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Allotropes of carbon

Graphite (3D) Fullerene (0D)
1985

Nanotube (1D)
1991

Graphene (2D)
2004
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Why graphene interesting?

Graphene: one of the most 2D system
(thickness 0.5nm = 1 atom)

Easy to produce in small quantities
(isolated in 2004 by Geim and Novoselov:
graphite + scotch tape)

High crystal quality in 2D
(very clean system in which to experiment)

Exceptional properties: stronger than steel and very stretchable,
good conductor of electricity and heat (keep electronics cool), ...

Numerous (potential) applications (graphene “fever” since 2010,
year of the Nobel Price)

Fundamental studies of low-dimensional interacting systems

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 5 / 57



Graphene as a membrane (2-brane)

Stability related to ripples (3 atoms high and 30 atoms long)
To overcome the argument of Landau & Peierls

Fundamental aspects: major early works (vast literature since then)

1947: band structure (Wallace)

1984: field theory approach (Semenoff)

1994: RG approach (González, Guinea, Vozmediano)

2004: experimental isolation
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Band structure of graphene
P. R. Wallace, Physical Review 71 622 (1947)

Honeycomb lattice:

2 inequivalent Bravais sublattices (A and B)
2 distinguishable points in the Brillouin zone (K and K’)

Nearest-neighbour tight-binding model for π-electrons

H = −t
∑
〈i ,j〉,σ

(
a†i ,σbj ,σ + h.c.

)
− µ

∑
i ,σ

ni ,σ
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Spinor structure (besides a real spin 1/2):
I sublattice pseudo-spin 1/2: electron either on A or B sublattice

ψK ,σ(~k ) =

(
aσ( ~K + ~k )

bσ( ~K + ~k )

)
ψK ′,σ(~k ) =

(
bσ( ~K ′ + ~k )

aσ( ~K ′ + ~k )

)
I valley pseudo-spin 1/2: electron close to K or K’ point

Ψσ(~k ) =

(
ψK ,σ(~k )

ψK ′,σ(~k )

)
(4 component spinor in sublattice ⊗ valley space).

Spectrum: massless Dirac spectrum at low energies

Low energies (< 1eV from K-points)

linear spectrum

E±(~k) = ±~vF |~k | − µ

vF = 3lt
2 ≈ 106 m/s
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Low-energy effective description
G. W. Semenoff, PRL 53 2449 (1984)

Massless QED-like Lagrangian (µ = 0, no gauge field, NF = 2)

L0 =

NF∑
σ=1

Ψ̄σ

[
iγ0∂t + ivF~γ · ~∇

]
Ψσ

Dirac matrices: γµ = (γ0, ~γ), {γµ, γν} = 2gµν , gµν = diag(+,−,−)

Very different from Galilean invariant band metals and semi-conductors:

Intrinsic graphene is a “zero” gap semi-conductor (semi-metal)
(two-dimensional Dirac fermions)

Fermi surface reduces to the 2 K-points
linear spectrum and chirality (lost at high energies)
no gap larger than 1meV (present experimental resolution)

Experimental evidence for Dirac fermions in graphene: unconventional QHE

σxy = e2ν/h, ν = ±4×(n+1/2), n = 0, 1, ...
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Remark: search for semi-metals has a long history

Early studies devoted to 3D semi-metals

Herring, Physical Review 32 365 (1937)

First study - general conditions (single particle arguments)

Halperin and Rice, Rev. Mod. Phys. 40 755 (1968)

Quadratic band-touching unstable to interactions (excitonic insulator)

Abrikosov and Beneslavskii, JETP 32, 699 (1971)

Linear band-touching stable / Quadratic band-touching unstable

Systems with stable Fermi points: emergent relativity at low energies
Volovik, “The Universe in a Helium Droplet” (2009)

Recent discoveries (2015-2016): 3D Dirac and Weyl semimetals...
( Cd3As2, TaAs, ...)

Recent 2D systems (wrt graphene and “old” dSC):
artificial-like graphene & surface states of topological insulators
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Long-range 3D electron-electron interactions
González, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

vF < c : interactions break Lorentz invariance (pseudo-relativistic system)

Non-relativistic limit (vF/c → 0): instantaneous Coulomb interaction

HC =
1

2

∑
σ,σ′

∫
d2rd2r ′Ψ̄σ(~r )γ0Ψσ(~r )

e2

κ|~r − ~r ′ |
Ψ̄σ′(~r ′ )γ0Ψσ(~r ′ )
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Energy scales:

Kinetic energy: E0 = ~vFk ∼
√
n,

Interaction energy: Ec = e2/(κr) ∼
√
n,

(κ dielectric constant and n electron density)

“Fine structure constant” of graphene

αg =
Ec

E0
=

e2

4πκ~vF
≈ 2.2

κ

the ratio does not depend on the density (2D),

of the order of 1 in general (QED: αQED = 1/137),

free standing graphene: κ ≈ 1 (air), αg ≈ 2.2,

graphene on Boron Nitride substrate: κ ≈ 2.5, αg ≈ 0.9.

Very different from Galilean invariant band metals: rs = Ec/E0 = 1/
√
n

High densities: rs � 1 (Fermi liquid)

Low densities: rs � 1 (Wigner crystallization, ferromagnetism, ...)
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Important issue

Quantitative understanding of the effect of interactions
A priori, effects of interactions should be strong

Within the low-energy effective model:

S =

∫
d1+2x

[
L0 − e0Ψ̄σ γ

0A0 Ψσ + e0
v0

c
Ψ̄σ ~γ · ~AΨσ

]
− 1

4

∫
d1+3x F 2

µν

there are extensive studies related to:
review: Kotov et al., Rev. Mod. Phys. 84 1067 (2012)

review: Gusynin et al., Int. J. Modern Phys. B 21 4611 (2007)

transport properties,

spectral properties (some marginal liquid features),

dynamical gap generation (DχSB: U(2NF )→ U(NF )× U(NF )),

add disorder (random gauge fields), ripples (curved space), magnetic
field...

In the following: focus on the optical conductivity
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Optical conductivity (free fermions)

~j(ω, ~q ) = σ(ω, ~q ) ~E (ω, ~q )

Optical regime: ω � vF |~q|
response to a homogeneously applied electric field (~q → 0)

photon energies ω ≈ 1eV (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).

Does it conduct?

Minimal conductivity of free 2D Dirac fermions (no disorder)

Ludwig, Fisher, Shankar and Grinstein, PRB 50 7526 (1994)

σ0(ω) =
e2

4~
Non-zero and universal (independent of ω)
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Proof R. R. Nair et al., Science 320 1308 (2008)

Near the K point: H = vF σ̂ ·
(
~p − e

c
~A(t)

)
~E (t) = E0 cos(ωt)x̂ = −(1/c) ∂t ~A(t), ~A(t) = −(E0c/ω) sin(ωt)x̂

|〈f |V (t)|i〉| ≈ evFE0

ω
, ρ(~ω/2) ≈ ω

v2
F~

Transition rate from initial to final state (Fermi’s Golden rule):

1

τ
=

2π

~
|〈f |V (t)|i〉|2ρ (~ω/2) ≈ e2

~2

E 2
0

ω

Energy absorption rate: Pa = ~ω/τ ≈
(
e2/~

)
E 2

0 (Pi ≈ cE 2
0 /(4π))

Transmittance and optical conductivity

T0 = 1− Pa

Pi
≈ 1− παQED ≈ 97.7% T (ω) = [1 + 2πσ(ω)/c]−2

One-atom thick layer absorbs 2.3% of visible light!
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Experimentally: optical conductivity is close to ideal (!?)

σ(ω ≈ 1eV) = σ0 (1.00± 0.02)

~ω < 1.2eV: Mak et al., PRL 101 196405 (2008)

~ω > 1.2eV: Nair et al., Science 320 1308 (2008)

For a review: N. M. R. Peres, RMP 82 2673 (2010)
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Theoretically: compute numbers

Optical conductivity from the polarization operator

σ(q0) = − lim
~q→0

iq0

|~q|2
Π00(q0, ~q ), qµ = (q0, v0~q)

Π00(q) = 〈Tρ(q)ρ(−q)〉, ρ(q) = e0Ψ̄γ0Ψ

Perturbative expansion: compute interaction correction coefficients

σ(q0) = σ(0)
(
1 + Cαr + C′α2

r + · · ·
)

Notice: unrenormalized e0, v0 and renormalized αr ...
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σ(q0) = σ(0)
(
1 + Cαr + C′α2

r + · · ·
)

Notice: unrenormalized e0, v0 and renormalized αr ...

Optical conductivity from the Kubo formula

σ̃(q0) =
1

2iq0

(
K 11(q0, ~q → 0) + K 22(q0, ~q → 0)

)
K ij(q) = 〈Tj i (q)j j(−q)〉, ~j(q) = e0v0Ψ̄~γΨ
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Theoretically: value of C is controversial (!?)
Extensive theoretical work since 2008; three different values can be found:

C(1) =
25− 6π

12
≈ 0.512 , Herbut et al. 2008, hard cut-off, σ̃

C(2) =
19− 6π

12
≈ 0.013 , Mishchenko 2008, hard & soft cut-off, σ, σ̃

C(3) =
11− 3π

6
≈ 0.263 , Juričić et al. 2010, dimensional regularization

Herbut, Juričić and Vafek, PRL 100 046403 (2008)
Mishchenko, EPL 83 17005 (2008)
Sheehy and Schmalian, PRB 80 193411 (2009)
Juričić, Vafek and Herbut, PRB 82 235402 (2010) (JVH)
Abedinpour et al., PRB 84 045429 (2011)
Sodemann and Fogler, PRB 86 115408 (2012)
Rosenstein, Lewkowicz and Maniv, PRL 110 066602 (2013)
Gazzola et al., EPL 104 27002 (2013)
Teber and Kotikov, EPL 107 57001 (2014)
Link, Orth, Sheehy and Schmalian, PRB 93 235447 (2016) (corrects Rosenstein et al)
Boyda, Braguta, Katsnelson and Ulybyshev, arXiv:1601.05315 (Monte Carlo)

Before 2014: differences attributed to the regularization techniques used...
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Tentative comparison between theory and experiments
Figure from: Sheehy and Schmalian, PRB 80 193411 (2009) (αg ≈ 2.2)

400 500 600 700
0.96

0.97

0.98
t

λ(nm)

Dashed blue line: free fermion case

Solid red line: Mishchenko’s result C(2) ≈ 0.013

Dot dashed green line: Herbut et al.’s result C(1) ≈ 0.512
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Experimental evidence for Fermi velocity renormalization
Band structure as a function of Elias et al., Nature Physics 7 701 (2011)

carrier density n (n→ 0 at K points)

n > 2× 1011cm−2:
vF ≈ 1× 106m/s

n < 1× 1010cm−2:
vF ≈ 3× 106m/s
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carrier density n (n→ 0 at K points)

n > 2× 1011cm−2:
vF ≈ 1× 106m/s

n < 1× 1010cm−2:
vF ≈ 3× 106m/s

Logarithmic increase of the Fermi velocity as n decreases (µ ∼
√
n):

González, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

vr (µ) = vr (Λ) +
e2

16πκ
log

Λ

µ
, vr (Λ) = vF
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carrier density n (n→ 0 at K points)

n > 2× 1011cm−2:
vF ≈ 1× 106m/s

n < 1× 1010cm−2:
vF ≈ 3× 106m/s

Corresponding Fermi velocity beta-function:
González, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

βv =
d log vr (µ)

d logµ
= −αr (µ)

4
+ O(α2

r ) , αr (µ) =
e2

4πκvr (µ)
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Lorentz-invariant infra-red fixed point
González, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

v(µ) = v0 +
e2

16πκ
ln

Λ

µ
−→
µ→0

c

α(µ) =
e2

4πκv(µ)
=

(
1

α0
+

1

4
ln

Λ

µ

)−1

−→
µ→0

αQED

Existence of such fixed point is generic to systems with Fermi points
emergent relativity at low energies Volovik, “The Universe in a Helium Droplet” (2009)

Crossover: µrel = Λ e−4/αQED

de Juan, Grushin and Vozmediano, PRB 82 125409 (2010)

Non-relativistic µ� µrel ⇐⇒ µ� µrel Ultra-relativistic

IR fixed point: ultra-relativistic limit of graphene (LI + fully retarded interactions)

Next:
review some results in ultra-relativistic and non-relativistic regimes
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IR fixed point: ultra-relativistic limit of graphene (LI + fully retarded interactions)

Next:
review some results in ultra-relativistic and non-relativistic regimes
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Reduced or Pseudo Quantum Electrodynamics
Terminology from: Gorbar, Gusynin and Miransky PRD 64 105028 (2001)

Marino, Nucl. Phys. B408 551 (1993)

Basics of massless reduced QEDdγ ,de (de < dγ)

Fermion field in de-dimensions (mem-brane) ⇒ de = 4− 2εe − 2εγ
Photon field in dγ-dimensions (bulk gauge field) ⇒ dγ = 4− 2εγ

L = Ψ̄(x)iγµeDµe Ψ(x) δ(dγ−de)(x)− 1

4
FµγνγF

µγνγ − 1

2a

(
∂µγA

µγ
)2

case dγ = de (εe = 0): usual QEDs
I QED4 (renormalizable),
I QED3 (super-renormalizable): toy model confinement (Feynman 1981),

IR divergences (Jackiw & Templeton 1981), chrial symmetry breaking
(Appelquist et al. 1986), HTc (Anderson, Affleck, Ioffe-Larkin 1989), ...

I QED2: Schwinger model (exact at 1-loop), Tomonaga-Luttinger
model, ...

case de < dγ (εe 6= 0): reduced QEDs
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Reduced QED Feynman rules (photon propagator has a branch cut):
(natural units are used: ~ = c = 1)


p
=

i

/p �µ = −ieγµ

�q
µ ν =

iΓ(1− εe)

(4π)εe (−q2)1−εe

(
gµν − ξ̃ q

µqν

q2

)
(ξ̃ =

ξ

2
=

1− a

2
)

Case of reduced QED4,3: εe = 1/2 and εγ → 0 (dγ = 4, de = 3)

graphene at the IR fixed point

Local interactions but free effective gauge-field action is non-local

Seff ∼
∫

ddex Ψ̄(x)iγµDµΨ(x) + Ãµ(x)
(√
−∂2

)µν
Ãν(x).

square-root branch cut in the photon propagator: ∝ (−q2)−1/2

feynman diagrams with non-integer indices
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Dimensional Reg. and Renormalization
Bare fields and parameters should be expressed in terms of renormalized
ones with the help of renormalization constants:

Ψn = Z
1/2
ψ (µ) Ψnr (µ), Aµ = Z

1/2
A (µ)Aµr (µ), Γµ = ZΓ(µ) Γµr ,

e2
0 = Zα(µ) e2(µ)

(
µ2 e

γE

4π

)εγ
Note: we work in MS-scheme where µ2 → µ2 eγE /(4π) and

Z =
∞∑
n=0

zn
εnγ

= 1 +
z1

εγ
+

z2

ε2
γ

+ . . .

Anomalous dimensions of fields and beta-functions of parameters, e.g.,

S(p) = Zψ(µ) Sr (p;µ), γψ(µ) =
d logZψ(µ)

d logµ
,

β(α) =
d logα(µ)

d logµ
(α =

e2

4π
)
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Reduced QED4,3: renormalizable & scale-invariant QFT
(naive power counting: [e] = εγ , ∀εe)

Photon self-energy free of UV divergences: no charge renormalization

� finite : Zα = Z−1
A = 1, β(α) = 0 (counterterms only local)

Fermion self-energy is UV singular: wave-function renormalization

� divergent : Zψ = Z−1
Γ = 1− 3a− 1

3

α

4πεγ
+ O(α2)

Kotikov and ST, PRD 89065038 (2014)

γψ = 2
3a− 1

3

α

4π
+ 16

(
ζ2NF +

4

27

) ( α
4π

)2
+ O(α3)

Curious QFT (Tomonaga-Luttinger like):
finite (photon self-energy) 1PI graphs with divergent subraphgs
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Massless propagator type 2-loop diagram
Basic building block of multi-loop calculations:

J(α1, α2, α3, α4, α5) =

∫ ∫
dDk1 d

Dk2

k2α1
1 k2α2

2 (k2 − p)2α3 (k1 − p)2α4 (k2 − k1)2α5

Arbitrary indices αi and external momentum p in Euclidean space (D)

�p

α1

α4

α2

α3

α5

Coefficient function (dimensionless):

I (α1, α2, α3, α4, α5) =
(p2)

∑5
i=1 αi−D

πD
J(α1, α2, α3, α4, α5)

Goal of multi-loop computation:
in D = n − 2ε (n ∈ N), compute I ({αi}) as a Laurent series in ε→ 0
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Long history of the massless 2-loop diagram (basic building block):
for a review, see: Grozin, Int. J. Mod. Phys. A27 1230018 (2012)

all indices integers: well-known and easy to compute, e.g. IBP
Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Tkachov, Phys. Lett. B 100 65 (1981)

Chetyrkin and Tkachov, Nucl. Phys. B 192 159 (1981)

all indices arbitrary: highly non-trivial (combination of 2-fold series)
Bierenbaum and Weinzierl, Eur. Phys. J. C 32 67 (2003)

particular cases: simpler forms can be reached, see, for example
Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Kazakov, TMF 62 127 (1985)

Gracey, Phys. Lett. B 277 249 (1992)

Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

Kotikov, Phys. Lett. B 375 240 (1996)

Broadhurst, Gracey and Kreimer, Z. Phys. C 75 559 (1997)

Broadhurst and Kotikov, Phys. Lett. B 441 345 (1998)
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Within reduced QED
Optical conductivity (general case): α = 1− εe = λ+ εγ
ST, PRD 86 025005 (2012)

Kotikov, Phys. Lett. B 375 240 (1996)

I (1, 1, 1, 1, α) = CD

[ �11 1

1

α

]
= − 2

πde
Γ(λ)Γ(λ− α)Γ(1− 2λ+ α)×[

Γ(λ)

Γ(2λ)Γ(3λ− α− 1)

∞∑
n=0

Γ(n + 2λ)Γ(n + 1)

n! Γ(n + 1 + α)

1

n + 1− λ+ α
+
π cotπ(2λ− α)

Γ(2λ)

]

Optical conductivity (particular case): εγ = 0 and λ = de
2 − 1→ 1/2

Kotikov and ST, PRD 87 087701 (2013)

Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

I (1, 1, 1, 1, λ) = CD

[ �11 1

1

λ

]
= 3

Γ(λ)Γ(1− λ)

Γ(2λ)

[
ψ′(λ)− ψ′(1)

]
(method of uniqueness in momentum space: Kotikov and ST, PRD 87 087701 (2013))
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For fermion self-energy (general case): α̃ = D
2 − α, λ = D/2− 1

Kotikov, Phys. Lett. B 375 240 (1996)

Kotikov and ST, PRD 89065038 (2014)

I (α, 1, β, 1, 1) = CD

[ �α1 1

β

1

]
=

1

πD

1

α̃− 1

1

1− β̃
×

× Γ(α̃)Γ(β̃)Γ(3− α̃− β̃)

Γ(α)Γ(λ− 2 + α̃ + β̃)

Γ(λ)

Γ(2λ)
I (α̃, β̃)

I (α̃, β̃) =
Γ(1 + λ− α̃)

Γ(3− α̃− β̃)

π sin[πα̃]

sin[π(λ− 1 + β̃)] sin[π(α̃ + β̃ + λ− 1)]

+
∞∑
n=0

Γ(n + 2λ)

n!

(
1

n + λ+ α̃− 1

Γ(n + 1)

Γ(n + 2 + λ− β̃)
+

1

n + λ+ 1− α̃
×

× Γ(n + 2− α̃)Γ(2− β̃)Γ(λ)

Γ(n + 3 + λ− α̃− β̃)Γ(3− α̃− β̃)Γ(λ+ α̃− 1)

sin[π(β̃ + λ− 1)]

sin[π(α̃ + β̃ + λ− 1)]

)
Application: reduced QED3,2 ST, PRD 89 067702 (2014)
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Example of a computation

Consider the simplest but important case of

J(1, 1, 1, 1, λ) = �p
1

1

1

1

λ =
πD

p2(2−λ)
I (λ), λ =

D

2
− 1

Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

Within reduced QED:

simpler derivation via the method of uniqueness in momentum space

application to an odd-dimensional QFT (reduced QED D = 3− 2ε)

interaction correction to the conductivity at the IR fixed point
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The Method of Uniqueness
Also known as the star-triangle or Yang-Baxter relation

Origins:

first appeared in theories with conformal symmetry
Polyakov, JETP Lett. 12 381 (1970)

D’Eramo, Parisi and Peliti, Let. Nuov. Cim. 2, 878 (1971)

basic notions in Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

first applications to multi-loop calculations:
Usyukina, TMF 54 124 (1983), Kazakov, TMF 58 343 (1984)

Idea of the method (algebraic, no explicit integration):

compute complicated Feynman diagrams
with the help of a sequence of simple transformations

(finding such sequence is generally highly non trivial)
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Some Transformations (in momentum space)

Plain line with an arbitrary index α: α ⇐⇒ 1

k2α

Chains reduce to the product of propagators:!α β
= "α + β

Simple loops involve an integration:

#α

β

= πD/2G (α, β) $α + β − D/2

G (α, β) =
a(α)a(β)

a(α + β − D/2)
, a(α) =

Γ(D/2− α)

Γ(α)
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Some Transformations (in momentum space)

Uniqueness relation (α̃ = D/2− α):

/α3

α2

α1
=∑

i
αi=D

πD/2 G (α1, α2) 0α̃3

α̃2

α̃1

(Note: unique triangle has index
∑

i αi = 2λ+ 2 = D)

Integration by parts (IBP):

(D − α2 − α3 − 2α5) 1α1

α4

α2

α3

α5 = α2

[2+

− − 3− + ]

+ α3

[4+

− − 5− +

]

(Note: ± correponds to add or subtract 1 to index αi )
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Application to J(1, 1, 1, 1, λ)

Replace line by loop to make right triangle unique (index 2 + 2λ = D):

=λ =
1

πD/2G (1, 2λ) >2λ = ?λ

λ

1

p2(1−λ)

Apply IBP to reduce the diagram to simple chains and loops:

(−2δ)@λ+ δ

λ+ δ

= 2(λ+ δ)

A
λ+ δ + 1

λ+ δ

− B
λ+ δ + 1

λ+ δ 

=
πD2(λ+ δ)

p2(1+2δ)
G (1, 1)

[
G (λ+ δ + 1, λ+ δ)− G (λ+ δ + 1, 1 + δ)

]
(Note: δ → 0 additional regularization parameter)
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λ
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= 2(λ+ δ)

G
λ+ δ + 1

λ+ δ
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(Note: δ → 0 additional regularization parameter)
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Final result
Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

I (λ) = 3
Γ(λ)Γ(1− λ)

Γ(2λ)

[
ψ′(λ)− ψ′(1)

]
(ψ′(x) is the trigamma function)

Even-dimensional QFT (λ→ 1 or D → 4), well-known result:

I (1) = 6 ζ(3)

Odd-dimensional QFT (λ→ 1/2 or D → 3):
Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

I (1/2) = 6π ζ(2)

(odd-dimensional case is transcendentally more complex: ζ(2) = π2/6)

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 37 / 57



Interaction correction coefficient at the IR fixed point

σ(q0) = σ(0)
(
1 + Cαr + O(α2

r )
)

At 2-loops, using the expression of I (1, 1, 1, 1, λ):

C(λ) = − 1

2π

(
3
[
ψ′(λ+ 2)− ψ′(1)

]
+

4

1 + λ
+

1

(1 + λ)2

)

In reduced QED4,3, the interaction correction coefficient is small

ST, PRD 86 025005 (2012)

Kotikov and ST, PRD 87 087701 (2013)

C∗ = C(1/2) =
92− 9π2

18π
≈ 0.056

At the Lorentz-invariant IR fixed point
interactions (up to 2 loops) have negligible effects on the conductivity
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Graphene field theory

Feynman rules (instantaneous Coulomb interaction)

unrenormalized free fermion propagator (v0 = 1 not a “natural” unit)

S0(p) =
i/p

p2
, /p = γµpµ = γ0p0 − v0~γ · ~p ,

unrenormalized free photon propagator

V0(~q ) =
i

2(|~q |2)1/2
,

unrenormalized free vertex: Γ0
0 = −ie0γ

0.

Immediate consequences: González, Guinea and Vozmediano (1994)

the photon self-energy is finite (no UV singularity): Ze = Z
−1/2
A = 1

the one-loop fermion self-energy does not depend on frequency

I no wave function renormalization: Zψ = Z−1
Γ = 1 + O(α2)

I Fermi velocity renormalization: Zv = 1− α(µ)
8εγ

+ O(α2), α = e2

4πκv
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One-loop fermion self-energy (De = 2− 2εγ)

−iΣ1(k) = I =

∫
[d1+Deq] (−ie0γ

0) S0(k + q) (−ie0γ
0)V0(q)

Integrating over frequency and using the parametrization:

Σ1(~k ) = v0~γ · ~k Σk1(|~k |2) , Σk1(|~k |2) = −Tr[~γ · ~k Σ1(~k )]

4NF v0|~k |2
,

yields: Σk1(|~k |2) =
e2

0

4 v0 |~k |2

∫
[dDeq]

~k · (~k + ~q )

|~k + ~q | |~q |
.

Note: massless one-loop propagator-type master integral

Jα

β

=

∫
[dDq]

[q2]α [(q − k)2]β
=

(k2)D/2−α−β

(4π)D/2
G (α, β)

G (α, β) =
a(α)a(β)

a(α + β − D/2)
, a(α) =

Γ(D/2− α)

Γ(α)
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One-loop fermion self-energy (De = 2− 2εγ)

−iΣ1(k) = L =

∫
[d1+Deq] (−ie0γ

0) S0(k + q) (−ie0γ
0)V0(q)

Integrating over frequency and using the parametrization:

Σ1(~k ) = v0~γ · ~k Σk1(|~k |2) , Σk1(|~k |2) = −Tr[~γ · ~k Σ1(~k )]

4NF v0|~k |2
,

yields: Σk1(|~k |2) =
e2

0

8 v0

(|~k |2)De/2−1

(4π)De/2
G (1/2, 1/2) .

G (α, β): coefficient function of the one-loop p-type massless integral

Nα

β

=

∫
[dDq]

[q2]α [(q − k)2]β
=

(k2)D/2−α−β

(4π)D/2
G (α, β)

G (α, β) =
a(α)a(β)

a(α + β − D/2)
, a(α) =

Γ(D/2− α)

Γ(α)
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One-loop fermion self-energy (De = 2− 2εγ)

−iΣ1(k) = O =

∫
[d1+Deq] (−ie0γ

0) S0(k + q) (−ie0γ
0)V0(q)

Integrating over frequency and using the parametrization:

Σ1(~k ) = v0~γ · ~k Σk1(|~k |2) , Σk1(|~k |2) = −Tr[~γ · ~k Σ1(~k )]

4NF v0|~k |2
,

yields: Σk1(|~k |2) =
e2

0

8 v0

(|~k |2)De/2−1

(4π)De/2
G (1/2, 1/2)

After εγ-expansion in the MS scheme (Lk = log(|~k |2/µ2)):

Σk1(|~k |2) =
α(µ)

8

(
1

εγ
− Lk + 4 log 2 + O(εγ)

)
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Computation of Zv : similar to mass renormalization in QED

S(k) =
S0(k)

1 + iΣ(k) S0(k)
, Σ(k) = γ0k0Σω(k2) + v0~γ · ~k Σk(k2)

S(k) =
1

1− Σω

1

γ0k0 − v0~γ · ~k 1+Σk
1−Σω

= Zψ(µ)Sr (k ;µ), v0 = Zv (µ)v(µ)

Constraints (in MS-scheme):

(1− Σω)Zψ = 1,
1 + Σk

1− Σω
Zv = 1

Our case: Σω = 0 + O(α2), so:

Zψ = Z−1
Γ = 1 + O(α2), Zv = 1− α(µ)

8εγ
+ O(α2), α(µ) =

e2(µ)

κv(µ)
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One-loop photon self-energy

iΠµν
1 (q) = R = −

∫
[d1+Dek] Tr [(−ie0γ

µ)S0(k + q) (−ie0γ
ν)S0(k)]

Focusing on Π00 and after frequency integration (q0 = iqE0) :

Π00
1 (qE0, ~q → 0) =

NF

2v0
e2

0 |~q |2
De − 1

De

∫
[dDek]

|~k | [|~k |2 + m2
0]
, m0 =

qE0

2v0

Note: master integral is of the semi-massive tadpole type

∫
dDk

(2π)D
1

[k2]α[k2 + m2]β
= Sα

β

=
(m2)D/2−α−β

(4π)D/2
B(β, α) ,

B(β, α) =
Γ(D/2− α) Γ(α + β − D/2)

Γ(D/2) Γ(β)
.
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One-loop photon self-energy

iΠµν
1 (q) = U = −

∫
[d1+Dek] Tr [(−ie0γ

µ)S0(k + q) (−ie0γ
ν)S0(k)]

Focusing on Π00 and after frequency integration (q0 = iqE0) :

Π00
1 (qE0, ~q → 0) = NF

|~q |2

qE0

e2
0 (m2

0)−εγ

(4π)De/2

De − 1

De
B(1, 1/2) , m0 =

qE0

2v0

B(β, α): coefficient function of the the semi-massive tadpole diagram

∫
dDk

(2π)D
1

[k2]α[k2 + m2]β
= Wα

β

=
(m2)D/2−α−β

(4π)D/2
B(β, α) ,

B(β, α) =
Γ(D/2− α) Γ(α + β − D/2)

Γ(D/2) Γ(β)
.

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 43 / 57



One-loop photon self-energy

iΠµν
1 (q) = X = −

∫
[d1+Dek] Tr [(−ie0γ

µ)S0(k + q) (−ie0γ
ν)S0(k)]

Focusing on Π00 and after frequency integration (q0 = iqE0) :

Π00
1 (qE0, ~q → 0) = NF

|~q |2

qE0

e2
0 (m2

0)−εγ

(4π)De/2

De − 1

De
B(1, 1/2) , m0 =

qE0

2v0

Renormalization (simple substitution):

(m2
0)−εγ = (v0)2εγ = (Zvv)2εγ = 1− α

4
+ O(α2)

With 2-loop accuracy:

Π00
1 (q0, ~q → 0) = −NF e

2

8

|~q |2

iq0

(
1− α

4

)
, σ1(q0) = σ0

(
1− α

4
+ O(α2)

)
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Two-loop photon self-energy

Πµν
2 (q) = 2Πµν

2a (q) + Πµν
2b (q)

The first contribution is primitively one-loop:

2Πµν
2a (q) = [ + \

The second contribution is truly two-loop:

Πµν
2b (q) = ]
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Two-loop photon self-energy (a)

After integration over frequencies, Wick rotation and expansion in ~q → 0:

Π00
2a(qE0, ~q → 0) = −NF

32
|~q |2 e4

0 (m2)De/2−3/2−εγ

v2 (4π)De

×(De − 1) (De − 2− 2εγ)

De
G (1/2, 1/2)B(1, 1/2 + εγ)

Note: the diagram is finite but has a divergent fermion self-energy subraph!

2 Π00
2a(q0, ~q → 0) = −NF e2

8

α

2

|~q |2

iq0

Contribution to the conductivity:

σ2a(q0) = σ0
α

2
+ O(α2)

Agreement with JVH but not with Mishchenko (α/4 instead of α/2)
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Two-loop photon self-energy (b)

After integration over frequencies, Wick rotation and expansion in ~q → 0:

Π00
2b(m, ~q → 0 ) =

NF e4
0

8 v2

|~q |2

De
×
{

(De − 1) I1(1/2)

−m2 I2(3/2)−m2(De − 2) I0(1/2)

}
where In(α) are semi-massive 2-loop tadpole master integrals

In(α) =

∫
[dDek1][dDek2]

(~k1 · ~k2 )n[|~k1 − ~k2 |2]−1/2

[|~k1 |2]α [|~k1 |2 + m2] [|~k2 |2]α [|~k2 |2 + m2]

=
(m2)De+n−2α−5/2

(4π)De
Ĩn(α) .

Note: in Π00
2b(q), I0(1/2), I1(1/2) and I2(3/2) are UV finite.
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To compute the master integrals, use a combination of transformations:

simple identities to related diagrams with different α values:

1

k2α (k2 + m2)
=

1

m2

(
1

k2α
− 1

k2(α−1) (k2 + m2)

)
Mellin-Barnes transformation: Boos and Davydychev, TMP 89, 1052 (1991)

1

k2 + m2
=

1

2iπ

∫ +i∞

−i∞
ds Γ(−s)Γ(1 + s)

(m2)s

(k2)1+s

integration by parts for a 2-loop diagram with massive lines
Kotikov, Mod. Phys. Lett. A, 06 677 (1991)

1̂ β

α1

δ (D − 2δ − α− 1) = _
1 β

α2

δ − 1 −

β̀

α2

δ

+ α

[a
1 β

α + 11

δ − 1 − b
1 β − 1

α + 11

δ

]
.
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Two-loop photon self-energy (b)

I0(1/2) = c
1 1/2

1/21

1/2 =
(m2)De−7/2

(4π)De
π2

I1(1/2) = d
1 1/2

1/21

1/2 =
(m2)De−5/2

(4π)De
π (4− π) ,

I2(3/2) = e
1 3/2

3/21

1/2 =
(m2)De−7/2

(4π)De
π

(
π − 4

3

)
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Two-loop photon self-energy (b)

Π00
2b(m, ~q → 0 ) =

NF e4
0

8 v2

|~q |2

De
×
{

(De − 1) I1(1/2)

−m2 I2(3/2)−m2(De − 2) I0(1/2)

}
Then:

Π00
2b(q0, ~q → 0) = −NF e2

8
α

8− 3π

6

|~q |2

iq0
.

Contribution to the conductivity:

σ2b(q0) = σ0
8− 3π

6
α + O(α2)

Agreement with JVH and Mishchenko.
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Optical conductivity up to 2 loops

One-loop contribution computed with 2-loop accuracy:

σ1(q0) = σ0 + σ2a′(q0), σ2a′(q0) = −σ0
α

4

contribution of the fermion self-energy correction

σ2a(q0) = σ0
α

2
contribution of the vertex correction

σ2b(q0) = σ0
8− 3π

6
α

Total conductivity up to 2-loops

σ(q0) = σ0(q0) +σ2a(q0) +σ2a′(q0) +σ2b(q0) = σ0

(
1 + C(2) α + O(α2)

)
We recover Mishchenko’s result (2008): C(2) = (19− 6π)/12 ≈ 0.013
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Method of Counterterms
Finite diagram with a divergent fermion self-energy subgraph:

Π00
2a(qE0, ~q → 0) = i = −NF

32
|~q |2 e4

0 (m2)De/2−3/2−εγ

v2 (4π)De

×(De − 1) (De − 2− 2εγ)

De
G (1/2, 1/2)B(1, 1/2 + εγ)

Add the corresponding (local) counter-term:

Π00
2a′(qE0, ~q → 0) = j =

NF e2

32
|~q |2 e2

0 (m2)De/2−3/2

v2 (4π)De/2

×(De − 1) (De − 2)

4πεγ De
B(1, 1/2)
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Method of Counterterms
Finite diagram with a divergent fermion self-energy subgraph:

2Π00
2a(qE0, ~q → 0) = 2o = −NF e2

8

α

2

|~q |2

iq0

Add the corresponding (local) counter-term:

2Π00
2a′(qE0, ~q → 0) = 2p = −NF e2

8

(
−α

4

) |~q |2
iq0

Hence, in agreement with the simple substitution, we recover:
σ2a′(q0) = −σ0 α/4

(besides subtracting the subdivergence
the counterterm graph has a finite contribution to the final result)
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Summary of density-density correlation function approach

Total conductivity up to 2-loops

σ(q0) = − lim
~q→0

iq0

|~q|2
Π00(q0, ~q ), qµ = (q0, v0~q)

Π00(q) = 〈Tρ(q)ρ(−q)〉, ρ(q) = e0Ψ̄γ0Ψ

σ(q0) = σ0

(
1 + C(2) α + O(α2)

)
We recover Mishchenko’s result (2008): C(2) = (19− 6π)/12 ≈ 0.013

Crucial distinction between regularization and renormalization

Dimensional regularization works as well as the hard cut-off approach.

Renormalization of the Fermi velocity (v0 = 1 not a “natural” unit)

Clarifies the origin of (half of) the controversy

ST and Kotikov, EPL 107 57001 (2014)
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A word on the Kubo formula approach

σ̃(q0) =
1

2iq0

(
K 11(q0, ~q → 0) + K 22(q0, ~q → 0)

)
K ij(q) = 〈Tj i (q)j j(−q)〉, ~j(q) = e0v0Ψ̄~γΨ

To better exploit the O(2) symmetry, attempt parametrization (as ~q → 0):

Πµν(q) = (gµνq2 − qµqν) Π(q2), Π(q2) =
−Πµ

µ(q)

De(−q2)

(encodes transversality qµΠµν(q) = 0 or current conservation)

Kubo formula

σ̃(q0) = iq0 K (q0), K (q0) = v2
0 Π(q2

0 , ~q → 0)

According to Mishchenko, there is a “Coulomb anomaly” (2008):

with a hard cut-off: σ̃(q0) = σ0

(
1 + C(1) α

)
6= σ(q0)

soft cut-off must be used: σ̃(q0) = σ(q0) = σ0

(
1 + C(2) α

)
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One-loop case (finite)

K1(qE0) =
NF

2v0m0

e2
0 (m2

0)−εγ

(4π)De/2

De − 1

De
B(1,−1/2)

B(β, α): coefficient function of the the semi-massive tadpole diagram

Expressing all bare parameters in terms of renormalized ones and
performing the εγ-expansion yields, with two-loop accuracy:

K1(q0) =
NF e2

8 iq0

(
1− α

4

)
Contribution to the conductivity with two-loop accuracy:

σ̃1(q0) = σ0 (1− α

4
+ O(α2)) = σ1(q0)

Notation: σ̃2a′(q0) = σ2a′(q0) = −α
4
σ0
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Two-loop case (diagrams are individually divergent)

K2(q0) = 2K2a(q0) + K2b(q0)

Local singularities (simple poles):

2K2a(q0) =
NF e2

8iq0

α

4

(
− 1

εγ
+ 2Lq + 3− 4 log 2 + O(εγ)

)

K2b(q0) = −2K2a(q0) +
NF e2

8 iq0
α

11− 3π

6

Using the simple substitution:

σ̃2

σ0
=
σ̃2a + σ̃2b + σ̃2a′

σ0
= C(2) α =

σ2

σ0
.

σ̃2a′ = σ2a′ = −α
4
σ0, σ̃2a + σ̃2b = σ0

11− 3π

6
α .

All approaches yield the same result: C(2) = (19− 6π)/12 ≈ 0.013.
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Conclusion
Rich interplay between:

condensed matter physics motivations

high-energy physics algebraic multi-loop techniques

Interaction correction to the optical conductivity

in the non-relativistic limit (v/c → 0):

C(2) =
19− 6π

12
=

19

12
− π

2
≈ 0.013

I consistent with present experimental results (α ≈ 2.2: αC(2) ≈ 2.9%)

in the ultra-relativistic limit (v/c → 1, stable IR fixed point):

C∗ =
92− 9π2

18π
=

46

9π
− π

2
≈ 0.056

I same order of magnitude as in the non-relativistic limit
I same structure as in the non-relativistic limit
I universality (quantitative)? future: case of arbitrary v/c
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Spasibo Bolchoi!

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 57 / 57


	Introduction
	Minimal conductivity of disorder-free intrinsic graphene (overview)
	Interaction corrections at the infra-red fixed point
	Interaction corrections in the non-relativistic limit
	Conclusion

