
Simplification of expressions containing classical
polylogarithms and Chen’s iterated integrals.

Lee Roman
BLTP, JINR, Dubna, October 23, 2024

Budker Institute of Nuclear Physics



Motivation 2/20

• Modern and planned high-energy physics experiments promise to provide a lot of
high-precision experimental data. The high precision is especially important in the
context of searches of deviations from Standard Model predictions — the New
Physics.

• Consequently, the theoretical predictions should also have high precision, which in
practice means going beyond NLO approximation. Fortunately, the multiloop
calculational methods have evolved enough to provide this precision (with some
reservations). Among the most important calculations are those of NNLO
corrections to differential cross sections of processes involving massive particles.

• However, already at NNLO level, the final results often have a very cumbersome
form, which may complicate their practical use in experimental data processing.
As the complexity explosively grows with increasing of the number of loops, the
problem of simplification should not be underestimated.



Iterated integrals, why do they
appear in multiloop calculations.



Standard calculation path 3/20

1. Diagram generation ✓

Generate diagrams contributing to the chosen order of perturbation theory.

Tools: qgraf [Nogueira, 1993], FeynArts [Hahn, 2001], tapir [Gerlach et al., 2022],. . .

2. IBP reduction

Setup IBP reduction, derive differential system for master integrals.

Tools: FIRE6 [Smirnov and Chuharev, 2020], Kira2 [Klappert et al., 2021], LiteRed [RL,
2012], NeatIBP [Wu et al., 2024], . . .

3. DE Solution

Reduce the system to ϵ-form, write down solution in terms of polylogarithms.
Fix boundary conditions by auxiliary methods.

Tools: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa, 2017], Libra [RL, 2021]
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Given a Feynman diagram, consider a family

j(n) = j(n1, . . . , nN) =
ˆ

dµLD−n =
ˆ L∏

i=1

dd li
N∏

k=1

D−nk
k ,

D1, . . . , DM — denominators of the diagram,
DM+1, . . . , DN — irreducible numerators.

p1p2

pE

-p1-p2...-pE

IBP identities [Chetyrkin and Tkachov, 1981]

In dim. reg. the integral of divergence is zero (no surface terms):

0 =
ˆ

dµL
∂
∂li

· qj D−n=
∑

s

cs(n)j(n + δs).

Explicitly differentiating, we obtain relations between integrals.

More recent ideas [RL, 2014; Yang Zhang, 2014]

IBP identities in Lee-Pomeransky and Baikov representations : approach based
on calculating syzygies. NB: parametric IBPs work also for non-standard setup.
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Laporta algorithm (FIRE, Kira, Reduze, NeatIBP . . . )

• generate identities for many numeric n ∈ ZN .

• use Gauss elimination and collect reduction rules
to database.

• twist: mapping to finite fields Fp +
reconstruction.⇐= naturally parallelizable

As a result of IBP reduction we express amplitudes via a finite set of master integrals
j = (j1, . . . , jK )⊺ .

What is even more important, using IBP reduction we can obtain differential equations
for the master integrals:

∂x j = M(x , d)j

It is often easier to solve these equations rather than to use direct methods for
calculation of the master integrals.
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Differential equations for several kinematic variables 6/20

• For several kinematic variables we have the corresponding number of differential
systems:

∂

∂xi
j = Mi (x, d)j

Here Mi (x, d) are matrices of rational functions of x and d .

• Integrability conditions — flatness of the connection ∇i = ∂
∂xi

− Mi :

[∇i , ∇j ] = 0.

NB: Introducing differential 1-form M = Mi dxi we can write the integrability
condition as dM − M ∧ M = 0 .

• The general solution (or evolution operator) is expressed as path-ordered exponent

U(x, x0) = Pexp
[ˆ

C
dx′ · M(x′, d)

]
= Pexp

[ˆ
C

M(x′, d)
]

,

where C = C(x0, x) denotes a path connecting x0 and x.

Note that U(x, x0) is path-independent, i.e., does not change upon defor-
mations of the path C(x0, x) provided they retain the end points x0 and x
and do not cross singularities of M(x, d).
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Differential equations in ϵ-form and Chen’s iterated path integrals 7/20

• [Henn, 2013]: It is often possible to find a canonical basis J = T −1j such that

∂i J = ϵSi (x)J

Here ϵ = 2 − d/2 is the parameter of dimensional regularization, S(x) is
Fuchsian, i.e., has no multiple poles and falls of at infinity. [RL, 2015]: the
algorithm of finding the transformation to ϵ-form for a given differential system.

• The path-ordered exponent can be expanded in perturbative series in ϵ:

U(x, x0) = Pexp
[

ϵ

ˆ
C

S(x′)
]

=
∑

n

ϵn
˙

x
C
>xn

C
>...

C
>x0

S(xn) . . . S(x1), S(x) = dx · S(x)

Chen’s iterated path integrals

IC (ωn, . . . , ω1) =
˙

x
C
>xn

C
>...

C
>x0

ωn(xn) . . . ω1(x1)

where ωk(xk) = dxk · fk(xk) are some differential 1-forms. Note that the
integrability condition now implies dS = 0 and therefore we have that dωk = 0.
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Goncharov’s polylogarithms and classical polylogarithms 8/20

• Goncharov’s polylogarithms are 1-dimensional cousins of IC . They are
conveniently defined recursively:

G(an, an−1, . . . , a1|x) =
ˆ x

0

dxn

x − an
G(an−1, . . . , a1|x) and G(0, . . . , 0︸ ︷︷ ︸

n

|x) =
lnn x

n!

If a1 ̸= 0, they are related to 1-dimensional IC via

G(an, an−1, . . . , a1|x) = IC (d ln(x −an), . . . , d ln(x −a1)) with C = C(x , 0).

• Classical polylogarithms Lin are expressed via G as Lin(x) = −G(0, . . . , 0, 1︸ ︷︷ ︸
n

|x).

Moreover, generic G with up to three indices can be expressed via Lin with
n = 1, 2, 3.

• NNLO results are often expressible via classical polylogarithms.



Simplification of classical
polylogarithms



Simplifications with symbol map 9/20

There is a standard approach to the simplification of the polylogarithmic expressions
using symbol map. One might think of symbols as a cleaner way to represent iterated
(or path-ordered) integrals with logarithmic weights (with some reservations, though):

I =
˙

1>τn>...>τ1>0

d ln pn(τn) . . . d ln p1(τ1)
S

−−−−−−−−−−−−→ pn⊗ . . . ⊗p1

Formal symbol manipulation rules then easily follow, e.g.

d ln(pq) = d ln p + d ln q =⇒ (. . . ⊗pq⊗ . . .) = (. . . ⊗p⊗ . . .) + (. . . ⊗q⊗ . . .)

Similarly, by ordering the integration variables in the product of integrals, we get
S(I1I2) = S(I1)� S(I2), where � denotes a shuffle product, e.g.

(a⊗b)�(c⊗d) = a⊗b⊗c⊗d+a⊗c⊗b⊗d+a⊗c⊗d⊗b+c⊗a⊗b⊗d+c⊗a⊗d⊗b+c⊗d⊗a⊗b

We have, in particular, symbols for classical polylogarithms

S(Lin(x)) = −[x⊗ . . . ⊗x︸ ︷︷ ︸
n−1

⊗(x − 1)]
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Symbols are good for checking the identities, e.g., using S it is easy to establish

7Li2
( 1+ε/z

1−iε

)
− 7Li2

( 1+ε̄/z
1+i ε̄

)
+ 7Li2

(
z+ε̄
ε̄−i

)
− 7Li2

(
z+ε
ε+i

)
+ 11Li2

(
z+ε
ε−i

)
− 11Li2

(
z+ε̄
ε̄+i

)
+4Li2(1+zε)−4Li2(1 + z ε̄)+18Li2(−iz)−18Li2(iz)+11Li2

( 1+ε̄/z
1−i ε̄

)
−11Li2

( 1+ε/z
1+iε

)
= 2iπ2

5
√

3
− 23

3 iπ ln z + 6iπ ln
(

2 −
√

3
)

− iψ′( 1
6 )

5
√

3
− 24iG,

where ε = 1/ε̄ = e2πi/3 and G =
∑

n
(−1)n

(2n+1)2 is Catalan constant.

But how can we construct a basis of Lin functions which might enter the simplified
expression?

NB: This identity and more complicated ones involving Li3 functions was used in real
life for the simplification of the total cross section of Compton scattering @NLO [RL
et al., 2021].
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Suppose that branching points (or, in multivariate setup, branching hypersurfaces) of
original expression are determined by polynomial equations1

K∨
k=1

pk(x) = 0, (*)

where pk(x) are some irreducible polynomials. Then the simplified expression should
also have the same set branching points.

In order to construct all possible arguments of Lin, we need to recall the position of
branching points Lin function. Those are {0, 1, ∞}. Then the valid argument of Lin
should be a rational function N(x)/D(x), such that the solutions of any of the three
equations

N(x)/D(x) = 0, N(x)/D(x) = ∞, N(x)/D(x) = 1
belong to the branching set determined by (∗).
Note that the three equations can be rewritten as

N(x) = 0, D(x) = 0, N(x) − D(x) = 0

and then our requirement leads to

N(x) ∝
K∏

k=1

pnk
k , D(x) ∝

K∏
k=1

pdk
k , N(x) − D(x) ∝

K∏
k=1

pnk
k , (nk , dk , mk ∈ Z⩾0)

1For multiloop calculations the polynomials are known in advance: they are the denominators of S(x)
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Finding the basis of Lin function: the algorithm 12/20

1. Generate polynomials
{P0, P1, . . . PN} = {1, p1, . . . pk , p2

1 , p1p2, . . . pi1
1 pi2

2 . . . , piK
K } up to some

sufficiently high power.

2. Search in the above set for linearly dependent triplets {Pi , Pj , Pk}, such that
ai Pi + aj Pj + akPk = 0, where ai , aj , ak are coefficients independent of x .

3. Then each triplet gives rise to the following 6 possible Lin functions:

Lin

(
−

ai Pi
aj Pj

)
, Lin

(
−

ai Pi
akPk

)
, Lin

(
−

aj Pj

akPk

)
,

Lin
(

−
aj Pj

ai Pi

)
, Lin

(
−

akPk
ai Pi

)
, Lin

(
−

akPk
aj Pj

)
.

Of course, these 6 arguments are related by the group of Moebius
transformations stabilizing the {0, 1, ∞} set:

z → z, 1 − z, 1/z, 1 − 1/z, 1/(1 − z), z/(z − 1).



Example I 13/20

Let us take

{p1, . . . , p5} = {x , y , x̂ , ŷ , x̂y}, where â = 1 − a.

Then applying the above algorithm, we find 30 = 6 ∗ 5 valid arguments of Lin
functions. Using symbol map, we find relation for Li2 functions:

5-term relation for dilogs

f (xy) + f
(

xŷ
x̂y

)
+ f

(
yx̂
x̂y

)
− f (x) − f (y) = 0

where
f (x) = Li2(x) +

1
2

ln(1 − x) ln x .

This identity was found by W.Spence in 1809.
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Let us now take

{p1, . . . , p10} = {x , y , z, x̂ , ŷ , ẑ, x̂y , x̂z, ŷz, x̂yz}

Then applying the above algorithm, we find 132 = 6 ∗ 22 valid arguments of Lin
functions. Using symbol map, we find nontrivial relation for Li3 functions:

22-term relation for Li3

f (xyz) + 3f
(

x̂
x̂yz

)
+ 3f

(
xyẑ
x̂yz

)
− 3f

(
−xŷ ẑ
x̂ x̂yz

)
+ 6f

(
−xŷ

x̂

)
− 3f (xy) + 3f (x) +

3
2

π2 ln x − 3ζ3 + permutations = 0, x , y , z ∈ (0, 1)

where â = 1 − a and

f (x) = Li3(x) +
1
24

ln(1 − x) ln2
(

x2
)

−
π2

12
ln

(
x2

)
.

This identity is probably equivalent to 22 term relation in [Goncharov, 1991].



Chen’s iterated path integrals via
Goncharov’s polylogarithms



Path dependence of IC 15/20

1. Why it is important to care about the path? Because we finally want to express
IC via Goncharov’s polylogs — the one-dimensional Chen’s iterated integrals
with weights ωk = d log(x − ak). It means that we have to choose path and its
parametrization so as to rationalize the weights.

2. For example, if we have global rationalizing variables, we can choose a path
consisting of a set of straight line segments on each only one variable is changing.

3. Path-ordered exponent U(x, x0) is “path-independent”. So is its perturbative
expansion. But does it mean each individual IC is also path independent? No,
it does not! Only some specific linear combinations are path-independent.

4. Why we need path-independent combinations other than those which appear
in pert. expansion of U(x, x0)? Because of the first issue: sometimes we need to
choose different paths for different iterated integrals to express them via
Goncharov’s polylogs.
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1-dim case 16/20

Let us first consider 1-dimensional case

IC (ωn(x), . . . ω1(x))

We may vary the path on the complex plane of x . Are 1-dim IC path-independent?

Yes, they are.

Auxiliary differential system

dJ = MJ, with M =



0

ω1
. . .

ω2
. . .
. . .

. . .
ωn 0


Then we have Uik is equal to IC (ωi−1, . . . ωk |x) for i > k, to 1 if i = k and to 0
otherwise. In particular, IC (ωn, . . . ω1) = Un+1,1 , and we remember that U is
path-independent!

Why the same approach does not work for several variables?
dM = 0 but M ∧ M ̸= 0 , so the connection is not flat and Pexp depends on

the path.
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• Which linear combinations of IC are path-independent?
Note that for one-fold IC (ω) the path-independence is equivalent to the
requirement dω = 0 (which we automatically have for our setup).

• Let us relate to each IC the “symbol”2:

IC (ωn, . . . , ω1) S−→ ωn ⊗ . . . ⊗ ω1

and linearly extend the definition to linear combinations.

• Let us define the linear operator D (the “differential”) acting as

D(ωn ⊗ . . . ⊗ ω1) =
n−1∑
k=1

ωn ⊗ . . . ⊗ ωk ∧ ωk+1 ⊗ . . . ⊗ ω1

+
n∑

k=1

ωn ⊗ . . . ⊗ dωk ⊗ . . . ⊗ ω1

Path-independence criterion

L =
∑

a caIC (ωa) is path-independent ⇐⇒ D(S(L)) = 0

2Note that despite the similarity this is not the same symbol map that we discussed earlier.
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Example: e+e− → µ+µ−
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Physical variables: β — muon velocity
in c.m.s., c = cos θ — cosine of
scattering angle.

There are 66 master integrals. In order to reduce the differential equation to
ϵ-form, one has to pass to new variables ξ, χ via β = 2ξ

ξ2+1 , c = (ξ2+1)χ
ξ2χ2+1 .

• The differential system in ϵ-form has the form dJ = ϵ
∑13

i=1 Si d ln wi J,
w1, . . . w11 are rational functions of β and c. But the last two weights w12 and
w13 only become rational when passing to ξ, χ.

• In principle, we can pass to ξ, χ, but then the weights w8−11 become too
complicated. E.g.

w8 =
1 − 2βc + β2

(1 − β)2(1 − βc)
=

ξ6χ2 − 4ξ5χ + 6ξ4χ2 + ξ4 − 8ξ3χ + ξ2χ2 + 6ξ2 − 4ξχ + 1
(1 − ξ)4(1 − ξχ)2
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So we really want to stay with β and c where it is possible. The more so that only a
few (out of almost 3000) iterated integrals in the final expression involve weights
w12, w13:

IC (w12), IC (w13), IC (w12, w12, w5), IC (w12, w13, w5),

IC (w12, w12, w5, w5), IC (w12, w13, w5, w5)

Using the above mentioned technique we find, in particular, that

IC (w12, w13, w5)−4IC (w4, w1, w2)+2IC (w6, w2, w5)+2IC (w6, w5, w2)

is path-independent. So, for this specific combination we can pass to
ξ and χ —- note that there are no w8−11 weights in this
combination.

1
β

-1

0

1

βc
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• Each step towards increasing the # of loops and/or # of scales
requires new methods. Those involve both technological advances
and new algorithms coming from various fields of mathematics.

• Already at NNLO level the problem of simplification of the results
becomes quite important.

• The basis of Lin functions with a prescribed position of branching
points can be found algorithmically.

• Symbol map S and DS can help in finding the identities and the
path-independent combinations, respectively.

• However, the problem of simplification still remains heuristic to some
extent. Maybe AI techniques can help here.
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