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Introduction

Introduction

FIgU I'€. a.) Hexagonal honeycomb lattice with two interpenetrating triangular lattices of A and B sites. g,-, i=1,2,3 are

the nearest neighbor vectors

b.) Corresponding Brillouin zone: the Dirac cones of the fermion spectrum are located at the K and K’ points

> Two sublattice degrees of freedom (pseudospin)
> Two valley degrees of freedom (2 Dirac points)

= reducible 4-spinor description in D =241 < chiral 4%
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Introduction

— Chiral "valley-sublattice” symmetry U(2)ys

— Inclusion of Coulomb interaction and general four-fermion interactions =
extended schematic graphen-like model

— Chiral symmetry breaking: fermion mass and exciton spectrum

— Construction of the effective potential. Phase transitions under external
conditions: temperature, chemical potential, and Zeeman effect

— Compactification of one dimension: nanotubes, Aharonov—Bohm effect
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Effective free low-energy model

Effective free low-energy model

Tight-binding Hamiltonian:

Ho=—t> Y [0M(F+ 5005 (F) + he

reBi=1,2,3

e t — hopping constant; ¢+42, 182 — fermion field operators belonging to
triangular sublattices with A and B sites; 5: nearest neighbor vectors.
"Multilayer” case of Ny = 2N degenerate fermion species (flavors) of real spin 1
and |, living on N hexagonal monolayers; flavor index a = (1, ..., Ny = 2N).

e Low energy expansion around 2 Dirac points K, K’ and continuous limit =
effective free low-energy Lagrangian:

Lo=1 [i’yO@o + ivpytoy + ivay28y] S @i’y“guw
~ - 3
8M = (80, VFV), VE = Eta

Ut = (VR VR — iR, i)
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Effective free low-energy model

e Reducible chiral (Weyl) 4x4 representation of Dirac matrices:

0 __ O 12 1 O —7'1 2 0 —T2

Y (12 0 y V= 7.1 0 y V= 7_2 0
s5_ (0 —7° 5_ (I 0 s_lrs s_(0 7°
Y= <T3 0 y V= 0 _I2 y _2[7”7} - 7_3 0 .

"Right" and "left" spinors:

Yo =Put, Pa= (1)
Pt = Ty

Chirality eigenvalues +1 corresponding to valley indices for K, K.
e Emergent continuous U(2)ys-symmetry:

1. 1 1
= §l73’ 2 — 5ﬂys, 3= 5735

[t t] = iejt
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Effective free low-energy model

e Invariance under larger group U(2N;), Generators t' @ % ®c™.

e Discrete symmetries P, C, T:

P .
T/)(XO,XaY) — 1,71,}/51/}()(07 7X7y)7
- C —t —
¢(X07 r) — ’Yl‘f’ (Xov r)a

(0, 7) L i02 P (—x0, 7)
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Four-fermion interactions

Four-fermion interactions

e "Reduced” QED scenario with Dirac-Maxwell interaction:

S= /d3x¢/7“D b= = Z /d xFy, F*

wv=(0

D, = (8o — ieAq, vir(V + ieA))

Fermion quasiparticles run in (2 4+ 1)-dim. space-time x®) = (x°, x!, x?) with

Fermi velocity vg; U(1) gauge field propagates in (3 + 1)-dim. bulk space—time
8 = (x% x*, x2, x3) with speed of light ¢ (= 1).

e Partition function

Z:/Dq/JDED#[AH] exp[iS],
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Four-fermion interactions

e Integration over gauge field yields Coulomb interaction

S=5 — % / d®x’ / d®)x W(XO, 7)7°(x°, ?)] US(X® — X017 = F'|) x
x [P(x"0, ) (X0, 7")]

Instantaneous Coulomb potential

US (<, [7]) = e26(x0)/ d?k exp(l'/??)é _«a (c) 5():0)

EoVF (2m) |k| o \w/ |7

with vp/c ~ 1/300 and aes = aé ~ 2 = strong interaction!
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Four-fermion interactions

e Low-energy contact approximation:

Doz —y)

Local U(2N;)-invariant four-fermion interaction Lagrangian:

Gevp

L = =55 [0 ()]
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Four-fermion interactions

e Coulomb interaction on the lattice contains additionally a small on-site scalar
repulsive interaction term:

GVF

ALy = T(WV = ASB: U(2N;) — U(Ng),e ® U(Np)e

Inclusion of phonon-mediated interaction with coupling strength g yields
symmetry breaking interaction Lagrangian:

= - §Gew00F + SR, G=G g
e Fierz-transformation:
L = Lo+ Lin =iy
+{2LMG1VF(@¢)2 + Qi/\/fGWF@V“w)Q
JFQLMHl v (Yir®)? + ziMszF(E,}ﬁwF}

Here we omitted any constrains between coupling constants = extended
schematic Gross—Neveu model
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Effective potential; gap equation and exciton spectrum

Effective potential; gap equation and exciton spectrum

e Introduce (auxiliary) excitonic fields o1, 02, 1, 2 via the
Hubbard—Stratonovich transformation

L, 05,0] = E[@— o1 — 027 — p1in® — <p273] Y (1)
2 2 2
o Pk
—N k_ 4+ )
f; (4VFGk 4VFHk

e Field equations for exciton fields

G1 Vi —

Govp —
o= 2=y 0, 02 = —272 50,
f
H VE —. Hovp —
o1 = 2 PinSep, P2 = —22 0y
Ng N
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Effective potential; gap equation and exciton spectrum

e Gap equations:

(o) = GlVF () = 2C’~,1VFTISf [iG(x,x)],

(o) = szszW-”w:szVVFTrsf[ *i6(x. )],

T —2H,1\,:F<$iv5w>=2HNf Tret [1%16 (x,x)]
Hovp — H

(p2) = —275 7 (P7°) = 27 Tt [i6 (. 0)]

Inverse fermion propagator

[67H X)), = [@— (o1) — (02)7* — (p1)in® — <¢2>ﬂ aﬁ5ab5(3’(x - x).
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Effective potential; gap equation and exciton spectrum

e Transformation properties of condensates

Wriy) | @) @y y)  @indy) @)
P 1 —1 —1 1
C 1 1 -1 1
T 1 -1 1 1
45 —1 1 —1 1
3 ~1 1 1 -1

Ta ble: Transformation properties of various condensates @r,-w), where now I; = {1y, 735, i'75, '73}, under discrete P,
C, T and ~°, 3 transformations (here we consider P : (x°, x,y) = (x°, —x,y)).

i (1)) breaks U(2N;) and discrete 7%, 43, but preserves P, C, T

i (py31) preserves U(2N), C, +°, 73, but breaks P, T. ,,Haldane mass"
my = (02) /ve? related to parity anomaly in D = (2 + 1) dimension

i (vir®1) breaks U(2N;) and discrete P, C, 7%, but preserves 7 and 3
iv (iy31p) breaks U(2N;) and 73, but preserves P, C, T and ~°
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Effective potential; gap equation and exciton spectrum

e Partition function of semi-bosonized Lagrangian:
2= [ 0700 [ D0iDoDeDres {i [ adxtlivonel) @)

Fermion determinant of Dirac operator D(x,y) = D(x, y)ln, (being the inverse
propagator) rewritten by using Det(D) = (Det D)M = exp(N¢Trsy In D):

V4 / Doy Doy Dy Dy exp {iNeSest (o7, i)}

2
d Od2 P
/ x XZ<4VFGI< 4vp Hy

—iTre In(if) — 01 — 027> — 1i7° — ©27°)

Set (07, i)
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Effective potential; gap equation and exciton spectrum

e Effective potential (large-N; saddle point = o;, p; = const)

Vefr(0i7tp;)/dxod2x = —Sea(0i, i)

)
oj,pi=const
2

2 2z

Pk . [ dpod<p
Vert(oi, @ E Trs In D(p),
efe(0i, i) > (4VFGI< 4VFHk> +// (2n)? s In D(p)

D(p) = poy° — veBT — o1 — 027>
Using Trs In D(p) =

— 1i7® — @27

>~ In€; with €; the four eigenvalues of the 4 x 4 matrix
(p), one can calculate the momentum integral and obtain (for My /A <« 1)

2
Z{gk0i+hk<ﬁi+ MI? }7

Vert(ai, i)

— 4w 4w 6V
M2 = loa £ pl, p=1/0% + @7 + ¢35,
where = &~ b= i (657 = it = 2)
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Effective potential; gap equation and exciton spectrum

e Gap equations

OVert(0i, i)
60’,'

OVert(0i, i)

f— 0’
Op;

=0, i=1,2 (3)

Illustration: g1 =g =hi=hy, =g
Solutions
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Effective potential; gap equation and exciton spectrum

e Exciton Spectrum:

ok(x) = (k) + ok(x), w(x) = (pk) + r(x)

Consider now the phase with (o1) = myv2, (02) = (p1) = (¢2) = 0.
Two point 1Pl Green function (inverse propagators) of fluctuating fields:

52Sost
r ) . . S =
b (X =) 50x()00x(y) lorormo ¢k = {01,002, 01, P2},
1 . ~ ~
oo (x —y) = ———0®) (x — y) + iTrs [BGo(x — y) B Go(y — X)] -

2VF G¢k

Notations:

G¢k = {G17 G2, H17 HZ} ) Ii-k = {1477353 "75773} ) k = (15 -",4)7

Golx s = | &';( x )aﬁe""xﬂ 5= (2" wP))

P —mvi
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Effective potential; gap equation and exciton spectrum

e The straightforward loop calculations yields in momentum space (Minkowski

metric):

erSDk(p)

P - m @)
2mvE\/—p?
(/R

r(p),

tan

2mvg |’
1 p? — (2myv3)?
_ _ + I ,
e =)+ L0 e
| 5
(e —g1) - r(p).
2VF( kK — &1) 27rv§ (p)

The inverse expressions are just the exciton propagators, the singularities of which
determine their mass spectrum and dispersion laws. Scalar excitation o
corresponds to a stable particle with a mass m, = 2m;. Quasiparticle o5 is scalar

resonance
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Effective potential; gap equation and exciton spectrum

e Under certain restrictions of coupling constants, the model Lagrangian acquires
additional continuous symmetry.

lllustration: g1 = h1 =g <0, g2 =hy > g = (01) ~ (PYyh) #0
Lagrangian is invariant under continuous chiral symmetry:

Ups(l) © o — exp(iar® )1,

= massless GB: ;.
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Nanotubes

Nanotubes

e Compactification:

One spatial dimension compactified and lattice sheet is rolled up to a cylinder.
Compactification of coordinate x> = Ry with a length L = 27R (R cylinder
radius) and x! pointing in z-direction, parallel to cylinder axis.

There exists a constant gauge field A, (not to be gauged away) to be included by
02 — Dy = 05 + ieA,. Alternatively, keep 0> and include an effective magnetic
phase ¢ into the boundary condition:

eAzL N &
or @0

¢ =

®,, — the magnetic flux passing through the tube cross section, ®% = 27 /e is
magnetic flux quantum.
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Boundary condition:

k(7 HT) = @07, b= (0,%1),
wK'(XO, 7+ Z) _ e2wi(¢+%v) wK’(XO; ,—:)

Fourier decomposition of spinors:

1 > i 2 x! x° 5
b= Z Z e [R (n+@)+p1x+po ] (;5,)—, ’
¢K’n

n=—oo
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e Azimuthal component of the p, momentum:

ool = T +6 - 5),

v # 0 = "semiconductor” energy gap between conduction/valence bands

47 |v|

AS(n:q’):pl:O):vF [ 3

£0.

v = 0 = "metallic” behavior.

Insulator phase for dynamical mass

AS(n=p =¢=0)= 2\/v§ <ZZT>2 (%)2 + (mv2)2.
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e Thermodynamic potential Q7(— Veg):

Inclusion of temperature T and extended "chemical” potential fi = yu — §suBBj|
describing Zeeman interaction.

Replace pp-integration in effective potential by summation over Matsubara
frequencies wy using rule:

/ i)~ D i),

27 1
14 £=0,£1,42,...
Wy = 6 < + 2) ) 07 ) ’

1 .
b= 7 inverse temperature.
Standard shift

%SNBB” (4)

where s = +1 for up/down spin, g Landé factor, ug = e/(2m) the Bohr
magneton and B longitudinal in-plane magnetic field.

Boundary condition for nanotubes gives p, — p,(n) = 2X(n+ ¢ — )
¢ expressed by magnetic AB flux.

we = we —ifl, fL=p—
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e Thermodynamic potential

2 o? Yk
Veff(gi7 Pis T7 :a’ ¢) = Z { <4V G, + )
=1 F Uk

4VFHk
1 > = d, 2 1\
P E N CIEHED

s=+1/¢=—oc0 n=—00

2
2 2
+vE <L7r) <n+¢— %) + vap? + M2
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Phase transitions

Phase transitions: Aharonov—Bohm effect

e Numerical investigation of the global minima of the thermodynamic potential
Veff(aa ¢7 T)

3.0H oH
prp- $=0.05 | ||P# $=0.50 | | [P (=091,
2.5 .54
2.04 [2.04 1.5H
1.54 54
1.04 - 0 "
0.54 54
00| L/Be 0| L/p: o. T T T T 2
0 0‘.5 1‘0 1‘5 2‘0 2‘5 3‘ 0 05 1.0 1‘5 2‘0 2‘5 31 0.0 0.1 0.2 0.3 04 0.5

Flgu I'€. Phase diagrams of the model in the plane (L, 3) with different values of the magnetic phase ¢ and in the plane
(¢, B) with fixed L < L (Le = vpBe)-

Painted area: symmetrical phase

Unpainted area: broken symmetry
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Phase transitions

Phase transitions: Zeeman effect

T/T,
1.0 I vl
0.8
1 f
0.6
I
11 QUZ
0.4
02[ w 2 f
S/ e

0 02 04 06 08 1.0

FIgU €. Phase diagram of the model in the plane (6, T)

Area |: broken symmetry, only one minimum at o # 0

Area |I: symmetrical phase, only one minimum at o = 0

Area Ill: broken symmetry, global minimum at o # 0, local minimum at c =0
Area IV: symmetrical phase, global minimum at o = 0, local minimum at o # 0
Line AB: phase transition of second kind

Line BE: phase transition of first kind

Lines BC and BD: no phase transition, local minima appear/vanish
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Summary

Summary

e Tight binding Hamiltonian — effective low energy Dirac-like model of
massless electrons

> (reducible) 4-spinors

— 2 sublattice (A, B — pseudospin)
— 2 valley (Dirac points) d.o.f.

> Chirality operator 7° (pseudohelicity)
o U(2Nr) chiral symmetry

e Four-fermion contact Coulomb, one-site scalar, and phonon-mediated
interactions — X'SB by condensates

e Fierz-transformation and generalization to extended schematic GN model
o Effective potential: gap egs. and exciton spectrum
e Nanotubes by compactification and boundary conditions

> Phase transitions at L, T, ¢ with AB effect
> Phase transitions at 6y and T with Zeeman effect
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