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Strong field in QED

lC = ℏ/mc ≈ 3.9× 10−11 cm

lCE

E = const, H = 0, pair is created if eElC = mc2

ES =
m2c3

eℏ
— critical field (F. Sauter 1931)

ES = 1.32× 1016 V/cm = 4.4× 1013 G, IS =
c

4π
E2

S ∼ 1029 W/cm2

For other particles, e.g. π, W , H: Ecr =
m2

π,W,Hc
3

eℏ 3



Strong-field effects

Electric

E2 −H2 > 0

Vacuum polarization

Magnetic

E2 −H2 < 0

No vacuum polarization

Crossed

E2 = H2, E ⊥ H

No vacuum polarization

• Birefringence

• Pair creation

Analogous effect was observed

in graphene [A. Schmitt et al, Nature

Physics 19, 6, 830 (2023)]

• Dynamical chiral symmetry

breaking and mass generation
[Gusynin et al Nucl. Phys. B563, 361 (1999);

Kogut & Sinclair PRD 109, 034511 (2024)]

• Field-induced phase transitions

(in electroweak + Higgs sectors)

[Chernodub et al PRL 130, 111802 (2023)]

Effects with ultra-relativistic

particles propagating trans-

versely in the field

e

• Field-induced scattering

processes, cascades

• Dynamical mass

generation and

spontaneous symmetry

breaking???
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Reaching strong EM fields

• Compact astrophysical objects: magnetars, pulsars, black holes

• Strongly focused multi-petawatt laser beams

• Lorentz-boosted field in collision of high-energy particle bunches with targets

SLAC e−-beam + PW laser

e

multi-GeV

1020−24 W
cm2

SLAC

e

∼ 100 GeV dense e-bunches

e

CERN

e

∼ 1 TeV

74W

RHIC, LHC peripheral collisions

Au

√
s ∼ 100 GeV heavy ions

Au
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External (classical) field

The number of absorbed/emitted photons in a mode (∼ 1) ≪ their total number Nγ :

Nγ ∼
(E2/4π)L3

ℏω
≫ 1 ⇐⇒ E ≫

√
ℏω/L3 =

√
α

(
lC
L

)3 ℏω
mc2

× ES

Focused optical laser: L ∼ λ ∼ 10−6 m, ℏω ∼ 1 eV =⇒ E ≫ 10−14ES (lC ≈ 3.86× 10−13 m)

Ultra peripheral heavy ion collisions:

[V. Voronyuk et al, PRC 83, 054911 (2011)]

L ∼ c∆t ∼ 0.1 fm, ω ∼ 1/∆t

=⇒ E ≫
√
α

(
lC
c∆t

)2

ES ∼ 106ES

Actual field: E ≈ 5
m2

πc
3

eℏ
≈ 3× 105ES

Field = photons

Field range can be extended by using crystals

[Di Piazza, Wistisen, Tamburini, Uggerhøj, PRL 124, 044801 (2020)]
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Some reviews on SFQED

• A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, and G. Torgrimsson, Advances

in QED with intense background fields, Phys. Rep. 1010, 1 (2023).

• S. V. Popruzhenko and A. M. Fedotov, Dynamics and radiation of charged particles in

ultra-intense laser fields, Phys. Usp. 66, 460 (2023).

• A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S. Bulanov, Charged particle motion and

radiation in strong electromagnetic fields, Rev. Mod. Phys. 94, 045001 (2022).

• A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

• N. B. Narozhny and A. M. Fedotov, Contemp. Phys. 56, 249 (2015)

• F. Gelis and N. Tanji, Prog. Part. Nucl. Phys. 87 (2016)
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Invariant parameters

p

q

l

p′
q′

l′

Field:

Aµ, Fµν

Electron:

pµ — generalized momentum

ψp — mode

Photon: lµ

=⇒

F= E2 −H2, G= (E,H)

Classical non-linearity parameter∗

a0 =
e
√
−⟨AµAµ⟩
mc

∼ eE

mωc

Quantum dynamical parameter

χ =
eℏ
√
−(Fµνpν)2

m3c4
∼ E

mc2
E

ES

∗ For a discussion of gauge-invariance see [T. Heinzl, A. Ilderton, Opt. Commun. (2009)] 8



Strong-field QED

• Aµ(x) = Aµ
ext(x)︸ ︷︷ ︸

classical field, non-perturbative

+ Aµ
rad(x)︸ ︷︷ ︸

quantized radiation, perturbative

L= Le−e+ +Lrad
Maxwell +Lext

int + L
rad
int ←− perturbation,

Le−e+ +L
ext
int = ψ̄

(
iγµ∂µ − eγµAext

µ −m
)
ψ,

L
(•)
Maxwell = −

1

4
F (•)
µν F

µν
(•) , L

rad
int = −JµArad

µ = −eψ̄γµArad
µ ψ

• The Furry picture

= + + + . . .(
/̂p− e /Aext −m

)
ψp = 0

{ψp} =⇒ scattering theory =⇒ cross sections of various processes in a SF

Conventions: ℏ = c = 1, e > 0, metric= diag(+−−−), /p = γµpµ
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Dirac equation in external field

(
/̂p− e /A−m

)
ψp = 0

{ψp} is known in limited types of field: constant, plane wave, Coulomb...

Examples of calculated processes cross sections (probability rates) in a plane wave:

. . .

Nonlinear Compton Nonlin. Breit-Wheeler Trident pair production Double Compton

Nikishov-Ritus 1964 Nikishov-Ritus 1964 King-Ruhl 2013, Mackenroth-Di Piazza 2013,

Dinu-Torgrimsson 2020 King 2015, Torgrimsson 2020

See recent reviews [A. Gonoskov, T. G. Blackburn, and M. Marklund, Rev. Mod. Phys. 94 (2022);

A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson , https://arxiv.org/abs/2203.00019 (2021)]
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‘Free’ electron motion in a constant crossed field (CCF)

(
/̂p+ e /A−m

)
ψp = 0 p

• CCF: Aµ = aµφ, φ = kx, k2 = ka = 0 H

E

y

x

E = H

• Volkov solutions: ψp,σ(x) = Ep(x)up,σ , up,σ = (/p+m)(1± γ5/n)w

Ep(x) =

[
1 +

e

2(kp)
/k /A

]
eiSp — Ritus Ep-function (4x4 matrix)

Sp(x) = −px+
e(ap)

2(kp)
φ2 +

e2a2

6(kp)
φ3 — classical action

• Properties of the Ep-functions:∫
d4xEp(x)Eq(x) = (2π)4δ(4)(p− q),∫
d4p

(2π)4
Ep(x)Ep(y) = δ(4)(x− y), Ep = γ0E†

pγ
0,

/̂PEp = Ep/p, /̂P = /̂p+ e/A
11



Locally constant field approximation (LCFA)

1. Formation scale ≪ field scale: locally constant; τF =
m

eE
≪ λ ⇐⇒ ω → 0, a0 =

eE

mω
→∞

2. e− is ultrarelativistic: locally crossed

H

E

y

x

E = H

Total probability rate: calculate W (χ) locally and then integrate over slowly a varying field
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Leading order strong-field QED effects

χe,γ ∼
εe,γ
m

E⊥
ES

— quantum dynamical parameter

Non-linear Compton emission

e−

e−

γ

Wrad ≈


1.44

α

τC

m

εe
χe, χe ≪ 1

1.46
α

τC

m

εe
χ
2/3
e , χe ≫ 1

Mean free path time tem ∼W−1
rad

Non-linear Breit-Wheeler e−e+ production

γ

e−

e+

Wcr ≈


0.23

α

τC

m

εγ
χγe

−8/3χγ , χγ ≪ 1

0.38
α

τC

m

εγ
χ
2/3
γ , χγ ≫ 1

Pair creation rate becomes significant at χγ ≳ 1

[AI Nikishov, VI Ritus JETP 19(5) (1964); A Gonoskov et al Rev. Mod. Phys. 94 (2022); A Fedotov et al Phys. Rep. 1010(1) (2023)]
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Leading order strong-field QED effects

χe,γ ∼
εe,γ
m

E⊥
ES

— quantum dynamical parameter

Non-linear Compton emission

e−

e−

γ

Non-linear Breit-Wheeler e−e+ production

γ

e−

e+

QED cascades: e

[AAM, E. G. Gelfer, A. M. Fedotov PRA 104, 012221 (2021); Mercuri-Baron, AAM, Riconda, et al, arXiv:2402.04225 (2024)]
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Loop corrections to QED processes in a CCF

︸ ︷︷ ︸
Nikishov, Ritus 1964

At χ≫ 1 Wrad,cr ∝ αχ2/3

e−

e−

e−

e−

Extreme field

High-energy electrons

Quantum “soup” of
virtual particles

︸ ︷︷ ︸
Narozhny 1969

︸ ︷︷ ︸
Ritus 1970 ︸ ︷︷ ︸

Morozov 1981, Di Piazza 2020

At χ≫ 1 also scale as g = αχ2/3 ! αχ2/3 ∼ 1 (or χ ≈ 1600) signifies a new regime of interaction

m2
γ ≃ αm2χ2/3 ≃ m2, ∆me ≃ αmχ2/3 ≃ m

meaning that radiative corrections cease being small.
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e−
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εin = mγin [GeV] 800 80 8 0.8

E/ES 10−3 10−2 0.1 1

IL [W/cm2] 5 × 1023 5 × 1025 5 × 1027 5 × 1029
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Radiative corrections in standard QED

• lµ — virtual photon momentum, l2 ̸= 0

• Loops contribute only to virtual lines:
∫
dl2 . . .

• Πµν(l) = = Π̂(l2)(l2gµν − lµlν)

• UV divergent: Π̂(l2) ≃ α

3π
l2 log

|l2|
m2

, l2 ≫ m2

• Main effect: renormalization of e and m, running coupling αeff =
α

1− α

3π
log

Λ2

m2
15



Radiative corrections in a CCF

N.B. Narozhny Sov. Phys. JETP 28 (2) (1969); Ritus V.I. Annals of Physics 69.2 (1972)

Πµν(l) = = Π̂(l2, χl)(l
2gµν − lµlν)︸ ︷︷ ︸

Modified standard QED

Π̂(0, χl ≫ 1) ≃ αm2

3π
logχ

2/3
l

+

2∑
i=1

Πi(l
2, χl)ϵ

(i)
µ (l)ϵ(i)ν (l)︸ ︷︷ ︸

Field-induced

Πi(l
2, χl ≫ 1) ≃ αm2χ

2/3
l

ϵ(1,2)µ (l) =
e(F, F ⋆)µν l

ν

m3χl
, lµϵ(1,2)µ = 0

• Contribution to both virtual and real lines

• Photon acquires effective mass, vacuum has a refractive index

• Field-induced part is finite. Renormalization as in QED, αeff =
α

1− 2α
9π

logχl

∼ α

16



Relation to fundamental UV behavior of QED

T. Podszus and A. Di Piazza, Phys. Rev. D 99, 076004 (2019).

A. Ilderton, Phys. Rev. D 99, 085002 (2019).

QED: ≃ α

3π
l2 log

|l2|
m2

SFQED: ≃ m2αχ
2/3
l

Result depends on the limit order: a0 →∞, χ→∞!

• χl ≪ a30, a0 →∞, χl →∞

SFQED, Π(2) ∼ αχ2/3
l

• χl →∞, then a0 →∞

NO LCFA, Π(2) ∼ log
|l2|
m2

0 1 α−3/2
0

1

α−1/2

χ

a0

LCFA NpQED
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Summary of known radiative corrections in a CCF
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Bubble-chain mass operator to all orders

[AAM, S. Meuren and A. M. Fedotov PRD 102 (2020)]

M
m

=

2

FIG. 1. a) Illustration of a beam-beam collider for probing the fully nonperturbative QED regime. b) 3D OSIRIS-QED
simulation of the collision of two spherical 10 nm electron beams with 125 GeV energy (blue). The fully nonperturbative QED

regime αχ2/3 ≥ 1 is experienced by 38% of the colliding particles (red). The interaction produces two dense gamma-ray beams
with 0.2 photons with Eγ ≥ 2mc2 per primary electron (yellow).

pairs. A strong electromagnetic field polarizes/ionizes
the vacuum, which therefore behaves like an electron-
positron pair plasma. As a result, the “plasma frequency
of the vacuum” changes the photon dispersion relation,
implying that a photon acquires an effective mass mγ(χ),
(see supplemental material for details). The appearance
of a photon mass induces qualitatively new phenomena
like vacuum birefringence and dichroism [28]. Pertur-
bation theory is expected to break down in the regime
mγ(χ) & m, where modifications due to quantum fluc-
tuations become of the same order as the leading-order
tree-level result (Fig. 2).

In order to determine the scaling of mγ(χ), a photon
with energy ~ωγ � mc2 is considered, which propagates
through a perpendicular electric field with magnitude E
in the laboratory frame. The χ associated with this pho-
ton is χ ∼ γE/Ecr, where γ = ~ωγ/(mc2) can be in-
terpreted as a generalized Lorentz gamma factor. As the
polarization of the quantum vacuum requires at least two
interactions (Fig. 2), it is expected that m2

γ(χ) ∼ αM2

(the plasma frequency of a medium exhibits the same
scaling in the coupling constant). Here, M ∼ eE∆t/c de-
notes the characteristic mass scale induced by the back-
ground field and ∆t represents the characteristic life time
of a virtual photon to pair transition.

The scaling of ∆t is determined by the Heisenberg
uncertainty principle ∆t∆ε ∼ ~, where the energy un-
certainty ∆ε ∼ (eE∆tc)2/(~ωγ)2 of a virtual photon
to pair transition is inferred by comparing the relativis-
tic energy-momentum relations for photons ε = pc and
electrons/positrons ε =

√
(pc)2 +m2c4 + (eE∆tc)2 ≈

pc + (eE∆tc)2/(2pc). Here, eE∆t � mc (assuming
χ � 1) is the momentum acquired in the background
field E. Notably, the resulting field-induced mass scale
M ∼ mχ1/3 is independent of m (note that χ ∼ m−3).
This suggests a new regime of light-matter interaction,
where the characteristic scales of the theory are deter-

P

m2
=

∼αχ2/3

Narozhny
1968

+

∼α2χ2/3log χ

Morozov
1977

+

∼α3χlog2χ

Narozhny
1980

+

∼αnχ(2n−3)/3

conjecture

+ · · ·

M

m
=

∼αχ2/3

Ritus
1970

+

∼α2χ log χ

Ritus
1972

+

∼α3χ5/3

Narozhny
1980

+

∼αnχ(2n−1)/3

conjecture

+ · · ·

FIG. 2. Dressed loop expansion of the polarization operator
P (top row) and mass operatorM (bottom row). Wiggly lines
denote photons and double lines dressed electron/positron
propagators [2]. According to the Ritus-Narozhny conjecture,
the diagrams shown represent the dominant contribution at
n-loop and αχ2/3 is the true expansion parameter of strong-
field QED in the regime χ� 1 [17–19].

mined by the background field (M � m). The scaling
m2
γ(χ) ∼ αM2 ∼ αχ2/3m2 in the regime χ � 1 implies

mγ & m if αχ2/3 & 1 and thus a breakdown of perturba-
tion theory at the conjectured scale [17–19]. The same
scaling is also found for the electron/positron effective
mass by analyzing the mass operator (see supplemental
material for details).

The key challenge for reaching the fully nonperturba-
tive regime αχ2/3 & 1 in beam-beam collisions is the mit-
igation of radiative losses through beamstrahlung: the
emission of radiation as the colliding particles are bent
in the fields of the opposing bunch. This process is
characterized by four beam parameters: the transverse
σr and the longitudinal σz dimensions of the bunches
(σr = σx = σy for radially symmetric beams), the num-
ber of particles per bunch N (i.e., the total charge) and
the beam Lorentz factor γ. Lorentz invariance requires

αχ2/3

Ritus 1970

α2χ logχ
Ritus 1972

α3χ5/3

Narozhny 1980

αnχ(2n−1)/3

conjecture

For the electron elastic scattering amplitude to all orders:

1. Main contribution to M(n−loop) at χ≫ 1 — from polarization loop insertions

2.
M(n+1)

M(n)
∼ αχ2/3 (except n = 1) for the bubble-type corrections

3. g = αχ2/3 is the effective PT parameter, at least for the bubble-type corrections

4. g ≳ 1 the one-loop bubble-type corrections are resummed

19



Bubble-chain mass operator

l

p q
x′ x′′

−iΣ(q, p) = Λ2(D−4)

∫
dDx′ dDx′′ Ēq(x

′′)(ieγµ)Sc
0(x

′′, x′)(ieγν)Ep(x
′)Dc

µν(x
′′, x′)

• Sc
0(x

′′, x′) — LO electron propagator

Sc
0(x

′′, x′) =ei(ax)Φe−iπ
2

D−2
2

Λ4−D

(4π)D/2

∫ ∞

0

ds

sD/2
exp

{
−im2s− ix

2

4s
+ i

s

12
e2 (Fx)2

}
×
[
m+

(γx)

2s
− s

3
e2(γF 2x) +

i

2
mse(σF ) +

i

2
e(γF ⋆x)γ5

]
,

where x = x′′ − x′, X = (x′ + x′′)/2, Φ = (kX), s — proper time

Ep-representation: S
c
0(p) = ΛD−4

∫
dDxĒp(x

′′)Sc
0(x

′′, x′)Ep(x
′) = i

(γp) +m

p2 −m2 + i0

• Dc
µν(x

′′, x′) — photon propagator with loops inserted 20



Photon propagator

[
l2gµν − lµlν −Πµν(l2, χl)

]
Dνλ = −iδµλ

= + + + . . .

Dc
µν(l) = D0(l

2, χl)gµν +
2∑

i=1

Di(l
2, χl)ϵ

(i)
µ (l)ϵ(i)ν (l),

D0(l
2, χl) =

−i
l2 + i0

, D1,2(l
2, χl) =

iΠ1,2

(l2 + i0) (l2 −Π1,2)
=

−i
l2 + i0

− −i
l2 −Π1,2(l2, χl)

Polarization operator eigenfunctions:

Π1,2(l
2, χl) = m2 4αχ

2/3
l

3π

∫ ∞

4

dv

v13/6
v + 0.5∓ 1.5√

v − 4
f ′(ζ), ζ =

(
v

χl

)2/3(
1− l2

vm2

)

f(ζ) = i

∫ ∞

0

dσ e−i(ζσ+σ3/3)

21



Graphic representation of pol. op. eigenfunctions

g = αχ
2/3
l

100 101 102 103 104

χl

10−4

10−2

100

|R
e

Π
1,

2(
0,
χ
l)
|/m

2

|Re Π2|
0.26αχ

2/3
l

|Re Π1|
0.18αχ

2/3
l

100 101 102 103 104

χl

10−4

10−2

100

|Im
Π

1,
2(

0,
χ
l)
|/m

2

|Im Π2|
0.46αχ

2/3
l

|Im Π1|
0.30αχ

2/3
l

100 101 102 103 104

χl

10−6

10−5

10−4

10−3

Π̂
(0
,χ

l)

|Re Π̂(0, χl)|
|Im Π̂(0, χl)|

0 5 10 15 20 25
−2

0

2

R
e

Π
1,

2

×10−3

10−2 10−1 100
g

0 5 10 15 20 25

−2

−1

0

Im
Π

1,
2

×10−2

10−2 10−1 100
g

10−2 10−1 100
g
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Dependence on l2

−5 0 5 10 15 20

l2/m2χ
2/3
l

−1

0

1

2

Π
1
(l

2
,χ

l)
/|Π

1
(0
,χ

l)
|

Re

Im

−1 0 1
−1

0

1

If l2 ≲ m2χ
2/3
l :

Πi(l
2, χl) ≈ m2αχ

2/3
l

[
Ki +K

(1)
i

l2

m2χ
2/3
l

+K
(2)
i

(
l2

m2χ
2/3
l

)2]

where Ki, K
(1,2)
i are constants
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Analytic properties

• Π1,2 are a whole transcendent functions of l2

• Poles:
1

|l2 −Π1,2|
in complex plane of l2

-2000 -1000 0 1000 2000

-2000

-1000

0
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2000

-3000 -2000 -1000 0 1000 2000 3000

-3500

-3000

-2500

-2000

-1500

-1000
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Plan of further calculation [V.I. Ritus]

−iΣ(q, p) = Λ2(D−4)

∫
dDx′ dDx′′ Ēq(x

′′)(ieγµ)Sc
0(x

′′, x′)(ieγν)Ep(x
′)Dc

µν(x
′′, x′)

1. Tedious Dirac matrices algebra (using FeynCalc). . .

2. Integrals are sequentially carried out, so that
∫
dDx′dDx′′ −→

∫
dl2dq2dχl

3. Scattering amplitude ūp′,sΣ(p
′, p)up,s = −(2π)4δ(4)(p− p′) · 2p0Ts(p):

M(χ) ≡ ūp,sΣ(p, F )|p2=m2up,s = M0(χ) + δM(χ), δM=

2∑
i=1

δMi

4. Residual renormalization reduces to the subtraction M 7→M(ren) = M−M|F=0

OR can be carried out in a standard way: D = 4− ε, ε→ 0
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Scattering amplitude: M0(χ)

M0(χ) =
αm4

(2π)2

∫ +∞

−∞

du

(1 + u)2

∫ +∞

−∞
dλ

∫ +∞

−∞

dµ

µ+ i0
D0(m

2λ, χl)

×
{
(2 + λ)Ai1(t) + 2

u2 + 2u+ 2

1 + u

(χ
u

)2/3
Ai′(t)

}

• Notations: λ = l2/m2, µ = (q2 −m2)/m2, u = χl/χq

• M0 is divergent and renormalized via the replacement

Ai1(t) 7→ Ai
(ren)
1 (t) = −i

∫ ∞

−∞

dσ

2πσ
e−itσ

(
e−iσ3/3−1

)
• M

(ren)
0 (χ)↔ D0 is the 2nd order contribution with no vacuum polarization loops [cf. Eq. (23) in

Ritus 1972] with an asymptotic behavior [ibid., Eq. (72)]:

M
(ren)
0 (χ≫ 1) ≃ 0.843(1− i

√
3)αχ2/3m2

26



Scattering amplitude: δM(χ)

δM1,2(χ) = −
αm4

(2π)2

∫ +∞

−∞

du

(1 + u)2

∫ +∞

−∞
dλ

∫ +∞

−∞

dµ

µ+ i0
D1,2(m

2λ, χl)

×
{[

1 + λ
u2 + 2u+ 2

2u2

]
Ai1(t) +

(
u2 + 2u+ 2

1 + u
± 1

)(χ
u

)2/3
Ai′(t)

}
t =

(
u

χ

)2/3(
1 +

1 + u

u2
λ+

1 + u

u
µ

)
, χl =

χu

1 + u
,

Ai1(t) = −i
∫ ∞

−∞

dσ

2π

1

(σ − i0)e
−iσ3/3−itσ, Ai′(t) = −i

∫ ∞

−∞

dσ

2π
σe−iσ3/3−itσ

• δM1,2 are finite and vanish on switching the field off.

• Reproduces [Eq. (42) in Narozhny 1980], except minor differences;

• As Narozhny 1980, from now on we also assume Z ≈ 1;

• As Narozhny 1980, we drop the subleading spin-dependent terms;

• In contrast to Narozhny 1980, we have also dropped the terms ∝ µ in {. . .}, as they eventually

vanish after
∫
dµ;

• In contrast to Narozhny 1980, no perturbative expansion in powers of Π1,2 is assumed here and

below!
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Photon propagator in the proper time representation

Propagator in x-space 7→ probability to travel between two space-time points x = x′′ − x′

Dc
µν(x) =

Λ4−D

(2π)D

∫
dDl Dc

µν(l)e
−ilx

Dc
0µν(x) = e−iπ

2
D−4

2
Λ4−D

(4π)D/2+1

∫
dτ

τD/2
exp

(
−i x

2

4τ

)
2πiθ(τ) gµν

τ — proper time of a virtual photon

J0(τ) =

∫
dl2

e−il2τ

l2 + i0
≡ 2πiθ(τ) =⇒ τ > 0, photon propagation respects causality

where now

Jn(τ, χl) = −i
∫ ∞

−∞
dl2Dn(l

2, χl)e
−il2τ , n = 0, 1, 2, φ = (kx), χl =

ξφ

2m2t

• Jn(τ, χl) smear causal θ(τ)-functions: Jn(τ < 0, χl) = 0

• Jn(τ, χl) contain all information about the pole structure of Dc
µν
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2
D−4

2
Λ4−D

(4π)D/2+1

∫ ∞

0

dτ

τD/2
exp

(
−i x

2

4τ

){
J0(τ, χl)gµν

+
J1(τ, χl)

m2ξ2φ2
e2
[
(Fx)µ(Fx)ν − 2it(F 2)µν

]
+
J2(τ, χl)

m2ξ2φ2
e2
[
(F ⋆x)µ(F

⋆x)ν − 2it(F 2)µν
]}
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∫ ∞

−∞
dl2Dn(l
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Jn functions

100 101 102 103

τm2χ
2/3
l

0.4

0.6

0.8

1.0

2.0

|J
1
(τ
,χ

l)
|/χ

2/
3

l

×10−2

χl = 104

χl = 103

χl = 102

χl = 10

−1 0 1 2 3 4

0

1

2
×10−2

J1(τ, χl) = −i
∫ ∞

−∞
dl2

iΠ(l2, χl)

(l2 + i0) [l2 −Π(l2, χl)]
e−il2τ

Key approximation for studying χ≫ 1 limit

J1(τ, χl) ≈ −2πi θ
(
Re τ − τ (1)eff

) Π(0, χl)

m2
e−iΠ(0,χl)τ

Note that it is already good at χl ≳ 1!

Next steps:

l

qp p′
x x′

M(χ) = ūp,sΣ(p, p
′)|p2=m2up,s at χ≫ 1
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Calculation of δM: Summary

Mass radiative correction: M(χ) = M
(ren)
0 + δM, δM= δM(II) + δM(III)

Lowest-order PQED correction

M
(ren)
0

0.843(1− i
√
3)αχ2/3m2

NPQED correction due to pho-

ton emission δM(II) (−0.995 + 1.72i)α3/2χ2/3m2

NPQED correction due to tri-

dent pair production∗ δM(III) −(0.103 + 1.18i)α2χm2

∗ Cf. 2-loop PQED result [Eq.(76) in Ritus 1972]:

δM(2−loop) = −[0.208 + (0.133 lnχ− 0.725)i]α2χm2
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Consistent resummation: Dyson-Schwinger equations

= +

= +

= +
(((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhh

+ + + . . .︸ ︷︷ ︸
Not proven, though some evedence presented in Di Piazza & Lopez-Lopez, PRD (2020)

RN conjecture =⇒ DS equations become closed!

In order to proceed, we need to:

(i) Define structures of the exact propagators

(ii) Find a gauge where the proper vertex Γµ −→ ieγµ

(iii) Calculate exact mass and polarization operators

(iv) Plug everything to the DS equations and try solving them
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Structure of radiative corrections

Renormalized exact photon propagator:

= + + + . . .1PI 1PI 1PI

Dc
µν(l) =

−i
l2 + i0

[
gµν −������XXXXXX(1− dl)

lµlν
l2

]
+

2∑
i=1

iΠi(l
2, χl)

(l2 + i0) (l2 −Πi(l2, χl))
ϵ(i)µ (l)ϵ(i)ν (l),

ϵ(1)µ (l) =
eFµν l

ν

m3χl
, ϵ(2)µ (l) =

eF ⋆
µν l

ν

m3χl
, χl =

ξ(kl)

m2
, ξ2 = −e2a2/m2
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Structure of radiative corrections

Electron mass operator with accounting for the exact photon propagator:

l

p q
x′ x′′

Σ(p, F ) =
2∑

i=0

[
mSi(p

2, χ) + (γp)V
(1)
i (p2, χ) +

e2(γF 2p)

m4χ2
V

(2)
i (p2, χ)

+
e(σF )

mχ
Ti(p

2, χ) +
e(γF ⋆p)γ5

m2χ
Ai(p

2, χ)

]

• Scalar factors Si(p
2, χ), . . . can be expressed explicitly as multi-dim integrals with Πi-s

• n = 0 — 1-loop mass operator [Ritus 1970]; n = 1, 2 — nontrivial contribution
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Structure of radiative corrections

Exact electron propagator:

= +

Sc(p, F ) = i

[
mS − (γp)V (1) − e2(γF 2p)

m4χ2
V (2) − e(σF )

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]∑
±

1± (γnD)γ5

2D±
,

D± = m2S2 − p2V (1) 2 +m2
(
A2 − 2V (1)V (2)

)
± 2m2

(
SA− 2TV (1)

)
S = −1−

2∑
i=0

Si, V
(1) = 1−

2∑
i=0

V
(1)
i , V (2) = −

2∑
i=0

V
(2)
i , T = −

2∑
i=0

Ti, A = −
2∑

i=0

Ai.

At χ≫ 1 the V (2)-term dominates in the adopted approximation

Σ(p, F ) ∝ e2(γF 2p)

m4χ2
V (2), Sc(p, F ) ∝ e2(γF 2p)

m4χ2D±
V (2)
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Vertex correction at χ≫ 1

Suppose we insert a 1-loop correction into a vertex connecting two exact Sc

• Leading contribution = LO term in Γµ × LO term in Sc

If this is true, vertex insertion will enhance the total amplitude by g = αχ2/3

• Γµ: dominant O(g) contribution is ∝ (γk)kµ [Morozov 1981, Di Piazza PRD 2020]

• Sc: dominant contribution is ∝ (γF 2p)V (2) = −a2(γk)(kp)V (2)

• HOWEVER: (γk)kµ × (−a2)(γk)(kp)V (2) ∝ (γk)2 = 0

• Therefore, the LO nonvanishing contribution should be enhanced by a factor weaker than αχ2/3!

• This supposition is in favour of the RN conjecture and the bubble-chain approximation (yet to be

confirmed by a full-length calculation)
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Consistent resummation: Dyson-Schwinger equations

= +

= +

?
≈

RN conjecture =⇒ DS equations become closed!

(i) + Define structures of the exact propagators

(ii) ? Find a gauge where the proper vertex Γµ −→ ieγµ

(iii) ± Calculate exact mass and polarization operators

(iv) ? Plug everything to the DS equations and try solving them

For details see [AAM, A. M. Fedotov, PRD 105, 033005 (2022)]
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Corrections to tree-level processes

Modified photon emission:
p p′

l

, trident

Can we plug modified particle modes into tree-level amplitudes and calculate them?

Aiµ(x) =
Z

1/2
A√
2ωi

εiµe
−ilx

∣∣∣∣∣
l0=ωi

, l2 −Πi(l
2, χl) = 0

∣∣∣∣∣
l0=ωi

; ψ(x) = Ep(x)D(1± γ5/nD
)w

∣∣∣∣∣
p0=

√
m2

↑↓+p2

Unitarity (conservation of probability):

⟨f |T |i⟩ − ⟨f |T † |i⟩ = i
∑
j

⟨f |T † |j⟩ ⟨j|T |f⟩

[Veltman (1963)]: unitarity is satisfied by the inclusion of only the asymptotically stable states
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Cutting rules for unstable particles

Optical theorem: 2ImΣ = +

Cut through a stable photon state:

i

l2 + i0
−→ 2πθ(l0)δ(l

2)

. . . and replace all D −→ D∗ on the r.h.s. of the cut

−2ImΣ =

{
|M|2, l2 = 0,

0, l2 ̸= 0

[Donoghue, Menezes PRD 100, 105006 (2019)]
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Cutting rules for unstable particles

Optical theorem: 2ImΣ = +

Cut through a unstable photon state:

i

l2 −Π
−→ 2πθ(l0)

∫ ∞

0

ds δ(l2 − s)ρ(s)
π

−2ImΣ ∝ ρ(s) ∀s

Instability doesn’t break unitarity, but we can’t associate 2ImΣ to |M|2, no asymptotic states

Narrow-width approximation: ρ(s) ≈ ImΠ

(s− ReΠ)2 + ImΠ2

ImΠ→0−→ πδ(s− ReΠ)

Cutting through unstable photon states is valid for χl ≪ 1

[Donoghue, Menezes PRD 100, 105006 (2019)]
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Cutting the bubble-chain mass operator (scalar case)

What can we extract out of the bubble-chain Σ = ?

dΣi

du
=
αm2

2π

1

(1 + u)2

∫ ∞

σ0(u)

dσ

[
z̃i
z

1

σ
+

2∓ 1

z
σ

]
exp

(
−iz̃iσ − i

σ3

3

)
, z̃i = z

(
1 +

χp′χp

χ2
l

Πi(0, χl)

m2

)

• Set Πi = 0

bare γ emission

ImΣ = −Wrad/2p
0

• ImΠi(χl ≪ 1)≪ ReΠi

quasi-stable dressed γ emission

ImΣ ∼W e→eγ +W e→eee

• ImΠi(χl > 1) ∼ ReΠi

no stable final γ states!
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τform ∼ τdecay ∼
m

eE

χ1/3

√
α 37



Algebraic scripts for loop SFQED calculations in a CCF

https://github.com/ArsenyMironov/SFQED-Loops

How to cite: https://doi.org/10.5281/zenodo.5866682
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Non-perturbative regime: outlook

• Strong-field effects in a CCF differ from that of in E- and H-type fields. A supercritical CCF

induces a new regime of interaction (e.g. on the impact of high-energy particles with slowly

varying fields).

• We made only the first steps towards the formulation of the consistent theory in the

nonperturbative regime. E.g. vertex corrections are yet to be rigorously studied.

• At χ≫ 1 bubble-chain diagrams are dominant at each level of PT. This does not automatically

provide that the sum of them is also dominant over a sum over sub-dominant types of diagrams

• Defining single-particle states is an intricate problem: NpSFQED is a theory with unstable particle

states. We still cannot calculate cross sections, but within the RN conjecture it seems to be viable
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Open questions

• Can we tune heavy ion colliders to study SFQED effects?

• Borrowing tools from QCD: lattice simulations (TODO list: formulation, spinor vs scalar QED,

the sign problem, defining the operators to calculate)

• Can an extreme CCF induce phase transitions (line in supercritical magnetic fields)?

• Electroweak theory and QCD in a strong CCF?

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?
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Electron propagation (at αχ2/3 < 1) [Kostyukov et al, PRD 108, 093007 (2023)]

(
/̂p+ e /A−m

)
ψp(x) = 0

p

• CCF: Aµ = aµφ, φ = kx, k2 = ka = 0

• Volkov solutions: ψp,σ(x) = Ep(x)up,σ −→ Ep-representation; up,σ = (/p+m)(1± γ5/n)w

[S, V (i), T, A] = [S, V (i), T, A](p2, χ) — known explicitly at 1-loop

Solution exists if detD = 0:

ψp =

[
mS − /pV (1) − e2(γF 2p)

m4χ2
V (2) − eσµνF

µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]
︸ ︷︷ ︸

D=D−1

(1± γ5/nD
)w

• Mass shift: p2 = m2
↑↓ =

m2

V (1) 2

[
S2 +

(
A2 − 2V (1)V (2)

)
± 2

(
SA− 2TV (1)

)]
• Polarization axis is now fixed: nµ −→ nµ

D =
e(F ⋆p)µ

m3χ

[Ritus 1970], see also [Podszus, Di Piazza PRD 104 016014 (2021) and Podszus, Dinu, Di Piazza arXiv:2206.10345 (2022)]
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Electron propagation (at αχ2/3 < 1) [Kostyukov et al, PRD 108, 093007 (2023)]

D(p, F )ψp =
[
/p−m− Σ(p, F )

]
ψp = 0 Σ
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µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]

[S, V (i), T, A] = [S, V (i), T, A](p2, χ) — known explicitly at 1-loop

Solution exists if detD = 0:

ψp =

[
mS − /pV (1) − e2(γF 2p)

m4χ2
V (2) − eσµνF

µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]
︸ ︷︷ ︸

D=D−1

(1± γ5/nD
)w

• Mass shift: p2 = m2
↑↓ =

m2

V (1) 2

[
S2 +

(
A2 − 2V (1)V (2)

)
± 2

(
SA− 2TV (1)

)]
• Polarization axis is now fixed: nµ −→ nµ

D =
e(F ⋆p)µ

m3χ

[Ritus 1970], see also [Podszus, Di Piazza PRD 104 016014 (2021) and Podszus, Dinu, Di Piazza arXiv:2206.10345 (2022)] 41



Short time evolution of a wave packet (t < W−1
rad ∼ [ImΣon−shell]

−1)

w = C(p){0, 1, 0, 0}, C(p) = N exp

[
− (pz + ε)2

2∆2
z

− p2⊥
2∆2

⊥

]
ψ(x) =

∫
dp

(2π)3
Ep(x)C(p)U↑↓, U↑↓ = (/p+m)(1± γ5/n)× {0, 1, 0, 0}

ρ(x) = ψ†(x)ψ(x)

ρ(x) = C (ρ0 + αρα) exp

[
−Q(D⊥x,D⊥y,Dzz)−Wrad

(
t+

(eE)2φ3

6m3ε2

)]

ρ0 =
1

2ε2
{
(ε+m)2 +D4

z(t+ z)2 + . . .
}
, ρα =

[
2 +

(eE)2φ2

2m2ε2

]
Re

[
V (1) − 1

α
∓ χm

2ε

A

α

]
.

• The main effect of radiative corrections is:
1. Dampening by e−WrT , where Wr = −Imm2

↑↓/2ε is the emission probability rate

This dampening is enhanced by additional term compared to the expected e−Wrt

2. αρα — 1-loop correction to the pre-exponent

• Trajectory of the wave packet and its width are not modified by the radiative corrections

In the same fashion, we can calculate spin expectation value ⟨S⟩ =
∫ +∞

−∞
d3r ψ†(x)Σψ(x), etc
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• The main effect of radiative corrections is:
1. Dampening by e−WrT , where Wr = −Imm2

↑↓/2ε is the emission probability rate

This dampening is enhanced by additional term compared to the expected e−Wrt

2. αρα — 1-loop correction to the pre-exponent

• Trajectory of the wave packet and its width are not modified by the radiative corrections

In the same fashion, we can calculate spin expectation value ⟨S⟩ =
∫ +∞

−∞
d3r ψ†(x)Σψ(x), etc
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Short time evolution of a wave packet (t < W−1
rad ∼ [ImΣon−shell]

−1)
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}
, ρα =

[
2 +

(eE)2φ2

2m2ε2

]
Re
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V (1) − 1

α
∓ χm

2ε

A

α

]
.

• The main effect of radiative corrections is:
1. Dampening by e−WrT , where Wr = −Imm2

↑↓/2ε is the emission probability rate

This dampening is enhanced by additional term compared to the expected e−Wrt

2. αρα — 1-loop correction to the pre-exponent

• Trajectory of the wave packet and its width are not modified by the radiative corrections

In the same fashion, we can calculate spin expectation value ⟨S⟩ =
∫ +∞

−∞
d3r ψ†(x)Σψ(x), etc 42



Intuitive insight into a loop scale formation

• Electron gains p ∼ eEt during loop life-time t

• Energy mismatch in a virtual state is estimated as

∆ε ≈
√
p2∥ + p2⊥ +

√
(l − p∥)2 + p2⊥ − l ≈ /p∥ ∼ l, p≫ m/ ≈ e2E2t2

l

• Uncertainty principle: ∆ε× t ∼ 1 =⇒ t ∼ (l/e2E2)1/3

l l

p

p− l

r⊥ ∼
1

eEt
∼ 1

(eEl)1/3
∼ 1

mχ
1/3
l

r∥ ∼ 1/l

• Photon dynamical mass ∼ plasma frequency of a ’relativistic plasma of virtual pairs’:

m2
γ ≃ ω2

p ≡
8πe2

mγ
ne+e− ≃

α

k

1

Vloop
≃ αm2χ

2/3
l



Reaching the non-perturbative regime

e−, η0

a0

τ

g(φ)

Let η0, a0: αχ
2/3
0 ≫ 1

e− radiates upon entering the field

Energy losses:

1

η
1/3
f

=
1

η
1/3
0

+

∫ φ

−∞
dφα(a0g(φ))

2/3
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At max field e− lost it’s energy!
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In a short pulse e− may reach NpQED regime

Yakimenko et al., PRL 122 (2019); Di Piazza, Wistisen, Tamburini, and Uggerhoj, PRL 124 (2020); Blackburn, Ilderton, Marklund, and Ridgers NJP

21 (2019); Baumann and Pukhov PPCF 61 (2019); Baumann, Nerush, Pukhov, and Kostyukov Sci. Rep. 9 (2019)



Plane wave case: Volkov solution
(
/̂p− e /A−m

)
ψp = 0

Plane wave: Aµ = Aµ(φ), φ = kx, k2 = kA = 0

Solution:

ψp,σ(x) = eiSpΣpup,σ , (/p−m)up,σ = 0

Spin factor:

Σp = 1 +
e

2(kp)
/k /A

Classical action:

Sp = −px− e

kp

∫ φ

0

(
pA(φ)− e

2
A2(φ)

)
dφ

{ψp} — full orthonormal set of solutions

8

FIG. 3 (Color) Free wave packet evolution in a plane wave
field. The solid gray line indicates the center of mass tra-
jectory, coinciding essentially with the classical trajectory,
and the laser pulse travels from left to right. The blue re-
gions indicate the copropagating self-adaptive numerical grid.
Time and space coordinates are given in “atomic units”, with
1 a.u. = 24 as and 1 a.u. = 0.05 nm, respectively. From
Bauke and Keitel, 2011.

energy free bi-spinor 1 (Berestetskii et al., 1982)). Al-
though it has been shown long ago that positive- and
negative-energy Volkov states form a complete set of or-
thogonal states on the hypersurfaces φ = const (Ritus,
1985), the corresponding property on the hypersurfaces
t = const is not straightforward and it has been proved
only recently (see Ritus, 1985 and Zakowicz, 2005, and
Boca and Florescu, 2010 for a proof of the orthogonal-
ity and of the completeness of the Volkov states, respec-
tively).

Since the Volkov states form a basis of the space of
the solutions of Dirac equation in a plane wave, they can
be employed to build electron wave packets and study
their evolution. A pedagogical example of laser-induced
Dirac dynamics is displayed in Fig. 3 for a plane wave
with peak intensity of 6.3 × 1023 W/cm2 and central
wavelength of 2 nm. The figure shows the drift of the
wave packet in the propagation direction of the wave, its
spreading and its shearing due to non-dipole effects. In
Fillion-Gourdeau et al., 2012 an alternative method of
solving the time-dependent Dirac equation in coordinate
space is presented, which explicitly avoids the fermion
doubling, i.e., the appearance of unphysical modes when
the Dirac equation is discretized.

As in the classical case, we shortly mention here the
paradigmatic case of a monochromatic, linearly polar-
ized plane-wave field Aµ(φ) = Aµ

0 cos(ω0φ). In this case
the action Sp0(x) can be written in the form Sp0(x) =

1 We point out that the discussed Volkov states Ψ±p0,±σ0(x) are
the so-called Volkov in-states, as they transform into free-states
in the limit t → −∞ (Fradkin et al., 1991). Volkov out-states,
which transform into free-states in the limit t → ∞, can be
derived analogously and differ from the Volkov in-states only by
an inconsequential constant phase factor (recall that A(∞) = 0).

−(q0x) + “oscillating terms”, with (Ritus, 1985)

qµ
0 = pµ

0 +
m2ξ2

0

4p0,−
nµ

0 . (8)

The four-vector qµ
0 plays the role of an “effective” four-

momentum of the electron in the laser field and it is indi-
cated as electron “quasimomentum”. The corresponding
electron “mass”

p
q2
0 = m∗ = m

p
1 + ξ2

0/2 is known as
electron’s dressed mass. The results for the quasimo-
mentum qµ

0 and the dressed mass m∗ in the case of a
circularly polarized laser field with the same amplitude
and frequency is obtained from the above ones with the
replacement ξ2

0 → 2ξ2
0 . The quasimomentum coincides

classically with the average momentum of the electron
in the plane wave. Correspondingly, the mass dressing
depends only on the classical nonlinearity parameter ξ0
and it is an effect of the quivering motion of the electron
in the monochromatic wave (see also the recent review
Ehlotzky et al., 2009). As we will see in Sec. V.A, it
is important that conservation laws in QED processes
in the presence of a monochromatic plane-wave field in-
volve the quasimomentum qµ

0 for the incoming electrons
rather than the four-momentum pµ

0 . The question of the
electron dressed mass in pulsed laser fields has been in-
vestigated in Heinzl et al., 2010a and Mackenroth and
Di Piazza, 2011.

In the realm of QED the parameter ξ0 can also be
heuristically interpreted as the work performed by the
laser field on the electron in the typical QED length
λC = 1/m ≈ 3.9 × 10−11 cm (Compton wavelength) in
units of the laser photon energy ω0 (see Eq. (4)). This
qualitatively explains why multiphoton effects in a laser
field become important at ξ0 & 1, such that the laser field
has to be taken into account exactly in the calculations
(Ritus, 1985). In the framework of QED this is achieved
by working in the so-called Furry picture (Furry, 1951),
where the e+-e− field Ψ(x) is quantized in the presence
of the plane-wave field. This amounts essentially in em-
ploying the Volkov (dressed) states and the correspond-
ing Volkov (dressed) propagators (Ritus, 1985) instead
of free particle states and free propagators to compute
the amplitudes of QED processes. In the Furry picture
the effects of the plane wave are accounted for exactly
and only the interaction between the e+-e− field Ψ(x)
and the radiation field Fµν(x) ≡ ∂µAν(x) − ∂νAµ(x)
is accounted for by means of perturbation theory. The
complete evolution of the system “e+-e− field+radiation
field” is obtained by means of the S-matrix

S = T
�

exp

�

−ie

Z
d4xΨ̄γµΨAµ

��

, (9)

where T is the time-ordering operator and Ψ̄(x) =
Ψ†(x)γ0. For an initial state containing only a single elec-
tron with four-momentum pµ

0 , the quantitative descrip-
tion of the interaction between the electron, the laser field

Free wave packet evolution in a plane wave field. The

solid gray — classical trajectory.

Bauke and Keitel, Computer Physics Communications 182, 12 (2011);

A. Di Piazza, Rev. Mod. Phys. 84 (2012)



Compton scattering in a circularly polarized plane wave Aµ(φ) = aµ1 cosφ+ aµ2 sinφ

Si→f = −ie
∫
d4x ψ̄p′(x)/ε

∗
l
eilxψp(x) = (2π)4

∑
s≥1

M (s)δ(4)(q′ + k′ − q − sk)

W1 = + + + . . .

k k′ k′ k′

W2 = + + . . .

kk k′ kk k′

W
(s)
i→f (ξ, χ) =

αm2

4q0

∫ us

0

du

(1 + u)2

{
−4J2

s (z) + a20

(
2 +

u2

1 + u

)
×
[
J2
s+1(z) + J2

s−1(z)− 2J2
s (z)

]}
,

z =
a20
√

1 + a20
χ

√
u (us − u), us =

2sχ

a0(1 + a20)

Narozhny, Nikishov, Ritus, Sov. Phys. JETP 20, 622–629 (1965)



Accounting for radiative corrections in sub-NpQED regime (αχ2/3 < 1)

D(p, F )ψp =
[
/p−m− Σ(p, F )

]
ψp = 0 Σ

D(p, F ) =

[
mS + /pV

(1) +
e2(γF 2p)

m4χ2
V (2) +

eσµνF
µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]
[S, V (i), T, A] = [S, V (i), T, A](p2, χ)

• Solution exists if detD = 0:

ψp =

[
mS − /pV (1) − e2(γF 2p)

m4χ2
V (2) − eσµνF

µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]
︸ ︷︷ ︸

D

(1± γ5/nD
)w

• Polarization axis is now fixed: nµ −→ nµ
D =

e(F ⋆p)µ

m3χ

• Mass shift: p2 = m2
↑↓ =

m2

V (1) 2

[
S2 +

(
A2 − 2V (1)V (2)

)
± 2

(
SA− 2TV (1)

)]
[Ritus 1970], see also [Podszus, Di Piazza PRD 104 016014 (2021) and Podszus, Dinu, Di Piazza arXiv:2206.10345 (2022)]



Accounting for radiative corrections in sub-NpQED regime (αχ2/3 < 1)

D(p, F )ψp =
[
/p−m− Σ(p, F )

]
ψp = 0 Σ

D(p, F ) =

[
mS + /pV

(1) +
e2(γF 2p)

m4χ2
V (2) +

eσµνF
µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]
[S, V (i), T, A] = [S, V (i), T, A](p2, χ)

• Solution exists if detD = 0:

ψp =

[
mS − /pV (1) − e2(γF 2p)

m4χ2
V (2) − eσµνF

µν

mχ
T +

e(γF ⋆p)γ5

m2χ
A

]
︸ ︷︷ ︸

D

(1± γ5/nD
)w

• At 1-loop

S = −1− α

π

∫ ∞

0

du

(1 + u)2
f1 (λ) , f1(λ) =

∞∫
0

dσ

σ
e−iλσ

[
e−iσ

3

3 − 1

]
, λ =

(
u

χ

)2/3

V (i), T, A = . . .



Polarization operator in a CCF

Πµν(l) = l2Π̂(l2, χl)gµν +

2∑
i=1

Πi(l
2, χl)ϵ

(i)
µ (l)ϵ(i)ν (l),

ϵ(1)µ (l) =
eFµν l

ν

m3χl
, ϵ(2)µ (l) =

eF ⋆
µν l

ν

m3χl

l2Π̂(l2, χl) = −l2
4α

π

∫ ∞

4

dv

v5/2
√
v − 4

[
f1(ζ)− log

(
1− l2

vm2

)]
≃ 2α

9π
logχl ≪ 1

Π1,2(l
2, χl) = m2 4αχ

2/3
l

3π

∫ ∞

4

dv

v13/6
v + 0.5∓ 1.5√

v − 4
f ′(ζ), ζ =

(
v

χl

)2/3(
1− l2

vm2

)
f(ζ) = i

∫ ∞

0

dσ e−i(ζσ+σ3/3),

f1(ζ) =

∫ ∞

ζ

dz

[
f(z)− 1

z

]

Π1(0, χl ≫ 1) ≈ e−iπ/3 2

3 3
√
6
√
π

Γ2(2/3)

Γ(13/6)
m2αχ

2/3
l , Π2(0, χl ≫ 1) =

3

2
Π1



Graphic representation and high-χ asymptotics validity

g = αχ
2/3
l
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χl
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|R
e

Π
1,

2(
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χ
l)
|/m

2

|Re Π2|
0.26αχ

2/3
l

|Re Π1|
0.18αχ

2/3
l
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l
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l
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Dependence on l2

−5 0 5 10 15 20

l2/m2χ
2/3
l

−1

0

1

2

Π
1
(l

2
,χ

l)
/|Π

1
(0
,χ

l)
|

Re

Im

−1 0 1
−1

0

1

If l2 ≲ m2χ
2/3
l :

Πi(l
2, χl) ≈ m2αχ

2/3
l

[
Ki +K

(1)
i

l2

m2χ
2/3
l

+K
(2)
i

(
l2

m2χ
2/3
l

)2]

where Ki, K
(1,2)
i are constants



Integration over λ = l2 (m = 1 for brevity)

π(λ) =

∫ ∞

0

dξ π̃(ξ) eiξλ, ξeff ≃ χ−2/3
l

Consider the master integral:

J1(z) =

∫ +∞

−∞
dλ

π(λ)e−iλz

λ− π(λ) =

∫ +∞

−∞
dλ e−iλz

∞∑
n=0

(
π(λ)

λ+ i0

)n+1

=

∞∑
n=0

(
n+1∏
a=1

∫ ∞

0

dξaπ̃(ξa)

)∫ +∞

−∞

dλ

(λ+ i0)n+1
exp

[
i

(
n+1∑
a=1

ξa − z

)
λ

]

= −2πi
∞∑

n=0

(−i)n

n!

(
n+1∏
a=1

∫ ∞

0

dξaπ̃(ξa)

)(
z −

n+1∑
a=1

ξa

)n

θ

(
z −

n+1∑
a=1

ξa

)
Note that neff ∼ zeff ≃ 1/π(0), hence

n+1∑
a=1

ξa ∼ neff · ξeff ≃
z

χ
2/3
l

≪ z, πn+1(0) · nzn−1
n+1∑
a=1

ξa ∼ χ−2/3
l ≪ 1, etc.

We arrive at the approximation: J1(z) ≈ −2πi θ(z − ξeff)π(0)e−iπ(0)z
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