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Four different directions under the study

(1) Evolution of effective potential in ϕ4 with mass:
conformal symmetry is still useful if we treat the mass term as a sort of
“interaction” and we apply the critical behaviour approach.

(2) Inverse Radon transformations, R−1(τ, φ), in QFT with the
k⊥-dependence:
the restrictions for the angular dependence leads to the new term
contributions that can be related to GTMD’s.

(3) New k⊥-dependent (quasi)parton distributions:
the new-introduced function describes the quark spin alignment in
hadrons; we also discuss the related observables through gluon poles in
DY-process.

(4) Contour Gauge as a class of non-local axial gauges:
the problem of the spin-orbital angular momentum separation.
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Part I:

Evolution of Effective Potential in
ϕ4-theory with mass

“I hear it and I forget it. I see it and I remember it.
I do it and I understand it.", Confucius
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Foreword: the Basic Objects

The generating functional (g.f.) in ϕ4:

Z[J]
n.c.
= eiSI (

δ
δJ )Z0[J] =

∫
(Dϕ) eiS(ϕ)+i(J, ϕ),

Z0[J] = Ne(J,∆F J) =

∫
(Dϕ) eiS0(ϕ)+i(J, ϕ),

where S(ϕ) = S0(ϕ;m) + SI(ϕ).

The stationary phase method to Z[J] gives

Z[J] = eiS(ϕc)+i(J, ϕc)

∫
(Dη)e−

i
2 (η,�η)exp

{
− i

4∑
n=2

[λ]n
n!

(
1, ηn)}

= eiS(ϕc)+i(J, ϕc) Pη exp
{

V (η)
}∣∣∣
η=0

, Pη ≡ exp
{1

2
(
δ

δη
,∆F

δ

δη
)
}

where η = ϕ− ϕc with limJ→0 ϕc(x) ≡ limJ→0〈0|ϕ|0〉J = ϕc = const.
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The connected g.f., W[J] = lnZ[J], is related to Γ [ϕ] as

Γ [ϕ] = W[J]− i(J, ϕ) (the Legendre transforms).

The expression for the effective potential/action (EP/A):

Veff (ϕc) ∼ Γ [ϕc ] = S(ϕc) +
{

n-loop connected diagrams
}
,

where the term of ln
[
(det �̂)−1/2] does not contribute in the massless

propagator case.
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We deal with

Γ [ϕc ] =
∑

n

Γn[ϕc ] ≡
∑

n

anΓn(0)ϕn
c(x) =

∑
n=2,4

anΓn(0)ϕn
c(x) + ....

and the evolution of EP is given by

Γn[ϕc ]
∣∣∣
µ1

= Γn[ϕc ]
∣∣∣
µ2

exp
{∫ µ1

µ2

(dt)γΓn

}
,

where Γn(0) is the 1PI (vertex) Green function; γΓn – anomalous dimension.

Our task is to calculate anomalous dim. to an arbitrary loop accuracy.

This task can be resolved due to the use of Braun-Manashov’s approach
where the consequences of conformal symmetry are manifested.
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Logic of the study

(a) Veff (m|ϕc) :
{

m2 in prop.⇒ m2 in vertex⇒ massless prop.⇒ CS
}

(b) Veff (m|ϕc)⇒ massless G-I vacuum integration⇒ δ(0)

(c) Gorishnii-Isaev’s vacuum integration:

Γ (I)[ϕc ] =
[λ

(a)
0 ]2−ε

Γ(2− ε)

∞∑
n=1

δ
(
n − 2 + ε

)
=

[λ
(a)
0 ]2−ε

Γ(2− ε)
δ
(
ε
)

(d) Γ (I)[ϕc ] ∼
∫

UV

(dDk)

(k2)2 ∼
π2−ε

Γ(2− ε)

1
ε

∣∣∣
ε→0

=⇒

(e) δ(0) ≡ lim
ε→0

a(I)

ε

where a(I) can be fixed by the PRs.
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(f ) All diagrams up to [λ]4-order are given by

Figure: The diagrams contributing up to the order of [λ]4.

[2]⇒
(
m2

0 + λ0ϕ
2
c/2
)
η2; [3]⇒ λ0ϕcη

3; [4]⇒ λ0η
4.

The contributions of the first four diagrams are fixed, while the last diagram
can be related to the corresponding Green function within Braun-Manashov’s
approach, which is based on the CS use, and it is evaluated order by order.
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The advantages of BM-approach can be used to derive algebraically the
evolution of effective potential Γ [ϕc ] at any loop accuracy.

To this purpose, we have to relate the effective potential to the corresponding
Green functions which have been studied in Braun-Manashov:2013.

We introduce and define the vacuum Vz,x -procedure as

Γ (n)[ϕc ] =
1

C(n)(D)
Vz,x

{
G(n)
O (x1, x2; z1, z2)

}
where G(n)

O (x ; z) is the corresponding Green function with the non-local
operator O insertion and and

Vz,x

{
G(n)
O (x1, x2; z1, z2)

}
def
= [λ(a)]3D/2−4

∫
dDz1 dDz2∆F (z1 − z2)

×
[ ∫

dDx1dDx2δ(x1 − x2)�̂x2

{
G(n)
O (x1, x2; z1, z2)

}]
.
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(g) The pole relations together with Vz,x -operation:

We have the following chain of operations:

cG
1

PG=⇒ cG
k

Vz,x
=⇒ cΓk+1

PΓ=⇒ cΓ1 .

As a result, we can derive the anomalous dimension for the effective potential
provided we know the anomalous dimension of the corresponding non-local
operator Green function. It is important that this procedure is almost
algebraical one which is very useful for the higher order of corrections.
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(g) The Braun-Manashov approach:

As demonstrated in Braun-Manashov:2013, the certain constraints
which are stemmed from the conformal symmetry can be expressed in
terms of the deformed generators of the collinear SL(2) subgroup.

The conformal symmetry is manifested in the critical regime where
β(λ∗) = 0.

S− and S0 can be defined at all loops with the help of the evolution
kernel.

The special conformal generator S+ involves the nontrivial corrections
and it can be calculated order by order in perturbation theory.

Provided the generator S+ is known at the order of (`− 1) loop, the corresponding
evolution kernel in the physical dimension can be fixed to the `-loop accuracy.
In other words, BM-approach allows us to derive the corresponding anomalous
dimensions at the given `-loop accuracy practically without direct calculations but
using the algebraic recurrent relations originated from the conformal symmetry
properties.
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(h) The correspondence theorem:

The correspondence between the given “twist” expansion of the non-local
exponential eiK (z1−z2) with zi = ain where n 2 = 0 and the ε-singular structure
of Veff .

{
B-M app. | (“tw-2”⊕ “tw-3”⊕ ....)

}
⇔
{

Veff | (1⊕ ε⊕ ....)⊗ δ(ε)F (1/ε)
}
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Instead of Introduction III

We present the study of the multi-loop effective potential evolution in
ϕ4-theory using the conformal symmetry.

We demonstrate that the conformal symmetry can still be useful for the
effective potential approach even at the presence of the mass parameter.

To this goal, it is necessary to introduce the special treatment of the mass
terms as sorts of interaction in an asymptotical expansion of the generating
functional. The introduced vacuum Vz,x -operation is the main tool to the
algebraic scheme of anomalous dimension calculations. It is shown that the
vacuum Vz,x -operation transforms the given Green functions to the
corresponding vacuum integrations which generate the effective potential.
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The masslessness procedure of Effective Potential in ϕ4

The generating functional in ϕ4 which leads to the effective action/potential
has the following form (modulo the normalization constants denoted as n.c.):

Z[J]
n.c.
= eiSI (

δ
δJ )Z0[J] =

∫
(Dϕ) eiS(ϕ)+i(J, ϕ),

Z0[J] = Ne(J,∆F J) =

∫
(Dϕ) eiS0(ϕ)+i(J, ϕ),

where ∆F implies the Feynman propagator;

S(ϕ) = S0(ϕ; m) + SI(ϕ)

denotes the sum of free and interaction actions.

I.V. Anikin Eff. Potential and Conformal Sym. 15 / 63



The stationary phase method applied to Z[J] gives the following series

Z[J] = eiS(ϕc)+i(J, ϕc)

∫
(Dη)e−

i
2 (η,�η)exp

{
− i

4∑
n=2

[λ]n
n!

(
1, ηn)}

= eiS(ϕc)+i(J, ϕc) Pη exp
{

V (η)
}∣∣∣
η=0

with Pη ≡ exp
{1

2
(
δ

δη
,∆F

δ

δη
)
}

where η = ϕ− ϕc with

lim
J→0

ϕc(x) ≡ lim
J→0
〈0|ϕ|0〉J = ϕc = const

We use the notations:

(a,Kb) =

∫
dz1 dz2a(z1)K (z1, z2)b(z2)
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This expansion should actually be considered as an asymptotical series and
all inner lines correspond to the scalar massless propagators. Besides, the
generating function generates the vertices which are

(a) ⇒ [λ]2η
2 ≡ λ(a)

0 η2 def
=
(
m2

0 + λ0ϕ
2
c/2
)
η2;

(b) ⇒ [λ]3η
3 ≡ λ(b)

0 η3 def
= λ0ϕcη

3;

(c) ⇒ [λ]4η
4 def

= λ0η
4.

The mass and coupling constant (charge) are bare ones. It is worth to note
that the vertices (a) and (b) should be treated as effective ones, while (c)

corresponds to the standard vertex in the ϕ4-theory under consideration.
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The connected generalizing functional W[J] is related to the effective action
Γ [ϕ] as (the Legendre transformations)

Γ [ϕ] = W[J]− i(J, ϕ).

Based on the generating functional and on the Legendre transform, we can
readily derive the expression for the effective action/potential. Symbolically,
we have

Γ [ϕc ] = S(ϕc) +
{

n-loop connected diagrams
}
,

where the term of ln
[
(det �̂)−1/2

]
, which corresponds to the one-loop

standard diagram contribution only, does not actually contribute in the
massless propagator case.
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The second term involves the full set of the connected diagrams which can be
grouped as follows:

(a) the standard diagrams in ϕ4 with the [λ]n-vertices only. The standard
vacuum diagrams with [λ]n-vertices do not depend on ϕc and, therefore,
they can be omitted at the moment.;

(b) the non-standard diagrams of type-I with the [λ(a)]n-vertices only;

(c) the non-standard diagrams of type-II with the [λ(b)]2n-vertices only;

(d) the diagrams of type-III with the mixed vertices as [λ(a)]n1 [λ(b)]n2 [λ]n3 .
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The singular parts should be eliminated by the corresponding counterterms
within the certain renormalization procedure resulting in the appearance of
dimensional parameter (scale) µ.
The evolution of effective action/potential with respect to the different scale
choice is governed by the corresponding anomalous dimension. That is, we
ultimately deal with the following effective action

Γ [ϕc ] =
∑

n

Γn[ϕc ] ≡
∑

n

anΓn(0)ϕn
c(x) =

∑
n=2,4

anΓn(0)ϕn
c(x) + ....

and

Γn[ϕc ]
∣∣∣
µ1

= Γn[ϕc ]
∣∣∣
µ2

exp
{∫ µ1

µ2

(dt)γΓn

}
.

Γn(0) denotes the 1PI (vertex) Green functions, an implies the combinatory
factors, see below.

I.V. Anikin Eff. Potential and Conformal Sym. 20 / 63



The non-standard diagrams of type-I

The non-standard diagrams of type-I contribute only to the one-loop
approximation. For this type of diagrams, we have the following
representation (D = 4− 2ε)

Γ (I)[ϕc ] =
∞∑

n=1

∫
(dDk)

[λ(a)]n

(k2)n =
[λ(a)]2−ε

Γ(2− ε)
δ(0).

The delta-function has been considered within the sequential approach
[Antosik:1973] where the singularity/uncertainty of δ(0) should be treated as
the singularity of corresponding meromorphic function, i.e.

δ(0) ∼ lim
ε→0

[1/ε].
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+ + + · · ·

Figure: The diagrams of type-I.
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δ(0)-singularity and UV-divergencies

The standard method:

In the vacuum integration series we focus on the ultraviolet divergency only,
otherwise the vacuum massless integrations are nullified after the infrared
divergency has been included. Then, Γ (I)[ϕc ] receives the only contribution
which goes from the following integration [Grozin:2005] (here D = 4− 2ε)

Γ (I)[ϕc ] = [λ
(a)
0 ]2

∫
UV

(dDk)

(k2)2 ≡ [λ
(a)
0 ]2

πD/2

Γ(D/2)

∫ ∞
µ2

dββD/2−3 =

[λ
(a)
0 ]2

π2−ε

Γ(2− ε)

µ−2ε

ε

∣∣∣
ε→0

= [λ
(a)
0 ]2−ε

π2−ε

Γ(2− ε)

1
ε

∣∣∣
ε→0

,

where β = |k |2 and µ2 has been chosen to be equal to λ(a)
0 .
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Gorishni-Isaev’s method:

On the other hand, let us calculate the series related to Γ (I)[ϕc ] with the help
of the vacuum integration technique [Gorishnii-Isaev:1984]. We obtain that

Γ (I)[ϕc ] =
∞∑

n=1

∫
(dDk)

[λ
(a)
0 ]n

(k2)n =
1

Γ(D/2)

∞∑
n=1

[λ
(a)
0 ]n δ

(
n − D/2

)
=

1
Γ(2− ε)

∞∑
n=1

[λ
(a)
0 ]n δ

(
n − 2 + ε

)
=

[λ
(a)
0 ]2−ε

Γ(2− ε)
δ
(
ε
)

⇒ [λ
(a)
0 ]2−ε

Γ(2− ε)
δ
(
0
)

P.S. On the functional space, we have f (x)δ(y) = f (x + y)δ(y) with the regular function f .
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It involves the singular generated function (distribution) δ(ε) that is the
well-defined functional on the finite φ-function space with the integration
measure dµ(ε) = dε φ(ε). Nonetheless, in many cases it is not convenient,
from the technical viewpoint, to introduce the space with the measure dµ(ε).

Both eqns. should be equivalent (these equations are merely different
representations of the given diagram), it hints to use the sequential approach
[Antosik:1973] to the delta-function and, as consequence, to the treatment of
δ(0)-singularity/uncertintity. In other words, we may say that

δ(0) = lim
ε→0

a(Γ)

ε
.
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The non-standard diagrams of type-II

The non-standard diagrams of type-II are given by the following set. One can
see that among all these diagrams the non-zero contribution is stemmed from
the three-loop box-like diagram that reads [All G-functions are determined as
in Grozin:2005.]

Γ (II)[ϕc ] = G(1,1,1,1,1)
[λ

(b)
0 ]4−6ε

3 Γ(2− ε)
δ(0).

Indeed, the general structure of the sum can be presented as

Γ (II)[ϕc ] ∼
∞∑

n=1

[λ
(b)
0 ]2n δ

(
3n − (n + 1)D/2

)
.

It shows that the only contribution originates from the case of n = 2 that gives
δ(6− 3D/2) ∼ δ(3ε).
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+ · · ·+

Figure: The diagrams of type-II.
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The mixed diagrams of type-III: the first class

The mixed diagrams of type-III can be aggregated into two classes.

The first class of diagrams with n1 = n, n2 = 2, n3 = 0 leads to the two-loop
contributions which are given by

Γ
(III)
1 [ϕc ] = [λ(b)]2

∞∑
n=1

∫
(dDk)

[λ(a)]n

(k2)n+1

∫
(dD`)

`2(`− k)2

∼ [λ(b)]2
∞∑

n=1

[λ(a)]nδ
(
n + 3− D

)
= [λ(b)]2 G(1,1)

[λ(a)]1−2ε

2 Γ(2− ε)
δ(0)
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The mixed diagrams of type-III: the second class

The second class of diagrams with n1 = n, n2 = 0, n3 = 2 can be presented
in the form of three-loop integration as

Γ
(III)
2 [ϕc ] = [λ]2

∞∑
n=1

∫
(dDk)

[λ(a)]n

(k2)n+1

∫
(dD`)

`2

∫
(dDp)

p2(k + p − `)2

∼ [λ]2
∞∑

n=1

[λ(a)]nδ
(
n + 4− 3D/2

)
= [λ]2 G(1,1) G(1, ε)

[λ(a)]2−3ε

3 Γ(2− ε)
δ(0).
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· · ·+

· · ·+

Figure: The diagrams of type-III: the first panel corresponds to the first class,
the second – the second class.
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We are only restricted by the order of [λ]4 for the connected diagrams.
Though, the main features of calculations have a rather general
character.

The contributions of Γ (I)[ϕc ], Γ (II)[ϕc ] and Γ (III)
1 [ϕc ] are uniquely fixed.

That is, they only contribute to the definite order of [λ]k (k = 2,4,3
respectively).

In contrast to these contributions, Γ (III)
2 [ϕc ] can involve the higher order

of [λ]k with k ≥ 4.
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As usual, the singular parts of the diagram contributions given by Γ (i)[ϕc ]
generate the corresponding Z -factor needed for the mass and charge
renormalizations [Anikin:2023]. The anomalous dimensions are determined
through the coefficients c1(λ) at the 1/ε-singularities. In the simplest case of
lowest loop accuracy, it is not difficult to calculate the anomalous dimensions
immediately. However, the highest loop (multi-loop) accuracy demands rather
a lot of works.

We have found that the contribution of diagram given by Γ (III)
2 [ϕc ] to the

anomalous dimension can be computed practically algebraic based on the
known anomalous dimension of the corresponding non-local operator Green
function G(2)

O computed within Braun-Manashov’s approach Braun:2013. It
can be implemented due to the vacuum Vz,x -operation Anikin:2023.
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Massless effective potential in {ϕ4}D

Let us discuss a formal transformation of action/potential with masses to the
massless (conformal-invariant) object. We remind that the effective potential
is a part of the effective action which does not involve the derivatives over
fields. Therefore, if ϕc = const , the effective action is equivalent to the
effective potential modulo V × T ∼ δ(D)(0).
In the case of J 6= 0, we consider the effective action/potential given by the
one-particle-irreducible (1PI) Green functions as

Γ [ϕc ] =
∑

N

∫
(dx)n Γn(x1, ..., xn)ϕc(x1)...ϕc(xn),

where the 1PI Green functions in x-space are transforming to the
corresponding Green functions in p-space with the nullified external momenta
giving the vacuum diagrams, i.e.

Γn(x1, ..., xn)
F
= Γn(p1, ...,pn)

∣∣∣
pi =0
≡ Γn(0),

where F= denotes the Fourier transform.
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As above-mentioned, the theory under our discussion contains masses (or
massive parameters) that destroy the conformal symmetry even at the
classical level. Since we adhere the approach with small mass and coupling
constant, it is legitimated to include the massive parameters in the vertices
forming the effective interactions. As a result, the scalar propagators in
diagrams describing interactions are massless ones. We emphasize that this
diagram technique is absolutely equivalent to the usual technique with the
standard λ-interaction vertex in {ϕ4}D and with the massive propagators.
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Further, we focus on the simplest vacuum diagram with one λ(a) vertex and
one massless scalar propagator (this is the so-called tadpole-like
contribution). If we now remove the dimensionful vertices by the
corresponding differentiation, we can get the conformal invariant object
determined by the massless scalar propagator, i.e.

dΓ (a)
1 (0)

dλ(a)
= Γ

(η2)
1 (0)

F
= ∆F (0).

The other illustrative example is provided by the Green function Γ (a)(b)
3 (0)

which corresponds to the vacuum diagram with one λ(a) and two λ(b) vertices.
The loop integration of this diagram reminds the 2-loop diagram in the
massless {ϕ4}D case. If we again remove the dimensionful vertices, we
obtain

d3Γ
(a)(b)
3 (0)

dλ(a)dλ(b) 2 = Γ
(η2)(η3)
3 (0),

where Γ (η2)(η3)
3 (0) is the conformal invariant object as well.
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From the Green functions to vacuum integrations with Vz,x -operator

We introduce the vacuum Vz,x -procedure which transforms the usual Green
functions to the vacuum integrations. It reads

Γ (n)[ϕc ] =
1

C(n)(D)
Vz,x

{
G(n)
O (x1, x2; z1, z2)

}
,

where C(n)(D) denotes the combination of Γ-functions and

Vz,x

{
G(n)
O (x1, x2; z1, z2)

}
def
=

[λ(a)]3D/2−4
∫

dDz1 dDz2∆F (z1 − z2)

×
[ ∫

dDx1dDx2δ(x1 − x2)�̂x2

{
G(n)
O (x1, x2; z1, z2)

}]
.
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In the interaction representation, the non-local operator Green function
G(n)
O (x1, x2; z1, z2) to [λ]n-order reads

G(n)
O (x1, x2; z1, z2) = 〈0|Tη(x1)η(x2)O(z1, z2)

(
[λ]

∫
dDyη4(y)

)n
|0〉,

with
O(z1, z2) = η(z1)η(z2).
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On the other hand, G(n)
O (x1, x2; z1, z2) can be written as

G(n)
O (x1, x2; z1, z2) = 〈O(z1, z2)〉(n)

∣∣∣η(zα1
12 )→∆F (x1−zα1

12 )

η(zα2
21 )→∆F (zα2

21 −x2)
,

where the correlator of non-local operator is defined as

〈O(z1, z2)〉(n) = 〈0|TO(z1, z2)
(

[λ]

∫
dDyη4(y)

)n
|0〉.

We emphasize that 〈O(z1, z2)〉 is now the BM-like object which we need for
our consideration.
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For the sake of simplicity, our consideration begins with the [λ]2-order, i.e.
n = 2. In this case, we can write as

Γ (2)[ϕc ] = Vz,x

{
〈O(z1, z2)〉(2)

∣∣∣η(zα1
12 )→∆F (x1−zα1

12 )

η(zα2
21 )→∆F (zα2

21 −x2)

}
.

For the non-local correlator O(z1, z2), one can calculate the anomalous
dimension using the Braun-Manashov method.
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Evolution kernel for effective potential

We are going over to the discussion of the evolution equation for the effective
potential.
Let us now consider the diagram presented by the loop integration Γ (2)[ϕc ].
The conformal BM-object can be obtain by the differentiation as

Γ (2)[ϕc ] =
∂2Γ (2)[ϕc ]

∂λ(a) 2 = V z,x

{
〈O(z1, z2)〉(2)

∣∣∣η(zα1
12 )→∆F (x1−zα1

12 )

η(zα2
21 )→∆F (zα2

21 −x2)

}
.

I.V. Anikin Eff. Potential and Conformal Sym. 40 / 63



O(z1, z2) can be treated as a subject of BM-approach. First, we calculate the
anomalous dimension of O(z1, z2) at the order of [λ]2, we have

〈O(z1, z2)〉(2) ⇒ 1
ε

[
H(2)

12 O
]
(z1, z2).

Then, we apply the Vz,x -operation to get the coefficient cΓ2 at 1/ε2-singularity
in the effective potential Γ (2)[ϕc ], i.e. it reads

cO1 =
[
H(2)

12 O
] Vz,x

=⇒ cΓ2 .

The last step is to use the corresponding pole relations written for the
effective potential in order to obtain the anomalous dimension (evolution
kernel) for Γ [ϕc ], we have

cΓ1 = P(cΓ2 ) ≡
[
H(2)Γ [ϕc ]

]
.

The operator P is entirely defined by the pole relations. In its turn, the pole
relations are stemmed from the µ∂µ-differentiation of the effective potential
Z -factors, Zm and Zλ.
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Figure: The diagram with [λ]2[λ(a)]n-vertices.
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`

Figure: The diagram with [λ]2[λ(a)]2-vertices.
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The pole relations

We study the important consequences of the pole relations that not only
relate the different coefficient ci , but they can fix the arbitrary constants a(i).
We begin with the schematic derivation of the pole relations. The pole
relations for Γ [ϕc ] are stemmed from the µ∂µ-differentiation of the effective
potential Z -factors, Zm and Zλ, defined as

Γ0[ϕc ] = ZΓ [ϕc ]Γ [ϕc ],

ZΓ [ϕc ] = 1 +
∞∑

n=1

Cn([λ])

εn =
∑
n=1

1
εn

∑
k=1

Cnkλ
k .
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Having calculated µ∂µ-derivative of Z -factor, we obtain that

{
1 +

∞∑
n=1

Cn([λ])

εn

}
γΓ [ϕc ] = βλ([λ])∂λ

∞∑
n=1

Cn([λ])

εn with γΓ [ϕc ] ≡ µ∂µ ln ZΓ [ϕc ]

and, as a consequence, we have the following pole relations

at ε0 : γΓ [ϕc ] = −λ∂λC1(λ),

at ε−1 : C1(λ)γΓ [ϕc ] = −λ∂λC2(λ) + β4∂λC1(λ), etc.
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Re-expressing via the renormalized and dimensionless charge λ (within the
dim. reg.), we thus have

Γ [ϕc ] = Γ2(0)ϕ2
c(x) + Γ4(0)ϕ4

c(x) + ....

=
m2

0

2

(
1 + ∆Zm(λ)

)−1
ϕ2

c + µ2ελ0

4!

(
1 + ∆Zλ(λ)

)−1
ϕ4

c + {fin. terms},

where Γ2, 4(0) imply the 1PI Green (vertex) functions and

∆Zm;λ(λ) =
∑
n=1

C{m;λ}
n (λ)

εn =
∑
n=1

1
εn

∑
k=1

C{m;λ}
nk λk
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Let us first write down the charge and massive terms of Γ [ϕc ] in the form of

Γ2,4[ϕc ] =

(
m2

0ϕ
2
c/2

µ2ελ0ϕ
4
c/4!

){
1 +

(
d{m}(I)

d{λ}(I)

)
λZλ(λ)

+

(
d{m}(III,A)

d{λ}(III,A)

)
λ2 Z 2

λ(λ) G(1,1)

+

(
d{m}(III,B)

d{λ}(III,B)

)
λ3 Z 3

λ(λ) G(1,1)G(1,2− D/2)
} δ(0)

Γ(2)

≡
(

Z−1
m (λ) m2

0ϕ
2
c/2

Z−1
λ (λ) µ2ελ0ϕ

4
c/4!

)
,

where d{m;λ}
(i) denote the numerical coefficients associated with the massive

and charge terms of the given diagrams and the charge has been
re-expressed via the renormalized quantity in the diagram contributions which
are forming the Z−1-factor.
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It is convenient to rewrite the above-mentioned equation as

Γ [ϕc ] =
∑

i=(I)...

λn(i) Z n(i)
λ (λ) F (i)(Γ; ε)δ(0),

and

F (I)(Γ; ε) = a0 + a1ε+ a2ε
2 + o(ε3),

F (III,A)(Γ; ε) =
b−1

ε
+ b0 + b1ε+ b2ε

2 + o(ε3),

F (III,B)(Γ; ε) =
c−1

ε
+ c0 + c1ε+ c2ε

2 + o(ε3).

We here take into account the possibility of dimensional extension for the
pre-delta functions mentioned above.
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At the order of [λ]2, focusing on the 1/ε2- and 1/ε-singularities, the pole
relations generate the following relation

C{λ}22 =
(
C{λ}11

)2

which leads to the relation given by

a{λ}(III,A)b−1 =
(
a{λ}(I)

)2a2
0,

where b1 and a0 are known from the direct calculations, while a{λ}(III,A) and a{λ}(I)
have to be determined. Without loosing the generality, one can normalize the
effective action/potential in order to get a{λ}(I) = 1 for the diagram of I-type.

Hence, the constant a{λ}(III,A) can be readily fixed.
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In the similar way, the pole relations for Zm-factor give

2C{m}22 =
(
C{m}11

)2
+ C{λ}11 C{m}11

and, hence, the uncertainty fixing relation takes the form of

2a{m}(III,A)b−1 = a{m}(I)

(
a{λ}(I) + a{m}(I)

)
a2

0.

The coefficients a{m}(i) and a{λ}(i) have been chosen to be different ones.
However, there is an extra condition which can re-express one coefficient
from another. Based on the stationary method, we have the functional
extremum condition as δΓ [ϕc ]/δϕc = 0 that leads to m2 + λϕ2

c/6 = 0. As a
result, the coefficients a{m}(i) and a{λ}(i) cannot be independent ones.
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As the next step, concentrating on the order of [λ]3 we can readily calculate
the coefficient giving the anomalous dimension. We obtain that

C{λ}12 =
3
7

C{λ}23

C{λ}11

which defines also the operation PΓ .
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Generation of Vz,x -operation to the higher orders

We now present the generation of Vz,x -operation to the higher order of [λ].
Let G(n≥2)

O (x1, x2; z1, z2) be the non-local operator Green function
corresponding to the higher order of [λ]. Focusing on the singular part of this
function, we have

G(n≥2) sing.
O (xi ; zj ) =

∑
k

G(n≥2)
O (xi ; zj |1/εk )

⇒ cG
k
εk +

cG
k−1

εk−1 + ...+
cG

1
ε

+ cG
0 + oG(ε).

In ε-expansion, the prefactor C(n≥2)(D) being the combination of Γ-functions
has a form of series as

C(n≥2)(D) = 1 + o1(ε),

where o1(ε) implies the certain series over ε depending on the order but the
exact form of series is irrelevant for our consideration, see below.
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With these, for an arbitrary order, it takes the following form

Γ
(k≥2)

[ϕc ] =
1

C(k≥2)(D)
Vz,x

{
G(n≥2)
O (xi ; zj )

}
or, in other words, we have

cΓk+1

εk+1 +
cΓk
εk + ...+

cΓ1
ε

+ cΓ0 + oΓ (ε) ={
1 + o1(ε)

}
Vz,x

{cG
k
εk +

cG
k−1

εk−1 + ...+
cG

1
ε

+ cG
0 + oG(ε)

}
≡
{

1 + o1(ε)
}{cVG

k+1

εk+1 +
cVG

k
εk + ...+

cVG
1
ε

+ cVG
0 + oVG(ε)

}
.
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Concentrating on the highest singular terms one can see that

cΓk+1 = cVG
k+1.

Of course, such a simple relation is valid only the highest singular terms due
to the universal form of CD. For the other singular terms, one needs the exact
form of expansion including the finite terms with respect to ε.
If the anomalous dimension of G(n≥2)

O (xi ; zj ), i.e. the coefficient cG
1 , is

somehow known, we use the pole relations to transform the coefficient cG
1 to

the coefficient cG
k at the highest singular term and, then, we immediately get

the highest singular term of Γ
(k≥2)

[ϕc ] with the help of Vz,x -operation.
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Afterwards, we again use the pole relations for Γ
(k≥2)

[ϕc ] to derive the
coefficient cΓ1 . That is, we have the following chain of operations:

cG
1

PG=⇒ cG
k

Vz,x
=⇒ cΓk+1

PΓ=⇒ cΓ1 .

As a result, we can derive the anomalous dimension for the effective potential
provided we know the anomalous dimension of the corresponding non-local
operator Green function. It is important that this procedure is almost
algebraical one which is very useful for the higher order of corrections.
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Braun-Manashov approach: the recur. relations from CS

We work in the frame at the critical point, i.e. λ = λ∗ and β(λ∗) = 0. The
symmetry is extended to the dilatation and the space-time inversion forming
the collinear SL(2) subgroup of the conformal group.

The collinear conformal algebra can be realized by the standard way with the
help of operators L± and L0.

A non-local operator can be considered as a generalizing function for a local
operator. For the renormalized operator we write that

[O](z1, z2) =
∑
Nk

ΨNk (z1, z2) [O]Nk

where ΨNk (z1, z2) – homogeneous polynomials of degree N + k ,
(zi∂zi + N − k)ΨNk (z1, z2) = 0.

Instead of the generators Li which act on the operator fields, one can
introduce the operators Sα which act on the coefficient functions ΨNk (z1, z2)

(the adjoint representation).
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The generators Sα also obey the standard commutation relations, we have

[S±,S0] = ∓S±, [S+,S−] = 2S0

with the following realization on the space of homogeneous polynomials

S−ΨNk (zi ) = −ΨNk−1(zi ),

S0ΨNk (zi ) = (jN + k)ΨNk (zi ),

S+ΨNk (zi ) = (k + 1)(2jN + k)ΨNk+1(zi )

with
Sα = S(0)

α + ∆Sα.
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The operators Sα within a free theory have the forms of

S(0)
− = −

∑
i

∂zi , S(0)
0 =

∑
i

zi∂zi + 2j , S(0)
+ =

∑
i

(z2
i ∂zi + 2jzi ),

while the interaction modifies the operators Sα by adding extra terms as

∆S− = 0, ∆S0 = −ε+
1
2
H(λ∗), ∆S+ =

∑
i

zi

(
− ε+

λ∗
2
H(1)

)
+ O(ε2),

where H denotes the anomalous dimension (or Hamiltonian).
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Following the B-M approach,

[H,S(0)
α ] 6= 0

beyond the leading order in the interacting theory.

However, the generators Sα can be defined as a sum

S(0)
α + ∆Sα

which satisfy the canonical sl(2) commutation relations for the theory at the
critical coupling in non-integer dimensions.

The commutation relations impose certain self-consistency relations on the
corrections ∆Sα.
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Having expanded the relation [S+,H(λ∗)] = 0 in powers of λ∗, the following
relations take finally the form of

[S(0)
+ ,H(1)] = 0, [S(0)

+ ,H(2)] = [H(1),∆S(1)
+ ],

[S(0)
+ ,H(3)] = [H(1),∆S(2)

+ ] + [H(2),∆S(1)
+ ] etc.,

where

∆S+ =
∞∑

k=1

λk
∗∆S(k)

+ , H =
∞∑

k=1

λkH(k).

The relations show that if the anomalous dimension H(k) is known at the
given `-loop accuracy together with the representation for the corresponding
deformed operator ∆S(m)

+ , the anomalous dimension H(k+1) at the given
(`+ 1)-loop accuracy can be derived almost algebraically.

For our goal, it means that with the help of Vz,x -operation we can also readily
derive the evolution kernel for the effective potential Γ [ϕc ].
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Demonstration of the method

Let us suppose that the one-loop evolution kernel H(1) has been someway
calculated. Using the mentioned recurrent relations, after some algebra one
can derive that the evolution kernel for the two-loop accuracy takes a form of
[Braun-Manashov:2013]

H(2) = H+ + F
(
H(d),V(d,1)

)
where F(...) implies the combinations which do not finally contribution to the
vacuum integrations, and

H+ ≡
[
H+O

]
(z1, z2) =

∫ 1

0
dα1

∫ α1

0

dα2

1− α12
O(zα1

12 , z
α2
21 ),

where α12...n = α1 + ....+ αn. Due to the relative simplicity, it can be directly
calculated without the usage of the recurrent relations. However, in the case
of higher loop corrections, the recurrent relations are very useful because
they replace rather complicated direct calculations by the almost algebraical
calculations.
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Next, we apply our V z,x -operation in order to get the coefficient cΓ2 for the
effective potential. We have the following

cΓ2 = V z,x

{[
H+O

]
(z1, z2)

∣∣∣η(zα1
12 )→∆F (x1−zα1

12 )

η(zα2
21 )→∆F (zα2

21 −x2)

}
.

It now remains to insert this representation into the corresponding equation to
derive the needed anomalous dimension for the effective potential.
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λ λ

k3 k3 + k2 − k1
p + k1 − k3

p

O(z1, z2)

k1 k2

k2 − k1

Figure: The diagram of G(2)
O (x1, x2; z1, z2) at the order of [λ]2.
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Conclusion

We have outlined a new approach to calculate the multi-loop effective
potential evolutions in ϕ4-theory using the conformal symmetry.

We have demonstrated that the conformal symmetry can be applied for
the effective potential approach even at the presence of the mass
parameter. Within the stationary phase method, it becomes possible if
one introduces the special treatment of the mass terms as a kind of
interaction in an asymptotical expansion of the generating functional.

It has been shown that the multi-loop evolution equations (anomalous
dimensions) of the effective potential can be derived using the
corresponding results of BM-approach with the help of the original
vacuum Vz,x -operation [Anikin:2023]. This operation leads to the almost
algebraic scheme of the anomalous dimension calculations. It is also
demonstrated the important role of P-operator stemmed from the use of
pole relations for Z -factors.

The proposed approach should be also considered as an alternative way to
calculate the effective potential within the massive ϕ4-like models.
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