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Introduction

Introduction

Figure: a.) Hexagonal honeycomb lattice with two interpenetrating triangular lattices of A and B sites. ~δi , i = 1, 2, 3 are

the nearest neighbor vectors

b.) Corresponding Brillouin zone: the Dirac cones of the fermion spectrum are located at the K and K ′ points

. Two sublattice degrees of freedom (pseudospin)

. Two valley degrees of freedom (2 Dirac points)

⇒ reducible 4-spinor description in D = 2 + 1 ⇔ chiral γ5
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Introduction

− Chiral ”valley-sublattice” symmetry U(2)vs

− Inclusion of Coulomb interaction and general four-fermion interactions ⇒
extended schematic graphen-like model

− Chiral symmetry breaking: fermion mass and exciton spectrum

− Construction of the effective potential. Phase transitions under external
conditions: temperature, chemical potential, and Zeeman effect

− Compactification of one dimension: nanotubes, Aharonov–Bohm effect
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Effective free low-energy model

Effective free low-energy model

Tight-binding Hamiltonian:

H0 = −t
∑
~r∈B

∑
i=1,2,3

[
ψ+Aa(~r + ~δi )ψ

Ba(~r) + h.c .
]

• t — hopping constant; ψ+Aa, ψBa — fermion field operators belonging to
triangular sublattices with A and B sites; ~δi nearest neighbor vectors.
”Multilayer” case of Nf = 2N degenerate fermion species (flavors) of real spin ↑
and ↓, living on N hexagonal monolayers; flavor index a = (1, ...,Nf = 2N).
• Low energy expansion around 2 Dirac points K , K ′ and continuous limit ⇒
effective free low-energy Lagrangian:

L0 = ψ
[
iγ0∂0 + ivFγ

1∂x + ivFγ
2∂y

]
ψ = ψiγµ∂̃µψ

∂̃µ = (∂0, vF
~∇), vF =

3

2
ta

ψt = (ψAa
K , ψBa

K ,−iψBa
K ′ , iψAa

K ′ )
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Effective free low-energy model

• Reducible chiral (Weyl) 4×4 representation of Dirac matrices:

γ0 =

(
0 I2

I2 0

)
, γ1 =

(
0 −τ 1

τ 1 0

)
, γ2 =

(
0 −τ 2

τ 2 0

)
γ3 =

(
0 −τ 3

τ 3 0

)
, γ5 =

(
I2 0
0 −I2

)
, γ35 =

1

2

[
γ3, γ5

]
=

(
0 τ 3

τ 3 0

)
.

”Right” and ”left” spinors:

ψ± = P±ψ, P± =
1

2
(1± γ5)

γ5ψ± = ±ψ±

Chirality eigenvalues ±1 corresponding to valley indices for K , K ′.
• Emergent continuous U(2)vs-symmetry:

t1 =
1

2
iγ3, t2 =

1

2
γ5, t3 =

1

2
γ35[

t i , t j
]

= iεijkt
k
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Effective free low-energy model

• Invariance under larger group U(2Nf), Generators t i ⊗ λα

2 ⊗ σ
m.

• Discrete symmetries P, C, T :

ψ(x0, x , y)
P−→ iγ1γ5ψ(x0,−x , y),

ψ(x0,~r)
C−→ γ1ψ

t
(x0,~r),

ψ(x0,~r)
T−→ iσ2γ1γ5ψ(−x0,~r)
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Four-fermion interactions

Four-fermion interactions

• ”Reduced” QED scenario with Dirac-Maxwell interaction:

S =

∫
d3xψiγµD̃µψ −

ε0

4

∑
µ,ν=(0,...,3)

∫
d4xFµνF

µν

D̃µ = (∂0 − ieA0, vF(~∇+ ie~A))

Fermion quasiparticles run in (2 + 1)-dim. space-time x (3) = (x0, x1, x2) with
Fermi velocity vF; U(1) gauge field propagates in (3 + 1)-dim. bulk space-time
x (4) = (x0, x1, x2, x3) with speed of light c (= 1).
• Partition function

Z =

∫
DψDψDµ[Aµ] exp[iS ],
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Four-fermion interactions

• Integration over gauge field yields Coulomb interaction

S = S0 −
vF

2c

∫
d (3)x ′

∫
d (3)x

[
ψ(x0,~r)γ0ψ(x0,~r)

]
UC

0 (x0 − x ′0, |~r −~r ′|)×

×
[
ψ(x ′0,~r ′)γ0ψ(x ′0,~r ′)

]
Instantaneous Coulomb potential

UC
0 (x0, |~r |) =

e2δ(x0)

ε0vF

∫
d2k

(2π)
exp(i~k~r)

1

|~k |
=
α

ε0

(
c

vF

)
δ(x0)

|~r |

with vF/c ∼ 1/300 and αeff = α c
vF
∼ 2 ⇒ strong interaction!
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Four-fermion interactions

• Low-energy contact approximation:

Local U(2Nf)-invariant four-fermion interaction Lagrangian:

LC
int = −GcvF

2

[
ψ(x)γ0ψ(x)

]2
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Four-fermion interactions

• Coulomb interaction on the lattice contains additionally a small on-site scalar
repulsive interaction term:

∆Lint =
GvF

2
(ψψ)2 ⇒ XSB : U(2Nf) −→ U(Nf)t0 ⊗ U(Nf)t3

Inclusion of phonon-mediated interaction with coupling strength g yields
symmetry breaking interaction Lagrangian:

Lint = −1

2
GcvF(ψγ0ψ)2 +

G̃ vF

2
(ψψ)2, G̃ = G + g

• Fierz-transformation:

L = L0 + Lint = ψi /̃∂ψ

+
{ 1

2Nf
G1vF(ψψ)2 +

1

2Nf
G2vF(ψγ35ψ)2

+
1

2Nf
H1vF(ψiγ5ψ)2 +

1

2Nf
H2vF(ψγ3ψ)2

}
Here we omitted any constrains between coupling constants ⇒ extended
schematic Gross–Neveu model
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Effective potential; gap equation and exciton spectrum

Effective potential; gap equation and exciton spectrum

• Introduce (auxiliary) excitonic fields σ1, σ2, ϕ1, ϕ2 via the
Hubbard–Stratonovich transformation

L[ψ,ψ, σi , ϕi ] = ψ
[
i /̃∂ − σ1 − σ2γ

35 − ϕ1iγ
5 − ϕ2γ

3
]
ψ (1)

−Nf

2∑
k=1

(
σ2

k

4vFGk
+

ϕ2
k

4vFHk

)
• Field equations for exciton fields

σ1 = −2
G1vF

Nf
ψψ, σ2 = −2

G2vF

Nf
ψγ35ψ,

ϕ1 = −2
H1vF

Nf
ψiγ5ψ, ϕ2 = −2

H2vF

Nf
ψγ3ψ
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Effective potential; gap equation and exciton spectrum

• Gap equations:

〈σ1〉 = −2
G1vF

Nf
〈ψψ〉 = 2

G1vF

Nf
Trsf [iG (x , x)] ,

〈σ2〉 = −2
G2vF

Nf
〈ψγ35ψ〉 = 2

G2vF

Nf
Trsf

[
γ35iG (x , x)

]
,

〈ϕ1〉 = −2
H1vF

Nf
〈ψiγ5ψ〉 = 2

H1vF

Nf
Trsf

[
iγ5iG (x , x)

]
,

〈ϕ2〉 = −2
H2vF

Nf
〈ψγ3ψ〉 = 2

H2vF

Nf
Trsf

[
γ3iG (x , x)

]
,

Inverse fermion propagator[
G−1(x , x ′)

]ab

αβ
=

[
i /̃∂ − 〈σ1〉 − 〈σ2〉γ35 − 〈ϕ1〉iγ5 − 〈ϕ2〉γ3

]
αβ
δabδ(3)(x − x ′).
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Effective potential; gap equation and exciton spectrum

• Transformation properties of condensates

〈ψΓiψ〉 〈ψψ〉 〈ψγ35ψ〉 〈ψiγ5ψ〉 〈ψγ3ψ〉
P 1 −1 −1 1
C 1 1 −1 1
T 1 −1 1 1
γ5 −1 1 −1 1
γ3 −1 1 1 −1

Table: Transformation properties of various condensates 〈ψΓiψ〉, where now Γi = {I4, γ
35, iγ5, γ3}, under discrete P,

C, T and γ5, γ3 transformations (here we consider P : (x0, x, y)→ (x0,−x, y)).

i 〈ψψ〉 breaks U(2Nf) and discrete γ5, γ3, but preserves P, C, T

ii 〈ψγ35ψ〉 preserves U(2Nf), C, γ5, γ3, but breaks P, T . ,,Haldane mass”
m2 = 〈σ2〉/vF

2 related to parity anomaly in D = (2 + 1) dimension

iii 〈ψiγ5ψ〉 breaks U(2Nf) and discrete P, C, γ5, but preserves T and γ3

iv 〈ψiγ3ψ〉 breaks U(2Nf) and γ3, but preserves P, C, T and γ5
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Effective potential; gap equation and exciton spectrum

• Partition function of semi-bosonized Lagrangian:

Z =

∫
DψDψ

∫
Dσ1Dσ2Dϕ1Dϕ2 exp

{
i

∫
dx0d2xL[ψ,ψ, σi , ϕi ]

}
(2)

Fermion determinant of Dirac operator D̂(x , y) = D(x , y)INf
(being the inverse

propagator) rewritten by using Det(D̂) = (DetD)Nf = exp(Nf Trsx lnD):

Z =

∫
Dσ1Dσ2Dϕ1Dϕ2 exp {iNfSeff(σi , ϕi )} ,

Seff(σi , ϕi ) = −
∫

dx0d2x
2∑

k=1

(
σ2

k

4vFGk
+

ϕ2
k

4vFHk

)
−iTrsx ln(i /̃∂ − σ1 − σ2γ

35 − ϕ1iγ
5 − ϕ2γ

3)
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Effective potential; gap equation and exciton spectrum

• Effective potential (large-Nf saddle point ⇒ σi , ϕi = const)

Veff(σi , ϕi )

∫
dx0d2x = −Seff(σi , ϕi )

∣∣∣
σi ,ϕi =const

,

Veff(σi , ϕi ) =
2∑

k=1

(
σ2

k

4vFGk
+

ϕ2
k

4vFHk

)
+ i

∫
dp0d

2~p

(2π)3
Trs lnD(p),

D(p) = p0γ
0 − vF~p~γ − σ1 − σ2γ

35 − ϕ1iγ
5 − ϕ2γ

3

Using Trs lnD(p) =
∑

i ln εi with εi the four eigenvalues of the 4× 4 matrix
D(p), one can calculate the momentum integral and obtain (for Mk/Λ� 1):

Veff(σi , ϕi ) =
2∑

k=1

{
gkσ

2
k

4vF
+

hkϕ
2
k

4vF
+

M3
k

6πv2
F

}
,

M1,2 = |σ2 ± ρ|, ρ =
√
σ2

1 + ϕ2
1 + ϕ2

2,

where gk = 1
Gk
− 1

Gcr
, hk = 1

Hk
− 1

Hcr
, (G−1

cr = H−1
cr = 2Λ

π )
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Effective potential; gap equation and exciton spectrum

• Gap equations

∂Veff(σi , ϕi )

∂σi
= 0,

∂Veff(σi , ϕi )

∂ϕi
= 0, i = 1, 2 (3)

Illustration: g1 = g2 = h1 = h2 = g
Solutions

i 〈σ1〉 = −πgvF/2, 〈σ2〉 = 〈ϕ1〉 = 〈ϕ2〉 = 0

ii 〈σ2〉 = −πgvF/2, 〈σ1〉 = 〈ϕ1〉 = 〈ϕ2〉 = 0

iii 〈ϕ1〉 = −πgvF/2, 〈σ1〉 = 〈σ2〉 = 〈ϕ2〉 = 0

iv 〈ϕ2〉 = −πgvF/2, 〈σ1〉 = 〈σ2〉 = 〈ϕ1〉 = 0
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Effective potential; gap equation and exciton spectrum

• Exciton Spectrum:

σk (x)→ 〈σk〉+ σk (x), ϕk (x)→ 〈ϕk〉+ ϕk (x)

Consider now the phase with 〈σ1〉 = m1v
2
F, 〈σ2〉 = 〈ϕ1〉 = 〈ϕ2〉 = 0.

Two point 1PI Green function (inverse propagators) of fluctuating fields:

Γφkφk
(x − y) =

δ2Seff

δφk (x)δφk (y)

∣∣∣
σi ,ϕi =0

, φk = {σ1, σ2, ϕ1, ϕ2},

Γφkφk
(x − y) = − 1

2vFGφk

δ(3)(x − y) + iTrs

[
t̂kG0(x − y)t̂kG0(y − x)

]
.

Notations:

Gφk
= {G1,G2,H1,H2} , t̂k =

{
I4, γ

35, iγ5, γ3
}
, k = (1, ..., 4),

G0(x − y)αβ =

∫
d3p

(2π)3

(
1

/̃p −m1v2
F

)
αβ

e−ip(x−y) (p̃ = (p0, vF~p))
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Effective potential; gap equation and exciton spectrum

• The straightforward loop calculations yields in momentum space (Minkowski
metric):

Γσ1σ1 (p) =
p̃2 − (2m1v

2
F)2

2πv2
F

√
−p̃2

Γ(p),

Γ(p) = tan−1

(√
−p̃2

2m1v2
F

)
,

Γσ2σ2 (p) = − 1

2vF
(g2 − g1) +

p̃2 − (2m1v
2
F)2

2πv2
F

√
−p̃2

Γ(p),

Γϕkϕk
(p) = − 1

2vF
(hk − g1)−

√
−p̃2

2πv2
F

Γ(p).

The inverse expressions are just the exciton propagators, the singularities of which
determine their mass spectrum and dispersion laws. Scalar excitation σ1

corresponds to a stable particle with a mass mσ = 2m1. Quasiparticle σ2 is scalar
resonance
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Effective potential; gap equation and exciton spectrum

• Under certain restrictions of coupling constants, the model Lagrangian acquires
additional continuous symmetry.
Illustration: g1 = h1 = g < 0, g2 = h2 > g ⇒ 〈σ1〉 ∼ 〈ψψ〉 6= 0
Lagrangian is invariant under continuous chiral symmetry:

Uγ5 (1) : ψ → exp(iαγ5)ψ,

⇒ massless GB: ϕ1.
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Nanotubes

Nanotubes

• Compactification:
One spatial dimension compactified and lattice sheet is rolled up to a cylinder.
Compactification of coordinate x2 = Rϕ with a length L = 2πR (R cylinder
radius) and x1 pointing in z-direction, parallel to cylinder axis.

There exists a constant gauge field A2 (not to be gauged away) to be included by
∂2 → D2 = ∂2 + ieA2. Alternatively, keep ∂2 and include an effective magnetic
phase φ into the boundary condition:

φ =
eA2L

2π
=

Φm

Φ0
m

Φm — the magnetic flux passing through the tube cross section, Φ0
m = 2π/e is

magnetic flux quantum.
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Nanotubes

Boundary condition:

ψK (x0,~r + ~L) = e2πi(φ− 1
3ν) ψK (x0,~r), ν = (0,±1),

ψK ′(x0,~r + ~L) = e2πi(φ+ 1
3ν) ψK ′(x0,~r).

Fourier decomposition of spinors:

ψ =
1

L

∞∑
n=−∞

e
i
[

x2

R (n+φ)+p1x1+p0x0
](

ψ
(1)
Kn

ψ
(2)
K ′n

)
,

ψ
(1)
Kn =

(
ψA

Kn

ψB
Kn

)
e−i x2

R ( ν
3 ),

ψ
(2)
K ′n =

(
−iψB

K ′n

iψA
K ′n

)
ei x2

R ( ν
3 ) .
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Nanotubes

• Azimuthal component of the p2 momentum:

pνφ(n) =
2π

L
(n + φ− ν

3
),

ν 6= 0 ⇒ ”semiconductor” energy gap between conduction/valence bands

∆E(n = φ = p1 = 0) = vF
4π

L

|ν|
3
6= 0.

ν = 0 ⇒ ”metallic” behavior.

Insulator phase for dynamical mass

∆E(n = p1 = φ = 0) = 2

√
v2

F

(
2π

L

)2 (ν
3

)2

+ (mv2
F)2.
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Nanotubes

• Thermodynamic potential ΩT (→ Veff):
Inclusion of temperature T and extended ”chemical” potential µ̂ = µ− g

2 sµBB‖
describing Zeeman interaction.
Replace p0-integration in effective potential by summation over Matsubara
frequencies ω` using rule:

∞∫
−∞

dp0

2π
f (p0)→ i

β

∞∑
`=−∞

f (iω`),

ω` =
2π

β

(
`+

1

2

)
, ` = 0,±1,±2, ...

β =
1

T
, inverse temperature.

Standard shift
ω` → ω` − i µ̂, µ̂ = µ− g

2
sµBB‖ (4)

where s = ±1 for up/down spin, g Landé factor, µB = e/(2m) the Bohr
magneton and B‖ longitudinal in-plane magnetic field.

Boundary condition for nanotubes gives p2 → pνφ(n) = 2π
L (n + φ− ν

3 );
φ expressed by magnetic AB flux.
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Nanotubes

• Thermodynamic potential

Veff(σi , ϕi ,T , µ̂, φ) =
2∑

k=1

{(
σ2

k

4vFGk
+

ϕ2
k

4vFHk

)

− 1

βL

∑
s=±1

∞∑
`=−∞

∞∑
n=−∞

∫
dp1

2π
ln

[(
2π

β

(
`+

1

2

)
− i µ̂

)2

+v2
F

(
2π

L

)2 (
n + φ− ν

3

)2

+ v2
Fp

2
1 + M2

k

]}
.
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Phase transitions

Phase transitions: Aharonov–Bohm effect

• Numerical investigation of the global minima of the thermodynamic potential
Veff(σ, φ,T ).

Figure: Phase diagrams of the model in the plane (L, β) with different values of the magnetic phase φ and in the plane
(φ, β) with fixed L < Lc (Lc = vFβc).
Painted area: symmetrical phase
Unpainted area: broken symmetry
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Phase transitions

Phase transitions: Zeeman effect

δ

Figure: Phase diagram of the model in the plane (δµ,T )
Area I: broken symmetry, only one minimum at σ 6= 0
Area II: symmetrical phase, only one minimum at σ = 0
Area III: broken symmetry, global minimum at σ 6= 0, local minimum at σ = 0
Area IV: symmetrical phase, global minimum at σ = 0, local minimum at σ 6= 0
Line AB: phase transition of second kind
Line BE: phase transition of first kind
Lines BC and BD: no phase transition, local minima appear/vanish
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Summary

Summary

• Tight binding Hamiltonian −→ effective low energy Dirac-like model of
massless electrons

. (reducible) 4-spinors
− 2 sublattice (A, B — pseudospin)
− 2 valley (Dirac points) d.o.f.

. Chirality operator γ5 (pseudohelicity)

• U(2Nf) chiral symmetry

• Four-fermion contact Coulomb, one-site scalar, and phonon-mediated
interactions → XSB by condensates

• Fierz-transformation and generalization to extended schematic GN model

• Effective potential: gap eqs. and exciton spectrum

• Nanotubes by compactification and boundary conditions

. Phase transitions at L, T , φ with AB effect

. Phase transitions at δµ and T with Zeeman effect
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