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Abstract

It is shown that it is possible to describe motions in a
relativistically covariant way in terms of the coordinate time
without using the notion of the proper time. For completeness
we consider motions of Galilean and Einsteinian both
subluminal and superluminal particles. The presented approach
can easily be generalized to more general models of spacetime.
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Introduction
In Special Relativity motions of mass points are customarily
described in terms of the notion of the proper time τ related to the
coordinate time t by the relation

dτ =

√
1−

~v2(t)

c2
dt, (1)

where ~v(t) is the velocity of the considered mass point. In spite of
the fruitfullnes of such an approach the use of the proper time
formalism has also a serious disadvantages: first, for nonnuniform
motions (in particular for oscillatory changing velocities) the proper
time does not provide a parameter which uniformly increases with
coordinate time and second, the proper time does not allow to use
it for many particle systems because the proper times for each
particle are different. In addition, the proper time for nonuniform
motions coincide with the coordinate time in continuously changing
inertial reference what makes it difficult to visualize the motion.



Introduction
Basic properties of the velocity tensors

Examples of velocity tensors
Dynamical equations

Conclusions

It is also clear that the proper time approach cannot be applied to
tachyons because for superluminal speeds the proper time becomes
imaginary and consequently it cannot be used as a parameter
labelling the position of the tachyon on its trajectory.
In the present paper we shall show how to describe relativistic
motions using only the coordinate time without any reference to
the proper time. The clue to this goal is the velocity tensor
introduced in [2]. For simplicity, we restrict here the considerations
to the two-dimensional spacetime only. The passage to higher
dimensional spacetimes is straghtforward but technically more
involved



Introduction
Basic properties of the velocity tensors

Examples of velocity tensors
Dynamical equations

Conclusions

.
The talk is organized as follows. First, we recapitulate the basic
properties of the velocity tensors. Then, we shall explicitly
construct such tensors for the Galilean an Minkowskian space
times. In the later case we shall consider both the subluminal and
superluminal motions. Finally, we shall consider the dynamical
equations of motions which directly generalize the standard
Newton dynamical equation.
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Basic properties of the velocity tensors
In the formalism described in [2] the velocity tensors V µ

ν (~v) are
used as functions of the standard three-dimensionl velocity ~v . In
terms of this tensors the standard kinematic relation

d~x = ~vdt (2)

is written in the covariant form as

V µ
ν (~v)dxν = 0, (3)

where dxν(ν = 0, 1, 2, 3) denote the infinitesimal displacements
along the trajectory of the particle.
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The general construction of the velocity tensors goes as follows.
First, we use the tensorial transformation rule for the matrix V
with matrix elements V µ

ν given by the components of the velocity
tensor. This rule reads

V ′(~v ′) = SV (~v)S−1, (4)

where S is the matrix with matrix elements Sµ
ν fixed by the

transformation rule for spacetime coordinates

dx ′µ = Sµ
ν dxν . (5)
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Second, we use the additional conditions for the matrix V of the
form [2]

TrjV = 0 (6)

for j = 1, ...n, where n is the dimension of spacetime and Trj
denote the sums of the diagonal minors of order j of the matrix V .
Conditions (6) ensure that all eigenvalues of the matrix V are
equal to zero because under the conditions (6) the characteristic
equation for the eigenvalues λ reduces to the simple equation

λn = 0. (7)

The eigenvalue equation (3) provides then an unique eigenvector
dxµ.
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Third, we assume that matrix elements of V (~v) are form-invariant
functions of the velocity ~v and therefore

V ′(~v) = V (~v). (8)

This relation together with (4) provides us functional equations for
finding the matrix elements of V . These functional equations
obviously have the form

V (~v ′) = SV (~v)S−1. (9)

We shall now illustrate this method on the examples of the
Galilean and Einsteinian two-dimensional spacetimes. The
generalization to four dimensional spacetime is straightforward but
a little bit more tedious.
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Examples of velocity tensors
The Galilean transformations of spacetime coordinates

t ′ = t, x ′ = x + ut (10)

lead to the following form of the matrix S:

SG (u) =

(
1 0
u 1

)
, (11)

where u is the relative velocity of the observer tight to the primed
reference frame with respect to the observer tight to the unprimed
reference frame.
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Then (9) gives the functional equation

VG (v + u) = SG (u)VG (v)S−1
G (u) = SG (u)VG (v)SG (−u). (12)

Taking the unprimed reference frame as the rest frame for the
particle we must put v = 0 and we get

VG (u) = SG (u)VG (0)SG (−u). (13)

Finally, renaming the velocity u as v we get

VG (v) = SG (v)VG (0)SG (−v). (14)
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In the rest frame equation (3) gives two equations

V 0
0 (0)dt + V 0

1 (0)dx = 0 (15)

and
V 1

0 (0)dt + V 1
1 (0)dx = 0. (16)

But in the rest frame of the particle along its trajectory dx = 0 for
arbitrary dt and therefore

V 0
0 (0) = V 1

0 (0) = 0. (17)
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The conditions (6) for the two-dimensional spacetime reduce to
only two conditions

Tr V (v) = 0 (18)

and
det V (v) = 0. (19)

From these conditions and (17) we get then that also V 1
1 (0) = 0.

Below we shall see that it is convenient to normalize the remaining
free matrix element V 0

1 (0) to −1. Thus we have

VG (0) =

(
0 −1
0 0

)
(20)
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and from (13) we finally get the Galilean velocity tensor in the form

VG (v) =

(
v −1
v2 −v

)
. (21)

Clearly with such velocity tensor the standard equation (2) follows
from the equation (3).
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In the case of the Einsteinian two-dimensional spacetime from the
standard Lorentz transformations

t ′ =
t + u

c2 x√
1− u2

c2

,

x ′ =
x + ut√

1− u2

c2

(22)

we have

SL(u) =
1√

1− u2

c2

 1 u
c2

u 1

 (23)
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and from equations (9) for the Einsteinian velocity tensor VE we
get the functional equation

VE

(
v + u

1 + vu
c2

)
= SL(u)VE (v)S−1

L (−u). (24)

Again, assuming that the unprimed reference frame is the rest
frame of the particle we get the relation (14) with SG (v) replaced
by SL(v). In the rest frame the velocity tensor VE (0) is exactly the
same as in the Galilean case because the same conditions must be
satisfied as for the Galilean case. Thus finally we get

VE (v) =
1

1− v2

c2

(
v −1
v2 −v

)
. (25)

It is easy to check that with such velocity tensor from (3) equation
(2) also follows.
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The presented formalism may also be applied to motions with
superluminal speeds. The physics of tachyons is relatively poorely
developed. The main reason for that is the widely spread but
erroneous opinion that the existence of tachyons contradicts the
main principles of Special Relativity. Such opinions are based on
the unjustified statement that the speed of light is the maximal
speed allowed by Special Relativity[3]. As a matter of fact the
speed of light is only the invariant speed respected by all inertial
observers[4].
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The physics of tachyons began with the paper by G. Feinberg [5]
who formally introduced the imaginary mass in standard relativistic
expressions for momentum and energy for objects moving with
superluminal speeds. As a result Feinberg arrived to the following
expressions for energy and momentum of tachyons

E =
µ√

v2

c2 − 1
,

~p =
µ~v√
v2

c2 − 1
.

Although G. Feinberg argued that the existence of tachyons does
not contradict Special Relativity the fact that they enter physics
through complex numbers infected their life from the very
beginning.
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Fortunately, recently [6, 7] we have shown that there exists a quite
natural way to introduce both sub- and superluminal objects into
the framework of Special Relativity. The new approach is based on
the most general linear transformations which preserve the
invariant magnitude of the velocity c . In the present paper we shall
however not follow this approach but we shall argue in the
framework of the standard Special Relativity based on the Lorentz
transformation.
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To construct the velocity tensor for tachyons we must use the
Lorentz transformation between the reference frame in which the
tachyon moves with an infinite speed and the reference frame in
which its speed is equal to w . This transformation leads to the
following form of the matrix S(w) [6, 7]

S(w) =
1√

1− c2

w2

(
1 1

w
c2

w 1

)
(26)

and to the composition law of tachyonic speeds

w12 =
w1w2 + c2

w1 + w2
. (27)
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The tachyonic velocity tensor therefore satisfies the functional
equation

V

(
w1w2 + c2

w1 + w2

)
= S(w1)V (w2)S−1(w1) = S(w1)V (w2)S(−w1).

(28)
In the limit w2 →∞ we get

V (w) = S(w)V (∞)S(−w). (29)
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In the reference frame in which the tachyon moves with an infinite
speed from (3) we have

V 0
0 (∞)dt + V 0

1 (∞)dx = 0 (30)

and
V 1

0 (∞)dt + V 1
1 (∞)dx = 0. (31)

Tachyons with infinite speeds in any finite time pass infinite
distances. Therefore, equations (30) and (31) may be satisfied only
for

V 0
1 (∞) = V 1

1 (∞) = 0. (32)
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From the traceless condition for velocity tensors we get then also
that

V 0
0 (∞) = 0. (33)

Normalizing V 1
0 (∞) = +1 we finally get

VT (∞) =

(
0 0
1 0

)
. (34)

With such velocity tensor in the reference frame where tachyons
move with infinite speeds the time stops along their trajectories
because from (31) it follows that

dt = 0. (35)
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With VT (∞) of the form (34) the tachyonic velocity tensor VT (w)
has the form

VT (w) =
1

1− c2

w2

 1
w − 1

w2

1 − 1
w

 . (36)

This tensor also gives equations (2).
As it was shown in [6, 7] the main difference between subluminal
and superluminal objects consists just in the existence of rest
frames for the former objects and the nonexistence of such frames
for the latter.
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Dynamical equations
The dynamical equation of motion we shall write in the form

∂µV µ
ν (~v) = Iν , (37)

where Iν describes the influence of the environment on the moving
object. It is clear that (37) is the only covariant form which
generalize the standard Newton equation

d~v(t)

dt
=

1

M
~F (t), (38)

where M is the mass of the particle and ~F (t) is the acting force.
Below, we shall elaborate the meaning of the notion of Iν and its
relation to the standard force ~F (t).
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For this purpose we shall apply the dynamical equation (37) using
the velocity tensors derived above. We begin with the Galilean
velocity tensor (21) with the time dependent velocity v(t). Since
the components of the velocity tensor depends only on the time
coordinate equation (37) reduces to two equations

dv(t)

dt
= I0(t). (39)

and
I1(t) = 0. (40)

From equation (39) it is clear that the time component of the
influence is related to the customary force F (t) in the form

I0(t) =
1

M
F (t), (41)

where M is the mass of the particle.
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For the relativistic subluminal particles with the velocity tensor
(25) equation (37) gives

d

dt

(
v(t)

1− v2(t)
c2

)
= I0(t) (42)

and the corresponding equation for the space component

− d

dt

(
1

1− v2(t)
c2

)
= I1(t) (43)
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In the simplest case of constant in time I0(t) = I we can integrate
equation (42) and solve the result with respect to v(t). In this way
we get

v(t) = c2

√
1 + 4 (It+Γ)2

c2 − 1

2(It + Γ)
=

2(It + Γ)

1 +
√

1 + 4(It+Γ)2

c2

< c , (44)

where
Γ =

v0

1− v2
0

c2

− It0 (45)

and v0 is the initial velocity at time t0. It is easy to see that v(t) is
always less than the speed of light and in the limit t →∞ we get
v(t)→ ±c , where the sign depends on the sign of I .
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This result is to be compared with the case of a standard
relativistic particle moving under the influence of a constant force
[1] for which we have

vrel(t) =
Ft/M√

1 +
(

Ft
Mc

)2
. (46)

Here M is the mass of the particle, F the standard nonrelativistic
force and the initial condition is such that Γ = 0 (i.e. at t0 = 0 we
put v0 = 0). For large values of t formulas (44) and (46) coincide
for Γ = 0 provided I = F/2M.
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Finally, we pass to the motion of tachyons for which the velocity
tensor has the form (36) and equation (37) gives

d

dt

(
w(t)

w2(t)− c2

)
= I0(t) (47)

and

− d

dt

(
1

w2(t)− c2

)
= I1(t). (48)
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For a constant in time I0(t) we get

w(t) =
1 +

√
1 + 4c2(It + Γ)2

2(It + Γ)
> c , (49)

where
Γ =

w0

w2
0 − c2

− It0 (50)

and w0 is the initial velocity at time t0.
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Conclusions The main result of the present paper consists in the
proof that in the framework of Special Relativity motion may be
described exactly in the same way as it is done in the Galilean
physics. The formalism is fully covariant under corresponding
relativity groups and maximally simple. The extension of the
customary description of motion to tachyons is possible because we
do not use the notion of a proper time which is necessary in the
standard formalism of Special Relativity but which for nonuniform
motions is physically very difficult to measure due to its
interpretation as time in continuously changing reference frames.
Moreover, proper time is meaningless for superluminal motions.
Our formalism uses only coordinate time in the reference frame in
which the motion is described.
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The presented approach can easily be extended to motions in
spacetimes with symmetries given by more general transformations
than the described above. As a matter of fact, there is no
restriction on the transformation matrices S in (4) so the formalism
may be applied also in the framework of General Relativity.
It is also worth to note an interesting application of the presented
formalism to particle physics[8].
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E. Kapuścik and R. Orlicki; Ann. Phys. (Berlin) 523 (2011)
235-238


	Introduction
	Basic properties of the velocity tensors
	Examples of velocity tensors
	Dynamical equations
	Conclusions

