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Allotropes of carbon

Graphite (3D)  Fullerene (0D)  Nanotube (1D)  Graphene (2D)
1985 1991 2004
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Why graphene interesting?

o Graphene: one of the most 2D system
(thickness 0.5nm = 1 atom)

o Easy to produce in small quantities
(isolated in 2004 by Geim and Novoselov:
graphite + scotch tape)

@ High crystal quality in 2D
(very clean system in which to experiment)

o Exceptional properties: stronger than steel and very stretchable,
good conductor of electricity and heat (keep electronics cool), ...

e Numerous (potential) applications (graphene “fever” since 2010
year of the Nobel Price)

o Fundamental studies of low-dimensional interacting systems
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Graphene as a membrane (2-brane)

Stability related to ripples (3 atoms high and 30 atoms long)
To overcome the argument of Landau & Peierls

Fundamental aspects: major early works (vast literature since then)
@ 1947: band structure (Wallace)
e 1984: field theory approach (Semenoff)
@ 1994: RG approach (Gonzalez, Guinea, Vozmediano)
@ 2004: experimental isolation
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Band structure of graphene
P. R. Wallace, Physical Review 71 622 (1947)
Honeycomb lattice:
@ 2 inequivalent Bravais sublattices (A and B)
@ 2 distinguishable points in the Brillouin zone (K and K')

Real space Reclprocal space

Nearest-neighbour tight-binding model for 7-electrons

H= -t Z (aiabjﬁ + h.c.) — '“Z N o
i,o

(id)o
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@ Spinor structure (besides a real spin 1/2):
> sublattice pseudo-spin 1/2: electron either on A or B sublattice

o as(K+k) o be(K' +Kk)
Yiolk) = ( bo(K + K) ) vieolk) = ( 2 (R’ + k) )

» valley pseudo-spin 1/2: electron close to K or K’ point

wK’,o(k)

@ Spectrum: massless Dirac spectrum at low energies

W, (k) = ( wK"’(k_.) ) (4 component spinor in sublattice ® valley space).

Low energies (< 1eV from K-points)
linear spectrum
EL(R) = £hvelk| - p

ve =3t ~ 100m/s
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Low-energy effective description
G. W. Semenoff, PRL 53 2449 (1984)

Massless QED-like Lagrangian (2 = 0, no gauge field, N = 2)
N
L=, [1706,3 FiveT- V| W,
o=1

Dirac matrices: v* = (7°,7), {v*,7"} = 2g"¥, g" = diag(+, —, —)

Very different from Galilean invariant band metals and semi-conductors:

Intrinsic graphene is a “zero” gap semi-conductor (semi-metal)
(two-dimensional Dirac fermions)

@ Fermi surface reduces to the 2 K-points
@ linear spectrum and chirality (lost at high energies)
@ no gap larger than 1meV (present experimental resolution)
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Low-energy effective description
G. W. Semenoff, PRL 53 2449 (1984)

Massless QED-like Lagrangian (2 = 0, no gauge field, N = 2)
N
L=, [1706,3 FiveT- V| W,
o=1

Dirac matrices: v* = (7°,7), {v*,7"} = 2g"¥, g" = diag(+, —, —)

Very different from Galilean invariant band metals and semi-conductors:

Intrinsic graphene is a “zero” gap semi-conductor (semi-metal)
(two-dimensional Dirac fermions)

@ Fermi surface reduces to the 2 K-points
@ linear spectrum and chirality (lost at high energies)
@ no gap larger than 1meV (present experimental resolution)

Experimental evidence for Dirac fermions in graphene: unconventional QHE
0wy = €2v/h, v = +4x(n+1/2), n=0,1,..
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Remark: search for semi-metals has a long history

Early studies devoted to 3D semi-metals
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Remark: search for semi-metals has a long history
Early studies devoted to 3D semi-metals

@ Herring, Physical Review 32 365 (1937)
First study - general conditions (single particle arguments)

@ Halperin and Rice, Rev. Mod. Phys. 40 755 (1968)
Quadratic band-touching unstable to interactions (excitonic insulator)

@ Abrikosov and Beneslavskii, JETP 32, 699 (1971)
Linear band-touching stable / Quadratic band-touching unstable
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Systems with stable Fermi points: emergent relativity at low energies
Volovik, “The Universe in a Helium Droplet” (2009)
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Early studies devoted to 3D semi-metals

@ Herring, Physical Review 32 365 (1937)
First study - general conditions (single particle arguments)

@ Halperin and Rice, Rev. Mod. Phys. 40 755 (1968)
Quadratic band-touching unstable to interactions (excitonic insulator)

@ Abrikosov and Beneslavskii, JETP 32, 699 (1971)
Linear band-touching stable / Quadratic band-touching unstable

Systems with stable Fermi points: emergent relativity at low energies
Volovik, “The Universe in a Helium Droplet” (2009)

Recent discoveries (2015-2016): 3D Dirac and Weyl semimetals...
( Cd3A52, TaAs, )
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Remark: search for semi-metals has a long history
Early studies devoted to 3D semi-metals

@ Herring, Physical Review 32 365 (1937)
First study - general conditions (single particle arguments)

@ Halperin and Rice, Rev. Mod. Phys. 40 755 (1968)
Quadratic band-touching unstable to interactions (excitonic insulator)

@ Abrikosov and Beneslavskii, JETP 32, 699 (1971)
Linear band-touching stable / Quadratic band-touching unstable

Systems with stable Fermi points: emergent relativity at low energies
Volovik, “The Universe in a Helium Droplet” (2009)

Recent discoveries (2015-2016): 3D Dirac and Weyl semimetals...
( Cd3A52, TaAs, )

Recent 2D systems (wrt graphene and “old” dSC):
artificial-like graphene & surface states of topological insulators
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Long-range 3D electron-electron interactions
Gonzélez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

vE < c: interactions break Lorentz invariance (pseudo-relativistic system)

Non-relativistic limit (vg/c — 0): instantaneous Coulomb interaction

1 2 23 (O (& 0
He = > /d rd*r'V,(F)y Wa(f)m‘“a'(ﬁh V()

o0’
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Energy scales:
e Kinetic energy: Ey = hvpk ~ \/n,

o Interaction energy: E. = 2/(kr) ~ v/,
(k dielectric constant and n electron density)

“Fine structure constant” of graphene

E. e? 2.2
Y = —=— " —
I Eoc Ankhve K
@ the ratio does not depend on the density (2D),
o of the order of 1 in general (QED: avgep = 1/137),
o free standing graphene: xk ~ 1 (air), ag =~ 2.2,

@ graphene on Boron Nitride substrate: x ~ 2.5, a, ~ 0.9.
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Energy scales:
e Kinetic energy: Ey = hvpk ~ \/n,

o Interaction energy: E. = 2/(kr) ~ v/,
(k dielectric constant and n electron density)

“Fine structure constant” of graphene

E. e? 2.2
Y = — = =
I Eoy Armkhve K

@ the ratio does not depend on the density (2D),
o of the order of 1 in general (QED: avgep = 1/137),
o free standing graphene: xk ~ 1 (air), ag =~ 2.2,

@ graphene on Boron Nitride substrate: x ~ 2.5, a, ~ 0.9.

Very different from Galilean invariant band metals: ry = Ec/Ey = 1//n
o High densities: r; < 1 (Fermi liquid)
o Low densities: rs > 1 (Wigner crystallization, ferromagnetism, ...)
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Important issue

Quantitative understanding of the effect of interactions
A priori, effects of interactions should be strong

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 13 / 57



Important issue

Quantitative understanding of the effect of interactions
A priori, effects of interactions should be strong

Within the low-energy effective model:

. - > 1
S = / d+2x [co — W, AV, + e 2, 7~A\IJU] -7 / A3 P2,
c
there are extensive studies related to:
review: Kotov et al., Rev. Mod. Phys. 84 1067 (2012)
review: Gusynin et al., Int. J. Modern Phys. B 21 4611 (2007)
@ transport properties,
@ spectral properties (some marginal liquid features),
e dynamical gap generation (DxSB: U(2NF) — U(Ng) x U(NF)),
@ add disorder (random gauge fields), ripples (curved space), magnetic
field...
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Important issue

Quantitative understanding of the effect of interactions
A priori, effects of interactions should be strong

Within the low-energy effective model:

. - > 1
S = / d+2x [co — W, AV, + e 2, 7~A\IJU] -7 / A3 P2,
c
there are extensive studies related to:
review: Kotov et al., Rev. Mod. Phys. 84 1067 (2012)
review: Gusynin et al., Int. J. Modern Phys. B 21 4611 (2007)
@ transport properties,
@ spectral properties (some marginal liquid features),
e dynamical gap generation (DxSB: U(2NF) — U(Ng) x U(NF)),
@ add disorder (random gauge fields), ripples (curved space), magnetic
field...

In the following: focus on the optical conductivity
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Outline

© Minimal conductivity of disorder-free intrinsic graphene (overview)
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Optical conductivity (free fermions)

-,

J(w,q)=0(w,q) E(w,q)
Optical regime: w > velq|
@ response to a homogeneously applied electric field (g — 0)

@ photon energies w ~ 1eV (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).
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Optical conductivity (free fermions)

-,

Jw,q) =0(w,q) E(w,q)
Optical regime: w > velq|

@ response to a homogeneously applied electric field (g — 0)
@ photon energies w ~ 1eV (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).

Does it conduct?
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Optical conductivity (free fermions)

-,

J(w,q)=0(w,q) E(w,q)
Optical regime: w > velq|
@ response to a homogeneously applied electric field (g — 0)

@ photon energies w ~ 1eV (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).

Does it conduct?

Minimal conductivity of free 2D Dirac fermions (no disorder)
Ludwig, Fisher, Shankar and Grinstein, PRB 50 7526 (1994)

2
~4n

Non-zero and universal (independent of w)

oo(w)
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Proof R. R. Nair et al., Science 320 1308 (2008)

Near the K point: H=vFé- < ; A(t ))

—

E(t) = Eycos(wt)k = —(1/¢) 0:A(t), A(t) = —(Eoc/w)sin(wt)k

VN~ STt/ ~

Transition rate from initial to final state (Fermi's Golden rule):
1 2 e’ E¢
- =—[(f]V(t hw/2) ~ - —
— = LAV o (e /2) = S5
Energy absorption rate: P, = hw/7 ~ (e?/h) EZ (P; ~ cEZ/(4T))

Transmittance and optical conductivity

P
To=1- 5 ~1-ragep~97.7%  T(w)=[1+2r0(w) /]2

One-atom thick layer absorbs 2.3% of visible light!
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Experimentally: optical conductivity is close to ideal (17)

o(w =~ 1eV) = 0 (1.00 £ 0.02)

hw < 1.2eV:  Mak et al., PRL 101 196405 (2008)
hw > 1.2eV:  Nair et al., Science 320 1308 (2008)

For a review: N. M. R. Peres, RMP 82 2673 (2010)
100771 L e T

99.5+ W narrow bandpass filters
o standard spectroscopy
99 — frequency corrections
98.5

98
97.5
97
96.5
96 Hinfrared visible

95.5

TN I I I N

L =

T

percentage of transmitted light

PR A SN I B |

S Ty E
% 0.4 0.8 1.2 1.6 2 2.4 2.8

photon energy (eV)

w
o
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Theoretically: compute numbers

Optical conductivity from the polarization operator

ido B .
o(qo) = = lim W 0 N%q0,d), " =(q° vd)

N%q) = (Tp(a)p(—q)),  p(q) = W'V

Perturbative expansion: compute interaction correction coefficients

o(qo) = 0@ (1 +Ca, +Ca?+--)

Notice: unrenormalized ey, vy and renormalized o ...
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Theoretically: compute numbers

Optical conductivity from the polarization operator

ido B .
o(qo) = = lim W 0 N%q0,d), " =(q° vd)

N%q) = (Tp(a)p(—q)),  p(q) = W'V

Perturbative expansion: compute interaction correction coefficients

o(qo) = 0@ (1 +Ca, +Ca?+--)

Notice: unrenormalized ey, vy and renormalized o ...

First order correction C:
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Theoretically: compute numbers

Optical conductivity from the polarization operator

ido B .
o(qo) = = lim W 0 N%q0,d), " =(q° vd)

N%q) = (Tp(a)p(—q)),  p(q) = W'V

Perturbative expansion: compute interaction correction coefficients

o(qo) = 0@ (1 +Ca, +Ca?+--)

Notice: unrenormalized ey, vy and renormalized o ...

Optical conductivity from the Kubo formula
. 1 - _
5(qo) = e (K™ (g0, — 0) + K*(q0, G — 0))

Ki(q) = (Ti'(e)/(—q),  Jjlq) = eovoWyV
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Theoretically: value of C is controversial (17)
Extensive theoretical work since 2008; three different values can be found:

25 —
cW = »-bm 1267r ~ 0.512, Herbut et al. 2008, hard cut-off, &
19 -6
€)= === ~ 0013, Mishchenko 2008, hard & soft cut-off, o, &
11 —
c® = T?m ~ 0.263, Juri&i¢ et al. 2010, dimensional regularization

Herbut, Juri¢ié and Vafek, PRL 100 046403 (2008)

Mishchenko, EPL 83 17005 (2008)

Sheehy and Schmalian, PRB 80 193411 (2009)

Juriti¢, Vafek and Herbut, PRB 82 235402 (2010) (JVH)
Abedinpour et al., PRB 84 045429 (2011)

Sodemann and Fogler, PRB 86 115408 (2012)

Rosenstein, Lewkowicz and Maniv, PRL 110 066602 (2013)

Gazzola et al., EPL 104 27002 (2013)

Teber and Kotikov, EPL 107 57001 (2014)

Link, Orth, Sheehy and Schmalian, PRB 93 235447 (2016) (corrects Rosenstein et al)
Boyda, Braguta, Katsnelson and Ulybyshev, arXiv:1601.05315 (Monte Carlo)

Before 2014: differences attributed to the regularization techniques used...
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Tentative comparison between theory and experiments

Figure from: Sheehy and Schmalian, PRB 80 193411 (2009) (g = 2.2)

0.98 F
— e e ;.'; ® ot
- % ® e*% 4

%
o
0.97 -

A(nm)

0.96 |-, . . .
400 500 600 700

@ Dashed blue line: free fermion case
@ Solid red line: Mishchenko's result C(2) ~ 0.013
o Dot dashed green line: Herbut et al.’s result C(1) ~ 0.512

31 August 2016
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Experimental evidence for Fermi velocity renormalization
Band structure as a function of

Elias et al., Nature Physics 7 701 (2011)
carrier density n (n — 0 at K points)

n>2x10Mem2:
ve =~ 1x 10%m/s

w(106ms1)

n<1x109em—2:
ve =3 x 10°m/s

-40 -20 0 20 40 &0
n 10 em2)
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Experimental evidence for Fermi velocity renormalization
Band structure as a function of

Elias et al., Nature Physics 7 701 (2011)
carrier density n (n — 0 at K points)

n>2x10Mcm=2:
ve =~ 1x 10%m/s

+(105ms1)

n<1x109em—2:
1 | vE~3x10°m/s

-40 20 0 20 40 60
n (10 em2)
Logarithmic increase of the Fermi velocity as n decreases (i ~ +/n):

Gonzilez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

e2

A
r = v,(A l ) +(N) =
() =N+ g log ) = ve
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Experimental evidence for Fermi velocity renormalization
Band structure as a function of Elias et al

., Nature Physics 7 701 (2011)
carrier density n (n — 0 at K points)

n>2x10Mcm=2:
ve =~ 1x 10%m/s

+(105ms1)

n<1x109em—2
1 | vE~3x10°m/s

-40 20 0 20 40 60
n (10% em2)
Corresponding Fermi velocity beta-function:

Gonzélez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

= O‘r(ﬂ)+o( 2), () = e?

_ dlog v (u) _
b= Ak vy ()

dlog u
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Lorentz-invariant infra-red fixed point
Gonzilez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

In — — c
lors  p p—0

) €2 ) -1 .
(8] = ——— _— — 1n—
a Amkv(p) 4 (=0 QED
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Lorentz-invariant infra-red fixed point
Gonzilez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

e2
v(p) =w + T6mn In; #—_>6 c
e2 1 1. A\!
R T Craa L) B

Existence of such fixed point is generic to systems with Fermi points
emergent relativity at low energies  Volovik, “The Universe in a Helium Droplet” (2009)
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Lorentz-invariant infra-red fixed point
Gonzilez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

e? A
v(p) =w + T6mn In; #—_>6 c
e2 1 1. A\!
R T Craa L) B

Existence of such fixed point is generic to systems with Fermi points
emergent relativity at low energies  Volovik, “The Universe in a Helium Droplet” (2009)

Crossover: i = N\ e /e
de Juan, Grushin and Vozmediano, PRB 82 125409 (2010)

Non-relativistic > pire) <= 1 < e Ultra-relativistic
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Lorentz-invariant infra-red fixed point
Gonzilez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

2
v(p) =w + T6mn In; #—_>6 c
e? 1 1 A\!
a(p) = m = <Oéo + 1 In M) m QQED

Existence of such fixed point is generic to systems with Fermi points
emergent relativity at low energies  Volovik, “The Universe in a Helium Droplet” (2009)

Crossover: i = N\ e /e
de Juan, Grushin and Vozmediano, PRB 82 125409 (2010)

Non-relativistic > pire) <= 1 < e Ultra-relativistic

IR fixed point: ultra-relativistic limit of graphene (LI + fully retarded interactions)

31 August 2016 22 / 57
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Lorentz-invariant infra-red fixed point
Gonzilez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

2
v(p) =w + T6mn In; #—_>6 c
e? 1 1 A\!
alp) = m = (Oéo + 1 In M) m QQED

Existence of such fixed point is generic to systems with Fermi points
emergent relativity at low energies  Volovik, “The Universe in a Helium Droplet” (2009)

Crossover: i = N\ e /e
de Juan, Grushin and Vozmediano, PRB 82 125409 (2010)

Non-relativistic > pire) <= 1 < e Ultra-relativistic

IR fixed point: ultra-relativistic limit of graphene (LI + fully retarded interactions)

Next:
review some results in ultra-relativistic and non-relativistic regimes
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Outline

© Interaction corrections at the infra-red fixed point
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Reduced or Pseudo Quantum Electrodynamics

Terminology from: Gorbar, Gusynin and Miransky PRD 64 105028 (2001)

Marino, Nucl. Phys. B408 551 (1993)
Basics of massless reduced QEDy 4, (de < d,)

Fermion field in de-dimensions (mem-brane) = d. = 4 — 2¢. — 2¢,,
Photon field in d,-dimensions (bulk gauge field) = d, =4 — 2¢,

1

£ = B(x)in Dy, W(x) 64~ (x) -

1 2
FN'yV'y Fhyvy — = (BM'YAHV)
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Reduced or Pseudo Quantum Electrodynamics

Terminology from: Gorbar, Gusynin and Miransky PRD 64 105028 (2001)
Marino, Nucl. Phys. B408 551 (1993)

Basics of massless reduced QEDy 4, (de < d,)

Fermion field in de-dimensions (mem-brane) = d. = 4 — 2¢. — 2¢,,
Photon field in d,-dimensions (bulk gauge field) = d, =4 — 2¢,

£ = D) Dy W(x) S0 (x) = 7 o, FH7 — - (8 A7)

e case d, = de (¢e = 0): usual QEDs
» QEDy (renormalizable),
» QEDj3 (super-renormalizable): toy model confinement (Feynman 1981),
IR divergences (Jackiw & Templeton 1981), chrial symmetry breaking
(Appelquist et al. 1986), HT. (Anderson, Affleck, loffe-Larkin 1989), ...

» QED;: Schwinger model (exact at 1-loop), Tomonaga-Luttinger
model, ...
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Reduced or Pseudo Quantum Electrodynamics

Terminology from: Gorbar, Gusynin and Miransky PRD 64 105028 (2001)
Marino, Nucl. Phys. B408 551 (1993)

Basics of massless reduced QEDy 4, (de < d,)

Fermion field in de-dimensions (mem-brane) = d. = 4 — 2¢. — 2¢,,
Photon field in d,-dimensions (bulk gauge field) = d, =4 — 2¢,

£ = D) Dy W(x) S0 (x) = 7 o, FH7 — - (8 A7)

e case d, = de (¢e = 0): usual QEDs
» QEDy (renormalizable),
» QEDj3 (super-renormalizable): toy model confinement (Feynman 1981),
IR divergences (Jackiw & Templeton 1981), chrial symmetry breaking
(Appelquist et al. 1986), HT. (Anderson, Affleck, loffe-Larkin 1989), ...
» QED;: Schwinger model (exact at 1-loop), Tomonaga-Luttinger
model, ...

o case de < dy (€e # 0): reduced QEDs
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Reduced QED Feynman rules (photon propagator has a branch cut):
(natural units are used: h=c=1)
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Reduced QED Feynman rules (photon propagator has a branch cut):
(natural units are used: h=c=1)

—_— =L 7 ’\/‘\.4< = —jey"
P p

B iT(l—ee) L, =q'q” .
P T e (g“ e ) «

Case of reduced QED43: ¢ =1/2 and ¢, — 0 (d, = 4, d. = 3)
graphene at the IR fixed point
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Reduced QED Feynman rules (photon propagator has a branch cut):
(natural units are used: h=c=1)

—_— =L 7 '\A.< = —jey"
P p

(1 =€) . ~qtq” r & 1-a
o e () €5

Case of reduced QED43: ¢ =1/2 and ¢, — 0 (d, = 4, d. = 3)
graphene at the IR fixed point

Local interactions but free effective gauge-field action is non-local

Sut ~ / d%x D) D (x) + Au(x) (V=32)" A, ).

@ square-root branch cut in the photon propagator: oc (—g?)~1/2

o feynman diagrams with non-integer indices
31 August 2016
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Dimensional Reg. and Renormalization

Bare fields and parameters should be expressed in terms of renormalized
ones with the help of renormalization constants:

Vo= Z, 2 (1) War(p), A" = Z2() A (), T = Zr(u) T,
e’YE €y
& = 20 ) (125 )

4
Note: we work in MS-scheme where ;2 — 1% €€ /(47) and
>z 71z
z=Y " =1+2 424
— el ey &

Anomalous dimensions of fields and beta-functions of parameters, e.g.,

S(p) = Zy(p) Se(pi ), yp(u) = W’
By = TEA a2
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Reduced QED4 3: renormalizable & scale-invariant QFT
(naive power counting: [e] = ¢&,, Vee)

Photon self-energy free of UV divergences: no charge renormalization

«Q» finite: Z, = Z;l =1, pB(a) =0 (counterterms only local)
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Reduced QED4 3: renormalizable & scale-invariant QFT
(naive power counting: [e] = ¢&,, Vee)

Photon self-energy free of UV divergences: no charge renormalization

«Q» finite: Z, = Z;l =1, pB(a) =0 (counterterms only local)

Fermion self-energy is UV singular: wave-function renormalization

-1
—‘—/:L— divergent : Z, = Zfl =1- 3a @ 0(a?)

3 4me,
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Reduced QED4 3: renormalizable & scale-invariant QFT
(naive power counting: [e] = ¢&,, Vee)

Photon self-energy free of UV divergences: no charge renormalization

«Q» finite: Z, = Z;l =1, pB(a) =0 (counterterms only local)

Fermion self-energy is UV singular: wave-function renormalization

-1
—‘—/:L— divergent : Z, = Zfl =1- 3a @ 0(a?)

3 4me,

Kotikov and ST, PRD 89065038 (2014)

3a—1 « 4 a \2 3
=22 47T+16<C2NF+27> (E) +0(a®)

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 27 / 57



Reduced QED4 3: renormalizable & scale-invariant QFT
(naive power counting: [e] = ¢&,, Vee)

Photon self-energy free of UV divergences: no charge renormalization

«Q» finite: Z, = Z;l =1, pB(a) =0 (counterterms only local)

Fermion self-energy is UV singular: wave-function renormalization

-1
—‘—/:L— divergent : Z, = Zfl =1- 3a @ 0(a?)

3 4me,

Kotikov and ST, PRD 89065038 (2014)

3a—1 « 4 a \2 3
=22 47T+16<C2NF+27> (E) +0(a®)

Curious QFT (Tomonaga-Luttinger like):
finite (photon self-energy) 1Pl graphs with divergent subraphgs

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 27 / 57



Massless propagator type 2-loop diagram
Basic building block of multi-loop calculations:
dPky AP ko
J(O[]_, Qp, (3, 04, 0[5) — 2a1 1202 o o %o
kl k2 (k2_p) 3(kl_p) 4(k2_k1) 5

Arbitrary indices «; and external momentum p in Euclidean space (D)

a1 a2

(67} a3
Coefficient function (dimensionless):
(p?) i P

I(Oé]_, a2, (3, 04, a5) = 7'['—D J(O[]_, a2, (3, 04, O[5)

Goal of multi-loop computation:
in D =n—2¢ (n€N), compute /({;}) as a Laurent series in ¢ — 0
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Long history of the massless 2-loop diagram (basic building block):
for a review, see:  Grozin, Int. J. Mod. Phys. A27 1230018 (2012)

o all indices integers: well-known and easy to compute, e.g. IBP
Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)
Tkachov, Phys. Lett. B 100 65 (1981)
Chetyrkin and Tkachov, Nucl. Phys. B 192 159 (1981)

@ all indices arbitrary: highly non-trivial (combination of 2-fold series)
Bierenbaum and Weinzierl, Eur. Phys. J. C 32 67 (2003)

@ particular cases: simpler forms can be reached, see, for example
Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)
Kazakov, TMF 62 127 (1985)
Gracey, Phys. Lett. B 277 249 (1992)
Kivel, Stepenenko and Vasil'ev, Nucl. Phys. B 424 619 (1994)
Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)
Kotikov, Phys. Lett. B 375 240 (1996)
Broadhurst, Gracey and Kreimer, Z. Phys. C 75 559 (1997)
Broadhurst and Kotikov, Phys. Lett. B 441 345 (1998)
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Within reduced QED

Optical conductivity (general case): o« =1—cc = A+ ¢4
ST, PRD 86 025005 (2012)

1o
I(1,1,1,1,0) = Cp [ <Io>
I =l

r(\) o~ T(n+2\)(n+1) 1
[F(2)\)I'(3/\ —a-—1) 2

Kotikov, Phys. Lett. B 375 240 (1996)

2 TOIT( — )l (12X 4 0) x

n meotm(2M — «)
—~ nlfn+1+a) n+l-XA+a« r(2x)

Optical conductivity (particular case): ey =0and A= % —1—1/2
Kotikov and ST, PRD 87 087701 (2013)

Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)
Kivel, Stepenenko and Vasil'ev, Nucl. Phys. B 424 619 (1994)
Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

1 e
I(1,1,1,1,\) = CD[ @ ] :3F(A)rr((21/\)—A) [w’(A)—w'(l)
I

NoMm
ctivity of

MeLlnod o J guenec n 1
Loops, Triangles and the Optical Condu Grap!

hene

87 03770
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For fermion self-energy (general case): & = g —a, A=D/2-1

Kotikov, Phys. Lett. B 375 240 (1996)
Kotikov and ST, PRD 89065038 (2014)

o~
1 1 1
I(Q’L@LI):CD[@ 1 T~ wPa-11-5

o F@r3re—a-p) rw) (&, B)
Fa)f(A=24+a+3)F@2N)
16, ) = rML+x—a) msin[rd]

r(3—a— B)sin[r(A — 1+ B)]sin[r(a + 5+ X — 1)]
= n—|—2)\ 1 M(n+1) 1
Z <n+>\+&—1r(n+2+,\_[§) ntAtl-a
r(n+2—&)r(2_5)r(x) sin[m(5 + A — 1)] )
FMn+3+A—a—BIB—a—Br(A+a—1)sin[r(@-+ 4+ A —1)]
Application: reduced QED3 »

ST, PRD 89 067702 (2014)
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Example of a computation

Consider the simplest but important case of

JL,1,1,1,)) =

Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)
Kivel, Stepenenko and Vasil'ev, Nucl. Phys. B 424 619 (1994)
Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

Within reduced QED:

@ simpler derivation via the method of uniqueness in momentum space
@ application to an odd-dimensional QFT (reduced QED D = 3 — 2¢)
@ interaction correction to the conductivity at the IR fixed point
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The Method of Uniqueness

Also known as the star-triangle or Yang-Baxter relation
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The Method of Uniqueness

Also known as the star-triangle or Yang-Baxter relation
Origins:
@ first appeared in theories with conformal symmetry
Polyakov, JETP Lett. 12 381 (1970)
D’Eramo, Parisi and Peliti, Let. Nuov. Cim. 2, 878 (1971)
@ basic notions in Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)
o first applications to multi-loop calculations:
Usyukina, TMF 54 124 (1983), Kazakov, TMF 58 343 (1984)
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The Method of Uniqueness

Also known as the star-triangle or Yang-Baxter relation
Origins:

@ first appeared in theories with conformal symmetry
Polyakov, JETP Lett. 12 381 (1970)

D’Eramo, Parisi and Peliti, Let. Nuov. Cim. 2, 878 (1971)
@ basic notions in Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)

o first applications to multi-loop calculations:
Usyukina, TMF 54 124 (1983), Kazakov, TMF 58 343 (1984)

|dea of the method (algebraic, no explicit integration):

compute complicated Feynman diagrams
with the help of a sequence of simple transformations

(finding such sequence is generally highly non trivial)
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Some Transformations (in momentum space)
@ Plain line with an arbitrary index a:

« 1
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Some Transformations (in momentum space)

@ Plain line with an arbitrary index a:

o 1
= k2o
@ Chains reduce to the product of propagators:
a B a+p
—.— =
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Some Transformations (in momentum space)

@ Plain line with an arbitrary index a:

o 1
= k2o
@ Chains reduce to the product of propagators:
a B a+p
—.— =

@ Simple loops involve an integration:

b o —-D/2
S e
_a(a)a(p) _ (D)2 - a)
G(a, B) = 2o+ f—DJ2)’ a(a)—T
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Some Transformations (in momentum space)

@ Uniqueness relation (& = D/2 — a):

as a1

N G(a1,an) a3
> ai=D ~
i

e aq

(Note: unique triangle has index ), a; =2A+2 = D)
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Some Transformations (in momentum space)

@ Uniqueness relation (& = D/2 — a):

ag a1
=  7P2G(ay,a0) a3
> ai=D ~

e i aq

(Note: unique triangle has index ), a; =2A+2 = D)
@ Integration by parts (IBP):

1 Qa _ +
B DD
DD

(Note: =+ correponds to add or subtract 1 to index «;)
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Application to J(1,1,1,1, X)
@ Replace line by loop to make right triangle unique (index 2+ 2\ = D):

1 1

-~ 7wP2G(1,2)) p2(1-2)
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Application to J(1,1,1,1, X)

@ Replace line by loop to make right triangle unique (index 2+ 2\ = D):

@ D/2G12/\ @ @ 1)\

@ Apply IBP to reduce the diagram to simple chains and loops:

A+4 A+0 A+6
(—25)<D =200+0) [ X D> - @
A+ 6

N1
+ o+ A+o+1

7P2(\ +6)
=" 6L [G(A+5+1,A+5)—G(A+5+1,1+5)}

(Note: ¢ — 0 additional regularization parameter)
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Final result
Vasil'ev, Pismak and Khonkonen, TMF 47 291 (1981)

FAre-=2X)

I0) =3 =0 [V =¥ ()]

(¢'(x) is the trigamma function)

e Even-dimensional QFT (A — 1 or D — 4), well-known result:

I(1) =6¢(3)

e Odd-dimensional QFT (A — 1/2 or D — 3):
Kivel, Stepenenko and Vasil'ev, Nucl. Phys. B 424 619 (1994)
Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

1(1/2) = 67 ¢(2)

(odd-dimensional case is transcendentally more complex: ((2) = 72/6)
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Interaction correction coefficient at the IR fixed point

o(qo) = o0 (1 +Cay + O(af))
At 2-loops, using the expression of /(1,1,1,1, \):
1

C) = 5 (3{1”'(”2)““1)} trst (1+1A)2>

In reduced QED, 3, the interaction correction coefficient is small

ST, PRD 86 025005 (2012)
Kotikov and ST, PRD 87 087701 (2013)
C* = C(1/2) = 2= 9 . 0.056
- - 18w
At the Lorentz-invariant IR fixed point
interactions (up to 2 loops) have negligible effects on the conductivity

Loops, Triangles and the Optical Conductivity of Graphene 31 August 2016 38 / 57



Outline

@ Interaction corrections in the non-relativistic limit
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Graphene field theory
Feynman rules (instantaneous Coulomb interaction)
@ unrenormalized free fermion propagator (vp = 1 not a “natural” unit)
SO(P):;£7 p="pu=1"p0— 7P,
@ unrenormalized free photon propagator

o i

@ unrenormalized free vertex: F8 = —iggy°.

Immediate consequences: Gonzslez, Guinea and Vozmediano (1994)

@ the photon self-energy is finite (no UV singularity): Z, = 2;1/2 =1

@ the one-loop fermion self-energy does not depend on frequency

» no wave function renormalization: Z, = Z-! = 1 + O(a?)

» Fermi velocity renormalization: Z, =1 — aw) 0(a?), a=

(1 2
8e4

e
ATkv
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One-loop fermion self-energy (D, = 2 — 2¢,)
LK) = = /[dHDeq](—ieofyO)So(k—i— q) (—ier®) Vo()

Integrating over frequency and using the parametrization:

. . . . Tr[7-kE1(k)]
Yik)=w7 kZ(|k?), (k) =-——" "=
(k) =wy-kZu(lk"), Tulkl) 4N,:vo|k|2

. . (K +
yetds: Ta(kP) = O [larg L ETD
4vO\k! k+4ql1g|

Note: massless one—loop propagator-type master integral

(d°q] (k2)P/2-0—
<> - [ EFa T e 6@

a(a)a(p)
ala+p—D/2)

ND/2 — )

G(a75) = F(a)

a(a) =
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One-loop fermion self-energy (D, = 2 — 2¢,)
LK) = = /[dHDeq](—ieofyO)So(k—i— q) (—ier®) Vo()

Integrating over frequency and using the parametrization:
, e - . Tr[7- k Z1(k)]
Yik)=w7 kZ(|k?), (k) =-——" "=
(k) =wy-kZu(lk"), Tulkl) PYYRAAE

A

yields: (K [?) = WG(1/2,1/2).

8 Vo

G(a, B): coefficient function of the one-loop p-type massless integral

dPq]  (k3)P/2o
O - [ EFa o - e 6@

A)alp) L T(D2-a)
ala+ B —DJ2) M)

G(a> 5) =
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One-loop fermion self-energy (D, = 2 — 2¢,)
LK) = = /[dHDeq](—ieofyO)So(k—i— q) (—ier®) Vo()

Integrating over frequency and using the parametrization:

. . . . Tr[7-kE1(k)]
Yik)=w7 kZ(|k?), (k) =-——" "=
(k) =wy-kZu(lk"), Tulkl) PYYRAAE

2 (‘E‘2)De/271

. g €
y|e|dS: Zk1(|k|2) = 8730(47-(-)7De/26(1/2‘1/2)

After .-expansion in the MS scheme (L = log(|k [2/142)):

ZalP) = "9 (1 - 1o sog240c))
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Computation of Z,: similar to mass renormalization in QED
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Computation of Z,: similar to mass renormalization in QED

_ So(k)
1 +iX(k) So(k)’

S(k) T (k) = koZw(K2) + voF - k Ty (K?)
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Computation of Z,: similar to mass renormalization in QED

So(k)

_.0 2 — 2
115 (k) So(K)’ Y (k) =7 koXo (k%) + vo¥ - k Xi(k7)

S(k) =

1 1

S(k) =
() 1_zw’yok0—V0’yk

1+zk = Zy(p) Sr(kip), vo = Zy(p)v(p)
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Computation of Z,: similar to mass renormalization in QED

So(k)
T 15(k) So(K)’

S(k) = T (k) = koZw(K2) + voF - k Ty (K?)

1 1
1—%0 A% — vy - k

5(k) = = = Zy(p) Sr(kip);  vo = Zu()v(n)

Constraints (in MS-scheme):

(1-X%,)2Zy =1,
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Computation of Z,: similar to mass renormalization in QED

So(k)

_.0 2 — 2
115 (k) So(K)’ Y (k) =7 koXo (k%) + vo¥ - k Xi(k7)

S(k) =

1 1

S(k) =
) 1—%0 A% — vy - k

1+zk = Zy(p) Sr(kip), vo = Zy(p)v(p)

Constraints (in MS-scheme):

(1-X%,)2Zy =1,

Our case: ¥, = 0+ O(a?), so:

Zy=27'=1+0(?), Z,=1- o) | 0(a?),  ofp) = e*(p)
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One-loop photon self-energy

m?@%=«{:}v=—/MH@HWKAmMO%M+qM4%WﬂMH]

Focusing on M% and after frequency integration (qo = iggo) :

n(]).o(qEOa C_f — O) =

/VF 21512 De -1 [dDek] __gEo
ZF 214 _CH = 50
2v De |k | [k >+ m3] 2vg
Note: master integral is of the semi-massive tadpole type

g

dPk 1 B _ (m?)Pf2ma=p
/(ZW)D [K2]o[k2 + m2]8 % = WB(@&%

B ND/2—a)l(a+p—D/2)
B(B.e) = F(D/2)T(5) '
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One-loop photon self-energy

i () = {} = [l PR T i) Solk -+ 6) (iean) So(K)

Focusing on M% and after frequency integration (qo = iggo) :

=12 .2 2\ —&~ D.—1
90 G—0)=N 4| €0 (mo) e
1 (qe0, G — 0) = Nf geo (4m)D2  D.

dEeo
B(1,1/2 = —
(7/)7 mo 2V0

B(p, «): coefficient function of the the semi-massive tadpole diagram

g

dPk 1 3 _ (m?)P/2ras
/(277)" [Pl [k? + m?)7 % B Ws(ﬁ’o‘)v

B rND/2—a)l(a+p—D/2)
B(B.a) = F(D/2)T(5)
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One-loop photon self-energy

m?wﬁ=«{:}v=—/MH@HWKAmMO%M+qM4%WﬂMH]

Focusing on M% and after frequency integration (qo = iggo) :

G € (m3)~" De—1

N(ge0, 4 — 0) = N
1 (90, G ) F qeo  (47)De/2 D.

dEeo
B(1,1/2 = —
(7/)7 mo 2V0

Renormalization (simple substitution):
(mB) ™= = (o) = (Z,v)*" =1~ 5 +0(a?)

With 2-loop accuracy:

_ Nee? |G

N2°(qgo, g — 0) =
1°(90,G — 0) 8 ido

(1 — %) . 01(qo) = 00 (1 _ % + O(a2)>
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Two-loop photon self-energy

M57(q) = 2M5;(q) + M3, (a)

The first contribution is primitively one-loop:
2N%; (q) = +
The second contribution is truly two-loop:

ns,(q) =
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Two-loop photon self-energy (a)
After integration over frequencies, Wick rotation and expansion in § — 0:
NF ( )De/2 3/2—¢,
N99(qe0, G — 0) = e
2a(qEOa q ) 32 | | V2 (47I‘)De

(D —1)(D. =222
De

G(1/2.1/2) B(1,1/2 + =)

Note: the diagram is finite but has a divergent fermion self-energy subraph!

_Nee? a|gf?

Contribution to the conductivity:
U2a(q0) = UO + O( )

Agreement with JVH but not with Mishchenko (/4 instead of «/2)

31 August 2016 45 / 57
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Two-loop photon self-energy (b)

After integration over frequencies, Wick rotation and expansion in § — 0:

- Neeg |
M%(m.q—0)= BT, {(De —1)h(1/2)
e

—m? h(3/2) — m*(De — 2) /0(1/2)}
where /,(«) are semi-massive 2-loop tadpole master integrals

h() — [ k]O k] 1R )R~ oI

= ) R P o
(m2)D6+nf2a75/2 .

= (@n)P- In(c) .

Note: in NM3%(q), ©o(1/2), h(1/2) and k(3/2) are UV finite.
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To compute the master integrals, use a combination of transformations:

@ simple identities to related diagrams with different « values:

111 !
k2o (kz 4 m2) T om? \ k2o k2(a—1) (k2 + m2)

@ Mellin-Barnes transformation: Boos and Davydychev, TMP 89, 1052 (1991)
1 1 +ico (m2)5
—_— = dsT(—s)l(1
eam a2 ), BTN+ gays

@ integration by parts for a 2-loop diagram with massive lines
Kotikov, Mod. Phys. Lett. A, 06 677 (1991)

1 2 2
1 B 1 B
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Two-loop photon self-energy (b)

1 1/2 /
m2)Pe—7/2
lo(1/2) % - ((4)7r)De ™
1 1/2
1 1/2
(m2)De75/2
/1(1/2) % = W'”(“—W)a
1 1/2
1 3/2
m2)Pe—7/2
N o
1 3/2
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Two-loop photon self-energy (b)

» Nr €5 ||
n33(m, g —0) = =2 |D’ x {(06—1)/1(1/2)
e

—m? x(3/2) — m*(De — 2) /0(1/2)}

Then:

_N,:e2a8—37r G |?

M33(a0,G = 0) = ——g—a —— T

Contribution to the conductivity:

8 —3r

o25(qo) = 00 a+0(a?)

Agreement with JVH and Mishchenko.
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Optical conductivity up to 2 loops

@ One-loop contribution computed with 2-loop accuracy:
(6]
01(q0) = 00+ 025(q0):  024(q0) = —00
@ contribution of the fermion self-energy correction

o

Uza(CIo) =00 5

@ contribution of the vertex correction
8 — 37
6

o2b(qo) = 00 a

Total conductivity up to 2-loops

a(qo) = a0(qo) + 72a(qo0) + 022/(qo0) + 026(q0) = 0 <1 +CP a4+ O(a2)>

We recover Mishchenko's result (2008): C(?) = (19 — 67)/12 ~ 0.013
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Method of Counterterms
Finite diagram with a divergent fermion self-energy subgraph:

. Nk el (m2)D5/2—3/2—5<,
Hgg(qE()v G—0)= =——5 19 ‘2 : v2 (47)De

><(De—l)(De—Q—

> 25) 6(1/2,1/2) B(L.1/2 + =)

Add the corresponding (local) counter-term:

B Nee? ., el (m?)Pe/2-3/2
I'I(z)g/(QEm q— 0) = - 32 ‘q ’2 0\/2 (47T)De/2
(De = 1) (De — 2)
B(1,1/2
471_57 De ( ’ / )
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Method of Counterterms
Finite diagram with a divergent fermion self-energy subgraph:

__Nee?a|q)?

Add the corresponding (local) counter-term:
NE €? ay |G]2

Hence, in agreement with the simple substitution, we recover:
022(q0) = —op /4
(besides subtracting the subdivergence
the counterterm graph has a finite contribution to the final result)
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Summary of density-density correlation function approach
Total conductivity up to 2-loops

(qo) = — lim 22 1%

30 |g|? (G0, G), " = (¢°, v3)

N%q) = (Tp(a)o(—q)),  p(q) = oW’V

o(qo) = oo (1 +C@ o+ O(az))

We recover Mishchenko's result (2008): C(?) = (19 — 67)/12 ~ 0.013

Crucial distinction between regularization and renormalization

@ Dimensional regularization works as well as the hard cut-off approach.
@ Renormalization of the Fermi velocity (vp = 1 not a “natural” unit)

Clarifies the origin of (half of) the controversy

ST and Kotikov, EPL 107 57001 (2014)
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A word on the Kubo formula approach

- 1 - o
5(qo) = o (K*(go, G — 0) + K**(qo0, G — 0))

Ki(q) = (T (@) (=),  j(a) = ew¥7V
To better exploit the O(2) symmetry, attempt parametrization (as ¢ — 0):

N (q) = (¢"q* - ¢"q")N(q%), N(q*) = m

(encodes transversality g,M*”(q) = 0 or current conservation)

Kubo formula

5(q0) =iqo K(q0),  K(qo) = v§ N(q5,G — 0)
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A word on the Kubo formula approach
1

2iqo
Ki(q) = (Ti'(e)/(—q),  Jjlq) = eovoWyV

To better exploit the O(2) symmetry, attempt parametrization (as ¢ — 0):

5(qo) = (K™ (g0, — 0) + K*(q0, G — 0))

(q) = (66— a"a) (). N(e?) = 2D
De(—q?)
(encodes transversality g,M*”(q) = 0 or current conservation)

Kubo formula

(qo0) = iqo K(qo), K(qo) = v§ N(q5,G — 0)

According to Mishchenko, there is a “Coulomb anomaly” (2008):
o with a hard cut-off: 5(go) = 00 (1+CW a) # o(qo)
o soft cut-off must be used: &(qo) = o(qo) = 0o (1 +C? a)

Loops, Triangles and the Optical Conductivity of Graphene
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One-loop case (finite)

Ne €3 (m3) == De—1
K = B(1,-1/2
I(QEO) 2v0m0 (47l')D€/2 De ( ’ / )

B(p, a): coefficient function of the the semi-massive tadpole diagram

Expressing all bare parameters in terms of renormalized ones and
performing the ¢,-expansion yields, with two-loop accuracy:

Nf €2 «
Ki(q0) = (1 _ 7)
1(qo) 8iqo 4

Contribution to the conductivity with two-loop accuracy:

51(0) = 70 (1 — 5 +0(a?)) = 71(q0)

o

Notation: &Za’(qO) = U2a’(q0) = _Z 00

53 / 57
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Two-loop case (diagrams are individually divergent)

K2(qo0) = 2K2a(q0) + Kob(q0)

Local singularities (simple poles):
Nf € 1
Fe 2 ( +2Lg+3 —4|og2+0(57)>

2K =
22(q0) 8igy 4 €y
Npe? 11— 3n
K = 2K
26(q0) 2a(q0) + 8id0 a—
Using the simple substitution:
a2 _ 024 + O2p + 02 e )
00 00 oo
o - . 11 — 37
024+ 02p = 00 6 .

025 = 025/ = — 00,
4
31 August 2016

All approaches yield the same result: C(?) = (19 — 67)/12 ~ 0.013.
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Outline

© Conclusion
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Conclusion
Rich interplay between:
@ condensed matter physics motivations
@ high-energy physics algebraic multi-loop techniques
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Conclusion
Rich interplay between:
@ condensed matter physics motivations
@ high-energy physics algebraic multi-loop techniques

Interaction correction to the optical conductivity
@ in the non-relativistic limit (v/c — 0):
C(2) _ 19 — 67 19 s

= ———-~0.013
12 12 2

» consistent with present experimental results (o ~ 2.2: aC® = 2.9%)

@ in the ultra-relativistic limit (v/c — 1, stable IR fixed point):

92 — 972 46
Cr=——=———-=~0.056
187 Or 2
» same order of magnitude as in the non-relativistic limit
> same structure as in the non-relativistic limit
» universality (quantitative)? future: case of arbitrary v/c
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Spasibo Bolchoi!
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