Past, present and future underground detectors $(\mu/\nu)_{atmospheric}$ ν_{solar} ν_{SUSYDM} ν_{SN} PD DM

Lab/Location	Year	Sensitive area /mass	Status
KGF (South India)	1965		
CWI (South Africa)	1965	174 m ²	
BNT (Baksan, Caucasus)	1978	260 m ²	
SAGE I — III (Baksan, Caucasus)	1988-91	30 t of Ga	operates
	1991	60 t of Ga	
HOMESTAKE (USA)			
IMB (USA)			
HPW (USA)			
KAMIOKANDE I — III (Japan)			
SUPER-KAMIOKANDE (Japan)	1996		
NUSEX			
FREJUS			
LSD			
SOUDAN 1			
SOUDAN 2			
SNO (Canada)	1998		
MACRO (Gran Sasso, Italy)	1994		
LVD (Gran Sasso, Italy)			
GALLEX I — III (Gran Sasso, Italy)	1991		
ICARUS (Gran Sasso, Italy)		4700 t of ⁴⁰ Ar	
BOREXINO (Gran Sasso, Italy)			

Past, present and future underwater/ice detectors

(μ/ν)_{atmospheric} ν astrophysical ν SUSY DM WIMP Monopole SM

Lab/Location	Year	Sensitive area	Status
DUMAND I, II Pacific near Hawaii Big Island at a depth of 4.5 km	Historically first underwater project. Closed down**)		
BAIKAL NT Lake Baikal, East Siberia; at a depth of 1.1 km NT-36 NT-72 NT-96 NT-144	1993-95 1995-96 1996-97 1997-98	0.15-0.20 0.4-3.0 0.8-6.0 1.0-8.0	Stepwise deployment & going into operation
NT-200 AMANDA South Pole; depth=0.8-2 km AMANDA A AMANDA B AMANDA B4 AMANDA II AMANDA KM ³	1998 1994 1996 1998 2000 2005	2.0-10.0 Small 1.0 5-6 30-50 1000	Operates Operates Operates Operates Under construction Under discussion
NESTOR Ionian Sea near Pylos, Peloponnesos, Greece; at a depth of 3.8 km	2000	1 st phase: 20 KM ³ in prospect	Under construction & test
ANTARES <i>Mediterranean near Toulon, France; at a depth of 2.4 km</i>	2000?	up to 100-200 KM ³ in prospect	Under discussion
NEMO <i>Mediterranean, Italy; four appropriate</i> <i>sites are identified</i>	?	up to 3500 KM ³ in prospect	Under discussion

^{*)} The sensitive (effective) area is an increasing function of muon energy. For example, in the case of the Baikal NT-200, the estimated effective area is about 2300 m² and 8500 m² for 1-TeV and 100-TeV muons, respectively.

^{**)} Some 1-string prototypes of the DUMAND array were deployed and several useful results were obtained.