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©* + ©° theory

Model



0(n) ¢* model (d = 4 — 2¢):

1
So(p) = 289008 Pa + 800900 + - 40 (‘Pa@a) )

2

where ¢ = {¢q,a =1,...,n} - n-component order parameter, 7o and
go — parameters.

0(n) ¢* + ¢° model (generalization of the O(n) ¢° model)
(d =3=2¢):

1 T A Jo
So(yp) = E&‘Pua/@a + *0900‘;00 + *0(900990)2 + a(@a¢0)3a

2 41

where \q - one more parameter.
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Models difference (mean-field theory)

0(n) ¢* + ¢° model:

1 Ao 9o
So(¢) = 50ipadi¢a + 900500 (900‘190) + 5(9%990)3;

2 2
Ao = A07b‘.
" ¢" 4 ¢° (¢°)
( ithmi
ogadr? mic " .
im X
ifd=3:
1. ¢ > 3 — purely tricritical
\ (%),
asymptotic critical 2. ¢ < 2 — modified critical ("
ind=14—2e¢);
3. ¢ = ¢ = 7 — combined
tricritical (o* + ¢°).
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Tricritical exponents

% (the same as in ¢*):
« — the exponent of the specific heat;
G and 1/6 - different order parameter exponents;
~ - the susceptibility exponent;
v — the exponent of the correlation length;
n - the Fisher exponent (the critical-point correlation exponent).

©* + ¢ (additional to ¢°):
¢ — crossover exponent (the limiting value of the ¢ when both
interactions (¢* and ¢°) are significant).

¢t [Lewis and Adams 1978]
¢¢ notation: ¢ [J. S. Hager 2002]
oo [Vasil'ev 2004]
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Renormalization

Renormalized action:

- CREETEEN s T B
where
¢ = Z,@x; Zy=22; Zy = 2078,
T0=2'7=Z. 7+ 2N 2 =2.22; Zs =77,
0o = Zggn'*s; 73 =292,
Ao = 2.

AN. Vasil'ev notations [Vasil'ev 2004]
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©* + ©° theory

Realization of our computer program



Program structure

1. generation of graphs (with a possibility to draw them);
counterterm (KR') operation;
symmetry factors and O(n) factors;

renormalization constants;

S BN

RG functions.
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Main used libraries

We use Python and the main libraries are

- GraphState - to define a graph structure;

- GTopology - to generate all necessary graph topologies;

- Graphine - to manipulate graphs;

- Decomposition - to calculate using Sector Decomposition;
- graphviz - to draw graphs;

- ginac - to calculate symbolically;

- uncertainties - to work with numbers with uncertainties;

- dataset - to store data.

7140



1. Graph generation

Nickel notation:
e - external edge;
graph with k nodes - edges into 0 node| - - - |edges into k-1 node|.

Examples:

0 1
ellle] corresponds to <>

eel2le22le| | el122]ee2le| | el12]e2|ee|
1 0 0
0 1 2
2 2 1

Nickel index — minimal Nickel notation (ee12|e22|e| for the previous one).

We use Nickel index to avoid a problem of different notations of the same
graph. 8/40



1. Graph drawing

Examples:

graph index

eel122|ee22|ee|

eel1122|ee33|e333|e]

manual

program
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2. Counterterm (KR’) operation structure

o &

- © 9 o

define a corresponding graph for a diagram;
choose an IR-safe rearrangement;

factorize the graph into irreducible ones;
calculate the irreducible graphs;

calculate the factorized graph;

calculate the counterterm.
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2a. Corresponding graph

Corresponding graphs - to calculate graphs with the same internal

structure once:

logarithmically
divergent graph

corr. graph

quadratically

divergent graph corr. graph
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2a. Corresponding graph/database

2 tables (of the database):
1. graph: corresponding graph;
2. corresponding graph: KR'[corresponding graph].
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2b. IR-safe rearrangement

There are 2 ways to get possible IR-safe rearrangements:
q> — all possible arrangements: (0, 1), (0, 2), (0, 3), (1,2), (1,3), (2, 3) —
/ IR-safe rearrangements: (0, 1), (0, 2), (0, 3).

1
2. 3 — replace subgraphs with 2 boundary nodes by edges: ﬁms —

0
all possible arrangements: (0, 1) —

IR-safe rearrangements: (0, 1).

We use the second way.

After that we sort the IR-safe rearrangements and choose the best ones (which allow
us to calculate the graph in the easiest way).

IR-unsafe rearrangements could be taken into account too if instead of R’ operation
use R*" operation (we use R’ yet).
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2c. Graph factorization/G-functions

<°> 1 dk _ 1 G(a, B) ., wrpeaz
- (zﬂ.)d km(k _ p)zﬂ - (47r)d/2 pz(a+ﬂ—d/2) —’

B Rd
r(d/2= o)l (d/2 = B (o + 8- d/2)

o) = T R N a— §)
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2c. Graph factorization/examples

Irreducible graph — a graph that cannot be simplified using
G-functions.

=

1/2 + 5¢

(<) <>

2
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2d. Calculation of irreducible graphs/methods

If a graph is one-loop we use
e ~__ 1 G6ap)
G-functions: <> = (an)972 pati—a/3

B
r(d/2—a)l(d/2—B)(a+B—d/2)
M()r(B)r(d — o = B)

G(O"B) =

else
Sector Decomposition.
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2d. Calculation of irreducible graphs/procedure

If a graph is one-loop:

1. calculate using G-functions;
2. save the result as an analytical Laurent series with required
number of terms.

Otherwise:

1. unload the graph in a special file;

2. numerically calculate graphs from the file using Sector
Decomposition (required number of Laurent series terms with
required precision);

3. present the numerically calculated graph in the form of formal
required term

analytical Laurent series (the graph — ST e, where g

— 00

are auxiliary variables that correspond to the numerical values
of the graph);
4. save the correspondences (a; — numerical value) and the

formal analytical Laurent series. 17/40



2d. Calculation of irreducible graphs/database

2 tables:

1. graph: analytical representation (in the form of a Laurent series
with required number of terms);

2. auxiliary variable (a;): corresponding numerical value with
uncertainty.

Using a;:

- solves the incompatibility problem of ginac and uncertainties
libraries;
- does not increase uncertainties in final results.

ginac - for symbolic calculation;
uncertainties — for working with numbers with uncertainties.
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2ef. Last two points of KR’ operation

define a corresponding graph for a diagram;

o

choose an IR-safe rearrangement;
factorize the graph into irreducible ones;
calculate the irreducible graphs;

calculate the factorized graph; (using the irreducible ones)

- © 92 o

calculate the counterterm. (Minimal Subtraction (MS) scheme)
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3. Calculation of symmetry factors and O(n)-factors

- to calculate symmetry factors we use the function
symmetry_coefficient from Graphine;

- to calculate O(n)-factors we use FORM (a symbolic manipulation
system). For a graph we:

1. create a .frm file based on the Nickel notation;
2. run the file using FORM,;

3. get the result from the generated .txt file;

4. save the result in the special database table.

All work with FORM is done exclusively through Python.
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4 & 5. Renormalization constants and RG functions

3 ical val
a; — numerical values f(€ I’7)

counterterms = f(aj, e, n)

J analytically

L ical val
renormalization constants = f(aj, e, n) & umeriee’ veaes fle,n)

J analytically

a; — numerical values

RG functions = f(aj, e, n)

fle,n)

Analytical and numerical results are stored in different tables.
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©* + ©° theory

Results



Previous results/tricritical exponents

- -2 (1six-loop graph with 2 external edges in ¢° theory,
six-loop contribution into Z,,) and ¢ - €%

2. v - &3 (six-loop contribution into Z,) and confirmed &3 term in ;

3: calculated full 3 order:

- ¢ - calculated & term;
- confirmed € and ¢° terms.

TLewis and Adams 1978, “Tricritical behavior in two dimensions. II. Universal
quantities from the e expansion”.

2Hager and Schafer 1999, “@-point behavior of diluted polymer solutions: Can one
observe the universal logarithmic corrections predicted by field theory?”

3).'S. Hager 2002, “Six-loop renormalization group functions of O(n)-symmetric
¢°-theory and e-expansions of tricritical exponents up to €”.
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Previous results/problems of the article®

The article contains two problems:

1. The intermediate calculation is written with mistakes (for example
wg does not nullify B(wg)). Nevertheless the final values for the
tricritical exponents correspond to Z; given in the paper.

2. Z, and Zg are calculated incorrectly.
We are unable to identify the problem due to lack of information
presented in the paper.

4).S. Hager 2002, “Six-loop renormalization group functions of O(n)-symmetric
¢°-theory and e-expansions of tricritical exponents up to €”.
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Previous results/graph counterterms in an article®

The article contains counterterms of 5 one-loop reducible

DD D B
SRORS

graphs, where a one-loop reducible graph is a graph that can be
easily calculated analytically.

>Jack and Jones 2020, “Anomalous dimensions for ¢" in scale invariant d = 3 theory".
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Complex graphs, 6 loops

Complex graphs - graphs that are not one-loop reducible.

= =

29.13318(6) 1.3333318(14) _ 5. 33336(3) 32.46970(7)
€ g2 €
SAEIHA0) (jgp) s — 1 (1BP) Z (18P)
_ % 289883(9) 6. 72312(16) 0.16666664(28)  2.000003(6) 1. 89371(10)
e? + el - 52 +
2 n ™ —
—@ﬁ—M(IBP) é—%—u(IBP)
0.3333331(3)  2.666661(4) , 2.66667(6) 1.644932(2) | 4.18125(4)
el B e? + € - g2 + €
3
3'\? o % 4 % (R*) _6L:2 + Fiy (5+|n§2—42§(3) (/BP)

26/40
Second line is results of M. Kompaniets and A. Pikelner, Unpublished



Results/tricritical exponents, O(n)

n = (2.66667 + 2n + 0.333333n?) + (33797.3 4 33534.1n

EZ
(22 + 3n)?

10838.612 + 1385.63n% + 64.232n" + 0.822467n°) —
+ * * + )(22 30t

v = 0.5 + (10.6667 + 8n + 1.33333n%) + (86891.3

e
(22 4 3n)?

+ 82490.4n + 24328.3n% + 2518.52n° 4 56.9602n* — 0.411234n%) —
(22 + 3n)*

¢t =05+ (6—n) + (—47927.4 — 20941.2n — 2312.87n°

22+ 3n

—8.39119n° + 2.4674n") + (4.726074(15) - 108

2
(22 +3n)3
+3.191107(10) - 108n 4 8.107993(26) - 10”n? 4 9692087(31)n°

+538116.4(1.6)n" + 11367.367(28)n° + 203.17798(17)n° + 6. ossowﬂ)m
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Results/¢; difference

Our result:
€
=054+ (6—n —47927.4 — 20941.2n — 2312.87n?
bt + ( )22 T3n +(
2
— 8.39119n% + 2.4674n%)—— + (4.726074(15) - 108
+ Yazgany ¢ (15)

+3.191107(10) - 108n 4 8.107993(26) - 10”n? 4 9692087(31)n°

538116.4(1.6)n" + 11367.367(28)n° + 203.17798(17)n° + 6.08807n") — .
ity (1.e)n* + (28)n° + (17)n° + )(22+3n)5

Result of the article [J. S. Hager 2002]:

€ 2
=054+ (6—n —47927.4 — 20941.2n — 2312.87n
Pt +( )% Tan T (
Ex
—8.39119n° + 2.4674n"*) ———— + (5.82218 - 108
) (224 3n)3 (
+4.01209 - 1080 + 1.04251 - 108n? + 1.26915 - 10'n>
3
4702497n* + 13218.9n° + 158.765n° + 6.08807n7) ———— .
(22 +3n)°
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Results/tricritical exponents, n =1and n =2

n=1:
n = 0.008¢% + 0.203829¢3;

v = 0.5+ 0.032¢° + 0.50249¢;
¢t = 0.5+ 0.2¢ — 4.55599¢% 4 90.42328(28)e.  (112.751€°)

n=2:
n = 0.0102041e% 4+ 0.254385¢;

v = 0.5+ 0.0408163¢2 + 0.60234¢;
¢r = 0.5+ 0.142857¢ — 4.51389% + 88.41604(28)e>.  (111.261%)
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Comparison with previous results

Coincidence:

- nand v completely coincided with the results of the article®;
- First two e terms of the ¢ coincided with the results of the article’;
- The article® contains counterterms of 8 graphs (5 simple and 3

complex). The results are in full agreement with ours.

Difference:

- &% term of the ¢ tricritical exponent differs from the result presented in
the work’.

5Hager and Schafer 1999, “©-point behavior of diluted polymer solutions: Can one
observe the universal logarithmic corrections predicted by field theory?”

7).'S. Hager 2002, “Six-loop renormalization group functions of O(n)-symmetric
¢b-theory and e-expansions of tricritical exponents up to €3".

8Jack and Jones 2020, “Anomalous dimensions for ¢" in scale invariant d = 3 theory".
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Star-triangle transformation

Uniqueness relation



Star-triangle transformation

X1 X1

(641

ap a3

X2 X3 X2 53 X3

In math form:

dx 1
< .
/ (X1 — X)201(Xy — X)222(x3 — Xx)203 (X1 = X2)2B1 (X1 — X3)2P2(xy — X3)2P5
Rd
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Uniqueness relation [Kazakov, 1984]

a+a+a3s=d+m, meNU{0}

X1
& rim!
o X « S e NN C(ms, my, ms)
’ ’ M)l (a2)M(as3) mﬁm;m}:m Y
x x 0<m;<m
X1
%—a3+m—m3 %—az—km—mz
)
X2 X3
% —o1+m—my
r(gfoé1+m7m1) r(gfot2+m7m2)
C(mis Mz, ms) = — my! o m!

I'(%—ag—km—mg)

o , My, my,ms € NU{0}. o



Star-triangle transformation

Attempt to get more general relation



Intermediate result

Impulse representation:

o0

oo oo
d d d
S=@p=1_S=e3=1_fH—=en=1 . _
/d7'1 /de /C/T3 ™ G T+ mm + )Tt g
0 0

0

a1+a2+a37d:m€NU{O} 5 3
uniqueness relation.

'eXP(*I?sz *(k*Q)szfqzﬁ)
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Using Mellin-Barnes representation

Re(d — a1 —ap —a3) > 0:

q
d
o a3 _ 2 1
M(an)(a2)l (a3) T(d — a1 — ap — a3)
k|l a [g-k
q
OO o0 d
c+i C+i dzz C , g o+ 71+ 25
27rl 2mi 122) ,4+0z27%j—22 a2+0‘37%7217
Cc—ioo c—ioco
k g-k

d
Uz1,22) = T(=2)M(=22)T(d —en =2 —a3+21420) (a1 + 02— 5 = 2))

d d
Tl +a3— = —21)F(E - +21+ 7).
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Domain of validity

0 1 2
@ @ @ Re(om +a)+az — d)

analytic continuation

red — uniqueness relation,
blue — using Mellin-Barnes representation.
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Test diagram

A: .
as N 2 — G-functions
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Test diagram/results

Known result [Bierenbaum & Weinzierl, 2003]:

C+ioco C+ioco

(a1,0,,03,04,05) = ! / ] / dz
hiar, az, 8, a4, s T(a)T(as)r ()T (d—a,—as —a,) J 2mi J 2nmi
Cc—loo C—loo
F(—Z1)F(% = (G — @a —Z1)r(% = (@R +Z1) ) r(—Zz)r(% = (h — g —Zz)r(% — ds +Zz)
F(a1 721) F(a5 722)

Ma+as— 98—z —n) (@ +21+ )M (@ +a0+ a6 - +2+2)
rd—a;—as+2z1+2,) )

Calculated result:

C+loo
lr(a1,az,03,04,05) = 1 / /de
2(1, 02, 03,04, 05) = I(a2)M(as)M(as)F(d — a; — as — as) 2mi 27

c—ioco Cc—ioo

r(721)r(a3 T @, = % 7Z1)F(d = (g = @, = @3 +Zq)

M(as +as +as — ¢ —z)
M(~2)M (a2 + a3 — ¢ —2)M(d— a1 — 6, — a3 + 25)
‘ Mar+a;+0a3— 9 —2)
T(a+a+2a3+as+as - Y7 —) (¢ —as+2+2)(d—a—a3—a,+2 +2)
r2d —a; —a, —2a3 — a, — as + 21 + 25) 37/40




Test diagram/results when a; = 1

1. d=3-2¢

h(1,1,0,0,1) = 2(1,1,1,1,1) = 755 (& + 2+ O(e))%;
2. d=4—2¢

h=1h= %;
3.d=6-2e

h=h=—rgg (e + 2 +0))"

Kotikov and Teber 2018, “Multi-loop techniques for massless Feynman diagram
calculations”.

0vasil'ev 2004, The Field Theoretic Renormalization Group in Critical Behavior Theory
and Stochastic Dynamics.
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Conclusion

1. - We have performed six-loop calculation of the tricritical exponents
of the O(n)-symmetric ¢ + ¢° theory using presented computer
program;

- Both n and v tricritical exponents completely coincided with the
results of the work™;

- ¢ tricritical exponent differs from the result presented in the
work™:

- TODO: 8-loop calculations in the O(n)-symmetric ¢ + ¢° theory.

2. We have presented star-triangle transformation through
Mellin-Barnes integrals.

). S. Hager 2002, “Six-loop renormalization group functions of O(n)-symmetric
¢°-theory and e-expansions of tricritical exponents up to €”.
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Thank you!
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