Method of Hyperlogarithms:

a non-trivial application to the theory of turbulence

Daniil Evdokimov
(with Loran Adzhemyan and Mikhail Kompaniets)

Saint-Petersburg State University

10 okTsbps 2024 r.



Contents

Motivation for hyperlogarithm approach

Integration algorithm

Connection to MZV

Limitations of the method

Application in 4-loop calculation in the theory of turbulence
Further tasks



MZVs in Feynman diagrams

A wide class of Feynman diagrams are expressed in terms of the multiple zeta
functions (MZV).
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o What diagrams are expressed in terms of MZV?
@ What is more general structure for their values?

@ How to analytically compute diagrams evaluated to MZVs?




MZVs in Feynman diagrams

The structure of MZV expressions depends on the topology of a diagram.
Theorem

If a diagram has vertex-width < 3, then all coefficients of the its e-expansion are
rational linear combinations of MZVs. (F. Brown, 2009)

Example of a diagram with vertex-width = 3:
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MZVs in Feynman diagrams

Example of such diagrams is a class of zig-zag diagrams:

Theorem
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(F. Brown, O. Schnetz, 2012)




Feynman parametrization

Consider a massless diagram G with [ loops in d = 4 — 2¢. Parameters u,
correspond to each edge e with propagator g..
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Let G be primitive and log-divergent. Hence, the pole residue is proportional to
the following convergent integral
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det v =W¢ =} 7 [[.¢r ue (Symanzik polynomial) is linear in each integration
parameter.
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Motivation for hyperlogarithms

Since U is linear in each parameter u;, we can integrate over uy (with u, = 1):

duy..dun_1—5 = duy..dup 1 ——— = dus...dun-1 =
/0 Ul...dUn—1 7z /O uy...dUn—1 (Vi + UM, 2 /o u2...du AT

With Vi and U™ being linear in all remaining parameters, the integration over
Uy is also straightforward:

/00 du, du o /00 du, du ! =
g 2...dUR—1 viom 2. .. dUn—1 Vs + U@ u) (Vs £ V)

oo 1 U® V@
/ dug . ..dun—1 ( _ ) —
o URVy — UV \Us + U@uy Vo + VR uy,

/°° due . du nU® —nUs —InV® +1nVs
y et UV, — UV

Due to Dodgson identity the denominator factorizes as the square of a polynomial which
is linear in each variable, so we can integrate over ug as well. As long as there exists a
variable with respect to which all polynomials which occur in the integrand are linear, this
can be repeated. On the 4th integration step, we has to introduce dilogarithm and etc.



.
Hyperlogarithms

Hyperlogarithm(HL) is defined as iterated integral:

o dxn 1 dzg Fa-l dzy,
Loy oy..wwr, (2) =
0o <f1 — 01 .Jg Z9 — 02 0 Zn — Onp

The letter w,, is a symbol for dz;/(z; — 0;), where o; € C. The combination of
letters forms a word w = wy, ...w,., -

L, (z)= /OZ ds _ In(z — o) — In(—0)

zZ1 — 0O
The derivative of HL follows from its definition:
1
asz w = Ly,
sw(e) = ——Lu(2)

Hyperlogarithms L,,(2) satisfy the shuffle relations:
Loy, (2) * Ly (2) = Lupyuw, (2)

This allows to rewrite the product of HLs in terms of combination of HLs with
higher weight:

Le,, (2) Lw@ (2) = Lwalwaz () + Lwazwal (2) -
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.
Hyperlogarithms

It turns out that on the k*" integration step the integrand can be expressed as the
sum of products of rational functions g;(z) and HLs with some words w;.

/0oo dzkfkfl(zk) = /OOO dzy Zgi(zk)Lwi (zk)

If polynomials in g;(zx) are linear in z, by decomposing them into partial
fractions the evaluation of the integral is reduced to finding primitives of functions
of the form

(26 —0i)"Lw(zk), neZ.

In case of n = —1, integration result is obvious:
o0 Lw oo
/ dzr (Zk) = Lwaw(zk)
0 2k — O 0

For other values of n, one needs to apply partial integration formula

[Tas e - Lu(2) °°+/°°dzm

z —o;)ntt n(z — o))" n(z — o)™’




Regularization
The next step is to evaluate the limits

/0 f(z)dz = zli)m()o F(z) - ZIEIQOF(Z) = ZR_eogoF(z) - E{S(%F(z) )

There is a potential logarithmic divergence at co which demands proper
regularization. Even in case of convergent overall integral, during integration
process divergent HLs occurs. Regularization at 0 is trivial

RegL,(z) =0.
2=0

There are also some obvious examples of regularization at co:

RegL., (z) = Reg /Oz dz_ _ Reg [In(z — o) — In(0)] = —In(o) ,

z=00 z=00 zZ—0 zZ=00
“d
RegLu, (2) = Reg f =0.
z2=00 z=00J(

It turns out that the result of integration is expressed in term of HL with letters
0, —1 that provides connection to MZV.



Regularization

Integration process is reduced to regularization of the HL Ly,,..w.,, (2), where
oy € {0,—1}. Formally, the regularization is defined as some manipulation with
HL word, which cancels divergencies:
PEeng(z) = Lyegoo (w) (00)

The origin of this can be seen from the fact, that if we subtract from a word itself
with the first letter changed to w_1, it would produce a HL finite at oo:

o0 !

, (14 0)Lu(2)

Liwy—w_1)w(00) = /0 dz [CETICES)] 7 00 ,where L, —w_yyw = Logw—Lu_juw
Even though this expression is finite, this procedure is not correct regularization
because besides subtraction of divergence it subtracts some finite part as well.
The general regularization operation is provided by

T

rEgoo(wcn---wor) = Z (wak - w—l) [(*W—l)kil i} w,,kH...wgr] ,
k=1



Regularization

Some examples of words regularization:

reg™ (wow—1) = (wo — w-1) [e W w_1] + (w-1 —w_1) [(~w—1) W €] = wow—_1 —w?>;

regoo(wowow_lw_l) =
= (wo —w_1) [ewwow_1w_1] + (wo — w_1) [(—w—_1) Ww_1w_1] +0+0

= (wp — w_1)wow_1w_1 — 3(wo — w_1)w>;
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Connection to MZVs

Regularized HL with letters {0, —1} can be expressed in terms of MZVs. Let us recall the
integral representation for Riemann ZV:

ty tn—2
/ / dt?.../ din—1 In(l —tn1)=1L . (1).
0 tnfl “o “1

MZV integral representation can be obtained by inserting certain amount of letters wy,
namely,

C(n17n2’ ""nm) = (_1)megmilwl...wgzilw1wgl710.)1 (1) ’

Such HL can be constructed from the regularized limits Reg Lo, w,,...w,, (2) with
Z=00
letters wo and w_1 with the following change of variables
ti dzi _ dti dti dzi _ dti
71—ti’ ziiti 1—ti’ Zi—i-lil—ti’

which corresponds to the change of letters

wo) — Wo— w1, w—1 —> —W1 .



-
Connection to MZVs

It is known that MZVs with weights (sum of the arguments) up to and including 7 can
be expressed as the sum of products of ZVs ((n). For example,

f;eél’wowfl(z) = L(wo—wfl)wﬁ1<oo) = (_1)an0w?(1) = (_l)ng(l? 1. 172) = C(n'i_l)

R’egLWOWOUJ—IW—l (Z) :L(wo—wfl)wowil (OO) - 3L(w0—w,1)wil (OO) =

Z2=00

Lwo(wofwl)wf(l) + 3Lw0w§(1) = Lw%w%(l) + 2Lwow§(1) =

C(1,3) ~ 20(1,1,2) = 7.C2(2) — £C%(2) = —-¢(2)



Requirements

Requirements of the hyperlogarithm method:
@ Even critical dimension
@ Diagrams need to be written in Feynman representation
@ Not complex kinematics
@ Finiteness of calculated expression
@ Linear reducibility

Linear reducibility is a property of multiple integral that ensures that there is an
integration order for which on each integration step rational functions in the
integrand are linear in the next integration parameter. If it is, one always can
express the next integral in terms of HLs. Reducibility of the integrand can be
checked before integration.

6-loop diagram which is not linear reducible, but still evaluates to MZVs:

288

o = S0z (388 — 456,65~ 24445) + O (€")




HyperlInt - Maple implementation of the HL integration algorithm

E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications
to Feynman integrals, Comput. Phys. Commun. 188 (2015)

Achievments:

@ 6- and 7-loop calculations in ¢* theory
M. V. Kompaniets and E. Panzer, Minimally subtracted six-loop renormalization of
O(n)-symmetric ¢* theory and critical exponents, Phys.Rev.D 96 (2017) p

O. Schnetz, $* theory at seven loops, Phys.Rev.D 107 (2023)
e Multiloop calculations in QCD

A. von Manteuffel, E. Panzer and R. M. Schabinger, Computation of form factors in
massless QCD with finite master integrals, Phys.Rev.D 93 (2016)

B. Agarwal, A. von Manteuffel, E. Panzer and R. M. Schabinger, Four-loop collinear
anomalous dimensions in QCD and N=4 super Yang-Mills, Phys.Lett.B 820 (2021)
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QFT approach in the theory of turbulence
The fully developed turbulence is described by the stochastic Navier-Stokes
equation with the random stirring force
O, = —0; P — (v Ok )v; + vd®v; + f;, 0, = Oz;,, Oiv; =0.
The random force f; is defined by the following statistics
(filx1,t1) fi(x2,t2)) = lej(X1 — X, 11 — t2)

Df(k,t) = 6(t)P(k)ds(k),  Pi(k) = bij -

kik;
B2

The pumping function ds(k) describes injection of energy into the system. In the
inertial interval of the wavenumbers m < k < kg;ss

dp(k) = Dok* 72 gppys = 2.

The parameter ¢ is not related to the dimension of the space.



QFT approach in the theory of turbulence

The Martin-Siggia-Rose formalism relates SDE to QFT with a given action with a
doubled set of fields

So = %”UIDfU’ + ' [=0w — (v0)v + 1p0%0] .

The diagrams in the perturbation theory with action Sy contain UV divergences in
the limit e — 40, which take place only in the 1-irreducible Green function
Iij = (viv}), . . The renormalized action is given by

S = %U’val + [fatv — (vO)v + VZ,,a%] ,

Dy = goyg = guZEu?’ , Vo=VZ,, go= g,quZg . g = zZ73.

v



I
QFT approach in the theory of turbulence

The free propagators in the (k,t) representation take the form

2£V2

(i (tr)v; (1)) (k) = 222

. k2—d—256—uk2~\t1—t2|Pij(k)

<'Ui(t1)’U;- (t2)>(k) = 9(t1 - t2)e_Vk2(t1—t2)Rj (k)
(vi(t1)v}(t2)) (k) = 0

The interaction in (1) is represented by a triple vertex —v'(v0)v = v, VinpUn¥p
with a vertex factor
Vianp = tknOmp

where k,, is the momentum argument of the field v’. The crossed line corresponds
to the field v/, the line with the dot corresponds to the field v,, contracted with
iky, and the plain line represents the field v,,.



Consideration of d — oo asymptotics

It is possible to construct perturbation theory with expansion in two parameters
(1/d,e), where the limit d — oo would determine the first term. There are few
arguments indicating that d. = oo is a critical dimension for theory of stochastic
turbulence in which K41 theory becomes valid.

In the d — oo limit all internal momenta are orthogonal, so the dependence of
angles factorizes as Sy (unity d-sphere surface). This leads to two major
simplifications:
@ Significant reduction of a number of nonzero diagrams - from 417872 to 1693
in 4 loop
@ Diagonalization of the graph polynomial ¥ = det v which guarantees linear
reducibility at least in the 4-loop order.



Renormalization scheme

Aim: express RG function directly in terms of finite renormalized diagrams
without calculating Z-factors to apply HL algorithm.

(10 + B0y — 7,10,)TT =0 (1)
— I'(k

T(k,w) = fy’k";) (2)

(:u’a,u + ﬂag - 'YVVau)fR = IYVFR (3)

Considering this equation in the normalization point (k = p,w = 0)
—R
T |k:;¢,w:0 = 17 agFR|k:;L,w:O = 07 auFR|k:u,w:O = 07 (4‘)

—R
Yo = (UL ) k=pp,w=0 - (5)

Using the dependence of the dimensionless function T on the ratio k/up and its
independence of v,

Yo = —(kT") |zt om0 - (6)
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Renormalization scheme

Anomalous dimension +, is expressed in terms of renormalized n-loop diagrams

Xn*
T = — Z h™ Z kO, (R/XS) (kaw = 0))

n>1 7

h = Sag
k=1 ’ (2m)d

B =—h(2e —3v,)

w = OnB(h)|h=h.

@ There are no overlapping subgraphs due to the absence of vertex divergences
which leads to the significant simplifications.

@ In the static massless theories ¢3 and ¢*, trivial external momentum
dependence allows to factorize 2-point subgraphs from a diagram and
calculate them separately. In our case, it is not possible due to the presence
of not only external momentum but also external frequency.



3 loop example
Hyperlogarithm method allows for separate integration of divergent subtractive

terms of R’-operation.

o ke
ko +
I ki T
T
K = (kOB X)) = =0 Da(k) = xa(k) = xa(k) + xa (k)]
u1+3uz+3u3+3U4+u5)6(u1 +u2 +us +ug +us — 1)
9 0a (k))‘k:1 / uz (uz + uz +u4q)? (U1 + u2 + uz + ug + us)3
(u1 + 3u2 + 3ug + us + 3)
dusdugdusd
/ Haduadts ul(2+u4+1)2(u1+u2+u4+u5+1)
/ nu1+1) /°° dus L4 (u1) _
0 ul
Reg ¢(2)—-0
u]=o00

- ngw,l (ul) Reg Lwow 1 (Ul)
= w1 =0
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Results
_, Sq
H =272
@m)?
2.2 1 2 9 9
v = H 1—1—7TE +0-83) + H? 7_<7T +9)5+(7T +8¢(3))e N
6 2 6 4
(3447 4 32(3)) 15 70 5((3)
H3 2 l_( H/l o5 BT A PP
" < T 8 >+ 5t T )t

2¢ 22 (2 2n® 7 2m? 16¢(3)
H* = — — — - - 3 o a4 4
3 9+<9 27)€+(81+81 81 )5+

Obtained 4 loop expression for the correction exponent w, responsible for IR
stability of the fixed point:
10 56 4

2
:a H* :2 Ze? e gy e
w = Oy B(H.) ettt gttt



Prospects

@ 5-loop calculation of exponent w in the considered model.
Very likely, the majority (or even all of them) of 5-loop diagrams will turn out
to be linear reducible which make them suitable for applying the
hyperlogarithm method.

@ A model of critical dynamics (dynamic analogue of ¢* theory)

o A model based on ¢3 theory



Thank you!







