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Scattering amplitudes are essential tools to understand a variety of
physical phenomena from gauge theory to classical and quantum
gravity

A convenient approach is to use modern unitarity methods for
expanding the amplitude on a basis of integral functions

AL−loop =
∑

i∈B(L)

coeffi Integrali + Rational

What are the intrinsic properties of amplitudes of QFT? How much
can we understand about the amplitudes without having to compute
them?

I What are the generic constraints on the integral coefficients?
I What are the elements of the basis of integral functions?
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The loop amplitudes

Integration by part considerations indicate the existence of a finite
basis of (master) integral functions B(L) at each loop order [cf.
Weinzierl’s talk]

AL−loop =
∑

i∈B(L)

coeffi Integrali + Rational

I dimension of the basis at L > 2 loop is not known
I Construction of the basis is still a major open question
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The amplitude simplification

I The integral functions are the box, triangle, bubble, tadpole around
D = 4 dimensions

log(1 − z) =
∫ z

0
d log(1 − t); Li2 (z) = −

∫ z

0
log(1 − t)d log t

for z ∈ C\[1,∞[
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The amplitude simplification

This allows to characterize in a simple way one-loop amplitudes in
various gauge theory
I Only boxes for N = 4 SYM

I No triangle property of N = 8 SUGRA [Bern, Carrasco, Forde, Ita, Johansson;

Bjerrum-Bohr, Vanhove]

I Only box for QED multi-photon amplitudes with n > 8 photons
[Badger, Bjerrum-Bohr, Vanhove]
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Master integrals basis

It is crucial to know the basis of Master integrals for many physical
problems
I Two-loop integral for Higgs processes, fishnet graphs [Chicherin

et al.]

I Ultraviolet divergences in (maximal) supergravity at 5 loops

I Computation of the Post-Newtonian corrections to the gravitational
potential
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Master integrals basis

I A ’traditional’ approach consists in deriving Integration by Part
identities (IBP) using Laporta’s method and then bring the system
is the form [cf Weinzeirl’s talk]

d
dx

(
I....(x)

...

)
= A(x , ε)

(
I....(x)

...

)

I For a nice form for A(x , ε) = εA(x) one gets multiple
polylogarithms[Henn]

df (x) =
r∑

i=1

ai

x − xi
f (x)

I Deriving this system can be expensive numerically. And the
resolution not obvious if A is not of the nice form as used by [Henn]
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Master integrals basis

I The previous system of equation has the geometry interpretation
of being a connection associated to a given cohomology: this is
the Gauss-Manin connection

I It was shown by [Bloch, Esnault, Kreimer; Bloch, Kreimer;

Schnetz, Brown] that the 1-loop triangle integral involves only
mixed Tate Hodge structure.

What about functions beyond MPL ?

We want to design a method based on the geometry of the graph that
gets an intrinsic meaning to the differential equation and the basis of
master integrals
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Feynman Integrals: parametric representation

Any Feynman integrals with L loops and n propagators

IΓ =

∫ ∏L
i=1 dD`i∏n
i=1 dνi

i

has the parametric representation

IΓ = Γ(ν−
LD
2

)

∫
xi>0

Uν−(L+1)D
2

(U
∑

i m2
i xi − V)ν−L D

2
δ(xn = 1)

n∏
i=1

dxi

x1−νi
i

The Symanzik polynomials U and V are homogeneous in the x1, . . . , xn

I U is of degree L in Pn−1

I V of degree L + 1 in Pn−1
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What are the Symanzik polynomials?

IΓ = Γ(ν−
LD
2

)

∫
xi>0

Uν−(L+1)D
2

(U
∑

i m2
i xi − V)ν−L D

2
δ(xn = 1)

n∏
i=1

dxi

x1−νi
i

U = detΩ determinant of the period matrix of the graph Ωij =
∮

Ci
vj

Ω2(a)=
(

x1 + x3 x3
x3 x2 + x3

)
; Ω3(b)=

(x1 + x2 x2 0
x2 x2 + x3 + x5 + x6 x3
0 x3 x3 + x4

)

Ω3(c)=

(x1 + x4 + x5 x5 x4
x5 x2 + x5 + x6 x6
x4 x6 x3 + x4 + x6

)

Pierre Vanhove (IPhT& HSE) Motives and Feynman Integrals 6/6/2018 8 / 47



What are the Symanzik polynomials?

IΓ ∝
∫∞

0

δ(1 − xn)

(
∑

i m2
i xi − V/U)n−L D

2

1

U
D
2

n∏
i=1

dxi

x1−νi
i

V/U =
∑

16r6s6n pr · psG(xr/Tr , xs/Ts;Ω) sum of Green’s function

G1−loop(αr ,αs; L) = −
1
2
(αs − αr ) +

1
2
(αr − αs)

2

T
.
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The geometry of a Feynman graph

The homogeneous polynomial of n variables and degree L + 1
completely characterises the Feynman graph and its integral

ΦΓ = U× (

n∑
i=1

m2
i xi) − V

I We can recover both Symanzik polynomials
I Determines the graph topology

the number of propagators is the number of variables n
the loop order is the degree minus one L = deg(ΦΓ ) − 1
Number of vertices v = 1 + n − L from Euler characteristic
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From parametric representation to graph

The most general quadric polynomial in P2

W2,3(x1, x2, x3) =
∑

i1+i2+i3=2
ir >0

wi1,i2,i3x i1
1 x i2

2 x i3
3

The graph has n = 3 propagators, L = 1 loop, v = 3 vertices
This can only be a triangle graph

p1 + p2 + p3 = 0; p2
i , 0

Φ. = (x1 + x2 + x3)(m2
1x1 +m2

2x2 +m2
3x3)−(p2

1x2x3 + p2
2x1x3 + p2

3x1x2)
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From parametric representation to graph

The most general cubic in P2

W3,3 =
∑

i1+i2+i3=3
ir >0

wi1,i2,i3x i1
1 x i2

2 x i3
3

The graph has n = 3 propagators, L = 2 loops, v = 2 vertices
This can only be a sunset graph

Φ� = (x1x2 + x1x3 + x2x3)(m2
1x1 + m2

2x2 + m2
3x3) − p2x1x2x3
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From parametric representation to graph

The most general polynomial of degree n in Pn−1

Wn,n =
∑

i1+···+in=n
ir >0

wi1,...,inx i1
1 · · · x

in
n

The graph has n propagators, L = n − 1 loops, v = 2 vertices
This can only be a n-loop sunset graphs

Φn =

n∏
i=1

xi

n∑
i=1

x−1
i

n∑
i=1

m2
i xi − p2

n∏
i=1

xi

In general several graphs can occur in particular planar and
non-planar topologies
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Feynman integral and periods

IΓ = Γ(ν−
LD
2

)

∫
∆n

ΩΓ ; ΩΓ :=
Uν−(L+1)D

2

ΦΓ (xi)
ν−L D

2

n−1∏
i=1

dxi

x1−νi
i

ΩΓ algebraic differential form on the complement of the graph
hypersurface

ΩΓ ∈ Hn−1(Pn−1\XΓ ) XΓ := {ΦΓ (xi) = 0, xi ∈ Pn−1}

The domain of integration is the simplex ∆n

∆n := {x1 > 0, . . . , xn > 0|[x1, . . . , xn] ∈ Pn−1}
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Feynman integral and periods

IΓ = Γ(ν−
LD
2

)

∫
∆n

ΩΓ ; ΩΓ :=
Uν−(L+1)D

2

ΦΓ (xi)
ν−L D

2

n−1∏
i=1

dxi

xνi−1
i

The domain of integration is the simplex ∆n

∆n := {x1 > 0, . . . , xn > 0|[x1, . . . , xn] ∈ Pn−1}

with boundary contained in the normal crossings divisor

∂∆n ⊂ Dn := {x1 · · · xn = 0}

But ∂∆n ∩ XΓ , ∅ therefore ∆n < Hn−1(P
n−1\XΓ )

This is resolved by looking at the relative cohomology

H•(Pn−1\XΓ ;Dn\Dn ∩ XΓ )
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Feynman integral and periods

Dn and XΓ are separated by performing a series of iterated blowups of
the complement of the graph hypersurface [Bloch, Esnault, Kreimer]

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups

Hn−1(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )
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Feynman integral and periods

I In QFT one is interested in the ε = (D − Dc)/2 (e.g. Dc = 4)
expansion of the Feynman integral

IΓ =
∑

i>−n

ci ε
i

I The ci are numerical periods [Belkale, Brosnan; Kontsevich, Zagier; Bogner, Weinzierl]

M := H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

I The QFT questions: numbers of master integrals for amplitudes,
their differential equations are now reformulated in a
cohomological framework
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When physics and mathematics meet

The central questions about amplitudes in QFT can be reformulated as
Riemann-Hilbert problem for periods

I Compute period explicitly

Numerically or by series expansion in the physical region

I Derive the local monodromy

unitarity of the S-matrix

I Construct a complete system of differential equations

Relate this to the integration-by-part method used in QCD

I Understand the new class of special functions that are needed

What is needed beyond beyond elliptic multiple polylogarithm?
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Differential equation

M(sij , mi) := H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

Since ΩΓ varies when one changes the kinematic variables sij one
needs to study a variation of (mixed) Hodge structure

Consequently the Feynman integral will satisfy a differential equation

LPF IΓ = SΓ

The Picard-Fuchs operator will arise from the study of the variation of
the differential in the cohomology when kinematic variables change

Generically there is an inhomogeneous term SΓ , 0
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The GZK approach

Consider the homogeneous polynomial of degree L in Pn−1

P(z1, . . . , zr ) =
∑

a1,...,an−1

za1,··· ,an−1

n−1∏
i=1

xai
i

with a = (a1, . . . , an−1) and A = (a1, · · · , ar ) finite subset of Zr

For every vector (`1, . . . , `r ) ∈ Zr such that

`1 + · · ·+ `r = 0, `1a1 + · · ·+ `r ar = 0

then holds the differential equation∏
li>0

∂
li
zi
−
∏
li<0

∂
−li
zi

 ∫
|x1|=···=|xn−1|=1

1
P(z1, . . . , zr )

n−1∏
i=1

dxi

xi
= 0
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The GZK approach

[Gel’fand, Zelevinsky, Kapranov] have shown this is true for∫
|x1|=···=|xn−1|=1

∏
i

P(z1, . . . , zr )
mi

n−1∏
i=1

xβi
dxi

xi

The GZK system for a function Φ of r variables z1, · · · , zr and a vector
c ∈ Cn and r elements {a1, . . . , ar } ∈ Zn

I for every (`1, . . . , `r ) ∈ {(`1, · · · , `r ) ∈ Zr |
∑r

i=1 `iai = 0} there is
one differential operator2` :=

∏
`i>0

∂
`i
zi
−
∏
`i<0

∂
−`i
zi

Φ = 0

I an system of n differential equation (includes the Euler operator)(
a1z1

∂

∂z1
+ · · ·+ ar zr

∂

∂zr
− c
)
Φ = 0
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The GZK approach: consequences

1 The maximal cut integral is always killed by the GZK operator

πP =

∫
|x1|=···=|xn−1|=1

1
P(z1, . . . , zr )

n−1∏
i=1

dxi

xi

2 The generic solution of GZK system are the hypergeometric series

ΦL,γ(z1, · · · , zr ) =
∑

(`1,...,`r )∈L

r∏
j=1

zγj+`j
j

Γ(γj + `j + 1)

with L = {(`1, . . . , `r ) ∈ Z|
∑r

i=1 `iai = 0} with `1 + · · ·+ `r = 0 and
(γ1, . . . ,γr ) ∈ Cr

3 In general for a well choosen ` ∈ L the differential operator
factorizes a piece giving the Picard-Fuchs operator
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The sunset family
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The sunset family

This talk will be focused on the special families of n-loop sunset graphs

Φn =

n∏
i=1

xi

n∑
i=1

x−1
i

n∑
i=1

m2
i xi − p2

n∏
i=1

xi

I This family is a nice and important playground for understanding
relations between Feynman integrals and periods

I This family leads to interesting motives : not mixed Tate, non trivial
extensions

I Surprisingly rich: interesting Hodge structure, mirror symmetry
I For p2 = m2

1 = · · · = m2
n[Broadhurst] found that special values of

these sunset Feynman integrals are given by L-function evaluated
in the critical band
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The sunset family

The graph polynomials

Φn =

n∏
i=1

xi

n∑
i=1

x−1
i

n∑
i=1

m2
i xi − p2

n∏
i=1

xi

I φn has a reflexive Newton polytope ∆ ⊂ Rn−1.
I Its polar part ∆◦ has only integral points in Rn+1

I ∆◦ is associated to a noncompact toric Fano n-fold P∆

The sunset graphs lead to 1-parameter families of Calabi–Yau
hypersurfaces in toric Fano n-folds
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The two-loop sunset integral

We consider the sunset integral in two Euclidean dimensions

I2
� =

∫
∆3

Ω�; ∆3 := {[x : y : z] ∈ P2|x > 0, y > 0, z > 0}

I The sunset integral is the integration of the 2-form

Ω� =
zdx ∧ dy + xdy ∧ dz + ydz ∧ dx

(m2
1x + m2

2y + m2
3z)(xz + xy + yz) − p2xyz

∈ H2(P2 − Ep2)

I The sunset family of open elliptic curve

Ep2 = {(m2
1x + m2

2y + m2
3z)(xz + xy + yz) − p2xyz = 0}

I For m1 = m2 = m3 we have a modular curve Ep2 ' X1(6)
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The differential operator: from the period

The analytic period of the elliptic curve around p2 ∼∞ has the same
integrand as the Feynman integral but we have just changed the
domain of integration

π0(p2) :=

∫
|x |=|y |=1

Ω�

This is the imaginary part or the maximal cut of the amplitude

=m(I�(p2)) =∮
C

3∏
i=1

δ(`2i −m2
i ) δ(`1+`2+p) d2`1d2`2

The other period is π1(s) = log(s)π0(s) +$1(s) with $1(s) analytic is
obtained by looking at different unitarity cut cutting less lines [Primo, Tancredi]
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The differential operator: from the period

The integral is the analytic period of the elliptic curve around p2 ∼∞
π0(p2) := −

∑
n>0

1
(p2)n+1

 ∑
n1+n2+n3=n

(
n!

n1!n2!n3!

)2 3∏
i=1

m2ni
i


From the series expansion we can deduce the Picard-Fuch differential
operator (the system has maximal unipotent monodromy [Lian, Todorov, Yau])

L�π0(p2) = 0

I With this method one easily derives the PF at all loop order for the
all equal mass sunset and show the order(PF)=loop [Vanhove]

I Gives for the L-loop sunset PF of order L for all equal masses and
2L for all different masses [Vanhove; to appear]
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The differential equation

By general consideration we know that since the integrand is a top
form we have

LΓ IΓ =

∫
∆n

dβΓ = −

∫
∂∆n

βΓ = SΓ , 0

Writing the differential equation as δs := s d
ds s = 1/p2

(
δ2

s + q1(s)δs + q0(s)
)(1

s
I�(s)

)
= Y� +

3∑
i=1

log(m2
i )ci(s)
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The differential equation

Using works from [del Angel,Müller-Stach] and [Doran, Kerr] we know that when rank of
the D-module system of differential equations that Y� is the Yukawa
coupling

Y� :=

∫
E(p2)

Ω� ∧ s
d
ds
Ω� =

2s2∏4
i=1 µi − 4s

∑
i m2

i + 6∏4
i=1(µ

2
i s − 1)

The Yukawa coupling is the Wronskian of the Picard-Fuchs operator
and only depends on the form of the Picard-Fuchs operator

Y� = s det

(
π0(s) π1(s)

d
dsπ0(s) d

dsπ1(s)

)
So far all we got can be deduced from the graph polynomial, and the
associated Picard-Fuchs operator.
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The differential equation

v

q

q

p

q

p

1

1 2

2 3

3

p

v

v

v

v

v

1

23

5

6

4

Es (
δ2

s + p1(s)δs + p0(s)
)(1

s
I�(s)

)
= Y�+

3∑
i=1

log(m2
i )ci(s)

The mass dependent log-terms come from derivative of partial elliptic
integrals on globally well-defined algebraic 0-cycles arising from the
punctures on the elliptic curve [Bloch, Kerr,Vanhove]

c1(s) =
d
ds

∫q3

q2

Ω�

They are rational function by construction.
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The 2-loop sunset integral as elliptic dilogarithm

The integral divided by a period of the elliptic curve is a function
defined on the punctured torus [Bloch, Kerr,Vanhove]

I� ≡
i$r

π

(
L2

{
X
Z

,
Y
Z

}
+ L2

{
Z
X

,
Y
X

}
+ L2

{
X
Y

,
Z
Y

})
mod period

I $r is the elliptic curve period which is real on the line
0 < p2 < (m1 + m2 + m3)

2

I The sunset integral is the regulator period (with tame Milnor
symbol) in the K2 of the elliptic curve [Bloch, Vanhove]
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The 2-loop sunset integral as elliptic dilogarithm

s

ϕϕ

ϕ

ϕ ϕ

ϕ
0

ϕ

2
3

4

5
6

1

1

0
0

0

0
0

P
P

P

12

23

31

q

q
q

1

2

3

E
P1 = [1,0,0]; Q1 = [0,−m2

3 ,m
2
2]; x(P1)x(Q1) = −1

P2 = [0,1,0]; Q2 = [−m2
3 ,0,m

2
1]; x(P2)x(Q2) = −1

P3 = [0,0,1]; Q3 = [−m2
2 ,m

2
1 ,0]; x(P3)x(Q3) = −1

Representing the ratio of the coordinates on the sunset cubic curve as
functions on E� ' C×/qZ

X
Z
(x) =

θ1(x/x(Q1))θ1(x/x(P3))

θ1(x/x(P1))θ1(x/x(Q3))

Y
Z
(x) =

θ1(x/x(Q2))θ1(x/x(P3))

θ1(x/x(P2))θ1(x/x(Q3))

θ1(x) is the Jacobi theta function

θ1(x) = q
1
8

x1/2 − x−1/2

i

∏
n>1

(1 − qn)(1 − qnx)(1 − qn/x) .

Pierre Vanhove (IPhT& HSE) Motives and Feynman Integrals 6/6/2018 33 / 47



The 2-loop sunset integral as elliptic dilogarithm

L2

{
X
Z

,
Y
Z

}
= −

∫ x

x0

log

(
X
Z
(y)
)

d log y

Since

∫
log(θ1(x)) d log x =

∑
n>1

∫
(Li1(qnx) + Li1(qn/x) + cste) d log(x)

=
∑
n>1

(Li2(qnx) − Li2(qn/x)) + cste log(x)
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The 2-loop sunset integral as elliptic dilogarithm

We find

I�(s) ≡
i$r

π

(
Ê2

(
x(P1)

x(P2)

)
+ Ê2

(
x(P2)

x(P3)

)
+ Ê2

(
x(P3)

x(P1)

))
mod periods

where

Ê2(x) =
∑
n>0

(Li2 (q
nx) − Li2 (−qnx)) −

∑
n>1

(Li2 (q
n/x) − Li2 (−qn/x)) .

Close to the form given by [Brown, Levin]. See as well [Adams, Bogner, Weinzeirl]
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The three-loop sunset graph: integral

We look at the 3-loop sunset graph in D = 2 dimensions

I The Feynman parametrisation is given by

I2
Q
(mi ; K 2) =

∫
xi>0

1

(m2
4 +
∑3

i=1 m2
i xi)(1 +

∑3
i=1 x−1

i ) − K 2

3∏
i=1

dxi

xi
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three-loop sunset graph: differential equation

For the all equal mass case the geometry of the 3-loop sunset graph is
a K 3 surface (Shioda-Inose family for Γ1(6)+3) with Picard number 19
and discriminant of Picard lattice is 6

(m2 +

3∑
i=1

m2xi)(1 +

3∑
i=1

x−1
i )

3∏
i=1

xi − p2
3∏

i=1

xi = 0

The t = p2/m2 Picard-Fuchs equation(
t2(t − 4)(t − 16)

d3

dt3 + 6t(t2 − 15t + 32)
d2

dt2

+ (7t2 − 68t + 64)
d
dt

+ t − 4
)

J2
Q
(t) = −4!

I One miracle is that this picard-fuchs operator is the symmetric
square of the picard-fuchs operator for the sunset graph [Verrill]
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three-loop sunset graph: solution

I It is immediate to use the Wronskian method to solve the
differential equation [Bloch, Kerr, Vanhove]

m2 I2
Q
(t) = 40π2 log(q)$1(τ)

−48$1(τ)
(

24Li3(τ, ζ6) + 21Li3(τ, ζ2
6) + 8Li3(τ, ζ3

6) + 7Li3(τ, 1)
)

with Li3(τ, z) [Zagier; Beilinson, Levin]

Li3(τ, z) := Li3 (z) +
∑
n>1

(Li3 (qnz) + Li3
(

qnz−1
)
)

−

(
−

1
12

log(z)3 +
1

24
log(q) log(z)2 −

1
720

(log(q))3
)

.

I The 3-loop sunset integral is a regulator period of a motivic class
of the K3 of the the K 3 surface [Bloch, Kerr, Vanhove]
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Modular graph function in closed string theory

String theory gives interesting new class of elliptic multiple logarithm
[Broedel, Mafra, Matthes, Schlotterer] has shown the appearance
of iterated elliptic integrals in open string presented by [Weinzierl] in
his talk
In closed string theory, i.e. on the torus one finds interesting new
modular functions

n12

n23

n34

n14

n24

n13

IΓ (q) =
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Modular graph function in closed string theory

IΓ (q) =
4∏

k=2

∫
Σ

d2zk

2πτ2

∏
16i<j64

G1−loop(zj − zi |τ)
nij

G1−loop(z |τ) is the (Arakelov) Green function on the elliptic curve

G1−loop(z |τ) = − log

∣∣∣∣θ1(z |τ)
η(τ)

∣∣∣∣2 − π(z − z̄)2

2=m(τ)

or using single value elliptic 1-log ζ = e2πi(v+uτ) = que2πiv

G1−loop(z |τ) = 2<e
(∑

n>0

Li1 (qnζ)+
∑
n>1

Li1 (qn/ζ)
)
+2πτ2

(
u2 − u +

1
6

)
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Modular graph function in closed string theory

The lattice momentum space Feynman representation [Green, Vanhove; Green,

Russo, Vanhove; Green, d’Hoker, Vanhove]

IΓ (q) =
′∑

p1,...,pw∈Zτ+Z

w∏
α=1

τ2

π|pα|2

N∏
i=1

δ

(
w∑
α=1

pα

)
.
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Mirror Symmetry

sunset sunrise
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three-loop sunset graph

I The solution in terms of elliptic trilogarithm is special the three
mass cases

I In the general mass situation other function can appear?

I What kind function can arise in the general mass case?

An important insight if to consider all the parameters together in the
same geometrical setup
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Giving power to the masses

One way to get geometric is to treat all the parameters at the same
footing
[Broadhurst] fascinating Bessel representation realises that

In(p2, m) = 2n−1
∫1

0
I0(
√

p2t)
n∏

i=1

K0(mi t) dt

Can we do the same geometrically?
Yes we use toric geometry
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The sunset integrals at infinite momentum

Around 1/s = p2 =∞ the sunset Feynman has the expansion

I�(s) = −π0

3R3
0 +

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`(1 − `R0)N`1,`2,`3

3∏
i=1

m2`i
i e`R0

 .

where the Kähler parameters are Qi = m2
i Q0 and Q0 = eR0 is the

logarithmic Mahler measure defined by

R0 := iπ−

∫
|x |=|y |=1

log(Φ�(x , y)/(xy))
d log xd log y

(2πi)2 .

This is related to the holomorphic π0(s) period near s = 1/p2 = 0

π0 = s
dR0(s)

ds
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The sunset integrals at infinite momentum

One discovers that one can rewrite the mass dependence as follows

I�(s) ∼ −π0

 ∑
n1+n2+n3+n4=n>1

ni>0

dn1,n2,n3,n4Li3
(
Qn1

1 Qn2
2 Qn3

3 Qn4
4

) .

where the Kähler parameters are Qi = m2
i eR0

d0,0,0,1 = d1,0,0,1 = 1, d1,0,1,1 = 2, d1,1,1,1 = d2,1,1,1 = 3,

d2,1,1,2 = 4, d4,3,4,4 = 286, d4,4,4,4 = −192,

This matches the expansion given in [Huang, Klemm, Poretschkin]

The numbers N`1,`2,`3 (and dn1,n2,n3,n4) are local Gromov-Witten
expressed in terms of the virtual integer number of degree ` rational
curves by

N`1,`2,`3 =
∑

d |`1,`2,`3

1
d3 n `1

d ,
`2
d ,
`3
d

.
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The sunset mirror symmetry

I The sunset elliptic curve is embedded into a singular
compactification X0 of the local Hori-Vafa 3-fold

Y := {1−s(m2
1x+m2

2y+m2
3)(1+x−1+y−1)+uv = 0} ⊂ (C∗)2×C2 ,

limit of a family of elliptically-fibered CY 3-folds Xz

I The base given by Φ� is a toric del Pezzo surface of degree 6
I We have an isomorphism of A- and B-model Z-variation of Hodge

structure
H3(Xz0) � Heven(X◦Q0

) ,

and taking (the invariant part of) limiting mixed Hodge structure on
both sides yields

the sunset Feynman integral given by the second regulator period of
the motivic cohomology class is identified to the local Gromov-Witten
prepotential for the 3-fold X
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Mirror symmetry for elliptically fibered CY 3-fold

I In the degeneration limit the Yukawa coupling CY 3-fold X leads to
the local Yukawa of the sunset elliptic curve

Yijk =

∫
X
Ω̃∧∇δiδjδk Ω̃ =⇒ Y loc

0ij ∝ Y� =

∫
Ω� ∧∇ d

ds
Ω�

The holomorphic prepotential of [Huang, Klemm, Poretschkin]

F (Q1, Q2, Q3, Q4) =
cijk t i t j tk

3!
+

cij

2!
t i t j + ci t i + c +

∑
β∈H2(M,Z)

nβ0 Li3(Qβ)

is mapped to the sunset integral with the identification of the Kähler
parameter Qr = exp(2πitr ) = m2

r Q0 for r = 1, 2, 3 [Klemm private

communication]

m2
1 =

(Q1Q2Q4)
1
3

Q
2
3
2

; m2
2 =

(Q1Q3Q4)
1
3

Q
2
3
3

; m2
3 =

(Q1Q2Q4)
1
3

Q
2
3
4

; Q0 = (Q1Q2Q3Q4)
1
3
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Mirror symmetry for higher sunset integrals

At higher-loop loop the geometry is more intricate
� Nice connection with toric construction [work in progress with

Charles Doran])
� Need to go beyond the smoothness hypothesis for KP∆ used in

[Lian, Todorov, Yau]

# Need to extend the construction of the motivic cohomology
classes and the regulator period of [Doran, Kerr]

� Have an completly automatic implementation in Sage

The construction gives new way for computing amplitudes in QFT
I Efficient method for deriving Picard-Fuchs equation for Feynman

integral in geometrical way
I Should help with the integration by part method and fix the

ambiguities in the definition of the loop momentum
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