{\mathcal{J}}^{\omega}(s_{0}) \equiv \int_{s_{th}}^{s_{0}} \frac{ds}{s_{0}} \omega(s) \ \mathrm{Im} \Pi_{\mathcal{J}}^{(J)}(s) = \frac{i}{2} \oint_{|s|=s_{0}} \frac{ds}{s_{0}} \omega(s) \Pi_{\mathcal{J}}^{(J)}(s)$$

$$\stackrel{\mathfrak{G} \longrightarrow \mathfrak{G} \longrightarrow \mathfrak{G}}{\longrightarrow} R^{c(q^{2})} \qquad \Pi_{\mathcal{J}}^{(J)}(s) \approx \Pi_{\mathcal{J}}^{(J)}(s)^{\mathrm{OPE}} = \sum_{D} \frac{\mathcal{O}_{D,\mathcal{J}}^{(J)}}{(-s)^{D/2}}$$

$$i \int d^4x \; e^{iqx} \; \langle 0 | \; T \left[\mathcal{J}_{ij}^{\mu}(x) \; \mathcal{J}_{ij}^{\nu \dagger}(0) \right] \; | 0 \rangle \; = \; (-g^{\mu \nu} q^2 + q^{\mu} q^{\nu}) \; \Pi^{(1)}_{ij,\mathcal{J}}(q^2) + q^{\mu} q^{\nu} \; \Pi^{(0)}_{ij,\mathcal{J}}(q^2)$$

$$A_{\mathcal{J}}^{\omega}(s_{0}) \equiv \int_{s_{th}}^{s_{0}} \frac{ds}{s_{0}} \,\omega(s) \,\operatorname{Im} \Pi_{\mathcal{J}}^{(J)}(s) = \frac{i}{2} \oint_{|s|=s_{0}} \frac{ds}{s_{0}} \,\omega(s) \,\Pi_{\mathcal{J}}^{(J)}(s)$$

$$\Pi_{\mathcal{J}}^{(J)}(s) \approx \,\Pi_{\mathcal{J}}^{(J)}(s)^{\operatorname{OPE}} = \sum_{D} \frac{\mathcal{O}_{D,\mathcal{J}}^{(J)}}{(-s)^{D/2}}$$

$$\begin{aligned} \mathbf{R}_{\tau} &= \mathbf{N}_{\mathbf{C}} \, \mathbf{S}_{\mathbf{EW}} \left(\mathbf{1} + \delta_{\mathbf{P}} + \delta_{\mathbf{NP}} \right) & \text{Braaten-Narison-Pich '92} \\ &= 6\pi i \, \oint_{|x|=1} (1-x)^2 \left[(1+2x) \, \Pi^{(0+1)}(m_{\tau}^2 x) - 2x \, \Pi^{(0)}(m_{\tau}^2 x) \right] \\ \delta_{\mathbf{P}} &= a_{\tau} + 5.20 \, a_{\tau}^2 + 26 \, a_{\tau}^3 + 127 \, a_{\tau}^4 + \dots \approx 20\% & \text{Baikov-Chetyrkin-Kühn '08} \\ a_{\tau} &\equiv \alpha_s(m_{\tau}^2)/\pi , \quad \mathbf{S}_{\mathbf{EW}} = 1.0201 \, (3) & \text{Marciano-Sirlin, Braaten-Li, Erler} \\ \delta_{\mathbf{NP}} &= -0.0064 \pm 0.0013 & (\text{Fitted from data}) & \text{Davier et al '14} \end{aligned}$$

Perturbative Contribution $(m_q = 0)$ $a_{\tau} \equiv \frac{\alpha_s(m_{\tau}^2)}{\pi}$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a_s(-s)^n \implies \delta_{\mathrm{P}} = \underbrace{\sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s)}_{\mathrm{CIPT}} = \underbrace{\sum_{n=1}^{n} r_n a_{\tau}^n}_{\mathrm{FOPT}}$$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} \left(1 - 2x + 2x^3 - x^4\right) \left(\frac{\alpha_s(-m_\tau^2 x)}{\pi}\right)^n = a_\tau^n + \cdots$$

Perturbative Contribution $(m_q = 0)$ $a_{\tau} \equiv \frac{\alpha_s(m_{\tau}^2)}{\pi}$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} \kappa_n a_s(-s)^n \implies \delta_{\mathrm{P}} = \underbrace{\sum_{n=1}^{\infty} \kappa_n A^{(n)}(\alpha_s)}_{\mathrm{CIPT}} = \underbrace{\sum_{n=1}^{\infty} r_n a_{\tau}^n}_{\mathrm{FOPT}}$$

$$A^{(n)}(\alpha_{\mathfrak{s}}) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} \left(1 - 2x + 2x^3 - x^4\right) \left(\frac{\alpha_{\mathfrak{s}}(-m_{\tau}^2 x)}{\pi}\right)^n = a_{\tau}^n + \cdots$$

1) The dominant corrections come from the contour integration

Large running of
$$lpha_s$$
 along the circle $s=m_{ au}^2 \; e^{i\phi}$, $\phi\in [-\pi,\pi]$

п	1	2	3	4	5	
K _n	1	1.6398	6.37101	49.0757	?	Baik
r _n	1	5.2023	26.3659	127.079	307.78 + <i>K</i> ₅	Le D
$r_n - K_n$	0	3.5625	19.9949	78.0029	307.78	

aikov-Chetyrkin-Kühn '08 e Diberder-Pich '92

Perturbative Contribution $(m_q = 0)$ $a_{\tau} \equiv \frac{\alpha_s(m_{\tau}^2)}{\pi}$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a_s (-s)^n \implies \delta_{\mathrm{P}} = \underbrace{\sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s)}_{\mathrm{CIPT}} = \underbrace{\sum_{n=1}^{\infty} r_n a_{\tau}^n}_{\mathrm{FOPT}}$$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} \left(1 - 2x + 2x^3 - x^4\right) \left(\frac{\alpha_s(-m_\tau^2 x)}{\pi}\right)^n = a_\tau^n + \cdots$$

2) CIPT gives rise to a well-behaved perturbative series

$a_{ au}=0.11$	$A^{(1)}(\alpha_s)$	$A^{(2)}(\alpha_s)$	$A^{(3)}(\alpha_s)$	$A^{(4)}(\alpha_s)$	$\delta_{ m P}$
$\begin{array}{l} \beta_{n>1} = 0 \\ \beta_{n>2} = 0 \\ \beta_{n>3} = 0 \\ \beta_{n>4} = 0 \\ \beta_{n>5} = 0 \end{array}$	0.14828 0.15103 0.15093 0.15058 0.15041	0.01925 0.01905 0.01882 0.01865 0.01859	0.00225 0.00209 0.00202 0.00198 0.00197	0.00024 0.00020 0.00019 0.00018 0.00018	0.20578 0.20537 0.20389 0.20273 0.20232
$\mathcal{O}(a_{ au}^4)$ FOPT	0.16115	0.02431	0.00290	0.00015	0.22665

FOPT overestimates δ_P by 11%

Precision Physics with QCD

XIIth Quark Confinement & the Hadron Spectrum Thessaloniki, August 29, 2016

PDFs from Jefferson Lab to the LHC

Wally Melnitchouk

JLab Angular Momentum (JAM) collaboration: http://www.jlab.org/JAM

CTEQ-JLab(CJ) collaboration: http://www.jlab.org/CJ

- Universality of PDFs allows data from many different processes (DIS, SIDIS, weak boson/jet production in *pp*, Drell-Yan, ...) to be analyzed simultaneously
 - → global QCD analyses of spin-averaged $(f = f^{\uparrow} + f^{\downarrow})$ and spin-dependent $(\Delta f = f^{\uparrow} - f^{\downarrow})$ PDFs
- *

Precision PDFs needed to

(1) understand basic structure of QCD bound states(2) compute backgrounds in searches for BSM physics

→ Q^2 evolution feeds low x, high Q^2 ("LHC") from high x, low Q^2 ("JLab")

Valence quarks & QCD models

- Valence d/u ratio at high x of particular interest
 - → testing ground for nucleon models in $x \rightarrow 1$ limit
 - $d/u \rightarrow 1/2$ SU(6) symmetry
 - $d/u \rightarrow 0$ $S = 0 \ qq$ dominance (color-hyperfine interaction)
 - $d/u \rightarrow 1/5$

 $S_z = 0$ qq dominance (perturbative gluon exchange)

• $d/u \rightarrow 0.18 - 0.28$ DSE with qq correlations

Roberts

considerable uncertainty
 at high x from deuterium
 corrections (no free neutrons!)

Valence quarks & QCD models

- Valence d/u ratio at high x of particular interest
 - → significant reduction of PDF errors with new JLab tagged neutron & FNAL W-asymmetry data

- → extrapolated ratio at x = 1 $d/u \rightarrow 0.09 \pm 0.03$ does not match any model!
- → upcoming experiments at JLab (MARATHON, BONUS, SoLID) will determine d/u up to $x \sim 0.85$

Light quark sea

From perturbative QCD expect symmetric $q\bar{q}$ sea generated by gluon radiation into $q\bar{q}$ pairs (if quark masses are the same)

→ since *u* and *d* quarks nearly degenerate, expect flavor-symmetric light-quark sea $\bar{d} \approx \bar{u}$

In 1984 Thomas made audacious suggestion that chiral symmetry of QCD (important at low energies) should have consequences for antiquark PDFs in the nucleon (at high energies)

$$\bar{d} > \bar{u}$$

Charm in the nucleon

Associated prompt photon + charm production $pp \rightarrow \gamma + c + X$ may reveal "intrinsic" charm component

Bednyakov et al. (2014)

 \rightarrow "smoking gun" would be observation of asymmetric distributions $c(x) \neq \bar{c}(x)$

Outlook and new directions

Study of PDFs has brought together essential elements of nuclear and high-energy physics

PDF and $\boldsymbol{\alpha}_{_{\!S}}$ measurements at HERA

XII Quark Confinement and the Hadron Spectrum

from 29 August 2016 to 3 September 2016 Europe/Athens timezone

H1 and ZEUS

HCHS2016 Thessaloniki, Greece

Stefan Schmitt, DESY For the HERA collaborations H1 and ZEUS

- The HERA collider
- Deep-inelastic scattering
- Data combination
- The combined HERA data
- The HERAPDF2.0 fit
- Jet production and α_{s}

HERAPDF2.0

- HERAPDF2.0 PDFs: family of fits based on HERA data alone, at NLO and NNLO
- All fit variants are available in the LHAPDF library
- Shown here:
 - Default NNLO fit with uncertainty bands: "HERAPDF2.0 NNLO"
 - Variant with non-negative gluon "HERAPDF2.0AG NNLO"

HERAPDF2.0

- HERAPDF2.0 PDFs: family of fits based on HERA data alone, at NLO and NNLO
- Overall good description of the data down to low Q²
- Some deviations in the region of low x at low Q²

- Recent publication of combined HERA inclusive cross section data: precision better than 1.5% for Q²<500 GeV²
- A unique dataset probing the proton structure over more than five orders of magnitude in Q² and x
- Parton densities HERPDF2.0 derived from HERA data alone
- Together with DIS jet data, the strong coupling can be measured
- Aim to reduce scale uncertainties on $\alpha_{_{\!S}}$ from DIS jets in the near future using NNLO calculations

XII Quark Confinement & the Hadron Spectrum

Marina Nielsen Universidade de São Paulo

Lots of X, Y and Z states observed by BaBar, Belle, BESIII, CDF, CLEOIII, CLEO-c, CMS, DO and LHCb Collaborations

N. Branbilla et al., arXiv:1404.3723

State	M, Me	V Г, Ме	$V J^{PC}$	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.68 ± 0.1	17 < 1.2	1++	$B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle 810, 1030 (>10), BaBar 1031 (8.6)	2003	Ok
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF 1032, 1033 (11.6), D0 1034 (5.2)	2003	Ok
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb 1035 1036 (np)	2012	Ok
				$B \to K(\pi^+\pi^-\pi^0 J/\psi)$	Belle 1037 (4.3), BaBar 1038 (4.0)	2005	Ok
				$B \rightarrow K(\gamma J/\psi)$	Belle 1039 (5.5), BaBar 1040 (3.5)	2005	Ok
				-	LHCb 1041 (> 10)		
				$B \to K(\gamma \psi(2S))$	BaBar 1040 (3.6), Belle 1039 (0.2)	2008	NC!
				D	LHCb 1041 (4.4)	0000	01
2 (000 F)+	0000 0 1 4		0 1+-	$B \rightarrow K(DD^*)$	Belle 1042 (6.4), BaBar 1043 (4.9)	2006	Ok
$Z_c(3885)^+$	3883.9 ± 4	$.5 25 \pm 1$	2 1	$Y(4260) \rightarrow \pi^{-}(DD^{*})^{+}$	BES III [1044] (np)	2013	NCI
$Z_c(3900)^+$	3891.2 ± 3	$.3 40 \pm 8$	5 7	$Y(4260) \rightarrow \pi^{-}(\pi^{+}J/\psi)$	BES III 1045 (8), Belle 1046 (5.2)	2013	Ok
Y(3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$B \rightarrow K(\omega J/\psi)$	Belle [1088] (8), BaBar [1038, 1089] (19)	2004	Ok
				$e^+e^- ightarrow e^+e^-(\omega J/\psi)$	Belle 1090 (7.7), BaBar 1091 (7.6)	2009	Ok
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle 1092 (5.3), BaBar 1093 (5.8)	2005	Ok
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi \left(D\bar{D}^* \right)$	Belle 1086 1087 (6)	2005	NC!
Y(4008)	3891 ± 42	255 ± 42	$1^{}$	$e^+e^- ightarrow (\pi^+\pi^- J/\psi)$	Belle 1046, 1094 (7.4)	2007	NC!
$Z_{c}(4020)^{+}$	4022.9 ± 2	2.8 7.9±3	3.7 ??-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BES III 1048 (8.9)	2013	NC!
$Z_{c}(4025)^{+}$	4026.3 ± 4	4.5 24.8 \pm	9.5 ??-	$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$	BES III 1049 (10)	2013	B NC!
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG 🔟	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle 1095 (6.0)	2013	NC!
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle 1096 (5.0), BaBar 1097 (1.1)	2008	NC!
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF 1098 (5.0), Belle 1099 (1.9),	2009	NC!
					LHCb 1100 (1.4), CMS 1101 (>5)		
					D0 1102 (3.1)		

$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)})$	PDG II	1978	Ok
253 34				$e^+e^- \rightarrow (\eta J/\psi)$	Belle 1095 (6.5)	2013	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	Belle 1087 (5.5)	2007	NC!
$Z(4200)^+$	4196_{-30}^{+35}	370^{+99}_{-110}	1+-	$\bar{B}^0 \rightarrow K^- (\pi^+ J/\psi)$	Belle 1103 (7.2)	2014	NC!
$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+ \chi_{c1})$	Belle 1096 (5.0), BaBar 1097 (2.0)	2008	NC!
Y(4260)	4250 ± 9	$108\pm\!12$	1	$e^+e^- \rightarrow (\pi\pi J/\psi)$	BaBar 1104 1105 (8), CLEO 1106 1107 (11)	2005	Ok
					Belle 1046 1094 (15), BES III 1045 (np)		
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III 1045 (8), Belle 1046 (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III 1108 (5.3)	2013	NC!
Y(4274)	4293 ± 20	35 ± 16	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF 1098 (3.1), LHCb 1100 (1.0),	2011	NC!
					CMS [1101] (>3), D0 [1102] (np)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- ightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4)	2007	Ok
					LHCb [1115] (13.9)		
				$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle 1103 (4.0)	2014	NC!
X(4630)	4634_{-11}^{+9}	92^{+41}_{-32}	1	$e^+e^- ightarrow (\Lambda_c^+ ar\Lambda_c^-)$	Belle [1116] (8.2)	2007	NC!
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (5.8), BaBar [1111] (5)	2007	Ok

in 2014: 23 new states, many not confirmed many candidates for exotic states

up to now: 9 reported charged states which are not quark-antiquark states

$\frac{X \to J/\psi \ \pi^+\pi^-\pi^0}{X \to J/\psi \ \pi^+\pi^-} = 0.8 \pm 0.3 \implies \text{strong isospin and G}$ parity violation

$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

$\frac{X \to J/\psi \ \pi^+\pi^-\pi^0}{X \to J/\psi \ \pi^+\pi^-} = 0.8 \pm 0.3 \implies \text{strong isospin and G}$ parity violation

$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

molecular and tetraquark interpretations differ by the way quarks are organized in the state

X(3872) production

X(3872) production

Conclusions

- $X(3872) \rightarrow \text{mixture } \chi_{c1} \text{ and a } D^*\overline{D} \text{ molecule}$
- $Z_c^+(3900) \rightarrow J^p=1^+$ tetraquark state
- $Z_c^+(3900)$ and $Z_c^+(3885) \rightarrow$ not the same state
- $Z_c^+(4025) \rightarrow J^P=1^+, 2^+ D^*\overline{D}^*$ resonance, or D-wave background
- Z⁺ states need confirmation. A bump in the spectra near the threshold does not indicate, necessarily, the existence of a state
 X⁺(5568) → needs confirmation, probably not a real state

Emergent phenomena and partonic structure in hadrons

Craig Roberts, Physics Division

Collaborators: 2013-Present Students, Postdocs, Profs.

- 1. S. HERNÁNDEZ (U Michoácan) ;
- 2. Jing CHEN (Peking U.)
- 3. Bo-Lin LI (Nanjing U.)
- 4. Ya LU (Nanjing U.)
- 5. Khépani RAYA (U Michoácan);
- 6. Chien-Yeah SENG (UM-Amherst);
- 7. Kun-lun WANG (PKU);
- 8. Chen CHEN (UNESP, São Paulo);
- 9. Zhu-Fang CUI (Nanjing U.);
- 10. J. Javier COBOS-MARTINEZ (U Michoácan);
- 11. Minghui DING (Nankai U.);
- 12. Fei GAO (Peking U.);
- 13. L. Xiomara Gutiérrez-Guerrero (Sonora U.);
- 14. Cédric MEZRAG (ANL, Irfu Saclay);
- 15. Mario PITSCHMANN (Vienna);
- 16. Si-xue QIN (ANL, U. Frankfurt am Main, PKU);
- 17. Eduardo ROJAS (Antioquia U.)
- 18. Jorge SEGOVIA (TU-Munich, ANL);
- 19. Chao SHI (ANL, Nanjing U.)
- 20. Shu-Sheng XU (Nanjing U.)

Craig Roberts. Emergence of Partonic Structure (60p)

- 21. Adnan Bashir (U Michoácan);
- 22. Daniele Binosi (ECT*)
- 23. Stan Brodsky (SLAC);
- 24. Lei Chang (Nankai U.);
- 25. Ian Cloët (ANL) ;
- 26. Bruno El-Bennich (São Paulo);
- 27. Roy Holt (ANL);
- 28. Tanja Horn (Catholic U. America)
- 29. Yu-xin Liu (PKU);
- 30. Hervé Moutarde (CEA, Saclay) ;
- 31. Joannis Papavassiliou (U.Valencia)
- 32. M. Ali Paracha (NUST, Islamabad)
- 33. Alfredo Raya (U Michoácan);
- 34. Jose Rodriguez Qintero (U. Huelva) ;
- 35. Franck Sabatié (CEA, Saclay);
- 36. Sebastian Schmidt (IAS-FZJ & JARA);
- 37. Peter Tandy (KSU);
- 38. Tony Thomas (U.Adelaide) ;
- 39. Shaolong WAN (USTC) ;
- 40. Hong-Shi ZONG (Nanjing U)

2

Epilogue

- ➢ Conformal anomaly ... gluons and quarks acquire momentum-dependent masses ... values are large in the infrared $m_g \propto 500$ MeV & $M_q \propto 350$ MeV ... underlies DCSB; and has numerous observable consequences
- ➤ Universe with light quarks ⇒ confinement is a dynamical phenomenon Confinement and DCSB are intimately linked in real-QCD
- Origin and distribution of mass depend on the observer's preferred frame of reference and scale ... Contemporary and planned experiments, DCSB paradigm is the best way to explicate and understand the associated, emerging phenomena. Numerous verifiable predictions accessible
 - form factors, PDAs and PDFs, GPDs and TMDs, etc.
- > What can experiments at an EIC add to this?
 - Valence-quark region will be accessible
 - However, focus is on low-x, where gluons dominate ... mass generation in the gluon sector ... must affect potential for gluon saturation; how?
- Ability to compute valence-quark PDAs and PDFs has provided many new insights ... must now begin to do the same for sea-quarks <u>and glue</u>

Craig Roberts. Emergence of Partonic Structure (60p)

Pion and Kaon Properties from Dyson-Schwinger Eons

Peter C. Tandy

Dept of Physics Kent State University USA

1

Topics

- DSE continuum approach to QCD
- Old work on pion and kaon properties and decays
- Parton distribution amplitudes and PDFs—mainly mesons as an example. DSE-model calculations with direct connection to QCD. Comparison to LQCD.
- Some applications to uv physics (Form Factors, HS behavior)
- PDFs including X. Ji's space-like correlator approximation for LQCD—a model investigation.

Conf XII Thessaloniki Aug 2016

DSE Modeling of Hadron Physics

- Most common: Rainbow-ladder truncation of QCD's eqns of motion. Approximation to full BSE kernel now starting to produce results.....
- Constrain modeling by preserving AV-Ward-Takahashi Id, V-WTI. [Color singlet] Naturally implements DCSB, conserved vector current, Goldstone Thm, PCAC...
- RL truncation only good for ground state vector & pseudoscalar mesons, q-qq descriptions of baryons with AV and S diquarks.
- At the very least: DSE continuum QCD modeling suited for surveying the landscape quickly from large to small scales; finding out which underlying mechanisms are dominant. Applicable to all scales, high Q^2 form factors, etc. Do not expect ab initio final-precision QCD results, except in special cases. [pion, kaon..]
 - Unifying DSE treatment of light front quantities (PDFs, GPDs, DA) with other aspects of hadron structure: masses, decays, charge form factors, transition form factors.....
 - Pion & kaon q-qbar Bethe-Salpeter wavefn is very well known

$$\mathbf{AV} - \mathbf{WTI}: \mathbf{m_q} \to \mathbf{0}, \mathbf{P} \to \mathbf{0} \Rightarrow \ \Gamma_{\pi \mathbf{q} \mathbf{\bar{q}}}(\mathbf{k}^2) = \mathbf{i} \gamma_5 \frac{\frac{1}{4} \mathbf{tr} \mathbf{S}_0^{-1}(\mathbf{k})}{\mathbf{f}_\pi^0} + \mathcal{O}(\mathbf{P})$$

٠

٠

Conf XII Thessaloniki Aug 2016

An Ansatz for the FULL QCD kernel: L. Chang, C.D. Roberts, PRL103, 081601 (2009), + S. Qin (2015). A more modern RL kernel: S. Qin, L. Chang, C.D. Roberts, D.J. Wilson, PRC84, 042202 (2011).

Summary of light meson results $m_{u=d} = 5.5 \text{ MeV}, m_s = 125 \text{ MeV}$ at $\mu = 1 \text{ GeV}$

Pseudoscalar	(PM, Roberts,	PRC56, 3369)
--------------	---------------	--------------

expt.	calc.
(0.236 GeV) ³	(0.241 [†]) ³
0.1385 GeV	0.1 3 8 [†]
0.0924 GeV	0.093 [†]
0.496 GeV	0.497 [†]
0.113 GeV	0.109
	expt. (0.236 GeV) ³ 0.1385 GeV 0.0924 GeV 0.496 GeV 0.113 GeV

Charge radii (PM, Tandy, PRC62, 055204)

r_{π}^2	0.44 fm ²	0.45
$r_{K^{+}}^{2}$	0.34 fm ²	0.38
$r_{K^{0}}^{2}$	-0.054 fm ²	-0.086

$\gamma \pi \gamma$ transition (PM, Tandy, PRC65, 045211)

β πγγ	0.50	0.50
$r_{\pi\gamma\gamma}^2$	0.42 fm ²	0.41

Weak K₁₃ decay (PM, Ji, PRD64, 014032)

$\lambda_+(e3)$	0.028	0.027
$\Gamma(K_{e3})$	7.6 ⋅10 ⁶ s ⁻¹	7.38
$\Gamma(K_{\mu 3})$	5.2 ·10 ⁶ s ⁻¹	4.90

Vector mesons	(PM, Tandy, PRC60, 055214)				
$m_{ m p/\omega}$	0.770 GeV	0.742			
$f_{ ho/\omega}$	0.216 GeV	0.207			
$m_{K^{\star}}$	0.892 GeV	0.936			
ſĸ⋆	0.225 GeV	0.241			
$m_{ m \phi}$	1.020 GeV	1.072			
fφ	0.236 GeV	0.259			

Strong decay (Jarecke, PM, Tandy, PRC67, 035202)

Sonn	6.02	5.4				
SOKK	4.64	4.3				
8K* Kπ	4.60	4.1				
Radiative decay		(PM, nucl-th/0112022)				
$g_{ ho\pi\gamma}/m_{ ho}$	0.74	0.69				
$g_{\omega\pi\gamma}/m_{\omega}$	2.31	2.07				
$(g_{K^{\star}K\gamma}/m_K)^+$	0.83	0.99				
$(g_{K^{\star}K\gamma}/m_K)^0$	1.28	1.19				
Scattering length (PM, Cotanch, PRD66, 116010)						
a_0^0	0.220	0.170				
a_0^2	0.044	0.045				
a_1^1	0.038	0.036				

Modern Context for DSE Interaction Kernel

Table 1

Row 1 - Computed values determined from the interaction tension in Eq. (23), quoted in GeV; and Row 2 – the difference: $\varepsilon_{\varsigma} := \zeta_{\mathcal{I}}/\zeta_{\mathcal{I}_d} - 1$. So as to represent the domain of constant ground-state physics, described in connection with Eq. (5), we list values obtained with bottom-up interactions using $\omega = 0.5$, 0.6 GeV.

I	\mathcal{I}_d	${\cal I}_{ m DB}^{\omega=0.5}$	$\mathcal{I}_{DB}^{\omega=0.6}$	$\mathcal{I}_{RL}^{\omega=0.5}$	$\mathcal{I}_{\mathrm{RL}}^{\omega=0.6}$
ςτ ε _ς	1.86 0	1. 91 2.8%	1.82 -2.4%	3.14 68.5%	2.90 55.8%

Landau gauge, lattice - QCD gluon propagator, I.L.Bogolubisky etal., PosLAT2007, 290 (2007)

 $\Rightarrow m_G(k^2)$ m_G(0) ~ 0.38 GeV

Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

Daniele Binosi (ECT, Trento & Fond. Bruno Kessler, Trento), Lei Chang (Adelaide U., Sch. Chem. Phys.), Joannis Papavassiliou (Valencia U. & Valencia U., IFIC), Craig D. Roberts (Argonne, PHY). Dec 15, 2014. 6 pp. Published in Phys.Lett. B742 (2015) 183-188

Pion $F(Q^2)$: Low Q^2

(P Maris & PCT, PRC 61, 045202 (2000)

(P. Maris & PCT, PRC 62, 0555204 (2000)

$$r_{\pi}^{
m DSE} = 0.68 \; {
m fm} \qquad r_{\pi}^{
m expt} = 0.663 \pm .006 \; {
m fm}$$

Jab data: G. Huber et al., PRC78, 045203 (2008)

Conf XII Thessaloniki Aug 2016

Parton Distribution Functions

KENT STATE.

Pion Valence PDF

Nguyen, Bashir, Roberts, PCT, PRC 83 062201 (2011); arXiv:1102.2448

One Lattice-QCD Moment Almost Determines Pion DA

PRL 111, 092001 (2013)

PHYSICAL REVIEW LETTERS

week ending 30 AUGUST 2013

Pion Distribution Amplitude from Lattice QCD

I. C. Cloët,¹ L. Chang,² C. D. Roberts,¹ S. M. Schmidt,³ and P. C. Tandy⁴

Pion Distribution Amplitude

.016

The Pion Charge Form Factor: Transition from npQCD to pQCD

 $\mathbf{F}_{\pi}(\mathbf{Q}^{2} = \mathbf{u}\mathbf{v}) = \int_{0}^{1} d\mathbf{x} \int_{0}^{1} d\mathbf{y} \ \phi_{\pi}^{\star}(\mathbf{x}; \mathbf{Q}) \ [\mathbf{T}_{\mathrm{H}}(\mathbf{x}, \mathbf{y}; \mathbf{Q}^{2})] \ \phi_{\pi}(\mathbf{y}; \mathbf{Q}) + \mathsf{NLO/higher twist....}$ ---LFQCD, Brodsky, LePage PRD (1980)

$$\begin{split} \mathbf{Q}^2 >> \Lambda^2_{\mathrm{QCD}}: \ \mathbf{Q}^2 \mathbf{F}_{\pi}(\mathbf{Q}^2) \rightarrow \overbrace{\mathbf{16} \pi \, \mathbf{f}_{\pi}^2 \, \alpha_{\mathbf{s}}(\mathbf{Q}^2)}^{\mathbf{16} \sigma} \omega_{\phi}^2(\mathbf{Q}^2) \ + \ \mathcal{O}(\mathbf{1}/\mathbf{Q}^2) \\ \text{at } \mathbf{Q}^2 \sim 3 - 4 \ \mathrm{GeV}^2, \Rightarrow \overbrace{\mathbf{0.45}}^{\mathbf{0.1}} \overbrace{\mathbf{0.45}}^{\mathbf{16} \sigma} \overbrace{\mathbf{0.45}}^{\mathbf{16} \sigma} \underbrace{\mathbf{Q}^2}_{\mathbf{0} \sigma} \omega_{\phi}^2(\mathbf{Q}^2) \ = \frac{1}{3} \int_0^1 \mathrm{dx} \ \frac{\phi_{\pi}(\mathbf{x};\mathbf{Q})}{\mathbf{x}} \\ \rightarrow \mathbf{1} \ , \ \mathbf{Q}^2 \rightarrow \infty \end{split}$$

But, recent DSE theory $\Rightarrow \phi_{\pi}(\mathbf{x}; \mu = 2 \text{ GeV}) \Rightarrow \omega_{\phi}^2 = 3.3$

PRL 111, 141802 (2013)

PHYSICAL REVIEW LETTERS

week ending 4 OCTOBER 2013

Conf XII Thessaloniki Aug 2016

Pion Electromagnetic Form Factor at Spacelike Momenta

L. Chang,¹ I.C. Cloët,² C.D. Roberts,² S.M. Schmidt,³ and P.C. Tandy⁴

UV-QCD is not Asymptotic QCD

$$\mathbf{Q^2} >> \mathbf{\Lambda^2_{QCD}}: \ \mathbf{Q^2F_{\pi}(Q^2)} \rightarrow \mathbf{16} \, \pi \, \mathbf{f_{\pi}^2} \, \alpha_{\mathbf{s}}(\mathbf{Q^2}) \, \omega_{\phi}^{\mathbf{2}}(\mathbf{Q^2}) \, + \, \mathcal{O}(1/\mathbf{Q^2})$$

Pion Electromagnetic Form Factor at Spacelike Momenta

L. Chang,¹ I.C. Cloët,² C.D. Roberts,² S.M. Schmidt,³ and P.C. Tandy⁴

Pion Transition Form Factor

K. Raya, L. Chang, A. Bashir, J.J.Cobos–Martinez, L.X. Gutierez–Guerrero, C.D.Roberts, P.C.Tandy, PRD93, 074017 (2016)

From unified treatment of DA, elastic FF, and transition FF

Summary

• **DSE approach** works extremely well for pion & kaon due to symmetry dominance.

 Parton Distribution Amplitudes (pion, kaon). DSE approach shows good contact with available lattice-QCD moments. Flavor symmetry breaking & dynamical chiral symmetry breaking evident and quantitative in the shapes.

 Pion Transition & Elastic Form Factors DSE TFF calculation for all Q^2—-agrees with Belle not BaBar. DSE elFF——Connection with ultraviolet /hard scattering QCD reconciled. Identify that the ultraviolet partonic behavior is within reach of proposed JLab pion FF experiments.

 Parton Distribution Functions (pion). Qualitative behavior of empirical data fits reproduced by DSE q-qbar + pion loop analysis.

• Time to declare we understand the pion and kaon in QCD ?

X. Ji's space-like correlator approach to PDFs—a model investigation. Spurious anti-quark contributions seem unavoidable if Pz < 2 GeV. For x > 0.8, need Pz > 4 GeV for confidence in the qualitative shape. Further work in progress.

Conf XII Thessaloniki Aug 2016