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PREFACE

An expert is a person who avoids the
small errors while sweeping on to the
grand fallacy.
Steven Weinberg

Studying the properties and interactions of neutrinos has been one of the most
exciting and vigorous activities in particle physics and astrophysics ever since Pauli
first proposed their existence in 1930. In spite of their weakly interacting (or barely
existing, as Lederman used to say) nature, we have so far accumulated an enormous
amount of knowledge about neutrinos. From neutrino oscillation experiments, we
learned a few years ago that neutrinos are massive and mixed. However, we still do
not know the absolute values of their masses and some aspects of the mixing.

In this book we have tried to gather all the basic knowledge and tools that
are necessary to understand and to infer the true nature of the neutrinos from
the experimental data, using the theories that have been developed. We have also
summarized the well-established facts concerning neutrinos and the important role
played by neutrinos in the Sun and supernovae, and in shaping the Universe we live
in. Special emphases are placed on the basic knowledge of how neutrinos interact,
how they behave in matter as well as in vacuum, and on the formal aspects of
the theory of neutrino oscillations. Salient features of the oscillation experiments
in various settings and sources are given with careful analysis.

After a short history of the neutrino, leading up to the Standard Model (SM)
of electroweak interactions and the discovery of neutrino oscillations in chapter 1,
chapter 2 is devoted to a detailed discussion of the properties of spin 1/2 Dirac
particles. This chapter can be used as an introduction to the quantum field theory
of spin 1/2 fermions. We have tried to make chapter 2 as complete and self-contained
as possible, especially for beginners, by including some details on the terminology
used in quantum field theory and in gauge theory. The symmetry properties of spin
1/2 particles under charge conjugation, C, parity, P, and time reversal, T, as well
as the space-time and Lorentz transformations are discussed. The realistic wave
packet description of a particle is also presented.

In chapter 3, the ingredients necessary for understanding the Standard Model,
such as gauge symmetry and the Higgs mechanism, are presented. The electroweak
behavior of quarks and leptons is explained and summarized, together with some
discussions of the gauge bosons involved.

One of the most remarkable discoveries in the past decade is the finding that
neutrinos are massive and mixed. Chapter 4 is devoted to a detailed discussion
of the three-generation mixing of quarks, which can be extended to the treatment
of mixing of three Dirac neutrinos in a straightforward way (the mixing of three
Majorana neutrinos implies the existence of two additional phases in the mixing
matrix, as explained in chapter 6). A construction of the mixing matrix is presented
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with mathematical details. The possibility of CP violation due to mixing and how
to describe and quantify it are explained.

Chapter 5 is devoted to neutrino interactions, with discussions of several impor-
tant processes involving neutrinos, ranging from neutron decay to charged-current
and neutral-current deep inelastic neutrino–nucleon scattering. All the discussions
are based on the results obtained in chapter 3, where the SM was developed.

We present, in chapter 6, the description of the general, model-independent,
theory of massive neutrinos. Depending on whether they are of Dirac or Majorana
type, the mathematical description takes different forms. In addition, we discuss the
famous see-saw mechanism, which explains the smallness of the neutrino masses in
a natural way. Because of their speculative nature, we have intentionally omitted
details concerning the possible neutrino mass-generating mechanisms that have
been put forward by many authors.

Equipped with the mathematical and basic physics background in the previous
chapters, we present, in chapter 7, the standard derivation of the neutrino oscil-
lation probability. We have tried to make this chapter as complete as possible in
the hope that the reader can find all the necessary information on the derivation
of the standard oscillation formulas, together with how to use them in analyz-
ing experimental data. The types of experiments are as numerous as they can be:
experiments with energetic and low energy neutrinos, with reactor or accelerator
neutrinos, solar, atmospheric, and even extragalactic (SN 1987A) neutrinos, and
finally with short-baseline and long-baseline arrangements. We have included help-
ful discussions on all the possible cases. In addition, some consequences of C, CP, T
and CPT violation for the oscillations, and special cases of oscillations with different
oscillation parameters are discussed.

In chapter 8, in view of the important role that the oscillation plays in probing
the neutrino properties, a derivation of the neutrino oscillation formulas is given
with an emphasis on the more realistic relativistic wave packet treatment. Also
presented in this chapter are answers to often raised questions concerning subtle
and confusing issues in the oscillation formulas.

One of the most interesting findings in neutrino physics is the discovery that
the properties of neutrinos change when they pass through dense matter. Due to
the difference of the weak interaction potentials that different flavor neutrinos feel
in matter, the effective mixing can be dramatically enhanced in the case of a very
small mixing in vacuum. If the neutrinos pass through a region in which the effective
mixing is maximal, it is possible to have large flavor transitions. In chapter 9, we
explain this resonant effect, known as the MSW effect. We derive the necessary
formulas and explained the methods for analyzing the data in the simplest case
of two-neutrino mixing (three-neutrino mixing is discussed in chapter 13). Also
presented is a geometrical description of the oscillations in vacuum as well as in
matter, which, we hope, will help the reader to understand better this important
phenomenon. The geometrical description shows that the neutrino oscillation is
analogous to a classical magnetic moment precessing in an external magnetic field.

By far, the longest running neutrino experiment has been the Homestake solar
neutrino experiment, started in the late 1960s by Ray Davis and collaborators after
John Bahcall predicted a measurable rate on the basis of a solar model. In the early
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1970s, Davis and collaborators discovered the so-called solar neutrino problem,
which has remained unsolved until recent times. It consists of a solar neutrino
detection rate which is substantially smaller than that predicted by standard solar
models. In chapter 10, we start with a brief explanation of the standard solar
models, which explain how the Sun shines and how neutrinos are produced. Then,
we list and describe all the experiments that have so far been performed, as well as
their results and their roles in the solar neutrino problem. We end this chapter by
presenting the results of a global fit of all the solar neutrino data. The results of the
combined analysis of the data of solar neutrino experiments and of the KamLAND
very long-baseline reactor neutrino experiment is presented later in chapter 12.

Chapter 11 explains the generating mechanism and the flux of atmospheric
neutrinos. A comprehensive survey of all the atmospheric neutrino experiments
performed so far is presented. It is interesting to note that the first undisputed
discovery of neutrino oscillations was made with atmospheric neutrinos which have
been initially considered as unwanted background for other measurements. The
confirmation of this discovery by the accelerator long-baseline K2K experiment is
discussed later in chapter 12.

In chapter 12 we start with the introduction of the sensitivity of terrestrial
reactor and accelerator neutrino experiments to the measurement of the oscillation
parameters. Then, we present the main results of reactor and accelerator short-
baseline, long-baseline and very long-baseline experiments, with specific reviews of
the CHOOZ, Palo Verde, KamLAND, and K2K experiments, which are important
for our present knowledge of the neutrino oscillation parameters. This chapter ends
with a brief discussion of the future off-axis long-baseline experiments.

Deciphering the values of the squared-mass differences and the mixing angles
from the data requires a careful analysis with use of the three-generation mixing
matrix, which is often quite complex. Technical issues involved in the analysis and
some useful approximations are discussed in chapter 13. Also discussed in this
chapter are the results of a global analysis of all the existing oscillation data. The
chapter ends with some comments on the absolute scale of neutrino masses.

The most important attempts to measure directly the values of the neutrino
masses are the measurements of the end-point of the electron spectrum in nuclear
β-decays, in particular that of tritium, and neutrinoless double-β-decays. In chap-
ter 14, we review the current experimental upper bounds on the neutrino masses
obtained with tritium β-decay experiments with the effects of neutrino mixings
taken into account. Also given is a brief summary of neutrinoless double-β-decay
theory and experiments. We emphasize the salience of neutrinoless double-β-decay
experiments in determining whether the neutrino is a Dirac or a Majorana particle.
Some useful comments on the results of the experiments are also given.

Chapter 15 is devoted to supernova neutrinos. In order to help the reader who
is not familiar with the subject, a short introduction to supernova physics is pre-
sented, explaining the types of supernovae and their explosion mechanisms. The
supernova which is of special interest to us, and so best studied, is SN1987A. The
neutrino burst of SN1987A was detected by three experiments: Kamiokande-II,
IMB, and Baksan. We present the data and compare them with theory. The limits
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on the neutrino masses are discussed, taking into account neutrino mixing, and the
constraints on other neutrino properties are briefly summarized.

In chapter 16 we present a brief introduction to the main aspects of the stan-
dard cosmological model, which are necessary for understanding the relic neutrinos.
These are the most abundant known, but not yet detected, relic particles in the
Universe, next to the Cosmic Microwave Background Radiation (CMBR). After the
introduction of the Standard Cosmological Model and the discussion of the dynam-
ics of the expansion of the Universe, the thermodynamics of the early Universe and
the decoupling of relic particles are explained. Finally, we present the main prop-
erties of the CMBR, which is one of the most important sources of cosmological
information.

The final chapter 17 deals with the relic neutrinos. The decoupling of neutrinos,
both light and possibly heavy ones, and the importance of neutrinos for nucleosyn-
thesis in the early Universe are explained. Also discussed is the role of baryonic,
cold, and hot dark matter in the formation of large-scale structures. A global fit
of the cosmological data is presented to gain an insight into various limits on the
neutrino masses, the number of neutrino species and the neutrino asymmetry in
the Universe.

We wish to emphasize that this book is not a revised version of the book Neu-

trinos in Physics and Astrophysics, co-authored by one of the present authors
more than 10 years ago. Here, by making the book as self-contained as pos-
sible, we have presented all the necessary details for the reader to follow and
understand the subject matter. This is why we have chosen the title Fundamen-

tals of Neutrino Physics and Astrophysics. For curious and studious readers who
wish to find even more details, we have included as many references as possi-
ble, although no collection of references can be exhaustive. It is with our sincere
regret that we have not discussed, in this book, some important topics, in partic-
ular, the theories of neutrino masses, the electromagnetic properties of neutrinos
and the phenomenology of high-energy neutrinos from astrophysical sources. The
interested readers can find introductions and reviews of these three topics, respec-
tively, in Refs. [812, 74, 467, 781, 1076, 673, 810, 75, 763, 811, 815, 950, 813],
Refs. [884, 52, 226, 158] and Refs. [487, 499, 584, 979, 785, 590, 583].
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1

HISTORICAL INTRODUCTION

I have done something very bad today by proposing a particle
that cannot be detected; it is something no theorist should
ever do.
Wolfgang Pauli

The history of weak interactions dates back to 1896, when Becquerel discovered the
radioactivity of uranium. Three years later, Rutherford discovered that there were
two different by-products, α and β, γ being discovered later. In 1914, Chadwick
demonstrated that the β-spectrum was continuous, in contrast to α- and γ-rays
which were unique in energy. This surprising result was subsequently confirmed
in 1927 by Ellis and Wooster. Meitner later demonstrated that the missing energy
could not be ascribed to neutral γ-rays, which led to the idea that the missing energy
could be explained by the existence of a new particle or, as N. Bohr suggested,
perhaps energy conservation held only in a statistical sense.

In order to remedy this serious problem as well as the problem of spin statistics
in β-decay, W. Pauli proposed, in an open letter to a physics conference at Tubingen
on 4 December 1930, addressed to “Dear Radioactive Ladies and Gentlemen”, that
the existence of a neutral weakly interacting fermion emitted in β-decay could solve
the problems (see Ref. [855]). He called this neutral fermion a neutron, with mass
of the order of the electron. In June 1931, Pauli gave a talk at a meeting of the
American Physical Society in Pasadena and reported for the first time on his idea.
He did not have his talk printed, however, since he was still uncertain about his
idea.

When J. Chadwick discovered in 1932 the neutron as we know it today [310],
E. Fermi renamed the Pauli particle the neutrino. The first published reference to
the neutrino is in the Proceedings of the Solvay Conference of October 1933. Fermi
[430] and Perrin [865] independently concluded in 1933 that neutrinos could be
massless!

The first milestone in the theory of weak interactions was established in 1934
when Fermi formulated a theory of β-decay [432, 431], now known as Fermi theory,
in analogy with quantum electrodynamics (QED). In order to explain the observed
change of one unit of the nuclear spin in some β-decays, G. Gamow and E. Teller in
1936 [505] extended the theory by introducing axial-vector currents in such a way
that parity was still conserved, since parity violation at that time was unthinkable.

It was then realized that other couplings such as scalar, pseudoscalar, and tensor
couplings could also participate in weak interactions. Due to this complication, for
about two decades the real combination of the couplings was in a state of extreme
confusion, in part, due to some erroneous experiments. A famous review article
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by E.J. Konopinski concluded in 1955 [693], just before the discovery of parity
violation, that the correct form was a combination of scalar and tensor couplings,
strongly biased by an impressive but wrong experiment with 6He.

The horizon of the weak interactions was further extended by the discovery of the
muon, µ, in 1937, by J.C. Street and E.C. Stevenson [989] and S.H. Neddermeyer
and C.D. Anderson [825]. The observations of muon decay led B. Pontecorvo to
propose in 1947 [879] the universality of the Fermi interactions of electrons and
muons. This universality was further discussed by G. Puppi [885], O. Klein [682],
J. Tiomno and J.A. Wheeler [1017] and T.D. Lee, M. Rosenbluth and C.N. Yang
[726]. This may be the origin of the concept now known as generation or family.

Although the remarkable success of the Fermi theory left few in doubt of the
neutrino’s existence, none had yet been observed in interactions, partly because of
the predicted strength of interactions by H. Bethe and R. Peierls, who claimed in
1934 that it might never be observed [220]. Urged, in particular by B. Pontecorvo in
the early 1950s, F. Reines and C.L. Cowan searched for a way to measure inverse β-
decay, in which an antineutrino can produce a positron. After considering several
methods, including a nuclear explosion, they settled on using the large flux of
antineutrinos from a nuclear reactor and 10 ton of equipment, including 1400 liters
of liquid scintillators. This experiment was the first reactor-neutrino experiment. In
June of 1956, Reines and Cowan sent a telegram informing Pauli of the discovery
[899] (see Ref. [897]). Reines (Cowan passed away) was awarded the Nobel prize 40
years later!

First indicated in cosmic ray experiments and later confirmed by precise accel-
erator experiments, K+ was found to decay into two different modes with opposite
parity. This was the famous θ-τ puzzle; K+, the one called θ, decays into two pions,
whereas K+, the one called τ , decays into three pions. The puzzle was that θ and τ
have the same mass, spin, and charge, i.e. they are the same particle! This cannot
happen if parity is conserved in weak interactions.

Some started to question the validity of parity conservation, but it was T.D. Lee
and C.N. Yang who first noted in 1956 [728] that evidence for parity conservation
in weak interactions was lacking, not just in K decays but in all observed weak
interactions in the past. A number of tests to observe parity violation were suggested
by Lee and Yang. Subsequently, parity violation was observed in the β-decay of
polarized 60Co [1073], π+ → µ+ + νµ and µ+ → e+ + νe + ν̄µ.

Once parity violation is allowed, the weak Lagrangian becomes even more com-
plicated due to the appearance of parity violating couplings as well as the conserving
ones. However, this seemingly confused situation was dramatically simplified in the
form of the V − A theory. The structure of the V − A theory, formulated in 1958
by R.P. Feynman and M. Gell-Mann [434], E.C.G. Sudarshan and R.E. Marshak
[993] and J.J. Sakurai [918] can easily be realized in the lepton sector by using the
two-component theory of a massless neutrino, proposed in 1957 by L. Landau [711],
T.D. Lee and C.N. Yang [727] and A. Salam [919]. (The idea was first developed
by H. Weyl in 1929, but it was rejected by Pauli in 1933 on the grounds that it
violates parity [854].) In this theory, neutrinos are left-handed and antineutrinos
are right-handed, leading automatically to the V −A couplings.
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In 1958, Goldhaber, Grodzins and Sunyar [549] measured the polarization of a
neutrino in the electron capture e− + 152Eu → 152Sm∗ + νe, with the subsequent
decay 152Sm∗ → 152Sm+γ. They found that the measured polarization of the pho-
ton implies that the polarization of the νe was indeed in a direction opposite to its
motion, within experimental uncertainties, in agreement with the two-component
theory of a massless neutrino.

The concept of lepton number, L, was introduced in 1953 by E.J. Konopin-
ski and H.M. Mahmoud to explain certain missing decay modes. The particles
e−, µ−, τ−, νe, νµ, ντ are assigned with L = 1, whereas their antiparticles have
L = −1. In the V −A theory and today’s Standard Model of weak interactions, L is
conserved. The Reines–Cowan experiment was consistent with lepton number con-
servation. On the other hand, R. Davis’s attempts to observe ν̄e +37Cl → 37Ar+e−

turned out to produce only some limits on the cross-section for the process, because
the process violates the lepton number. This effort, however, led Davis to the
history-making Homestake solar neutrino experiment when he replaced ν̄e by νe

from the Sun.
Although lepton number conservation allows the reaction µ→ e+ γ, its experi-

mental limits were many orders of magnitude smaller than predicted. This suggested
a new conservation law, one which assigns different lepton numbers to each lepton
family, making µ → e + γ forbidden. This assignment led to the prediction that
νµ + n → p + e− is forbidden. As suggested by Pontecorvo [882], if it is shown
that νµ produced in π+ → µ+ + νµ cannot induce e−, then νµ and νe are indeed
different particles. Encouraged by an estimate of the event rate by M. Schwartz
[942], L.M. Lederman, M. Schwartz, J. Steinberger et al. [348] succeeded in 1962 at
Brookhaven National Laboratory (BNL) in establishing the existence of the second
neutrino νµ. This experiment, which utilized an enormous amount of iron shielding
plates cut out of the battleship USS Missouri, marked the first serious accelerator
neutrino experiment.

A crucial milestone in the theory of weak interactions is the formulation of
the Glashow–Weinberg–Salam Standard Model (SM) by S. Weinberg [1051] and
A. Salam [920] in 1967. The model is based on an SU(2) × U(1) gauge model
proposed by S.L. Glashow in 1961 [543], which predicted the existence of weak
neutral currents and the Z boson. The Standard Model incorporates the so-called
Higgs mechanism into the Glashow model. The Higgs mechanism, which was dis-
covered in 1964 by P.W. Higgs [611, 610, 612], F. Englert and R. Brout [412],
and G.S. Guralnik, C.R. Hagen and T.W.B. Kibble [578, 666], allows the original
massless gauge bosons that appear in the local gauge group model to acquire lon-
gitudinal degrees of freedom, finally making them massive as demanded in Nature.
The renormalizability of the model was proved by G. ’t Hooft and M.J.G. Veltman
in 1971 [1002, 1001, 1003], elevating the model to an extremely viable one. The
success of the SM was affirmed in 1973 by the discovery of neutral-current neutrino
interactions in the Gargamelle experiment at CERN (1973) [600, 599, 601] and was
subsequently confirmed at Fermilab [207].

The discovery in 1974 of the charm quark in the form of the J/ψ particle (cc̄) at
BNL (J) [124] and SLAC (ψ) [126] and the subsequent discovery of W± [108, 160]
and Z [109, 135] at CERN firmly established the SM as the model for leptonic and
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hadronic weak and electromagnetic (electroweak) interactions. (The discovery of
the charm quark was a triumph for the prediction of the existence of the charm
quark as a result of the S.L. Glashow, J. Iliopoulos and L. Maiani (GIM) mechanism
[544].) After the discovery of the third lepton, τ , by M. Perl in 1975 [862], the b and
t quarks were discovered at Fermilab, respectively, in 1977 [608] and 1995 [22, 6],
completing all the building blocks of the SM with three generations. Only the Higgs
particle, which is necessary in the mass-generating Higgs mechanism in the SM, has
not yet been found. The number of generations was fixed at three in 1989 by the
impressive measurements by LEP experiments at CERN of the invisible width of
the Z boson [362, 5, 29, 53].

In 1964 J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay [317] unex-
pectedly discovered a violation of CP symmetry in K0-decay. The existence of this
violation has been accommodated in the framework of the SM through the mixing
of three generations of quarks by M. Kobayashi and T. Maskawa [685] in 1973,
extending the theory of two-generation mixing developed by N. Cabibbo [292] in
1963.

No experiments that have been performed so far have detected conclusive devia-
tions from the SM, except neutrino oscillation experiments, which have shown that
neutrinos are massive and mixed. In the SM, this is not the case. This discovery
has made the SM an effective theory of the yet unknown theory beyond the SM.
The understanding of how the neutrinos would gain tiny masses and how they are
mixed is an extremely challenging task that we have to face. The answer must be
found in the theory beyond the SM. Thus, the neutrino is playing the role of a
messenger of the new physics beyond the SM.

The concept of neutrino oscillations was first proposed in 1957 by Pontecorvo
[880, 881], motivated by the K0 � K̄0 oscillation phenomenon (M. Gell-Mann
and A. Pais [514], 1955), in which the strangeness quantum number is oscillating.
The possible oscillations that he could find at that time were ν � ν̄ for Majo-
rana neutrinos. Pontecorvo interpreted a rumor of Davis’s successful observation of
ν̄+37Cl → 37Ar+e− with reactor antineutrinos (which turned out to be false [353])
as a result of ν̄ → ν transitions and a subsequent ν + 37Cl → 37Ar + e− reaction.
However, the V −A theory of weak interactions implies that, in the ultrarelativis-
tic limit applicable to neutrinos, reactor antineutrinos are right-handed. Even if
they oscillate into right-handed neutrinos (helicity is conserved), these neutrinos
cannot induce the process ν + 37Cl → 37Ar + e−, which requires left-handed neu-
trinos. A more realistic case of oscillations became available with the assumption
that νe and νµ are mixed states of two mass eigenstates, which was discussed by
Z. Maki, M. Nakagawa and S. Sakata in 1967 [766]. However, there was only a vague
hint of the present understanding of neutrino oscillations in their work. In 1967,
Pontecorvo presented the first intuitive understanding of two-neutrino mixing and
oscillations [883], which was later completed by V.N. Gribov and B. Pontecorvo in
1969 [567]. The theory of neutrino oscillations was finally developed in 1975–76 by
S. Eliezer and A.R. Swift [404], H. Fritzsch and P. Minkowski [466], S.M. Bilenky
and B. Pontecorvo [236, 239].

As in the case of many weak interaction experiments, neutrino oscillation exper-
iments have had their own share of ups and downs in the early stages. The longest
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running experiments by far have been those of the solar neutrinos. We have recently
witnessed some spectacular results finally confirming the oscillations of the solar
and atmospheric neutrinos and the reactor and accelerator neutrinos in various
settings.

The atmospheric neutrinos, first regarded as unwanted background for the
experiments that had been designed to search for proton decay, have provided
us with the first model-independent indication of oscillations of νµ’s through the
Super-Kamiokande experiment [476]. The atmospheric neutrino anomaly was dis-
covered in the late 1980s in the Kamiokande and IMB experiments (see section 11.2).
Nowadays, the high-precision measurements of the Super-Kamiokande experiment,
confirmed by the measurements of the Soudan 2 and MACRO experiments (see
section 11.2), give us precise information on the values of the atmospheric neutrino
oscillation parameters, which are in good agreement with the independent results
of the first accelerator long-baseline K2K experiment (see section 12.3.2).

In the past decade, there have been many spectacular successes in the pur-
suit of the solution of the solar neutrino problem, which, we believe, has finally
been understood and solved to our satisfaction. This problem was discovered
in the Homestake experiment [323] and confirmed by the observations of the
Kamiokande, GALLEX/GNO, SAGE, Super-Kamiokande, and SNO experiments
(see chapter 10). In particular, the results of the SNO experiment [43] have been
instrumental in solving the solar neutrino problem in 2002. The depletion of the
solar neutrinos is finally found to be due to the oscillations of νe into νµ and ντ

inside the Sun by the Mikheev–Smirnov–Wolfenstein (MSW) resonance conver-
sion effects [1065, 801, 802]. The solar model by the late John Bahcall and others
[142, 137, 145, 152, 154] has become the Standard Solar Model which can now be
used for the investigation of other solar properties. The reactor long-baseline Kam-
LAND experiment has recently confirmed the values of the oscillation parameters
obtained from a global analysis of the data of all solar neutrino experiments (see
section 12.2.3).

The results of the atmospheric, solar, KamLAND and K2K neutrino experi-
ments are nicely explained by neutrino oscillations in the framework of the simplest
model of three-neutrino mixing, in which the three flavor neutrinos νe, νµ and ντ

are unitary linear combinations of three massive neutrinos ν1, ν2, ν3 (see chap-
ter 13). As of this writing, we have a rather precise knowledge of the value of the
neutrino squared-mass difference ∆m2

21, the absolute value of ∆m2
31 � ∆m2

32, and
the values of two mixing angles, ϑ12 and ϑ23. The value of the third mixing angle,
ϑ13, the values of the CP phases (one for Dirac neutrinos and three for Majorana
neutrinos), the absolute scale of neutrino masses, and the sign of ∆m2

31 remain
unknown. On the value of ϑ13 we have only an upper bound, obtained from the
absence of neutrino oscillations observed in the reactor long-baseline experiments
CHOOZ and Palo Verde (see section 12.2.2). The absolute scale of neutrino masses
is limited below a few eV by kinematical measurements of the electron spectrum in
the recent tritium β-decay experiments Mainz and Troitzk (see section 14.1).

An open question of fundamental importance is the nature of neutrinos, which
could be either of Dirac or Majorana type. Neutrinoless double-β-decay experiments
(see section 14.3) are considered the most promising way to decide if neutrinos
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are Majorana particles. The current upper limit on the effective Majorana mass,
obtained in the Heidelberg–Moscow 76Ge experiment [680], is of the order of one
eV, with an unfortunate uncertainty of a factor of about three due to the complexity
of nuclear physics.

In recent years, we have learned that neutrinos play an important role in the
early Universe in many subtle ways. For example, the number of neutrino species
affects the primordial nucleosynthesis, which eventually decides the composition of
elements in the Universe [857, 981]. From this argument alone one could conclude
that the number of neutrino species is close to three, in agreement with the precise
number determined through the measurement of the invisible width of the Z-boson
by LEP experiments at CERN. Later in the evolution of the Universe, massive
neutrinos influence the formation of the large-scale structures in the form of hot dark
matter (see section 17.7.3). The recent observations (see chapters 16 and 17) of the
Cosmic Microwave Background Radiation (WMAP, Boomerang, and others), the
Large Scale Structures (2dFGRS and SDSS) and distant type Ia supernovae (High-
z SN Search Team and Supernova Cosmology Project) and a precise determination
of the Hubble constant by the Hubble Space Telescope Key Project made possible a
better understanding of the evolution of the Universe. It turned out that only about
5% of the energy of the Universe is composed of ordinary matter (baryons). The
other 95% is composed of invisible dark matter (∼ 25%) and mysterious dark energy

(∼ 70%). Since the dark matter must be of the cold type (see section 17.7.2), hot
dark matter in the form of massive neutrinos is severely constrained, leading to an
upper bound on the sum of neutrino masses of the order of one eV (see section 17.8).
This bound is remarkably close to the limits from totally independent experiments
(tritium β-decay and neutrinoless double-β-decay experiments). The relic neutrinos,
that decoupled from the rest of the primordial plasma when the Universe was about
one second old, are the second most abundant particles in the Universe next to the
photons, with a number density smaller only by a factor of 3/11 for each family. The
direct detection of the relic neutrinos still remains, however, as one of the biggest
scientific challenges in the twenty first century, because of their weak interactions.



2

QUANTIZED DIRAC FIELDS

To trace the unfamiliar to the familiar is to understand.
Algernon Blackwood, The Damned

In this chapter we review the main properties of quantized Dirac fields, which
describe particles with spin 1/2 (see, for example, Refs. [943, 634, 821]). In the Stan-
dard Model, to be introduced in chapter 3, the fundamental fermions are quarks,
charged leptons, and neutrinos, all of which have spin 1/2. In such a model, quarks
and charged leptons are massive Dirac particles and neutrinos are massless Dirac
particles. As discussed in chapters 10, 11, and 12, there is experimental evidence
that neutrinos are massive. In this case, neutrinos can be either Dirac particles or
Majorana particles, as discussed in chapter 6. In any case, the Dirac theory pre-
sented in this chapter represents the basis for the description of neutrinos, from
which the Majorana theory can be derived (see chapter 6).

2.1 Dirac equation

The Dirac Lagrangian for a free fermion field ψ(x) is1

L (x) = ψ(x) (i /
↔
∂ −m)ψ(x) , (2.1)

where ψ(x) is a spinor field with four components, the adjoint field ψ(x) being given
by

ψ(x) ≡ ψ†(x) γ0 , (2.2)

and
↔
∂µ ≡

→
∂µ −

←
∂µ

2
, (2.3)

where
→
∂µ ≡ ∂µ is the normal derivative operator which acts on the right and

←
∂µ is

a derivative operator which acts on the left (i.e. ψ
←
∂µ ≡ ∂µψ). For any four-vector

1 Often the Dirac Lagrangian is written as L
′(x) = ψ(x) (i/∂ −m)ψ(x), which differs

from eqn (2.1) by the total derivative L
′−L = i

2
∂µ

`
ψ γµ ψ

´
that has no effect on the field

equation derived from the Euler–Lagrange equation (C.9) (Gauss’ theorem implies that
the integral of a total derivative is a surface term, which is invariant under the variation
in eqn (C.3)). However, it is better to write the Dirac Lagrangian in the form eqn (2.1)
because it is explicitly real, as a Lagrangian should be.
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Aµ

/A ≡ γµAµ , (2.4)

where γµ (µ = 0, 1, 2, 3) is a set of four 4×4 matrices2 called Dirac γ matrices that
satisfy the anticommutation relations

{γµ, γν} ≡ γµγν + γνγµ = 2 gµν (2.5)

and the condition
γ0 γµ† γ0 = γµ . (2.6)

The γ matrices are constant in the sense that they do not transform under
Lorentz transformations. In other words, the γ matrices have the same value in all
inertial reference frames. Although they are not four-vectors, it is convenient to
define formally the γ matrices with lowered indices as

γµ ≡ gµν γ
ν (µ = 0, 1, 2, 3) ⇐⇒ γ0 = γ0 , γk = −γk (k = 1, 2, 3) . (2.7)

For µ �= ν the relations in eqn (2.5) imply that the four γ matrices anticommute.
For µ = ν, the relations in eqn (2.5) constrain the squares of the γ matrices:

(γ0)2 = 1 , (γk)2 = −1 (k = 1, 2, 3) . (2.8)

The additional constraint in eqn (2.6) implies that

(γ0)† = γ0 , (γk)† = −γk ⇐⇒ (γµ)† = γµ . (2.9)

Thus, γ0 is Hermitian, whereas the γk matrices are anti-Hermitian.
Using the Euler–Lagrange procedure (see eqn (C.9)), the field equations are

given by

∂µ
∂L

∂(∂µψ)
− ∂L

∂ψ
= 0 , (2.10)

from which one obtains the Dirac equation

(i/∂ −m)ψ(x) = 0 . (2.11)

The anticommutation relations in eqn (2.5) are necessary in order to guarantee
the compatibility of the Dirac equation with the Klein–Gordon equation

(� +m2)ψ(x) = 0 , (2.12)

where � ≡ ∂µ∂µ. The Klein–Gordon equation must be satisfied by any free field
because it is equivalent to the relativistic energy–momentum dispersion relation

2 The anticommutation relations in eqn (2.5) imply that the dimension N of the γ
matrices is even. Indeed, let us consider the anticommutation relation with µ �= ν, that
is γµγν = −γνγµ = (−1) γνγµ. Taking the determinant, we obtain Detγµ Detγν =
(−1)N Detγν Detγµ. Since Detγν �= Detγµ, we have (−1)N = 1, which implies that N
is even.

The minimal dimension of the γ matrices is N = 4, because there are only three
anticommuting matrices for N = 2, which are the Pauli matrices in eqn (A.29).

In practice the γ matrices are always represented in the minimal 4 × 4 dimensional-
ity, because representations of higher dimensionality are equivalent but obviously more
complicated.
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in eqn (B.88). In fact, the Klein–Gordon equation has positive-energy plane-wave
solutions ψ(x) ∝ e−ip · x with p2 = m2. The negative-energy plane-wave solutions
ψ(x) ∝ eip ·x are interpreted as antiparticle states, as explained in section 2.9.

The Klein–Gordon equation (2.12) is obtained from the Dirac equation (2.11)
by multiplying it on the left by (i/∂ +m) and using the identity /∂ /∂ = ∂µ∂µ. This
identity is a particular case of the general identity

/A /A = γµγνAµAν =
1

2
(γµγν + γνγµ)AµAν = gµνAµAν = AµA

µ , (2.13)

which follows from the anticommutation relations in eqn (2.5).
The condition in eqn (2.6) is necessary in order to obtain, from the Dirac

equation (2.11), a continuity equation with a quantum mechanical density

�(x) = |ψ(x)|2 = ψ†(x)ψ(x) . (2.14)

To see this, we first take the Hermitian conjugate of the Dirac equation (2.11),
taking into account eqn (2.8), and then multiply it on the right by γ0ψ, leading to

− i ∂µψ γ
0 γµ γ0 ψ −mψψ = 0 . (2.15)

Subtracting this equation from the Dirac equation (2.11) multiplied on the left by
ψ, we have

ψ γµ∂µ ψ + ∂µψ γ
0 γµ γ0 ψ = 0 . (2.16)

Imposing the condition in eqn (2.6) we obtain the continuity equation

∂µ j
µ = 0 , (2.17)

with the current
jµ(x) = ψ(x) γµ ψ(x) . (2.18)

The temporal component of this current is the quantum mechanical density in
eqn (2.14). In section 2.4 it will be shown that jµ(x) is a well-behaved four-vector
(see eqn (2.66) with a = b).

2.2 Representations of γ matrices

A specific choice of the four matrices γµ that satisfy the relations in eqns (2.5) and
(2.6) is called a representation of the Dirac matrices. In his fundamental theorem on
the representations of the Dirac matrices, Pauli proved that all representations are
unitarily equivalent, i.e. any two sets of four matrices γµ and γ′µ which fulfill the
relations in eqns (2.5) and (2.6) are connected by the equivalence transformation

γ′µ = S γµ S−1 , (2.19)

where S is a unitary matrix (S† = S−1). In oder to leave the Dirac equation
invariant under a change of representation, a spinor field must transform as

ψ′ = S ψ . (2.20)

When an explicit expression of the γ matrices is needed, one can choose the
most convenient one for the task under consideration. In any representation, at
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most one of the γ is diagonal, because of the anticommutation relation in eqn (2.5).
From eqn (2.8) it follows that the eigenvalues of γ0 are ±1 and the eigenvalues of
γk are ±i.

The standard representation of the γ matrices is the Dirac representation

γ0
D =

(
1 0
0 −1

)
, �γD =

(
0 �σ
−�σ 0

)
, (2.21)

in which the matrices are written as 2 × 2 blocks and we put a subscript D to
indicate the Dirac representation. The 2 × 2 matrices σk are the Pauli matrices
given in eqn (A.29).

It is useful to define the chirality matrix

γ5 ≡ γ5 ≡ i γ0 γ1 γ2 γ3 , (2.22)

which has the following useful properties:{
γ5, γµ

}
= 0 (2.23)(

γ5
)2

= 1 (2.24)(
γ5
)†

= γ5. (2.25)

In the Dirac representation, the γ5 matrix is given by

γ5
D =

(
0 1
1 0

)
. (2.26)

For a study of relativistic particles such as neutrinos, it is convenient to use
the chiral representation in which the chirality matrix γ5

C = γ0
D is diagonal and

�γC = �γD. From eqn (2.22) it follows that γ0
C = −γ5

D. Thus, the 4×4 Dirac matrices
in the chiral representation can be written in 2 × 2 block forms as

γ0
C =

(
0 −1
−1 0

)
, �γC =

(
0 �σ
−�σ 0

)
, γ5

C =

(
1 0
0 −1

)
, (2.27)

or in the compact form

γµ
C =

(
0 σ̄µ

−σµ 0

)
, (2.28)

with the 2 × 2 matrices

σµ = (1 , �σ) , σ̄µ = (−1 , �σ) . (2.29)

The unitary matrix SD→C which performs the equivalence transformation

γµ
C = SD→C γ

µ
D S
−1
D→C (2.30)

from the Dirac to the chiral representation is given by

SD→C =
1√
2

(
1 + γ0

D γ
5
D

)
=

1√
2

(
1 −1
1 1

)
. (2.31)
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2.3 Products of γ matrices

Let us define 16 matrices Γa (a = 1, 2, . . . , 16) obtained from products of γ matrices:

Γ1 ≡ 1 (no γµ matrices) , (2.32)

Γ2 − Γ5 ≡ γµ (one γµ matrix) , (2.33)

Γ6 − Γ11 ≡ σµν ≡ i

2
[γµ, γν ] (products of two γµ matrices) , (2.34)

Γ12 − Γ15 ≡ γµ γ5 (products of three γµ matrices) , (2.35)

Γ16 ≡ γ5 (product of four γµ matrices) . (2.36)

In any product of γ matrices, all the pairs of identical matrices can be eliminated
using the anticommutation relations in eqn (2.5). Since the number of γ matrices
is four, any product of more than four γ matrices can be reduced to a product of
four or fewer γ matrices.

The anticommutation relations in eqn (2.5) imply that products of γ matrices
in which the matrices appear with different orders are equivalent up to a sign.
Hence, the number of independent products of k γ matrices is given by the binomial
coefficient (

4
k

)
=

4!

k! (4 − k)!
. (2.37)

A set of 16 Γ matrices represents all the irreducible products of γ matrices, as
follows

1. The matrix Γ1 = 1 is the only irreducible product with no γ matrices (( 4
0 ) = 1).

2. The four matrices Γ2, . . . ,Γ5 = γ0, γ1, γ2, γ3 are trivially the four irreducible
products of one γ matrix (( 4

1 ) = 4).
3. The six3 matrices Γ6, . . . ,Γ11 = σ01, σ02, σ03, σ12, σ23, σ31, represent all the

irreducible products of two γ matrices (( 4
2 ) = 6). In fact, we have

σµν = iγµγν (µ �= ν) . (2.38)

4. The four matrices Γ12, . . . ,Γ15 = γ0 γ5, γ1 γ5, γ2 γ5, γ3 γ5 represent all the
irreducible products of three γ matrices (( 4

3 ) = 4), i.e.

γ0γ5 = −iγ1γ2γ3 , (2.39)

γ1γ5 = −iγ0γ2γ3 , (2.40)

γ2γ5 = −iγ0γ3γ1 , (2.41)

γ3γ5 = −iγ0γ1γ2 , (2.42)

or, in compact form,

γαγ5 =
i

3!
gαβεβµνργ

µγνγρ . (2.43)

3 By definition, the matrices σµν are antisymmetric in the indices µ, ν. Thus, the
number of independent matrices σµν is n(n− 1)/2 = 6 for n = 4.
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Table 2.1. Order of the matrices Γa and the corresponding values of
sa = sign(Γa)2 = 1

4 Tr
[
(Γa)2

]
.

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Γa 1 γ0 γ1 γ2 γ3 σ01 σ02 σ03 σ12 σ23 σ31 γ0γ5 γ1γ5 γ2γ5 γ3γ5 γ5

sa 1 1 −1 −1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1

5. The matrix Γ16 = γ5 is the only irreducible product of four γ matrices (( 4
4 ) = 1).

Therefore, any product of γ matrices is proportional to one of the 16 Γ matrices.
The coefficient of proportionality is equal to ±1 or ±i.

The Γ matrices enjoy the following useful properties:

A. As all products of γ matrices, the product of two Γ matrices is proportional to
a Γ matrix. Moreover, if two Γ matrices are different, their product is different
from unity:

Γa Γb ∝ Γc with Γc �= 1 for a �= b . (2.44)

If Γa and Γb are different, their product contains an odd number of at least one
γ matrix, which cannot be eliminated by using the anticommutation relations
in eqn (2.5).

B. The square of all Γ matrices is equal to ±1:

(Γa)2 = sa1 , with sa =
1

4
Tr
[
(Γa)2

]
= ±1 . (2.45)

The values of sa for the 16 matrices Γa are listed in Table 2.1.
C. For each Γa with a > 1 there is at least one Γb which anticommutes with Γa,

ΓaΓb = −ΓbΓa ⇐⇒
{
Γa , Γb

}
= 0 . (2.46)

We have

Γa = γ0 (a = 2) =⇒ Γb = γk, γ5 (b = 3, 4, 5, 16) , (2.47)

Γa = γk (a = 3, 4, 5) =⇒ Γb = γ0, γ5 (b = 1, 16) , (2.48)

Γa = σµν (a = 6 − 11) =⇒ Γb = σµρ ρ �= ν , (2.49)

Γa = γ0γ5 (a = 12) =⇒ Γb = γkγ5 (b = 13, 14, 15) , (2.50)

Γa = γkγ5 (a = 13, 14, 15) =⇒ Γb = γ0γ5 (b = 12) , (2.51)

Γa = γ5 (a = 16) =⇒ Γb = γµ (b = 2, 3, 4, 5) . (2.52)
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D. The matrices Γa with a > 1 are traceless,

Tr[Γa] = 0 for a > 1 . (2.53)

Using a matrix Γb which anticommutes with Γa, we have

Tr[Γa] = sbTr
[
Γa
(
Γb
)2]

= −sbTr
[
ΓbΓaΓb

]
= −sbTr

[(
Γb
)2

Γa
]

= −Tr[Γa] ,

(2.54)
where the second equality has been obtained by anticommuting Γa and Γb and
the third equality has been obtained with a circular permutation of the argument
of the trace.

E. From the properties in eqns (2.44), (2.45), and (2.53) it follows that

Tr
[
Γa Γb

]
= 4 sa δab . (2.55)

F. The Γ matrices are linearly independent4, i.e. the relation∑
a

ca Γa = 0 (2.56)

implies ca = 0 for all a = 1, . . . , 16. Taking the trace of eqn (2.56) and using the
property in eqn (2.53), one finds that c1 = 0. Similarly, taking the trace of

Γb

(∑
a

ca Γa

)
= 0 (2.57)

and using the property in eqn (2.55) one finds that cb = 0 for any b = 2, . . . , 16.
G. From the previous properties it follows that any 4× 4 matrix X can be written

as a linear combination of the Γa matrices:

X =
∑

a

xa Γa , with xa =
sa

4
Tr[X Γa] . (2.58)

Therefore, the 16 matrices Γa form a basis in the vectorial space of 4×4 matrices.

2.4 Relativistic covariance

Under a Lorentz transformation in eqn (B.1), the Dirac field ψ(x) transforms as

ψ(x) → ψ′(x′) = S(Λ)ψ(x) , (2.59)

with the 4 × 4 matrix S(Λ) such that

S−1(Λ) γµ S(Λ) = Λµ
ν γ

ν . (2.60)

In this way, the Dirac equation remains form-invariant under Lorentz trans-
formations, according to the principle of relativistic covariance discussed in
appendix B.

4 This property implies that the minimal dimension of the Γ matrices is 4 × 4, in
agreement with the minimal dimension of γ matrices discussed in footnote 2 on page 8.
The reason is simply that since 4 × 4 matrices have 16 elements there are 16 independent
4× 4 matrices, whereas the number of independent matrices with lower dimensionality is
smaller.
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The explicit form of S(1 + εω) for an infinitesimal Lorentz transformation in
eqn (B.22) is

S(1 + εω) = 1 − i

4
ε ωµν σ

µν . (2.61)

Comparing this expression with eqn (B.63), we obtain the spin part of the
generators of the Lorentz group in the Dirac spinor representation:

Sµν = −1

2
σµν . (2.62)

These generators satisfy the commutation relations in eqn (B.45) of the Lorentz
group generators.

For a finite restricted Lorentz transformation Λ = eω in eqn (B.24), we have

S(eω) = exp

(
− i

4
ωµν σ

µν

)
. (2.63)

Since the adjoint field ψ(x) transform as5

ψ(x) → ψ′(x′) = ψ(x)S−1(Λ) , (2.64)

the following five Hermitian covariant bilinears transform, respectively, as a scalar,
vector, antisymmetric second-rank tensor, pseudovector, and pseudoscalar: for a
restricted Lorentz transformation

Sab(x) = ψa(x)ψb(x) → S′ab(x
′) = ψ′a(x′)ψ′b(x

′) = ψa(x)ψb(x) = Sab(x) ,
(2.65)

V µ
ab(x) = ψa(x) γµ ψb(x) → V ′µab (x′) = ψ′a(x′) γµ ψ′b(x

′) = Λµ
ν ψa(x) γν ψb(x)

= Λµ
ν V

ν
ab(x) , (2.66)

T µν
ab (x) = ψa(x)σµν ψb(x) → T ′µν

ab (x′) = ψ′a(x′)σµν ψ′b(x
′)

= Λµ
α Λν

β ψa(x)σαβ ψb(x)

= Λµ
α Λν

β T
αβ
ab (x) , (2.67)

Aµ
ab(x) = ψa(x) γµ γ5 ψb(x) → A′µab(x

′) = ψ′a(x′) γµ γ5 ψ′b(x
′)

= Λµ
ν ψa(x) γν γ5 ψb(x) = Λµ

ν A
ν
ab(x) ,

(2.68)

Pab(x) = ψa(x) γ5 ψb(x) → P ′ab(x
′) = ψ′a(x′) γ5 ψ′b(x

′) = ψa(x) γ5 ψb(x)

= Pab(x) , (2.69)

where we have considered the possibility of having different fields a and b. The
transformations of the covariant bilinears in eqns (2.65)–(2.69) under space and

5 Indeed, we have ψ(x) = ψ†(x) γ0 → ψ′†(x) γ0 = ψ†(x)S†(Λ) γ0 = ψ(x) γ0 S†(Λ) γ0.
Using the explicit form in eqn (2.61) of S(Λ) and the property in eqn (2.6), we obtain

γ0 S†(Λ) γ0 = S−1(Λ).
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time inversions are discussed, respectively, in sections 2.11.2 and 2.11.4. Interactions
between different fields (a �= b) or self-interactions (a = b) must be expressed in the
Lagrangian through the covariant bilinears in eqns (2.65)–(2.69), which allow us to
write scalar Lagrangian terms. The bilinears in eqns (2.65)–(2.69) are also called
currents.

2.4.1 Boosts

The spin part of the boost operator Kk in eqn (B.50) is

Kk
spin = −1

2
σ0k = − i

2
γ0 γk = − i

2
αk , (2.70)

where we have used the Dirac notation

αk ≡ γ0 γk , (2.71)

with {
αk , αj

}
= 2 δkj . (2.72)

The explicit expressions of the matrices αk in the Dirac and chiral representations
of the γ matrices are, respectively,

αk
D =

(
0 σk

σk 0

)
, αk

C =

(
σk 0

0 −σk

)
. (2.73)

The matrix Sk
boost(ϕ) for a boost with velocity v = tanhϕ along the direction

of the axis xk can be written as

Sk
boost(ϕ) = e−i ϕ Kk

spin = e−
1
2 ϕ αk

= cosh
ϕ

2
− αk sinh

ϕ

2
, (2.74)

where ϕ is the rapidity given in eqn (B.31), with

cosh
ϕ

2
=
γ + 1

2
, sinh

ϕ

2
=
γ − 1

2
, γ =

(
1 − v2

)−1/2
. (2.75)

Since �α is Hermitian, Sk
boost(ϕ) is also Hermitian,

[
Sk

boost(ϕ)
]†

= Sk
boost(ϕ) , (2.76)

but not unitary. This is consistent with the fact that under a boost ψ†ψ is not a
scalar, but transforms as the time-component of the four-vector ψγµψ.
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2.4.2 Rotations

The spin part of the angular momentum operators Jk in eqn (B.49) is

Sk =
1

4

∑
j,l

εkjl σjl =
1

2
Σk , (2.77)

with

Σk ≡ 1

2

∑
j,l

εkjl σjl =
i

2

∑
j,l

εkjl γj γl =⇒ �Σ = (iγ2γ3, iγ3γ1, iγ1γ2) .

(2.78)
It is also possible to write Σk as

Σk = γ0 γk γ5 . (2.79)

The matrices satisfy the commutation and anticommutation relations

[Σk,Σj ] = 2 i
∑

l

εkjl Σl , {Σk,Σj} = 2 δkj . (2.80)

The Σk matrices have the same expression in the Dirac and chiral representations
of the γ matrices:

�ΣD = �ΣC =

(
�σ 0
0 �σ

)
, (2.81)

from which it is clear that the �Σ matrices represent a 4 × 4 generalization of the
2 × 2 Pauli matrices.

The matrix Sk
rot(θ) for a rotation through an angle θ around the axis xk can be

written as

Sk
rot(θ) = ei θ Sk

= e
i
2 θ Σk

= cos
θ

2
+ iΣk sin

θ

2
. (2.82)

Since Σk is Hermitian, we have[
Sk

rot(θ)
]†

=
[
Sk

rot(θ)
]−1

, (2.83)

which implies that ψ†ψ is a scalar under rotations.
A rotation of 2π changes the sign of ψ, because Sk

rot(2π) = −1. Therefore, the
sign of ψ has no physical meaning. Indeed, all physical quantities depend on the
covariant bilinears in eqns (2.65)–(2.69), which are invariant not only under a global
change of sign of all fermion fields, but also under a global phase transformation of
all fermion fields. This invariance corresponds, through Noether’s theorem, to the
conservation of the total fermion number, which is consistent with angular momen-
tum conservation: the disappearance of a fermion without creation or annihilation
of another fermion would imply an unrecoverable change of 1/2 of the total angular
momentum.



HELICITY 17

2.4.3 Invariants

As discussed in section B.3 of appendix B, there are two Casimir operators of
the Poincaré group, P 2 and W 2, which are used for the classification of its
representations.

The first Casimir operator is P 2 = PµPµ, where Pµ = i∂µ is the momentum
operator (eqn (B.86)). Therefore, P 2 = −� and from the Klein–Gordon equa-
tion (2.12), satisfied by the Dirac field ψ, it is clear that the eigenvalue of P 2 is m2

and the parameter m in the Dirac Lagrangian in eqn (2.1) can be interpreted as
the mass of the particle.

The second Casimir operator is W 2 = WµWµ, with the Pauli–Lubanski four-
vector Wµ given in eqn (B.90), which gives the spin of the particle, according to
eqn (B.95). From eqns (B.94) and (2.77), we have in the rest frame

W 0 = 0 , �W =
1

2
m�Σ . (2.84)

Consequently,

W 2 = −m2 1

4
�Σ

2
= −m2 3

4
= −m2 1

2

(
1

2
+ 1

)
, (2.85)

which shows that a Dirac field describes particles with spin s = 1/2.

2.5 Helicity

From eqn (2.77), the helicity operator in eqn (B.96) is given by

ĥ =
�S · �P
s |�P |

=
�Σ · �P
|�P |

. (2.86)

Since the square of the helicity operator in eqn (2.86) is one, the eigenvalues of the
helicity for a Dirac fermion are h = ±1.

As discussed at the end of section B.3 of appendix B, the mass m and the spin
s distinguish (possibly together with other quantum numbers) different particles.

The state of a particle is identified by the three components of the momentum �P
and by the helicity.

2.6 Gauge transformations

The Dirac Lagrangian in eqn (2.1) is invariant for global U(1) gauge transformations
of the type

ψ(x) → eiθ ψ(x) , (2.87)

where θ is an arbitrary parameter. In this case, Noether’s theorem implies that the
electromagnetic current

jµ = q ψ γµ ψ (2.88)



18 QUANTIZED DIRAC FIELDS

is conserved,
∂µ j

µ = 0 . (2.89)

The associated conserved charge operator is

Q =

∫
d3x j0(x) = q

∫
d3xψ†(x)ψ(x) , (2.90)

where q is the electric charge of the particle (see eqn (2.248)).

2.7 Chirality

The matrix γ5 is also called the chirality matrix. Since the chirality matrix is
Hermitian (eqn (2.25)), it can be diagonalized with a unitary transformation
Uγ5U † = γ5

diag, with U † = U−1. Since (γ5)2 = 1 (eqn (2.24)), the eigenvalues

of γ5 are ±1. In fact, in the chiral representation in eqn (2.27), γ5 is diagonal,
equal to diag(1, 1,−1,−1).

Let us denote by ψR and ψL the fields which are eigenfunctions of γ5 with
eigenvalues +1 and −1, respectively:

γ5 ψR = + ψR , (2.91)

γ5 ψL = − ψL . (2.92)

The chiral fields ψR and ψL are called, respectively, right-handed and left-handed.
It is always possible to split a generic spinor field ψ into its chiral right-handed

and left-handed components:
ψ = ψR + ψL , (2.93)

with

ψR =
1 + γ5

2
ψ , (2.94)

ψL =
1 − γ5

2
ψ . (2.95)

It is convenient to define the chirality projection matrices

PR ≡ 1 + γ5

2
, (2.96)

PL ≡ 1 − γ5

2
, (2.97)

which satisfy the properties

PR + PL = 1 , (2.98)

(PR)2 = PR , (2.99)

(PL)2 = PL , (2.100)
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PR PL = PL PR = 0 . (2.101)

Let us consider the Dirac Lagrangian in eqn (2.1). Using the decomposition in
eqn (2.93) of the spinor field ψ, we have

L = (ψR + ψL) (i /
↔
∂ −m) (ψR + ψL) . (2.102)

Since
ψR = PR ψ , ψL = PL ψ , (2.103)

and

P †R = PR , (2.104)

P †L = PL , (2.105)

PR γ
0 = γ0 PL , (2.106)

PL γ
0 = γ0 PR , (2.107)

we obtain

ψR = (PRψ) = (PRψ)†γ0 = ψ†PRγ
0 = ψ†γ0PL = ψPL , (2.108)

ψL = ψPR . (2.109)

Therefore, the following four products in the Lagrangian in eqn (2.102) vanish
identically:

iψR /
↔
∂ψL = iψPL /

↔
∂PLψ = iψ /

↔
∂PRPLψ = 0 , (2.110)

iψL /
↔
∂ψR = 0 , (2.111)

mψRψR = mψPLPRψ = 0 , (2.112)

mψLψL = 0 . (2.113)

The Dirac Lagrangian in terms of the chiral fields ψR and ψL then becomes

L = ψR i /
↔
∂ ψR + ψL i /

↔
∂ ψL −m

(
ψR ψL + ψL ψR

)
. (2.114)

One can see that the chiral fields ψR and ψL have independent kinetic terms but
they are coupled by the mass term. From the Lagrangian in eqn (2.114) one can
find the field equations

i /∂ ψR = mψL , (2.115)

i /∂ ψL = mψR , (2.116)

which demonstrate that the space-time evolutions of the chiral fields ψR and ψL

are related by the mass m.
The chiral fields ψR and ψL are also called Weyl spinors.
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A Weyl spinor has only two independent components, as one can understand
by noting that the decomposition in eqn (2.93) of a four-component spinor must
split the four independent components equally into two groups, one for each chiral
component. One can see this explicitly using a definite representation of the Dirac
matrices. The most convenient one6 is the chiral representation in eqn (2.27), in
which

PR =

(
1 0
0 0

)
, PL =

(
0 0
0 1

)
. (2.117)

Writing the four-component spinor ψ as

ψ =

(
χR

χL

)
, (2.118)

where χR and χL are two-component spinors, we have

ψR =

(
χR

0

)
, ψL =

(
0
χL

)
, (2.119)

showing explicitly that ψR and ψL have only two independent components.
From eqns (2.28) and (2.114), the Dirac Lagrangian for the two-component fields

χR and χL is

L = iχ†R σ
µ∂µ χR − iχ†L σ̄

µ∂µ χL +m
(
χ†R χL + χ†L χR

)
, (2.120)

and the field equations are

i σµ∂µ χR = −mχL , (2.121)

i σ̄µ∂µ χL = mχR . (2.122)

Because

∂k =
∂

∂xk
= ∇k , (2.123)

these equations can be written in the explicit form

i
(
∂0 +�σ · �∇

)
χR = −mχL , (2.124)

i
(
∂0 −�σ · �∇

)
χL = −mχR . (2.125)

The two-component fields χR and χL are important from a relativistic point of
view because in the chiral representation the explicit expressions for the matrices
σµν are

σ0k
C = i

(
σk 0

0 −σk

)
, σkj

C =
∑

	

εkj	

(
σ	 0

0 σ	

)
. (2.126)

From eqns (2.59) and (2.63) it follows that the spinor fields χR and χL transform
independently under Lorentz transformations. This is a very important property

6 In other representations one can show that ψL has only two independent components
using the constraint PR ψL = 0.
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because it implies that two-component spinors are the simplest nontrivial repre-
sentations of the Lorentz group and one must consider them as the fundamental
quantities for the construction of the Lagrangian, which is a Lorentz scalar.

From the expressions in eqn (2.126) one can see that the spinor fields χR and
χL transform in the same way under rotations, discussed in section 2.4.2. For a
rotation through an angle θ around the axis xk we have

χR,L →
(

cos
θ

2
+ i σk sin

θ

2

)
χR,L . (2.127)

On the other hand, the spinor fields χR and χL transform in different ways under
Lorentz boosts, discussed in section 2.4.1. For a boost with velocity v = tanhϕ
along the direction of the axis xk we have

χR →
(
cosh

ϕ

2
− σk sinh

ϕ

2

)
χR , (2.128)

χL →
(
cosh

ϕ

2
+ σk sinh

ϕ

2

)
χL . (2.129)

Therefore, the spinor fields χR and χL belong to two different representations of the
Lorentz group, which are traditionally called dotted and undotted (see, for example,
Ref. [866]).

2.7.1 Massless field

From eqns (2.115) and (2.116) one can see that the space-time evolutions of the
chiral fields ψR and ψL decouple for m = 0. In this case, we obtain the Weyl

equations

i /∂ ψR = 0 , (2.130)

i /∂ ψL = 0 . (2.131)

Since the field equations of the chiral fields ψR and ψL are decoupled, the chiral
fields are independent and it is possible that one of the two chiral fields is sufficient
for the description of a massless fermion.

Let us consider a solution ψ(x, p) of the massless Dirac equation

i /∂ ψ(x, p) = 0 , (2.132)

which is also an eigenfunction of the four-momentum operator Pµ = i∂µ,

Pµ ψ(x, p) = pµ ψ(x, p) , (2.133)

with energy
p0 = E = |�p| . (2.134)

In this case, the massless Dirac equation (2.132) can be written as(
γ0 |�p| −�γ ·�p

)
ψ(x, p) = 0 . (2.135)



22 QUANTIZED DIRAC FIELDS

Multiplying this equation on the left by γ5γ0 and using eqn (2.79), we obtain

�Σ ·�p
|�p| ψ(x, p) = γ5 ψ(x, p) . (2.136)

Now we can see that the operator on the left-hand side is nothing but the helicity
operator in eqn (2.86), with Pµ → pµ. Equation (2.136) shows that chirality coin-
cides with helicity for the eigenfunctions of the four-momentum which are solutions
of the massless Dirac equation. In particular, the eigenfunctions of the chirality
matrix are eigenfunctions of the helicity operator with the same eigenvalue:

�Σ ·�p
|�p| ψR(x, p) = ψR(x, p) , (2.137)

�Σ ·�p
|�p| ψL(x, p) = −ψL(x, p) . (2.138)

Hence, a massless right-handed chiral field ψR(x, p) with a definite four-momentum
has positive helicity, and a massless left-handed chiral field ψL(x, p) with a definite
four-momentum has negative helicity.

2.8 Solution of the Dirac equation

The Dirac equation (2.11) can be solved using the Fourier expansion of the Dirac
field

ψ(x) =

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)(p)u(h)(p) e−ip ·x + b(h)†(p) v(h)(p) eip ·x] , (2.139)

where h is the helicity and

p0 = E =

√
�p2 +m2 , (2.140)

in order to satisfy the Klein–Gordon equation (2.12). The quantities u(h)(p), v(h)(p)
are spinors and a(h)(p), b(h)(p) are numerical coefficients. We have adopted the
notation

a(h)†(p) ≡ a(h)∗(p) and b(h)†(p) ≡ b(h)∗(p) (2.141)

for later convenience in the discussion of the quantized Dirac field (in section 2.9).
The phase-space measure in the Fourier expansion of ψ(x) in eqn (2.139) is

invariant under restricted Lorentz transformations. This can be seen by writing it
as

d3p

(2π)3 2E
=

d4p

(2π)4
2π δ(p2 −m2) θ(p0) , (2.142)

where we have used the property in eqn (A.124) of the Dirac δ-function, which
implies

δ(p2 −m2) = δ(p02 − E2) =
δ(p0 − E) + δ(p0 + E)

2E
. (2.143)

Note that restricted Lorentz transformations do not change the sign of p0.
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From the Dirac equation in eqn (2.11) one can see that the spinors u(h)(p) and
v(h)(p) satisfy the equations

(/p−m)u(h)(p) = 0 , (2.144)

(/p+m) v(h)(p) = 0 . (2.145)

For the adjoint spinors, using the property in eqn (2.6), we obtain

u(h)(p) (/p−m) = 0 , (2.146)

v(h)(p) (/p+m) = 0 . (2.147)

From eqns (2.144)–(2.147) it follows that

u(h)(p) v(h′)(p) = 0 . (2.148)

Let us now derive the helicity properties of u(h)(p) and v(h)(p). The field ψ(x)
can be written as the sum

ψ(x) =
∑

h=±1

ψ(h)(x) , (2.149)

where

ψ(h)(x) =

∫
d3p

(2π)3 2E

[
a(h)(p)u(h)(p) e−ip ·x + b(h)†(p) v(h)(p) eip ·x] (2.150)

is an eigenfield of the helicity operator in eqn (2.86) with eigenvalue h:

ĥ ψ(h)(x) = hψ(h)(x) . (2.151)

Applying the helicity operator in eqn (2.86) to ψ(h)(x) we find

ĥ ψ(h)(x) =
�Σ · �P
|�P |

ψ(h)(x)

=

∫
d3p

(2π)3 2E

[
a(h)(p)

�Σ · �p
|�p| u(h)(p) e−ip ·x − b(h)†(p)

�Σ · �p
|�p| v(h)(p) eip · x

]
.

(2.152)

In order to satisfy the eigenvalue equation (2.151), u(h)(p) and v(h)(p) must be

eigenfunctions of the helicity operator in momentum space �Σ · �p/|�p| with opposite
eigenvalues:

�p ·�Σ
|�p| u(h)(p) = hu(h)(p) , (2.153)

�p ·�Σ
|�p| v(h)(p) = −h v(h)(p) . (2.154)
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The corresponding equations for the adjoint spinors are, with eqn (2.6),

u(h)(p)
�p ·�Σ
|�p| = hu(h)(p) , (2.155)

v(h)(p)
�p · �Σ
|�p| = −h v(h)(p) . (2.156)

From eqns (2.153)–(2.156) it follows that u(h)(p)u(h′)(p) ∝ δhh′ and

v(h)(p)v(h′)(p) ∝ δhh′ . Here, we adopt the Lorentz-invariant normalization
conditions

u(h)(p)u(h′)(p) = 2mδhh′ , (2.157)

v(h)(p) v(h′)(p) = −2mδhh′ . (2.158)

From these normalization conditions and the properties in eqns (2.144)–(2.147),
one can derive the useful relations7

u(h)(p) γµ u(h′)(p) = v(h)(p) γµ v(h′)(p) = 2 pµ δhh′ , (2.159)

u(h)(p) γ5 u(h′)(p) = v(h)(p) γ5 v(h′)(p) = 0 , (2.160)

u(h)†(p) v(h′)(pP) = v(h)†(p)u(h′)(pP) = 0 . (2.161)

where pP = (p0,−�p).
Using the relations in eqns (2.159) and (2.161), one can find that the coefficients

a(h)(p) and b(h)(p) in eqn (2.139) are given by

a(h)(p) =

∫
d3xu(h)†(p)ψ(x) eip ·x , (2.162)

b(h)(p) =

∫
d3xψ†(x) v(h)(p) eip · x . (2.163)

The normalization ∫
d3x |ψ(x)|2 = 1 (2.164)

implies that the coefficients a(h)(p) and b(h)(p) are constrained by∫
d3p

(2π)3 2E

∑
h=±1

[
|a(h)(p)|2 + |b(h)(p)|2

]
= 1 . (2.165)

7 For example,

u(h)(p) γµ u(h′)(p) = u(h)(p)
γµ/p+ /pγµ

2m
u(h′)(p) =

pµ

m
u(h)(p)u(h′)(p) = 2 pµ δhh′ ,

and

u(h)(p) γ5 u(h′)(p) = u(h)(p) γ5 /p

m
u(h′)(p) = −u(h)(p)

/p

m
γ5 u(h′)(p)

= − u(h)(p) γ5 u(h′)(p) = 0 .
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Since the four spinors u(+)(p), u(−)(p), v(+)(p), v(−)(p) are mutually orthog-
onal, they are linearly independent and form a basis of the vector space of
four-dimensional spinors. The outer products

u(+)(p)u(+)(p) , u(−)(p)u(−)(p) , v(+)(p) v(+)(p) , v(−)(p) v(−)(p) (2.166)

form a basis of the vector space of 4 × 4 matrices. In particular, they satisfy the
completeness relation

∑
h=±1

[
u(h)(p)u(h)(p)

2m
− v(h)(p) v(h)(p)

2m

]
= 1 . (2.167)

The components of ψ(x) proportional to e−ip · x and eip · x are usually called,
respectively, positive-energy and negative-energy components because (P 0 = i∂0)

P 0 e−ip ·x = E e−ip · x , P 0 eip ·x = −E eip ·x . (2.168)

It is useful to define the projection operators on the components with positive and
negative energy:

Λ±(p) ≡ m± /p

2m
, (2.169)

with ∑
r=±

Λr(p) = 1 , Λr(p) Λs(p) = Λr(p) δrs , (2.170)

and

Λ+(p)u(h)(p) = u(h)(p) , Λ+(p) v(h)(p) = 0 , (2.171)

Λ−(p)u(h)(p) = 0 , Λ−(p) v(h)(p) = v(h)(p) . (2.172)

From these equations and the completeness relation in eqn (2.167) one can derive
the useful identities8

Λ+(p) =
∑

h=±1

u(h)(p)u(h)(p)

2m
, (2.173)

Λ−(p) = −
∑

h=±1

v(h)(p) v(h)(p)

2m
. (2.174)

From eqns (2.155) and (2.156), the projection operators on the u and v spinors
with definite helicity are, respectively,

P
(u)
h =

1

2

(
1 + h

�p · �Σ
|�p|

)
, (2.175)

8 For example, multiplying Λ+(p)u(h)(p) on the right by u(h)(p), summing over h and

expressing
P

h u
(h)(p)u(h)(p) on the left-hand side as 2m+

P
h v

(h)(p)v(h)(p), one obtains
the identity in eqn (2.173).
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P
(v)
h =

1

2

(
1 − h

�p · �Σ
|�p|

)
. (2.176)

It is possible to write these projection operators in a unified covariant form. By
using the property in eqn (2.144) and eqns (2.79), (A.64), we have

�p · �Σ
|�p| u(h)(p) =

�p · �Σ
|�p|

/p

m
u(h)(p) =

γ5 γ0�γ ·�p
|�p|

E γ0 −�γ ·�p
m

u(h)(p)

= γ5

( |�p|
m
γ0 − E

m

�γ ·�p
|�p|

)
u(h)(p) = h γ5 /sh u

(h)(p) , (2.177)

where sµ
h is the polarization four-vector

sµ
h = h

( |�p|
m
,
E

m

�p

|�p|

)
, (2.178)

with

s2h = −1 , sh · p = 0 . (2.179)

In a similar way, one can obtain

�p ·�Σ
|�p| v(h)(p) = −h γ5 /sh v

(h)(p) . (2.180)

Hence, the helicity projection operators in eqn (2.175) and (2.176) can be written
in a unified covariant form

Ph =
1 + γ5 /sh

2
. (2.181)

The orthogonality of sh and p guarantees that Ph commutes with Λ± because[
γ5 /sh , /p

]
= γ5 {/sh , /p} −

{
γ5 , /p

}
/sh = 0 . (2.182)

Therefore, we can define the four projection operators on the components with
definite energy and helicity as

Λh
±(p) ≡ Λ±(p)Ph = Ph Λ±(p) =

(
m± /p

2m

)(
1 + γ5 /sh

2

)
, (2.183)

such that ∑
r=±

∑
h=±1

Λh
r (p) = 1 , Λh

r (p) Λh′

s (p) = Λh
r (p) δrs δhh′ , (2.184)

and

Λh
+(p)u(h′)(p) = δhh′ u(h′)(p) , Λh

+(p) v(h′)(p) = 0 , (2.185)

Λh
−(p)u(h′)(p) = 0 , Λh

−(p) v(h′)(p) = δhh′ v(h′)(p) . (2.186)
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From these equations and the completeness relation in eqn (2.167) one can derive
the useful identities (using a method similar to that explained in footnote 8 on
page 25)

Λh
+(p) =

u(h)(p)u(h)(p)

2m
, (2.187)

Λh
−(p) = −v

(h)(p) v(h)(p)

2m
. (2.188)

Let us finally derive some useful relations among the u and v spinors with
different helicities. Since

(/pP −m) γ0 u(−h)(pP) = 0 and
�p · �Σ
|�p| γ0 u(−h)(pP) = h γ0 u(−h)(pP) ,

(2.189)
we have

γ0 u(−h)(pP) = η(�p, h)u(h)(p) , (2.190)

where η(�p, h) is a phase factor which depends on �p and h. Changing the signs
of �p and h we obtain γ0 u(h)(p) = η(−�p,−h)u(−h)(pP), which is compatible with
eqn (2.190) only if

η(−�p,−h) = η∗(�p, h) . (2.191)

A relation similar to eqn (2.190) holds for the v’s. In the treatment of charge
conjugation, to be discussed in section 2.11.1, it is convenient to choose the relative
phase of the spinors u(h)(p) and v(h)(p) in order to satisfy the relation in eqn (2.354).
In this case, we obtain

γ0 v(−h)(pP) = −η∗(�p, h) v(h)(p) . (2.192)

Furthermore, since

(/p−m) γ5 v(−h)(p) = 0 and
�p · �Σ
|�p| γ5 v(−h)(p) = h γ5 v(−h)(p) , (2.193)

we have

γ5 v(−h)(p) = ζ(h)u(h)(p) , (2.194)

where ζ(h) is a phase factor which depends on h. A similar relation for γ5 u(−h)(p)
is constrained by the relation in eqn (2.354) to be

γ5 u(−h)(p) = −ζ∗(h) v(h)(p) . (2.195)

This is compatible with eqn (2.194) only if

ζ(−h) = −ζ(h) . (2.196)
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2.8.1 Dirac representation

The explicit form of the free spinors u(h)(p) and v(h)(p) in the Dirac representation
of the γ matrices (see eqn (2.21)) is

u
(h)
D (p) =

( √
E +mχ(h)(�p)

h
√
E −mχ(h)(�p)

)
, (2.197)

v
(h)
D (p) =

(
−
√
E −mχ(−h)(�p)

h
√
E +mχ(−h)(�p)

)
, (2.198)

where χ(h)(�p) are the orthonormal two-component helicity eigenstate spinors to be
discussed in section 2.8.3. One can easily find that ζ(h) in eqns (2.194) and (2.195)
is given by

ζ(h) = −h . (2.199)

In the nonrelativistic limit, |�p| � m, the spinors in eqns (2.197) and (2.198) are
approximated by

u
(h)
D (p) �

√
2m

(
χ(h)(�p)

h |
p|2m χ(h)(�p)

)
, (2.200)

v
(h)
D (p) =

√
2m

(
− |
p|2m χ(−h)(�p)

hχ(−h)(�p)

)
. (2.201)

Here, the two upper components of u(h)(p), called large components, are much larger
than the two lower components, called small components. The opposite is true for
v(h)(p). The Dirac representation is convenient to study nonrelativistic problems
because of these properties.

2.8.2 Chiral representation

The explicit form of the free spinors u(h)(p) and v(h)(p) in the chiral representation
of the γ matrices (see eqn (2.27)) is

u
(h)
C (p) =

(
−
√
E + h |�p|χ(h)(�p)√
E − h |�p|χ(h)(�p)

)
, (2.202)

v
(h)
C (p) = − h

(√
E − h |�p|χ(−h)(�p)√
E + h |�p|χ(−h)(�p)

)
, (2.203)

where χ(h)(�p) are the orthonormal two-component helicity eigenstate spinors dis-
cussed in section 2.8.3. One can see that ζ(h) in eqns (2.194) and (2.195) has the
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same expression in eqn (2.199) as in the Dirac representation,

ζ(h) = −h . (2.204)

In the relativistic limit m� E the spinors in eqns (2.202) and (2.203) become

u
(+)
C (p) � −

√
2E

(
χ(+)(�p)

− m
2E χ(+)(�p)

)
, u

(−)
C (p) �

√
2E

(
− m

2E χ(−)(�p)

χ(−)(�p)

)
,

(2.205)

v
(+)
C (p) � −

√
2E

(
m
2E χ(−)(�p)

χ(−)(�p)

)
, v

(−)
C (p) �

√
2E

(
χ(+)(�p)

m
2E χ(+)(�p)

)
, (2.206)

with two of the four components suppressed by the small ratio m/E. For this reason
the chiral representation is convenient in the treatment of ultrarelativistic particles.

2.8.3 Two-component helicity eigenstate spinors

In sections 2.8.1 and 2.8.2 χ(h)(�p) are two-component helicity eigenstate spinors
that satisfy the eigenvalue equation

�p ·�σ
|�p| χ

(h)(�p) = hχ(h)(�p) . (2.207)

Hence, u(h)(p) and v(h)(p) in eqns (2.197), (2.198) and (2.202), (2.203) satisfy
the eigenvalue equations (2.153) and (2.154). The eigenvalue equation (2.207)
guarantees that χ(h)(�p) and χ(−h)(�p) are orthogonal,(

χ(h)(�p)
)†
χ(−h)(�p) = 0 . (2.208)

They are also chosen to be normalized to one:(
χ(h)(�p)

)†
χ(h)(�p) = 1 . (2.209)

In the treatment of charge conjugation, to be discussed in section 2.11.1, it is
convenient to choose the relative phase of χ(h)(�p) and χ(−h)(�p) in order to satisfy
the relation in eqn (2.354). In this case, in both Dirac and chiral representations
we obtain the relation

iσ2
(
χ(h)(�p)

)∗
= −hχ(−h)(�p) . (2.210)

Since χ(−h)(−�p) is an eigenfunction of �p ·�σ/|�p| with eigenvalue h, it is proportional
to χ(h)(�p):

χ(−h)(−�p) = η(�p, h)χ(h)(�p) , (2.211)

where η(�p, h) is the same phase factor as in eqn (2.190). Changing the sign of both�p
and h in eqn (2.211) we obtain χ(h)(�p) = η(−�p,−h)χ(−h)(−�p), which is compatible
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with eqn (2.211) only if

η(−�p,−h) = η∗(�p, h) , (2.212)

in agreement with eqn (2.191). Furthermore, the compatibility of eqns (2.211) and
(2.210) gives the constraint

η(�p,−h) = −η∗(�p, h) . (2.213)

Let us finally remark that the two-component helicity eigenstate spinors satisfy the
useful relation9 (

χ(h)(�p)
)†

σk χ(h)(�p) = h
pk

|�p| . (2.214)

Using polar coordinates θ and φ, with 0 ≤ θ ≤ π and 0 ≤ φ < 2π, the three-
momentum is written as �p = |�p| (sinθ cosφ, sinθ sinφ, cosθ) and the two-component
helicity eigenstate spinors are given by

χ(+)(�p) =

(
cos θ

2

sin θ
2 e

iφ

)
, χ(−)(�p) =

(
− sin θ

2 e
−iφ

cos θ
2

)
. (2.215)

Since the transformation �p → −�p is equivalent to a transformation θ → π − θ and
φ → φ ± π, with the plus sign if 0 ≤ φ < π and the minus sign if π ≤ φ < 2π, we
have

η(�p, h) = h e−ihφ . (2.216)

It is often convenient to orient�p along the z axis: �p = (0, 0, |�p|), which implies θ = 0
and

χ(+)(�p) =

(
1
0

)
≡ χ(+) , χ(−)(�p) =

(
0
1

)
≡ χ(−) . (2.217)

This is also a convenient form for the two-component spinors in the rest frame of
the particle, where the helicity is undetermined. In the following, we will adopt
such a definition.

2.8.4 Massless field

From eqns (2.205) and (2.206) it is clear that in the case of a massless fermion the
four spinors u(±)(p) and v(±)(p) have only two nonvanishing components. In this
subsection we discuss the implications of this property for the massless chiral fields
ψR and ψL.

9 From eqns (2.207) and (A.35) we have

“
χ(h)(�p)

”†

σkχ(h)(�p) =
“
χ(h)(�p)

”† (�p ·�σ)σk + σk(�p ·�σ)

2h|�p|
χ(h)(�p)

=
pj

2h|�p|

“
χ(h)(�p)

”†

{σk, σj}χ(h)(�p) =
pk

h|�p|
.
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The Fourier expansions of the chiral fields ψR and ψL are given by

ψR,L(x) =

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)(p)u

(h)
R,L(p) e−ip · x + b(h)†(p) v(h)

R,L(p) eip ·x] .
(2.218)

From eqns (2.205) and (2.206), for m = 0 we have

u
(+)
L (p) = u

(−)
R (p) = v

(+)
R (p) = v

(−)
L (p) = 0 , (2.219)

and

u
(+)
R (p) = u(+)(p) , u

(−)
L (p) = u(−)(p) , v

(+)
L (p) = v(+)(p) , v

(−)
R (p) = v(−)(p) .

(2.220)
Therefore, the Fourier expansions of the massless chiral fields ψR and ψL simplify
to

ψR(x) =

∫
d3p

(2π)3 2E

[
a(+)(p)u(+)(p) e−ip ·x + b(−)†(p) v(−)(p) eip ·x] , (2.221)

ψL(x) =

∫
d3p

(2π)3 2E

[
a(−)(p)u(−)(p) e−ip ·x + b(+)†(p) v(+)(p) eip ·x] . (2.222)

One can see explicitly that the massless chiral fields ψR(x) and ψL(x) are indepen-
dent, in agreement with the discussion in section 2.7.1. Moreover, the positive
energy components of ψR(x) and ψL(x) have positive and negative helicity,
respectively, in agreement with eqns (2.137) and (2.138).

2.9 Quantization

The quantization of the Dirac field can be implemented by imposing the canonical
equal-time anticommutation relations in section C.2 of appendix C. Special care is
necessary for the determination of the canonical conjugated momentum, because
the Dirac Lagrangian in eqn (2.1) contains ∂0ψ and ∂0ψ

†, which are not indepen-
dent. Separating the real and imaginary parts of each component ψα of ψ, and
taking into account that eπα = ∂L /∂(∂0eψα) and �mπα = −∂L /∂(∂0�mψα),
one can find that

π = i ψ† . (2.223)

Thus, the anticommutation relations in eqns (C.11) and (C.12) can be written as

{ψα(t,�x), ψ†β(t,�y)} = δ3(�x−�y) δαβ , (2.224)

{ψα(t,�x), ψβ(t,�y)} = {ψ†α(t,�x), ψ†β(t,�y)} = 0 , (2.225)

where α, β are Dirac indices. The anticommutation relations in eqn (2.224) and
(2.225) are satisfied by writing the Fourier expansion of the quantized Dirac
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field ψ(x) as in eqn (2.139), with coefficients a(h)(p) and b(h)(p) that satisfy the
anticommutation relations

{a(h)(p), a(h′)†(p′)} = {b(h)(p), b(h
′)†(p′)} = (2π)3 2E δ3(�p−�p′) δhh′ , (2.226)

{a(h)(p), a(h′)(p′)} = {a(h)†(p), a(h′)†(p′)} = 0 , (2.227)

{b(h)(p), b(h
′)(p′)} = {b(h)†(p), b(h

′)†(p′)} = 0 , (2.228)

{a(h)(p), b(h
′)(p′)} = {a(h)†(p), b(h

′)†(p′)} = 0 , (2.229)

{a(h)(p), b(h
′)†(p′)} = {a(h)†(p), b(h

′)(p′)} = 0 . (2.230)

Since these are the canonical anticommutation relations for fermionic ladder oper-
ators, the coefficients a(h)†(p) and b(h)†(p) can be interpreted, respectively, as the
particle and antiparticle creation operators which are necessary for constructing
the Fock space of states starting from the ground state |0〉, such that

a(h)(p) |0〉 = 0 , b(h)(p) |0〉 = 0 . (2.231)

Hence, the state |0〉 represents the vacuum and the states of a fermion f and an
antifermion f̄ with definite momentum and helicity are given by

|f(p, h)〉 = a(h)†(p) |0〉 , |̄f(p, h)〉 = b(h)†(p) |0〉 . (2.232)

Since the vacuum is normalized to one,

〈0|0〉 = 1 , (2.233)

we have

〈f(p, h)|f(p′, h′)〉 = 〈̄f(p, h)|̄f(p′, h′)〉 = (2π)3 2E δ3(�p−�p′) δhh′ . (2.234)

This expression can be written as

〈f(p, h)|f(p′, h′)〉 = 〈̄f(p, h)|̄f(p′, h′)〉 = 2E δhh′

∫
d3x ei(
p−
p′) ·
x . (2.235)

Therefore, we have

〈f(p, h)|f(p, h′)〉 = 〈̄f(p, h)|̄f(p, h′)〉 = 2E V δhh′ , (2.236)

where V =
∫

d3x is the total volume. Since the total volume is infinite, the one-
particle states in eqn (2.232) are not properly normalized to describe real particles.
In order to obtain well-normalized states one must construct wave packet superpo-
sitions of one-particle states in eqn (2.232) as described in section 2.12, or consider
a finite normalization volume as described in section 2.13. The completeness in the
Fock space of one-particle states is given by∫

d3p

(2π)3 2E

∑
h

[
|f(p, h)〉〈f(p, h)| + |̄f(p, h)〉〈̄f(p, h)|

]
= 1 . (2.237)

The product E δ3(�p − �p′) in the anticommutation relations in eqns (2.226)–
(2.230) and in the normalization of states in eqn (2.234) is invariant under restricted
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Lorentz transformations. It is clearly invariant under rotations. In order to see that
it is also invariant under boosts, let us consider, without loss of generality, a boost
with velocity v in the direction of the z axis. In the boosted frame, the energy and
the third component of the momentum are given by

Ẽ = γ
(
E − v p3

)
, p̃3 = γ

(
p3 − v E

)
. (2.238)

Since
dp̃3

dp3
= γ

(
1 − v

dE

dp3

)
= γ

(
1 − v

p3

E

)
, (2.239)

we obtain, using the property in eqn (A.124) of the Dirac δ-function,

Ẽ δ3(�̃p− �̃p
′
) = γ

(
E − v p3

)
δ3(�p−�p′)

∣∣∣∣dp̃3

dp3

∣∣∣∣−1

= E δ3(�p−�p′) . (2.240)

Hence, it follows that the anticommutation relations in eqns (2.226)–(2.230) and
the normalization of states in eqn (2.234) are invariant under restricted Lorentz
transformations.

From the general expression in eqn (C.44), the energy–momentum operator of
a Dirac field is given by10

P
µ =

∫
d3xψ†(x) i

↔
∂µ ψ(x) . (2.241)

Using the Fourier expansion in eqn (2.139) of the Dirac field and the properties in
eqns (2.159) and (2.161), we obtain

Pµ =

∫
d3p

(2π)3 2E
pµ

∑
h=±1

(
a(h)†(p) a(h)(p) − b(h)(p) b(h)†(p)

)
. (2.242)

Unfortunately, the operator Pµ cannot be interpreted as the energy–momentum
operator, because

〈0|Pµ|0〉 = −
∫

d3p pµ δ3(0) (2.243)

would imply that the vacuum does not have zero energy and momentum (in fact,
the energy and momentum of the vacuum would be infinite!). In order to get a well-
behaved energy–momentum operator, we subtract from Pµ its vacuum expectation
value 〈0|Pµ|0〉. In this way we obtain the normally ordered energy–momentum
operator

:Pµ : =

∫
d3p

(2π)3 2E
pµ

∑
h=±1

(
a(h)†(p) a(h)(p) + b(h)†(p) b(h)(p)

)
. (2.244)

Normal ordering is a general prescription for obtaining well-behaved operators
with zero vacuum expectation value. In a normally ordered product of a creation

10 The Dirac equation (2.11) implies that L = 0.
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operator A† and a destruction operator B, the order of the operators is rear-
ranged putting all the annihilation operators on the right, taking into account
the anticommutation of fermion operators:

:A†B : = A†B , :BA† : = ±A†B , (2.245)

with the + sign for bosonic operators and the − sign for fermionic operators. All
the other products remain unaltered.

Interpreting the normally ordered operator : Pµ : as the energy–momentum
operator of the Dirac field, we obtain that particles and antiparticles have the
correct values of energy and momentum:

:Pµ : |f(p, h)〉 = pµ |f(p, h)〉 , :Pµ : |̄f(p, h)〉 = pµ |̄f(p, h)〉 . (2.246)

The normally ordered electric charge operator in eqn (2.90) is given by

:Q : = q

∫
d3p

(2π)3 2E

∑
h=±1

(
a(h)†(p)a(h)(p) − b(h)†(p)b(h)(p)

)
. (2.247)

Accordingly, particle and antiparticle have opposite electric charges:

:Q : |f(p, h)〉 = +q |f(p, h)〉 , :Q : |̄f(p, h)〉 = −q |̄f(p, h)〉 . (2.248)

States with more than one fermion are totally antisymmetric under exchange of
two fermions, as required by Fermi–Dirac statistics. For example, for a two-fermion
state we have

|f1(p1, h1), f2(p2, h2)〉 = a
(h1)†
f1

(p1) a
(h2)†
f2

(p2) |0〉

= − a
(h2)†
f2

(p2) a
(h1)†
f1

(p1) |0〉 = −|f2(p2, h2), f1(p1, h1)〉 ,
(2.249)

where the two fermions can be different (the creation and annihilation operators of
different fermions anticommute). The Pauli principle follows: two identical fermions
cannot exist in the same state.

An important quantity for the calculation of transition amplitudes is the
Feynman propagator

G(x−x′) = 〈0|T[ψ(x)ψ(x′)]|0〉 = lim
ε→0

i

∫
d4p

(2π)4
/p+m

p2 −m2 + i ε
e−ip · (x−x′) , (2.250)

where we have introduced Wick’s chronological product T[A(x)B(y)] which is
defined as

T[A(x)B(y)] =

{
A(x)B(y) if x0 > y0 ,

±B(y)A(x) if y0 > x0 ,
(2.251)

with the + sign for bosonic operators and the − sign for fermionic operators.



QUANTIZATION 35

(b) helicity states of ψL(x)

�p

particles

�s �s

�p

antiparticles

(a) helicity states of ψR(x)

�p

particles

�s �s

�p

antiparticles

Fig. 2.1. Helicity states of the massless chiral fields ψR(x) and ψL(x).

2.9.1 Causality

In a local theory, causality demands that measurements at space-time points sepa-
rated by a space-like interval do not interfere. This means that the corresponding
operators must commute. Since all measurable quantities are represented by oper-
ators which are bilinear in the fermion fields, causality is satisfied if fermion
fields at space-time points separated by a space-like interval commute or anti-
commute. The equal-time anticommutation relations in eqns (2.224) and (2.225)
imply that fermion fields at space-like separated points must anticommute. Indeed,
using the Fourier expansion in eqn (2.139) and the anticommutation relations in
eqns (2.226)–(2.230) one can find that for any space-time points x and y

{ψα(x), ψβ(y)} = {ψ†α(x), ψ†β(y)} = 0 , (2.252)

and
{ψα(x), ψβ(y)} =

(
i/∂(x) +m

)
αβ

∆(x − y) , (2.253)

where ∂
(x)
µ ≡ ∂/∂xµ and

∆(x−y) =

∫
d3p

(2π)3 2E

(
e−ip · (x−y) − eip · (x−y)

)
= −2i

∫
d3p

(2π)3 2E
sin[p · (x−y)] .

(2.254)
Using eqn (2.143), this function of the space-time interval x− y can also be written
as

∆(x − y) =

∫
d4p

(2π)3
δ(p2 −m2) ε(p0) e−ip · (x−y) , (2.255)

where ε(p0) = p0/|p0|. This expression shows that ∆(x − y) is invariant under
restricted Lorentz transformations, which maintain the sign of p0. Since ∆(0,�x −
�y) = 0, the function ∆(x− y) vanishes for space-like x− y. Therefore,

{ψα(x), ψβ(y)} = 0 for (x − y)2 < 0 , (2.256)

as required by causality.

2.9.2 Massless field

As we have seen in sections 2.7.1 and 2.8.4, in the case of a massless field the chiral
components ψR(x) and ψL(x) are independent and it is possible that only one of
them is sufficient for the description of a fermion.
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From the quantum versions of the Fourier expansions in eqns (2.221) and (2.222)
of ψR(x) and ψL(x) one immediately see that ψR(x) describes only particles with
positive helicity and antiparticles with negative helicity, whereas ψL(x) describes
only particles with negative helicity and antiparticles with positive helicity, as
summarized in Fig. 2.1.

2.10 Symmetry transformation of states

In order to understand how states transform under a symmetry transformation, let
us consider a generic state |ξ〉 in the Hilbert space of a system. Under a symmetry
transformation, the state |ξ〉 transforms into another state |ξ′〉 that belongs to the
Hilbert space of the system under consideration. Thus, there must be an operator
U which performs the transformation:

|ξ〉 → |ξ′〉 = U |ξ〉 . (2.257)

In order for the invariance under a transformation to be a symmetry of the system,
the absolute value of the scalar product between any two states |ξ1〉 and |ξ2〉 of the
system must be invariant:

|〈ξ′1|ξ′2〉| = |〈ξ1|ξ2〉| . (2.258)

This means that

|〈ξ1|U†U|ξ2〉| = |〈ξ1|ξ2〉| . (2.259)

Therefore, if the transformation is a symmetry of the system, U is a unitary

operator:

U† = U−1 . (2.260)

However, U can be either linear or antilinear. Given a state

|ξ〉 = c1 |ξ1〉 + c2 |ξ2〉 , (2.261)

with complex coefficients c1, c2, a linear operator satisfies

U |ξ〉 = c1 U |ξ1〉 + c2 U |ξ2〉 , (2.262)

while an antilinear operator takes the complex conjugate of the coefficients:

U |ξ〉 = c∗1 U |ξ1〉 + c∗2 U |ξ2〉 . (2.263)

Antilinear unitary operators are usually called antiunitary. Although this name is
somewhat confusing, we use it in this book, whereas we call linear unitary operators
simply unitary. As usual, we denote with the same letter U both unitary and
antiunitary operators, their character being clear from the context.
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For a unitary operator U, we have

〈ξ′1|ξ′2〉 = 〈ξ1|U†U|ξ2〉 = 〈ξ1|ξ2〉 . (2.264)

This relation is consistent with the linearity in eqn (2.262), as one can see
considering

|ξ′〉 = U |ξ〉 = c1 U |ξ1〉 + c2 U |ξ2〉 = c1 |ξ′1〉 + c2 |ξ′2〉 . (2.265)

We have

〈ξ′|ξ′〉 = |c1|2 〈ξ′1|ξ′1〉 + |c2|2 〈ξ′2|ξ′2〉 + c∗1 c2 〈ξ′1|ξ′2〉 + c1 c
∗
2 〈ξ′2|ξ′1〉

= |c1|2 〈ξ1|ξ1〉 + |c2|2 〈ξ2|ξ2〉 + c∗1 c2 〈ξ1|ξ2〉 + c1 c
∗
2 〈ξ2|ξ1〉 , (2.266)

which is consistent with

〈ξ′|ξ′〉 = 〈ξ|ξ〉 = |c1|2 〈ξ1|ξ1〉 + |c2|2 〈ξ2|ξ2〉 + c∗1 c2 〈ξ1|ξ2〉 + c1 c
∗
2 〈ξ2|ξ1〉 . (2.267)

On the other hand, for an antiunitary operator U we have

|ξ′〉 = U |ξ〉 = c∗1 U |ξ1〉 + c∗2 U |ξ2〉 = c∗1 |ξ′1〉 + c∗2 |ξ′2〉 . (2.268)

Hence,

〈ξ′|ξ′〉 = |c1|2 〈ξ′1|ξ′1〉 + |c2|2 〈ξ′2|ξ′2〉 + c1 c
∗
2 〈ξ′1|ξ′2〉 + c∗1 c2 〈ξ′2|ξ′1〉 . (2.269)

This relation would not be consistent with eqn (2.267) if an antiunitary operator
were to behave according to eqn (2.264). Hence, for an antiunitary operator U we
have, in place of eqn (2.264),

〈ξ′1|ξ′2〉 = 〈ξ1|U†U|ξ2〉∗ = 〈ξ2|ξ1〉 . (2.270)

The relation between the transformation of states and the transformation of
operators can be found considering the expectation value 〈ξ|O|ξ〉 of an operator O.
Under the transformation in eqn (2.257) the operator transforms as

O → O′ . (2.271)

If the transformation is a symmetry of the system we must have

|〈ξ′|O′|ξ′〉| = |〈ξ|O|ξ〉| . (2.272)

From eqn (2.261) we can write 〈ξ|O|ξ〉 as

〈ξ|O|ξ〉 = |c1|2 〈ξ1|O|ξ1〉+ |c2|2 〈ξ2|O|ξ2〉+ c∗1 c2 〈ξ1|O|ξ2〉+ c1 c
∗
2 〈ξ2|O|ξ1〉 . (2.273)

If the transformation is unitary, from eqn (2.265) we obtain

〈ξ′|O′|ξ′〉 = |c1|2〈ξ1|U†O′U|ξ1〉 + |c2|2〈ξ2|U†O′U|ξ2〉
+ c∗1c2〈ξ1|U†O′U|ξ2〉 + c1c

∗
2〈ξ2|U†O′U|ξ1〉 . (2.274)
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Comparing this with eqn (2.273) one can see that the equality in eqn (2.272) is
satisfied for any value of c1 and c2 if

U
†
O
′
U = O =⇒ O

′ = U O U
† . (2.275)

In a similar way, one can show that for an antiunitary transformation

U†O′∗U = O =⇒ O′∗ = U O U† . (2.276)

Since quantized fields are operators, for a unitary transformation they must
transform as

ψ′(x) = Uψ(x)U† , (2.277)

whereas for an antiunitary transformation

ψ′∗(x) = Uψ(x)U
† . (2.278)

Most symmetry transformations are represented by unitary operators, but
time reversal, to be discussed in section 2.11.4, and CPT, to be discussed in
section 2.11.5, are represented by antiunitary operators.

Let us note that the transformations in eqns (2.277) and (2.278) are active,
because they change the system, leaving the coordinates intact. In other words,
eqns (2.277) and (2.278) give the transformation of a quantized field operator for a
symmetry transformation of the system described by such a field, while the point
of view of the observer, represented by the coordinate frame, remains unchanged.
By contrast, for example the transformation in eqn (2.59) of the Dirac field under
a Lorentz transformation in eqn (B.1) is passive, because the change of coordinates
in the Lorentz transformation in eqn (B.1) represents a change of the point of view
of the observer and the system represented by the Dirac field remains untouched.

2.10.1 Space-time translations

For an infinitesimal space-time translation

xµ → x′µ = xµ + ε bµ , (2.279)

with infinitesimal ε , the unitary transformation operator U can be written as

U = 1 + i ε bµ Pµ , (2.280)

with an Hermitian operator Pµ which is the generator of space-time translations.
From eqn (2.277) we have

ψ′(x) = ψ(x) + i ε bµ [Pµ, ψ(x)] . (2.281)

On the other hand, from eqns (B.77), (B.85), and (B.86) one can see that the
transformation of the field ψ(x) under the space-time translation in eqn (2.279) is



SYMMETRY TRANSFORMATION OF STATES 39

given by

ψ′(x) = ψ(x) − i ε bµ ∂
µ ψ(x) . (2.282)

Comparing eqns (2.281) and (2.282), we obtain, in agreement with the general
eqn (C.29),

[Pµ, ψ(x)] = −i ∂µ ψ(x) . (2.283)

This commutation relation defines the Hermitian operator Pµ. One can check, by
using the Fourier expansion of ψ(x) in eqn (2.139) and the anticommutation rela-
tions in eqns (2.226)–(2.230), that eqn (2.283) is satisfied by the energy–momentum
of the Dirac field in eqn (2.244) (here we omit the double colons because in this
case the normal ordering is irrelevant).

Let us now consider the fermion and antifermion annihilation operators a(h)(p)
and b(h)(p). Under the space-time translation

xµ → x′µ = xµ + aµ , (2.284)

from eqns (2.162), (2.163) and

Uψ(x)U† = ψ′(x) = ψ(x− a) , (2.285)

we have

a′(h)(p) = U a(h)(p)U† =

∫
d3xu(h)†(p)Uψ(x)U† eip · x

=

∫
d3xu(h)†(p)ψ(x− a) eip · x = eip · a a(h)(p) , (2.286)

b′(h)(p) = U b(h)(p)U† =

∫
d3xUψ†(x)U† v(h)(p) eip ·x

=

∫
d3xψ†(x− a) v(h)(p) eip ·x = eip · a b(h)(p) . (2.287)

Hence, since the vacuum is invariant under space-time translations (U |0〉 = |0〉),
the fermion and antifermion states in eqns (2.232) transform by a phase shift:

U |f(p, h)〉 = U a(h)†(p)U† U |0〉 = e−ip · a |f(p, h)〉 , U |̄f(p, h)〉 = e−ip · a |̄f(p, h)〉 .
(2.288)

Let us note that the phase shift is e−ip · a, as one may have expected from the
space-time evolution of the wave functions

〈0|ψ(x)|f(p, h)〉 = u(h)(p) e−ip ·x , 〈0|ψC(x)|̄f(p, h)〉 = ξC u
(h)(p) e−ip ·x ,

(2.289)
where ψC(x) is the charge-conjugated field in eqn (2.356). Indeed, the trans-
formation in eqn (2.285) is active, in agreement with the remark at the end of
section 2.10.
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2.10.2 Lorentz transformations

From eqns (2.59) and (2.277), there is a unitary operator UΛ such that under a
Lorentz transformation in eqn (B.1) the Dirac field operator ψ(x) transforms as

UΛ ψ(x)U
†
Λ = ψ′(x) = S(Λ)ψ(Λ−1x) . (2.290)

Let us derive the corresponding transformation for the fermion annihilation
operators a(h)(p). Since the expression in eqn (2.162) is not written in a covariant
form suitable to discuss Lorentz transformations, let us generalize it to

a(h)(p) =

∫
S

dSµ(x)u(h)(p) γµ ψ(x) eip ·x , (2.291)

where dSµ(x) is the surface element of an arbitrary three-dimensional space-like
surface S, such that for any two points x1 and x2 on the surface the invariant
squared distance (x − y)2 is space-like (i.e. (x − y)2 < 0). The unit four-vector
nµ(x) normal to S at the point x must be time-like (i.e. nµ(x)nµ(x) = 1). In
general, dSµ(x) is given by

dSµ(x) =
(
n0(x)dx1dx2dx3, n1(x)dx0dx2dx3, n2(x)dx0dx1dx3, n3(x)dx0dx1dx2

)
.

(2.292)
A hyperplane t = constant is a special case in which nµ(x) = (1, 0, 0, 0) for all x,
which leads to dSµ(x) = δµ0d

3x.
In order to prove that the expression in eqn (2.291) is equivalent to that in

eqn (2.162), we use the Gauss theorem, which says that for any function fµ(x)∫
S

dSµ(x) fµ(x) =

∫
V

d4x∂µ fµ(x) , (2.293)

where V is the volume enclosed by the hypersurface S. Let us introduce the
functional derivative

δF (S)

δS(x)
= lim

∆V (x)→0

F (S + ∆S(x)) − F (S)

∆V (x)
, (2.294)

where S + ∆S(x) is a space-like hypersurface which differs from S by an infinites-
imal deformation in the neighborhood of x and ∆V (x) is the infinitesimal
four-dimensional volume between S and S + ∆S(x). For

F (S) =

∫
S

dSµ(x) fµ(x) , (2.295)

using Gauss theorem in eqn (2.293) we have

δF (S)

δS(x)
= lim

∆V (x)→0

∫
V +∆V (x)

d4x′ ∂µ fµ(x′) −
∫

V
d4x′ ∂µ fµ(x′)

∆V (x)
= ∂µ fµ(x) .

(2.296)
Thus, F (S) is invariant under a change of the space-like hypersurface of integration
S if ∂µ fµ(x) = 0 for all space-time points x. This is what happens with eqn (2.291):
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from the Dirac equation (2.11) and from eqn (2.146) we obtain

∂µ
(
u(h)(p) γµ ψ(x) eip · x

)
= −imu(h)(p)ψ(x) eip ·x + i u(h)(p) /pψ(x) eip ·x = 0 .

(2.297)
Therefore, since eqn (2.291) is independent of the hypersurface of integration, as
long as it remains space-like, it is equivalent to eqn (2.162).

Let us now use eqn (2.291) for the derivation of the transformation of the fermion
annihilation operators a(h)(p) under the Lorentz transformation in eqn (2.290). We
have

UΛ a
(h)(p)U

†
Λ =

∫
S

dSµ(x)u(h)(p) γµ S(Λ)ψ(Λ−1x) eip ·x . (2.298)

Since

x̃ = Λ−1 x =⇒ x = Λ x̃ =⇒ dSµ(x) = Λµ
ν dS̃ν(x̃) , (2.299)

from eqn (2.60) we find that

UΛ a
(h)(p)U

†
Λ =

∫
eS
dS̃µ(x̃)u(h)(p)S(Λ) γµ ψ(x̃) eiep · ex , (2.300)

with
p̃ = Λ−1 p . (2.301)

Let us now consider u(h)(p)S(Λ). From eqns (2.146) and (2.60) we obtain

u(h)(p)S(Λ) (/̃p−m) = 0 . (2.302)

This means that u(h)(p)S(Λ) is a linear combination of u(+)(p̃) and u(−)(p̃):

u(h)(p)S(Λ) =
∑

eh
cheh(p,Λ)u(eh)(p̃) , (2.303)

with

cheh(p,Λ) =
1

2m
u(h)(p)S(Λ)u(eh)(Λ−1p) . (2.304)

The coefficients cheh(p,Λ) are obviously constrained by∑
eh

|cheh(p,Λ)|2 = 1 . (2.305)

In conclusion, we obtain

UΛ a
(h)(p)U

†
Λ =

∑
eh
cheh(p,Λ)

∫
eS
dS̃µ(x̃)u(h)(p̃) γµ ψ(x̃) eiep · ex , (2.306)

which implies

UΛ a
(h)(p)U

†
Λ =

∑
eh
cheh(p,Λ) a(eh)(Λ−1p) . (2.307)
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ỹ

z̃

f

�̃vf =
�vf+�v

1+�vf ·�v

ỹ y

z

z̃

�v

(a)

(d)

(b)

(c)

Λ−1(�v) = Λ(−�v)

Λ(�v)

active

passive

Fig. 2.2. Active boost corresponding to Λ(�v) in eqn (2.316), with velocity �v in
the direction of the particle velocity �vf, which is oriented along the z axis.

In an analogous way, one can derive the transformation law of the antifermion
annihilation operator b(h)(p):

UΛ b
(h)(p)U

†
Λ =

∑
eh
dheh(p,Λ) b(

eh)(Λ−1p) , (2.308)

with

dheh(p,Λ) =
1

2m
v(eh)(Λ−1p)S−1(Λ) v(h)(p) , (2.309)

such that ∑
eh

|dheh(p,Λ)|2 = 1 . (2.310)

Since the vacuum is invariant under Lorentz transformations (UΛ |0〉 = |0〉), the
fermion and antifermion states in eqns (2.232) transform as

UΛ |f(p, h)〉 =
∑

eh
c∗
heh(p,Λ) |f(Λ−1p, h̃)〉 , (2.311)

UΛ |̄f(p, h)〉 =
∑

eh
d∗

heh(p,Λ) |̄f(Λ−1p, h̃)〉 . (2.312)

One can understand that the transformation is active, i.e. a transformation of the
system, by considering a boost with velocity �v in the same direction as the particle
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velocity �vf, which must increase the particle velocity to

�̃vf =
�v +�vf

1 +�v ·�vf

, (2.313)

according to eqn (B.32). In fact, the boost has the effect of transforming a state
with four-momentum p and velocity

�vf =
�p

E
(2.314)

into a state with four-momentum p̃ = Λ−1p, which has the larger velocity

�̃vf =
�̃p

Ẽ
=

γ (�vE +�p)

γ (E +�v ·�p) =
�v +�vf

1 +�v ·�vf

. (2.315)

The active transformation from eqn (2.314) to eqn (2.315) is illustrated by panels
(a) and (b) in Fig. 2.2, where we have considered �vf and �v along the z axis. From
eqn (B.28) we have

[Λ(�v)]µν =

⎛⎜⎜⎝
γ 0 0 −γv
0 1 0 0
0 0 1 0

−γv 0 0 γ

⎞⎟⎟⎠ , (2.316)

[Λ−1(�v)]µν = [Λ(−�v)]µν =

⎛⎜⎜⎝
γ 0 0 γv
0 1 0 0
0 0 1 0
γv 0 0 γ

⎞⎟⎟⎠ , (2.317)

where v ≡ |�v|. Comparing panels (a) and (b) in Fig. 2.2 with panels (c) and (d),
one can see that the effect of the active transformation Λ(�v) is the same as that
of a passive transformation Λ−1(�v) = Λ(−�v) from the coordinate system x to the
coordinate system x̃ = Λ−1(�v)x.

By contrast, Fig. 2.3 shows that a passive transformation Λ(�v) from the coor-
dinate system x to the coordinate system x′ = Λ(�v)x has the effect of decreasing
the particle velocity from �vf in eqn (2.314) to

�v′f =
�p′

Ẽ
=

γ (�vE −�p)
γ (E −�v ·�p) =

�v −�vf

1 −�v ·�vf

. (2.318)

It is important to note that the linear combination of different helicities in
eqns (2.311) and (2.312) implies that the helicity of a particle is not a Lorentz
invariant. This fact should be expected on physical grounds. Let us consider for
example an active boost in the opposite direction to the particle velocity. If the
boost has a velocity which is larger than the original particle velocity, the motion
of the boosted particle is inverted and the direction of the three-momentum of the
particle is inverted. On the other hand, the spin is untouched and its vector points
in the same direction before and after the boost. As a result, in this case the helicity
is inverted by the boost and we expect that cheh ∝ dheh ∝ δh(−eh).
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Fig. 2.3. Passive boost corresponding to Λ(�v) in eqn (2.316), with velocity �v
in the direction of the particle velocity �vf from the coordinate system x to
the coordinate system x′. We have oriented the z and z′ axes in the common
direction of the velocities �vf and �v.
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Fig. 2.4. Active boost corresponding to Λ(�v) in eqn (2.319), with velocity �v in
the direction opposite to the particle velocity �vf (�v ·�vf < 0), which is oriented
along the z axis, and such that |�v| > |�vf|.

Let us calculate, for example, cheh(p,Λ). We consider an active boost corre-
sponding to

[Λ(�v)]µν =

⎛⎜⎜⎝
γ 0 0 γv
0 1 0 0
0 0 1 0
γv 0 0 γ

⎞⎟⎟⎠ , (2.319)
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Fig. 2.5. Passive boost corresponding to Λ(�v) in eqn (2.319), with velocity �v in
the direction opposite of the particle velocity �vf (�v ·�vf < 0), from the coordinate
system x to the coordinate system x′. We have oriented the z and z′ axes in the
common direction of the velocities �vf and �v.

[Λ−1(�v)]µν = [Λ(−�v)]µν =

⎛⎜⎜⎝
γ 0 0 −γv
0 1 0 0
0 0 1 0

−γv 0 0 γ

⎞⎟⎟⎠ , (2.320)

with velocity �v in the opposite direction of the particle velocity �vf in eqn (2.314),
which is oriented along the z axis, and such that

v ≡ |�v| > |�vf| ≡ vf . (2.321)

As illustrated in Fig. 2.4, such an active boost inverts the particle velocity. One
can also see that it is equivalent to a passive boost Λ−1(�v) = Λ(−�v) from the
coordinate system x to the coordinate system x̃ = Λ−1(�v)x, which moves with
velocity −�v along the z axis. The active boost corresponding to Λ(�v) must not be
confused with the passive boost from the coordinate system x to the coordinate
system x′ = Λ(�v)x, in which the particle velocity is larger than in the system x, as
illustrated in Fig. 2.5.

Since the particle momentum �p is directed along the z axis, from eqns (2.202)
and (2.215) we have

u(h)(p) =
√
m

((
sinh η

2 + h cosh η
2

)
χ(h)(

sinh η
2 − h cosh η

2

)
χ(h)

)
, (2.322)

with χ(h) given in eqn (2.217). Let us now calculate u(eh)(Λ−1p) = u(eh)(p̃). Since
the active boost velocity �v is in the opposite direction of the particle velocity �vf,

the corresponding rapidities subtract and the rapidity η̃ corresponding to �̃p is given
by

η̃ = |η − ϕ| = ϕ− η , (2.323)

because

tanhϕ = v > vf = tanh η (2.324)
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implies that ϕ > η. Moreover, since �̃p = |�̃p|(0 , 0 , −1), the latitudinal polar angle θ̃

of �̃p = |�̃p| (sinθ̃ cosφ̃, sinθ̃ sinφ̃, cosθ̃) is θ̃ = π, and from eqn (2.215) we get

χ(+)(�̃p) =

(
0

eieφ

)
= eieφ χ(−) , χ(−)(�̃p) =

(
−e−ieφ

0

)
= −e−ieφ χ(+) . (2.325)

We can summarize these relations with

χ(eh)(�̃p) = h̃ eieheφ χ(−eh) , (2.326)

which allows one to write u(eh)(p̃) as

u(eh)(p̃) = h̃ eieheφ √
m

⎛⎝(sinh eη
2 + h̃ cosh eη

2

)
χ(−eh)(

sinh eη
2 − h̃ cosh eη

2

)
χ(−eh)

⎞⎠ . (2.327)

From eqn (2.74), we have

S3
boost(−ϕ) = cosh

ϕ

2
+ α3 sinh

ϕ

2
=

(
cosh ϕ

2 + σ3 sinh ϕ
2 0

0 cosh ϕ
2 − σ3 sinh ϕ

2

)
,

(2.328)
leading to

S3
boost(−ϕ)u(eh)(p̃) = − h̃ eieheφ √

m

⎛⎝(sinh η
2 − h̃ cosh η

2

)
χ(−eh)(

sinh η
2 + h̃ cosh η

2

)
χ(−eh)

⎞⎠
= − h̃ eieheφ u(−eh)(p) , (2.329)

as one can see by comparison with eqn (2.322). Finally, using eqn (2.157), from
eqn (2.304) we obtain

cheh(p,Λ(�v)) =
1

2m
u(h)(p)S3

boost(−ϕ)u(eh)(Λ−1p) = −h̃ eieheφ δh(−eh) , (2.330)

as expected, which implies that in this case

UΛ a
(h)(p)U

†
Λ = −h̃ eieheφ a(−h)(Λ−1p) . (2.331)

Hence, in this case the helicity of the particle is reversed, as illustrated in Fig. 2.6.
It is straightforward to modify the above calculation to the case in which the boost
does not reverse the direction of motion of the particle (|�v| < |�vf|), which yields

cheh = δheh and UΛ a
(h)(p)U

†
Λ = a(h)(Λ−1p). Similar properties obviously hold for

the antiparticle destruction operator b(h)(p). Let us emphasize, however, that a
boost in a direction which is not parallel or antiparallel to the particle velocity
produces a linear combination of the two helicities.

Let us now calculate cheh(p,Λ) for a rotation. As an example, we consider a
rotation by an angle ω in the y-z plane, with

[Λ(ω)]µν =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 cosω sinω
0 0 − sinω cosω

⎞⎟⎟⎠ , (2.332)
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Fig. 2.6. Reversal of the helicity under an active boost with velocity �v in the
direction opposite to the particle velocity �p/E.

[Λ−1(ω)]µν = [Λ(−ω)]µν =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 cosω − sinω
0 0 sinω cosω

⎞⎟⎟⎠ . (2.333)

Since
p̃µ = [Λ−1(ω)]µν p

ν = (E , 0 , − sinω|�p| , cosω|�p|) , (2.334)

we have

η̃ = η , θ̃ = ω , φ̃ =
3π

2
, (2.335)

and

u(eh)(p̃) =
√
m

⎛⎝(sinh η
2 + h̃ cosh η

2

)
χ(eh)(�̃p)(

sinh η
2 − h̃ cosh η

2

)
χ(eh)(�̃p)

⎞⎠ , (2.336)

with

χ(+)(�̃p) =

(
cos ω

2

−i sin ω
2

)
, χ(−)(�̃p) =

(
−i sin ω

2

cos ω
2

)
. (2.337)

Since the rotation is around the x axis, from eqn (2.82) we have

S1
rot(ω) = cos

ω

2
+ iΣ1 sin

ω

2
=

⎛⎜⎜⎝
cos ω

2 i sin ω
2 0 0

i sin ω
2 cos ω

2 0 0
0 0 cos ω

2 i sin ω
2

0 0 i sin ω
2 cos ω

2

⎞⎟⎟⎠ , (2.338)

and

S1
rot(ω)u(eh)(p̃) =

√
m

⎛⎝(sinh η
2 + h̃ cosh η

2

)
χ(eh)(

sinh η
2 − h̃ cosh η

2

)
χ(eh)

⎞⎠ = u(eh)(p) , (2.339)

as one can see by comparison with eqn (2.322). Finally, using eqn (2.157), from
eqn (2.304) we obtain

cheh(p,Λ(�v)) =
1

2m
u(h)(p)S1

rot(ω)u(eh)(Λ−1p) = δheh , (2.340)

and from eqn (2.307)

UΛ a
(h)(p)U

†
Λ = a(h)(Λ−1p) . (2.341)

Therefore, a rotation does not change the particle helicity. It is obvious that this
property holds for any rotation and also for antiparticles.
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In conclusion, a rotation does not change the particle helicity, whereas a boost
produces a linear combination of the two different helicities. Only in the particular
cases of a boost which is parallel or antiparallel to the particle velocity does the
boosted particle conserve a definite helicity. Only if the boost is antiparallel to the
particle velocity, and has a larger velocity, is the helicity reversed.

2.11 C, P, and T transformations

The Dirac Lagrangian in eqn (2.1) is invariant under the transformations of charge
conjugation C, space inversion (parity) P, and time reversal T.

2.11.1 Charge conjugation

Under charge conjugation the spinor fields ψ and ψ transform as

ψ(x)
C−−→ ψC(x) = ξC C ψT

(x) = −ξC γ0 C ψ∗(x) , (2.342)

ψ(x)
C−−→ ψC(x) = −ξ∗C ψT C†(x) , (2.343)

where C is the charge conjugation matrix, such that

C γT
µ C−1 = −γµ , (2.344)

C† = C−1 , (2.345)

CT = −C . (2.346)

Furthermore, we have

C (γ5)T C−1 = γ5 , (2.347)

C (σµν)T C−1 = −σµν . (2.348)

In the Dirac representation in eqn (2.21) of the γ matrices

CD = i γ2
D γ

0
D = −i

(
0 σ2

σ2 0

)
, (2.349)

and in the chiral representation in eqn (2.27)

CC = i γ2
C γ

0
C = −i

(
σ2 0
0 −σ2

)
. (2.350)

Since two charge conjugation transformations,

ψ
C−−→ ξC C ψT C−−→ |ξC|2 ψ , (2.351)

must leave ψ invariant, the coefficient ξC is a phase with

|ξC|2 = 1 , (2.352)

which represents the intrinsic charge parity of the field. A consequence of |ξC|2 = 1
is that the expression for ψ in terms of ψC is equal to the expression in eqn (2.342)
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of ψC in terms of ψ:

ψ(x) = ξC C ψC
T
(x) . (2.353)

Since the invariance of the free Dirac Lagrangian in eqn (2.1) under charge conju-
gation does not put any other constraint on ξC, the intrinsic charge parities of free
fields are arbitrary.

It is convenient to choose the relative phase of the spinors u(h)(p) and v(h)(p)
in order to have

u(h)(p) = C v(h)
T
(p) , (2.354)

which is equivalent to

v(h)(p) = C u(h)
T
(p) . (2.355)

Then, the Fourier expansion of the charge-conjugated field ψC(x) is given by

ψC(x) = ξC

∫
d3p

(2π)3 2E

∑
h=±1

[
b(h)(p)u(h)(p) e−ip ·x + a(h)†(p) v(h)(p) eip ·x] .

(2.356)
The transformation of the quantized field is implemented by

UC ψ(x)U
†
C = ψC(x) = ξC C ψT

(x) , (2.357)

where UC is the charge conjugation unitary operator (U†C = U
−1
C ), such that UC =

U
−1
C , because U2

C = 1. From eqns (2.139) and (2.356), one can see that

UC a
(h)†(p)U

†
C = ξ∗C b

(h)†(p) , (2.358)

UC b
(h)†(p)U

†
C = ξC a

(h)†(p) . (2.359)

Therefore, the operation of charge conjugation converts particles into antiparticles.
For the charge operator :Q : in eqn (2.247) we have

UC :Q : U
†
C = − :Q : , (2.360)

leading to opposite charges for particles and antiparticles, in agreement with
eqn (2.248).

The covariant bilinears in eqns (2.65)–(2.69) transform as

Sab = ψa ψb
C−−→ (Sab)

C = ξa∗
C ξb

C ψb ψa = ξa∗
C ξb

C Sba , (2.361)

V µ
ab = ψa γ

µ ψb
C−−→ (V µ

ab)
C = −ξa∗

C ξb
C ψb γ

µ ψa = −ξa∗
C ξb

C V
µ
ba , (2.362)

T µν
ab = ψa σ

µν ψb
C−−→ (T µν

ab )C = −ξa∗
C ξb

C ψb σ
µν ψa = −ξa∗

C ξb
C T

µν
ba , (2.363)

Aµ
ab = ψa γ

µ γ5 ψb
C−−→ (Aµ

ab)
C = ξa∗

C ξb
C ψb γ

µ γ5 ψa = ξa∗
C ξb

CA
µ
ba , (2.364)

Pab = ψa γ
5 ψb

C−−→ (Pab)
C = ξa∗

C ξb
C ψb γ

5 ψa = ξa∗
C ξb

C Pba . (2.365)
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The change of sign under charge conjugation of the vector current for a = b is
in agreement with the fact that particles and antiparticles have opposite charges,
because for the electromagnetic current in eqn (2.88) we have

jµ = q ψ γµ ψ
C−−→ (jµ)C = −q ψ γµ ψ = −jµ . (2.366)

However, the electromagnetic interaction Lagrangian

L
(γ)
I = −e jµAµ (2.367)

is invariant under charge conjugation if

Aµ
C−−→ −Aµ . (2.368)

Since the Lagrangian of the free electromagnetic field,

L
(γ) = −1

4
Fµν Fµν , (2.369)

with
Fµν = ∂µAν − ∂νAµ , (2.370)

is invariant under the transformation in eqn (2.368), the invariance under charge
conjugation of the electromagnetic interaction Lagrangian fixes the transformation
under charge conjugation of the electromagnetic field, to be given by eqn (2.368).
In particular, one can see that the charge parity of the electromagnetic field is
ξA
C = −1.

The example of the electromagnetic interaction shows that the invariance of
neutral-current interactions, which involve covariant bilinears with a = b, do not
place any constraint on the intrinsic charge parity of the fermion fields, because
ξa∗
C ξb

C = 1 for a = b on the right-hand sides of eqns (2.361)–(2.365). The intrin-
sic charge parities of the fermion fields can be constrained only through charge
conjugation conserving charged-current interactions, which involve the covariant
bilinears in eqns (2.361)–(2.365) with a �= b. In this case, the charge parities of the
fields ψa and ψb are related by the charge conjugation symmetry of the interaction
Lagrangian. In any case, only the relative values of the charge parities of different
fermion fields are determined by the symmetry under charge conjugation. In prac-
tice, it is convenient to define arbitrarily the charge parity of some fields and fix the
charge parity of the other fields through the symmetry under charge conjugation
of the interaction Lagrangian.

For example, let us consider the interaction Lagrangian

L
(Φ)
I = −g

(
V µ

ab Φµ + V µ
ba Φ†µ

)
, (2.371)

where we have taken into account that V µ
ab
†

= V µ
ba, with a vector field Φµ which

transforms under charge conjugation as

Φµ
C−−→ ξΦC Φ†µ . (2.372)
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The transformation of the Lagrangian in eqn (2.371) is

L
(Φ)
I

C−−→ −g
(
−ξa∗

C ξb
C ξ

Φ
C V

µ
ab
†
Φ†µ − ξa

C ξ
b
C

∗
ξΦC
∗
V µ

ab Φµ

)
. (2.373)

Invariance under charge conjugation is achieved with

ξa∗
C ξb

C ξ
Φ
C = −1 . (2.374)

This relation fixes the relative charge parities of ψa, ψb, and Φµ. For example, if
we choose ξΦC = −1 and ξa

C = 1, it follows that ξb
C = 1.

Since the vector and axial currents transform with different signs, V −A charged-
current weak interactions violate the symmetry under charge conjugation in a
maximal way. Let us consider, for example, the charged-current V −A interaction
Lagrangian

L
(W )
I = − g

2
√

2

[
(V µ

ab −Aµ
ab)Wµ + (V µ

ba −Aµ
ba)W †µ

]
, (2.375)

where we have taken into account V µ
ab
†

= V µ
ba and Aµ

ab
†

= Aµ
ba. Since

Wµ
C−−→ ξW

C W †µ , (2.376)

we have

L
(W )
I

C−−→ − g

2
√

2

[
−ξa∗

C ξb
C ξ

W
C (V µ

ba +Aµ
ba)W †µ − ξa

C ξ
b
C

∗
ξW
C

∗
(V µ

ab +Aµ
ab)Wµ

]
.

(2.377)
It is clear that there is no possible choice of the charge parities ξa

C, ξb
C, ξW

C which
leaves invariant under charge conjugation the V − A charged-current interaction
Lagrangian in eqn (2.375). If the fields ψa, ψb, and Wµ do not take part in other
interactions which are invariant under charge conjugation, their charge parities are
arbitrary, because they are not fixed in any way by the free Lagrangians, which are
invariant under charge conjugation but do not establish any connection between
the charge parities of different fields. In this case, the charge parities of the fields
ψa, ψb, and Wµ do not have a physical meaning and can be chosen arbitrarily (for
example, ξa

C = ξb
C = ξW

C = 1).

2.11.2 Parity

Under a parity transformation (space inversion)

xµ = (x0,�x)
P−−→ xµ

P = (x0,−�x) = xµ , (2.378)

the spinor fields ψ(x) and ψ(x) transform as

ψ(x)
P−−→ ψP(xP) = ξP γ

0 ψ(x) , (2.379)

ψ(x)
P−−→ ψP(xP) = ξ∗P ψ(x) γ0 . (2.380)



52 QUANTIZED DIRAC FIELDS

The possible values of the intrinsic parity ξP are constrained by the fact that two
successive parity transformations restore the system to the original state:

ψ(x)
P−−→ ξP γ

0 ψ(x)
P−−→ ξ2P ψ(x) . (2.381)

It then appears that ξ2P is constrained to be +1, but one must note that the sign
of a fermion field has no physical meaning because it changes through a rotation
of 2π, as discussed in section 2.4.2. Therefore ξ2P is constrained to be ±1, which
means that

ξP = ±1 ,±i . (2.382)

From eqns (2.190) and (2.192) we have

γ0 u(h)(pP) = η(�p,−h)u(−h)(p) , γ0 v(h)(pP) = −η∗(�p,−h) v(−h)(p) , (2.383)

where pP = (p0,−�p) and η(�p,−h) is a phase factor which depends on �p and h
(see eqn (2.216)). From eqn (2.139) and eqn (2.379), the Fourier expansion of the
parity-transformed field ψP(x) = ξP γ

0 ψ(xP) is given by

ψP(x) = ξP

∫
d3p

(2π)3 2E

∑
h=±1

[
η(�p, h)a(−h)(pP)u(h)(p)e−ip · x

−η∗(�p, h)b(−h)†(pP)v(h)(p)eip ·x] . (2.384)

The transformation of the quantized field is implemented by

UP ψ(x)U
†
P = ψP(x) = ξP γ

0 ψ(xP) , (2.385)

where UP is the unitary operator of a parity transformation (U†P = U
−1
P ). From the

Fourier expansion in eqn (2.139) of the quantized Dirac field and eqn (2.384), the
transformations of the particle and antiparticle creation operators are

UP a
(h)†(p)U

†
P = η∗(�p, h) ξ∗P a

(−h)†(pP) , (2.386)

UP b
(h)†(p)U

†
P = −η∗(�p, h) ξP b

(−h)†(pP) . (2.387)

Therefore, a parity transformation reverses the helicity of a fermion, because the
three-momentum changes sign, but the spin, which is an axial vector, as all angular
momenta are, remains unchanged.

The covariant bilinears in eqns (2.65)–(2.69) transform as

Sab = ψa ψb
P−−→ (Sab)

P = ξa∗
P ξb

P ψa ψb = ξa∗
P ξb

P Sab , (2.388)

V µ
ab = ψa γ

µ ψb
P−−→ (V µ

ab)
P = ξa∗

P ξb
P ψa γµ ψb = ξa∗

P ξb
P V

ab
µ , (2.389)

T µν
ab = ψa σ

µν ψb
P−−→ (T µν

ab )P = ξa∗
P ξb

P ψa σµν ψb = ξa∗
P ξb

P T
ab
µν , (2.390)

Aµ
ab = ψa γ

µ γ5 ψb
P−−→ (Aµ

ab)
P = −ξa∗

P ξb
P ψa γµ γ

5 ψb = −ξa∗
P ξb

PA
ab
µ , (2.391)

Pab = ψa γ
5 ψb

P−−→ (Pab)
P = −ξa∗

P ξb
P ψa γ

5 ψb = −ξa∗
P ξb

P Pab , (2.392)
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where the lowered Lorentz index embodies the change of sign of the spatial
components.

As we have discussed in section 2.11.1 for the intrinsic charge parities, the
intrinsic parities do not have a physical meaning per se. Only the relative values
of the intrinsic parities of different particles which take part in parity conserving
interactions have physical meaning.

For example, let us consider the interaction Lagrangian in eqn (2.371) with the
vector field Φµ which transforms under a parity transformation as

Φµ
P−−→ ξΦP Φµ . (2.393)

The transformation of the interaction Lagrangian in eqn (2.371) is

L
(Φ)
I

P−−→ −g
(
ξa∗
P ξb

P ξ
Φ
P V

ab
µ Φµ + ξa

P ξ
b
P

∗
ξΦP
∗
V ba

µ Φµ†
)
. (2.394)

Comparing with eqn (2.371), one can see that invariance under parity is achieved
with

ξa∗
P ξb

P ξ
Φ
P = 1 . (2.395)

This relation fixes the relative parities of ψa, ψb, and Φµ. For example, it is con-
venient to choose ξa

P = ξb
P = ξΦP = 1. However, since |ξa

P|2 = 1, if a = b only the
choice ξΦP = 1 is possible and the intrinsic parity ξa

P of the fermion field is unde-

termined. This is the case of the electromagnetic interaction Lagrangian L
(γ)
I in

eqn (2.367), with the further simplification that the electromagnetic field is real.

One can immediately see that the invariance of L
(γ)
I under space inversion implies

that the intrinsic parity of the electromagnetic field is ξA
P = +1, i.e.

Aµ
P−−→ Aµ . (2.396)

Charged-current weak interactions violate the parity symmetry, because of their
V − A structure and the different sign of the transformation under parity of the
vector and axial current. Indeed, taking into account that the vector boson field
Wµ transforms as

Wµ
P−−→ ξW

P Wµ , (2.397)

for the charged-current V − A interaction Lagrangian in eqn (2.375) we have the
transformation

L
(W )
I

P−−→ − g

2
√

2

[
−ξa∗

P ξb
P ξ

W
P

(
V ab

µ +Aab
µ

)
Wµ − ξa

P ξ
b
P

∗
ξW
P

∗ (
V ba

µ +Aba
µ

)
Wµ†

]
.

(2.398)
Comparing with eqn (2.375), one can immediately see that there is no possi-
ble choice of the intrinsic parities ξa

P, ξP
C , ξW

P which would keep the V − A
charged-current interaction Lagrangian in eqn (2.375) invariant under a parity
transformation. If the fields ψa, ψb, and Wµ do not take part in other inter-
actions which are invariant under a space inversion, their intrinsic parities do
not have a physical meaning, because they are not fixed in any way by the free
Lagrangians, which are invariant under a space inversion but do not establish any
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connection between the intrinsic parities of different fields. In this case, the intrin-
sic parities of the fields ψa, ψb, and Wµ can be chosen arbitrarily (for example,
ξa
P = ξb

P = ξW
P = 1).

2.11.3 CP

The combined CP transformation is a parity transformation followed by charge
conjugation:

ψ(x)
CP−−−→ ψCP(xP) = ξCP γ

0 C ψT
(x) = −ξCP C ψ∗(x) , (2.399)

ψ(x)
CP−−−→ ψCP(xP) = −ξ∗CP ψ

T (x) C† γ0 . (2.400)

The coefficient

ξCP = ξC ξP (2.401)

represents the intrinsic CP parity. Since |ξC|2 = 1 and ξP = ±1 or ±i, ξCP is a
phase,

|ξCP|2 = 1 , (2.402)

which is usually called the CP phase. Indeed, performing two CP transformations
we have

ψ
CP−−−→ −ξCP C ψ∗ CP−−−→ −|ξCP|2 ψ . (2.403)

As we have remarked after eqn (2.381), the sign of a fermion field has no physical
meaning because it changes through a rotation of 2π (see section 2.4.2). Hence,
the system is restored to its original state by two successive CP transformations if
|ξCP|2 = 1.

The transformation of the quantized field ψ(x) is given by

UCPψ(x)U†CP = ψCP(x) = ξCP γ
0 C ψT

(xP) , (2.404)

with

UCP = UC UP . (2.405)

From eqns (2.358), (2.359), (2.386), and (2.387), the creation operators of fermions
and antifermions transform as

UCP a
(h)†(p)U

†
CP = η∗(�p, h) ξ∗CP b

(−h)†(pP) , (2.406)

UCP b
(h)†(p)U

†
CP = −η∗(�p, h) ξCP a

(−h)†(pP) , (2.407)

where η(�p, h) is a phase factor which depends on �p and h (see eqn (2.216)). Conse-
quently, a CP transformation interchanges particles and antiparticles and reverses
the three-momenta and helicities.

Under a CP transformation the covariant bilinears in eqns (2.65)–(2.69)
transform as

Sab = ψa ψb
CP−−−→ (Sab)

CP = ξa∗
CP ξ

b
CP ψb ψa = ξa∗

CP ξ
b
CP Sba , (2.408)
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V µ
ab = ψa γ

µ ψb
CP−−−→ (V µ

ab)
CP = −ξa∗

CP ξ
b
CP ψb γµ ψa = −ξa∗

CP ξ
b
CP V

ba
µ , (2.409)

T µν
ab = ψa σ

µν ψb
CP−−−→ (T µν

ab )CP = −ξa∗
CP ξ

b
CP ψb σµν ψa = −ξa∗

CP ξ
b
CP T

ba
µν , (2.410)

Aµ
ab = ψa γ

µ γ5 ψb
CP−−−→ (Aµ

ab)
CP = −ξa∗

CP ξ
b
CP ψb γµ γ

5 ψa = −ξa∗
CP ξ

b
CPA

ba
µ ,

(2.411)

Pab = ψa γ
5 ψb

CP−−−→ (Pab)
CP = −ξa∗

CP ξ
b
CP ψb γ

5 ψa = −ξa∗
CP ξ

b
CP Pba , (2.412)

where we have lowered the Lorentz index when the spatial components change sign.
As we have discussed in section 2.11.1 for the intrinsic charge parities and in

section 2.11.2 for the intrinsic parities, the intrinsic CP parities do not have a
physical meaning per se, because the free Dirac Lagrangian is invariant for any
value of the CP parity of a fermion field. Only the relative values of the intrinsic
CP parities of different particles which take part in CP conserving interactions have
physical meaning.

For example, we can consider the charged-current V −A interaction Lagrangian
in eqn (2.375), which is invariant under a CP transformation because the vector
current in eqn (2.409) and the axial current in eqn (2.411) transform with the same
sign. Indeed, if the vector boson field Wµ transforms as

Wµ
CP−−−→ ξW

CP W
µ† , (2.413)

we have

L
(W )
I

CP−−−→ − g

2
√

2

[
−ξa∗

CP ξ
b
CP ξ

W
CP

(
V ab

µ −Aab
µ

)
Wµ†

−ξa
CP ξ

b
CP

∗
ξW
CP

∗ (
V ba

µ −Aba
µ

)
Wµ

]
. (2.414)

Comparing with eqn (2.375), one can see that L
(W )
I is invariant under a CP

transformation if

ξa∗
CP ξ

b
CP ξ

W
CP = −1 . (2.415)

This is the relation between the CP parities of ψa, ψb, and Wµ. For example, we
can choose ξW

CP = −1 and ξa
CP = ξb

CP = 1.

2.11.4 Time reversal

Under a time reversal transformation

xµ = (x0,�x)
T−−→ xµ

T = (−x0,�x) = xµ (2.416)

the spinor fields ψ(x) and ψ(x) transform as

ψ(x)
T−−→ ψT(xT) = ξT γ

0 γ5 C ψT
(x) = ξT γ

5 C ψ∗(x) , (2.417)

ψ(x)
T−−→ ψT(xT) = ξ∗T ψ

T (x) C† γ5 γ0 . (2.418)
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The possible values of the intrinsic time reversal parity ξT are constrained by the
fact that two successive parity transformations restore the system to the original
status:

ψ(x)
T−−→ ξT γ

5 C ψ∗(x) T−−→ −|ξT|2 ψ(x) . (2.419)

Since the sign of a fermion field has no physical meaning, as mentioned repeatedly,
the system is restored to its original state by two successive time reversals if ξT is
a phase,

|ξT|2 = 1 . (2.420)

From eqn (2.139) and eqn (2.417), the Fourier expansion of the time reversal-

transformed field ψT(x) = ξT γ
0 γ5 C ψT

(xT) is given by

ψT(x) = ξT

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)†(pP) γ0 γ5 v(h)(pP) e−ip ·x

+b(h)(pP) γ0 γ5 u(h)(pP) eip ·x] , (2.421)

where we have used the relations in eqn (2.354). Furthermore, from eqns (2.190)–
(2.196) we have

γ0 γ5 v(h)(pP) = −ζ(h) η(�p, h)u(h)(p) , γ0 γ5 u(h)(pP) = −ζ∗(h) η∗(�p, h) v(h)(p) ,
(2.422)

where ζ(h) and η(�p, h) are phases. Hence, we obtain

ψT(x) = ξT

∫
d3p

(2π)3 2E

∑
h=±1

[
−ζ(h) η(�p, h) a(h)†(pP)u(h)(p) e−ip · x

−ζ∗(h) η∗(�p, h) b(h)(pP) v(h)(p) eip ·x] . (2.423)

Let us consider now the transformation of the quantized field ψ(x). If we try to
implement it with a unitary operator such that

UT ψ(x)U
†
T = ψT(x) , (2.424)

from eqn (2.139) and (2.423) it follows that

UT a
(h)†(p)U

†
T = −ζ∗(h) η∗(�p, h) ξ∗T a

(h)(pP) , (2.425)

UT b
(h)†(p)U

†
T = −ζ∗(h) η∗(�p, h) ξT b

(h)(pP) . (2.426)

This transformation of creation operators into destruction operators leads to unac-
ceptable results. For example, from the invariance of the vacuum under time
reversal,

UT |0〉 = |0〉 , (2.427)

we obtain

UT |f(p, h)〉 = UT a
(h)†(p)U

†
T UT |0〉 = −ζ∗(h) η∗(�p, h) ξ∗T a

(h)(pP) |0〉 = 0 . (2.428)

This is clearly an absurd result, because UT cannot annihilate the one-fermion state
|f(p, h)〉. The solution to such disastrous results is to implement time reversal with
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an antiunitary operator such that

UT ψ(x)U
†
T = ψT∗(x) , (2.429)

following eqn (2.276). From eqn (2.423), we have

ψT∗(x) = ξ∗T

∫
d3p

(2π)3 2E

∑
h=±1

[
−ζ∗(h) η∗(�p, h) a(h)(pP)u(h)∗(p) eip · x

−ζ(h) η(�p, h) b(h)†(pP) v(h)∗(p) e−ip ·x] , (2.430)

and, from eqn (2.139) and the antilinearity of UT, we have

UT ψ(x)U
†
T =

∫
d3p

(2π)3 2E

∑
h=±1

[
UTa

(h)(p)U†T u
(h)∗(p) eip ·x

+UTb
(h)†(p)U†T v

(h)∗(p) e−ip ·x] . (2.431)

Comparing eqns (2.430) and (2.431), we obtain the transformation of creation
operators

UTa
(h)†(p)U†T = −ζ(h) η(�p, h) ξT a

(h)†(pP) , (2.432)

UTb
(h)†(p)U†T = −ζ(h) η(�p, h) ξ∗T b

(h)†(pP) . (2.433)

These are fine transformations. They show that time reversal changes a particle
or antiparticle into itself, reversing the three-momentum and leaving intact the
helicity, as expected on physical grounds (under time reversal three-momenta and
angular momenta change sign and the scalar product of spin and three momentum
remains invariant).

Under a time reversal transformation the covariant bilinears in eqns (2.65)–
(2.69) transform as

Sab = ψa ψb
T−−→ (Sab)

T = −ξa∗
T ξb

T ψb ψa = −ξa∗
T ξb

T Sba , (2.434)

V µ
ab = ψa γ

µ ψb
T−−→ (V µ

ab)
T = −ξa∗

T ξb
T ψb γµ ψa = −ξa∗

T ξb
T V

ba
µ , (2.435)

T µν
ab = ψa σ

µν ψb
T−−→ (T µν

ab )T = ξa∗
T ξb

T ψb σµν ψa = ξa∗
T ξb

T T
ba
µν , (2.436)

Aµ
ab = ψa γ

µ γ5 ψb
T−−→ (Aµ

ab)
T = −ξa∗

T ξb
T ψb γµ γ

5 ψa = −ξa∗
T ξb

TA
ba
µ , (2.437)

Pab = ψa γ
5 ψb

T−−→ (Pab)
T = ξa∗

T ξb
T ψb γ

5 ψa = ξa∗
T ξb

T Pba , (2.438)

where the lowered Lorentz indices indicate a change of sign of the spatial
components.

As the other parities discussed in previous subsections, the time reversal parity
of a particle does not have a physical meaning per se, because the free Dirac equation
is invariant under time reversal, which means that the time reversal parity is an
arbitrary unphysical phase for a noninteracting particle, or a particle which interacts
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only through time reversal violating interactions. On the other hand, time reversal
conserving interactions constraint the relative values of the time reversal parities
of the participating particles.

For example, the charged-current V −A interaction Lagrangian in eqn (2.375),
is invariant under time reversal, because the vector current in eqn (2.435) and the
axial current in eqn (2.437) transform with the same sign. Indeed, if the vector
boson field Wµ transforms as

Wµ
T−−→ −ξW

T Wµ† , (2.439)

we have

L
(W )
I

T−−→ − g

2
√

2

[
ξa∗
T ξb

T ξ
W
T

(
V ab

µ −Aab
µ

)
Wµ† + ξa

T ξ
b
T

∗
ξW
T

∗ (
V ba

µ −Aba
µ

)
Wµ

]
.

(2.440)

Comparing with eqn (2.375), one can see that L
(W )
I is invariant under time reversal

if
ξa∗
T ξb

T ξ
W
T = 1 . (2.441)

This relation bounds the relative time reversal parities of ψa, ψb, and Wµ. For
example, one can choose ξW

T = ξa
T = ξb

T = 1.

2.11.5 CPT

The combined CPT transformation is a time reversal followed by a CP transforma-
tion:

ψ(x)
CPT−−−−→ ψCPT(−x) = ξCPT γ

5 ψ(x) , (2.442)

ψ(x)
CPT−−−−→ ψCPT(−x) = −ξ∗CPT ψ(x) γ5 . (2.443)

The phase
ξCPT = ξT ξ

∗
CP (2.444)

represents the intrinsic CPT parity. Performing two CPT transformations we obtain

ψ
CPT−−−−→ ξCPT γ

5 ψ(x)
CPT−−−−→ ξ2CPT ψ(x) . (2.445)

Since the sign of a fermion field has no physical meaning, the system is restored to
its original state by two successive CPT transformations if

ξCPT = ±1 ,±i . (2.446)

Therefore, although the time reversal parity ξT and the CP parity ξCP are arbitrary
phases, their values are related by eqn (2.446):

ξT = ±ξCP ,±iξCP . (2.447)

From eqns (2.139) and (2.442), the Fourier expansion of the CPT-transformed
field ψCPT(x) = ξCPT γ

5 ψ(−x) is given by

ψCPT(x) = ξCPT

∫
d3p

(2π)3 2E

∑
h=±1

[
h a(−h)(p) v(h)(p) eip ·x
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−h b(−h)†(p)u(h)(p) e−ip · x
]
, (2.448)

where we have used

γ5 u(h)(p) = −h v(−h)(p) , γ5 v(h)(p) = hu(−h)(p) . (2.449)

Since UT is antiunitary and UC, UP are unitary, the operator

UCPT = UC UP UT (2.450)

which transforms the quantized field ψ(x) is antiunitary:

UCPT ψ(x)U
†
CPT = ψCPT∗(x) . (2.451)

From the Fourier expansion in eqn (2.139) of the quantized Dirac field and
eqn (2.449), the CPT transformations of the creation operators are

UCPT a
(h)†(p)U

†
CPT = −h ξCPT b

(−h)†(p) , (2.452)

UCPT b
(h)†(p)U

†
CPT = h ξ∗CPT a

(−h)†(p) . (2.453)

These relations can also be obtained from eqns (2.406), (2.407), (2.432), (2.433),
and (2.444). They show that a CPT transformation changes a particle into its
antiparticle with the same momentum and opposite helicity, as expected on physical
grounds. Indeed, C changes particle into antiparticle and PT reverses �x and t,
maintaining three momenta invariant but changing the sign of angular momenta.

Under a CPT transformation the covariant bilinears in eqns (2.65)–(2.69)
transform as

Sab = ψa ψb
CPT−−−−→ (Sab)

CPT = −ξa∗
CPT ξ

b
CPT ψa ψb = −ξa∗

CPT ξ
b
CPT Sab ,

(2.454)

V µ
ab = ψa γ

µ ψb
CPT−−−−→ (V µ

ab)
CPT = ξa∗

CPT ξ
b
CPT ψa γµ ψb = ξa∗

CPT ξ
b
CPT V

µ
ab ,

(2.455)

T µν
ab = ψa σ

µν ψb
CPT−−−−→ (T µν

ab )CPT = −ξa∗
CPT ξ

b
CPT ψa σµν ψb = −ξa∗

CPT ξ
b
CPT T

µν
ab ,

(2.456)

Aµ
ab = ψa γ

µ γ5 ψb
CPT−−−−→ (Aµ

ab)
CPT = ξa∗

CPT ξ
b
CPT ψa γµ γ

5 ψb = ξa∗
CPT ξ

b
CPTA

µ
ab ,
(2.457)

Pab = ψa γ
5 ψb

CPT−−−−→ (Pab)
CPT = −ξa∗

CPT ξ
b
CPT ψa γ

5 ψb = −ξa∗
CPT ξ

b
CPT Pab .

(2.458)

Since all the covariant bilinears are left invariant by a CPT transformation, apart
for a possible irrelevant phase (which is the same for the vector and axial currents),
any possible interaction Lagrangian is invariant under CPT, in agreement with the
CPT theorem, which says that CPT is a symmetry of any relativistic local field
theory.
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2.12 Wave packets

Since the states in eqn (2.232) are not properly normalized to one (see eqn (2.236)),
they cannot be used to describe real particles. In reality, particles are always some-
how localized and the uncertainty principle imposes a momentum spread. Therefore
real particles and antiparticles with definite helicity are described by the wave
packet states

|fwp(〈�p〉, h)〉 =

∫
d3p

(2π)3/2
√

2E
ϕ(�p, 〈�p〉) |f(p, h)〉 , (2.459)

|̄fwp(〈�p〉, h)〉 =

∫
d3p

(2π)3/2
√

2E
ϕ̄(�p, 〈�p〉) |̄f(p, h)〉 , (2.460)

with normalized momentum distributions ϕ(�p, 〈�p〉) and ϕ̄(�p, 〈�p〉) such that

∫
d3p |ϕ(�p, 〈�p〉)|2 =

∫
d3p |ϕ̄(�p, 〈�p〉)|2 = 1 , (2.461)

where 〈�p〉 is the average momentum. In this way, the wave packet states |fwp(〈�p〉, h)〉
and |̄fwp(〈�p〉, h)〉 are properly normalized to one,

〈fwp(〈�p〉, h)|fwp(〈�p〉, h′)〉 = 〈̄fwp(〈�p〉, h)|̄fwp(〈�p〉, h′)〉 = δhh′ , (2.462)

and describe one particle.
The wave function associated with the particle wave packet in eqn (2.459) is

φ(h)(x) = 〈0|ψ(x)|fwp(〈�p〉, h)〉 =

∫
d3p

(2π)3/2
√

2E
ϕ(�p, 〈�p〉)u(h)(p) e−ip · x . (2.463)

If the momentum distribution ϕ(�p, 〈�p〉) is peaked around an average momentum
〈�p〉, it is possible to approximate it with the Gaussian

ϕ(�p, 〈�p〉) � (2π)−3/4 |DetΛ|1/4 exp

⎡⎣−1

4

∑
k,j

(�p− 〈�p〉)k
Λkj (�p− 〈�p〉)j

⎤⎦ , (2.464)

with

∂ lnϕ(�p, 〈�p〉)
∂�p

∣∣∣∣

p=〈
p〉

= 0 , (2.465)

∂2 lnϕ(�p, 〈�p〉)
∂pk∂pj

∣∣∣∣

p=〈
p〉

= − 1

2
Λkj . (2.466)
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〈�p〉 is the average momentum of the wave packet,

〈�p〉 =

∫
d3p�p |ϕ(�p, 〈�p〉)|2 , (2.467)

and Λ−1 is the covariance matrix of the momentum distribution

V kj
p =

∫
d3p (�p− 〈�p〉)k

(�p− 〈�p〉)j |ϕ(�p, 〈�p〉)|2 = [Λ−1]kj . (2.468)

Note that Λ is symmetric by definition and has positive eigenvalues because f(〈�p〉)
must be a maximum of the momentum distribution. Since Λ is symmetric, it can be
diagonalized with an orthogonal transformation, which corresponds to a rotation.
Also Vp = Λ−1 is symmetric, can be diagonalized by the same orthogonal transfor-
mation, and has positive eigenvalues. The square roots of the three eigenvalues of
Vp = Λ−1 give the widths of the three-momentum distribution. The square of the
total momentum uncertainty δp is given by

(δp)2 = Tr[V kj
p ] = Tr[Λ−1] , (2.469)

which is invariant under rotations.
Furthermore, it is possible to approximate the dependence of the energy E = p0

on the momentum �p given by the dispersion relation in eqn (2.140) as

E(�p) � E(〈�p〉) +�v · (�p− 〈�p〉) +
1

2

∑
k,j

(�p− 〈�p〉)k Ωkj (�p− 〈�p〉)j , (2.470)

with

E(〈�p〉) =
√
〈�p〉2 +m2 , (2.471)

�v =
∂E(�p)

∂�p

∣∣∣∣

p=〈
p〉

=
〈�p〉

E(〈�p〉) , (2.472)

Ωkj =
∂2E(�p)

∂pk∂pj

∣∣∣∣

p=〈
p〉

=
1

E(〈�p〉)
(
δkj − vk vj

)
. (2.473)

It is clear that Ω is a symmetric matrix. The energy E(〈�p〉) corresponding to the
average momentum 〈�p〉 does not coincide with the average energy 〈E〉, which, in
the approximation in eqn (2.470), is given by

〈E〉 � E(〈�p〉) +
1

2

∑
k,j

Ωkj V kj
p = E(〈�p〉) +

1

2

∑
k,j

Ωkj [Λ−1]kj

= E(〈�p〉) +
Tr[Λ−1] −∑

k,j v
k [Λ−1]kj vj

2E(〈�p〉) , (2.474)
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where we have used the relations in eqns (2.468) and (2.473). It is interesting to
evaluate also the energy uncertainty δE, whose square is given by

(δE)2 =

∫
d3p (E(�p) − 〈E〉)2 |ϕ(�p, 〈�p〉)|2 =

∑
k,j

vk V kj
p vj =

∑
k,j

vk [Λ−1]kj vj .

(2.475)
Working in the frame in which Vp = Λ−1 is diagonal, one can see that δE ≤ δp,
because |�v| ≤ 1 (with equality holding for massless particles). This is consistent
with an estimation of the energy and momentum uncertainties through the disper-
sion relation in eqn (2.140), which gives E δE ∼ p δp, leading to δE ∼ p δp/E ≤ δp.
In particular, one can note that a localized particle at rest has a momentum
uncertainty without energy uncertainty.

With the above approximations and

u(h)(p)√
2E

� u(h)(E(〈�p〉), 〈�p〉)√
2E(〈�p〉)

, (2.476)

the integral over d3p in eqn (2.463) is Gaussian and can be calculated analytically,
leading to

φ(h)(x) �
(

2

π

)3/4 |DetΛ|1/4

|Det(Λ + 2itΩ)|1/2

u(h)(E(〈�p〉), 〈�p〉)√
2E(〈�p〉)

× exp

⎡⎣−iE(〈�p〉)t+ i〈�p〉 ·�x−
∑
k,j

(�x−�vt)k
[
(Λ + 2itΩ)−1

]kj

(�x−�vt)j

⎤⎦ .

(2.477)

This expression shows that the wave packet in coordinate space moves with velocity
�v, which is called the group velocity. Indeed, the average position is

〈x(t)〉 =

∫
d3x�x |φ(h)(x)|2 = �v t . (2.478)

The widths of the wave packet in coordinate space are given by the square roots of
the three eigenvalues of the symmetric covariance matrix Vx(t) with elements

V kj
x (t) =

∫
d3x (�x− 〈�x(t)〉)k

(�x− 〈�x(t)〉)j |φ(h)(x)|2 =
1

4

[
Λ + 4 t2 Ω Λ−1 Ω

]kj
.

(2.479)
Therefore, the value of V kj

x (t) is minimum for t = 0 and increases with time
(Ω Λ−1 Ω has positive eigenvalues, because Λ−1 has positive eigenvalues and all
the elements of the matrix Ω in eqn (2.473) are positive), a phenomenon known as
spreading of the wave packet, or dispersion of the wave packet. For t = 0 we have

Vx(t = 0) =
1

4
Λ , (2.480)

which satisfies the minimal Heisenberg uncertainty relation

Vx(t = 0)Vp =
1

4
. (2.481)
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For antiparticles the wave packet in coordinate space is given by

φ̄(h)(x) = 〈0|ψC(x)|̄fwp(〈�p〉, h)〉 = ξC

∫
d3p

(2π)3/2
√

2E
ϕ̄(�p, 〈�p〉)u(h)(p) e−ip ·x ,

(2.482)
where ψC(x) is the charge-conjugated field in eqn (2.356). Adopting for ϕ̄(�p, 〈�p〉) an
approximation analogous to that for ϕ(�p, 〈�p〉) in eqn (2.464) and using the approx-
imation in eqn (2.470), one obtains for φ̄(h)(x) an expression analogous to the right
side of eqn (2.477), multiplied by the intrinsic charge parity ξC.

2.13 Finite normalization volume

Another way to get states which are properly normalized is to consider a finite
normalization volume with periodic conditions at the boundaries. This is a method
which is used by many authors, because it is simpler, albeit less realistic, than
the wave packet approach. In practice one can do all calculations keeping the nor-
malization volume finite through the intermediate steps and taking the limit to an
infinite volume at the end.

It is convenient to consider a normalization cube with side L and volume V = L3.
The periodic conditions at the boundaries imply that the momentum�p is quantized:

�p =
2π

L
�n , (2.483)

with �n = (n1, n2, n3) and ni = 0,±1,±2, . . .. The discrete case can be obtained
from the continuum through the replacements

d3p

(2π)3
→ 1

V

∑

p

, (2π)3 δ3(�p−�p′) → V δ
p
p′ . (2.484)

The Fourier expansion of the field is written as

ψ(x) =
1

V

∑

p

1

2E

∑
h=±1

[
a(h)(p)u(h)(p) e−ip ·x + b(h)†(p) v(h)(p) eip ·x] , (2.485)

with the discrete anticommutation relations

{a(h)(p), a(h′)†(p′)} = {b(h)(p), b(h
′)†(p′)} = 2EV δ
p
p′ δhh′ . (2.486)

Since in this approach the volume V is finite, one can define the one-particle states
as

|f(p, h)〉 =
1

2EV
a(h)†(p) |0〉 , |̄f(p, h)〉 =

1

2EV
b(h)†(p) |0〉 . (2.487)

These states are properly normalized to one:

〈f(p, h)|f(p, h′)〉 = 〈̄f(p, h)|̄f(p, h′)〉 = δhh′ . (2.488)
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2.14 Fierz transformations

Let us consider the five scalar interaction Lagrangians that can be constructed with
four Dirac fields ψ1, ψ2, ψ3, ψ4:

LS(ψ1, ψ2, ψ3, ψ4) =
(
ψ1 ψ2

) (
ψ3 ψ4

)
, (2.489)

LV (ψ1, ψ2, ψ3, ψ4) =
(
ψ1 γ

µ ψ2

) (
ψ3 γµ ψ4

)
, (2.490)

LT (ψ1, ψ2, ψ3, ψ4) =
(
ψ1 σ

µν ψ2

) (
ψ3 σµν ψ4

)
, (2.491)

LA(ψ1, ψ2, ψ3, ψ4) =
(
ψ1 γ

µ γ5 ψ2

) (
ψ3 γµ γ

5 ψ4

)
, (2.492)

LP (ψ1, ψ2, ψ3, ψ4) =
(
ψ1 γ

5 ψ2

) (
ψ3 γ

5 ψ4

)
. (2.493)

These scalar interaction Lagrangians contain products of Γ matrices of type

Γa
αβ Γa

ρη , (2.494)

where α, β, ρ, η = 1, . . . , 4 are Dirac indices. For example,

LV (ψ1, ψ2, ψ3, ψ4) =
(
ψ1 γ

0 ψ2

) (
ψ3 γ

0 ψ4

)
−

3∑
k=1

(
ψ1 γ

k ψ2

) (
ψ3 γ

k ψ4

)
=

∑
α,β,ρ,η

(ψ1)α (ψ2)β (ψ3)ρ (ψ4)η

(
Γ2

αβ Γ2
ρη − Γ3

αβ Γ3
ρη − Γ4

αβ Γ4
ρη − Γ5

αβ Γ5
ρη

)
.

(2.495)

From eqn (2.58), for fixed values of β and ρ, the 4×4 matrixMaβρ with elements

Maβρ
αη = Γa

αβ Γa
ρη (2.496)

can be written as the linear combination of Γ matrices

Maβρ =
1

4

∑
b

sb Tr
[
Maβρ Γb

]
Γb . (2.497)

Since the traces in eqn (2.497) are given by

Tr
[
Maβρ Γb

]
=
∑
α,η

Γa
αβ Γa

ρη Γb
ηα =

(
Γa Γb Γa

)
ρβ
, (2.498)

we obtain

Γa
αβ Γa

ρη =
1

4

∑
b

sb

(
Γa Γb Γa

)
ρβ

Γb
αη . (2.499)

The product ΓaΓbΓa is a 4 × 4 matrix which can also be written as a linear
combination of Γ matrices using eqn (2.58):

Γa Γb Γa =
1

4

∑
c

sc Tr
[
Γa Γb Γa Γc

]
Γc . (2.500)
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Table 2.2. Values of the coefficients CXY in eqn (2.506).

Y

S V T A P

S −1/4 −1/4 −1/8 1/4 −1/4

V −1 1/2 0 1/2 1

X T −3 0 1/2 0 −3

A 1 1/2 0 1/2 −1

P −1/4 1/4 −1/8 −1/4 −1/4

From the property in eqn (2.44) of Γ matrices it follows that each of the two
products ΓaΓb and ΓaΓc is proportional to a Γ matrix,

ΓaΓb ∝ Γd , ΓaΓc ∝ Γe , (2.501)

which implies that
Tr
[
ΓaΓbΓaΓc

]
∝ Tr

[
ΓdΓe

]
∝ δde . (2.502)

Since Γd = Γe only if Γb = Γc, we obtain

Tr
[
ΓaΓbΓaΓc

]
= Tr

[
(ΓaΓb)2

]
δbc . (2.503)

Taking into account that s2b = 1, eqn (2.499) becomes

Γa
αβ Γa

ρη =
1

16

∑
b

Tr
[
(ΓaΓb)2

]
Γb

αηΓb
ρβ . (2.504)

This equation expresses the product Γa
αβΓa

ρη as a linear combination of products of
two Γ matrices in which the indices β and η have been exchanged. This allows us
to express each of the five scalar interaction Lagrangians in eqns (2.489)–(2.493) as
a linear combination of similar interaction Lagrangians in which the fields ψ2 and
ψ4 have been exchanged. Indeed, from eqn (2.504) we have(

ψ1Γ
aψ2

) (
ψ3Γ

aψ4

)
= − 1

16

∑
b

Tr
[
(ΓaΓb)2

] (
ψ1Γ

bψ4

) (
ψ3Γ

bψ2

)
, (2.505)

where the minus sign takes into account the anticommutativity of the fermion fields.
These are Fierz transformations.

Calculating the traces in eqn (2.505) one can find the relations

LX(ψ1, ψ2, ψ3, ψ4) =
∑

Y =S,V,T,A,P

CXY LY (ψ1, ψ4, ψ3, ψ2) , (2.506)

with the coefficients CXY given in Table 2.2.
The five scalar interaction Lagrangians in eqns (2.489)–(2.493) are invariant

under parity. If parity is not conserved, it is possible to have pseudoscalar interac-
tion Lagrangians obtained from those in eqns (2.489)–(2.493) by multiplying one
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field by γ5. The corresponding Fierz transformations can be obtained easily from
eqn (2.506) by multiplying the same field by γ5 on the left- and right-hand sides.

In particular, it is useful to consider the parity-violating interaction Lagrangian

LV−A(ψ1, ψ2, ψ3, ψ4) =
(
ψ1 γ

µ
(
1− γ5

)
ψ2

) (
ψ3 γµ

(
1− γ5

)
ψ4

)
, (2.507)

which finds application in the description of weak interactions at low energies (see
sections 3.7). Since the VT and AT coefficients in Table 2.2 are zero, the VS and
AS coefficients are opposite, the VP and AP coefficients are opposite, and the VV,
AV, VA, AA coefficients are all equal to 1/2, we have

LV−A(ψ1, ψ2, ψ3, ψ4) = LV−A(ψ1, ψ4, ψ3, ψ2) . (2.508)

This is a useful result for the study of some weak interaction processes (see, for
example, section 9.1).



3

THE STANDARD MODEL

It doesn’t matter how beautiful your theory is, it doesn’t mat-
ter how smart you are. If it doesn’t agree with experiment, it’s
wrong.
Richard P. Feynman

The Standard Model (SM) [543, 1051, 920] describes the strong, electromagnetic,
and weak interactions of elementary particles in the framework of quantum field
theory. It is a gauge theory (see appendix D) based on the local symmetry group
SU(3)C×SU(2)L×U(1)Y , where the subscripts C, L and Y denote color, left-handed
chirality and weak hypercharge, respectively. The gauge group uniquely determines
the interactions and the number of vector gauge bosons that correspond to the
generators of the group. They are eight massless gluons, corresponding to the eight
generators of SU(3)C, that mediate strong interactions; four gauge bosons, of which
three are massive (W± and Z) and one is massless (γ, the photon), corresponding
to the three generators of SU(2)L and one generator of U(1)Y , responsible for
electroweak interactions. In this chapter we present a brief review of the electroweak
part of the SM, based on the symmetry group SU(2)L × U(1)Y , which determines
the interactions of neutrinos, among others. In the SM, electroweak interactions
can be studied separately from strong interactions11, because the symmetry under
the color group SU(3)C is unbroken and there is no mixing between the SU(3)C
and SU(2)L × U(1)Y sectors; on the other hand, as we will see in section 3.2,
electromagnetic and weak interactions must be treated together because there can
be a mixing between the neutral gauge bosons of SU(2)L and U(1)Y [543].

As in all gauge theories, the symmetry group of the SM fixes the interactions,
i.e. the number and properties of the vector gauge bosons, with only three indepen-
dent unknown parameters, the three coupling constants of the SU(3)C, SU(2)L and
U(1)Y groups, all of which must be determined from experiments. On the other
hand, the number and properties of scalar bosons and fermions are left uncon-
strained, except for the fact that they must transform in a definite way under the
symmetry group, i.e. they must belong to the representations of the symmetry

11 The theory of strong interactions based on the local symmetry group SU(3)C is
called quantum chromodynamics (QCD) (see section D.2 of appendix D). Its Lagrangian
is relatively simple, but the dynamics is very complicated, because of the strong character
of the interaction at low energies, which does not allow a perturbative approximation. The
strong binding of quarks in nucleons and that of nucleons in nuclei are nonperturbative
effects that have not been solved so far. The dynamics of QCD can be solved perturbatively
only at high energies (� 1 GeV), where the effective coupling constant becomes small
(asymptotic freedom). For an introduction see, for example, Refs. [720, 721].
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group, and the fermion representations must lead to the cancellation of quantum
anomalies [31, 201, 268, 572, 517]. In the SM, the number of scalar bosons and
fermions and their arrangement in the representations of the symmetry group are
chosen in a heuristic way. The scalar bosons are chosen in order to implement, in
a minimal way, the Higgs mechanism for the generation of masses, whereas the
number and properties of fermions are determined by experiments. It is remarkable
that all the known elementary fermions can be accommodated in appropriate rep-
resentations of the symmetry group of the SM with exact cancellation of quantum
anomalies.

A puzzling feature of Nature is the existence of three generations of fermions
with identical properties, except for different masses. This feature is unexplained
in the SM.

The known elementary fermions are divided in two categories, quarks and
leptons12, according to the scheme

1st generation 2nd generation 3rd generation

quarks: u (up), c (charm), t (top),
d (down), s (strange), b (bottom);

leptons: νe (electron neutrino), νµ (muon neutrino), ντ (tau neutrino),
e (electron), µ (muon), τ (tau).

They are distinguished by the fact that quarks participate in all the interactions
(strong, electromagnetic, weak, and gravitational), whereas leptons participate in
all the interactions except strong interactions. The masses and electric charges of
quarks and leptons are given in Tables 3.1 and 3.2. The corresponding antiparticles
have the same mass and opposite electric charge. All fundamental fermions have
spin 1/2.

Quarks are elementary components of hadrons (see Tables 3.3 and 3.4) but
do not exist as free particles. This means that their masses do not have the usual
classical meaning and their values depend on how the masses are defined. The quark
masses given in Table 3.1 are the so-called current masses, which are parameters in
the QCD Lagrangian13. The top quark was discovered only in 1994 by the CDF and
D0 experiments through the observation of the products of pp̄ collisions produced by
the Tevatron accelerator in Fermilab. Nevertheless, as can be seen from Table 3.1,
the value of the top quark mass has the smallest relative uncertainty. This is due to
the fact that, at the top mass scale, noncalculable nonperturbative effects of strong
interactions are negligible, whereas they dominate in the case of the light quarks
(u, d, s), whose mass uncertainty is very large.

12 From the Greek λεπτ óς = thin. In each generation leptons are lighter than the quarks,
which are constituents of the baryons, from the Greek βαρύς = heavy (proton, neutron,
etc.), and the mesons (pions, kaons, etc.).
13 Technically speaking, the quark masses given in Table 3.1 are the current masses

evaluated in the MS renormalization scheme at a renormalization scale of 2 GeV for light
quarks (u, d, s) and a renormalization scale equal to the mass for the heavy quarks (c, b,
t). For more explanations see [400] and references therein.
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Table 3.1. Mass and charge of quarks [400]. The charge is given in units of the
elementary charge e.

Flavor Mass Charge

u 1.5–4 MeV 2/3
d 4–8 MeV −1/3
s 80–130 MeV −1/3
c 1.15–1.35 GeV 2/3
b 4.1–4.4 GeV −1/3
t 174.3 ± 5.1 GeV 2/3

Table 3.2. Mass, charge, lifetime, and magnetic moment of leptons [400]. The
charge is given in units of the elementary charge e. The magnetic moment
of the electron and the neutrinos is expressed in units of the Bohr magneton
µB ≡ e�/2me.

Flavor Mass Charge Lifetime Magn. Mom.

e 0.510 MeV −1 > 4.3 × 1023 y 1.001 µB

νe < 15 eV 0 > 7 × 109(mνe
/eV) < 1.8 × 10−10 µB

µ 105.65 MeV −1 2.197 × 10−6 s 1.001 e/2mµ

νµ < 190 keV 0 > 15.4(mνµ
/eV) s < 7.4 × 10−10 µB

τ 1.777 GeV −1 (2.900 ± 0.012)× 10−13 s � e/2mτ

ντ < 18.2 MeV 0 ? < 5.4 × 10−7 µB

Table 3.3. Properties of the lightest baryons [400]. J is the spin, P is the parity,
and I is the isospin.

Baryon
Quark
content

Mass (GeV) JP I Lifetime (s)

p

n

uud

udd

938.27
939.56

1/2+ 1/2
∞
887

Λ0 uds 1116 1/2+ 0 2.6 × 10−10

Σ+

Σ0

Σ−

uus

uds

dds

1189
1192
1197

1/2+ 1
8.0 × 10−11

7 × 10−20

1.5 × 10−10

∆−, ∆0

∆+, ∆++
ddd, udd

uud, uuu
1232 3/2+ 3/2 5 × 10−24

Ξ0

Ξ−
uss

dss

1315
1321

1/2+ 1/2
2.9 × 10−10

1.6 × 10−10

Ω− sss 1672 3/2+ 0 8.2 × 10−11
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Table 3.4. Properties of the lightest mesons [400]. J is the spin, P is the parity,
and I is the isospin.

Meson
Quark
content

Mass (MeV) JP I Lifetime (s)

π0

π−, π+
(uū − dd̄)/

√
2

ūd, ud̄

134.98
139.57

0− 1
8 × 10−17

2.6 × 10−8

K0, K+

K−, K̄0
ds̄, us̄

ūs, d̄s

493.7 (K±)
497.7 (K0)

0−
1/2
1/2

1.2 × 10−8 (K±)
8.9 × 10−11 (K0

S)
5.2 × 10−8 (K0

L)

η (uū + dd̄)/
√

2 547 0− 0 6 × 10−19

ρ0

ρ−, ρ+
(uū − dd̄)/

√
2

ūd, ud̄
768 1− 1 4 × 10−24

ω (uū + dd̄)/
√

2 782 1− 0 8 × 10−23

η′ (uū + dd̄)/
√

2 957.78 ± 0.14 0− 0 (3.24 ± 0.25) × 10−21

The fermion sector of the SM depends on 13 independent parameters: six quark
masses, three charged lepton masses (neutrinos are assumed to be massless in the
SM), three quark mixing angles and one phase. The values of all these parameters
must be determined from experimental measurements.

In addition to the three parameters in the gauge sector (the coupling constants),
a very small QCD parameter related with the strong CP problem (see, for example,
Ref. [721]) and the 13 parameters in the fermion sector (masses and mixing), the SM
depends on two more parameters coming from the scalar Higgs sector, a Higgs mass
and a quartic coupling constant, reaching a total of 19 independent parameters. It
is clear that the large number of parameters and the unexplained existence of three
generations, together with the fact that the SM does not include gravitational
interactions, are unsatisfactory aspects of the SM. This justifies the widespread
opinion that the SM is not the ultimate theory of the physics of elementary particles
but must be a low-energy effective theory.

Since the SM is a renormalizable theory, even its quantum corrections are
insensitive to the physics beyond the SM. Because of this reason, the SM is phe-
nomenologically very successful and so far has been able to describe all the known
phenomena, except for the indications in favor of neutrino oscillations that we will
discuss in the following chapters. In particular, the SM interactions of neutrinos
have been verified experimentally with high accuracy and are universally used for
the analysis of the data of neutrino experiments. This is why this chapter is devoted
to an important study of properties of neutrinos in the framework of the SM. More-
over, in chapters 15 and 16 we will see that the SM properties of neutrinos have
important consequences for astrophysics and cosmology.



ELECTROWEAK LAGRANGIAN 71

3.1 Electroweak Lagrangian

In this section, we present the electroweak part of the SM Lagrangian, which deter-
mines neutrino interactions in the SM. For this purpose, it is sufficient to consider
only the SU(2)L × U(1)Y part of the SM symmetry group.

The symmetry group SU(2)L is called weak isospin. Its subscript L indicates
that the elements of the group act in a nontrivial way only on the left-handed chiral
components of the fermion fields (the right-handed chiral components are singlets
under weak isospin transformations). This group has three generators, for which
we use the notation

Ia (a = 1, 2, 3) . (3.1)

They satisfy the angular momentum commutation relations

[Ia, Ib] = iεabcIc . (3.2)

In eqn (3.2) εabc is the totally antisymmetric tensor with three indices having
ε123 = 1. It is important to note that the nonabelian character of the weak isospin
group embodied by the commutation relations in eqn (3.2) implies that for each
representation of the group the scale of the generators is fixed. For example, in the
two-dimensional representation the generators are Ia = τa/2, where τ1, τ2, τ3 are
the three Pauli matrices14. A rescaling of the generators of the type Ia → caIa with
arbitrary constants ca would spoil the commutation relations in eqn (3.2). This
means that the action of the generators on each representation is unique.

The symmetry group U(1)Y is called hypercharge. It is generated by the hyper-
charge operator Y , which is connected to I3 and the charge operator Q by the
Gell-Mann–Nishijima relation

Q = I3 +
Y

2
. (3.3)

This relation is necessary in order to fix the action of the hypercharge operator Y
on the fermion fields, which is not constrained by the theory, because the U(1)Y

is abelian. Moreover, the Gell-Mann–Nishijima relation implies the unification of
weak and electromagnetic interactions.

In order to have local gauge invariance, one must introduce three vector gauge
boson fields Aµ

a (a = 1, 2, 3) associated with the three generators Ia (a = 1, 2, 3)
of the group SU(2)L, and one vector gauge boson field Bµ associated with the
generator Y of the group U(1)Y . The covariant derivative Dµ, which in gauge
theories replaces the normal derivative ∂µ in the Lagrangian, is

Dµ = ∂µ + ig Aµ · I + ig′Bµ
Y

2
, (3.4)

where we have introduced the vector notation

Aµ ≡ (Aµ
1 , A

µ
2 , A

µ
3 ) , I ≡ (I1, I2, I3) , (3.5)

14 The Pauli matrices τa = σa are given in eqn (2.27). For the generators of the SU(2)L

group we use the notation τa/2 in order to avoid confusion with the spin operators σa/2.
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with the scalar product

Aµ · I ≡
3∑

a=1

Aµ
aIa . (3.6)

The covariant derivative in eqn (3.4) contains two independent coupling constants:
g associated with the group SU(2)L and g′ associated with the group U(1)Y .

The next step in the construction of the electroweak SU(2)L × U(1)Y theory
is to choose the representations for the fermion fields. Historically, this choice has
been guided by the wisdom of previous experience, in particular the V −A theory of
weak interactions and the two-component theory of the neutrino. Here, we take the
choice of the representations for the fermion fields as an assumption that leads to
the correct phenomenology. The left-handed chiral components of the fermion fields
are grouped into weak isospin doublets. For the sake of simplicity, let us consider
only the first generation of leptons and quarks:

LL =

(
νeL

eL

)
, QL =

(
uL

dL

)
. (3.7)

The straightforward generalization for three generations is presented at the end of
this section.

From the choice in eqn (3.7) of the weak isospin representation of the fermion
fields, the generators of the SU(2)L group are fixed to be Ia = τa/2:

I LL =
τ

2
LL , I QL =

τ

2
QL , (3.8)

where τ = (τ1, τ2, τ3). On the other hand, the action of the hypercharge operator
Y is fixed by the Gell-Mann–Nishijima relation in eqn (3.3):

Y LL = −LL , Y QL =
1

3
QL . (3.9)

Hence, the left-handed lepton and quark doublets have, respectively, hypercharge
Y = −1 and Y = 1/3.

We parameterize the elements g of the group of local SU(2)L ×U(1)Y transfor-
mations with a set of 3+1 parameters (θ(x), η(x)), with θ(x) = (θ1(x), θ2(x), θ3(x)),
which depend on space-time x:

g(θ(x), η(x)) ∈ SU(2)L × U(1)Y , (3.10)

with unitary representation of g(θ(x), η(x)) on the vector space of the fields

U(θ(x), η(x)) = eiθ(x) · I+iη(x) Y
2 = U(θ(x))U(η(x)) , (3.11)

with
U(θ(x)) = eiθ(x) · I , U(η(x)) = eiη(x) Y

2 . (3.12)

The transformation of the left-handed fermion doublets under g(θ(x), η(x)) is
given by

LL
g(θ(x),η(x))−−−−−−−−→ L′L = U(θ(x), η(x))LL = U l

L(θ(x), η(x))LL , (3.13)
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QL
g(θ(x),η(x))−−−−−−−−→ Q′L = U(θ(x), η(x))QL = U q

L(θ(x), η(x))QL . (3.14)

where

U l
L(θ(x), η(x)) = e

i
2 θ(x) · τ− i

2 η(x) , U q
L(θ(x), η(x)) = e

i
2 θ(x) · τ+ i

6 η(x) . (3.15)

In the SM, it is assumed that the neutrino fields have only left-handed compo-
nents. This assumption follows from the two-component theory of Landau [711],
Lee and Yang [727], and Salam [919], implying that neutrinos are massless. The
right-handed components of the other fermions,

eR , uR , dR , (3.16)

are assumed to be singlets under the weak isospin group of transformations:

I fR = 0 (f = e, u, d) . (3.17)

From the Gell-Mann–Nishijima relation in eqn (3.3), eR, uR, and dR have,
respectively, hypercharge Y = −2, 4/3,−2/3:

Y eR = −2 eR , Y uR =
4

3
uR , Y dR = −2

3
dR . (3.18)

Then, the transformation of the right-handed components of the fermion fields
under the transformation in eqn (3.10) is given by

fR
g(θ(x),η(x))−−−−−−−−→ f ′R = U(θ(x), η(x)) fR = Uf

R(η(x)) fR (f = e, u, d) , (3.19)

where

Ue
R(η(x)) = e−iη(x) , Uu

R(η(x)) = e
2
3 iη(x) , Ud

R(η(x)) = e−
1
3 iη(x) . (3.20)

The values of the weak isospin, hypercharge, and electric charge of the fermion
doublets and singlets are listed in Table 3.5.

The electroweak SM Lagrangian is the most general renormalizable Lagrangian
invariant under the local symmetry group SU(2)L × U(1)Y written in terms of the
fermion fields, the gauge boson fields, and a Higgs doublet Φ(x) to be discussed in
section 3.4: for the first generation of leptons and quarks, we have

L = iLL /DLL + iQL /DQL +
∑

f=e,u,d

ifR /DfR

− 1

4
AµνA

µν − 1

4
BµνB

µν

+ (DµΦ)†(DµΦ) − µ2 Φ†Φ − λ (Φ†Φ)2

− ye
(
LLΦeR + eRΦ†LL

)
− yd

(
QLΦdR + dRΦ†QL

)
− yu

(
QLΦ̃uR + uRΦ̃†QL

)
. (3.21)
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Table 3.5. Eigenvalues of the weak isospin I, of its third component I3, of the
hypercharge Y , and of the charge Q = I3 + Y/2 of the fermion doublets and
singlets.

I I3 Y Q

lepton doublet LL ≡

⎛⎝νeL

eL

⎞⎠ 1/2
1/2

−1/2
−1

0

−1

lepton singlet eR 0 0 −2 −1

quark doublet QL ≡

⎛⎝uL

dL

⎞⎠ 1/2
1/2

−1/2
1/3

2/3

−1/3

quark singlets
uR

dR

0 0
4/3

−2/3

2/3

−1/3

The second line contains the kinetic terms and self-couplings of the gauge bosons,
which will be discussed in section 3.6. The third line is the Lagrangian of the
Higgs field which generates the spontaneous symmetry breaking to be discussed in
section 3.4. The fourth and fifth lines describe the Higgs–fermion Yukawa couplings
which generate lepton masses. It will be discussed in section 3.5 considering the
more interesting case of three generations, which leads to quark mixing.

For the moment, let us consider only the first line in eqn (3.21). Since under
the transformation in eqn (3.10) the lepton and quark fields transform according to
eqns (3.13), (3.14), and (3.19), in order to satisfy gauge invariance, the covariant
derivative must transform as

Dµ
g(θ(x),η(x))−−−−−−−−→ D′µ = U(θ(x), η(x))Dµ U

−1(θ(x), η(x)) . (3.22)

This means that the gauge boson fields transform as

Aµ · I g(θ(x),η(x))−−−−−−−−→ A′µ · I = U(θ(x))

[
Aµ · I − i

g
∂µ

]
U−1(θ(x)) , (3.23)

Bµ
Y

2

g(θ(x),η(x))−−−−−−−−→ B′µ
Y

2
= U(η(x))

[
Bµ

Y

2
− i

g′
∂µ

]
U−1(η(x)) . (3.24)

The transformation of the Bµ field can be simplified to

Bµ
g(θ(x),η(x))−−−−−−−−→ B′µ = Bµ − 1

g′
∂µη(x) , (3.25)

which is similar to the transformation under local U(1)Q transformations of the
electromagnetic field in QED (see, for example, Ref. [720]).

It is important to note that since the left-handed and right-handed components
of the fermion fields transform in a different way under the transformations of
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the gauge group (see eqns (3.13), (3.14), and (3.19)), the presence of mass terms
proportional to

ff = fLfR + fRfL (f = e, u, d) (3.26)

in the Lagrangian is forbidden by the gauge symmetry. As we will see in section 3.5,
the generation of fermion masses in the SM is accomplished with spontaneous
symmetry breaking through the Higgs mechanism.

3.2 Electroweak interactions

In this section we derive the interactions between the fermions and the physical
gauge bosons.

Expanding the covariant derivatives in the first line of eqn (3.21) and omitting
the kinetic terms, we obtain the interaction Lagrangian that describes the coupling
of the fermions with the gauge bosons:

LI = − 1

2
LL

(
g /A · τ − g′ /B

)
LL − 1

2
QL

(
g /A · τ +

1

3
g′ /B

)
QL

+ g′eR /BeR − 2

3
g′uR /BuR +

1

3
g′dR /BdR . (3.27)

In order to derive the explicit interaction terms for the fermions, let us first
consider the leptons only:

LI,L = −1

2

(
νeL eL

)( g /A3 − g′ /B g( /A1 − i /A2)
g( /A1 + i /A2) −g /A3 − g′ /B

)(
νeL

eL

)
+ g′eR /BeR . (3.28)

Let us separate this interaction Lagrangian into a charged-current (CC) Lagrangian

L
(CC)
I,L = −g

2

{
νeL( /A1 − i /A2)eL + eL( /A1 + i /A2)νeL

}
, (3.29)

which is given by the off-diagonal terms in eqn (3.28), and a neutral-current (NC)
Lagrangian

L
(NC)
I,L = −1

2

{
νeL(g /A3 − g′ /B)νeL − eL(g /A3 + g′ /B)eL − 2g′eR /BeR

}
, (3.30)

given by the diagonal terms in eqn (3.28). Now, let us consider first the charged-
current Lagrangian in eqn (3.29). Defining a field Wµ that annihilates W+ bosons
and creates W− bosons as

Wµ ≡ Aµ
1 − iAµ

2√
2

, (3.31)

we obtain

L
(CC)
I,L = − g√

2

{
νeL /WeL + eL /W †νeL

}
= − g

2
√

2
νe γ

µ
(
1 − γ5

)
eWµ + H.c.
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= − g

2
√

2
jµ
W,LWµ + H.c. , (3.32)

where jµ
W,L is the leptonic charged current

jµ
W,L = νe γ

µ
(
1 − γ5

)
e = 2 νeL γ

µ eL . (3.33)

The interaction Lagrangian in eqn (3.32) generates the trilinear couplings
represented by the diagrams

e− νe

W

ν̄e e+

W

νe e−

W

e+ ν̄e

W

(3.34)
The first two diagrams are generated by the term jµ

W,LWµ, and the last two by the

Hermitian-conjugated term jµ†
W,LW

†
µ = eγµ

(
1 − γ5

)
νe W

†
µ.

Next consider the neutral-current Lagrangian in eqn (3.30). The theory must
include the electromagnetic interactions described by the quantum electrodynamic
(QED) Lagrangian

L
(γ)
I,L = −e jµ

γ,LAµ , (3.35)

where e is the elementary electric charge, Aµ is the electromagnetic field, and jµ
γ,L

is the leptonic electromagnetic current

jµ
γ,L = −e γµ e . (3.36)

The minus sign is due to the negative charge of the electron. The QED Lagrangian
can be obtained as part of the neutral-current Lagrangian in eqn (3.30) expressing
the electromagnetic field Aµ as an appropriate linear combination ofAµ

3 andBµ. Let
us write this linear combination and the orthogonal one, which defines the vector
boson field Zµ, performing a rotation in the plane of the Aµ

3 , Bµ fields through an
angle ϑW:

Aµ = sinϑWA
µ
3 + cosϑWB

µ , (3.37)

Zµ = cosϑWA
µ
3 − sinϑWB

µ . (3.38)

The angle ϑW is called the weak mixing angle or Weinberg angle [1051], although
it was introduced for the first time by Glashow in 1961 [543]. The weak mixing
angle is chosen in order to obtain the QED Lagrangian for the coupling between the
electromagnetic field and the fermion fields. Inserting the expressions in eqns (3.37)
and (3.38) in the neutral-current Lagrangian in eqn (3.30), we obtain

L
(NC)
I,L = −1

2

{
νeL [(g cosϑW + g′ sinϑW) /Z + (g sinϑW − g′ cosϑW) /A] νeL

− eL [(g cosϑW − g′ sinϑW) /Z + (g sinϑW + g′ cosϑW) /A] eL
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− 2g′eR [− sinϑW /Z + cosϑW /A] eR

}
. (3.39)

Since neutrinos are neutral particles, they do not have a coupling to the electro-
magnetic field. Setting the coefficient of the corresponding term in eqn (3.39) to
zero, we obtain

g sinϑW = g′ cosϑW =⇒ tanϑW =
g′

g
. (3.40)

This is an important relation, which connects the coupling constants g and g′ of
the SM with the weak mixing angle ϑW.

Substituting eqn (3.40) into eqn (3.39), we obtain

L
(NC)
I,L = − g

2 cosϑW

{
νeL /ZνeL −

(
1 − 2 sin2 ϑW

)
eL /ZeL + 2 sin2 ϑWeR /ZeR

}
+ g sinϑW e /Ae . (3.41)

Since the last term gives the coupling of the electron field with the electromagnetic
field, it must coincide with the QED interaction Lagrangian in eqn (3.35) and thus
we find

g sinϑW = e . (3.42)

Using the relation in eqn (3.40) we also have

g′ cosϑW = e . (3.43)

These two relations are very important, because they give the relation between the
coupling constants g and g′ and the elementary electric charge e. The two relations
in eqn (3.42) and (3.43) can be combined to give

g2 + g′2 = e2 . (3.44)

The neutral-current Lagrangian can be written as

L
(NC)
I,L = L

(Z)
I,L + L

(γ)
I,L . (3.45)

where L
(γ)
I,L is the QED Lagrangian in eqn (3.35) and L

(Z)
I,L is the weak neutral-

current Lagrangian given by

L
(Z)
I,L = − g

2 cosϑW
jµ
Z,L Zµ , (3.46)

with the leptonic weak neutral-current

jµ
Z,L = 2 gν

L νeL γ
µ νeL + 2 gl

L eL γ
µ eL + 2 gl

R eR γ
µ eR . (3.47)

Here, we have introduced the coefficients gν
L, gl

L, and gl
R (the superscript l indicates

a charged lepton) whose values, obtained from eqn (3.41), are given in Table 3.6.

In general, the values of the coefficients gf
L and gf

R for a fermion field f are given by

gf
L = If

3 − qf sin2 ϑW , (3.48)



78 THE STANDARD MODEL

Table 3.6. Values of gL, gR, gV , gA for the fermion fields. The superscripts ν, l,
U , D, indicate, respectively, a generic neutrino, charged lepton, up-type quark,
and down-type quark. We have defined sW ≡ sinϑW.

Fermions gL gR gV gA

νe, νµ, ντ gν
L = 1

2 gν
R = 0 gν

V = 1
2 gν

A = 1
2

e, µ, τ gl
L = − 1

2 + s2W gl
R = s2W gl

V = − 1
2 + 2s2W gl

A = − 1
2

u, c, t gU
L = 1

2 − 2
3 s

2
W gU

R = − 2
3 s

2
W gU

V = 1
2 − 4

3 s
2
W gU

A = 1
2

d, s, b gD
L = − 1

2 + 1
3 s

2
W gD

R = 1
3 s

2
W gD

V = − 1
2 + 2

3 s
2
W gD

A = − 1
2

gf
R = −qf sin2 ϑW , (3.49)

where If
3 is the value of the third component of the weak isospin and qf is the electric

charge of the fermion in units of the elementary electric charge e (see Table 3.5).
Because of the mixing of the gauge fields Aµ

3 and Bµ in eqns (3.37) and (3.38),
one can see that the weak neutral-current interactions of charged fermion fields
involve not only their left-handed component, but also the right-handed one, with
a strength proportional to the electric charge and to sin2 ϑW.

The leptonic weak neutral current in eqn (3.47) can also be written as

jµ
Z,L = νe γ

µ
(
gν

V − gν
A γ

5
)
νe + e γµ

(
gl

V − gl
A γ

5
)
e , (3.50)

where we have introduced the widely used vector and axial couplings gν,L
V and gν,L

A

for neutrinos and charged leptons, whose values are given in Table 3.6. In general,
the values of gf

V and gf
A for a fermion field f are given by

gf
V = gf

L + gf
R = If

3 − 2qf sin2 ϑW , (3.51)

gf
A = gf

L − gf
R = If

3 . (3.52)

The leptonic weak neutral-current interaction Lagrangian in eqn (3.46) describes
the trilinear couplings represented by the diagrams

(−)

νe
(−)

νe

Z

e± e±

Z (3.53)
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and the leptonic electromagnetic interaction Lagrangian in eqn (3.35) describes the
trilinear couplings represented by the diagram

e± e±

γ (3.54)

Coming back to the quark part of the interaction Lagrangian in eqn (3.27), we
have

LI,Q = − 1

2

(
uL dL

)(g /A3 + 1
3 g
′ /B g( /A1 − i /A2)

g( /A1 + i /A2) −g /A3 + 1
3 g
′ /B

)(
uL

dL

)
− 2

3
g′uR /BuR +

1

3
g′dR /BdR . (3.55)

Following the same procedure as in the case of the leptons, we find the charged-
current Lagrangian

L
(CC)
I,Q = − g

2
√

2
jµ
W,QWµ + H.c. , (3.56)

where jµ
W,Q is the quark charged current

jµ
W,Q = u γµ

(
1 − γ5

)
d = 2 uL γ

µ dL . (3.57)

The interaction Lagrangian in eqn (3.32) generates the trilinear couplings
represented by the diagrams

d u

W

ū d̄

W

u d

W

d̄ ū

W

(3.58)
The first two diagrams are generated by the term jµ

W,QWµ and the last two by the

Hermitian-conjugated term jµ†
W,QW

†
µ = dγµ

(
1 − γ5

)
uW †µ.

The quark neutral-current interaction Lagrangian can be separated into its weak
and electromagnetic parts as in the case of the leptonic one in eqn (3.45),

L
(NC)
I,Q = L

(Z)
I,Q + L

(γ)
I,Q , (3.59)

with

L
(γ)
I,Q = − e jµ

γ,QAµ , (3.60)

L
(Z)
I,Q = − g

2 cosϑW
jµ
Z,Q Zµ . (3.61)
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The quark electromagnetic current jµ
γ,Q is given by

jµ
γ,Q =

2

3
u γµ u− 1

3
d γµ d , (3.62)

and the quark weak neutral current jµ
Z,Q is given by

jµ
Z,Q = 2 gU

L uL γ
µ uL + 2 gU

R uR γ
µ uR + 2 gD

L dL γ
µ dL + 2 gD

R dR γ
µ dR

= uγµ
(
gU

V − gU
Aγ

5
)
u+ d γµ

(
gD

V − gD
A γ

5
)
d . (3.63)

The coefficients gU,D
L , gU,D

R , gU,D
V , and gU,D

A , given by eqns (3.48), (3.49), (3.51),
and (3.52), respectively, are listed in Table 3.6 (page 78).

The quark weak neutral-current interaction Lagrangian in eqn (3.61) describes
the trilinear couplings represented by the diagrams

(−)

u
(−)

u

Z

(−)

d
(−)

d

Z (3.64)

and the quark electromagnetic interaction Lagrangian in eqn (3.60) describes the
trilinear couplings represented by the diagrams

(−)

u
(−)

u

γ

(−)

d
(−)

d

γ (3.65)

3.3 Three generations

In this section we generalize the expressions for the weak charged-current and
neutral-current interaction Lagrangians in eqns (3.32), (3.46), (3.56), and (3.61)
to the case of three generations of leptons and quarks which is realized in Nature.
Let us define the three generations of left-handed weak isospin doublets

L′eL ≡
(
ν′eL

e′L

)
, L′µL ≡

(
ν′µL

µ′L

)
, L′τL ≡

(
ν′τL

τ ′L

)
, (3.66)

Q′1L ≡
(
u′L
d′L

)
, Q′2L ≡

(
c′L
s′L

)
, Q′3L ≡

(
t′L
b′L

)
, (3.67)
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and singlets15,

�′eR ≡ e′R , �′µR ≡ µ′R , �′τR ≡ τ ′R , (3.68)

q′UuR ≡ u′R , q′UcR ≡ c′R , q′UtR ≡ t′R , (3.69)

q′DdR ≡ d′R , q′DsR ≡ s′R , q′DbR ≡= b′R . (3.70)

The primes on the fermion fields are necessary because, as we will see in section 3.5,
the fields in eqns (3.66)–(3.70), in general, do not have definite masses, but are linear
combinations of the fields with definite mass. The quantum numbers of the fields
in eqns (3.66)–(3.70) are the same as the corresponding ones in the first generation,
which are listed in Table 3.5.

The three-generation version of the electroweak SM Lagrangian in eqn (3.21) is

L = i
∑

α=e,µ,τ

L′αL /DL′αL + i
∑

α=1,2,3

Q′αL /DQ′αL

+ i
∑

α=e,µ,τ

�′αR /D�′αR + i
∑

α=d,s,b

q′DαR /Dq′DαR + i
∑

α=u,c,t

q′UαR /Dq′UαR

− 1

4
AµνA

µν − 1

4
BµνB

µν

+ (DρΦ)†(DρΦ) − µ2 Φ†Φ − λ (Φ†Φ)2

−
∑

α,β=e,µ,τ

(
Y ′	αβ L

′
αL Φ �′βR + Y ′	∗αβ �′βR Φ† L′αL

)
−

∑
α=1,2,3

∑
β=d,s,b

(
Y ′Dαβ Q

′
αL Φ q′DβR + Y ′D∗αβ q′DβR Φ†Q′αL

)
−

∑
α=1,2,3

∑
β=u,c,t

(
Y ′Uαβ Q

′
αL Φ̃ q′UβR + Y ′U∗αβ q′UβR Φ̃†Q′αL

)
. (3.71)

The last three lines contain the Higgs–fermion Yukawa couplings that generate the
fermion masses and quark mixing, as explained in section 3.5.

The electromagnetic interaction Lagrangian obtained from the first two lines of
eqn (3.71) is

L
(γ)
I = −e jρ

γ Aρ , (3.72)

with the electromagnetic current

jρ
γ = jρ

γ,L + jρ
γ,Q . (3.73)

Here jρ
γ,L and jρ

γ,Q are the leptonic and quark electromagnetic currents given by

jρ
γ,L = −

∑
α=e,µ,τ

�′α γ
ρ �′α , (3.74)

15 In the following we will use, for example, the notation �′αR in compact formulas
where a summation on the flavor index α = e, µ, τ is required. When the fields are needed
explicitly, we write, for example, e′R, µ′

R, τ ′R.
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jρ
γ,Q =

2

3

∑
α=u,c,t

q′Uα γρ q′Uα − 1

3

∑
α=d,s,b

q′Dα γρ q′Dα . (3.75)

The charged-current weak interaction Lagrangian obtained from the first line of
eqn (3.71) is

L
(CC)
I = − g

2
√

2
jρ
WWρ + H.c. , (3.76)

where the fermion charged current jρ
W is the sum of the leptonic and quark charged-

currents,
jρ
W = jρ

W,L + jρ
W,Q , (3.77)

given by

jρ
W,L = 2

(
ν′eL γ

ρ e′L + ν′µL γ
ρ µ′L + ν′τL γ

ρ τ ′L
)
, (3.78)

jρ
W,Q = 2

(
u′L γ

ρ d′L + c′L γ
ρ s′L + t′L γ

ρ b′L
)
. (3.79)

The leptonic charged-current can be written in a compact form as

jρ
W,L = 2

∑
α=e,µ,τ

ν′αL γ
ρ �′αL , (3.80)

with
�′eL ≡ e′L , �′µL ≡ µ′L , �′τL ≡ τ ′L . (3.81)

It is useful to define the weak isospin raising and lowering operators I± as

I± = I1 ± iI2 , (3.82)

for which we have, from the commutation relations in eqn (3.2),

[I3, I±] = ±I± =⇒ I3I± = I± (I3 ± 1) . (3.83)

Then, if |i, i3〉 is an eigenstate of I and I3 with eigenvalues i and i3, I±|i, i3〉 is an
eigenstate of I and I3 with eigenvalues i and i3 ± 1:

I3 |i, i3〉 = i3 |i, i3〉 =⇒ I3 I± |i, i3〉 = (i3 ± 1) I± |i, i3〉 . (3.84)

This is clear from the explicit matrix form of the operators I± in the doublet
representation:

I+
doublet−−−−−→ τ+

2
=
τ1 + iτ2

2
=

(
0 1
0 0

)
, I−

doublet−−−−−→ τ−
2

=
τ1 − iτ2

2
=

(
0 0
1 0

)
.

(3.85)
One can see that I+ raises the lower component of a doublet, increasing the
eigenvalue of I3 by one unit, and I− lowers the upper component, decreasing the
eigenvalue of I3 by one unit.

The fermion weak charged currents can be written in a compact form using the
raising and lowering operators I±:

jρ
W,L = 2

∑
α=e,µ,τ

L′αL γ
ρ I+ L

′
αL , (3.86)
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jρ
W,Q = 2

∑
α=1,2,3

Q′αL γ
ρ I+Q

′
αL , (3.87)

and the Hermitian conjugate currents are given by

jµ†
W,L = 2

∑
α=e,µ,τ

L′αL γ
ρ I− L′αL , (3.88)

jµ†
W,Q = 2

∑
α=1,2,3

Q′αL γ
ρ I−Q′αL . (3.89)

The neutral-current weak interaction Lagrangian obtained from the first two
lines of eqn (3.71) is

L
(Z)
I = − g

2 cosϑW
jρ
Z Zρ , (3.90)

with the neutral current
jρ
Z = jρ

Z,L + jρ
Z,Q , (3.91)

where jρ
Z,L and jρ

Z,Q are the leptonic and quark neutral currents given by

jρ
Z,L = 2 gν

L

∑
α=e,µ,τ

ν′αL γ
ρ ν′αL + 2

∑
α=e,µ,τ

(
gl

L �
′
αL γ

ρ �′αL + gl
R �
′
αR γ

ρ �′αR

)
, (3.92)

jρ
Z,Q = 2

∑
α=u,c,t

(
gU

L q
′U
αL γ

ρ q′UαL + gU
R q
′U
αR γ

ρ q′UαR

)
+ 2

∑
α=d,s,b

(
gD

L q′DαL γ
ρ q′DαL + gD

R q′DαR γ
ρ q′DαR

)
, (3.93)

with

q′UuL ≡ u′L , q′UcL ≡ c′L , q′UtL ≡ t′L , (3.94)

q′DdL ≡ d′L , q′DsL ≡ s′L , q′DbL ≡ b′L . (3.95)

The values of the coefficients gν,l,U,D
L and gν,l,U,D

R , given by eqns (3.48) and (3.49),
are listed in Table 3.6 (page 78).

3.4 The Higgs mechanism

In the SM, the masses of the W and Z gauge bosons, as well as those of the
fermions, are generated through the Higgs mechanism [611, 610, 612, 412, 578, 666]
implemented by the Higgs doublet

Φ(x) =

(
φ+(x)
φ0(x)

)
, (3.96)

where φ+(x) is a charged complex scalar field and φ0(x) is a neutral complex scalar
field. The gauge quantum numbers of the Higgs fields are listed in Table 3.7. The
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Table 3.7. Eigenvalues of the weak isospin I, of its third component I3, of the
hypercharge Y , and of the charge Q = I3 + Y

2 of the Higgs doublet.

I I3 Y Q

Higgs doublet Φ(x) ≡

⎛⎝φ+(x)

φ0(x)

⎞⎠ 1/2
1/2

−1/2
+1

1

0

transformation of the Higgs doublet under an element g(θ(x), η(x)) of the gauge
group (see eqn (3.10)) is given by

Φ
g(θ(x),η(x))−−−−−−−−→ Φ′ = U(θ(x), η(x))Φ = e

i
2 θ(x) · τ+ i

2 η(x) Φ . (3.97)

Using this transformation and the transformations in eqn (3.22) of the covariant
derivative, one can verify that the Higgs part of the SM Lagrangian,

LHiggs = (DµΦ)†(DµΦ) − µ2 Φ†Φ − λ (Φ†Φ)2 , (3.98)

is invariant under a gauge transformation g(θ(x), η(x)). In eqn (3.98), the coefficient
λ of the quartic self-couplings of the Higgs fields must be positive, λ > 0, in order
to have a potential

V (Φ) = µ2 Φ†Φ + λ (Φ†Φ)2 (3.99)

which is bounded from below. On the other hand, the squared mass-like coefficient
µ2 is assumed to be negative, µ2 < 0, in order to realize the spontaneous breaking
of the symmetry

SU(2)L × U(1)Y → U(1)Q , (3.100)

where U(1)Q is the gauge symmetry group of electromagnetic interactions, asso-
ciated with the conservation of the electric charge, which is well known to be
unbroken.

Defining

v ≡
√
−µ

2

λ
. (3.101)

and neglecting an irrelevant constant term v4/4, the Higgs potential in eqn (3.99)
can be written as

V (Φ) = λ

(
Φ†Φ − v2

2

)2

. (3.102)

From this expression it is clear that the potential is minimum for

Φ†Φ =
v2

2
. (3.103)

In quantum field theory the minimum of the potential corresponds to the vacuum,
which is the lowest energy state, and the quantized excitations of each field above
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the vacuum correspond to particle states. Fermion and vector boson fields, which
carry nonzero spin, must have a zero value in the vacuum, in order to preserve
the manifest invariance of Nature under spatial rotation. Also, charged scalar fields
must have zero value in the vacuum, which is electrically neutral. On the other hand,
neutral scalar fields, which do not have electric charge, can have a nonzero value
in vacuum, which is called vacuum expectation value or VEV. From eqn (3.103) we
can see that the Higgs fields have a nonzero VEV. In order to have an electrically
neutral vacuum, the VEV 〈Φ〉 of the Higgs fields must be due to φ0:

〈Φ〉 =
1√
2

(
0
v

)
. (3.104)

The symmetry SU(2)L × U(1)Y is spontaneously broken by the VEV 〈Φ〉:

I1 〈Φ〉 =
τ1
2
〈Φ〉 =

1

2
√

2

(
v
0

)
�= 0 , (3.105)

I2 〈Φ〉 =
τ2
2
〈Φ〉 = − i

2
√

2

(
v
0

)
�= 0 , (3.106)

I3 〈Φ〉 =
τ3
2
〈Φ〉 = − 1

2
√

2

(
0
v

)
�= 0 , (3.107)

Y 〈Φ〉 = 〈Φ〉 �= 0 , (3.108)

but

Q 〈Φ〉 =

(
I3 +

Y

2

)
〈Φ〉 =

1√
2

(
1 0
0 0

)(
0
v

)
= 0 . (3.109)

Therefore, the vacuum is invariant under gauge transformations that belong to the
group U(1)Q, of the type

ei θ Q 〈Φ〉 = 〈Φ〉 . (3.110)

This invariance guarantees the existence of a massless gauge boson associated with
the symmetry group U(1)Q, which is identified with the photon.

It is important not to be misled by the words “spontaneous symmetry break-
ing”. The Lagrangian is perfectly symmetric. The symmetry is only broken by the
vacuum, and consequently the physical states obtained by excitations of the fields
above the vacuum do not manifest the symmetry of the Lagrangian. In fact, it is
more proper to say that the symmetry becomes hidden.

In order to derive the physical properties of the particles resulting from the
spontaneous breaking of the SU(2)L × U(1)Y symmetry to U(1)Q, it is convenient
to write the Higgs doublet as

Φ(x) =
1√
2

exp

(
i

2 v
ξ(x) · τ

)(
0

v +H(x)

)
, (3.111)

where ξ(x) = (ξ1(x), ξ2(x), ξ3(x)) and H(x) are four real scalar fields (the presence
of v in the argument of the exponential is necessary for dimensional reasons, because
scalar fields have dimension of energy). The field H(x) describes the physical Higgs
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boson, obtained by excitations of the neutral Higgs field above the vacuum. On the
other hand, the fields ξ(x) are unphysical, because they can be rotated away by a
gauge transformation of the type in eqn (3.97) with

θ(x) = −1

v
ξ(x) , η(x) = 0 . (3.112)

This transformation defines the so-called unitary gauge, in which the physical states
of the theory appear explicitly. In the unitary gauge, the Higgs doublet reads

Φ(x) =
1√
2

(
0

v +H(x)

)
, (3.113)

and

Dµ(x)Φ(x) =

[
∂µ +

i

2
g Aµ(x) · τ +

i

2
g′Bµ(x)

]
Φ(x)

=
1√
2

(
i g√

2
Wµ(x) [v +H(x)]

∂µH(x) − i
2

g
cos ϑW

Zµ(x) [v +H(x)]

)
. (3.114)

In the unitary gauge, the Higgs Lagrangian in eqn (3.98) is given by

LHiggs =
1

2
(∂H)

2
+
g2

4
(v +H)

2
W †µW

µ +
g2

8 cos2 ϑW
(v +H)

2
ZµZ

µ

− λ

4

(
H2 + 2v H

)2
. (3.115)

Expanding the above, we obtain

LHiggs =
1

2
(∂H)2 − λv2H2 − λvH3 − λ

4
H4 +

g2v2

4
W †µW

µ +
g2v2

8 cos2 ϑW
ZµZ

µ

+
g2v

2
W †µW

µH +
g2v

4 cos2 ϑW
ZµZ

µH

+
g2

4
W †µW

µH2 +
g2

8 cos2 ϑW
ZµZ

µH2 . (3.116)

The first term on the right-hand side is the kinetic term for the Higgs boson. The
second term is the mass term for the Higgs boson, from which the mass of the Higgs
boson is given by

mH =
√

2λ v2 =
√
−2µ2 . (3.117)

Since µ2 is a negative parameter specifically introduced in the SM, its value is
not connected to other quantities already measured. Hence, the SM does not
give a prediction for the value of the Higgs mass, which must be determined
experimentally.

The third and fourth terms on the right-hand side of eqn (3.116) generate,
respectively, trilinear and quadrilinear self-couplings of the Higgs field represented
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by the diagrams

H H

H

H H

H H
(3.118)

The fifth and sixth terms on the right-hand side of eqn (3.116) are of funda-
mental importance, because they are mass terms for the W and Z gauge bosons.
From them, we see that the masses of the W and Z gauge bosons in the SM are
given by

mW =
g v

2
mZ =

g v

2 cosϑW
. (3.119)

The widely used parameter ρ, defined by

ρ =
m2

W

m2
Z cos2 ϑW

, (3.120)

has the value
ρ = 1 , (3.121)

in the SM16. The experimental test of eqn (3.121) is an important check of the value
of the weak isospin of the Higgs. The reason is that, in principle, the Higgs sector
of the SM could be extended including other Higgs multiplets, beside the standard
doublet in eqn (3.96), all of which have vacuum expectation values which contribute
to the generation of the masses of the W and Z gauge bosons through the Higgs
mechanism. For an arbitrary number of such Higgs multiplets Φk, including the
standard doublet, ρ is given by (see, for example, Ref. [829])

ρ =

∑
k

[
Ik
(
Ik + 1

)
−
(
Ik
3

)]
v2

k

2
∑

k

(
Ik
3

)
v2

k

. (3.122)

Here Ik is the weak isospin of the Higgs multiplet Φk and Ik
3 is the third component

of the weak isospin of the component of Φk which has a vacuum expectation value
vk. Equation (3.122) implies that ρ = 1 for any number of Higgs doublets. The
experimental value of ρ is [400]

ρ = 0.9998+0.0008
−0.0005 , (3.123)

in perfect agreement with ρ = 1. Therefore, the experimental data leave open
only the possibility that there might be other Higgs doublets, besides the standard

16 Equation (3.121) is valid only at the tree level. Radiative corrections lead to a depar-
ture from ρ = 1 which depends on the renormalization scheme, except in the on-shell
scheme where ρ = 1 is assumed as the definition of the renormalized sin2 ϑW (see, for
example, Ref. [400]).
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one, which generate the masses of the W and Z gauge bosons through the Higgs
mechanism.

The last four terms on the right-hand side of eqn (3.116) generate trilinear and
quadrilinear couplings of the Higgs field with the gauge bosons, represented by the
diagrams

W W

H

Z Z

H

W W

H H

Z Z

H H

(3.124)

3.5 Fermion masses and mixing

In the SM, the mass of fermions arises as a result of the Higgs mechanism through
the presence of Yukawa couplings of the fermion fields with the Higgs doublet.

Let us derive first the lepton masses. As shown in eqn (3.26), a fermion mass
term must involve a coupling of left-handed and right-handed fields. So, it is clear
that in the SM neutrinos are massless, because their fields do not have a right-
handed component. Considering the charged leptons, the products L′αL�

′
βR, with

α, β = e, µ, τ , are isospin doublets with hypercharge Y = −1. Since the Higgs
doublet has hypercharge Y = +1, the Higgs–lepton Yukawa Lagrangian

LH,L = −
∑

α,β=e,µ,τ

Y ′	αβ L
′
αL Φ �′βR + H.c. (3.125)

is invariant under the transformations of the type in eqn (3.10) belonging to the
SU(2)L × U(1)Y gauge group and appears in the fifth line of the SM electroweak
Lagrangian in eqn (3.71). The matrix Y ′	 of Yukawa couplings is, in general, a com-
plex 3× 3 matrix. In the unitary gauge, the Higgs doublet has the expression given
in eqn (3.113) and the Higgs–lepton Yukawa Lagrangian in eqn (3.125) becomes

LH,L = −
(
v +H√

2

) ∑
α,β=e,µ,τ

Y ′	αβ �
′
αL �

′
βR + H.c. (3.126)

The term proportional to the VEV, v, of the Higgs doublet is a mass term for the
charged fermion, whereas the term proportional to the Higgs boson field H gives
trilinear couplings between the charged leptons and the Higgs boson. However,
since the matrix Y ′	 is in general nondiagonal, the fields e′, µ′, and τ ′ do not have
definite masses. In order to find the charged lepton fields with definite mass, it is
necessary to diagonalize the matrix Y ′	. In order to accomplish this task, let us
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define the arrays of charged lepton fields

�′L ≡

⎛⎝e′Lµ′L
τ ′L

⎞⎠ , �′R ≡

⎛⎝e′Rµ′R
τ ′R

⎞⎠ . (3.127)

Using this notation, the Higgs–lepton Yukawa Lagrangian can be written in the
matrix form

LH,L = −
(
v +H√

2

)
�′L Y

′	 �′R + H.c. (3.128)

The matrix Y ′	 can be diagonalized through the biunitary transformation (see
section 4.1)

V 	†
L Y ′	 V 	

R = Y 	 , with Y 	
αβ = y	

α δαβ (α, β = e, µ, τ) . (3.129)

Here V 	
L and V 	

R are two appropriate 3 × 3 unitary matrices (V 	†
L = (V 	

L)−1 and

V 	†
R = (V 	

R)−1).
The diagonalization in eqn (3.129) leads to

LH,L = −
(
v +H√

2

)
�L Y

	 �R + H.c. , (3.130)

where

�L = V 	†
L �′L ≡

⎛⎝eL

µL

τL

⎞⎠ , �R = V 	†
R �′R ≡

⎛⎝eR

µR

τR

⎞⎠ (3.131)

are the arrays containing the left-handed and right-handed components of the
charged lepton fields with definite masses. Finally, the Higgs–lepton Yukawa
Lagrangian can be written as

LH,L = −
∑

α=e,µ,τ

y	
αv√
2
�α �α −

∑
α=e,µ,τ

y	
α√
2
�α �αH , (3.132)

where
�α ≡ �αL + �αR (α = e, µ, τ) (3.133)

are the fields of the charged leptons with definite masses:

�e ≡ e , �µ ≡ µ , �τ ≡ τ . (3.134)

The first term on the right-hand side of eqn (3.132) is the mass term for the charged
leptons, whose masses are given by

mα =
y	

αv√
2

(α = e, µ, τ) . (3.135)

Since the coefficients y	
e, y

	
µ, y	

τ are unknown parameters of the SM, the masses of
the charged leptons cannot be predicted and must be obtained from experimental
measurements.
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An interesting property following from the second term on the right-hand sides
of eqn (3.132) and eqn (3.135) is that the trilinear couplings between the charged
leptons and the Higgs boson are proportional to the charged lepton masses. Indeed,
that term can be written as

−
∑

α=e,µ,τ

mα

v
�α �αH . (3.136)

On the other hand, neutrinos, being massless, do not couple to the Higgs boson.
The trilinear coupling in eqn (3.136) of the charged lepton �α with the Higgs boson
is represented by the diagram

�±α �±α

H (3.137)

Let us now see what happens to the leptonic charged and neutral weak currents
as a result of the transformations in eqn (3.131). Defining the array

ν ′L ≡

⎛⎝ν′eL

ν′µL

ν′τL

⎞⎠ , (3.138)

the leptonic charged weak current in eqn (3.86) can be written as

jρ
W,L = 2 ν ′L γ

ρ �′L = 2 ν ′L γ
ρ V 	

L �L . (3.139)

Since we can freely transform the massless neutrino fields as

νL = V 	†
L ν ′L ≡

⎛⎝νeL

νµL

ντL

⎞⎠ , (3.140)

the leptonic charged weak current can be written as

jρ
W,L = 2 νL γ

ρ �L = 2
∑

α=e,µ,τ

ναL γ
ρ �αL , (3.141)

in terms of the massless neutrino fields νe, νµ, ντ and the charged lepton fields with
definite mass in eqn (3.134). The neutrino fields νe, νµ, ντ are called flavor neutrino

fields because each of them couples only with the corresponding charged lepton field
in the charged weak current in eqn (3.141). The flavor neutrino fields have been
defined in eqn (3.140) just to satisfy this property. In the SM the flavor neutrino
fields are also mass eigenstates, because any linear combination of massless fields
is a massless field. As we will see in chapter 6, in theories beyond the SM in which
neutrinos are massive, flavor neutrino fields are, in general, not mass eigenstates, a
phenomenon called neutrino mixing.
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Table 3.8. Assignment of flavor lepton numbers.

Le Lµ Lτ Le Lµ Lτ

(νe , e
−) +1 0 0 (ν̄e , e

+) −1 0 0
(νµ , µ

−) 0 +1 0 (ν̄µ , µ
+) 0 −1 0

(ντ , τ
−) 0 0 +1 (ν̄τ , τ

+) 0 0 −1

With the leptonic charged weak current in eqn (3.141), the leptonic part of
the charged-current weak interaction Lagrangian in eqn (3.76) describes trilinear
couplings of the leptons with the W gauge boson represented by the diagrams

�−α να

W

ν̄α �+α

W

να �−α

W

�+α ν̄α

W

(3.142)
As can be seen from these diagrams, the leptonic current jρ

W,L connects each charged
lepton with the corresponding flavor neutrino. Hence, the electron Le, muon Lµ

and tau Lτ flavor lepton numbers assigned as shown in Table 3.8 are conserved. A
trivial consequence is that also the total lepton number

L = Le + Lµ + Lτ (3.143)

is also conserved. As we will see in the following chapters, the nonconservation
of the lepton numbers Le, Lµ, Lτ , L plays an important role in the physics of
neutrinos beyond the SM.

The conservation of each flavor lepton number Lα is related, through Noether’s
theorem, to the invariance of the Lagrangian under the global U(1) gauge
transformations

ναL → eiϕα ναL , �αL → eiϕα �αL , �αR → eiϕα �αR , (3.144)

as explained in section C.7. From eqn (C.49), the associated conserved current
(∂ρj

ρ
α = 0) is

jρ
α = ναL γ

ρ ναL + �α γ
ρ �α , (3.145)

and the conserved charge (∂0Lα = 0) is

Lα =

∫
d3x j0α(x) . (3.146)

Using the Fourier expansion in eqn (2.139) for the massive Dirac charged lepton
field �α(x) and the Fourier expansion in eqn (2.222) for the massless chiral left-
handed neutrino field ναL(x), we obtain the normally ordered (see eqn (2.245))
flavor lepton number operator

:Lα : =

∫
d3p

(2π)3 2E

[
a(−)†

να
(p) a(−)

να
(p) − b(+)†

να
(p) b(+)

να
(p)
]
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+

∫
d3p

(2π)3 2E

∑
h=±1

[
a
(h)†
	α

(p) a
(h)
	α

(p) − b
(h)†
	α

(p) b
(h)
	α

(p)
]
. (3.147)

The neutrino contribution to the flavor lepton number operator : Lα : agrees with
the fact that the massless neutrino chiral field ναL describes only neutrinos with
negative helicity and antineutrinos with positive helicity, as we have explained in
section 2.9.2.

Considering now the neutral weak current of the lepton fields in eqn (3.92), it
can be written as

jρ
Z,L =2 gν

L ν ′L γ
ρ ν ′L + 2 gl

L �′L γ
ρ�′L + 2 gl

R �′R γ
ρ�′R

=2 gν
L νL V

	†
L γρ V 	

L νL + 2 gl
L �L V

	†
L γρ V 	

L �L + 2 gl
R �R V

	†
R γρ V 	

R �R

=2 gν
L νL γ

ρ νL + 2 gl
L �L γ

ρ�L + 2 gl
R �R γ

ρ�R , (3.148)

because the matrices V 	
L and V 	

R are unitary. Therefore, the expression of the neutral
weak current in terms of the unprimed lepton fields with definite masses is the same
as that in terms of the primed lepton fields. This phenomenon is called the GIM
mechanism [544]. The GIM mechanism works also in the case of the electromagnetic
current of leptons in eqn (3.92), which can be written as

jρ
γ,L = −

∑
α=e,µ,τ

�α γ
ρ �α , (3.149)

in terms of the charged lepton fields in eqn (3.134) with definite masses. Thus, the
trilinear couplings of the leptons with the Z gauge boson are represented by the
diagrams

(−)

να
(−)

να

Z

�±α �±α

Z (3.150)

and the trilinear couplings of the charged lepton �α with the photon is represented
by the diagram

�±α �±α

γ (3.151)

Let us consider now the Lagrangian mass terms of quarks. As for the leptons,
we look at mass-like products of left-handed and right-handed fields. From the
left-handed doublets in eqn (3.67) and the right-handed singlets in eqns (3.69) and
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(3.70), it is possible to form two types of products:

Q′αL q
′D
βR with α = 1, 2, 3 and β = d, s, b , (3.152)

and
Q′αL q

′U
βR with α = 1, 2, 3 and β = u, c, t . (3.153)

The product in eqn (3.152) has hypercharge Y = −1 and can be coupled to the
Higgs doublet with hypercharge Y = +1 in order to make a Yukawa Lagrangian
term invariant under the SU(2)L × U(1)Y transformations in eqn (3.10),

−
∑

α=1,2,3

∑
β=d,s,b

Y ′Dαβ Q
′
αL Φ q′DβR , (3.154)

where Y ′D is a complex 3×3 matrix of Yukawa couplings. This Yukawa Lagrangian
term appears in the sixth line of the SM electroweak Lagrangian in eqn (3.71). It is
analogous to the Higgs–lepton Yukawa Lagrangian in eqn (3.125) and gives rise to
the masses of the down-like quarks d, s, b. Indeed, in the unitary gauge, where the
Higgs doublet has the expression in eqn (3.113), the term in eqn (3.154) becomes

−
(
v +H√

2

) ∑
α,β=d,s,b

Y ′Dαβ q
′D
αL q

′D
βR , (3.155)

with Y ′Ddβ ≡ Y ′D1β , Y ′Dsβ ≡ Y ′D2β , Y ′Dbβ ≡ Y ′D3β . The terms proportional to v have the
structure of mass terms for the d, s, b quarks.

The product in eqn (3.153) has hypercharge Y = +1 and in order to form an
SU(2)L ×U(1)Y invariant term it needs a Higgs doublet with hypercharge Y = −1.
Such a Higgs doublet can be obtained from the Higgs doublet in eqn (3.96) with
the transformation

Φ̃ = iτ2 Φ∗ . (3.156)

Indeed, under a gauge transformation in eqn (3.10), taking into account the
transformation in eqn (3.97) of Φ, we have

Φ̃
g(θ(x),η(x))−−−−−−−−→ iτ2 e

−iθ(x) · τ∗

2 −i
η(x)

2 Φ∗ =
(
τ2 e
−iθ(x) · τ∗

2 −i
η(x)

2 τ2

)
iτ2 Φ∗

= e
i
2 θ(x) · τ− i

2 η(x) Φ̃ , (3.157)

where we have used the property τ2τ
∗τ2 = −τ . Therefore, Φ̃ transforms as a weak

isospin doublet with hypercharge Y = −1. This allows us to write the gauge-
invariant Yukawa term

−
∑

α=1,2,3

∑
β=u,c,t

Y ′Uαβ Q
′
αL Φ̃ q′UβR , (3.158)

that appears in the last line of the SM electroweak Lagrangian in eqn (3.71). This
term gives rise to the masses of up-like quarks u, c, t. Indeed, in the unitary gauge

Φ̃ =
1√
2

(
v +H(x)

0

)
, (3.159)
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and the term in eqn (3.158) becomes

−
(
v +H√

2

) ∑
α,β=u,c,t

Y ′Uαβ q
′U
αL q

′U
βR , (3.160)

with Y ′Uuβ ≡ Y ′U1β , Y ′Ucβ ≡ Y ′U2β , Y ′Utβ ≡ Y ′U3β . The terms proportional to v have the
structure of mass terms for the u, c, t quarks.

Putting together the gauge-invariant Yukawa terms in eqns (3.154) and (3.158)
and their Hermitian conjugates, we obtain the quark Yukawa Lagrangian

LH,Q = −
∑

α=1,2,3

⎡⎣ ∑
β=d,s,b

Y ′Dαβ Q
′
αL Φ q′DβR +

∑
β=u,c,t

Y ′Uαβ Q
′
αL Φ̃ q′UβR

⎤⎦+ H.c. (3.161)

In the unitary gauge, it becomes

LH,Q = −
(
v +H√

2

)⎡⎣ ∑
α,β=d,s,b

Y ′Dαβ q
′D
αL q

′D
βR +

∑
α,β=u,c,t

Y ′Uαβ q
′U
αL q

′U
βR

⎤⎦+H.c. (3.162)

The terms proportional to v are mass terms for the quarks. However, since the
complex matrices Y ′D and Y ′U of Yukawa couplings are in general nondiagonal,
the primed quark fields do not have definite masses. In order to find the massive
fields, it is necessary to diagonalize the matrices Y ′D and Y ′U . Following the same
procedure as in the case of the leptons, we define the arrays

q′UL ≡

⎛⎝u′Lc′L
t′L

⎞⎠ , q′UR ≡

⎛⎝u′Rc′R
t′R

⎞⎠ , q′DL ≡

⎛⎝d′Ls′L
b′L

⎞⎠ , q′DR ≡

⎛⎝d′Rs′R
b′R

⎞⎠ ,

(3.163)
that allow us to write the Higgs–quark Yukawa Lagrangian in the matrix form

LH,Q = −
(
v +H√

2

)[
q′DL Y ′Dq′DR + q′UL Y ′Uq′UR

]
+ H.c. (3.164)

The matrices Y ′D and Y ′U can be diagonalized through the biunitary transforma-
tions (see section 4.1)

V D†
L Y ′DV D

R = Y D , with Y D
αβ = yD

α δαβ (α, β = d, s, b) , (3.165)

V U†
L Y ′UV U

R = Y U , with Y U
αβ = yU

α δαβ (α, β = u, c, t) , (3.166)

where V D
L , V D

R , V U
L , and V U

R are four appropriate 3× 3 unitary matrices. Defining

qU
L = V U†

L q′UL ≡

⎛⎝uL

cL
tL

⎞⎠ , qU
R = V U†

R q′UR ≡

⎛⎝uR

cR
tR

⎞⎠ , (3.167)

qD
L = V D†

L q′DL ≡

⎛⎝dL

sL

bL

⎞⎠ , qD
R = V D†

R q′DR ≡

⎛⎝dR

sR

bR

⎞⎠ . (3.168)
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we obtain

LH,Q = −
(
v +H√

2

)[
qD

L Y
DqD

R + qU
LY

UqU
R

]
+ H.c.

= −
∑

α=d,s,b

yD
α v√
2
qD
α qD

α −
∑

α=u,c,t

yU
α v√
2
qU
α q

U
α

−
∑

α=d,s,b

yD
α√
2
qD
α qD

α H −
∑

α=u,c,t

yU
α√
2
qU
α q

U
α H , (3.169)

where
qD
α ≡ qD

αL + qD
αR , qU

α ≡ qU
αL + qU

αR (3.170)

are the fields of quarks with definite masses. The first two terms in the last line of
eqn (3.169) are the mass terms for the quarks, whose masses are given by

mα =
yD

α v√
2

(α = d, s, b) , (3.171)

mα =
yU

α v√
2

(α = u, c, t) . (3.172)

As in the case of leptons, since the quantities yD
d , yD

s , yD
b , yU

u , yU
c , yU

t , are unknown
parameters of the SM, the masses of the quarks cannot be predicted and must be
obtained from experimental measurements.

Let us now discuss the practical effect of quark mixing, which is due to the
mismatch between the unprimed quark fields with definite masses and the primed
quark fields that appear in the weak charged current in eqn (3.79). Using the
definitions in eqn (3.163), the quark weak charged current in eqn (3.79) can be
written in the matrix form

jρ
W,Q = 2 q′UL γρ q′DL . (3.173)

Now we express the primed quark fields in terms of the unprimed ones using
eqns (3.167) and (3.168):

jρ
W,Q = 2 qU

L V
U†
L γρ V D

L qD
L = 2 qU

L γ
ρ V U†

L V D
L qD

L . (3.174)

Hence, the quark weak charged current does not depend separately on the matrices
V U

L and V D
L , but only on their product

V = V U†
L V D

L . (3.175)

The matrix V is the quark mixing matrix, also called the Cabibbo–Kobayashi–
Maskawa (CKM) matrix [292, 685], which embodies the physical effects of quark
mixing. Indeed, the quark mixing matrix determines the weak charged-current
interactions of quarks through the current

jρ
W,Q = 2 qU

L γ
ρ V qD

L . (3.176)

The properties of the quark mixing matrix are discussed in chapter 4. The expres-
sion in eqn (3.176) is very important because it must be used in the calculation
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of weak interaction processes involving quarks, where the initial and final states
describe particles with definite masses. Hence, the measurable quantities depend
on the elements of the quark mixing matrix V . Indeed, with the quark charged
weak current in eqn (3.176), the quark part of the charged-current weak interaction
Lagrangian in eqn (3.76) describes trilinear couplings of the quarks with the W
gauge boson represented by the diagrams

qD
β qU

α

W

Vαβ

q̄U
α

q̄D
β

W

Vαβ

qU
β qD

α

W

V ∗βα

q̄D
α

q̄U
β

W

V ∗βα

(3.177)
We have indicated in the vertex the mixing matrix contribution which emphasize
the flavor-changing character of these interactions. There are no conserved flavor
numbers for quarks. However, the quark charged current in eqn (3.79) conserves
the baryon number, which is 1/3 for each quark and −1/3 for each antiquark.

Let us now consider the effect of quark mixing on the weak neutral current
in eqn (3.93). Using the relations in eqns (3.167) and (3.168), the quark neutral
current expressed in terms of the quark fields with definite masses, is given by

jρ
Z,Q = 2 gU

L q′UL γρ q′UL + 2 gU
R q′UR γρ q′UR

+ 2 gD
L q′DL γρ q′DL + 2 gD

R q′DR γρ q′DR

= 2 gU
L qU

L V
U†
L γρ V U

L qU
L + 2 gU

R qU
R V

U†
R γρ V U

R qU
R

+ 2 gD
L qD

L V D†
L γρ V D

L qD
L + 2 gD

R qD
R V D†

R γρ V D
R qD

R

= 2 gU
L qU

L γ
ρ qU

L + 2 gU
R qU

R γ
ρ qU

R

+ 2 gD
L qD

L γρ qD
L + 2 gD

R qD
R γρ qD

R , (3.178)

because the matrices V U
L , V U

R , V D
L , V D

R are unitary. Hence, the neutral current has
the same form if it is expressed in terms of the massive quark fields or in terms
of the primed fields, which appear in the weak charged current. This is the GIM
mechanism at work: the weak neutral current is invariant under mixing of the quark
fields. The GIM mechanism operates also in the electromagnetic current of quarks,
which can be written as

jρ
γ,Q =

2

3

∑
α=u,c,t

qU
α γρ qU

α − 1

3

∑
α=d,s,b

qD
α γρ qD

α , (3.179)

in terms of the massive quark fields in eqn (3.170). Therefore, in the SM there are
no flavor-changing neutral currents. The trilinear couplings of the quarks with the
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Z gauge boson are represented by the diagrams

(−)

q U
α

(−)

q U
α

Z

(−)

q D
α

(−)

q D
α

Z (3.180)

and the trilinear couplings of the quarks with the photon are represented by the
diagrams

(−)

q U
α

(−)

q U
α

γ

(−)

q D
α

(−)

q D
α

γ (3.181)

3.6 Gauge bosons

Let us consider the third line in the SM electroweak Lagrangian in eqn (3.71):

Lgauge = −1

4
AµνA

µν − 1

4
BµνB

µν . (3.182)

These terms describe the kinetics and self-interactions of the gauge fields.
The expressions for Aµν ≡ (Aµν

1 , Aµν
2 , Aµν

3 ) and Bµν are:

Aµν
a = ∂µAν

a − ∂νAµ
a − g

3∑
b,c=1

εabcA
µ
b A

ν
c (a = 1, 2, 3) , (3.183)

Bµν = ∂µBν − ∂νBµ . (3.184)

The expression for Bµν is a straightforward generalization of the electromagnetic
tensor

Fµν = ∂µAν − ∂νAµ , (3.185)

where Aµ is the electromagnetic field in eqn (3.37). It is well known in QED that
the kinetic term of the electromagnetic field is given by

LA = −1

4
FµνF

µν , (3.186)

which is invariant under local U(1)Q gauge transformations (see, for example,
Ref. [720]). Similarly, the second term in eqn (3.182) is invariant under local U(1)Y

gauge transformations of the type in eqn (3.24).
On the other hand, the expression in eqn (3.183) for the tensor associated

with the SU(2)L gauge bosons has an additional term which is needed in order to
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achieve invariance of the first term in eqn (3.182) under local nonabelian SU(2)L

gauge transformations of the type in eqn (3.23). The derivation of the expression
in eqn (3.183) is discussed in appendix D.

In order to obtain the physical consequences of the gauge Lagrangian in
eqn (3.182) one must express it in terms of the physical gauge fields Wµ, Zµ,
and Aµ using eqns (3.31), (3.37), and (3.38). After a straightforward calculation,
one obtains

Lgauge = − 1

2
F †Wµν F

µν
W − 1

4
FZµν F

µν
Z − 1

4
Fµν F

µν

+ i g cosϑW

[
Fµν

W ZµW
†
ν − F †WµνZ

µW ν + Fµν
Z W †µWν

]
+ i e

[
Fµν

W AµW
†
ν − F †WµνA

µW ν + FµνW †µWν

]
+ g2 cos2 ϑW

[
(WµZ

µ)(W †νZ
ν) − (WµW †µ)(ZνZν)

]
+ e2

[
(WµA

µ)(W †νA
ν) − (WµW †µ)(AνAν)

]
+ e g cosϑW

[
(WµZ

µ)(W †νA
ν) + (W †µZ

µ)(WνA
ν) − 2 (WµW †µ)(ZνA

ν)
]

+
1

2
g2
[
(WµW

µ)(W †νW
†ν) − (W †µW

µ)2
]
, (3.187)

where we recognize the last term in the first line as the kinetic term in eqn (3.186)
of the electromagnetic field. The first two terms in the first line are, respectively,
kinetic terms for the W and Z bosons, which are written in terms of the respective
tensors

Fµν
W ≡ ∂µW ν − ∂νWµ , (3.188)

Fµν
Z ≡ ∂µZν − ∂νZµ , (3.189)

which have the same structure as the electromagnetic tensor in eqn (3.185). The
other terms represent trilinear and quadrilinear couplings of the gauge bosons which
generate the vertices in eqn (E.24)–(E.29).

3.6.1 Electromagnetic field

From the first line in eqn (3.187) one can see that the free Lagrangian of the
electromagnetic field Aµ is the classical one in eqn (3.186),

LA = −1

4
FµνF

µν . (3.190)

The Euler–Lagrange procedure described in section C gives the classical field
equation

�Aν − ∂ν(∂µA
µ) = 0 . (3.191)
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The free electromagnetic Lagrangian in eqn (3.190) is invariant under the local
U(1)Q gauge transformations

Aµ → A′µ = Aµ − 1

e
∂µϕ(x) . (3.192)

Also the complete Lagrangian of the SM is invariant under the local U(1)Q gauge
transformations of the electromagnetic field, with the associated transformations of
the fermion fields

f → f ′ = eiQϕ(x)f . (3.193)

Therefore, one can choose an appropriate gauge for studying a physical problem.
A convenient gauge is the Lorentz gauge in which the electromagnetic field satisfies
the constraint

∂µA
µ = 0 . (3.194)

Given a field Aµ it is always possible to make a gauge transformation in eqn (3.192)
in such a way that the transformed field A′µ satisfies the Lorentz constraint in
eqn (3.194), ∂µA

′µ = 0. In fact, it is sufficient to choose a function ϕ(x) such that
�ϕ(x) = −∂µA

µ(x). The field A′µ(x) is still defined up to gauge transformations
with �ϕ(x) = 0.

The free electromagnetic field in the Lorentz gauge satisfies the d’Alembert
equation

�Aµ = 0 . (3.195)

The integral Fourier expansion of the electromagnetic field is (see, for example,
Ref. [634])

Aµ(x) =

∫
d3p

(2π)3 2ω

3∑
α=0

[
a(α)

γ (p) ε(α)
µ (p) e−ip · x + a(α)

γ

†
(p) ε(α)∗

µ (p) eip ·x] ,
(3.196)

where

ω = p0 = |�p| (3.197)

is the photon energy. The polarization four-vectors ε
(α)
µ (p), with α = 0, 1, 2, 3, form

a set of four linearly independent four-vectors which satisfy the relations

ε(α)(p) · ε(β)∗(p) = gαβ , (3.198)

3∑
α=0

ε(α)
µ (p) ε(α)∗

ν (p) gαα = gµν . (3.199)

It is convenient to choose ε
(0)
µ (p) time-like (ε

(0)
µ (p) · p = ω), ε

(1)
µ (p) and ε

(2)
µ (p)

transverse (ε
(1)
µ (p) · p = ε

(2)
µ (p) · p = 0) and ε

(3)
µ (p) longitudinal (ε

(3)
µ (p) · p = −ω).

The compatibility of these four polarizations with the two transverse polarizations
of real photons is discussed, for example, in Ref. [634].
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Table 3.9. Properties of vector bosons [400].

Boson Mass (GeV) Lifetime (s)

γ (photon) < 2 × 10−25 ∞

W± 80.396 ± 0.061 (3.195 ± 0.077) × 10−25

Z 91.187 ± 0.007 (2.643 ± 0.007) × 10−25

g (8 gluons) 0 ∞

The operators a
(α)
γ (p) satisfy the commutation relations[
a(α)

γ (p) , a(α′)
γ

†
(p′)

]
= −gαα′

(2π)3 2ω δ3(�p−�p′) , (3.200)

[
a(α)

γ (p) , a(α′)
γ (p′)

]
=
[
a(α)

γ

†
(p) , a(α′)

γ

†
(p′)

]
= 0 , (3.201)

which lead to the photon propagator

Gµν(x− x′) ≡ 〈0|T[Aµ(x)Aν (x′)]|0〉 = lim
ε→0

i

∫
d4p

(2π)4
−gµν

p2 + i ε
e−ip · (x−x′) . (3.202)

3.6.2 W and Z bosons

In the SM, the vector bosons W± and Z acquire their masses mW and mZ , given in
eqn (3.119) (with the experimental values in Table 3.9), through the Higgs mecha-
nism that generates a spontaneous breaking of the SU(2)L×U(1)Y symmetry. This
means that the Lagrangian is symmetric under SU(2)L × U(1)Y transformations,
but the physical states are not. In other words, the symmetry of the Lagrangian is
hidden in the real world. But the symmetry of the Lagrangian is essential in order
to have a renormalizable theory. Therefore, explicit mass terms for the gauge boson
fields are forbidden (as the fermion masses of the type in eqn (3.26)). For example,
an explicit mass term for the gauge boson field Bµ of the type

1

2
m2

BBµB
µ (3.203)

is clearly not invariant under the gauge transformation in eqn (3.24).
From the first line of eqn (3.187) and the mass terms in eqn (3.116), the

Lagrangians for the free W and Z boson fields in the unitary gauge are

L
(W ) = −1

2
F †Wµν F

µν
W +mW W †µ W

µ , (3.204)

L
(Z) = −1

4
FZµν F

µν
Z +

1

2
mW Zµ Z

µ . (3.205)
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These Lagrangians lead to Proca equations for the free W and Z boson fields:(
� +m2

W

)
Wµ − ∂µ (∂νW

ν) = 0 , (3.206)(
� +m2

Z

)
Zµ − ∂µ (∂νZ

ν) = 0 . (3.207)

Taking the divergence of eqns (3.206) and (3.207) and taking into account that
mW �= 0 and mZ �= 0, one obtains

∂µW
µ = 0 , (3.208)

∂µZ
µ = 0 . (3.209)

These constraints reduce the number of independent components of the W and Z
boson fields from four to three and the Proca equations (3.206) and (3.207) are
reduced to the Klein–Gordon equations(

� +m2
W

)
Wµ = 0 , (3.210)(

� +m2
Z

)
Zµ = 0 . (3.211)

The integral Fourier expansions of the W and Z fields are

Wµ(x) =

∫
d3p

(2π)3 2EW

3∑
r=1

[
a
(r)
W (p) ε

(r)
Wµ(p) e−ip ·x + b

(r)
W

†
(p) ε

(r)∗
Wµ (p) eip ·x

]
,

(3.212)
with

EW = p0 =
√
|�p|2 +m2

W , (3.213)

and

Zµ(x) =

∫
d3p

(2π)3 2EZ

3∑
r=1

[
a
(r)
Z (p) ε

(r)
Zµ(p) e−ip ·x + a

(r)
Z

†
(p) ε

(r)∗
Zµ (p) eip ·x

]
,

(3.214)
with

EZ = p0 =
√
|�p|2 +m2

Z . (3.215)

The polarization four-vectors ε
(r)
W (p) and ε

(r)
Z (p) form two sets of space-like

orthonormal linearly independent four-vectors, such that

ε
(r)
W (p) · ε(s)∗W (p) = ε

(r)
Z (p) · ε(s)∗Z (p) = −δrs . (3.216)

From the conditions in eqns (3.208) and (3.209), the polarization four-vectors ε
(r)
W (p)

and ε
(r)
Z (p) are transverse:

ε
(r)
W (p) · p = ε

(r)
Z (p) · p = 0 . (3.217)

Furthermore, from eqns (3.216) and (3.217) one can find the completeness relations

3∑
r=1

ε
(r)
Wµ(p) ε

(r)∗
Wν (p) = −gµν +

pµpν

m2
W

,

3∑
r=1

ε
(r)
Zµ(p) ε

(r)∗
Zν (p) = −gµν +

pµpν

m2
Z

.

(3.218)
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The operators a
(r)
W (p), b

(r)
W (p), and a

(r)
Z (p) commute, except for the commutation

relations[
a
(α)
W (p) , a

(α′)
W

†
(p′)

]
=

[
b
(α)
W (p) , b

(α′)
W

†
(p′)

]
= −gαα′

(2π)3 2EW δ3(�p−�p′) ,
(3.219)[

a
(α)
Z (p) , a

(α′)
Z

†
(p′)

]
= −gαα′

(2π)3 2EZ δ
3(�p−�p′) . (3.220)

Using these commutation relations and the completeness in eqn (3.218), one can
find that the propagators of the W and Z gauge boson fields are given by

G(W )
µν (x− x′) = 〈0|T[Wµ(x)W †ν (x′)]|0〉 = lim

ε→0
i

∫
d4p

(2π)4

−gµν +
pµ pν

m2
W

p2 −m2
W + i ε

e−ip · (x−x′) ,

(3.221)

G(Z)
µν (x− x′) = 〈0|T[Zµ(x)Zν(x′)]|0〉 = lim

ε→0
i

∫
d4p

(2π)4

−gµν +
pµ pν

m2
Z

p2 −m2
Z + i ε

e−ip · (x−x′) .

(3.222)

3.7 Effective low-energy CC and NC Lagrangians

The energy involved in most phenomena under study in experimental high-energy
physics is much smaller than the masses of the W and Z gauge bosons, which are of
the order of 100 GeV (see Table 3.9 on page 100). For instance, the energy involved
in a particle decay is given by its mass, and all particles, except those containing
top quarks, have masses much smaller than 100 GeV. In these low-energy processes,
the gauge boson propagators in momentum space can be approximated by

G(W )
µν (p)

|k|2	m2
W−−−−−−→ i

gµν

m2
W

, G(Z)
µν (p)

|k|2	m2
Z−−−−−−→ i

gµν

m2
Z

. (3.223)

Therefore, the internal gauge boson lines in the Feynman diagrams representing low-
energy processes can be contracted to a point. In the case of the CC processes, this
contraction leads to an effective four-fermion interaction described by the current–
current Lagrangian

L
(CC)
eff = −GF√

2
j†Wµj

µ
W , (3.224)

where GF is the Fermi constant, whose value is given in eqn (A.151). As illustrated
in Fig. 3.1 for a generic low-energy CC process, the contraction of the W -boson
propagator leads to a four-fermion vertex with associated Feynman-rule quantity

− i
g2

8m2
W

Vf2f1 Vf4f3 . . . γ
µ
(
1 − γ5

)
. . . . . . γµ

(
1 − γ5

)
. . . , (3.225)

where the dots must be filled with the appropriate spinors, according to the Feyn-
man rules in section (E.1). The factors Vf2f1 and Vf4f3 are elements of the mixing
matrix in the case of quarks.
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W
i

m2
W

−→

f1 f2

f3 f4

−ig
2
√

2
↓

↑
−ig
2
√

2

=⇒

f1 f2

f3 f4

↑
−ig2

8m2
W

Fig. 3.1. Contraction of the W gauge boson propagator in a generic low-energy
CC process.

For an interaction Lagrangian, the quantity associated with the corresponding
vertex in the Feynman rules is given, apart from Dirac gamma factors, by the
coupling constant with the sign of the interaction Lagrangian times a factor i. One
can see it by comparing, for example, eqns (3.76) and (E.21). Taking into account
the factor i, the effective Lagrangian in eqn (3.224) corresponds to a four-fermion
vertex with associated Feynman-rule quantity

− i
GF√

2
Vf2f1 Vf4f3 . . . γ

µ
(
1 − γ5

)
. . . . . . γµ

(
1 − γ5

)
. . . . (3.226)

Comparing eqns (3.225) and (3.226), we obtain the important relation

GF√
2

=
g2

8m2
W

, (3.227)

beween the coupling constant g in the SM, the W -boson mass mW , and the well-
measured Fermi constant GF (see eqn (A.151)). Furthermore, from the expression
in eqn (3.119) of mW in terms of g and v, we obtain the value of the Higgs VEV:

v =
(√

2GF

)−1/2

= 246 GeV . (3.228)

As an example of a process which is described remarkably well by the effec-
tive low-energy charged-current weak interaction Lagrangian in eqn (3.224), let us
consider the decay of a muon,

µ− → e− + ν̄e + νµ , (3.229)

whose diagram is shown in Fig. 3.2. The Feynman rules in section E.1 lead to the
amplitude

Aµ−→e− ν̄eνµ
= −g

2

8
ue(pe)γ

ρ
(
1 − γ5

)
vνe

(pνe
)G(W )

ρσ (q)uνµ
(pνµ

)γσ
(
1 − γ5

)
vµ(pµ) ,

(3.230)
with q = pµ−pνµ

. In the rest frame of the muon we have, from energy conservation,
pµ = (mµ, 0) and pνµ

= (Eνµ
,�pνµ

), with Eνµ
= |�pνµ

| ≤ mµ − me. Hence, all
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W−
µ−

e−

ν̄e

νµ

mµ	mW−−−−−−→ µ−

e−

ν̄e

νµ

Fig. 3.2. Tree-level Feynman diagram of muon decay (left) and its low-energy
approximation (right).

the components of the transferred four-momentum q are smaller than the muon
mass and the approximation in eqn (3.223) is very accurate, yielding an effective
amplitude which, taking into account eqn (3.227), coincides with that obtained
from the effective Lagrangian in eqn (3.224),

A(eff)
µ−→e− ν̄eνµ

= −i GF√
2
ue(pe)γ

ρ
(
1 − γ5

)
vνe

(pνe
)uνµ

(pνµ
)γρ

(
1 − γ5

)
vµ(pµ) .

(3.231)
The resulting muon lifetime τµ is given by

1

τµ
=
G2

Fm
5
µ

192 π3

[
1 − 8

m2
e

m2
µ

− 12

(
m2

e

m2
µ

)2

ln

(
m2

e

m2
µ

)
+ 8

(
m2

e

m2
µ

)3

−
(
m2

e

m2
µ

)4
]
.

(3.232)
The correction due to the W boson propagator is 3m2

µ/5m
2
W � 1 × 10−6, which is

indeed small. The muon lifetime is very important, because it is the best process
for the determination of GF, whose value is given in eqn (A.151).

Let us consider now a low-energy weak neutral-current process. As illustrated in
Fig. 3.3, the contraction of the Z-boson propagator leads to an effective four-fermion
interaction with coupling constant

g2

4 cos2 ϑWm2
Z

= 2
GF√

2

m2
W

m2
Z cos2 ϑW

, (3.233)

where we used eqn (3.227) in order to express g2 in terms of GF and m2
W . The last

factor in eqn (3.233) is the ρ parameter introduced in eqn (3.119), which is equal
to unity in the SM. Therefore, the neutral-current effective four-fermion coupling
constant is given by

g2

4 cos2 ϑWm2
Z

= 2
GF√

2
. (3.234)
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Z
i

m2
Z

−→

f1 f1

f2 f2

−ig
2 cosϑW

↓

↑
−ig

2 cosϑW

=⇒

f1 f1

f2 f2

↑
−ig2

4 cos2 ϑWm2
Z

Fig. 3.3. Contraction of the Z gauge boson propagator in a generic low-energy
NC process.

Thus, the effective Fermi-like NC Lagrangian appropriate for the description of
low-energy NC weak processes is

L
(NC)
eff = −GF√

2
jµ
ZjZµ , (3.235)

where we halved the coupling constant in eqn (3.234) to avoid double counting.
The Feynman-rule quantity associated with the corresponding vertex is

− 2 i
GF√

2
. . . γµ

(
gf1

V − gf1

A γ
5
)
. . . . . . γµ

(
gf2

V − gf2

A γ
5
)
. . . , (3.236)

where the dots must be filled with the appropriate spinors, according to the
Feynman rules in section E.1. The coefficients gf

V and gf
A are given in Table 3.6

(page 78).
Let us finally note that eqns (3.42) and (3.227) allow us to express GF in terms

of the fine-structure constant α ≡ e2/4π, the weak mixing angle ϑW, and the
W -boson mass mW or the Z-boson mass mZ = mW / cosϑW:

GF√
2

=
π α

2 sin2 ϑWm2
W

=
π α

2 sin2 ϑW cos2 ϑWm2
Z

. (3.237)

Summarizing the results presented in this section, low-energy weak interaction
processes are described, to an excellent approximation, by the CC and NC four-
fermion Lagrangians in eqns (3.224) and (3.235). The amplitudes of these processes
can be calculated at tree level with the Feynman rules in appendix E, contracting
the gauge boson propagators and associating to the resulting four-fermion vertices
the quantity in eqns (3.226) and (3.236) for CC and NC interactions, respectively.
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THREE-GENERATION MIXING

Entia non sunt multiplicanda praeter necessitatem.∗

William of Ockham (XIVth century)

∗ Entities should not be multiplied beyond necessity (Ockham’s
razor).

In this chapter we derive some important and useful properties of the Cabibbo–
Kobayashi–Maskawa (CKM) [292, 685] mixing matrix of quarks. Besides its intrinsic
importance, the understanding of quark mixing is useful in neutrino physics because
the treatment of neutrino mixing is analogous to that of quark mixing in the case
of Dirac neutrinos and follows similar methods in the case of Majorana neutrinos.
For clarity, we will use, throughout the book, the notations V and U , respectively,
for the quark and neutrino mixing matrices.

The CKM mixing matrix of quarks is a unitary 3×3 matrix given by eqn (3.175),

V = V U
L

†
V D

L =

⎛⎝V11 V12 V13

V21 V22 V23

V31 V32 V33

⎞⎠ ≡

⎛⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠ , (4.1)

where V D
L and V U

L are, respectively, the unitary matrices that lead to the diag-
onalization of the mass matrices of down-like and up-like quarks in eqns (3.165)
and (3.166). In the following we will use either the numerical indices or the quark
flavor indices when they are more convenient for the clarity of discussions and for
practical applications. Based on the experimental data so far, the 90% confidence
intervals for the magnitude of the elements of the quark mixing matrix are [400]

|V | =

⎛⎝0.9739− 0.9751 0.221− 0.227 0.0029− 0.0045
0.221− 0.227 0.9730− 0.9744 0.039 − 0.044
0.0048− 0.014 0.037− 0.043 0.9990− 0.9992

⎞⎠ . (4.2)

All properties of the quark mixing matrix V can be extended to the lepton
mixing matrix U in the case of mixing of three Dirac neutrinos, to be discussed in
section 6.1.2, with the replacements

V → U = V 	†
L V ν

L =

⎛⎝U11 U12 U13

U21 U22 U23

U31 U32 U33

⎞⎠ ≡

⎛⎝Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞⎠ . (4.3)

For historical reasons, the convention is that the quark mixing matrix connects weak
isospin I3 = 1/2 quarks on the left to I3 = −1/2 quarks on the right, whereas the
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lepton mixing matrix connects I3 = −1/2 charged leptons on the left to I3 = 1/2
neutrinos on the right; obviously, one could switch to the same convention for
quarks and leptons by transforming one of the two mixing matrix to its Hermitian
conjugate.

We will denote the number of generations by N in order to present general
properties valid for any number of generations. Later, however, we will consider
explicitly only a realistic case N = 3 or a simple case N = 2.

4.1 Diagonalization of the mass matrix

A general N×N complex matrix M ′ can be diagonalized by a biunitary transfor-
mation

V †L M
′ VR = M , with Mαβ = mα δαβ , (4.4)

where VL and VR are two appropriate N×N unitary matrices (V †L = V −1
L and

V †R = V −1
R ) and mα are real and positive (see Ref. [235]).

In order to understand the fact that the biunitary diagonalization in eqn (4.4)
is possible, let us first count the number of independent parameters. An arbitrary
complex N×N matrix M ′ has 2N2 independent elements. Since each of the unitary
matrices VL and VR has N2 independent elements and M has N independent
elements, the number of available parameters for the diagonalization is more than
sufficient.

For the proof that the diagonalization in eqn (4.4) is possible, let us consider the

product M ′M ′†, which is a Hermitian matrix which can be diagonalized through
the unitary transformation (V †L = V −1

L )

V †L M
′M ′† VL = M2 , where M2

αβ = m2
α δαβ , (4.5)

with real and positive eigenvalues

m2
α =

∑
β

(V †L M
′)αβ (M ′† VL)βα =

∑
β

(V †L M
′)αβ (V †L M

′)†βα

=
∑

β

(V †L M
′)αβ (V †L M

′)∗αβ =
∑

β

∣∣∣(V †L M ′)αβ

∣∣∣2 . (4.6)

Let us now write the matrix M ′ as

M ′ = VL M V †R , with Mαβ =
√
m2

α δαβ , (4.7)

and an appropriate matrix VR. This matrix is given by

VR = (M ′)−1 VL M . (4.8)

From eqns (4.5) and (4.8) one can see that, since M † = M , the matrix VR is
unitary:

V †RVR = MV †L(M ′†)−1(M ′)−1VLM = MV †L(M ′M ′†)−1VLM = MM−2M = 1 ,
(4.9)
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VRV
†
R = (M ′)−1VLM

2V †L(M ′†)−1 = (M ′)−1M ′M ′†(M ′†)−1 = 1 . (4.10)

Using the unitarity of VL and VR, the biunitary diagonalization in eqn (4.4) can be
realized by eqn (4.7), with mα =

√
m2

α.

4.2 Physical parameters in the mixing matrix

In general, a unitary N×N matrix depends on N2 independent real parameters.
These parameters can be divided into

N (N − 1)

2
mixing angles , (4.11)

and
N (N + 1)

2
phases . (4.12)

Hence, the quark mixing matrix with N = 3 can be written in terms of three mixing
angles and six phases. However, not all the phases are physical observables, because
the only physical effect of the quark mixing matrix occurs through its presence in
the weak charged current in eqn (3.176) of quarks

jµ
W,Q = 2 qU

L γ
µ V qD

L (4.13)

(the quark mixing matrix has no effect on the quark weak neutral current, because
of the GIM mechanism, see eqn (3.178)). Apart from the weak charged current, the
Lagrangian is invariant under global phase transformations of the quark fields of
the type

qU
α → eiψU

α qU
α , qD

k → eiψD
k qD

k , (4.14)

with α = u, c, t and k = d, s, b. Performing this transformation, the quark charged
current in eqn (4.13) becomes

jµ
W,Q = 2

∑
α=u,c,t

∑
k=d,s,b

qU
αL γ

µ e−iψU
α Vαk e

iψD
k qD

kL , (4.15)

which can be written as

jµ
W,Q = 2 e−i(ψU

c −ψD
s )︸ ︷︷ ︸

1

∑
α=u,c,t

∑
k=d,s,b

qU
αL γ

µ e−i(ψU
α−ψU

c )︸ ︷︷ ︸
N−1=2

Vαk e
i(ψD

k −ψD
s )︸ ︷︷ ︸

N−1=2

qD
kL , (4.16)

where we have factorized an arbitrary phase e−i(ψU
c −ψD

s ) and we have indicated the
number of independent phases in each term. From this expression, it is clear that
there are

1 + (N − 1) + (N − 1) = 2N − 1 = 5 (4.17)

arbitrary phases of the quark fields that can be chosen to eliminate five of the six
phases of the quark mixing matrix. The reason why 2N−1 and not 2N phases of the
mixing matrix can be eliminated is that a common rephasing of all the quark fields



PARAMETERIZATION OF THE MIXING MATRIX 109

leaves the quark charged current invariant. Such an invariance is related, through
Noether’s theorem, to the conservation of baryon number.

Thus, the quark mixing matrix contains

N (N + 1)

2
− (2N − 1) =

(N − 1) (N − 2)

2
= 1 physical phase , (4.18)

and the total number of physical parameters (mixing angles and phases) in the
quark mixing matrix is

N (N − 1)

2
+

(N − 1) (N − 2)

2
= (N − 1)2 = 4 . (4.19)

It is customary to express conveniently the quark mixing matrix only in terms
of these four physical parameters, three mixing angles and one phase, which are
measurable quantities.

Summarizing, for the quark mixing matrix we have

N = 3 =⇒

⎧⎪⎨⎪⎩
N (N − 1)

2
= 3 mixing angles ,

(N − 1) (N − 2)

2
= 1 physical phase .

(4.20)

If the third generation is ignored,

N = 2 =⇒

⎧⎪⎨⎪⎩
N (N − 1)

2
= 1 mixing angle ,

(N − 1) (N − 2)

2
= 0 physical phase .

(4.21)

Hence, in the case of two generations the mixing matrix depends only on one
physical parameter, a mixing angle that is called the Cabibbo angle [292].

4.3 Parameterization of the mixing matrix

4.3.1 Two generations

A 2 × 2 unitary matrix can be written as

V =

(
cosϑ eiω1 sinϑ ei(ω2+η)

− sinϑ ei(ω1−η) cosϑ eiω2

)
, (4.22)

in terms of one mixing angle ϑ and three phases ω1, ω2, η. The equivalent form

V =

(
ω1 0
0 ω2

)(
eiη 0
0 1

)(
cosϑ sinϑ
− sinϑ cosϑ

)(
e−iη 0

0 1

)
(4.23)

shows explicitly that all three phases can be eliminated by rephasing the quark
fields. Indeed, in the quark charged weak current in eqn (3.176),

jµ
W,Q = 2 qU

L γ
µ V qD

L , (4.24)
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for two generations we have

qU
L =

(
uL

cL

)
, qD

L =

(
dL

sL

)
. (4.25)

The three phases ω1, ω2, η in V can be eliminated by the rephasing

uL → ei(ω1+η)uL , cL → eiω2cL , dL → eiηdL . (4.26)

Hence, it is convenient to write the mixing matrix V without the unphysical phases:

V =

(
cosϑC sinϑC

− sinϑC cosϑC

)
, (4.27)

where the mixing angle ϑC is the Cabibbo angle [292]. The experimental value of
the Cabibbo angle is [400]

sinϑC � 0.2243± 0.0016 . (4.28)

Note, however, that the choice of parameterization of the two-generation quark
mixing matrix is not unique: one could choose, for example,

V =

(
cosϑ′C − sinϑ′C
sinϑ′C cosϑ′C

)
or V =

(
sinϑ′′C cosϑ′′C

− cosϑ′′C sinϑ′′C

)
. (4.29)

All the different parameterizations are related (for example, ϑ′C = −ϑC, ϑ′′C = π
2 −

ϑC) and give the same physical results. Hence, one can choose any parameterization,
but it is important to keep it consistently in a calculation and to perform the
necessary transformation when the result is compared with other calculations.

The mixing angle ϑC can be limited to the interval

0 ≤ ϑC ≤ π

2
. (4.30)

Let us consider, for example, a mixing matrix

Ṽ =

(
cos ϑ̃C sin ϑ̃C

− sin ϑ̃C cos ϑ̃C

)
, (4.31)

with
π

2
≤ ϑ̃C ≤ π . (4.32)

By taking
ϑC = π − ϑ̃C , (4.33)

with ϑC in the interval in eqn (4.30), we can write Ṽ as

Ṽ =

(
− cosϑC sinϑC

− sinϑC − cosϑC

)
=

(
−1 0
0 1

)(
cosϑC sinϑC

− sinϑC cosϑC

)(
1 0
0 −1

)
. (4.34)

The two diagonal matrices on the right-hand side of eqn (4.34) can be eliminated
by changing the signs of uL and sL. Therefore, the mixing matrix Ṽ in eqn (4.31)
with ϑ̃C in the interval in eqn (4.32) is physically equivalent to the mixing matrix
V in eqn (4.27) with ϑC in the interval in eqn (4.30).
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4.3.2 Three generations

In the case of three generations, as one can imagine, the situation is more com-
plicated because there are more possible parameterizations. A large degree of
arbitrariness comes from the many possible choices of the phases of the elements of
the mixing matrix, which correspond to only one physical phase (see eqn (4.20)).
A convenient way to parameterize the quark mixing matrix is as follows (see
[819, 932, 933, 537, 542]). Whenever possible we write formulas in a general form
for N generations, keeping, however, the realistic case N = 3 in mind. Let us define
the N2 generators of unitary transformations as the matrices Aab with elements

[Aab]rs = δar δbs , (4.35)

such that
AabAcd = Aad δbc . (4.36)

Considering the unitary and unimodular matrices

W ab(ϑab, ηab) ≡W ab(ζab) = exp
(
ζab A

ab − ζ∗abA
ba
)

for a �= b , (4.37)

with
ζab = ϑab e

iηab , (4.38)

it is easy to check that(
ζabA

ab − ζ∗ab A
ba
)2k

= (−1)k ϑ2k
ab

(
Aaa +Abb

)
for k ≥ 1 , (4.39)(

ζabA
ab − ζ∗abA

ba
)2k+1

= (−1)k ϑ2k+1
ab

(
eiηab Aab − e−iηab Aba

)
for k ≥ 0 .

(4.40)

It then follows that

W ab(ϑab, ηab) =
∞∑

k=0

(
ζabA

ab − ζ∗ab A
ba
)k

k!

=

∞∑
k=0

(
ζabA

ab − ζ∗ab A
ba
)2k

(2k)!
+

∞∑
k=0

(
ζab A

ab − ζ∗abA
ba
)2k+1

(2k + 1)!

= 1−
(
Aaa +Abb

)
+
(
Aaa +Abb

) ∞∑
k=0

(−1)k ϑ2k
ab

(2k)!

+
(
eiηab Aab − e−iηab Aba

) ∞∑
k=0

(−1)k ϑ2k+1
ab

(2k + 1)!

= 1 + (cosϑab − 1)
(
Aaa +Abb

)
+ sinϑab

(
eiηab Aab − e−iηab Aba

)
.

(4.41)

Hence, the elements of W ab(ϑab, ηab) are[
W ab(ϑab, ηab)

]
rs

= δrs + (cab − 1) (δra δsa + δrb δsb)
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+ sab

(
eiηab δra δsb − e−iηab δrb δsa

)
, (4.42)

with cab ≡ cosϑab and sab ≡ sinϑab. For example, for N = 3, a = 1 and b = 2, we
have

W 12(ϑ12, η12) =

⎛⎝ cosϑ12 sinϑ12 e
iη12 0

− sinϑ12 e
−iη12 cosϑ12 0

0 0 1

⎞⎠ . (4.43)

One can see that the unitary and unimodular matrix W ab(ϑab, ηab) represents a
complex rotation in the a-b plane, which reduces to a real rotation by the angle ϑab

if ηab = 0.
Also the matrices Aab with a = b are useful, because they generate diagonal

unitary matrices: an arbitrary diagonal unitary matrix can be written as

D(ω) = diag
(
eiω1 , . . . , eiωN

)
= exp

(
i

N∑
a=1

ωaA
aa

)
, (4.44)

where ω is the set of N phases ω = (ω1, . . . , ωN ).
We parameterize an arbitrary N ×N unitary matrix V as the product

V = D(ω)

[∏
a<b

W ab(ϑab, ηab)

]
(a, b = 1, . . . , N) , (4.45)

through the N2 generators in eqn (4.35). The angles ϑab can be limited in the range

0 ≤ ϑab ≤
π

2
, (4.46)

whereas the phases ωk and ηab can have any value between 0 and 2π (excluded),

0 ≤ ωk < 2π , 0 ≤ ηab < 2π . (4.47)

The order of the product of the matrices W ab in eqn (4.45) can be chosen in
an arbitrary way. Different choices of order give different parameterizations. In
agreement with eqns (4.11) and (4.12), there are N(N − 1)/2 mixing angles ϑab

and N(N + 1)/2 phases, divided into N(N − 1)/2 phases ηab and N phases ωk.
The expression in eqn (4.45) for V can be written as

V = D(ω − ϕ)

[∏
a<b

D(ϕ)W ab(ϑab, ηab)D
†(ϕ)

]
D(ϕ) , (4.48)

with a set of arbitrary phases ϕ = (ϕ1, . . . , ϕN ). The matrices D(ϕ) and
W ab(ϑab, ηab) satisfy the useful identity

D(ϕ)W ab(ϑab, ηab)D
†(ϕ) = W ab(ϑab, ηab + ϕa − ϕb) , (4.49)

for any choice of the phases ϕ. Indeed, we have[
D(ϕ)W ab(ϑab, ηab)D

†(ϕ)
]
rs

=
∑
t,u

eiϕrδrt [δtu + (cab − 1) (δtaδua + δtbδub)
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+sab

(
eiηabδtaδub − e−iηabδtbδua

)]
e−iϕsδus

= δrs + (cab − 1) (δraδsa + δrbδsb)

+ sab

(
ei(ηab+ϕa−ϕb)δraδsb − e−i(ηab+ϕa−ϕb)δrbδsa

)
=
[
W ab(ϑab, ηab + ϕa − ϕb)

]
rs
. (4.50)

Using the identity in eqn (4.49), the expression in eqn (4.45) for the mixing
matrix V can also be written with the diagonal phase matrix D(ω) on the right of
the square brackets: choosing ϕ = ω we have

V =

[∏
a<b

W ab(ϑab, ηab + ωa − ωb)

]
D(ω) (a, b = 1, 2, 3) . (4.51)

The identity in eqn (4.49) allows one to write the matrix W ab(ϑab, ηab) as17

W ab(ϑab, ηab) = Da(ηab)R
abDa†(ηab) = Db†(ηab)R

abDb(ηab) , (4.52)

with
[Da(η)]rs = δrs +

(
eiη − 1

)
δra δsa , (4.53)

[Rab]rs = [Rab(ϑab)]rs = δrs + (cosϑab − 1) (δra δsa + δrb δsb) (4.54)

+ sinϑab (δra δsb − δrb δsa) . (4.55)

The unitary matrix Da(η), such that Da†(η) = Da(−η), is diagonal with all diago-
nal elements equal to unity except for [Da(η)]aa = eiη. The real orthogonal matrix

Rab operates a rotation of an angle ϑab in the a-b plane (RabT
= Rab−1

). For
example, we have

R12 =

⎛⎝ cosϑ12 sinϑ12 0
− sinϑ12 cosϑ12 0

0 0 1

⎞⎠ , D1(η12) =

⎛⎝eiη12 0 0
0 1 0
0 0 1

⎞⎠ . (4.56)

Using the identity in eqn (4.49), we obtain, from eqn (4.48)

V = D(ω − ϕ)

[∏
a<b

W ab(ϑab, ϕa + ηab − ϕb)

]
D(ϕ) . (4.57)

The set of arbitrary phases ϕ = (ϕ1, . . . , ϕN ) can be chosen in order to extract
N − 1 of the N(N − 1)/2 phases ηab from the product

∏
a<bW

ab. Only N − 1
phases ηab can be extracted because there are only N − 1 independent differences
ϕa − ϕb.

In the case of quarks N = 3 and the unitary matrix V is parameterized in terms
of three mixing angles ϑ12, ϑ13, ϑ23 and six phases ω1, ω2, ω3, η12, η13, η23. The

17 Choosing ϕa = −ηab, ϕb = 0 and ϕc = 0 for c �= a, b.
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set of arbitrary phases ϕ = (ϕ1, ϕ2, ϕ3) can be chosen in order to extract two of
the three phases ηab from the product

∏
a<bW

ab. Let us extract η12 and η23 with
the choice

ϕ1 − ϕ2 = −η12 , ϕ2 − ϕ3 = −η23 . (4.58)

Then, η13 cannot be extracted because ϕ1 −ϕ3 = −η12 − η23 is no longer arbitrary.
Making the choice in eqn (4.58), we have

ϕ = (ϕ2 − η12, ϕ2, ϕ2 + η23) , (4.59)

and the mixing matrix in eqn (4.57) can be written as

V = D(ω − ϕ)R23W 13R12D(ϕ) , (4.60)

with

D(ω − ϕ) = e−iϕ2 diag
(
ei(ω1+η12) , eiω2 , ei(ω3−η23)

)
, (4.61)

W 13 = W 13(ϑ13, η13) = D1(η13)R
13D1†(η13) , (4.62)

D(ϕ) = eiϕ2 diag
(
e−iη12 , 1 , eiη23

)
. (4.63)

In eqn (4.60) we have made a definite choice of ordering for the product of matrices.
It is clear that the factor e−iϕ2 in D(ω − ϕ) cancels with the factor eiϕ2 in

D(ϕ), so that the value of ϕ2 is irrelevant and can be taken for simplicity to be
zero. Factorizing eiω2 out of D(ω − ϕ), the unitary matrix in eqn (4.60) can be
written as

V = eiω2 DL R23W 13R12DR . (4.64)

with

DL ≡ diag
(
ei(ω1−ω2+η12) , 1 , ei(ω3−ω2−η23)

)
, (4.65)

DR ≡ diag
(
e−iη12 , 1 , eiη23

)
. (4.66)

So we see that five phases have been factorized out of the matrix product
R23W 13R12 in eqn (4.60): an overall phase ω2, the two phases ω1 − ω2 + η12 and
ω3 − ω2 − η23 on the left and the two phases −η12 and η23 on the right.

Let us now insert the unitary matrix in eqn (4.64) in the expression in eqn (4.16)
of the quark charged current. Defining

DU ≡ diag
(
ei(ψU

u−ψU
c ) , 1 , ei(ψU

t −ψU
c )
)
, (4.67)

DD ≡ diag
(
ei(ψD

d −ψD
s ) , 1 , ei(ψD

b −ψD
s )
)
, (4.68)

we can write the quark charged current in the matrix form

jµ
W,Q = 2 e−i(ψU

c −ψD
s ) eiω2 qU

L γµDU †DLR23W 13R12DR DD qD
L . (4.69)

Now it is clear that the products e−i(ψU
c −ψD

s )eiω2 , DU†DL and DRDD can be
eliminated by the following choice of the arbitrary phases of the quark fields:

ψU
u = ψB + ω1 + η12 , (4.70)
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ψU
c = ψB + ω2 , (4.71)

ψU
t = ψB + ω3 − η23 , (4.72)

ψD
d = ψB + η12 , (4.73)

ψD
s = ψB , (4.74)

ψD
b = ψB − η23 , (4.75)

with any value of the free phase ψB . The fact that a free common phase of the
quark fields remains arbitrary is of great importance, because the invariance of the
Lagrangian under a common phase rotation of the quark fields implies, through
Noether’s theorem, the conservation of the baryon number.

In conclusion, with the appropriate choice of the arbitrary phases of the quark
fields, the quark charged current can be written as

jµ
W,Q = 2 qU

L γ
µ V qD

L , (4.76)

with the quark mixing matrix

V = R23W 13R12 , (4.77)

depending only on the three mixing angles ϑ12, ϑ13, ϑ23 and one physical phase
η13. Putting

δ13 = −η13 , (4.78)

the mixing matrix can be written explicitly as [312]

V =

⎛⎝ c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

⎞⎠ , (4.79)

with cab ≡ cosϑab and sab ≡ sinϑab. This is the parameterization advocated by the
Particle Data Group [400].

The experimental values of the sines of the mixing angles are [400]

s12 = 0.2243 ± 0.0016 , s23 = 0.0413± 0.0015 , s13 = 0.0037± 0.0005 .
(4.80)

Since ϑ23 and ϑ13 are very small, the value of the mixing angle ϑ12 practically coin-
cides with the value of the Cabibbo angle (see eqn (4.28)) and the two generation
approximation in eqn (4.27) for the mixing matrix is a fairly good one for the study
of processes that do not involve the b and t quarks. The experimental value of the
phase δ13 is [400]

δ13 = 1.05 ± 0.24 = 60◦ ± 14◦ . (4.81)

A useful approximate parameterization of the quark mixing matrix that reflects
the hierarchy s13 � s23 � s12 � 1 has been proposed by Wolfenstein [1068]. This
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parameterization can be obtained from eqn (4.79) by setting

s12 = λ , s23 = Aλ2 , s13 e
−iδ13 = Aλ3 (ρ− iη) . (4.82)

Expanding each entry of the quark mixing matrix in powers of λ and keeping only
the leading terms, one obtains the Wolfenstein parameterization

V =

⎛⎝ 1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞⎠+ O(λ4) , (4.83)

in which only Vub is exact. In order to achieve a high level of accuracy, experimental
data are currently fitted using a generalization of the Wolfenstein parameterization
in which terms of order λ6 are neglected [277] (see Ref. [184]):

V =

⎛⎜⎝ 1 − λ2

2 − λ4

8 λ+ O(λ7) Aλ3(ρ− iη)

−λ+ A2λ5

2 [1 − 2(ρ+ iη)] 1 − λ2

2 − λ4

8 (1 + 4A2) Aλ2 + O(λ8)

Aλ3(1 − ρ̄− iη̄) −Aλ2 + Aλ4

2 [1 − 2(ρ+ iη)] 1 − A2λ4

2

⎞⎟⎠ ,

(4.84)
with

ρ̄ = ρ

(
1 − λ2

2

)
, η̄ = η

(
1 − λ2

2

)
. (4.85)

4.4 Degenerate masses

If two up-like quarks or two down-like quarks are degenerate in mass, the struc-
ture of the mixing matrix can be simplified. This case is obviously not realistic
for quarks, because we know that the up-like quarks and down-like quarks have
rather different masses (see Table 3.1). Yet, it may be a good approximation for
experiments which are not sensitive to the quark mass differences (for example,
in very high-energy experiments the d and s quarks could be considered as being
approximately degenerate). Furthermore, this case is interesting for applications
to the lepton sector, where the neutrino masses could be almost degenerate (see
section 13.3.4).

Let us consider for example the case of degenerate d and s quarks. This means
that the d and s quarks are not distinguishable, because all their properties are
equal. Then, all observables are invariant under an arbitrary unitary rotation in
the d-s field space,

qD → U12 qD , (4.86)

with unitary U12, such that

U12 =

⎛⎝U12
11 U12

12 0
U12

21 U12
22 0

0 0 1

⎞⎠ . (4.87)
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Writing the mixing matrix in the form in eqn (4.57) it is convenient to extract the
phases η13 and η23 choosing

ϕ1 − ϕ3 = −η13 , ϕ2 − ϕ3 = −η23 , (4.88)

which leads to the following form for the mixing matrix:

V = DL R23R13W 12DR . (4.89)

with

DL = diag
(
ei(ω1+η13) , ei(ω2+η23) , eiω3

)
, (4.90)

DR = diag
(
e−iη13 , e−iη23 , 1

)
. (4.91)

When this expression for the mixing matrix is inserted in the charged current in
eqn (4.16), the phases ω1, ω2, ω3, η13, η23 can be eliminated by choosing the
arbitrary phases of the quark fields as

ψU
u = ψB + ω1 + η13 , (4.92)

ψU
c = ψB + ω2 + η23 , (4.93)

ψU
t = ψB + ω3 , (4.94)

ψD
d = ψB + η13 , (4.95)

ψD
s = ψB + η23 , (4.96)

ψD
b = ψB , (4.97)

with any value of the free phase ψB. Hence, we obtain the following expression
for the mixing matrix in which the unphysical phases associated with the arbitrary
rephasing of the quark fields have been eliminated:

V = R23R13W 12 . (4.98)

However, if d and s are degenerate in mass, we can still perform the arbitrary
unitary transformation in eqn (4.86). The matrix W 12 can be eliminated from the
expression in eqn (4.98) for V by choosing U12 = (W 12)†. Therefore, the physical
mixing matrix can be written as

V = R23R13 , (4.99)

in terms of only two physical mixing angles ϑ23 and ϑ13, which represent, respec-
tively, rotations in the s-b and d-b planes of distinguishable down-like quarks. It
is important to realize that not only has the third mixing angle been eliminated,
but also the phase. Since the physical mixing matrix is real, in this case CP is
conserved, as discussed in section 4.6.

It is clear that the case of mass degeneracy of any two up-like or down-like
quarks can be treated as the example of d-s mass degeneracy leading to a real
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physical mixing matrix parameterized in terms of only two mixing angles, which
respects CP symmetry.

If all the up-like or all the down-like quarks are degenerate in mass, all the
mixing can be rotated away. Hence, mixing is not observable in experiments which
are not sensitive to the mass differences of up-like or down-like quarks (in other
words, experiments which cannot distinguish different up-like or down-like quarks).

4.5 Mixing matrix with one vanishing element

Another case in which mixing can be simplified is that in which the mixing matrix
has at least one vanishing element. This can be easily seen by noticing that given
a parameterization of the mixing matrix, one can obtain other parameterizations
by arbitrary permutations of the rows and columns, which preserve the unitarity
relations

V V † = 1 ⇐⇒
3∑

k=1

Vαk V
∗
βk = δαβ (α, β = 1, 2, 3) , (4.100)

V † V = 1 ⇐⇒
3∑

α=1

V ∗αkVαj = δkj (k, j = 1, 2, 3) . (4.101)

With an appropriate permutation of the rows and columns of the mixing matrix
in the parameterization in eqn (4.79) one can move s13e

−iδ13 in place of the zero
element. In this parameterization s13 = 0 and the phase δ13 disappears. Hence,
one obtains a real mixing matrix which respects CP symmetry, as discussed in
section 4.6.

For example, let us consider the case of V22 = 0. Switching the first and second
rows of the matrix in eqn (4.79) and then switching the second and third column,
we obtain

V =

⎛⎝−s12c23 − c12s23s13e
iδ13 s23c13 c12c23 − s12s23s13e

iδ13

c12c13 s13e
−iδ13 s12c13

s12s23 − c12c23s13e
iδ13 c23c13 −c12s23 − s12c23s13e

iδ13

⎞⎠ . (4.102)

Of course, after these permutations the angle ϑab no longer represents a rotation
in the a-b plane and could be renamed in an appropriate way. If V22 = 0, we have
s13 = 0, which implies the real mixing matrix

V |V22=0 =

⎛⎝−s12c23 s23 c12c23
c12 0 s12

s12s23 c23 −c12s23

⎞⎠ . (4.103)

Given a specific parameterization in terms of three mixing angles, one can see
easily that the phase disappears if any of the three angles is zero. In the parame-
terization in eqn (4.79) it is evident that if any of the three mixing angle is zero
then there is one element of the mixing matrix which vanishes: if ϑ12 = 0 we have
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V12 = 0, if ϑ23 = 0 we have V23 = 0, and if ϑ13 = 0 we have V13 = 0. According
to the reasoning above, it follows that in any of these cases the phase can be elimi-
nated. This can be performed even without permutations of rows and columns. For
example, if ϑ12 = 0 the expression of the mixing matrix in eqn (4.79) becomes

V |ϑ12=0 =

⎛⎝ c13 0 s13e
−iδ13

−s23s13eiδ13 c23 s23c13
−c23s13eiδ13 −s23 c23c13

⎞⎠ , (4.104)

which can be written as

V |ϑ12=0 =

⎛⎝e−iδ13 0 0
0 1 0
0 0 1

⎞⎠⎛⎝ c13 0 s13
−s23s13 c23 s23c13
−c23s13 −s23 c23c13

⎞⎠⎛⎝eiδ13 0 0
0 1 0
0 0 1

⎞⎠ . (4.105)

In this form it is clear that the phase δ13 can be eliminated by rephasing the fields
of the u and d quarks as u→ e−iδ13u and d→ e−iδ13d.

In general, if one of the mixing angles is zero, one can take the phase which
is associated with the sine of the vanishing mixing angle as the one which is not
eliminated through the procedure described in section 4.3.2. In this way all the
other phases are eliminated with the method described in section 4.3.2 and the
surviving phase disappears because it is associated with the sine of the vanishing
mixing angle.

The phase disappears also if a mixing angle has its maximal value of π/2. One
can see it in the parameterization in eqn (4.79) by noting that V11 = 0 if ϑ12 = π/2,
V12 = V23 = V33 = 0 if ϑ13 = π/2, and V33 = 0 if ϑ23 = π/2.

In general, if the mixing angle ϑab is equal to π/2 we have

Dab(η)W ab(ϑab = π/2, ηab) = W ab(ϑab = π/2, ηab + η)

= W ab(ϑab = π/2, ηab)D
ab†(η) , (4.106)

for an arbitrary phase η, where

[Dab(η)]rs = δrs +
(
eiη − 1

)
δra δsa +

(
e−iη − 1

)
δrb δsb (4.107)

is a diagonal unitary matrix with all diagonal entries equal to unity except

[Dab(η)]aa = eiη and [Dab(η)]bb = e−iη. Since Dab(−η) = Dab†(η), choosing
η = −ηab one can write the matrix of complex rotation in the a-b plane as

W ab(ϑab = π/2, ηab) = Dab(ηab)R
ab(ϑab = π/2) = Rab(ϑab = π/2)Dab†(ηab) .

(4.108)
One can parameterize the mixing matrix as a product of the type in eqn (4.65)
with W ab(ϑab = π/2, ηab) on the extreme left or the extreme right. Using one of
the relations in eqn (4.108) the phase ηab can be moved to a diagonal matrix of
type Dab on the extreme left or the extreme right and eliminated by rephasing the
appropriate quark fields. Since the other phases can be eliminated with the method
described in section 4.3.2, the physical mixing matrix is real and respects the CP
symmetry, as discussed in section 4.6.
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4.6 CP violation

Experimentally, CP violation has been observed in the systems of neutral K [317]
and B [123, 23] mesons. Experimental data are compatible with the hypothesis
that CP violation is generated by the physical phase of the quark mixing matrix
(see [400]). In order to understand how the presence of a nonzero physical phase in
the quark mixing matrix implies the violation of CP symmetry in weak processes,
let us derive how the quark charged current in eqn (4.76) behaves under a CP

transformation. The arrays qU
L and qD

L that enter in the quark charged current in
eqn (4.76) can be seen as transforming under CP as, by using eqns (2.399) and
(2.400),

qU
L

CP−−−→ −qU
L

T C−1 γ0D†(�ξU ) , (4.109)

qD
L

CP−−−→ D(�ξD) γ0 C qD
L

T
, (4.110)

where D(�ξU ) and D(�ξD) are diagonal matrices of the undetermined CP phases

of the quark fields, with �ξU = (ξu, ξc, ξt) and �ξD = (ξd, ξs, ξb). Thus, the quark
charged current transforms as

jµ
W,Q

CP−−−→ − 2 qU
L

T C−1

γµ†︷ ︸︸ ︷
γ0 γµ γ0 C︸ ︷︷ ︸
−γµ∗

D†(�ξU )V D(�ξD) qD
L

T

= 2 qU
L

T
γµ∗D†(�ξU )V D(�ξD) qD

L

T

= − 2 qD
L γµ†D(�ξD)V T D†(�ξU ) qU

L

= − 2 qD
L D(�ξD)V T D†(�ξU ) γµ q

U
L . (4.111)

Note that in the last line we have lowered the Lorentz index by using the property
in eqn (2.9). Under CP the W -boson field transforms as

Wµ
CP−−−→ eiξW Wµ† , (4.112)

where ξW is an undetermined CP phase and the Lorentz index has been raised
because the spatial components of Wµ change sign under space inversion. Putting
together eqns (4.111) and (4.112), we have

jµ
W,QWµ

CP−−−→ −2 eiξW qD
L D(�ξD)V T D†(�ξU ) γµ q

U
L Wµ† , (4.113)

where the lowering and raising of the Lorentz index in jµ
W,Q and Wµ compensate

each other, preserving the Lorentz invariance. The CP-transformed expression of
jµ
W,QWµ in eqn (4.113) has a structure similar to that of the Hermitian conjugate
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of jµ
W,QWµ, (

jµ
W,QWµ

)†
= 2 qD

L V † γµ qU
L W

†
µ , (4.114)

which is part of the CC quark Lagrangian in eqn (3.76) (the Lagrangian is a real
scalar). Therefore, the Lagrangian is invariant under CP if

jµ
W,QWµ

CP−−−→
(
jµ
W,QWµ

)†
, (4.115)

i.e. if

− eiξW D(�ξD)V T D†(�ξU ) = V † . (4.116)

Choosing ξW = π, i.e.

Wµ
CP−−−→ −Wµ† , (4.117)

and transposing eqn (4.115), we have the condition, with D† = D−1,

D−1(�ξU )V D(�ξD) = V ∗ ⇐⇒ e−iξα Vαk e
iξk = V ∗αk . (4.118)

This condition is satisfied if the mixing matrix can be written in the form

V = D1/2(�ξU )OD−1/2(�ξD) ⇐⇒ Vαk = eiξα/2 Oαk e
−iξk/2 , (4.119)

where O is a real orthogonal matrix (OT = O−1) and �ξU = (ξu, ξc, ξt) and �ξD =
(ξd, ξs, ξb) are arbitrary phases. As shown in section 4.3, the physical phase in the
mixing matrix V cannot be factorized into diagonal matrices lying on the sides of
the mixing matrix. Hence, the condition in eqn (4.118) cannot be satisfied with

any choice of the CP phases �ξU and �ξD if the physical phase in the mixing matrix
is different from zero18. In other words, CP symmetry requires that the physical
quark mixing matrix V is real:

V = V ∗ ⇐⇒ CP symmetry . (4.120)

If the physical phase of the mixing matrix is nonzero, the symmetry of the
Lagrangian under CP transformation is broken by the quark charged-current weak
interaction Lagrangian. On the other hand, if the physical phase of the mixing
matrix is equal to zero, CP is conserved and all the quark fields have the same CP
phase, ξu = ξc = ξt = ξd = ξs = ξb = ξq, which is conventionally set to zero: ξq = 0.

18 One can easily convince oneself of this fact using a specific parameterization of V (for
example that given in eqn (4.79)) and writing explicitly the matrices in eqn (4.118). It is
interesting to note that the proof presented here is rarely given in books (one exception
is section 26.2 of Ref. [821]). Several books do not consider the CP phases of the quarks
or assume that they are all equal. In some books it is even argued that if V is complex
the interaction Lagrangian is not real, leading to violation of T and CP. This statement
is clearly meaningless because the Lagrangian is Hermitian by construction, each non-
Hermitian term being accompanied by its Hermitian conjugate.
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It is interesting to ask what are the conditions on the mass matrices of up-type
and down-type quarks for CP invariance. From eqn (3.162), the quark Lagrangian
mass term is

Lq,mass = −q′UL M ′U q′UR − q′UR M ′U
†
q′UL − q′DL M ′D q′DR − q′DR M ′D

†
q′DL , (4.121)

where M ′U = Y ′Uv/
√

2 and M ′D = Y ′Dv/
√

2. The other parts of the Lagrangian
are invariant under the CP transformation

q′UL
CP−−−→WL γ

0 C q′UL
T
, q′UR

CP−−−→ WU
R γ0 C q′UR

T
, (4.122)

q′DL
CP−−−→WL γ

0 C q′DL
T
, q′DR

CP−−−→ WD
R γ0 C q′DR

T
, (4.123)

whereWL, WU
R , andWD

R are unitary matrices that mix the quark fields. The mixing
of the left-handed up and down quarks is constrained to be equal by the invariance
of the charged-current weak interaction Lagrangian, whereas the right-handed up
and down quarks can mix independently. The transformation of the quark mass
term in eqn (4.121) is

Lq,mass
CP−−−→ − q′UR WU

R

T
M ′U

T
WL
∗ q′UL − q′UL WL

T M ′U
∗
WU

R

∗
q′UR

− q′DR WD
R

T
M ′D

T
WL
∗ q′DL − q′DL WL

T M ′D
∗
WD

R

∗
q′DR . (4.124)

Comparing with eqn (4.121), one can see that the Lagrangian mass term of quarks
is invariant under the CP transformation in eqns (4.122) and (4.123) if there are
unitary matrices WL, WU

R and WD
R such that

W †L M
′U WU

R = M ′U
∗
, (4.125)

W †L M
′D WD

R = M ′D
∗
. (4.126)

Since these conditions can also be written as

W ∗L M
′U WU

R

T
= M ′U

∗
, (4.127)

W ∗L M
′D WD

R

T
= M ′D

∗
, (4.128)

the matrices WL, WU
R , and WD

R must also be symmetric.
One of the two equations in eqns (4.125) and (4.126) can always be satisfied.

However, if WL is constrained by one of the two equations, in general, the other
cannot be satisfied. For example, let us choose WL and WD

R in order to satisfy
eqn (4.126). This can be done by using the diagonalization equation (3.165), with
M ′D = Y ′Dv/

√
2,

V D
L

†
M ′DV D

R = MD , (4.129)

where MD
αβ = mD

α δαβ , with real and positive mD
α . Using eqn (4.129), the condition

in eqn (4.126) can be written as

V D
L

T
W †L V

D
L MD V D

R

†
WD

R V D
R

∗
= MD . (4.130)

If MD does not have degenerate eigenvalues, the condition in eqn (4.130) is satisfied
only if there is a diagonal phase matrix DD such that

V D
L

T
W †L V

D
L = DD† , (4.131)
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V D
R

†
WD

R V D
R

∗
= DD . (4.132)

It then follows that

WL = V D
L DD V D

L

T
, (4.133)

WD
R = V D

R DD V D
R

T
, (4.134)

which are clearly unitary and symmetric. Let us now insert W †L in eqn (4.133) in
the condition in eqn (4.125). From the diagonalization equation in eqn (3.166), with
M ′U = Y ′Uv/

√
2, we have

V U
L

†
M ′UV U

R = MU , (4.135)

where MU
αβ = mU

α δ
αβ , with real and positive mU

α , and using the definition of the
quark mixing matrix in eqn (3.175),

V = V U
L

†
V D

L , (4.136)

we obtain
V ∗DD† V †MU V U

R

†
WU

R V U
R

∗
= MU . (4.137)

If MU does not have degenerate eigenvalues, the condition in eqn (4.137) is satisfied
only if there is a diagonal phase matrix DU such that

V ∗DD† V † = DU † , (4.138)

V U
R

†
WU

R V U
R

∗
= DU . (4.139)

Equation (4.139) can always be satisfied by taking

WU
R = V U

R DU V U
R

T
, (4.140)

which is obviously unitary and symmetric. On the other hand, in general the condi-
tion in eqn (4.138) is not satisfied, because V is fixed. CP becomes a symmetry only
if the mixing matrix V is such that there are appropriate diagonal phase matrices
DU and DD which satisfy the condition in eqn (4.138). We can write eqn (4.138)
as

DU † V DD = V ∗ , (4.141)

which coincides with the condition in eqn (4.118), showing the consistency of the
two methods that we have used in order to find the conditions for CP invariance (i.e.
invariance of the charged-current weak interaction Lagrangian assuming diagonal
mass terms and invariance of the mass terms assuming a diagonal charged-current
weak interaction Lagrangian).

Let us now consider again the conditions in eqns (4.125) and (4.126) in order
to find the constraints on the mass matrices M ′U and M ′D for CP invariance. A
powerful, but mathematically complicated method, to find the general condition
on the mass matrices for CP invariance is discussed in section 4.9. Now we consider
a simple method which allows one to check CP invariance in some simple cases.
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Eliminating WL in eqns (4.125) and (4.126), we obtain

WD
R

† [
M ′D

†
M ′U

]
WU

R =
[
M ′D

†
M ′U

]∗
. (4.142)

This condition is satisfied if M ′D†M ′U can be written as

M ′D
†
M ′U = P †RQ , with R = R∗ , P † = P−1 , Q† = Q−1 , (4.143)

i.e. real R and unitary P and Q. In this case, eqn (4.142) is solved by

WD
R = P † P ∗ , WU

R = Q†Q∗ , (4.144)

which are unitary and symmetric.
Particularly simple cases in which the condition in eqn (4.143) is satisfied and

CP is a symmetry are:

M ′U = 0 or M ′D = 0. This case is not realistic for quarks, which have nonzero
masses. However it illustrates what happens in the Standard Models where
neutrinos are massless. In their SU(2)L doublets, neutrinos play the same role
as up-like quarks, which have third component of weak isospin I3 = 1/2, and
charged leptons play the same role as down-like quarks. Since neutrino are mass-
less, CP is a symmetry of the leptonic sector of the Standard Model for any value
of the charged lepton mass matrix. This, however, is a trivial case because there
is no mixing in the lepton sector, as we have seen in section 3.5.

Real M ′D†
M ′U . In this case WU

R and WD
R are equal to the identity matrix, up

to an arbitrary phase. A particular simple case is

M ′U = M ′U
∗

and M ′D = M ′D
∗
. (4.145)

One can easily check that this condition is consistent with the condition in
eqn (4.120) of reality of the physical quark mixing matrix V . Indeed, if both
M ′U and M ′D are real, they can be diagonalized as in eqns (3.165) and (3.166)
with orthogonal matrices V U

L = OU
L , V U

R = OU
R , V D

L = OD
L , V D

R = OD
R , and the

physical mixing matrix V = V U
L

†
V D

L = OU
L

†OD
L = O is real.

4.7 Rephasing invariants

Since physical observables do not depend on the parameterization of the mixing
matrix, it is possible to work only with quantities that are invariant under a
reparameterization of the mixing matrix, often called rephasing-invariants (see,
for example, the review in Ref. [394]) because they are invariant under the
phase transformations in eqn (4.14) of the quark fields, which induces the phase
transformations

Vαk → e−iψU
α Vαk e

iψD
k . (4.146)

of the elements of the mixing matrix.
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Any observable which involves quarks is a polynomial function of products of
elements of V and V ∗, such that each product contains an equal number of elements
of V and V ∗, because an observable always comes from the squared modulus of an
amplitude. Since the interacting quarks in each vertex are the same in the amplitude
and its complex conjugate, in each product the set of indices {α} of the Vαk’s is
equal to that of the V ∗αk’s, and the same property holds for the set of indices {k}.
Hence, any observable is invariant under the rephasing in eqn (4.146).

Since we are interested in measurable quantities, it is useful to discuss which
are the simplest products of elements of V and V ∗ which can represent the effects
of quark mixing on the observables.

The simplest rephasing-invariant products of elements of V and V ∗ are the
squared moduli of the matrix elements,

|Vαk|2 = VαkV
∗
αk . (4.147)

The next simplest rephasing invariants are the quartic products

αk�βj = VαkVβjV
∗
αjV

∗
βk , (4.148)

with α �= β and k �=j, which have been named plaques in Ref. [246], quartets in
Ref. [269], and boxes in Ref. [1045]. The quartic products in eqn (4.148) satisfy the
conjugation relations

αk�βj = βj�αk = βk�∗αj = αj�∗βk . (4.149)

All the rephasing-invariant products of higher order can be expressed in terms of
squared moduli and rephasing-invariant quartic products. For example, from the
definition in eqn (4.148) it is easy to verify that

VαkVβjVγlV
∗
αjV

∗
βlV

∗
γk =

αk�βj
βk�γl

|Vβk|2
=

γl�αk
αl�βj

|Vαl|2
=

αk�γj
γl�βj

|Vγj |2
. (4.150)

Since the rephasing-invariant quartic products are complex if V is complex,
their imaginary parts

αk�βj ≡ �mαk�βj ≡ �m
[
VαkVβjV

∗
αjV

∗
βk

]
(4.151)

may be useful for quantifying explicitly the complexity of V and CP violation in
a rephasing-invariant way. From the relations in eqn (4.149) it follows that the
αk�βj ’s are antisymmetric in the indices α, β and in the indices k, j, whereas the
real parts of the rephasing-invariant quartic products,

αkβj ≡ eαk�βj ≡ e
[
VαkVβjV

∗
αjV

∗
βk

]
(4.152)

are symmetric in the indices α, β and in the indices k, j.
It appears that there are several imaginary parts in eqn (4.151), but the unitarity

of the 3 × 3 quark mixing matrix implies that they are all equal, up to a sign. To



126 THREE-GENERATION MIXING

see this, let us start with the unitarity relation V V † = 1,∑
k=d,s,b

VαkV
∗
βk = δαβ (α, β = u, c, t) , (4.153)

and multiply it by V ∗αjVβj :

|Vαj |2|Vβj |2 +
∑
k �=j

VαkVβjV
∗
βkV

∗
αj = |Vαj |2 δαβ (α, β = u, c, t; j = d, s, b) .

(4.154)
Taking the imaginary part of this relation, we obtain∑

k �=j

�m
[
Vαk Vβj V

∗
βk V

∗
αj

]
= 0 (α �= β; α, β = u, c, t; j = d, s, b) . (4.155)

In a similar way, starting from the unitarity relation V †V = 1, one obtains the
relations∑

α�=β

�m
[
Vαk Vβj V

∗
βk V

∗
αj

]
= 0 (k �=j; k, j = d, s, b; β = u, c, t) . (4.156)

These relations show that all the imaginary parts in eqn (4.151) are equal up to a
sign and CP violation can be quantified in a rephasing-invariant way in terms of
the Jarlskog invariant [640, 639, 562, 395, 1075]

J = �m[Vus Vcb V
∗
ub V

∗
cs] = us�cb . (4.157)

The sign of the other imaginary parts of quartic products is given by

�m
[
Vαk Vβj V

∗
αj V

∗
βk

]
= J

∑
γ

εαβγ

∑
l

εkjl . (4.158)

The experimental value of J is [400]

J = (2.88 ± 0.33)× 10−5 . (4.159)

A convenient way to find the sign of a given αj�βj is through the graphical
representation of a product of elements of V and V ∗ presented in Refs. [1074, 246,
394]: in a 3× 3 matrix with empty entries represented by a dot ( · ), if Vαj appears
in the product place a � in the αj entry, whereas if V ∗αj appears in the product
place a × in the αj entry. For example, us�cb is represented by

us�cb =

⎛⎝ · � ×
· × �

· · ·

⎞⎠ . (4.160)

Rephasing invariance implies that in this graphical representation each row and
each column must have an equal number of �’s and ×’s. A ⊗ in the αj entry
represents |Vαj |2.
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As another useful example, let us consider the unitarity relation in eqn (4.153)
for α = u and β = c, which is represented by⎛⎝� · ·

× · ·
· · ·

⎞⎠+

⎛⎝ · � ·
· × ·
· · ·

⎞⎠+

⎛⎝ · · �

· · ×
· · ·

⎞⎠ = 0 . (4.161)

Multiplying it by V ∗ubVcb we obtain⎛⎝� · ×
× · �

· · ·

⎞⎠+

⎛⎝ · � ×
· × �

· · ·

⎞⎠+

⎛⎝ · · ⊗
· · ⊗
· · ·

⎞⎠ = 0 . (4.162)

Taking the imaginary part, we get

�m

⎛⎝� · ×
× · �

· · ·

⎞⎠+ �m

⎛⎝ · � ×
· × �

· · ·

⎞⎠ = 0 , (4.163)

which represents the relation in eqn (4.155) with α = u, β = c and j = b:

ud�cb + us�cb = 0 =⇒ ud�cb = −J . (4.164)

In the parameterization in eqn (4.79), the Jarlskog invariant is given by

J = c12s12c23s23c
2
13s13 sin δ13 =

1

8
sin 2ϑ12 sin 2ϑ23 cosϑ13 sin 2ϑ13 sin δ13 .

(4.165)
The Jarlskog invariant is useful for quantifying CP violation in a parameterization-
independent way. In particular, it is now possible to define a maximal CP violation
as the case in which |J | has its maximum possible value |J |max [395], which can
easily be calculated from eqn (4.165) to be

|J |max =
1

6
√

3
, (4.166)

obtained for ϑ12 = ϑ23 = π/4, s13 = 1/
√

3 and sin δ13 = ±1. This is the case of
trimaximal mixing with all the absolute values of the elements of the mixing matrix
equal to 1/

√
3,

V =

⎛⎜⎝
1√
3

1√
3

∓ i√
3

− 1
2 ∓ i

2
√

3
1
2 ∓ i

2
√

3
1√
3

1
2 ∓ i

2
√

3
− 1

2 ∓ i
2
√

3
1√
3

⎞⎟⎠ =
1√
3

⎛⎝ 1 1 ∓i
−e±iπ/6 e∓iπ/6 1

e∓iπ/6 −e±iπ/6 1

⎞⎠ .

(4.167)
The mixing angles and the phase can be expressed, in the parameterization in

eqn (4.79), in terms of absolute values of the elements of the mixing matrix and J
as

tanϑ12 =
|Vus|
|Vud|

, (4.168)
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tanϑ23 =
|Vcb|
|Vtb|

, (4.169)

sinϑ13 = |Vub| , (4.170)

sin δ13 =
8 J

c13 sin 2ϑ12 sin 2ϑ23 sin 2ϑ13
. (4.171)

These equations determine uniquely the mixing angles because they are bounded
between 0 and π/2 (see eqn (4.30)). On the other hand, the phase δ13, which lies
between 0 and 2π, is not uniquely determined by eqn (4.171), because sin δ13 is
invariant under the transformation δ13 → π − δ13. Hence, apart from the discrete
ambiguity δ13 → π − δ13, the mixing matrix can be parameterized in terms of the
measurable rephasing invariants

|Vus| , |Vub| , |Vcb| , J , (4.172)

because

|Vud| =
√

1 − |Vus|2 − |Vub|2 , (4.173)

|Vtb| =
√

1 − |Vcb|2 − |Vub|2 . (4.174)

In order to determine δ13 uniquely it is necessary also to measure an observable
depending on cos δ13, which changes sign under the transformation δ13 → π − δ13.

A similar parameterization of the mixing matrix in terms of rephasing invariants
has been proposed in Ref. [246, 394]. This parameterization uses three independent
moduli of elements of the mixing matrix and the phase of an appropriate quartic
product of the type in eqn (4.148). To have independent absolute values, three
elements of the mixing matrix cannot belong to the same row or column, since
in that case unitarity implies that the sum of the squares of the absolute values
is equal to one. For example, a minimal set of rephasing invariant parameters is
{Vαk, argαk�(α+1)(k+1)} for α > k, i.e.

|Vus| , |Vub| , |Vcb| , argus�cb . (4.175)

The mixing matrix can be constructed from the values of these quantities following
the steps [246, 394]:

1. Use unitarity to determine |Vud| and |Vtb| through eqns (4.173) and (4.174).
2. Choose the phases of Vuk and Vαb for k = d, s, b and α = u, c, t. Since there are

2N − 1 = 5 such elements, these choices are allowed by the arbitrariness of the
phases of the quark fields.

3. Since at this point all the elements in the first row and last column are
determined, the phase of Vcs can be determined from argus�cb:

argVcs = argVus + argVcb − argVub − argus�cb . (4.176)

4. The values of |Vcs| and Vcd are determined by combining the unitarity rela-
tions obtained from the orthogonality of the first and second rows and the
normalization of the second row,

VcdV
∗
ud + VcsV

∗
us + VcbV

∗
ub = 0 , (4.177)
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|Vcd|2 + |Vcs|2 + |Vcb|2 = 1 . (4.178)

Since the combination of these two equations leads to a quadratic equation for
|Vcs|, there can be a two-fold ambiguity in the determination of |Vcs| if both
roots are positive.

5. The value of Vts is determined by the unitarity equation obtained from the
orthogonality of the second and third columns,

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 . (4.179)

6. The value of Vtd is determined by the unitarity equation obtained from the
orthogonality of the first and third columns,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (4.180)

Hence, the mixing matrix is constructed from the rephasing invariants in
eqn (4.175) up to a two-fold ambiguity generated in the calculation of the modulus
of |Vcs|.

Another way of constructing the mixing matrix from the rephasing invariant
parameters in eqn (4.175) is by using the parameterization in eqn (4.79) in which ϑ13

is determined directly from eqn (4.170), the angle ϑ12 is determined by eqn (4.168)
through eqn (4.173), and the angle ϑ23 is determined by eqn (4.169) through
eqn (4.174). The phase δ13 is determined by the relation argus�cb = δ13 − argVcs,
which leads to

c12c23 cos δ13 = |Vcs| cos(arg[Vcb Vus V
∗
cs V

∗
ub]) + s12s23s13 , (4.181)

c12c23 sin δ13 = |Vcs| sin(arg[Vcb Vus V
∗
cs V

∗
ub]) , (4.182)

with

|Vcs| =
√
c212c

2
23 + s212s

2
23s

2
13 − 2c12s12c23s23s13 cos δ13 . (4.183)

Equation (4.182) is quadratic in cos δ13,

c212c
2
23 cos2 δ13 − 2sc12s12c23s23s13 cos δ13 − c2c212c

2
23 + s2s212s

2
23s

2
13 = 0 , (4.184)

with c ≡ cos(argus�cb) and s ≡ sin(argus�cb). If both roots are between −1 and
+1, there is a two-fold ambiguity in the determination of cos δ13. However, for a
given value of cos δ13, the value of sin δ13, and hence the value of δ13, is uniquely
fixed by eqn (4.182).

4.8 Unitarity triangles

The unitarity relation V V † = 1 implies that the product of any row with the
complex conjugate of another one must vanish:∑

k=d,s,b

VαkV
∗
βk = 0 (α �= β; α, β = u, c, t) . (4.185)

In other words, the sum of the three complex numbers VαdV
∗
βd, VαsV

∗
βs, VαbV

∗
βb

vanishes. This relation can be represented in the complex plane by a triangle with
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sides |Vαd||Vβd|, |Vαs||Vβs|, |Vαb||Vβb|, which is called the unitarity triangle [643].
Since α �= β, eqn (4.185) implies three unitarity triangles for (α = u, β = c), (α = c,
β = t), and (α = t, β = u).

Similarly, the unitarity relation V †V = 1 implies that the product of any column
with the complex conjugate of another one must vanish:∑

α=u,c,t

V ∗αkVαj = 0 (k �= j; k, j = d, s, b) . (4.186)

These relations determine three other unitarity triangles with sides |Vuk||Vuj |,
|Vck||Vcj |, and |Vtk||Vtj |, for (k = d, j = s), (k = s, j = b), and (k = b, j = d).

Therefore, in total there are six unitarity triangles in the complex plane. The
most frequently used unitarity triangle is the so-called bd triangle obtained from
eqn (4.186) with k = b and j = d:

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 . (4.187)

The bd unitarity triangle is shown in Fig. 4.1. Using the generalized Wolfenstein
parameterization in eqn (4.84), we have

V ∗ubVud = Aλ3(ρ̄+ iη̄) + O(λ7) , (4.188)

V ∗cbVcd = −Aλ3 + O(λ7) , (4.189)

V ∗tbVtd = Aλ3(1 − ρ̄− iη̄) + O(λ7) . (4.190)

This approximation gives the coordinates of the vertices shown in Fig. 4.1a. In
practice, it is convenient to use the rescaled bd unitarity triangle in Fig. 4.1b,
obtained by dividing eqn (4.187) by Aλ3, with

Rb =
|V ∗ubVud|
|V ∗cbVcd|

=
√
ρ̄2 + η̄2 , Rt =

|V ∗tbVtd|
|V ∗cbVcd|

=

√
(1 − ρ̄)

2
+ η̄2 . (4.191)

In this approximation,

γ = arctan
η

ρ
= δ13 . (4.192)

From the experimental data [400]

ρ̄ = 0.20 ± 0.09 , η̄ = 0.33 ± 0.05 , (4.193)

which imply the value of γ = δ13 in eqn (4.81) and

β = 23.4◦ ± 2◦ . (4.194)

It is interesting to note that all the unitarity triangles have the same area equal
to a half of the Jarlskog invariant J defined in eqn (4.157). In fact, if we consider,
for example, the bd unitarity triangle, and use a parameterization of the quark
mixing matrix in which V ∗cbVcd is real, as done in Fig. 4.1, the area of the triangle
is given by

2A = −V ∗cbVcd �m[V ∗ubVud] = −�m[VudVcbV
∗
ubV

∗
cd] = −ud�cb = J , (4.195)

where we have used the relation in eqn (4.164). This property of the unitarity
triangles reflects the fact that if CP is conserved their area is obviously zero.
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(0, 0) Aλ3(1, 0)

α

V ∗
tbVtd

Aλ3(ρ̄, η̄)

V ∗
ubVud

βγ

V ∗
cbVcd (0, 0) (1, 0)

α

Rte
−iβ

(ρ̄, η̄)

Rbe
iγ

βγ

(a) (b)

Fig. 4.1. (a) The bd unitarity triangle. The complex coordinates of the vertices are
expressed in terms of the generalized Wolfenstein parameterization in eqn (4.84).
(b) The rescaled bd unitarity triangle.

The area A of a triangle with sides a, b, c is given by

− 16A2 = λ(a2, b2, c2) , (4.196)

where
λ(x, y, z) = x2 + y2 + z2 − 2 (xy + yz + zx) (4.197)

is the Källen lambda function which appears in the kinematics of two-body decay.
The area of the bd unitarity triangle can be calculated using eqn (4.196) with

a = |Vub||Vud| , b = |Vcb||Vcd| , c = |Vtb||Vtd| . (4.198)

Comparison with eqn (4.195) shows that the square of the Jarlskog invariant J
can be expressed in terms of these three products of the moduli of elements of the
mixing matrix [643]:

4 J2 = −λ(a2, b2, c2) . (4.199)

Similarly one can express the square of J in terms of the sides of any of the other
five unitarity triangles, which lead in general to the relation in eqn (4.199) with

a = |Vuk||Vuj | , b = |Vck||Vcj | , c = |Vtk||Vtj | (k, �= j, k = d, s, b, j = d, s, b)
(4.200)

for the three unitarity triangles obtained from eqn (4.186), and

a = |Vαd||Vβd| , b = |Vαs||Vβs| , c = |Vαb||Vβb| (α �= β, α = u, c, t, β = u, c, t)
(4.201)

for the three unitarity triangles obtained from eqn (4.185).
The relation in eqn (4.199) shows that apart from a sign the Jarlskog invariant

J is determined by the moduli of the elements of the mixing matrix. At the end
of subsection 4.7 we saw that it is possible to parameterize the mixing matrix up
to a two-fold ambiguity in terms of three independent moduli of the elements of
the mixing matrix and the Jarlskog invariant J . Since J can be expressed in terms
of moduli of the elements of the mixing matrix by eqn (4.199), it follows that it is
possible to parameterize the mixing matrix in terms of four independent moduli of
its matrix elements [925, 269, 589, 643, 1045].
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In fact, four independent moduli of the matrix elements and the sign of J are
sufficient for a unique parameterization of the mixing matrix. Let us consider, for
example, the four moduli

|Vus| , |Vub| , |Vcs| , |Vcb| . (4.202)

The orthogonality of the first two rows implies the unitarity relation

VudV
∗
cd = −VusV

∗
cs − VubV

∗
cb . (4.203)

Taking the squared modulus of this relation, we obtain

|Vud|2|Vcd|2 = |Vus|2|Vcs|2 + |Vub|2|Vcb|2 + 2uscb , (4.204)

with uscb ≡ eus�cb ≡ e[VusV
∗
csV
∗
ubVcb] (see eqn (4.152)). Using the expressions

of |Vud|2 and |Vcd|2 in terms of the four moduli in eqn (4.202) obtained by the
normalization of the first two rows,

|Vud|2 = 1 − |Vus|2 − |Vub|2 , (4.205)

|Vcd|2 = 1 − |Vcs|2 − |Vcb|2 , (4.206)

we find the relation

uscb =
1

2

(
1 − |Vus|2 − |Vub|2 − |Vcs|2 − |Vcb|2 + |Vus|2|Vcb|2 + |Vub|2|Vcs|2

)
,

(4.207)
which gives the value of uscb in terms of the four moduli in eqn (4.202). Thus, J
is determined up to a sign by

J2 = |Vus|2|Vub|2|Vcs|2|Vcb|2 − [uscb]
2 . (4.208)

Given the sign of J , the standard parameterization in eqn (4.79) of the mixing
matrix can be determined using eqns (4.168)–(4.171) and eqns (4.173) and (4.174).
In this case there is no ambiguity in the determination of δ13, because

cos δ13 =
1

c12c23

(
s12s23s13 +

uscb

|Vus||Vcb||Vub|

)
, (4.209)

with uscb given by eqn (4.207).
If one does not want to use the standard parameterization in eqn (4.79), the

mixing matrix can be constructed from the four moduli in eqn (4.202) and the sign
of J following the steps below.

1. Use unitarity to determine |Vud| and |Vtb| from eqns (4.173) and (4.174).
2. Choose the phases of Vuk and Vαb for k = d, s, b and α = u, c, t. Since there are

2N − 1 = 5 such elements, these choices are allowed by the arbitrariness of the
phases of the quark fields.

3. The phase of Vcs can be determined from eqn (4.176) with

cos(argus�cb) =
uscb

|Vus||Vcb||Vcs||Vub|
, sin(argus�cb) =

J

|Vus||Vcb||Vcs||Vub|
.

(4.210)
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4. The value of Vcd is determined by the unitarity equation obtained from the
orthogonality of the first and second rows, given in eqn (4.177).

5. The value of Vts is determined by the unitarity equation obtained from the
orthogonality of the second and third columns, given in eqn (4.179).

6. The value of Vtd is determined by the unitarity equation obtained from the
orthogonality of the first and third columns, given in eqn (4.180).

This parameterization of the mixing matrix in terms of four independent moduli
of its elements shows that it is possible to find CP violation measuring only CP
conserving processes, which depend on the chosen moduli of elements of the mixing
matrix.

4.9 Conditions for CP violation

In this section we discuss the powerful method for finding the general condition on
the mass matrices M ′U and M ′D for CP violation presented in Ref. [639] (see also
[640, 214, 571, 642, 641]).

As we have seen in sections 4.4 and 4.5, the physical mixing matrix is real and
CP is conserved if two up-type quarks or two down-type quarks are degenerate in
mass or if in a parameterization of the type in eqn (4.45) a mixing angle has its
minimal value 0 or its maximal value π/2. Hence, in order to have CP violation,
the mixing of quarks must satisfy the following 14 conditions [642]:

(A) No two up-type quarks or two down-type quarks are degenerate in mass, adding
up to six conditions.

(B) No mixing angle is equal to 0 or π/2, adding up to six conditions.
(C) The physical phase is different from 0 or π, adding up to two conditions.

These 14 conditions are combined into a single condition [639]

detC �= 0 , (4.211)

where C is the commutator

C = −i [M ′U M ′U † , M ′D M ′D
†
] . (4.212)

One should not be surprised by the fact that the conditions for CP invariance

constrain the products of mass matrices M ′U M ′U † and M ′D M ′D†, because, as we
have seen in subsection 4.1, these products determine, through the diagonalizing
equation (4.5), the unitary matrices V U

L and V D
L , which determine the mixing

matrix V in eqn (4.1). Therefore, the physical implications of mixing, such as
the presence of CP violation, depend on the properties of the Hermitian matrices

M ′U M ′U † and M ′D M ′D†.
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Using the diagonalizing equation (4.5) for M ′U M ′U † and M ′D M ′D†,

M ′U M ′U
†

= V U
L M2 V U

L

†
, M ′D M ′D

†
= V D

L M2 V D
L

†
, (4.213)

one can write the commutator C as

C = −i det [MU 2
, V MD2

V †] , (4.214)

which shows that the condition in eqn (4.211) involves physical parameters: the

quark masses contained in MU 2
and MD2

and the mixing matrix V . Indeed, the
determinant of C is given by [639]

detC = −2 J
(
m2

c −m2
u

) (
m2

t −m2
u

) (
m2

t −m2
c

)(
m2

s −m2
d

) (
m2

b −m2
d

) (
m2

b −m2
s

)
. (4.215)

One can see that the quark masses appear in six factors. The nonvanishing of each
of these six factors corresponds to one of the six conditions in item (A) above. The
eight conditions in items (B) and (C) are equivalent to requiring the nonvanishing
of J , which guarantees that the mixing matrix is not real. In fact, we have seen
in section 4.7 that the quartic products in eqn (4.148) are the simplest rephasing
invariant products of elements of the mixing matrix and all the rephasing-invariant
products of higher order can be expressed in terms of squared moduli and rephasing-
invariant quartic products. Since all the imaginary parts of the quartic products in
eqn (4.148) are equal to J , up to a sign (see eqn (4.158)), the nonvanishing of J is
a necessary and sufficient condition for the nonreality of V , which is equivalent to
the eight conditions in items (B) and (C). For example, from eqn (4.165) one can
see explicitly that in the parameterization in eqn (4.79) the nonvanishing of J is
equivalent to the eight conditions in items (B) and (C).
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NEUTRINO INTERACTIONS

It is no good to try to stop knowledge from going forward.
Ignorance is never better than knowledge.
Enrico Fermi

Neutrino interactions are described, with an impressive accuracy, by the Standard
Model. So far no deviations from the standard neutrino interactions have been
found in experimental data.

The standard neutrino interactions are described by the leptonic charged current
in eqn (3.141),

jρ
W,L = 2

∑
α=e,µ,τ

ναL γ
ρ �αL =

∑
α=e,µ,τ

να γ
ρ
(
1 − γ5

)
�α , (5.1)

and the neutrino part of the leptonic neutral current in eqn (3.148),

jρ
Z,ν =

∑
α=e,µ,τ

ναL γ
ρ ναL =

1

2

∑
α=e,µ,τ

να γ
ρ
(
1 − γ5

)
να , (5.2)

which enter, respectively, into the leptonic charged-current weak interaction
Lagrangian in eqn (3.76),

L
(CC)
I,L = − g

2
√

2

(
jρ
W,LWρ + jρ

W,L
†
W †ρ

)
, (5.3)

and the neutrino part of the leptonic neutral-current weak interaction Lagrangian
in eqn (3.90),

L
(NC)
I,ν = − g

2 cosϑW
jρ
Z,ν Zρ . (5.4)

In this chapter we discuss neutrino–electron interactions in section 5.1, the
most important hadron decays in section 5.2 and neutrino–nucleon scattering in
section 5.3. Further information on neutrino interactions and weak interactions in
general can be found in the books in Refs. [778, 328, 902, 227, 720] and in the
reviews in Refs. [750, 672, 233, 249, 372, 774].

The introduction of neutrino masses, to be discussed in chapter 6, generates
small kinematical effects in neutrino interaction processes, which will be neglected
in this chapter. These small effects are searched for only in experiments aimed at
the direct measurement of neutrino masses, which will be discussed in chapter 14.
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5.1 Neutrino–electron interactions

Neutrino–electron interactions are the simplest interactions of neutrinos with com-
ponents of matter in our world. At the lowest order in the weak interaction
perturbation theory, neutrino–electron interactions involve only free leptons, whose
interaction amplitude can be calculated exactly by using the Feynman rules of the
Standard Model listed in appendix E. In the following we discuss neutrino–electron
elastic scattering in subsection 5.1.1, the neutrino–electron quasielastic scattering
process νµ + e− → νe + µ− and the neutrino–antineutrino pair production process
e+ + e− → ν + ν̄ in subsection 5.1.3.

5.1.1 Neutrino–electron elastic scattering

Low-energy neutrinos and antineutrinos with flavor α = e, µ, τ interact with
electrons through the elastic scattering process

(−)

να + e− →(−)

να + e− . (5.5)

This process is used, for example, in water Cherenkov solar neutrino detectors (see
section 10.6). The elastic scattering process does not have a threshold, since the
final state is the same as the initial state. The only effect of an elastic scattering
process is a redistribution of the total energy and momentum between the two
participating particles.

Figure 5.1 shows the two tree-level Feynman diagrams which contribute to the
elastic scattering

νe + e− → νe + e− . (5.6)

In the case of the elastic scattering

ν̄e + e− → ν̄e + e− , (5.7)

the charged-current t-channel diagram in Fig. 5.1a is replaced by the s-channel
diagram in Fig. 5.2a. The diagram in Fig. 5.2b also contributes to this process.

At tree-level, the elastic scattering process19

(−)

νµ,τ + e− →(−)

νµ,τ + e− (5.8)

receives contribution only from the neutral-current diagram in Fig. 5.3a, which is
analogous to those in Fig. 5.1b and Fig. 5.2b.

For low neutrino energies, where the effects of the W and Z propagators can be
neglected, the above processes are described by the effective charged-current and
neutral-current Lagrangians in eqns (3.224) and (3.235). For example, the effective

19 The observation in 1973 of the process ν̄µ+e− → ν̄µ+e− in the Gargamelle experiment

[600], together with the observation of the processes
(−)
νµ +N →

(−)
νµ +X (see section 5.3.4)

in the Gargamelle experiment at CERN [599, 601] and an experiment at Fermilab [207],
led to the experimental confirmation of the existence of the neutral-current interactions
predicted by the SM.
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W

νe e−

e− νe

+ Z

νe νe

e− e−

(a) (b)

Fig. 5.1. The two tree-level Feynman diagrams for the elastic scattering process
νe + e− → νe + e−: charged current (a) and neutral current (b).

W

ν̄e e−

e− ν̄e

+ Z

ν̄e ν̄e

e− e−

(a) (b)

Fig. 5.2. The two tree-level Feynman diagrams for the elastic scattering process
ν̄e + e− → ν̄e + e−: charged current (a) and neutral current (b).

low-energy Lagrangian for the elastic scattering processes in eqns (5.6) and (5.7) is
given by

Leff(
(−)

νee
− →(−)

νee
−) = −GF√

2

{[
νe γ

ρ
(
1 − γ5

)
e
] [
e γρ

(
1 − γ5

)
νe

]
+
[
νe γ

ρ
(
1 − γ5

)
νe

] [
e γρ

(
gl

V − gl
Aγ

5
)
e
]}

, (5.9)

with the coefficients gl
V and gl

A given in Table 3.6 (page 78). The first term on
the right-hand side is the charged-current contribution. The second term is the
neutral-current contribution. The charged-current contribution can be rearranged
with the Fierz transformation in eqn (2.508), leading to an expression which has the
same form as the neutral-current contribution. This allows us to write the effective
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Z

(−)

νµ,τ
(−)

νµ,τ

e− e−

W

νµ µ−

e− νe

(a) (b)

Fig. 5.3. (a) Tree-level Feynman diagram for the elastic scattering process
(−)

νµ,τ + e− →(−)

νµ,τ + e−. (b) Tree-level Feynman diagram for the charged-current
process νµ + e− → νe + µ−.

low-energy Lagrangian in eqn (5.9) in the compact form

Leff(
(−)

νee
− →(−)

νee
−) = −GF√

2

[
νe γ

ρ
(
1 − γ5

)
νe

] [
e γρ

((
1 + gl

V

)
−
(
1 + gl

A

)
γ5
)
e
]
.

(5.10)
On the other hand, the effective Lagrangian for the process in eqn (5.8) contains
only a neutral-current term:

Leff(
(−)

ναe
− →(−)

ναe
−) = −GF√

2

[
να γ

ρ
(
1 − γ5

)
να

] [
e γρ

(
gl

V − gl
Aγ

5
)
e
]

(α = µ, τ) .

(5.11)
Since the above processes and effective Lagrangians have similar structures,

they share some common important properties. The cross-sections are proportional
to G2

F. Since a cross-section has dimension (length)2 ∼ (energy)−2 and G2
F has

dimension (energy)−4, in order to write a cross-section, a factor with dimension
(energy)2 is needed. Let us consider the general process

νi + e−i → νf + e−f . (5.12)

In the center-of-mass frame the only quantity with dimension of squared energy
which depends only on the initial state is the total squared energy s = (Eνi + Eei)

2
.

This is one of the three relativistic invariant Mandelstam variables20:

s = (pνi + pei)
2

= (pνf
+ pef

)
2
, (5.13)

20 In eqn (5.14) we introduced the usual notation q for the four-momentum transfer,
q = pνi − pνf = pef − pei , and Q2 ≡ −q2. The reason for this definition is that q2 is
negative. This can be easily seen by calculating the Lorentz-invariant q2 in the laboratory
frame, where ei is at rest: q2 = −2meTe, where Te ≡ Tef is the kinetic energy of the recoil
electron.
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Table 5.1. Total neutrino–electron elastic scattering cross-sections for
√
s� me.

The numerical values are in units of 10−46 cm2.

Process Total cross-section

νe + e−
(
G2

F s/4 π
) [(

1 + 2 sin2 ϑW

)2
+ 4

3 sin4 ϑW

]
� 93 s/MeV2

ν̄e + e−
(
G2

F s/4 π
) [

1
3

(
1 + 2 sin2 ϑW

)2
+ 4 sin4 ϑW

]
� 39 s/MeV2

νµ,τ + e−
(
G2

F s/4 π
) [(

1 − 2 sin2 ϑW

)2
+ 4

3 sin4 ϑW

]
� 15 s/MeV2

ν̄µ,τ + e−
(
G2

F s/4 π
) [

1
3

(
1 − 2 sin2 ϑW

)2
+ 4 sin4 ϑW

]
� 13 s/MeV2

t = (pνi − pνf
)
2

= (pef
− pei)

2
= q2 ≡ −Q2 , (5.14)

u = (pνi − pef
)
2

= (pνf
− pei)

2
, (5.15)

where we used the energy–momentum conservation pνi + pei = pνf
+ pef

. Hence, in
any frame the neutrino–electron cross-section is given by

σ ∝ G2
F s . (5.16)

The values of these total cross-sections for
√
s � me are given in Table 5.1. In

the laboratory frame, where the electron is initially at rest, neglecting the neutrino
mass, we have

s = 2meEν , (5.17)

where Eν ≡ Eνi is the energy of the incoming neutrino. From the values in Table 5.1
one can see that for

√
s� me the approximate ratios of the four cross-sections are

σνe
: σν̄e

: σνµ,τ
: σν̄µ,τ

� 1 : 0.42 : 0.16 : 0.14 . (5.18)

Hence, the νe-e
− cross-section is about 2.4 times larger than the ν̄e-e

− cross-section,
about 6.2 times larger than the νµ,τ -e− cross-section, and about 7.1 times larger
than the ν̄µ,τ -e− cross-section. These ratios will become useful when we discuss
solar neutrino detection in water Cherenkov experiments (see section 10.6).

For the differential cross-section, one can find, after lengthy calculations, the
result

dσ

dQ2
=
G2

F

π

[
g2
1 + g2

2

(
1 − Q2

2 pνi · pei

)2

− g1 g2m
2
e

Q2

2 (pνi · pei)
2

]
. (5.19)

The quantities g1 and g2 depend on the flavor of the neutrino: for νe and ν̄e we
have

g
(νe)
1 = g

(ν̄e)
2 = 1 +

gl
V + gl

A

2
= 1 + gl

L =
1

2
+ sin2 ϑW � 0.73 , (5.20)
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g
(νe)
2 = g

(ν̄e)
1 =

gl
V − gl

A

2
= gl

R = sin2 ϑW � 0.23 , (5.21)

whereas for νµ,τ and ν̄µ,τ we have

g
(νµ,τ )
1 = g

(ν̄µ,τ )
2 =

gl
V + gl

A

2
= gl

L = −1

2
+ sin2 ϑW � −0.27 , (5.22)

g
(νµ,τ )
2 = g

(ν̄µ,τ )
1 =

gl
V − gl

A

2
= gl

R = sin2 ϑW � 0.23 . (5.23)

In the laboratory frame, where �pei
= 0, we have

Q2 = 2me Te , (5.24)

where Te ≡ Tef
is the kinetic energy of the recoil electron. The differential cross-

section as a function of Te in the laboratory frame is given by

dσ

dTe
(Eν , Te) =

σ0

me

[
g2
1 + g2

2

(
1 − Te

Eν

)2

− g1 g2
me Te

E2
ν

]
, (5.25)

with

σ0 =
2G2

Fm
2
e

π
� 88.06× 10−46 cm2 . (5.26)

In the laboratory frame we obtain, from energy–momentum conservation,

Te =
2meE

2
ν cos2 θ

(me + Eν)
2 − E2

ν cos2 θ
, (5.27)

where θ is the electron scattering angle depicted in Fig. 5.4. Since

dTe =
4meE

2
ν (me + Eν)

2[
(me + Eν)2 − E2

ν cos2 θ
]2 cos θ d cos θ , (5.28)

the differential cross-section as a function of the electron scattering angle in the
laboratory frame is given by

dσ

d cos θ
= σ0

4E2
ν (me + Eν)

2
cos θ[

(me + Eν)
2 − E2

ν cos2 θ
]2
⎡⎣g2

1 + g2
2

(
1 − 2meEν cos2 θ

(me + Eν)
2 − E2

ν cos2 θ

)2

−g1 g2
2m2

e cos2 θ

(me + Eν)
2 − E2

ν cos2 θ

]
. (5.29)

Since cos θ ≤ 1, from eqn (5.27) one can deduce that for a given neutrino energy
Eν there is a maximum kinetic energy of the recoil electron,

Tmax
e (Eν) =

2E2
ν

me + 2Eν
, (5.30)

which corresponds to its motion in the forward direction (cos θ = 1). From
eqn (5.27) one can also see that there is a minimum neutrino energy which can



NEUTRINO–ELECTRON INTERACTIONS 141

e−ν

e−

ν

θ

Fig. 5.4. Neutrino–electron elastic scattering in the laboratory frame.

produce a given kinetic energy Te of the recoil electron, given by

Emin
ν (Te) =

Te

2

(
1 +

√
1 +

2me

Te

)
=
Te + |�pe|

2
�
{ √

meTe/2 for Te � me ,
Te +me/2 for Te � me .

(5.31)
In practice, it is not possible to measure neutrino–electron elastic scattering

without a threshold T th
e for the kinetic energy of the recoil electron above the

background. For example, in the Super-Kamiokande solar neutrino experiment we
have T th

e � 4.5 MeV [625]. Therefore, one can measure a total cross-section which
is a function of the neutrino energy and the kinetic energy threshold of the recoil
electron:

σ(Eν , T
th
e ) =

σ0

me

[(
g2
1 + g2

2

) (
Tmax

e − T th
e

)
−
(
g2
2 + g1g2

me

2Eν

)(
Tmax

e
2 − T th

e
2

Eν

)
+

1

3
g2
2

(
Tmax

e
3 − T th

e
3

E2
ν

)]
,

(5.32)

with Tmax
e = Tmax

e (Eν), as given by eqn (5.30). The values of these neutrino–
electron cross-sections for T th

e = 0 and T th
e = 4.50 MeV are plotted in Fig. 5.5 as

functions of the neutrino energy Eν . The high-energy part of the cross-sections with
T th

e = 0 corresponds to the values given in Table 5.1,

σ(Eν , T
th
e = 0) � σ0

Eν

me

(
g2
1 +

1

3
g2
2

)
, for Eν � me , (5.33)

which are proportional to Eν in the laboratory frame.
Precise measurements of leptonic cross-sections such as those listed in Table 5.1

can provide the value of sin2 ϑW. In particular, the ratio of the νµ-e− and ν̄µ-e−

cross-section measured in the same experiment has been used to extract the value
of sin2 ϑW by canceling out many systematic errors. The CHARM-II collaboration
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Fig. 5.5. Neutrino–electron cross-sections in eqn (5.32) as functions of the neu-
trino energy Eν . Solid line: νe + e− → νe + e−. Dashed line: ν̄e + e− → ν̄e + e−.
Dotted line: νµ,τ +e− → νµ,τ +e−. Dash-dotted line: ν̄µ,τ +e− → ν̄µ,τ +e−. For
each scattering process the upper curve is the cross-section without a threshold
for the kinetic energy of the recoil electron, whereas the lower curve is obtained
with T th

e = 4.50 MeV, which corresponds to Eth
ν = 4.74 MeV, according to

eqn (5.31).

obtained [1038]

sin2 ϑW = 0.2324± 0.0058± 0.0059 , (5.34)

which is compatible with the Review of Particle Physics value in eqn (A.171),
obtained from measurements at e+e− collider experiments (see section 5.1.3).

5.1.2 Neutrino–electron quasielastic scattering

Muon neutrinos with energy above the µ production threshold can interact with
electrons through the quasielastic charged-current process

νµ + e− → νe + µ− . (5.35)

This process is sometimes called inverse muon decay.
In general, the threshold for a scattering process of type

ν +A→
∑
X

X . (5.36)
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Table 5.2. Threshold neutrino energy in eqn (5.37) for some charged-current
reactions used for neutrino detection.

Reaction Masses Eth
ν

νe + 71Ga→71Ge + e−
m(71Ga) = 66050.093 MeV
m(71Ge) = 66049.814 MeV

0.23 MeV

νe + 37Cl→37Ar + e− m(37Cl) = 34424.829 MeV
m(37Ar) = 34425.132 MeV

0.82 MeV

ν̄e + p→n+ e+
mp = 938.272 MeV
mn = 939.565 MeV

1.81 MeV

ν + d→p+ n+ ν md = 1875.613 MeV 2.23 MeV
νµ + n→p+ µ− mµ = 105.658 MeV 110.16 MeV
ντ + n→p+ τ− mτ = 1777.03 MeV 3.45 GeV
νµ + e−→µ− + νe me = 0.511 MeV 10.92 GeV

with the target particle A at rest can be calculated by taking into account that the
squared center-of-mass energy s = 2EνmA + m2

A (neglecting the neutrino mass)
must be bigger than (

∑
X mX)2. This constraint leads to the energy threshold

Eth
ν =

(
∑

X mX)2

2mA
− mA

2
. (5.37)

Some examples are given in Table 5.2, from which one can see that the energy
threshold for the process in eqn (5.35) is quite high: T th

e = 10.92 GeV.
Figure 5.3b shows the tree-level Feynman diagram which contributes to the

charged-current process in eqn (5.35). The effective Lagrangian for this process is

L
(νµ+e−→µ−+νe)
eff = −GF√

2

[
µ γρ

(
1 − γ5

)
νµ

] [
νe γρ

(
1 − γ5

)
e
]
. (5.38)

The differential cross-section is given by

dσ

d cos θ
=
G2

F s

2 π

(
1 −

m2
µ

s

)
, (5.39)

where θ is the scattering angle of the outgoing muon (analogous to that in Fig. 5.4),

and s =
(
pνµ

+ pe

)2
. Taking into account the W propagator in Fig. 5.3b would add

a factor m2
W /

(
q2 −m2

W

)
, with q2 = t =

(
pνµ

− pµ

)2
. The total cross-section is

given by

σ =
G2

F s

π

(
1 −

m2
µ

s

)
, (5.40)

which is in good agreement with the experimental data [1039].
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e+ f̄

e− f

(a) (b)

Fig. 5.6. The two tree-level s-channel Feynman diagrams for e+ + e− → f + f̄

through photon exchange (a) and Z-boson exchange (b).

γ

e+ e+

e− e−

+ Z

e+ e+

e− e−

(a) (b)

Fig. 5.7. The two tree-level t-channel Feynman diagrams for e+ + e− → e+ + e−

through photon exchange (a) and Z-boson exchange (b).

5.1.3 e+ + e− → ν + ν̄ and the number of neutrino species

In this section, we discuss the process e+ + e− → ν + ν̄ and its application to
the determination of the number of neutrino species in e+-e− collider experiments.
First, we will consider a generic process e+ + e− → f + f̄, where f is either a
neutrino or a charged lepton or a quark. Figure 5.6 shows the two tree-level s-
channel Feynman diagrams which contribute to this process through exchange of a
photon or a Z-boson. In the case of e+ + e− → e+ + e− scattering (called Bhabha

scattering), one must add the contributions of the two tree-level t-channel Feynman
diagrams in Fig. 5.7 (see Ref. [233]).

For simplicity, we will present only the cross-section for e+ + e− → f + f̄, with
f �= e, which includes, in particular, the neutrino–antineutrino production process
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e++e− → ν+ν̄. Working in the center-of-mass frame, which is the laboratory frame
in this case, we call θ the scattering angle between the directions of the initial e−

and the final fermion f. The differential cross-section (neglecting fermion masses)
is given by (see Refs. [720, 167, 931])

dσ

d cos θ
=

π

2s
N f

c

{
α2 q2f

(
1 + cos2 θ

)
+ 16|χ(s)|2

[(
(ge

V )2 + (ge
A)2

)(
(gf

V )2 + (gf
A)2

)(
1 + cos2 θ

)
+ 8ge

V g
e
Ag

f
V g

f
A cos θ

]
− 8αqf e[χ(s)]

[
ge

V g
f
V

(
1 + cos2 θ

)
+ 2ge

Ag
f
A cos θ

]}
, (5.41)

where N f
c is a color factor (N f

c = 3 for quarks and N f
c = 1 for leptons), qf is the

charge of the fermion f (in units of the elementary charge e) and

χ(s) =
GFm

2
Z

8π
√

2

s

s−m2
Z + isΓZ/mZ

. (5.42)

The term χ(s) is due to the Z-boson propagator, modified according to the Breit-
Wigner prescription in order to take into account the decay width ΓZ of the Z
(see ref. [248]). In the center-of-mass frame we have

√
s = 2Ecm, where Ecm is

the energy of the colliding electrons and positrons. The first line in eqn (5.41) is
the electromagnetic contribution (γ exchange in Fig. 5.6a), the second line is the
weak neutral-current contribution (Z exchange in Fig. 5.6b) and the third line is
the interference of the two contributions.

Figure 5.8 shows the total hadronic cross-section as a function of Ecm =
√
s/2.

One can see that there is a maximum at s = 0, due to the photon propagator.
With increasing energy, the photon propagator suppresses the cross-section, until
the Z-resonance is reached, around Ecm � mZ . Near the peak of the Z-resonance,
the contribution of the γ-exchange diagram in Fig. 5.6a can be neglected. In this
case, the total cross-section for e+ + e− → f + f̄, with f �= e, can be written as

σe+e−→f̄f(s) =
12π s

m2
Z

ΓZ→e+e− ΓZ→f̄f

(s−m2
Z)

2
+ s2Γ2

Z/m
2
Z

, (5.43)

where ΓZ→e+e− and ΓZ→f̄f are, respectively, the widths of the decays of the Z into

e+e− and f̄f pairs. The partial Z-decay width into a f̄f pair is given by (neglecting
the fermion mass)

ΓZ→f̄f =
GFm

3
Z

6
√

2π
N f

c

[
(gf

V )2 + (gf
A)2

]
. (5.44)

The total decay width of the Z-boson is given by

ΓZ =
∑

	=e,µ,τ

ΓZ→		̄ +
∑
q �=t

ΓZ→qq̄ + Γinv , (5.45)

where Γinv is the so-called invisible width, which represents the Z-decays into neutri-
nos (and maybe other invisible particles, which we will not consider). The invisible
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width can be written as
Γinv = Nν ΓZ→νν̄ , (5.46)

where Nν is the number of neutrino species. More precisely, Nν is the number of
light active neutrinos, i.e. the number of neutrinos with mass much smaller than
mZ/2, which couple to the Z with the SM neutral current.

Figure 5.9 shows that the Z resonance is quite sensitive to the number of neu-
trino species. The experimental data shown in Fig. 5.9 have been obtained by the
four LEP (Large Electron Positron) experiments ALEPH, DELPHI, L3, and OPAL
at CERN. The small error bars are due to the high statistics accumulated by these
experiments from about 1989 to 1995: about 17 million Z-decays. One can see,
from Fig. 5.9 that the best fit of the Z resonance corresponds to Nν � 3 and other
integer values of Nν are excluded.

A precise determination ofNν from eqn (5.46) requires an accurate measurement
of Γinv and a detailed calculation of ΓZ→νν̄ , taking into account radiative corrections
which are not included in eqn (5.44). However, on the experimental side, the ratio
Γinv/ΓZ→		̄, where ΓZ→		̄ is defined as the partial decay width into a massless
charged lepton, is determined with higher precision than Γinv. On the theoretical
side, the ratio ΓZ→νν̄/ΓZ→		̄ is less dependent on the uncertainties of the SM.
Therefore, the number of neutrino species is determined with higher accuracy from

Nν =
Γinv

ΓZ→		̄

(
ΓZ→		̄

ΓZ→νν̄

)
SM

, (5.47)
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where Γinv/ΓZ→		̄ is measured and (ΓZ→νν̄/ΓZ→		̄)SM = 1.99125 ± 0.00083 is cal-
culated. The LEP experiments measured Γinv/ΓZ→		̄ = 5.943 ± 0.016, leading to
[931]

Nν = 2.9840± 0.0082 . (5.48)

This value is in good agreement with the observed three generations of fundamental
fermions. It implies that there are no further generations with SM properties and
a neutrino lighter than mZ/2.

From eqns (5.41)–(5.44) one can see that the e+-e− cross-section is also sensitive

to the value of the weak mixing angle ϑW, through the quantities gf
V and gf

A (see
Table 3.6 on page 78). The analysis of LEP data, of data collected by the SLD
(SLAC Large Detector) detector at the e+-e− Stanford Linear Collider (SLC) and
the top mass measurement mt = 177.9 ± 4.4 GeV by the CDF (Collider Detector
at Fermilab) and D0 experiments at the Tevatron p-p̄ collider gave the value of
sin2 ϑW in eqn (A.171) [421, 400].

5.2 Hadron decays

5.2.1 Charged pion decay

The most common process to produce muon neutrinos and antineutrinos is through
the decay of charged pions, which occur mainly through the two-body decay
processes

π± → �± +
(−)

ν	 (� = e, µ) . (5.49)

These processes are sometimes called π	2 decay, where � gives the flavor of the final
leptons and the number 2 represents a two-body decay. Charged pions are produced
copiously in hadron interactions.

Let us consider the π− decay process. The corresponding tree-level Feynman
diagram is shown in Fig. 5.10a, where ū d is the valence quark composition of a
π−. Considering these valence quarks, the Feynman rules in appendix E and the
effective low-energy four-fermion CC vertex in eqn (3.226) lead to the amplitude

Aπ−→	−ν̄�
= −i GF√

2
Vud vu(pu) γρ

(
1 − γ5

)
ud(pd)uν(pν) γρ

(
1 − γ5

)
v	(p	) . (5.50)

This amplitude, however, would be correct if the ū and d quarks were free. Since
they are bound as valence quarks in the pion, the quark current must be replaced
with the appropriate hadronic transition matrix element which takes into account
the incalculable effect of strong interactions:

vu(pu) γρ
(
1 − γ5

)
ud(pd) →

1

mπ
〈0|hρ

W (0)|π−(pπ)〉 , (5.51)

where
hρ

W (x) = u(x)γµ
(
1 − γ5

)
d(x) (5.52)

is the relevant part of the quark charged current in eqn (3.176), stripped of the factor
Vud. The factor 1/mπ serves to keep the dimensions right (the left-hand side has
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Fig. 5.10. (a) Tree-level Feynman diagram of the π− decay process in eqn (5.49),
with the π− represented as a bound state of the valence quarks ū d. The blobs
represent strong interaction binding. (b) Configuration of the final state in the
pion rest frame in the limit m	 → 0. The thin and thick arrows represent,
respectively, momentum and spin.

dimension of energy, the current hρ
W has dimension of E3, and the one-pion state has

dimension of E−1, with the normalization 〈π−(pπ)|π−(p′π)〉 = (2π)32Eπδ
3(�pπ −�p′π)

as the one-fermion state in eqn (2.234)). Since the leptonic current is of the V −A
type, the hadronic matrix element in eqn (5.51) must be a linear combination of a
vector and an axial-vector, constructed from the available kinematical quantities.
Since the pion is a pseudoscalar particle (JP = 0−), the four-momentum pπ is the
only available four-vector. Therefore, the hadronic matrix element can be written
as21

〈0|hρ
W (0)|π−(pπ)〉 = i fπ p

ρ
π , (5.53)

where the coefficient fπ has dimension of energy. In principle, fπ may depend on p2
π,

but since p2
π = m2

π, it is a constant, called the pion decay constant. The pion-decay
amplitude is given by

Aπ−→	−ν̄�
=
GF√

2
Vud fπ uν(pν)

/pπ

mπ

(
1 − γ5

)
v	(p	) . (5.54)

Using the energy–momentum conservation relation pπ = p	 + pν and the Dirac
equations of the charged lepton and the massless antineutrino, the decay amplitude

21 Note that only the axial part of the quark current, aρ
W = uγµγ5d, contributes

to the hadronic matrix element. Since the pion is a pseudoscalar particle, under space
inversion UP |π−(pπ)〉 = −|π−(pπP)〉, where UP is the unitary operator of the parity
transformation (see section 2.11.2), pρ

π = (p0
π,�pπ) and pρ

πP = (p0
π,−�pπ). Under par-

ity, the vector part of the quark current, vρ
W = uγµd transforms as UPv

ρ
W U

†
P = vρ

WP,
where vρ

W = (v0,�v) and vρ
WP = (v0,−�v). Taking into account that the vacuum is

parity-invariant, for the hadronic vector matrix element 〈0|vρ
W (0)|π−(pπ)〉 = i fv p

ρ
π we

have 〈0|vρ
W |π−(pπ)〉 = 〈0|U†

PUPv
ρ
W U

†
PUP|π

−(pπ)〉 = −〈0|vρ
WP|π

−(pπP)〉 = −i fv p
ρ
π. Thus,

fv = 0, i.e. the hadronic vector matrix element vanishes. On the other hand, parity does
not constrain the hadronic axial matrix element, because under parity UPa

ρ
W U

†
P = −aρ

WP,
where aρ

W = (a0,�a) and aρ
WP = (a0,−�a).
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can be simplified to

Aπ−→	−ν̄�
= −GF√

2
Vud fπ

m	

mπ
uν(pν)

(
1 + γ5

)
v	(p	) . (5.55)

Hence, the matrix element is proportional to the mass of the final charged lepton
and vanishes in the limit m	 → 0. This is due to the helicities of the final leptons
produced by the V −A CC weak interaction: as illustrated in Fig. 5.10b, in the pion
rest frame the charged lepton and antineutrino are emitted in opposite directions.
The final massless antineutrino is right-handed, i.e. it has positive helicity (see
section 2.7.1). In the limit m	 → 0, the final charged lepton is left-handed. In this
case, the total angular momentum of the final state is equal to unity and the decay
of the pseudoscalar pion is forbidden by angular momentum conservation. In other
words, the decay of the pion is allowed only if the charged lepton is massive and the
V − A CC weak interaction can generate it in a right-handed state, with positive
helicity, such that the final state has zero angular momentum, as the initial state.

From the amplitude in eqn (5.55) one can derive the decay rate

Γ
π±→	±

(−)

ν�

=
G2

F

8 π
fπ

2 |Vud|2mπ m
2
	

(
1 − m2

	

m2
π

)2

, (5.56)

which is the same for the CP-conjugated π+ and π− decay processes in
eqn (5.49). From the charged pion lifetime in eqn (A.162) and the branching ratio
Γ

π±→	±
(−)

ν�

/Γπ± = 0.999 877 0± 0.000 000 4 [400], after taking into account radiative

corrections, one obtains [775, 1000]

fπ = 130.7 ± 0.1 ± 0.36 MeV , (5.57)

where the first uncertainty comes from the experimental uncertainty on |Vud| and
the second uncertainty comes from the uncertainty of the calculation of radiative
corrections.

In the decay rate Γ
π±→	±

(−)

ν�

, the factor m2
	 , due to the angular momentum

problem discussed above, suppresses the decay rate for small values of the final

charged lepton mass. On the other hand, the factor
(
1 −m2

	/m
2
π

)2
, due to the phase

space of the decay, is maximal for m	 → 0. However, the first factor dominates in
the ratio between the decay rates into an electron and a muon:

Re/µ =

Γ
π±→e±

(−)

νe

Γ
π±→µ±

(−)

νµ

=
m2

e

(
1 −m2

e/m
2
π

)2
m2

µ

(
1 −m2

µ/m
2
π

)2 � 1.28 × 10−4 , (5.58)

where we used the best-fit values of the electron, muon, and pion masses in sec-
tion A.5. The more precise theoretical prediction including radiative corrections is
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[775]

Rthe
e/µ = (1.2352± 0.0005)× 10−4 , (5.59)

in good agreement with the measured value [400]

Rexp
e/µ = (1.230± 0.004)× 10−4 . (5.60)

Let us finally mention that high-energy hadron interactions produce, besides
pions and other particles, charged kaons, whose decay can generate neutrinos. Since
kaons are pseudoscalar particles, just like pions, the K	2 decay of charged kaons,

K± → �± +
(−)

ν	 (� = e, µ) , (5.61)

can be treated as the decay of charged pions. In analogy with eqn (5.53), the
hadronic matrix element of the decay of a K− = ū s can be written as

〈0|hρ
W (0)|K−(pK)〉 = i fK pρ

K , (5.62)

where hρ
W (x) = u(x)γµ

(
1 − γ5

)
s(x) is the relevant part of the quark charged

current in eqn (3.176), stripped of the factor Vus. The coefficient fK is the kaon

decay constant, with experimental value [400]

fK = 159.8± 1.4 ± 0.44 MeV , (5.63)

where the first uncertainty comes from the experimental uncertainty on |Vus| and
the second comes from that of the calculation of radiative corrections. The tree-
level decay rate of K± can be obtained from the charged pion tree-level decay rate
in eqn (5.56) with the replacements fπ

2|Vud|2 → fK
2|Vus|2 and mπ → mK .

5.2.2 Neutron decay, CVC, and PCAC

The neutron decay process

n→ p+ e− + ν̄e (5.64)

is the basic β-decay process, which was considered first by Fermi in his theory of
β-decay [432, 431]. The tree-level Feynman diagram of neutron decay is shown in
Fig. 5.11, where the neutron and proton are represented in terms of their valence
quarks, n = udd and p = uud. Considering the neutron and proton valence quarks,
neutron decay is a d→ u transition. In this case, the Feynman rules in appendix E
and the effective low-energy four-fermion CC vertex in eqn (3.226) lead to the
amplitude

An→p+e− ν̄e
= −i GF√

2
Vud uu(pu) γρ

(
1 − γ5

)
ud(pd)ue(pe) γρ

(
1 − γ5

)
vνe

(pνe
) .

(5.65)
However, the valence quarks are not free, but bound in the nucleons. Thus, as in
the case of pion decay discussed in section 5.2.1, the quark current must be replaced
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ν̄e

Fig. 5.11. Tree-level Feynman diagram of the neutron decay process in eqn (5.64),
with the neutron and proton represented as a bound states of valence quarks.
The blobs represent strong interaction binding.

by the appropriate hadronic transition matrix element which takes into account the
incalculable effect of strong interactions:

uu(pu) γρ
(
1 − γ5

)
ud(pd) → 〈p(pp)|hρ

W (0)|n(pn)〉 , (5.66)

with hρ
W (x) given in eqn (5.52).

In general, the hadronic matrix element must be a linear combination of a vector
and an axial-vector, which can only be constructed from the available kinematical
quantities. These are the neutron and proton four-momenta pn and pp (we consider
unpolarized particles). It is convenient to split the vector and axial parts of the
hadronic current:

hρ
W (x) = vρ

W (x) − aρ
W (x) , (5.67)

with

vρ
W (x) = u(x) γµ d(x) , (5.68)

aρ
W (x) = u(x) γµ γ5 d(x) . (5.69)

Since the initial neutron and the final proton are free fermions, in momentum
space they are described, respectively, by spinors un(pn) and up(pp) which obey
the corresponding Dirac equations in momentum space of the type in eqn (2.144).
Taking into account the fact that the only vector bilinear of spinors is of the type
in eqn (2.66), the most general hadronic vector matrix element can be written as

〈p(pp)|vρ
W (0)|n(pn)〉 = up(pp)

[
f1(q

2) γρ + f2(q
2)
(
pρ

n + pρ
p

)
+f3(q

2)
(
pρ

n − pρ
p

)]
un(pn) , (5.70)

where f1(q
2), f2(q

2), and f3(q
2) are form factors, which depend on the only scalar

quantity available which can be constructed from pn and pp:

pn · pp =
1

2

[
m2

n +m2
p − (pp − pn)

2
]
≡ 1

2

[
m2

n +m2
p − q2

]
, (5.71)

where q ≡ pp − pn. Since the neutron and proton masses are constants, the form
factors depend only on q2.
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Using the Dirac equation for the u-spinors (eqn (2.144)), we have

up(pp)i σ
ρη qηun(pn) = up(pp)

[
pρ

p + pρ
n − (mn +mp) γ

ρ
]
un(pn) . (5.72)

Using this relation and approximating mn � mp � mN , where mN is the nucleon
mass, the vector matrix element in eqn (5.70) can be written in the usual form

〈p(pp)|vρ
W (0)|n(pn)〉 = up(pp)

[
γρ F1(Q

2) +
i σρη qη
2mN

F2(Q
2) +

qρ

mN
F3(Q

2)

]
un(pn) .

(5.73)
In a similar way, the most general axial matrix element can be written as

〈p(pp)|aρ
W (0)|n(pn)〉 = up(pp)

[
γργ5GA(Q2) +

qρ

mN
γ5GP (Q2)

+
pρ

p + pρ
n

mN
γ5G3(Q

2)

]
un(pn) . (5.74)

The form factors have been written, as usual, as functions of Q2 ≡ −q2, although
in neutron decay q2 > 0. The reason is that in neutron decay q2 is small: from
kinematics one can find

m2
e ≤ q2 ≤ (mn −mp)

2
, (5.75)

with me � 0.51 MeV and mn −mp � 1.29 MeV. Hence, the dependence on Q2 of
the form factors is practically irrelevant in neutron decay. On the other hand, the
same form factors enter in the quasielastic charged-current reactions discussed in
section 5.3.1, where Q2 can be large and the dependence on Q2 of the form factors
is important.

It can be shown that the invariance under time reversal of strong interactions
implies that the six form factors in eqns (5.73) and (5.74) are real (see Ref. [227]).
Moreover, the invariance of strong interactions under isospin transformations
implies that

F3(Q
2) = 0 , G3(Q

2) = 0 . (5.76)

These are the form factors of the so-called second-class currents [1054], whose
absence has been verified by experiments.

Isospin is the approximate symmetry obtained neglecting the small mass differ-
ence between the up and down quarks. Under this approximation, the Lagrangian of
the quark fields, including strong interactions, is invariant under the global SU(2)I
gauge transformations

Q(x) → U(θ)Q(x)U†(θ) = exp (i θ ·T )Q(x) , (5.77)

where Q(x) is the quark doublet,

Q(x) =

(
u(x)
d(x)

)
, (5.78)

and U(θ) is the unitary isospin operator, which depends on a set of three real
numbers θ = (θ1, θ2, θ3). The set of matrices T = (T1, T2, T3) are a two-dimensional
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representation of the generators of the SU(2)I isospin group. Since the generators
must satisfy angular momentum commutation relations of the type in eqn (3.2), we
have Ta = τa/2, where τ1, τ2, τ3, are the three Pauli matrices, as in chapter 3 (see
footnote 14 on page 71).

Defining the isospin raising and lowering matrices

T± = T1 ± i T2 , (5.79)

the vector and axial currents in eqns (5.68) and (5.69) can be written as

vρ
W (x) = Q(x) γµ T+Q(x) , (5.80)

aρ
W (x) = Q(x) γµ γ5 T+Q(x) . (5.81)

Let us consider an isospin rotation of an angle π around the second axis:

Q(x) → Uπ Q(x)U
†
π = eiπT2 Q(x) = i τ2Q(x) =

(
d(x)
−u(x)

)
, (5.82)

where Uπ ≡ U(0, π, 0). Invariance under such a transformation is called charge

symmetry. Under this transformation

vρ
W (x) → Uπ v

ρ
W (x)U†π = −vρ†(x) , (5.83)

aρ
W (x) → Uπ a

ρ
W (x)U

†
π = −aρ†(x) . (5.84)

Since under such transformation u → d and d → −u, we have p = uud→ −ddu =
−n and n = udd→ duu = p. Thus, the proton and neutron states transform as

Uπ |p(pp)〉 = −|n(pp)〉 , Uπ |n(pn)〉 = |p(pn)〉 . (5.85)

Considering the vector matrix element in eqn (5.73), we have

〈p(pp)|vρ
W (0)|n(pn)〉 = 〈p(pp)|U†πUπv

ρ
W (0)U†πUπ|n(pn)〉 = 〈n(pp)|vρ†(0)|p(pn)〉

= 〈p(pn)|vρ
W (0)|n(pp)〉∗ . (5.86)

Substituting the expression on the right-hand side of eqn (5.73), one can find that
the equality in eqn (5.86) implies that F3(Q

2) = 0. In an analogous way, for the
axial matrix element in eqn (5.74), one can obtain the equality

〈p(pp)|aρ
W (0)|n(pn)〉 = 〈p(pn)|aρ

W (0)|n(pp)〉∗ , (5.87)

which implies G3(Q
2) = 0. Therefore, the charged-current vector and axial matrix

element are given by

〈p(pp)|vρ
W (0)|n(pn)〉 = up(pp)

[
γρ F1(Q

2) +
i

2mN
σρη qη F2(Q

2)

]
un(pn) , (5.88)

〈p(pp)|aρ
W (0)|n(pn)〉 = up(pp)

[
γρ γ5GA(Q2) +

qρ

mN
γ5GP (Q2)

]
un(pn) . (5.89)
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The form factors F1(Q
2), F2(Q

2), GA(Q2), and GP (Q2) are called, respectively,
Dirac, Pauli, axial, and pseudoscalar weak charged-current form factors of the
nucleon.

A further improvement of the expression for the vector matrix element follows
from the isospin symmetry, which allows us to express the form factors F1(Q

2) and
F2(Q

2) in terms of the electromagnetic form factors of the nucleons, whose values
for q2 = 0 are known. Noether’s theorem (see section C.7) implies that the isovector
currents

vρ
a(x) = Q(x) γρ TaQ(x) (5.90)

are conserved:
∂ρv

ρ
a(x) = 0 . (5.91)

This property, which was formulated as an hypothesis in the 1950s [519, 434], is
called the conserved vector current (CVC) hypothesis. It is now understood that it
is a consequence of the isospin invariance of the strong interaction QCD Lagrangian.
As explained in appendix C, the associated charges

Ta =

∫
d3x v0

a(x) =

∫
d3xQ†(x)TaQ(x) (5.92)

form a representation of the generators of the SU(2)I isospin group. They are Her-
mitian operators (T†a = Ta), which satisfy the group commutation relations (see
eqn (C.57)),

[Ta , Tb] = i εabc Tc , (5.93)

and generate the isospin transformations in eqn (5.77) through

[Ta , Q(x)] = −TaQ(x) . (5.94)

The unitary isospin operator in eqn (5.77) is given by U(θ) = exp (−i θ ·T), with
T = (T1,T2,T3).

Using the relations in eqn (5.94) and the expression of the conserved current in
eqn (5.90), one can derive the useful commutation relations

[Ta , v
ρ
b (x)] = i εabc v

ρ
c (x) , (5.95)

which imply
[T± , v

ρ
3(x)] = ∓ vρ

±(x) , (5.96)

where
T± = T1 ± iT2 , vρ

± = vρ
1 ± i vρ

2 . (5.97)

Now, note that vρ
+ is the vector current vρ

W in eqn (5.80), which enters in the
vector matrix element in eqn (5.88). Using eqn (5.96), we can write the vector
matrix element as

〈p(pp)|vρ
W (0)|n(pn)〉 = 〈p(pp)| [vρ

3(0) , T±] |n(pn)〉 . (5.98)

Since T± are the isospin raising and lowering operators and T
†
− = T+, we have

T+ |n(pn)〉 = |p(pn)〉 , (5.99)
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T− |p(pp)〉 = |n(pp)〉 =⇒ 〈p(pp)|T+ = 〈n(pp)| , (5.100)

which imply

〈p(pp)|vρ
W (0)|n(pn)〉 = 〈p(pp)|vρ

3(0)|p(pn)〉 − 〈n(pp)|vρ
3(0)|n(pn)〉 . (5.101)

This relation is useful, because the proton and nucleon matrix elements of vρ
3(0)

are the vectorial parts of the corresponding electromagnetic matrix elements. From
eqn (3.179), the electromagnetic current of quarks,

jρ
γ,Q =

2

3

∑
α=u,c,t

qU
α γµ qU

α − 1

3

∑
α=d,s,b

qD
α γµ qD

α , (5.102)

can be written as
jρ
γ,Q = vρ

3 + vρ
0 , (5.103)

where

vρ
0 =

1

6
QγρQ+

2

3

∑
q=c,t

q γµ q − 1

3

∑
q=s,b

q γµ q (5.104)

is the isoscalar part of the current. The difference of the proton and neutron elec-
tromagnetic matrix elements is equal to the difference of the proton and neutron
matrix elements of vρ

3 in eqn (5.101):

〈p(pp)|jρ
γ,Q(0)|p(pn)〉 − 〈n(pp)|jρ

γ,Q(0)|n(pn)〉
= 〈p(pp)|vρ

3(0)|p(pn)〉 − 〈n(pp)|vρ
3(0)|n(pn)〉 . (5.105)

The contributions of the isoscalar current cancel out, because

〈p(pp)|vρ
0 |p(pn)〉 = 〈p(pp)|vρ

0T+|n(pn)〉 = 〈p(pp)|T+v
ρ
0 |n(pn)〉 = 〈n(pp)|vρ

0 |n(pn)〉 ,
(5.106)

since [Ta , v
ρ
0(x)] = 0. Thus, eqns (5.101) and (5.105) imply the following relation

between the weak charged-current vector matrix element and the electromagnetic
matrix elements of the nucleons:

〈p(pp)|vρ
W (0)|n(pn)〉 = 〈p(pp)|jρ

γ,Q(0)|p(pn)〉 − 〈n(pp)|jρ
γ,Q(0)|n(pn)〉 . (5.107)

In analogy with eqn (5.88), the nucleon matrix element of the electromagnetic
current can be written as

〈N(p2)|jρ
γ,Q(0)|N(p1)〉 = uN(p2)

[
γρ FN

1 (Q2) +
i

2mN
σρη qη F

N
2 (Q2)

]
uN(p1) ,

(5.108)
where N = p, n and q = p2−p1. It can be shown (see Ref. [227]) that an additional
term proportional to qρuN(p2)uN (p1) vanishes, because the electromagnetic current
is conserved, ∂ρj

ρ
γ = 0. From eqns (5.88), (5.107), and (5.108), we finally obtain the

relations between the charged-current vector form factors and the electromagnetic
form factors

F1(Q
2) = F p

1 (Q2) − Fn
1 (Q2) , (5.109)
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F2(Q
2) = F p

2 (Q2) − Fn
2 (Q2) . (5.110)

The electromagnetic form factors FN
1 (Q2) and FN

2 (Q2) are called, respectively,
Dirac and Pauli form factors of the nucleon N . Since for q2 = 0 the Dirac form
factors reduce to the electric charges of the nucleons22 and the Pauli form factors
reduce to the anomalous magnetic moments of the nucleons, we have

F p
1 (0) = 1 , Fn

1 (0) = 0 , (5.111)

F p
2 (0) =

µp

µN
− 1 , Fn

2 (0) =
µn

µN
, (5.112)

where µN ≡ e�/2mp is the nuclear magneton and µp and µn are, respectively, the
proton and neutron magnetic moments, which have the values in eqns (A.168) and
(A.159). It is often convenient to use the Sachs electric and magnetic form factors

GN
E (Q2) = FN

1 (Q2) − Q2

4m2
N

FN
2 (Q2) , (5.113)

GN
M (Q2) = FN

1 (Q2) + FN
2 (Q2) , (5.114)

with

Gp
E(0) = 1 , Gn

E(0) = 0 , (5.115)

Gp
M (0) = µp/µN , Gn

M (0) = µn/µN . (5.116)

The electron scattering data are usually fitted by assuming the same Q2 dependence
for the electromagnetic form factors of the nucleons23:

Gp
E(Q2) = GD(Q2) , Gn

E(Q2) = 0 , (5.117)

Gp
M (Q2) =

µp

µN
GD(Q2) , Gn

M (Q2) =
µn

µN
GD(Q2) , (5.118)

where GD(Q2) is the dipole function

GD(Q2) =

(
1 +

Q2

M2
V

)−2

, (5.119)

with MV � 0.84 GeV.
The electric and magnetic form factors characterize the nucleon matrix element

of the electromagnetic current in the so-called Breit frame, which is the reference
frame in which q0 = 0 and |�q| =

√
Q2. In order to determine the Breit frame

22 For q = 0, we have, from eqn (2.159), 〈N(p)|j0γ,Q(0)|N(p)〉 = 2EFN
1 (0). Since,

considering a finite total volume V and the normalization of states in eqn (2.236) and using
eqn (C.32), we have 〈N(p)|j0γ,Q(0)|N(p)〉 = 1

V

R
d3x 〈N(p)|e−ix · Pj0γ,Q(x)eix · P|N(p)〉 =

1
V
〈N(p)|Q|N(p)〉 = 2EqN , where Q is the electric charge operator (see eqns (2.90) and

(2.247)) and qN is the electric charge of the nucleon N . Therefore, FN
1 (0) = qN .

23 A more accurate fit of the data is discussed in Ref. [273].



HADRON DECAYS 157

with respect to the laboratory frame, let us denote by qα
L the coordinates of the

four-momentum transfer in the laboratory frame. Performing a boost with velocity
v along the direction of �qL, in the new reference frame we have q0 = γ

(
q0L − v |�qL|

)
and |�q| = γ

(
−v q0L + |�qL|

)
, with γ =

(
1 − v2

)−1/2
. We obtain the Breit frame by

choosing v = q0L/|�qL|. In the Breit frame, the three-momenta of the initial and final
nucleons are opposite:

�p2 = −�p1 =
�q

2
. (5.120)

Using the Gordon identity in eqn (A.90), one can find that, in the Breit frame, we
have

〈N(p2)|j0γ,Q(0)|N(p1)〉 = uN(p2) γ
0 uN(p1)G

N
E (Q2) , (5.121)

〈N(p2)|�jγ,Q(0)|N(p1)〉 = uN(p2)�γ uN (p1)G
N
M (Q2) . (5.122)

Furthermore, since in the Breit frame the form factor GN
i (Q2) is a function of√

Q2 = |�q|, it can be interpreted as the Fourier transform of a spherically symmetric
charge distribution ρN

i (r):

GN
i (Q2) =

∫
d3x ρN

i (r) e−i
q ·
x = 4π

∫
dr r2 ρN

i (r)
sin(

√
Q2 r)√
Q2 r

. (5.123)

For
√
Q2 r � 1, we have

GN
i (Q2) � 1 − Q2

6
〈(rN

i )2〉 , (5.124)

where 〈(rN
i )2〉 =

∫
d3x r2 ρN

i (r) is the average squared radius. The quantity
〈(rN

i )2〉1/2 is the associated charge radius. For example, from the dipole approxi-
mation of the electric form factor of the proton in eqn (5.117), the electric charge
radius of the proton is given by 〈(rp

E)2〉1/2 � 12/M2
V ∼ 10−13 cm, which is the same

as the usual value of the proton radius of the order of one fermi.
Coming back to the weak charged-current form factors, for Q2 = 0 we have,

from eqns (5.109)–(5.112),

F1(0) = 1 , (5.125)

F2(0) =
µp − µn

µN
− 1 � 3.706 . (5.126)

Thus, the charged-current vector matrix element for zero four-momentum transfer
is given by

〈p(p)|vρ
W (0)|n(p)〉 = up(p) γ

ρ un(p) , (5.127)

as if the charged-current vector transition from a neutron to a proton were reduced
to a transition of a valence d quark of the neutron to a valence u quark of the
proton. This result is due to the conservation24 of the quark vector charged-current

24 Since vρ
W = vρ

+ = vρ
1 +ivρ

2 , from ∂ρv
ρ
a(x) = 0 (eqn (5.91)) it follows that ∂ρv

ρ
W (x) = 0.
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vρ
W . The corresponding vectorial weak charge, which is equal to unity, must be

conserved in all strong interaction vertices. Thus, it remains unaffected by strong
interactions. For the same reason, the electric charge of a nucleon is equal to the
sum of the electric charges of its valence quarks because the electromagnetic current
is conserved.

We now discuss neutron decay in the rest frame of the neutron, where all the
components of qρ are small. In this case, it is possible to approximate the hadronic
matrix element with

〈p(pp)|hρ
W (0)|n(pn)〉 � up(pp) γ

ρ
(
gV − gA γ

5
)
un(pn) , (5.128)

with the usual definitions

gV ≡ F1(0) � 1 , gA ≡ GA(0) . (5.129)

In the nonrelativistic limit, the transitions generated by gV and gA are called,
respectively, Fermi and Gamow–Teller transitions. Using the Dirac representation
of the γ matrices (in eqn (2.21)), one can see, from eqn (2.200), that, in Fermi tran-

sitions, the components up(pp)γ
kun(pn) are suppressed and u

(hp)
p (pp)γ

0u
(hn)
n (pn) �

2mNχ
(hp)†χ(hn) = 2mNδhphn

(in the rest frame of the neutron, χ(±) are defined by
eqn (2.217), with the z axis oriented in the direction of the three-momentum of the
final proton). On the other hand, in Gamow–Teller transitions, up(pp)γ

0γ5un(pn) is

suppressed and u
(hp)
p (pp)γ

kγ5u
(hn)
n (pn) � 2mNχ

(hp)†σkχ(hn). Therefore, in Fermi
transitions the spin of the nucleon remains unchanged, whereas in Gamow–Teller
transitions the spin of the nucleon can change (through transitions generated by
σ1 and σ2) or remain unchanged (through transitions generated by σ3). In nuclear
physics, the two-component spinors χ(±) are replaced by appropriate wavefunc-
tions of the nucleons. In this case, the Fermi and Gamow–Teller contributions to
the matrix element are usually indicated, respectively, with 〈1〉 and 〈σk〉.

The value of gA is different from unity, since the axial current aρ
W is not con-

served. In fact, the quark mass terms in the Lagrangian are not invariant under
chiral SU(2)I transformations. Moreover, it can be shown that charged pions would
not decay if the axial current were conserved25. This fact motivated Gell-Mann and
Levy [513] to introduce the partially conserved axial current (PCAC) hypothesis

∂ρa
ρ
W (x) = fπ m

2
π π
−(x) , (5.130)

where π−(x) is the negative pion field, which satisfies the Klein–Gordon equation(
� +m2

π

)
π−(x) = jπ−(x) , (5.131)

and jπ−(x) is the source of the pion field. Since, from eqn (C.32), we have

〈p(pp)|π−(x)|n(pn)〉 = 〈p(pp)|eix · Pπ−(0)e−ix ·P|n(pn)〉

25 As shown in footnote 21 on page 148, only the axial current contributes to charged
pion decay. From eqn (5.53), taking into account that aρ

W (x) = eix · Paρ
W (0)e−ix · P

(see eqn (C.32)), where P
ρ is the four-momentum operator which generates space-time

translations, we have 〈0|aρ
W (x)|π−(pπ)〉 = i fπ p

ρ
π e

−ipπ ·x. Hence 〈0|∂ρa
ρ
W (x)|π−(pπ)〉 =

fπ m
2
π e

−ipπ · x. If the axial current were conserved (∂ρa
ρ
W (x) = 0), fπ would have to vanish

and charged pions would not decay.
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= eix · q〈p(pp)|π−(0)|n(pn)〉 , (5.132)

equation (5.131) implies that

(
−q2 +m2

π

)
〈p(pp)|π−(x)|n(pn)〉 = 〈p(pp)|jπ−(x)|n(pn)〉 . (5.133)

In general, the matrix element on the right-hand side can be written as

〈p(pp)|jπ−(x)|n(pn)〉 = i
√

2 gπN(Q2)up(pp) γ
5 un(pn) eix · q , (5.134)

where gπN(Q2) is a real function of q2, which is called the pion–nucleon form factor.
By definition, gπN ≡ gπN (m2

π) is the pion–nucleon interaction coupling constant.
Its value, determined in pion–nucleon scattering experiments, is [215]

gπN = 13.10 ± 0.35 . (5.135)

Using the expression in eqn (5.89) for the axial matrix element, eqns (5.130),
(5.133), and (5.134) lead to the relation

(
−q2 +m2

π

) [
2mN GA(Q2) +

q2

mN
GP (Q2)

]
=

√
2 gπN(Q2) fπ m

2
π . (5.136)

For q2 = 0, assuming gπN(0) � gπN , we obtain the Goldberger–Treiman relation
[548]

gA � fπ gπN√
2mN

. (5.137)

From the values of fπ and gπN in eqns (5.57) and (5.135), one can find gA � 1.3.
Furthermore, eqn (5.136) allows one to determine GP (Q2) in terms of GA(Q2) and
gπN (Q2). In particular, we have

GP (0) � 2m2
N

m2
π

gA . (5.138)

Using the hadronic matrix element in eqn (5.128), the differential decay rate of
the neutron in its rest frame is given by

dΓn

dEe
=
G2

F |Vud|2
2π3

(E0 − Ee)
2
Ee |�pe|

(
g2

V + 3g2
A

)
, (5.139)

where E0 = mn −mp = 1.293 331 7± 0.000 000 5 MeV [400] is the maximal energy
of the emitted electron and the recoil energy of the proton has been neglected.
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Integrating over the electron energy, we obtain the neutron lifetime (τn = Γ−1
n )

τn =
2π3

G2
F |Vud|2m5

e f

(
g2

V + 3g2
A

)−1
, (5.140)

where f is the dimensionless phase-space integral

f =

∫ E0

me

dEe
(E0 − Ee)

2Ee |�pe|
m5

e

. (5.141)

Taking into account Coulomb, radiative, and other corrections, the value of the
phase-space integral is [1063]

f = 1.71465± 0.00015 . (5.142)

The experimental value of τn is given in eqn (A.158). Although the value of gA

can be derived from the measurement of the neutron lifetime, assuming gV = 1,
measurements of the decays of polarized neutrons (see Ref. [24]) yield the most
precise value of the ratio gA/gV [400]:

gA

gV
= 1.2695± 0.0029 . (5.143)

Since gV � 1, this value is in approximate agreement with the Goldberger–Treiman
relation in eqn (5.137).

5.3 Neutrino–nucleon scattering

5.3.1 Quasielastic charged-current reactions

The quasielastic charged-current interactions of neutrinos and antineutrinos with
nucleons are

ν	 + n→ p+ �− , (5.144)

ν̄	 + p→ n+ �+ , (5.145)

with � = e, µ, τ , In practice, only electron and muon neutrino and antineutrino
beams are available in the laboratory. Tau neutrino beams are generated in astro-
physical environments and by high-energy cosmic ray interactions with the Earth’s
atmosphere.

The process in eqn (5.145) with � = e, sometimes called inverse neutron decay,
has been used in the historical experiment of Cowan and Reines [899] in which
neutrinos have been observed for the first time. Such a process is currently used
in detectors of electron antineutrinos produced in reactors (for example, CHOOZ
[100], Palo Verde [255], KamLAND [103]; see section 12.2). Here, however, we will
consider the high-energy case, in which the mass difference between the neutron and
the proton is neglected. The low-energy case appropriate for reactor ν̄e detection is
discussed in section 12.2.
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For � = e, the ν	-n scattering process in eqn (5.144) can be obtained by crossing
from the neutron decay process in eqn (5.64). This means that the hadronic vertex
can be treated with the same method employed in the analysis of neutron decay in
section 5.2.2. The amplitude of the ν	-n scattering process in eqn (5.144) is given
by

Aν�n→p	− = − i
GF√

2
Vud u	(p	) γρ

(
1 − γ5

)
uν�

(pν)

×
{
up(pp)

[
γρ F1(Q

2) +
i

2mN
σρη qη F2(Q

2)

− γρ γ5GA(Q2) − qρ

mN
γ5GP (Q2)

]
un(pn)

}
, (5.146)

where q = pν − p	 = pp − pn is the four-momentum transferred from the neutrino
to the nucleon, and Q2 ≡ −q2.

The differential cross-sections for the ν	 and ν̄	 scattering processes in
eqns (5.144) and (5.145) in the laboratory frame are given by (see Ref. [750])

dσν�n,ν̄�p
CC

dQ2
=
G2

F |Vud|2m4
N

8π (pν · pNi)
2

[
A(Q2) ±B(Q2)

s− u

m2
N

+ C(Q2)
(s− u)

2

m4
N

]
, (5.147)

with the Mandelstam variables

s = (pν + pN )
2
, (5.148)

t = (pν − p	)
2 = q2 ≡ −Q2 , (5.149)

u = (p	 − pN)2 , (5.150)

where pN is the four-momentum of the initial nucleon. In eqn (5.147), the plus and
minus signs refer, respectively, to ν	-n and ν̄	-p scatterings. The functions A, B,
and C of Q2 are given by

A =
m2

	 +Q2

m2
N

{(
1 +

Q2

4m2
N

)
G2

A −
(

1 − Q2

4m2
N

)(
F 2

1 − Q2

4m2
N

F 2
2

)
+

Q2

m2
N

F1 F2

− m2
	

4m2
N

[
(F1 + F2)

2 + (GA + 2GP )2 − 1

4

(
1 +

Q2

4m2
N

)
G2

P

]}
,

(5.151)

B =
Q2

m2
N

GA (F1 + F2) , (5.152)

C =
1

4

(
G2

A + F 2
1 +

Q2

4m2
N

F 2
2

)
. (5.153)

Since m2
e/m

2
N � 2.5× 10−7 and m2

µ/m
2
N � 1.3 × 10−2, the term in A proportional

to m2
	/m

2
N can be neglected for

(−)

νe and
(−)

νµ scattering. In this approximation, which
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we will adopt in the following, the cross-sections do not depend on the pseudoscalar
form factor GP (Q2).

Since F1(Q
2) and F2(Q

2) are known from eqns (5.109) and (5.110) and mea-
surements of the electromagnetic form factors of the nucleon, the measurements of
the differential cross-sections in eqn (5.147) give information on the Q2-dependence
of the axial form factor GA(Q2). In principle, it is convenient to obtain directly the
value of GA(Q2) from measurements of the difference

dσνn
CC

dQ2
− dσν̄p

CC

dQ2
=
G2

F |Vud|2 (s− u)Q2

4π (pν · pNi)
2 GA (F1 + F2) . (5.154)

However, in practice it is difficult to have beams of neutrinos and antineutri-
nos. Hence, most experiments have obtained information on the axial form factor
through the scattering of νµ’s or ν̄µ’s produced in accelerators with protons or nuclei
(see Ref. [215]).

The neutrino scattering data can be fitted with F1 and F2 expressed in terms of
the dipole electromagnetic form factors in eqns (5.117)–(5.119) (see eqns (5.109),
(5.110), (5.113), and (5.114)) and the dipole axial form factor

GA(Q2) =
gA

(1 +Q2/m2
A)

2 , (5.155)

where mA is the so-called axial mass, with experimental value [215]

mA = 1.026 ± 0.021 GeV . (5.156)

In the near future, the MINERνA experiment [391] will measure GA(Q2) with high
accuracy.

In the laboratory frame, where the initial nucleon is at rest, we have26

s = m2
N + 2mN Eν , (5.157)

t = q2 ≡ −Q2 = m2
	 − 2Eν (E	 − p	 cos θ) , (5.158)

u = m2
N − 2mN Eν + 2Eν (E	 − p	 cos θ) , (5.159)

where θ is the scattering angle of the outgoing lepton (analogous to that in Fig. 5.4).
The angular differential cross-sections for the quasielastic ν	 and ν̄	 scattering
processes in eqns (5.144) and (5.145) in the laboratory frame are given by

dσνn,ν̄p
CC

d cos θ
= −G

2
F |Vud|2m2

N

4π

p	

Eν

[
A(Q2) ±B(Q2)

s− u

m2
N

+ C(Q2)
(s− u)2

m4
N

]
,

(5.160)
with s− u = 4mN Eν − 2Eν (E	 − p	 cos θ).

26 The expression for u can be straightforwardly obtained from those of s and t by using
the relation in eqn (E.43).
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For low neutrino energies in the laboratory frame, Eν � mN , we haveQ2 � m2
N

and s − u � 4mN Eν . Taking into account that also m	 � mN , for � = e, µ, we
obtain

A(Q2) =
2Eν (E	 − p	 cos θ)

m2
N

(
g2

A − g2
V

)
+ O

(
E3

ν

m3
N

)
, (5.161)

B(Q2)
s− u

m2
N

= O
(
E3

ν

m3
N

)
, (5.162)

C(Q2)
(s− u)

2

m4
N

=
4E2

ν

m2
N

(
g2

A + g2
V

)
+ O

(
E3

ν

m3
N

)
. (5.163)

Hence, in this approximation the contribution of B(Q2) is negligible and the cross-
sections of the ν	-n and ν̄	-p charged-current scattering processes are the same.
Integrating over the scattering angle, neglecting the charged lepton mass and taking
gV � 1, we obtain the total low-energy cross-section

σνn,ν̄p
CC � G2

F |Vud|2
π

(
1 + 3 g2

A

)
E2

ν � 1.601× 10−44
(
1 + 3 g2

A

)( Eν

MeV

)2

cm2 .

(5.164)

5.3.2 Elastic neutral-current reactions

Neutrinos and antineutrinos interact elastically with nucleons through the neutral-
current processes

(−)

ν	 +N →(−)

ν	 +N , (5.165)

where N = p, n.
In this case, in analogy with the charged-current case, the nucleon interaction

is described by the hadronic matrix element

〈N(pf )|jρ
Z,Q(0)|N(pi)〉 , (5.166)

where jρ
Z,Q is the quark neutral current in eqn (3.178),

jρ
Z,Q = 2

∑
α=u,c,t

(
gU

L q
U
αL γ

µ qU
αL + gU

R q
U
αR γ

µ qU
αR

)
+ 2

∑
α=d,s,b

(
gD

L qD
αL γ

µ qD
αL + gD

R qD
αR γ

µ qD
αR

)
. (5.167)

From the values of the coefficients gU,D
L and gU,D

R , which are summarized in Table 3.6
(page 78), the neutral current jρ

Z,Q can be written as

jρ
Z,Q = vρ

3 − aρ
3 − 2 sin2 ϑW jρ

γ,Q − 1

2
(vρ

s − aρ
s) , (5.168)

with the isovector current vρ
3 given in eqn (5.90), the axial currents

aρ
a(x) = Q(x) γρ γ5 TaQ(x) , (5.169)
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and the electromagnetic current jρ
γ,Q given in eqn (5.103). The isoscalar currents

vρ
s and aρ

s are given by

vρ
s =

∑
q=s,c,b,t

q γµ q , aρ
s =

∑
q=s,c,b,t

q γµ γ5 q . (5.170)

They represent, respectively, the vector and axial contributions of the strange and
heavier quarks.

Let us separate the vector and axial parts of the hadronic current:

jρ
Z,Q(x) = vρ

Z(x) − aρ
Z(x) , (5.171)

with

vρ
Z(x) = vρ

3(x) − 2 sin2 ϑW jρ
γ,Q(x) − 1

2
vρ

s , (5.172)

aρ
Z(x) = aρ

3(x) −
1

2
aρ

s . (5.173)

In analogy with the charged-current case (see eqns (5.88) and (5.89)), the neutral-
current vector and axial matrix element can be written as

〈N(pf)|vρ
Z(0)|N(pi)〉 = uN(pf)

[
γρ FZN

1 (Q2) +
i

2mN
σρη qη F

ZN
2 (Q2)

]
uN(pi) ,

(5.174)

〈N(pf)|aρ
Z(0)|N(pi)〉 = uN (pf)

[
γρ γ5GZN

A (Q2) +
qρ

mN
γ5GZN

P (Q2)

]
uN(pi) ,

(5.175)

with the neutral-current Dirac, Pauli, axial, and pseudoscalar form factors
FZN

1 (Q2), FZN
2 (Q2), GZN

A (Q2), and GZN
P (Q2), respectively.

The one-nucleon matrix element of the isovector current vρ
3 can be expressed in

terms of the proton and neutron matrix elements of the electromagnetic current jρ
γ,Q

in eqn (5.103). This can be done by means of the charge-symmetry transformation
in eqn (5.82). Since

Uπ v
ρ
3 U†π = −vρ

3 , Uπ v
ρ
0 U†π = vρ

0 , (5.176)

one can obtain, from eqn (5.85),

〈p(pf )|vρ
3 |p(pi)〉 = −〈n(pf)|vρ

3 |n(pi)〉 =
1

2

[
〈p(pf )|jρ

γ,Q|p(pi)〉 − 〈n(pf )|jρ
γ,Q|n(pi)〉

]
.

(5.177)
Using this relation, we have, from the expression of the nucleon electromagnetic
matrix element in eqn (5.108),

FZN
i = ±1

2
(F p

i − Fn
i ) − 2 sin2 ϑW FN

i − 1

2
F sN

i (i = 1, 2; N = p, n) , (5.178)



NEUTRINO–NUCLEON SCATTERING 165

with the plus sign for N = p and the minus sign for N = n. The form factors
F sN

1 (Q2) and F sN
2 (Q2), which are defined by

〈N(pf)|vρ
s (0)|N(pi)〉 = uN (pf)

[
γρ F sN

1 (Q2) +
i

2mN
σρη qη F

sN
2 (Q2)

]
uN(pi) ,

(5.179)
are usually called strange vector form factors, since it is believed that the strange
quarks give the dominant contribution (see Ref. [406]). Hence, the vector hadronic
neutral-current matrix element is determined by the nucleon electromagnetic form
factors, whose values are reasonably well known (see eqns (5.111)–(5.119)), and the
strange vector form factors.

Let us now consider the axial currents aρ
a(x). Since under the charge-symmetry

transformation in eqn (5.82) we have

Uπ a
ρ
3 U†π = −aρ

3 , (5.180)

using eqn (5.85), one can find that

〈p(pf )|aρ
3|p(pi)〉 = −〈n(pf )|aρ

3|n(pi)〉 . (5.181)

Furthermore, it is possible to express these matrix elements in terms of the charged-
current axial matrix element in eqn (5.89). Using eqn (5.94), one can obtain
commutation relations which are analogous to those in eqns (5.95) and (5.96) for
the vector currents:

[Ta , a
ρ
b (x)] = i εabc a

ρ
c(x) , [T± , a

ρ
3(x)] = ∓ aρ

±(x) , with aρ
± = aρ

1 ± i aρ
2 .

(5.182)
Since the axial charged current aρ

W in eqn (5.69) coincides with aρ
+, we have

〈p(pp)|aρ
W (0)|n(pn)〉 = 〈p(pp)| [aρ

3(0) , T±] |n(pn)〉
= 〈p(pp)|aρ

3(0)|p(pn)〉 − 〈n(pp)|aρ
3(0)|n(pn)〉 . (5.183)

Finally, we obtain, from eqns (5.181) and (5.183),

〈p(pp)|aρ
3(0)|p(pn)〉 = −〈n(pp)|aρ

3(0)|n(pn)〉 =
1

2
〈p(pp)|aρ

W (0)|n(pn)〉 . (5.184)

Thus, the neutral-current axial and pseudoscalar form factors in eqn (5.175) are
related to the corresponding charged-current form factors in eqn (5.89) by

GZN
i (Q2) = ±1

2
Gi(Q

2) − 1

2
GsN

i (Q2) (i = A,P ; N = p, n) , (5.185)

with the plus sign for N = p and the minus sign for N = n. The strange axial and

pseudoscalar form factors GsN
A (Q2) and GsN

P (Q2) are defined by

〈N(pf)|aρ
s(0)|N(pi)〉 = uN (pf)

[
γρGsN

A (Q2) +
qρ

mN
γ5GsN

P (Q2)

]
uN(pi) . (5.186)

The kinematics in the neutral-current elastic scattering processes in eqn (5.165)
is the same as in the charged-current quasielastic scattering processes in eqns (5.144)
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and (5.145), with the only exception that the final lepton, being a neutrino, is practi-
cally massless. This implies that the differential cross-sections of the neutral-current
elastic scattering processes in eqn (5.165) have the same form as the charged-current
cross-sections in eqn (5.147), without |Vud|2:

dσνN,ν̄N
NC

dQ2
=

G2
Fm

4
N

8π (pν · pNi)
2

[
AN (Q2) ±BN (Q2)

s− u

m2
N

+ CN (Q2)
(s− u)

2

m4
N

]
,

(5.187)
with the plus and minus signs referring, respectively, to ν	-N and ν̄	-N scatter-
ing. The functions AZN , BZN , and CZN of Q2 have the same form as those
in eqns (5.151)–(5.153), with the charged-current form factors replaced with the
corresponding neutral-current form factors in eqns (5.178) and (5.185) and m2

	 → 0:

AN =
Q2

m2
N

{(
1 +

Q2

4m2
N

)
(GZN

A )2 −
(

1 − Q2

4m2
N

)[
(FZN

1 )2 − Q2

4m2
N

(FZN
2 )2

]
+
Q2

m2
N

FZN
1 FZN

2

}
, (5.188)

BN =
Q2

m2
N

GZN
A

(
FZN

1 + FZN
2

)
, (5.189)

CN =
1

4

[
(GZN

A )2 + (FZN
1 )2 +

Q2

4m2
N

(FZN
2 )2

]
. (5.190)

Thus, the neutral-current pseudoscalar form factors GZN
P (Q2) do not contribute to

the cross-sections.
In the same approximations as eqn (5.164), the total elastic neutral-current

cross-sections of neutrinos and antineutrinos on protons and neutrons are given by

σ
(−)
ν p

NC � G2
F

4π

[(
1 − 4 sin2 ϑW

)2
+ 3 g2

A

]
E2

ν , (5.191)

σ
(−)
ν n

NC � G2
F

4π

[
1 + 3 g2

A

]
E2

ν . (5.192)

One can see, from eqns (5.178) and (5.185), that the nucleon form factors
entering in the cross-section of the neutral-current elastic scattering processes in
eqn (5.187) are functions of the electromagnetic form factors, the axial form fac-
tor and the strange vector form factors. Since the values of the electromagnetic
form factors are reasonably well known (see eqns (5.111)–(5.119)) and the axial
form factor can be determined through the measurement of the charged-current
quasielastic scattering processes (see eqns (5.155) and (5.156)), the measurements
of the neutral-current elastic scattering processes in eqn (5.165) give information
on the strange form factors of the nucleon [657, 407, 508, 55, 57, 57] (see the review
in Ref. [56]).

Assuming the absence of the strange form factors of the nucleon, the elastic
scattering of neutrinos and antineutrinos on protons has been used for the mea-
surement of the weak mixing angle, which appears in the relation in eqn (5.178)



NEUTRINO–NUCLEON SCATTERING 167

which connects the values of the nucleon weak and electromagnetic form factors.
The average of experimental results gives [400]

sin2 ϑW = 0.203 ± 0.033 . (5.193)

5.3.3 Charged-current deep inelastic scattering

At high energies, Eν � mN in the laboratory frame, charged-current neutrino–
nucleon interactions are dominated by the inclusive deep inelastic scattering (DIS)
processes

ν	 +N → �− +X , ν̄	 +N → �+ +X , (5.194)

where N = p, n and X denotes any set of final hadrons. In the following, we denote
with pν , p	, pN , and pX the four-momenta of the neutrino, the charged lepton, the
nucleon and the sum of the four-momenta of the final hadrons, respectively, and
we neglect the mass of the final lepton.

The diagram of the process ν	(pν)+N(pN) → �−(p	)+X(pX) at lowest order in
the weak interaction perturbation expansion is shown in Fig. 5.12a. It is customary
to define the four-momentum transfer q as

q ≡ pν − p	 = pX − pN . (5.195)

The process is described by three kinematic variables. One of them is the Lorentz-
invariant squared center-of-mass energy

s = (pν + pN )
2

= m2
N + 2 pν · pN . (5.196)

The other two can be chosen among the Lorentz invariants

Q2 ≡ −q2 = 2 pν · p	 ≥ 0 , x ≡ Q2

2 pN · q , y ≡ pN · q
pN · pν

. (5.197)

These four Lorentz-invariant kinematical variables are related by

x y =
Q2

s−m2
N

. (5.198)

The DIS region of the kinematic variables is defined by

Q2 � m2
N , pN · q � m2

N . (5.199)

Since the values of the variables x and y are confined in the intervals

0 < x ≤ 1 , 0 < y ≤ 1 , (5.200)

we also have

s� m2
N , x y � Q2/s . (5.201)
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W+(q)

N(pN)

ν	(pν)

X(pX)

�−(p	)

d(pi)

W+(q)

N(pN )

ν	(pν)

u(pf)

�−(p	)

(a) (b)

Fig. 5.12. (a) Diagram of the ν	(pν)+N(pN ) → �−(p	)+X(pX) charged-current
DIS process at lowest order in the weak interaction perturbation expansion.
(b) Diagram of the same process in the quark–parton model, with elementary
W+(q) + d(pi) → u(pf) transition (see eqn (5.215)).

The neutrino and antineutrino DIS differential cross-sections are given by (see
Refs. [902, 227, 720])

d2σ
(−)
ν N

CC

dxdy
= σ0

CC

[
x y2 FW±N

1 + (1 − y)FW±N
2 ± x y

(
1 − y

2

)
FW±N

3

]
, (5.202)

with

σ0
CC =

G2
F

2π
s

(
1 +

Q2

m2
W

)−2

. (5.203)

The plus and minus signs in eqn (5.202) refer, respectively, to ν	 and ν̄	 scattering,
in which the vector boson absorbed by the nucleon are, respectively, a W+ and
a W−, as indicated by the superscripts of the structure functions FW±N

i . These
are real functions of two independent kinematical variables which depend on the
four-momentum transfer q. It is common to choose FW±N

i = FW±N
i (x,Q2). Isospin

symmetry implies that (see Ref. [227])

FW+p
i = FW−n

i , FW+n
i = FW−p

i . (5.204)

Many experiments use so-called isoscalar targets, composed of nuclei with an equal
number of protons and neutrons. In this case, the average neutrino and antineutrino
cross-sections are given by

d2σ
(−)
ν

CC

dxdy
=

1

2

⎛⎝d2σ
(−)
ν p

CC

dxdy
+

d2σ
(−)
ν n

CC

dxdy

⎞⎠
= σ0

CC

[
x y2 FW±

1 + (1 − y)FW±

2 ± x y
(
1 − y

2

)
FW±

3

]
, (5.205)
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with the same structure functions for neutrinos and antineutrinos:

FW+

i =
1

2

(
FW+p

i + FW+n
i

)
=

1

2

(
FW−n

i + FW−p
i

)
= FW−

i . (5.206)

In the laboratory frame, where the initial nucleon is at rest,

x =
Q2

2mN (Eν − E	)
, y = 1 − E	

Eν
, Q2 = 4Eν E	 sin2 θ

2
, (5.207)

where θ is the scattering angle of the outgoing lepton (analogous to that in Fig. 5.4).
For Q2 � m2

W we have, in the laboratory frame,

σ0
CC � G2

F

π
mN Eν � 1.58 × 10−38

(
Eν

GeV

)
cm2 . (5.208)

In the laboratory frame, the DIS conditions in eqn (5.199) imply that the neutrino
energy, the energy and scattering angle of the final charged lepton, and the energy
transfer from the neutrino to the hadrons must be large.

The current interpretation of the DIS processes is based on the quark–parton

model of hadrons27. According to this model, a nucleon is a composite system of
three valence quarks and a sea of quark–antiquark pairs of all flavors. In the DIS
processes, the intermediate virtual gauge boson (W in the neutrino charged-current
processes in eqn (5.194), Z in the neutrino neutral-current processes discussed in
section (5.3.4), and γ in charged lepton–nucleon DIS processes) which connects the
lepton vertex to the hadronic vertex interacts directly with the quark constituents
of the nucleon, as illustrated by the tree-level diagram in Fig. 5.12b.

In order to introduce quantitatively the quark–parton model, it is convenient
to work in the Breit frame, which was introduced in section 5.2.2 in the discussion
of the electromagnetic form factors of the nucleon (page 156). In the Breit frame,
the intermediate virtual gauge boson does not carry any energy, i.e. q0 = 0 and√
Q2 = |�q|. In the DIS reactions, we have

�q = −2 x�pN . (5.209)

Thus,�q and the three-momentum�pN of the initial nucleon are collinear and directed
in opposite directions. Moreover, in the DIS processes, where the conditions in
eqn (5.199) hold, we have

|�pN |2 � m2
N . (5.210)

The basic assumptions of the quark–parton model are:

(A) The nucleon is a composite system made of elementary quarks.
(B) The interactions among constituent quarks can be neglected in the DIS region

defined in eqn (5.199) (asymptotic freedom).
(C) In the Breit frame (where the inequality in eqn (5.210) is satisfied for the DIS

processes) the constituent quarks have three-momenta in the same direction of

27 The parton model of hadrons was introduced by Feynman in 1969 [435] (see
Ref. [436]). It was later understood that the partons are quarks.
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the nucleon. In other words, the transverse momenta of constituent quarks can
be neglected.

(D) In the Breit frame, the masses of the constituent quarks can be neglected in
comparison with their energy.

Let us consider the elementary process of interaction of the vector boson with
a constituent quark. Since (from assumption (B)) the initial and final quarks are
free particles, we have

pi + q = pf , (5.211)

where pi and pf are the initial and final quark four-momenta, respectively. In the
Breit frame where q0 = 0, we have

p0
i = p0

f , (5.212)

�pi +�q = �pf . (5.213)

Since (from assumption (D)) the quark masses can be neglected, we obtain, from
eqn (5.212), that |�pi| = |�pf|. In the Breit frame, the three-momentum of the nucleon
is collinear with the three-momentum of the vector boson. From the assumption (C),
the three-momentum of the initial quark is also collinear with the three-momentum
of the vector boson and from eqn (5.213) it follows that also the three-momentum
of the final quark is collinear: �pf, �pi, �pN , and �q are all parallel. Then, there are
only two possibilities: �pf = ±�pi. On the basis of the momentum conservation law
(5.213), since �q �= 0, only �pf = −�pi can be realized. Substituting this in eqn (5.213)
and using eqn (5.209), we obtain28

�pi = −�q
2

= x�pN . (5.214)

Since the quark mass has been neglected, we have also p0
i = x p0

N , which implies pi =
x pN . Therefore, in the quark–parton model the four-momentum conservation law
in eqn (5.211) implies that a virtual vector boson with four-momentum q interacts
with those quarks which have, in the Breit frame, a four-momentum pi equal to a
fraction x of the nucleon four-momentum pN .

The elementary W -quark and W -antiquark processes which contribute to CC
neutrino–nucleon DIS are

W+ + qi → qf (qi = d, s, b ; qf = u, c, t) , (5.215)

W+ + q̄i → q̄f (q̄i = ū, c̄, t̄ ; q̄f = d̄, s̄, b̄) . (5.216)

The process in eqn (5.215) for qi = d and qf = u is illustrated in Fig. 5.12b. Since
different quarks generate different final states, the total ν-N cross-section is given
by the sum of the cross-sections for each elementary process in eqns (5.215) and
(5.216). For each value of x, the cross-section of the elementary process with initial

28 This can also be seen as follows: let us write �pi as �pi = ξ�pN . Since the quark mass
is negligible, we have also p0

i = ξ p0
N , which implies pi = ξ pN . Then the four-momentum

conservation law in eqn (5.211) can be written as ξ pN + q = pf. Taking the square and
neglecting the quark masses, we obtain ξ = −q2/2(pN · q) = x.
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(anti)quark
(−)

qi is proportional to the probability density fN
(−)
qi

(x) of finding within the

nucleon a
(−)

qi with a four-momentum pi = x pN . The probability densities fN
(−)
qi

(x) are

called parton distribution functions (PDF) of the nucleon. The structure functions

FW±N
i in the differential cross-section in eqn (5.202) are given by the sum of the

contributions of each elementary process in eqns (5.215) and (5.216), which can be
calculated to be (see Ref. [227])

FW+N
i,qfqi

(x) = ξi |Vqfqi |2 fN
qi

(x) (N = p, n ; i = 1, 2, 3 ; qi = d, s, b ; qf = u, c, t) ,

(5.217)

FW+N
i,q̄f q̄i

(x) = ξ̄i |Vqiqf
|2 fN

q̄i
(x) (N = p, n ; i = 1, 2, 3 ; q̄i = ū, c̄, t̄ ; q̄f = d̄, s̄, b̄) ,

(5.218)

with
ξ1 = ξ̄1 = 1 , ξ2 = ξ̄2 = 2 x , ξ3 = −ξ̄3 = 2 . (5.219)

In the following we will consider, for simplicity, the DIS processes above the charm
threshold, but below the bottom threshold (the treatment of heavy quark thresholds
is reviewed in Refs. [276, 720]). We will also neglect the small mixing of the first two
quark generations with the third generation (see eqn (4.2)). In this approximation,
the 2×2 mixing matrix of the first two generations is unitary and the sum over the
final quarks and antiquarks of FW+N

i,qfqi
(x) and FW+N

i,q̄f q̄i
(x) leads to the disappearance

of the mixing matrix elements:

FW+N
i,qi

(x) =
∑

qf=u,c

FW+N
i,qfqi

(x) = ξi f
N
qi

(x) (N = p, n ; i = 1, 2, 3 ; qi = d, s) ,

(5.220)

FW+N
i,q̄i

(x) =
∑

q̄f=d̄,s̄

FW+N
i,q̄f q̄i

(x) = ξ̄i f
N
q̄i

(x) (N = p, n ; i = 1, 2, 3 ; q̄i = ū, c̄) .

(5.221)

Finally, summing over the initial quarks and antiquarks, one obtains

FW+N
i (x) = ξi

∑
q=d,s

fN
q (x) + ξ̄i

∑
q̄=ū,c̄

fN
q̄ (x) (N = p, n ; i = 1, 2, 3) . (5.222)

These are the expressions of the structure functions of the nucleons in CC neutrino–
nucleon DIS processes in the quark–parton model.

For CC antineutrino–nucleon DIS, the elementary W -quark and W -antiquark
processes are

W− + qi → qf (qi = u, c, t ; qf = d, s, b) , (5.223)

W− + q̄i → q̄f (q̄i = d̄, s̄, b̄ ; q̄f = ū, c̄, t̄) . (5.224)

The structure functions FW−N
i are obtained from the sum of the contributions of

each elementary process, which are given by

FW−N
i,qfqi

(x) = ξi |Vqfqi |2 fN
qi

(x) (N = p, n ; i = 1, 2, 3 ; qi = u, c, t ; qf = d, s, b) ,

(5.225)
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FW−N
i,q̄f q̄i

(x) = ξ̄i |Vqiqf
|2 fN

q̄i
(x) (N = p, n ; i = 1, 2, 3 ; q̄i = d̄, s̄, b̄ ; q̄f = ū, c̄, t̄) .

(5.226)

Under the same approximations which led to eqn (5.222), we obtain

FW−N
i (x) = ξi

∑
q=u,c

fN
q (x) + ξ̄i

∑
q̄=d̄,s̄

fN
q̄ (x) (N = p, n ; i = 1, 2, 3) . (5.227)

Equations (5.222) and (5.227) show that in the quark–parton model at the
tree-level the nucleon structure functions depend only on the kinematic variable x.
This property, called scaling, was predicted by Bjorken in 1969 [245], before the
formulation of the quark–parton model. It is possible to show that higher order
QCD radiative corrections imply that the nucleon structure functions have a weak
logarithmic Q2-dependence (see Refs. [73, 721, 176]), which can be neglected in a
first approximation.

Equations (5.222) and (5.227) imply the Callan–Gross relation [295]

FW±N
2 (x) = 2 xFW±N

1 (x) . (5.228)

From the expressions of the structure functions in eqn (5.222) and (5.227), one
can write the differential cross-sections in eqn (5.202) as

d2σνN
CC

dxdy
= 2 xσ0

CC

⎡⎣∑
q=d,s

fN
q (x) + (1 − y)

2
∑

q̄=ū,c̄

fN
q̄ (x)

⎤⎦ , (5.229)

d2σν̄N
CC

dxdy
= 2 xσ0

CC

⎡⎣∑
q̄=d̄,s̄

fN
q̄ (x) + (1 − y)2

∑
q=u,c

fN
q (x)

⎤⎦ . (5.230)

It is interesting to note that in the limit y = 1 the cross-section of neutrinos depends
only on the quark PDFs and the cross-section of antineutrinos depends only on
the antiquark PDFs. This is due to angular-momentum conservation, taking into
account that we have neglected the quark and charged lepton masses. For example,
in the case of scattering of left-handed neutrinos, in the center-of-mass frame the
initial state in the elementary interaction process with a right-handed antiquark
has a projection of the total angular momentum along the direction of the neutrino
momentum equal to −1, as illustrated in Fig. 5.13a. Since in the center-of-mass
frame �pN = −�pν and the DIS conditions in eqn (5.199) imply that Eν � mN , we
have EN � Eν and

y � Eν q
0 +�pν ·�q

E2
ν + |�pν |2

= 1 − Eν E	 (1 + cos θcms)

E2
ν + |�pν |2

, (5.231)

where θcms is the scattering angle of the final lepton with respect to the direction
of the neutrino momentum in the center-of-mass frame. Thus, y = 1 implies that
cos θcms = −1. In this case, the final lepton is emitted backwards with respect to
the direction of the neutrino momentum and the final antiquark is emitted along
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ν ū − d̄
(a) (b)

Fig. 5.13. (a) Configuration of the initial state in the process ν	 + d → �− + u
in the center-of-mass frame. The thin and thick arrows represent, respectively,
momentum and spin. (b) Configuration of the final state in the same process
with the charged lepton emitted backwards (y = 1).

the direction of the neutrino momentum, as illustrated in Fig. 5.13b. Since the
final charged lepton is left-handed and the final antiquark is right-handed, the
final state has a projection of the total angular momentum along the direction of
the neutrino momentum equal to +1, which is different from the initial −1 and
hence forbidden. On the other hand, one can easily see with the same reasoning
that the elementary interaction process of a neutrino with a left-handed quark
has a vanishing total angular momentum in both the initial and final state in
the center-of-mass frame, leading to the absence of a (1 − y)-dependence of the
quark contribution in eqn (5.229). Hence, the contribution to the neutrino and
antineutrino CC DIS differential cross-sections of a quark or antiquark q is given
by ⎛⎝d2σ

(−)
ν N

CC

dxdy

⎞⎠
q

= 2 xσ0
CC g(y) f

N
q (x) , (5.232)

where g(y) = 1 if the helicities of the initial (anti)neutrino and (anti)quark are equal

and g(y) = (1 − y)
2

if the helicities are opposite. In the case of ν-N scattering, we
have q = d, s, ū, c̄, whereas in the case of ν̄-N scattering, we have q = u, c, d̄, s̄.

By integrating eqns (5.229) and (5.230) over dy in the range in eqn (5.200), we
obtain

dσνN
CC

dx
= 2 xσ0

CC

⎡⎣∑
q=d,s

fN
q (x) +

1

3

∑
q̄=ū,c̄

fN
q̄ (x)

⎤⎦ , (5.233)

dσν̄N
CC

dx
= 2 xσ0

CC

⎡⎣∑
q̄=d̄,s̄

fN
q̄ (x) +

1

3

∑
q=u,c

fN
q (x)

⎤⎦ . (5.234)

Further integration over dx leads to the cross-sections

σνN
CC = 2 σ0

CC

⎡⎣∑
q=d,s

〈x〉Nq +
1

3

∑
q̄=ū,c̄

〈x〉Nq̄

⎤⎦ , (5.235)

σν̄N
CC = 2 σ0

CC

⎡⎣∑
q̄=d̄,s̄

〈x〉Nq̄ +
1

3

∑
q=u,c

〈x〉Nq

⎤⎦ , (5.236)
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where 〈x〉Nq,q̄ =
∫

dxx fN
q,q̄(x) are the average fractional momenta carried by quarks

and antiquarks. Note that the fractional momenta carried by quarks and antiquarks
are constrained by the momentum sum rule

∫
dxx

⎧⎨⎩ ∑
q=u,d,s,c

[
fN

q (x) + fN
q̄ (x)

]
+ fN

g (x)

⎫⎬⎭ = 1 , (5.237)

where fN
g (x) is the gluon distribution function of the nucleon N .

In the standard notation, the quark, antiquark, and gluon distributions in the
proton are denoted by

q(x) = fp
q (x) , q̄(x) ≡ fp

q̄ (x) , g(x) ≡ fp
g (x) . (5.238)

Isospin symmetry implies that the up and down quark and antiquark distributions
in the neutron are given by

fn
u (x) = d(x) , fn

ū (x) = d̄(x) , fn
d (x) = u(x) , fn

d̄ (x) = ū(x) , (5.239)

whereas the strange and charm quark and antiquark distributions and the gluon
distributions are the same,

fn
s (x) = s(x) , fn

s̄ (x) = s̄(x) , fn
c (x) = c(x) , fn

c̄ (x) = c̄(x) , fn
g (x) = g(x) .

(5.240)
The quark and antiquark distributions must satisfy the following sum rules, in order
to reproduce the quantum numbers of the nucleons:

No Strangeness and Charm:∫ 1

0

[s(x) − s̄(x)] dx =

∫ 1

0

[c(x) − c̄(x)] dx = 0 ; (5.241)

Unit Electric Charge:∫ 1

0

[
2

3
(u(x) − ū(x)) − 1

3

(
d(x) − d̄(x)

)]
dx = 1 ; (5.242)

Unit Baryon Number:

1

3

∑
q=u,d

∫ 1

0

(q(x) − q̄(x)) dx = 1 . (5.243)

Equations (5.242) and (5.243) imply the conditions∫ 1

0

(u(x) − ū(x)) dx = 2 ,

∫ 1

0

(
d(x) − d̄(x)

)
dx = 1 . (5.244)

Defining the valence quark distributions uv(x) = u(x) − ū(x) and dv(x) = d(x) −
d̄(x), the sum rules in eqn (5.244) reflect the fact that the proton is composed of
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two valence u quarks and one valence d quark. Since in QCD quarks and antiquarks
are created together by gluons, it is also plausible that

s(x) = s̄(x) , c(x) = c̄(x) . (5.245)

For the structure functions, using the expressions in eqns (5.222) and (5.227),
one can derive the Bjorken sum rule [244]∫ 1

0

[
FW+n

1 (x) − FW+p
1 (x)

]
dx =

∫ 1

0

[
FW−p

1 (x) − FW−n
1 (x)

]
dx = 1 (5.246)

and the Gross–Llewellyn Smith sum rule [573]∫ 1

0

[
FW+p

3 (x) + FW−p
3 (x)

]
dx =

∫ 1

0

[
FW+n

3 (x) + FW−n
3 (x)

]
dx = 6 . (5.247)

Furthermore, from the Callan–Gross relations in eqn (5.228), one can obtain the
Adler sum rule [30]∫ 1

0

[
FW+n

2 (x) − FW+p
2 (x)

] dx

x
=

∫ 1

0

[
FW−p

2 (x) − FW−n
2 (x)

] dx

x
= 2 . (5.248)

For scattering on an isoscalar target, the neutrino and antineutrino cross-

sections σ
(−)
ν

CC =

(
σ

(−)
ν p

CC + σ
(−)
ν n

CC

)
/2 are given by

σν
CC = σ0

CC

[
〈x〉u + 〈x〉d + 2 〈x〉s +

1

3
(〈x〉ū + 〈x〉d̄ + 2 〈x〉c̄)

]
, (5.249)

σν̄
CC = σ0

CC

[
〈x〉ū + 〈x〉d̄ + 2 〈x〉s̄ +

1

3
(〈x〉u + 〈x〉d + 2 〈x〉c)

]
, (5.250)

where 〈x〉q,q̄ = 〈x〉pq,q̄ are the average fractional momenta of the proton carried by
quarks and antiquarks. Assuming the equalities in eqn (5.245), one can find that
the difference of the neutrino and antineutrino cross-sections on an isoscalar target
have the simple expression

σν
CC − σν̄

CC =
2

3
σ0

CC (〈x〉u + 〈x〉d − 〈x〉ū − 〈x〉d̄) , (5.251)

which will be useful in the derivation of the Paschos–Wolfenstein relation in
eqn (5.266).

5.3.4 Neutral-current deep inelastic scattering

High-energy neutrinos and antineutrinos interact with nucleons also through the
neutral-current DIS reactions

(−)

ν	 +N →(−)

ν	 +X , (5.252)

where N = p, n and X denotes any set of final hadrons. The observation in 1973 of
these neutral-current processes, with � = µ, in the Gargamelle experiment at CERN



176 NEUTRINO INTERACTIONS

Z(q)

N(pN)

(−)

ν	(pνi)

X(pX)

(−)

ν	(pνf
)

u(pi)

Z(q)

N(pN )

(−)

ν	(pνi)

u(pf)

(−)

ν	(pνf
)

(a) (b)

Fig. 5.14. (a) Diagram of the
(−)

ν	(pνi)+N(pN ) →(−)

ν	(pνf
)+X(pX) neutral-current

DIS process at lowest order in the weak interaction perturbation expansion.
(b) Diagram of the same process in the quark–parton model, with elementary
Z(q) + u(pi) → u(pf) transition (see eqn (5.255)).

[599, 601] and an experiment at Fermilab [207], together with the observation of ν̄µ+
e− → ν̄µ +e− reactions in the Gargamelle experiment [600], led to the experimental
confirmation of the existence of the neutral-current interactions predicted by the
SM.

The kinematical variables are the same as in the charged-current DIS processes
discussed in section 5.3.3, with the obvious replacements pν → pνi , p	 → pνf

, where
pνi and pνf

are, respectively, the four-momenta of the initial and final neutrinos. The
NC DIS processes are mediated by exchange of a Z-boson, as shown in Fig. 5.14a,
with differential cross-sections given by

d2σ
(−)
ν N

NC

dxdy
= σ0

NC

[
x y2 FZN

1 + (1 − y)FZN
2 ± x y

(
1 − y

2

)
FZN

3

]
, (5.253)

where

σ0
NC =

G2
F

2π
s

(
1 +

Q2

m2
Z

)−2

. (5.254)

The plus and minus signs in eqn (5.253) refer, respectively, to ν	 and ν̄	 scattering.
For Q2 � m2

Z , we have σ0
NC � σ0

CC (see eqn (5.203)).
In the quark–parton model, the elementary Z-quark and Z-antiquark processes

which contribute to NC neutrino–nucleon DIS are

Z + q → q , Z + q̄ → q̄ . (5.255)

The elementary Z-u process is illustrated in Fig. 5.14b. The quark and antiquark
contributions to the structure functions are given by

FZN
1,Q =

1

2

[
(gq

V )2 + (gq
A)2

]
fN

q (x) , FZN
1,q̄ =

1

2

[
(gq

V )2 + (gq
A)2

]
fN

q̄ (x) ,

(5.256)
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FZN
2,Q = 2 xFZN

1,Q , FZN
2,q̄ = 2 xFZN

1,q̄ , (5.257)

FZN
3,Q = 2 gq

V g
q
A f

N
q (x) , FZN

3,q̄ = −2 gq
V g

q
A f

N
q̄ (x) , (5.258)

with the neutral-current vector and axial couplings gq
V and gq

A listed in Table 3.6
(page 78). In the following, for simplicity, we will consider the NC DIS processes
above the charm threshold, but below the bottom threshold, as in the discussion
of the CC DIS processes in section 5.3.3 (the treatment of heavy quark thresholds
is reviewed in Refs. [276, 720]). Hence, we consider q = u, d, s, c in eqn (5.255).
Expressing the couplings gq

V and gq
A in terms of the corresponding gq

L and gq
R (see

eqns (3.51) and (3.52))29, one can write the neutrino differential cross-section as

d2σνN
NC

dxdy
= 2 xσ0

NC

{ [
(gU

L )2 + (1 − y)
2
(gU

R)2
] ∑

q=u,c

fN
q (x)

+
[
(gD

L )2 + (1 − y)
2
(gD

R )2
] ∑

q=d,s

fN
q (x)

+
[
(gU

R)2 + (1 − y)
2
(gU

L )2
] ∑

q̄=ū,c̄

fN
q̄ (x)

+
[
(gD

R )2 + (1 − y)
2
(gD

L )2
] ∑

q̄=d̄,s̄

fN
q̄ (x)

}
. (5.259)

Note that the quark and antiquark contributions follow a rule similar to that in
eqn (5.232) for the CC processes. The antineutrino cross-section can be obtained
from the neutrino cross-section through the exchange L � R:

d2σν̄N
NC

dxdy
=

d2σνN
NC

dxdy

∣∣∣∣
L�R

. (5.260)

By integrating eqn (5.259) over dy and dx in the ranges in eqn (5.200), we
obtain

σνN
NC = 2 σ0

NC

{[
(gU

L )2 +
1

3
(gU

R)2
] ∑

q=u,c

〈x〉Nq +

[
(gD

L )2 +
1

3
(gD

R )2
] ∑

q=d,s

〈x〉Nq

+

[
(gU

R)2 +
1

3
(gU

L )2
] ∑

q̄=ū,c̄

〈x〉Nq̄ +

[
(gD

R )2 +
1

3
(gD

L )2
] ∑

q̄=d̄,s̄

〈x〉Nq̄
}
,

(5.261)

and σν̄N
NC = σνN

NC

∣∣
L�R

. For scattering on an isoscalar target, the neutrino and

antineutrino cross-sections σ
(−)
ν

NC =

(
σ

(−)
ν p

NC + σ
(−)
ν n

NC

)
/2 are given by

σν
NC = σ0

NC

{[
(gU

L )2 +
1

3
(gU

R)2
] [

〈x〉u + 〈x〉d + 2 〈x〉c
]

29 In the literature [672, 233, 421] it is common to use the notation εqL ≡ gq
L and εqR ≡ gq

R,
or something similar.
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+

[
(gD

L )2 +
1

3
(gD

R )2
] [

〈x〉u + 〈x〉d + 2 〈x〉s
]

+

[
(gU

R)2 +
1

3
(gU

L )2
] [

〈x〉ū + 〈x〉d̄ + 2 〈x〉c̄
]

+

[
(gD

R )2 +
1

3
(gD

L )2
] [

〈x〉ū + 〈x〉d̄ + 2 〈x〉s̄
]}

, (5.262)

and σν̄
NC = σν

NC|L�R. The equalities in eqn (5.245) imply that the difference of the
neutrino and antineutrino cross-sections on an isoscalar target is given by

σν
NC − σν̄

NC =
2

3
σ0

NC

(
g2

L − g2
R

) [
〈x〉u + 〈x〉d − 〈x〉ū + 〈x〉d̄

]
, (5.263)

where we adopted the common notation [421]

g2
L ≡ (gU

L )2 + (gD
L )2 =

1

2

(
1 − sin2 ϑW

)
+

5

9
sin4 ϑW , (5.264)

g2
R ≡ (gU

R)2 + (gD
R )2 =

5

9
sin4 ϑW . (5.265)

Here we have used the SM values of gU,D
L and gU,D

R listed in Table 3.6 (page 78).
From eqns (5.251) and (5.263), one can immediately derive the Paschos–Wolfenstein
relation [852]

σν
NC − σν̄

NC

σν
CC − σν̄

CC

= g2
L − g2

R =
1

2

(
1 − sin2 ϑW

)
. (5.266)

This relation is useful in practice, since it allows the measurement of the value of
the weak mixing angle by measuring the NC and CC neutrino DIS cross-sections
on an isoscalar target. If these measurements are made in the same experiment,
it is expected that most of the systematic uncertainties cancel in the ratio of the
cross-section differences, leading to the possibility of an accurate measurement of
sin2 ϑW. In fact, such a measurement has been done in the NuTeV experiment
[1087], with the result

sin2 ϑW = 0.2277± 0.0013± 0.0009 . (5.267)

Let us finally remark that the neutrino and antineutrino CC and NC DIS pro-
cesses give information on the nucleon PDFs which are complementary to those
obtained in charged lepton DIS on nucleons,

�± +N → �± +X , (5.268)

which is due to electromagnetic interactions. Since the scattering is mediated by a
virtual photon, this process is insensitive to the charge of the lepton. Neglecting the
charged lepton mass, the differential cross-section for unpolarized charged leptons
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is given by
d2σem

dxdy
=

4π α2 s

Q4

[
x y2 F γN

1 + (1 − y)F γN
2

]
. (5.269)

In the quark–parton model, the structure function F γN
1 is given by

F γN
1 (x) =

1

2

∑
q=u,d,s,c

e2q
(
fN

q (x) + fN
q̄ (x)

)
, (5.270)

where eq is the electric charge of the quark q (eq = 2/3 for q = u, c, t and eq = −1/3

for q = d, s, b). The structure function F γN
2 is related to F γN

1 by Callan–Gross
relations analogous to that in eqn (5.228):

F γN
2 (x) = 2 xF γN

1 (x) . (5.271)
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MASSIVE NEUTRINOS

Although it is perhaps still not possible to decide experimen-
tally between this new theory and what is the simple extension
of the Dirac equations to neutral particles, one must consider
that the first one introduces, in this still little explored field, a
smaller number of hypothetical entities. . . . The advantage of
this procedure over the elementary interpretation of the Dirac
equations is that there is no reason to presume the existence
of antineutrons or antineutrinos.
Ettore Majorana [765]

Neutrino mass is by far the most important subject of study in neutrino physics.
Ever since the proposal by Pauli, the mass of neutrinos has been the topic of intense
experimental and theoretical investigation. At the time of the Pauli proposal, the
neutrino mass was postulated to be of the order of the electron mass and even
massless. Finally, we know now that neutrinos have mass, although only two small
values of squared-mass differences are known.

In this chapter we discuss, in detail, how to describe a massive neutrino in the
case of a Dirac or a Majorana mass, as well as in the most general Dirac–Majorana
case. We discuss also the realistic case of three-generation mixing.

The origin of the small neutrino mass is still a mystery. It is commonly believed
that neutrino masses are a low-energy manifestation of physics beyond the Standard
Model and their smallness is due to a suppression generated by a new high-energy
scale, perhaps related to the unification of forces. This is achieved, for example, with
the celebrated see-saw mechanism (introduced in section 6.4.6). Numerous models
and hypotheses on the origin of neutrino masses and possible implementations of the
see-saw mechanism have been presented, especially in the past few years. Although
this subject is very important, we do not treat it here, since a proper discussion
would require a lengthy introduction of theoretical ideas which is beyond the scope
of this book. The interested reader can find detailed information in Refs. [812, 74,
467, 781, 1076, 673, 810, 75, 763, 811, 815, 950, 813].

6.1 Dirac masses

A Dirac neutrino mass can be generated with the same Higgs mechanism that gives
masses to quarks and charged leptons in the SM (see section 3.4). The only extension
of the SM that is needed is the introduction of right-handed components ναR of
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the neutrino fields (α = e, µ, τ). Such a model is sometimes called the minimally

extended Standard Model, in which the asymmetry in the SM between the lepton
and quark sectors due to the absence of right-handed neutrino fields is eliminated.

Let us recall, however, that the right-handed neutrino fields are fundamentally
different from the other elementary fermion fields because they are invariant under
the symmetries of the SM: they are singlets of SU(3)C × SU(2)L and have hyper-
charge Y = 0. The right-handed neutrino fields are called sterile [883] because they
do not participate in weak interactions (as well as strong and electromagnetic inter-
actions, as all neutrino fields); their only interaction is gravitational. On the other
hand, the normal left-handed neutrino fields that participate in weak interactions
are usually called active.

It is also important to note that the presence of sterile right-handed neutrino
fields is totally irrelevant for the cancellation of quantum anomalies [31, 201], which
constrain the properties of the other elementary fermion fields [268, 572, 517, 516,
606, 805, 915, 551, 459, 692]. As a consequence, the number of sterile right-handed
neutrino fields is not constrained by the theory, and the introduction of three right-
handed neutrino fields, one for each generation, is not even the minimal extension
of the SM, because the presence of only one right-handed neutrino field cannot be
excluded.

Let us emphasize that right-handedness is not an essential quality of the new
chiral fields, because we could work as well with the left-handed chiral fields ν̃αL =
νC

αR. The essential characteristic of these fields is that they are singlets under the SM
symmetries, and hence sterile. We follow the usual convention of calling the new
sterile neutrino fields right-handed, in order to distinguish them from the active
neutrino fields of the SM, which participate in weak interactions through their
left-handed chiral components.

In the minimally extended Standard Model with three right-handed neutrino
fields, the SM Higgs–lepton Yukawa Lagrangian in eqn (3.125) is extended by adding
a lepton term with the same structure as the second term on the right-hand side of
eqn (3.161), which generates the masses of up-type quarks:

LH,L = −
∑

α,β=e,µ,τ

Y ′	αβ LαL Φ �′βR −
∑

α,β=e,µ,τ

Y ′ναβ LαL Φ̃ ν′βR + H.c. , (6.1)

where Y ′ν is a new matrix of Yukawa couplings. In the unitary gauge the Higgs–
lepton Yukawa Lagrangian can be written in matrix form as

LH,L = −
(
v +H√

2

)[
�′L Y

′	 �′R + ν ′L Y
′ν ν ′R

]
+ H.c. , (6.2)

with the chiral charged lepton arrays in eqn (3.127), the left-handed neutrino array
in eqn (3.138), and the new right-handed neutrino array

ν ′R ≡

⎛⎝ν′eR

ν′µR

ν′τR

⎞⎠ . (6.3)

The matrix Y ′	 of charged lepton Yukawa couplings can be diagonalized as in
eqn (3.129), and the matrix Y ′ν of neutrino Yukawa couplings can be diagonalized
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in a similar way:

V ν†
L Y ′ν V ν

R = Y ν , with Y ν
kj = yν

k δkj (k, j = 1, 2, 3) , (6.4)

with real and positive yν
k . Here V ν

L and V ν
R are two appropriate 3 × 3 unitary

matrices (V ν†
L = (V ν

L )−1 and V ν†
R = (V ν

R )−1).
Defining the massive chiral charged lepton arrays in eqn (3.131) and the chiral

massive neutrino arrays

nL = V ν†
L ν ′L ≡

⎛⎝ν1L

ν2L

ν3L

⎞⎠ , nR = V ν†
R ν ′R ≡

⎛⎝ν1R

ν2R

ν3R

⎞⎠ , (6.5)

the diagonalized Higgs–lepton Yukawa Lagrangian reads

LH,L = −
(
v +H√

2

)[
�L Y

	 �R + nL Y
ν nR

]
+ H.c.

= −
(
v +H√

2

)[ ∑
α=e,µ,τ

y	
α �αL �αR +

3∑
k=1

yν
k νkL νkR

]
+ H.c. (6.6)

Using the Dirac charged lepton fields in eqn (3.133) and the Dirac neutrino fields

νk = νkL + νkR (k = 1, 2, 3) , (6.7)

we finally obtain

LH,L = −
∑

α=e,µ,τ

y	
α v√
2
�α �α−

3∑
k=1

yν
k v√
2
νk νk −

∑
α=e,µ,τ

y	
α√
2
�α �αH−

3∑
k=1

yν
k√
2
νk νk H .

(6.8)
Therefore, the neutrino masses are given by

mk =
yν

k v√
2

(k = 1, 2, 3) , (6.9)

and massive Dirac neutrinos couple to the Higgs field through the last term in
eqn (6.8).

Note that the neutrino masses that we have obtained with this mechanism are
proportional to the Higgs VEV v, as the masses of charged leptons and quarks.
However, it is known that the masses of neutrinos are much smaller than those
of charged leptons and quarks. In the mechanism that we have just described,
however, there is no explanation of the very small values of the eigenvalues yν

k of
the Higgs-neutrino Yukawa coupling matrix that are needed.

In fact, the SM Higgs mechanism discussed in section 3.4 leaves completely open
the question of the value of the Yukawa couplings with the Higgs of all particles.
Therefore, the origin of the values of quark and lepton masses is a mystery in the
framework of the SM. Among other problems, this mystery leads us to believe that
the SM must be considered as an effective theory obtained from the low-energy
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limit of a more complete theory, in which the masses of quarks and leptons can
be derived from first principles. Seen from this point of view, the values of quark
and lepton masses represent a useful handle that may allow us to understand the
physics beyond the SM. Indeed, the comparison of the predicted values with the
observed quark and lepton spectra is one of the strong constraints that enable us
to select among the new theories. In this context, the smallness of neutrino masses
is an additional clue of the physics beyond the SM and a very strong constraint
that the new theories must satisfy.

The mixing of three Dirac neutrinos is similar to the SM mixing of quarks,
discussed in section 3.5 and chapter 4. From eqns (3.131) and (6.5), the leptonic
weak charged current in eqn (3.80) can be written as

jρ
W,L = 2 ν ′L γ

ρ �′L = 2 nL V
ν†
L γρ V 	

L �L = 2 nL V
ν†
L V 	

L γ
ρ �L . (6.10)

This current depends on the product

U = V 	†
L V ν

L , (6.11)

which is the mixing matrix in the lepton sector, analogous to the CKM mixing
matrix of quarks. In terms of the mixing matrix, the leptonic weak charged current
reads

jρ
W,L = 2 nL U

† γρ �L . (6.12)

It is customary to define left-handed flavor neutrino fields as

νL = U nL = V 	†
L ν ′L , with νL =

⎛⎝νeL

νµL

ντL

⎞⎠ , (6.13)

which allow us to write the leptonic weak charged current as in the SM eqn (3.141):

jρ
W,L = 2 νL γ

ρ �L = 2
∑

α=e,µ,τ

ναL γ
ρ �αL . (6.14)

We wish to emphasize that the flavor neutrino fields must be treated with caution.
In practice they are useful only for calculations in which the effects of neutrino
masses are neglected, i.e. in the SM limit. On the other hand, if neutrino masses
are taken into account the flavor neutrino fields do not have a definite mass and are
not independent, being coupled by the mass terms. In that case it is much more
convenient to work with the independent massive neutrino fields.

6.1.1 Lepton numbers

The definition of left-handed flavor neutrino fields is useful for defining flavor lepton
numbers as in the SM (see Table 3.8). The flavor lepton numbers are conserved in
weak interactions, but in general they are violated by the neutrino part of the
Higgs–lepton Yukawa Lagrangian in eqn (6.6), which can be written as

LH,L = −
(
v +H√

2

)[
�L Y

	 �R + νL U Y
ν nR

]
+ H.c.
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= −
(
v +H√

2

) ∑
α=e,µ,τ

[
y	

α �αL �αR + ναL

3∑
k=1

Uαk y
ν
k νkR

]
+ H.c. (6.15)

Indeed, the weak charged-current in eqn (6.14) is invariant under the global U(1)
gauge transformations

�αL → eiϕα �αL , ναL → eiϕα ναL (α = e, µ, τ) , (6.16)

with different phases for each flavor. The charged lepton terms in eqn (6.15)
are invariant if the right-handed chiral components of the charged lepton fields
transform with the corresponding phases:

�αR → eiϕα �αR (α = e, µ, τ) . (6.17)

But it is not possible to find any transformation of the right-handed neutrino fields
that leaves simultaneously invariant the neutrino part of the Higgs–lepton Yukawa
Lagrangian in eqn (6.15) and the kinetic part of the neutrino Lagrangian

L
(ν)
kinetic =

3∑
k=1

νki /
↔
∂νk =

3∑
k=1

(
νkLi /

↔
∂ νkL + νkRi /

↔
∂ νkR

)

=
∑

α=e,µ,τ

ναLi /
↔
∂ναL +

3∑
k=1

νkRi /
↔
∂νkR . (6.18)

In fact, the only way to leave the neutrino part of the Higgs–lepton Yukawa
Lagrangian in eqn (6.15) invariant under the transformation in eqn (6.16) is to

let the combination
∑3

k=1 Uαk y
ν
k νkR transform as eiϕα

∑3
k=1 Uαk y

ν
k νkR. But, in

general, this transformation does not leave invariant the kinetic part in eqn (6.18)

of the neutrino Lagrangian, because
∑3

k=1 Uαk y
ν
k νkR is not a unitary combination

of the right-handed neutrino fields.
In chapter 7 we will see that the nonconservation of the flavor lepton numbers

leads to neutrino oscillations, which is one of the most interesting and extensively
studied phenomena in neutrino physics. The only exceptions are the cases in which
all the Yukawa couplings yν

k are equal, i.e. the three neutrino masses given by
eqn (6.9) are equal, or the mixing matrix U is unity, i.e. there is no mixing. In
these cases the flavor lepton numbers are conserved and, as we will see in chapter 7,
neutrinos do not oscillate.

For massive Dirac neutrinos, even if the flavor lepton numbers are not conserved,
the total lepton number in eqn (3.143) is conserved. In fact, the Lagrangian is
invariant under the global U(1) gauge transformations

νkL → eiϕ νkL , νkR → eiϕ νkR (k = 1, 2, 3) , (6.19)

�αL → eiϕ �αL , �αR → eiϕ �αR (α = e, µ, τ) , (6.20)

with the same phase ϕ for the independent chiral neutrino and charged lepton
fields. Noether’s theorem discussed in section C.7 implies that there is a conserved
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current. From eqn (C.49) and the kinetic part of the neutrino and charged lepton
Lagrangian, this conserved current (∂ρj

ρ = 0) is

jρ =

3∑
k=1

νk γ
ρ νk +

∑
α=e,µ,τ

�α γ
ρ �α , (6.21)

and the conserved charge (∂0L = 0) is

L =

∫
d3x j0(x) =

∫
d3x

[
3∑

k=1

ν†k(x) νk(x) +
∑

α=e,µ,τ

�†α(x) �α(x)

]
. (6.22)

The Dirac massive neutrino fields in eqn (6.7) can be quantized in the standard
way for Dirac fields, as explained in chapter 2. Using the Fourier expansion in
eqn (2.139) of the Dirac neutrino and charged lepton Lagrangian, the conserved
charge is the lepton number

:L : =

3∑
k=1

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)†

νk
(p) a(h)

νk
(p) − b(h)†

νk
(p) b(h)

νk
(p)
]

+
∑

α=e,µ,τ

∫
d3p

(2π)3 2E

∑
h=±1

[
a
(h)†
	α

(p) a
(h)
	α

(p) − b
(h)†
	α

(p) b
(h)
	α

(p)
]
, (6.23)

where the double colon denotes normal ordering30 of the creation and annihilation
operators. As for other charges, in quantum field theory the normal ordering is
necessary in order to assign to the vacuum a zero charge. Equation (6.23) shows
that neutrinos and negatively charged leptons have L = +1, whereas antineutrinos
and positively charged leptons have L = −1, as in the SM (see Table 3.8). Therefore,
the lepton quantum numbers are different for neutrinos and antineutrinos (charged
leptons and antileptons are also distinguished by the lepton number, but in this
case this fact is less important, because they are also distinguished by the electric
charge).

The conserved charge in eqn (6.23), which distinguishes neutrinos from antineu-
trinos, is important for the classification of the states describing physical systems
with one or more neutrinos and antineutrinos. Hence, we see that the Dirac char-
acter of massive neutrinos, which implies that neutrinos and antineutrinos are
different particles, is closely related to the invariance of the total Lagrangian under
the global U(1) gauge transformations in eqns (6.19) and (6.20).

The right-handed components νkR of the massive Dirac neutrino fields do not
enter in the weak charged current in eqn (6.12). Hence, they represent sterile
degrees of freedom, that do not participate in weak interactions. It is possible
to define superpositions of right-handed neutrino fields in analogy to the definition
in eqn (6.13) of left-handed flavor neutrino fields. However, such a definition would

30 In a normally ordered product of creation and annihilation operators, the order of
the operators is rearranged putting all the destruction operators on the right, taking into
account the anticommutation of fermion operators.
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be useless, because of the sterility of right-handed neutrino fields. Since the mixing
in eqn (6.13) of the left-handed neutrino fields is independent of the right-handed
neutrino fields, the active and sterile degrees of freedom remain decoupled in the
presence of Dirac mixing and oscillations between active and sterile states is not
possible.

In practice, one does not consider the possible existence of additional sterile
Dirac neutrino fields, i.e. fields of additional Dirac neutral fermions that are singlets
of the SU(2)L×U(1)Y electroweak symmetry group. These fields do not participate
in weak interaction with both their left and right components, but can couple with
the ordinary neutrinos through the mass term, generating a complicated mixing
between active and sterile degrees of freedom. Since at present there is no indication
of the existence of such additional sterile Dirac neutrino fields, the principle of
simplicity31 forces us to ignore them.

6.1.2 Mixing

As in the case of quarks discussed in section 4.2, the mixing matrix of Dirac
neutrinos depends on four physical parameters: three mixing angles and one CP-
violating phase. As in the case of quarks, five of the six phases in the unitary mixing
matrix are unphysical because they can be eliminated by rephasing the neutrino
and charged lepton fields. This is possible because, apart from the weak CC part,
the Lagrangian is invariant under the global phase transformations

νkL → eiϕk νkL , νkR → eiϕk νkR (k = 1, 2, 3) , (6.24)

�αL → eiϕα �αL , �αR → eiϕα �αR (α = e, µ, τ) , (6.25)

with three independent phases ϕk for the massive neutrino fields and three
independent phases ϕα for the massive charged lepton fields.

The Dirac three-neutrino mixing matrix has properties analogous to the quark
mixing matrix, discussed in chapter 4. In particular, CP violation can be quantified
in a rephasing-invariant way in terms of the Jarlskog invariant [640, 639, 562, 395,
1075]

J = �m
[
Uµ3 Ue2 U

∗
µ2 U

∗
e3

]
. (6.26)

The CP and T asymmetries in neutrino oscillations depend on J (see section 13.1.1
for a general discussion of CP and T violations in neutrino oscillations and sec-
tion 13.1.1 for a discussion of CP and T violations in neutrino oscillations in the
case of three-neutrino mixing).

As discussed in section 4.7 for the quark case, in the case of three-neutrino
mixing all the imaginary parts of the rephasing invariant quartic products
U∗αk Uβk Uαj U

∗
βj are equal up to a sign,

�m
[
U∗αk Uβk Uαj U

∗
βj

]
= sαβ;kj J , (6.27)

31 This principle is also known as Ockham’s razor (see the quote at the beginning of
chapter 4 on page 106).
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because of the unitarity relations analogous to eqns (4.155) and (4.156)∑
k �=j

�m
[
U∗αk Uβk Uαj U

∗
βj

]
= 0 (α�=β) , (6.28)

∑
α�=β

�m
[
U∗αk Uβk Uαj U

∗
βj

]
= 0 (k �=j) . (6.29)

The coefficients sαβ;kj = ±1 are antisymmetric in the indices α, β and in the indices
k, j:

sαβ;kj = −sβα;kj = sβα;jk . (6.30)

Their values are given in Table 13.1 below (page 454).
A convenient parameterization of the Dirac neutrino mixing matrix is the same

as given in eqn (4.79):

U =

⎛⎝ c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

⎞⎠ , (6.31)

where cab ≡ cosϑab and sab ≡ sinϑab. The three mixing angles ϑ12, ϑ13, ϑ23 take
values in the ranges 0 ≤ ϑab ≤ π/2 and δ13 is the CP-violating phase with a value
in the range 0 ≤ δ13 < 2π. In this parameterization the Jarlskog invariant is given
by

J = c12s12c23s23c
2
13s13 sin δ13 =

1

8
sin 2ϑ12 sin 2ϑ23 cosϑ13 sin 2ϑ13 sin δ13 . (6.32)

As in the SM (see eqn (3.148)), the unitarity of the charged lepton and neutrino
mixing matrices V 	

L, V 	
R, and V ν

L implies the GIM mechanism: the expression of the
neutral weak current in terms of the lepton fields with definite masses is the same
as that in terms of the primed lepton fields, as shown by

jρ
Z,L = 2 gν

L ν ′L γ
ρ ν ′L + 2 gl

L �′L γ
ρ�′L + 2 gl

R �′R γ
ρ�′R

= 2 gν
L nL V

ν†
L γρ V ν

L nL + 2 gl
L �L V

	†
L γρ V 	

L �L + 2 gl
R �R V

	†
R γρ V 	

R �R

= 2 gν
L nL γ

ρ nL + 2 gl
L �L γ

ρ�L + 2 gl
R �R γ

ρ�R . (6.33)

An interesting question is why the mixing is always applied, as we have done,
to the neutrinos, whereas the charged leptons are treated as particles with definite
mass. The reason is that the only characteristic that distinguishes the three charged
leptons is their mass and the flavor of a charged lepton is identified by measuring its
mass. The mass determines its kinematical properties and its decay modes, which
can be measured directly through long-range electromagnetic interactions. Hence,
charged leptons with a definite flavor are, by definition, particles with definite
mass. On the other hand, neutrinos can be detected only indirectly by identifying
the charged particles produced in weak interactions and the flavor of a neutrino
created or destroyed in a charged-current weak interaction process is, by definition,
the flavor of the associated charged lepton. Therefore, flavor neutrinos are not
required to have a definite mass and the mixing implies that they are superpositions
of neutrinos with definite masses.
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6.2 Majorana neutrinos

As we have seen in chapter 3, chiral fermion fields are the building blocks of the SM
as well as blocks of modern gauge theories, because chiral spinors are the smallest
irreducible representations of the Lorentz group, from which all representations
can be constructed. In particular, a massless fermion can be described by a chiral
field, as shown by Landau [711], Lee and Yang [727], and Salam [919] with their
two-component theory of massless neutrinos, which we are going to describe.

As shown in section 2.7, the Dirac equation

(iγµ∂µ −m)ψ = 0 (6.34)

for a fermion field
ψ = ψL + ψR , (6.35)

is equivalent to the equations

iγµ∂µψL = mψR , (6.36)

iγµ∂µψR = mψL , (6.37)

for the chiral fields ψL and ψR, whose space-time evolutions are coupled by the
mass m.

If a fermion is massless, the two equations in eqns (6.36) and (6.37) are
decoupled:

iγµ∂µψL = 0 , (6.38)

iγµ∂µψR = 0 . (6.39)

Hence, a massless fermion can be described by a single chiral field (left-handed or
right-handed), which has only two independent components (see section 2.7). The
equations in eqns (6.38) and (6.39) are called the Weyl equations and the spinors
ψL and ψR are called Weyl spinors.

It is interesting that the possibility of describing a physical particle with a Weyl
spinor was rejected by Pauli in 1933 because it leads to the violation of parity.
In fact, space inversion transforms ψL into ψR and vice versa (see section 2.11.2),
implying that parity conservation requires the simultaneous existence of both chi-
ral components. However, the discovery of parity violation in 1956–57 invalidated
Pauli’s reasoning, renewing the possibility to describe massless particles with Weyl
spinor fields. In particular, since there was no indication of the existence of a neu-
trino mass and it was likely that the neutrino32 participates in weak interactions
through its left-handed chiral component, Landau [711], Lee and Yang [727], and
Salam [919] proposed to describe the neutrino with a left-handed Weyl spinor νL.
This is the so-called two-component theory of massless neutrinos, which has been
incorporated in the SM, where neutrinos are massless and described by left-handed
Weyl spinors.

32 At that time only one type of neutrino was known.
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If a two-component spinor is sufficient for the description of a massless fermion,
it is natural to ask if a four-component spinor is necessary for the description of
a massive particle. The answer, which may be surprising at first sight after our
discussion of the system of coupled equations in eqns (6.36) and (6.37), is no, as
discovered by E. Majorana in 1937 [765]. The trick lies in the assumption that ψR

and ψL are not independent. Obviously, the relation connecting ψR and ψL must be
compatible with eqns (6.36) and (6.37). This means that the two equations must be
two ways of writing the same equation for one independent field, say ψL. In order
to obtain eqn (6.36) from eqn (6.37), we take the Hermitian conjugate of eqn (6.37)
and we multiply it on the right with γ0. By using the property in eqn (2.6) of Dirac
matrices, we obtain

− i∂µψR γ
µ = mψL . (6.40)

Now, in order to obtain the same structure as eqn (6.36), we take the transpose
of eqn (6.40) and multiply on the left with the charge conjugation matrix C. Using
the defining property in eqn (2.344) of C, we finally obtain

iγµ∂µ C ψR
T

= m C ψL
T
. (6.41)

This equation has the same structure as eqn (6.36) and we can consider them as
identical if we set

ψR = ξ C ψL
T
, (6.42)

where ξ is an arbitrary phase factor (|ξ|2 = 1). This is the Majorana relation

between ψR and ψL, which makes sense, because C ψL
T

is right-handed: using
eqn (2.347) we have PL C = C PT

L , which leads to

PL

(
C ψL

T
)

= C
(
ψL PL

)T
= C

[
(PR ψL)

†
γ0
]T

= 0 . (6.43)

From eqns (6.36) and (6.42) we obtain the Majorana equation for the chiral field
ψL:

iγµ∂µψL = mξ C ψL
T
. (6.44)

We can eliminate the phase factor ξ by rephasing the field ψL as

ψL → ξ1/2 ψL . (6.45)

Then the Majorana equation for the rephased chiral field ψL reads

iγµ∂µψL = m C ψL
T
. (6.46)

The Majorana condition for the field ψ in eqn (6.35),

ψ = ψL + ψR = ψL + C ψL
T
, (6.47)

is
ψ = C ψT

(6.48)

From the discussion in section 2.11.1, one can see that C ψL
T

is identical,
apart from a possible phase factor, to the charge conjugated field ψC

L . However,
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as discussed at the end of section 2.11.1, charged-current V −A weak interactions
maximally violate the symmetry under charge conjugation. Since neutrinos inter-
act only through weak interactions, the charge parity of the neutrino fields has
no physical meaning and we can choose it arbitrarily. Choosing for simplicity the
charge parity of the neutrino field ψL to be equal to unity, we have

ψC
L = C ψL

T
. (6.49)

Using this convention, the Majorana field ψ in eqn (6.47) can be written as

ψ = ψL + ψC
L , (6.50)

and the Majorana condition in eqn (6.48) can also be written as

ψ = ψC . (6.51)

The Majorana condition in eqn (6.51) implies the equality of particle and
antiparticle. Hence, only neutral fermions can be described by a Majorana field.
This can also be seen by considering the Dirac equation for a fermion with charge
q coupled to the electromagnetic field Aµ:

(iγµ∂µ − q γµAµ −m)ψ = 0 (particle) , (6.52)

(iγµ∂µ + q γµAµ −m)ψC = 0 (antiparticle) . (6.53)

If q �= 0, ψ and ψC obey different equations and the Majorana equality in eqn (6.51)
cannot be imposed. On the other hand, for a neutral fermion we have q = 0 and
thus the two equations in eqns (6.52) and (6.53) become the same, allowing the
imposition of the Majorana equality in eqn (6.51).

In the Majorana case, the electromagnetic current jµ = qψγµψ vanishes
identically:

ψγµψ = ψCγµψC = −ψTC†γµCψT
= ψCγµTC†ψ = −ψγµψ = 0 . (6.54)

One can obtain the same result jµ = −jµ = 0 from the transformation in
eqn (2.366) of the electromagnetic current jµ under charge conjugation.

Among known elementary fermions only the neutrinos are neutral and they can
be Majorana particles. As noted already by Majorana [765], since a Majorana spinor
has only two independent components, the Majorana theory is simpler and more
economical than the Dirac theory. Hence, the Majorana nature of massive neutri-
nos may be more natural than the Dirac nature. In fact, neutrinos are Majorana
particles in most theories beyond the SM.

The Dirac and Majorana descriptions of a neutrino have different phenomeno-
logical consequences only if the neutrino is massive. In the massless Dirac theory,
the independent left-handed and right-handed chiral components of the neutrino
field obey the decoupled Weyl equations (6.38) and (6.39) (with ψL → νL and
ψR → νR). In the massless Majorana theory, the same Weyl equations (6.38) and
(6.39) hold, with the left-handed and right-handed chiral fields related by eqn (6.42).
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However, only the left-handed chiral component of the neutrino field interacts. If
the neutrino is massless, since the left-handed chiral component of the neutrino
field obeys the Weyl equation (6.38) in both the Dirac and Majorana descriptions
and the right-handed chiral component is irrelevant for neutrino interactions, the
Dirac and Majorana theories are physically equivalent.

From these considerations, it is clear that in practice one can distinguish a Dirac
from a Majorana neutrino only by measuring some effect due to the neutrino mass,
since otherwise the massless theory applies in an effective way. Moreover, the mass
effect must not be of kinematical nature, because the kinematical effects of Dirac
and Majorana masses are the same. For example, the Dirac or Majorana nature
of neutrinos cannot be revealed through neutrino oscillations (see chapter 7). The
most promising way to find if neutrinos are Majorana particles is the search for
neutrinoless double-β-decay (see section 14.3).

In the next subsection 6.2.1 we introduce the Lagrangian mass term of a Majo-
rana neutrino field. In subsection 6.2.2 we compare the numbers of degrees of
freedom of a Dirac and a Majorana neurino. In subsection 6.2.3 we discuss the quan-
tization of a Majorana neutrino field. In the following subsections 6.2.4, 6.2.5, 6.2.6,
and 6.2.7 we discuss, respectively, the violation of lepton number conservation, the
number of degrees of freedom, the two-component formalism, CP symmetry, and
the concept of an effective Majorana mass in the case of a Majorana neutrino field.
The mixing of three Majorana neutrinos is introduced in the next section 6.3.

6.2.1 Majorana mass term

In order to understand the theory of Majorana neutrinos, let us consider first
a single neutrino type ν. A Majorana mass is generated by a Lagrangian mass
term with a chiral fermion field alone. Since neutrinos are left-handed, we use the
left-handed chiral field νL.

Is it possible to write a mass term using νL alone? In order to answer this
question let us consider first a Dirac mass term for a Dirac neutrino field ν = νL+νR,

L
D
mass = −mν ν = −m (νR νL + νL νR) = −mνR νL + H.c. (6.55)

Note that only the νRνL and νLνR couplings survive, since we have, from PLνL = νL

and PRνL = 0,

νL νL = ν†L γ
0 νL = ν†L γ

0 PL νL = ν†L PR γ
0 νL = (PR νL)

†
γ0 νL = 0 , (6.56)

and similarly νR νR = 0. The Dirac mass term in eqn (6.55) is a Lorentz scalar, as
all the terms in the Lagrangian must be, because under a Lorentz transformation
the chiral fields νL(x) and νR(x) transform as the Dirac field ν(x) (see eqn (2.59)),
and the adjoint chiral fields νL(x) and νR(x) transform as ν(x) (see eqn (2.64)):

νL(x) → ν′L(x′) = S νL(x) , νR(x) → ν′R(x′) = S νR(x) , (6.57)

νL(x) → ν′L(x′) = νL(x)S−1 , νR(x) → ν′R(x′) = νR(x)S−1 , (6.58)



192 MASSIVE NEUTRINOS

with S given in eqn (2.61). In the above, we have used the commutation relation
in eqn (A.53) to find that

ν′L(x′) = PL ν
′(x′) = PL S ν(x) = S PL ν(x) = S νL(x) , (6.59)

and analogous derivations for νR, νL(x) and νR(x).
In order to write a Majorana mass term using νL alone, we must find a right-

handed function of νL which transforms as νL under Lorentz transformations and
can be substituted in place of νR in eqn (6.55). This function of νL is precisely the
charge conjugated field

νC
L = C νL

T , (6.60)

where we have chosen the arbitrary intrinsic charge parity to be equal to unity (as
already noted before eqn (6.60), the intrinsic charge parity of a neutrino has no
physical meaning because charged-current V − A weak interactions violate maxi-
mally the symmetry under charge conjugation). Since νC

L is right-handed, as we

proved in eqn (6.43), the coupling νC
L νL does not vanish. Furthermore, under a

Lorentz transformation the charge conjugated field νC
L (x) transforms as

νC
L (x) = C

(
ν†L(x) γ0

)T

→ C
(
ν′†L (x′) γ0

)T

= C
(
S−1

)T C−1 νC
L (x) . (6.61)

Using the relation in eqn (2.348), we obtain C
(
S−1

)T C−1 = S. Hence, νC
L (x)

transforms as νL(x), whereas νC
L (x) transforms as νL(x):

νC
L (x) → S νC

L (x) , νC
L (x) → νC

L (x)S−1 . (6.62)

Therefore, νC
L has the correct properties to be used in place of νR in eqn (6.55),

leading to the Majorana mass term

L
M
mass = −1

2
mνC

L νL + H.c. (6.63)

The full Majorana Lagrangian consisting of the kinetic terms for νL and νC
L and

the Majorana mass term in eqn (6.63) is given by

L
M =

1

2

[
νL i /

↔
∂ νL + νC

L i /
↔
∂ νC

L −m
(
νC

L νL + νL ν
C
L

)]
. (6.64)

In eqns (6.63) and (6.64) we introduced an overall factor 1/2 in order to avoid
double counting due to the fact that νC

L and νL are not independent (νC
L = CνL

T ).
For the derivation of the field equation using the Euler–Lagrange equation (see
eqn (C.9))

∂µ
∂L M

∂(∂µνL)
− ∂L M

∂νL
= 0 , (6.65)

it is useful to express νC
L in terms of νL using eqn (6.60) and

νC
L =

(
C νL

T
)†
γ0 = νT

L (γ0)T C† γ0 = −νT
L C† , (6.66)



MAJORANA NEUTRINOS 193

where we have used the properties in eqn (2.344) of the charge conjugation matrix
C. Then, the Majorana Lagrangian in eqn (6.64) can also be written as

L
M =

1

2

[
νL i /

↔
∂ νL + νT

L i
↔
/∂T νL

T −m
(
−νT

L C† νL + νL C νL
T
)]

. (6.67)

From eqn (6.65) and

∂L M

∂(∂µνL)
= − 1

2
iγµ νL , (6.68)

∂L M

∂νL
=

1

2
iγµ νL −m C νL

T , (6.69)

one can get the Majorana field equation (see eqn (6.46))

i/∂ νL = m C νL
T . (6.70)

We note that in the derivatives of L M with respect to ∂µνL and νL, we took into
account the anticommuting character of the field by adding a minus sign when νL

lies on the right33. For example,

∂

∂(∂µνL)
νT

L i
↔
/∂T νL

T = −1

2
iγµ νL . (6.71)

One can convince oneself that this procedure is correct by considering the variation

of νT
L i
↔
/∂T νL

T under a variation δv(∂µνL) of the type in eqn (C.5):

δv

(
νT

L i
↔
/∂T νL

T

)
=

1

2
νT

L iγ
µT δv(∂µνL

T ) = δv(∂µνL)

(
−1

2
iγµ νL

)
, (6.72)

where the minus sign is due to the anticommutation of the fields under transposi-
tion.

It is convenient to define the Majorana field

ν = νL + νC
L , (6.73)

which satisfies the Majorana condition

νC = ν . (6.74)

The Majorana Lagrangian in eqn (6.64) can be written in terms of ν as

L
M =

1

2
ν

(
i /
↔
∂ −m

)
ν . (6.75)

Note the factor 1/2, which distinguishes the Majorana Lagrangian from the Dirac
Lagrangian in eqn (2.1).

33 This problem does not appear in the derivation of the Dirac equation in eqn (2.11)

from the Dirac Lagrangian in eqn (2.1) because ψ(x) lies always on the left.
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Let us finally emphasize that the anticommutation property of fermion fields is
essential in order to have a Majorana Lagrangian, because, for commuting fields,
νT

L C† νL = νT
L (C†)T νL = −νT

L C† νL, and the Majorana mass term vanishes iden-
tically. Also the kinetic term would vanish. On the other hand, for anticommuting
fields the second part of the kinetic term in eqn (6.67) can be written as

νT
L i
↔
/∂T νL

T = νL i /
↔
∂ νL . (6.76)

In order to prove this equality, we use the anticommutation property in eqn (2.253)
of fermion fields, which implies

{νLα(x), νLβ(y)} =

(
1 − γ5

2
i/∂(x)

)
αβ

∆(x − y) , (6.77)

where α and β are Dirac indices, ∂
(x)
µ ≡ ∂/∂xµ, and ∆(x−y) is given by eqn (2.254).

Then, we have

νT
L (x) i

↔
/∂T νL

T (x) =
1

2
lim
y→x

∂(x)
µ

[
νT

L (y) iγµT νL
T (x) − νT

L (x) iγµT νL
T (y)

]
= νL(x) i /

↔
∂ νL(x) + δ , (6.78)

with

δ = − 1

4
lim
y→x

∂(x)
µ

{
Tr
[(

1 − γ5
)

/∂(y)γµ
]
∆(y − x) − Tr

[(
1 − γ5

)
/∂(x)γµ

]
∆(x − y)

}
= − lim

y→x
∂(x)

µ

[
∂µ
(y)∆(y − x) − ∂µ

(x)∆(x − y)
]
. (6.79)

where ∂µ
(x) ≡ ∂/∂xµ. Since ∂µ

(y)∆(y−x) = −∂µ
(x)∆(y−x) and ∆(y−x) = −∆(x−y),

we obtain δ = 0 , leading to the equality in eqn (6.76). Hence, the Majorana
Lagrangian in eqn (6.67) is commonly written as

L
M = νL i /

↔
∂ νL − m

2

(
−νT

L C† νL + νL C νL
T
)
. (6.80)

This expression for the Majorana Lagrangian is more convenient than that in
eqn (6.67), because the kinetic term has the same form as that of a massless neu-
trino in the SM. The Majorana mass term represents a physical effect beyond the
SM.

6.2.2 Degrees of freedom

The invariance of the Lagrangian under CPT and Lorentz transformations allows
us to understand the difference in the number of degrees of freedom of a Dirac and
a Majorana neutrino with a given momentum. Considering a Dirac or a Majorana
neutrino with momentum �p and helicity h, we will apply CPT and Lorentz trans-
formations in order to find which are the other states with the same momentum �p.
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The existence of these states is guaranteed by the CPT and Lorentz symmetries.
The number of states with the same momentum is the number of degrees of freedom
for each value of the momentum.

As shown in section 2.11.5, a CPT operation transforms a particle into its
antiparticle with the same momentum and opposite helicity. This is expected on
physical grounds. First, under a space inversion (P, parity), we have

t
P−−→ t , �x

P−−→ −�x , �p
P−−→ −�p , �L = �x×�p P−−→ �L . (6.81)

Thus, the spin �s, which is an angular momentum, and the helicity h behave as

�s
P−−→�s , h =

�s ·�p
|�p|

P−−→ −h . (6.82)

Under a time reversal (T), we have

t
T−−→ −t , �x

T−−→ �x , �p
T−−→ −�p , �L = �x×�p T−−→ −�L . (6.83)

Hence, for the spin and the helicity we obtain

�s
T−−→ −�s , h =

�s ·�p
|�p|

T−−→ h . (6.84)

Combining, under a space-time inversion (PT), we have

t
PT−−−→ −t , �x

PT−−−→ −�x , �p
PT−−−→ �p , �s

PT−−−→ −�s , h =
�s ·�p
|�p|

PT−−−→ −h .
(6.85)

Finally under a CPT transformation, a Dirac neutrino with momentum �p and
helicity h is transformed into a Dirac antineutrino with momentum �p and helicity
−h:

ν(�p, h)
CPT−−−−→ ν̄(�p,−h) . (6.86)

This transformation is shown by the upper horizontal line in Fig. 6.1a. The upper
vertical line on the right in Fig. 6.1a shows an appropriate Lorentz boost that
inverts the momentum �p and the helicity h

ν̄(�p,−h)
boost−−−−→ ν̄(−�p, h) , (6.87)

as explained in section 2.10.2. The lower horizontal line in Fig. 6.1a shows a CPT
transformation

ν̄(−�p, h)
CPT−−−−→ ν(−�p,−h) . (6.88)

Finally, the upper vertical line on the left in Fig. 6.1a shows that with an appropriate
Lorentz boost that inverts the momentum −�p and the helicity −h we get the original
state ν(�p, h):

ν(−�p,−h)
boost−−−−→ ν(�p, h) . (6.89)

The direction of the momentum of ν̄(−�p, h) and ν(−�p,−h) can be reversed with a
180◦ rotation, which leaves the helicity invariant,

ν̄(−�p, h)
180◦ rotation−−−−−−−−−→ ν̄(�p, h) , ν(−�p,−h)

180◦ rotation−−−−−−−−−→ ν(�p,−h) , (6.90)

as shown by the lower vertical lines in Fig. 6.1a. Hence, from CPT and Lorentz
invariance we find that there are four possible states of a Dirac neutrino for each
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ν(�p, h) �� CPT ��

��

boost

��

ν̄(�p,−h)
��

boost

��

ν(−�p,−h) ��
CPT

�� ν̄(−�p, h)

ν(�p,−h)
��

180◦

rotation

��

ν̄(�p, h)

��

180◦

rotation

��

ν(�p, h) �� CPT ��

��

boost

��

��

180◦ rotation

�����

�����

��
������

������

ν(�p,−h)
��

boost

��

��

�����

�����

�� ������

������

ν(−�p,−h) ��
CPT

�� ν(−�p, h)

(a) Dirac. (b) Majorana.

Fig. 6.1. Dirac (a) and Majorana (b) degrees of freedom.

value of the momentum �p:

ν(�p, h) , ν(�p,−h) , ν̄(�p, h) , ν̄(�p,−h) . (6.91)

These are the states of a Dirac neutrino and antineutrino with positive and negative
helicity.

Let us consider now the Majorana case. Since a Majorana neutrino is self-charge
conjugated, a CPT transformation changes only the helicity:

ν(�p, h)
CPT−−−−→ ν(�p,−h) , (6.92)

as shown by the upper horizontal line in Fig. 6.1b. An appropriate Lorentz boost
can invert the momentum �p and the helicity h,

ν(�p,−h)
boost−−−−→ ν(−�p, h) , (6.93)

as shown by the vertical line on the right in Fig. 6.1b. However, a diagonal line in
Fig. 6.1b shows that a 180◦ rotation transforms the state ν(−�p, h) to the original
state ν(�p, h),

ν(−�p, h)
180◦ rotation−−−−−−−−−→ ν(�p, h) . (6.94)

The lower horizontal line in Fig. 6.1b shows that a CPT operation transforms
ν(−�p, h) into ν(−�p,−h),

ν(−�p, h)
CPT−−−−→ ν(−�p,−h) , (6.95)

which can be transformed either into the original state ν(�p, h) by an appropriate
Lorentz boost,

ν(−�p,−h)
boost−−−−→ ν(�p, h) , (6.96)



MAJORANA NEUTRINOS 197

as shown by the vertical line on the left in Fig. 6.1b, or into ν(�p,−h) with a 180◦

rotation,

ν(−�p,−h)
180◦ rotation−−−−−−−−−→ ν(�p,−h) , (6.97)

as shown by a diagonal line in Fig. 6.1b. In both cases we do not get anything new.
Therefore, from CPT and Lorentz invariance we have only two possible states of a
Majorana neutrino for each value of the momentum �p:

ν(�p, h) , ν(�p,−h) . (6.98)

This means that a Majorana neutrino has half the degrees of freedom of a Dirac
neutrino. This is obviously due to the Majorana constraint in eqn (6.74), which
implies that in the Majorana case particle and antiparticle are identical, halving
the allowed degrees of freedom.

6.2.3 Quantized Majorana field

A Majorana field has all the properties of a Dirac field, discussed in chapter 2, with
the additional constraint in eqn (6.74). Because of the properties in eqn (2.354)
of the spinors u(h)(p) and v(h)(p), the Majorana condition in eqn (6.74) implies
the constraint b(h)(p) = a(h)(p) for the coefficients of the Fourier expansion in
eqn (2.139) of a Majorana field. From this constraint and eqn (2.139), the Fourier
expansion of a Majorana neutrino field ν(x) is

ν(x) =

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)(p)u(h)(p) e−ip ·x + a(h)†(p) v(h)(p) eip ·x] . (6.99)

When the Majorana field is quantized, the coefficients a(h)(p) become operators
which satisfy the canonical anticommutation relations in eqns (2.226)–(2.230),

{a(h)(p), a(h′)†(p′)} = (2π)3 2E δ3(�p−�p′) δhh′ , (6.100)

{a(h)(p), a(h′)(p′)} = {a(h)†(p), a(h′)†(p′)} = 0 . (6.101)

Since there is only one type of operator, there is no distinction between particles
and antiparticles. In other words, a Majorana neutrino is the same as a Majorana
antineutrino, as should be clear from the constraint b(h)(p) = a(h)(p).

In practice, however, it is customary to speak of neutrinos and antineutrinos
in the Majorana case also, the reason being that detectable neutrinos are always
ultrarelativistic (see the introduction of chapter 7). For one lepton generation, the
leptonic charged-current weak interaction Lagrangian is

L
CC
I,L = − g√

2

(
νL γ

µ �LWµ + �L γ
µ νLW

†
µ

)
, (6.102)

where � is the charged lepton field. The Hermitian-conjugated leptonic charged
current

jµ†
W,L = 2 �L γ

µ νL , (6.103)

which creates antineutrinos in the Dirac case, mainly creates ultrarelativistic Majo-
rana neutrinos with positive helicity. In fact, using the formulas in section 2.9, we
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have
〈ν(p, h)|νL(x)|0〉 = v

(h)
L (p) eip ·x , (6.104)

which gives, the approximations in eqn (2.206),

〈ν(p,+)|νL(x)|0〉 � −
√

2E

(
0

χ(−)(�p)

)
eip ·x , (6.105)

〈ν(p,−)|νL(x)|0〉 � −
√

2E

(
0

m
2E χ(+)(�p)

)
eip ·x . (6.106)

Hence, the creation by jµ†
W,L of ultrarelativistic Majorana neutrinos with negative

helicity is suppressed by the ratio m/E with respect to that of ultrarelativistic
Majorana neutrinos with positive helicity.

On the other hand, the leptonic charged-current

jµ
W,L = 2 νL γ

µ �L , (6.107)

which creates neutrinos in the Dirac case, mainly creates ultrarelativistic Majorana
neutrinos with negative helicity:

〈ν(p, h)|νL(x)|0〉 = u
(h)
L (p) eip ·x . (6.108)

Using the approximations in eqn (2.205) we have

〈ν(p,+)|νL(x)|0〉 �
√

2E
(

m
2E χ(+)†(�p) 0

)
eip · x , (6.109)

〈ν(p,−)|νL(x)|0〉 � −
√

2E
(
χ(−)†(�p) 0

)
eip ·x . (6.110)

Hence, the creation by jµ
W,L of ultrarelativistic Majorana neutrinos with positive

helicity is suppressed by the ratio m/E with respect to that of ultrarelativistic
Majorana neutrinos with negative helicity.

Therefore, an ultrarelativistic Majorana neutrino with positive helicity interacts
as a Dirac antineutrino with positive helicity, for which we have

〈ν̄(p, h)|νL(x)|0〉 = v
(h)
L (p) eip ·x , (6.111)

and an ultrarelativistic Majorana neutrino with negative helicity interacts as a
Dirac neutrino with negative helicity, for which eqn (6.108) holds. For this reason
it is customary to call Majorana neutrinos with negative helicity neutrinos,

|ν(p)〉 ≡ |ν(p,−)〉 , (6.112)

and Majorana neutrinos with positive helicity antineutrinos,

|ν̄(p)〉 ≡ |ν(p,+)〉 . (6.113)

From the general expression in eqn (C.44), the energy–momentum operator of
a Majorana field is given by

P
µ =

1

2

∫
d3x ν†(x) i

↔
∂µ ν(x) . (6.114)

The factor 1/2 stems from the coefficient 1/2 in the Majorana Lagrangian in
eqn (6.75). This factor is crucial for getting the correct energy–momentum opera-
tor, as one can see by imposing the Majorana constraint b(h)(p) = a(h)(p) in the
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expression in eqn (2.244) for the normally ordered energy–momentum operator of
a Dirac field: it is clear that it would give twice the correct energy–momentum
operator. On the other hand, from eqn (6.114) and the Fourier expansion in
eqn (6.99) of the quantized Majorana field, we obtain the correct normally ordered
energy–momentum operator

:Pµ : =

∫
d3p

(2π)3 2E
pµ
∑

h

a(h)†(p) a(h)(p) , (6.115)

which gives
:Pµ : |ν(p, h)〉 = pµ |ν(p, h)〉 , (6.116)

with

p0 = E =

√
�p2 +m2 . (6.117)

Let us emphasize that the essential difference between Dirac and Majorana neu-
trinos is that in the case of Dirac neutrinos particle and antiparticle are distinct,
whereas in the case of Majorana neutrinos they coincide. However, from the kine-
matical point of view Dirac and Majorana mass are equivalent, because they satisfy
the same energy–momentum dispersion relation in eqn (6.117) (which coincides with
eqn (2.140)).

6.2.4 Lepton number

In section 6.1.1 we have seen that if massive neutrinos are Dirac particles, the total
lepton number in eqn (3.143), which is associated, through Noether’s theorem, with
the global U(1) gauge transformations in eqns (6.19) and (6.20), is conserved. In the
case of massive Majorana neutrinos, this is no longer true, because the Majorana
mass term in eqn (6.63) is not invariant under the global U(1) gauge transformation

νL → eiϕ νL . (6.118)

This becomes clear by writing the Majorana mass term in eqn (6.63) as

L
M
mass =

1

2
m
(
νT

L C† νL + ν†L C ν∗L
)
, (6.119)

which then changes to

L
M
mass →

1

2
m
(
e2iϕ νT

L C† νL + e−2iϕ ν†L C ν∗L
)

(6.120)

under the transformation in eqn (6.118). One may ask if it is possible to con-
sider, instead of the transformation in eqn (6.118) of the left-handed chiral field, a
transformation of the Majorana field in eqn (6.73)

ν → eiϕ ν , (6.121)

which leaves invariant the Majorana Lagrangian in eqn (6.75). The answer, however,
is that such a transformation is not possible because it is incompatible with the
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Majorana constraint in eqn (6.74), since

νC → e−iϕ νC . (6.122)

One can also see that the transformation in eqn (6.121) is incompatible with the
definition in eqn (6.73) of the Majorana field, because if νL → eiϕ νL we have
νC

L → e−iϕ νC
L .

The absence of a conserved lepton number is also evident from the fact that
Dirac neutrinos have L = +1 and Dirac antineutrinos have L = −1. Since in
the Majorana case neutrinos and antineutrinos are the same object, it is clear
that there cannot be a conserved lepton number. Indeed, the neutrino part of the
Dirac lepton number operator in eqn (6.23) vanishes under the Majorana constraint

b
(h)
νk (p) = a

(h)
νk (p).

However, since neutrino masses are very small and, apart from the mass term
of Majorana neutrinos, the Lagrangian is invariant under the global U(1) gauge
transformations in eqns (6.19) and (6.20), it is possible to assign to charged leptons
and neutrinos an effective total lepton number which is conserved in all processes
that are not sensitive to the Majorana masses of neutrinos. In these processes,
the neutrinos can be considered to be massless. The corresponding lepton number
operator is obtained from the invariance of the effective Lagrangian

Leff = νeff
L i /
↔
∂ νeff

L + �

(
i /
↔
∂ −m	

)
�− g√

2

(
νeff

L γµ �LWµ + �L γ
µ νeff

L W †µ
)

(6.123)

under the global U(1) gauge transformation

νeff
L → eiϕ νeff

L , �L → eiϕ �L , �R → eiϕ �R , (6.124)

where νeff
L is an effective massless Weyl neutrino field. From eqn (C.49), the

associated effective conserved current (∂µj
µ
eff) is

jµ
eff = νeff

L γµ νeff
L + �α γ

µ �α , (6.125)

and the effective conserved charge (∂0Leff = 0) is

Leff =

∫
d3x j0eff(x) . (6.126)

In this case, the effective massless neutrino chiral field νeff
L is quantized according

to the discussion in sections 2.8.4 and 2.9.2:

νeff
L (x) =

∫
d3p

(2π)3 2E

[
a(−)(p)u(−)(p) e−ip · x + a(+)†(p) v(+)(p) eip ·x] , (6.127)

where we relabeled b(+)(p) → a(+)(p), in agreement with the convention in
eqn (6.113) in order to show the connection with the massive Majorana field in
eqn (6.99). Using the relativistic expressions in eqn (2.9) of the u and v spinors,
one can see that in the massless limit the left-handed part of the massive Majorana
field in eqn (6.99) reduces to νeff

L (x).
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Using eqn (6.127) and the Fourier expansion in eqn (2.139) for the massive Dirac
charged lepton field �(x), we obtain the normally ordered (see eqn (2.245)) effective
lepton number operator

:Leff : =

∫
d3p

(2π)3 2E

[
a(−)†(p) a(−)

να
(p) − a(+)†(p) a(+)

να
(p)
]

+

∫
d3p

(2π)3 2E

∑
h=±1

[
a
(h)†
	α

(p) a
(h)
	α

(p) − b
(h)†
	α

(p) b
(h)
	α

(p)
]
. (6.128)

Hence, we see that neutrinos with negative helicity have Leff = +1 and neutri-
nos with positive helicity have Leff = −1, in agreement with the convention in
eqn (6.113) of calling an antineutrino a neutrino with positive helicity. These assign-
ments of the effective lepton number lead to its conservation in all weak interaction
processes which are not sensitive to the Majorana neutrino mass, because in such
processes a charged lepton with Leff = +1 can produce only a negative helicity neu-
trino and a charged antilepton with Leff = −1 can produce only a positive helicity
neutrino.

If the Majorana mass term in eqn (6.119) is considered as a perturbation of the
massless Lagrangian, it generates transitions with

∆Leff = ±2 . (6.129)

The most promising process which could allow the discovery of such transitions is
neutrinoless double-β-decay (see section 14.3).

6.2.5 Two-component formalism

The fact that a Majorana neutrino has half the degrees of freedom of a Dirac
neutrino is explicitly clear in the two-component formalism presented in section 2.7.
In the chiral representation in eqn (2.27) of the γ matrices we have

[νL(x)]C =

(
0

ϕ(x)

)
, [νL(x)]C =

(
−ϕ†(x) 0

)
, (6.130)

and the Majorana Lagrangian in eqn (6.67) can be written as

L
M = −ϕ† iσ̄µ

↔
∂µ ϕ− m

2

(
ϕT iσ2 ϕ− ϕ† iσ2 ϕ∗

)
. (6.131)

The corresponding field equation follows from the Euler–Lagrange equation (see
eqn (C.9))

∂µ
∂L M

∂(∂µϕ†)
− ∂L M

∂ϕ†
= 0 . (6.132)

We have

∂L M

∂(∂µϕ†)
=
i

2
σ̄µ ϕ , (6.133)



202 MASSIVE NEUTRINOS

∂L M

∂ϕ†
= − i

2
σ̄µ ∂µϕ+miσ2 ϕ∗ , (6.134)

where we have used the anticommuting character of the field in the derivatives with
respect to ϕ† when ϕ† lies on the right (as ϕ∗ = (ϕ†)T ). The resulting Majorana
field equation for the two-component field ϕ(x) is

σ̄µ∂µ ϕ−mσ2 ϕ∗ = 0 , (6.135)

which can also be written as(
∂0 −�σ · �∇

)
ϕ+mσ2 ϕ∗ = 0 . (6.136)

From eqn (6.99) and the explicit expressions in eqn (2.202) of the u(h)(p) and
v(h)(p) spinors in the chiral representation, it follows that the Fourier expansion of
the two-component field ϕ(x) is

ϕ(x) =

∫
d3p

(2π)3 2E

∑
h=±1

[√
E − h |�p| a(h)(p)χ(h)(�p) e−ip · x

−h
√
E + h |�p| a(h)†(p)χ(−h)(�p) eip ·x] . (6.137)

Using the properties in eqns (2.207) and (2.210) of the two-component helicity
eigenstate spinors χ(h)(�p), one can verify that this expression satisfies the field
equation (6.136).

Since the derivation of the energy–momentum operator is rather tricky, we
discuss it in some detail. From the general expression in eqn (C.44), the energy–
momentum operator is given by

Pµ =

∫
d3xϕ†(x) i

↔
∂µ ϕ(x) . (6.138)

Using the Fourier expansion in eqn (6.137) and the properties of the two-component
helicity eigenstate spinors discussed in section 2.8.3, one can obtain

Pµ =

∫
d3p

(2π)34E2

∑
h=±1

{
pµ
[
(E − h|�p|) a(h)†(p)a(h)(p) − (E + h|�p|) a(h)(p)a(h)†(p)

]
+ hm

(
pµ
P − pµ

2

)[
η(�p, h)a(h)†(p)a(h)†(pP)e2iEt

+η∗(�p, h)a(h)(p)a(h)(pP)e−2iEt
]}

,

(6.139)

where η(�p, h) is the phase in eqn (2.211) and pµ
P = (E,−�p). For µ = 0, we have

p0
P − p0 = 0. For µ = k, we have pk

P − pk = −2pk. However, changing �p → −�p in
the integrand we obtain∫

d3p

E2
pkη(�p, h)a(h)†(p)a(h)†(pP)e2iEt = −

∫
d3p

E2
pkη(−�p, h)a(h)†(pP)a(h)†(p)e2iEt
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= −
∫

d3p

E2
pkη(�p, h)a(h)†(p)a(h)†(pP)e2iEt .

(6.140)

In the last equality we used the anticommuting property of a(h)†(p) and a(h)†(pP),
and the properties in eqn (2.212) and (2.213) of the phase η(�p, h), which imply
η(−�p, h) = −η(�p, h). Hence, the term proportional to a(h)†(pP) a(h)†(p) vanishes.
With an analogous calculation one can see that also the term proportional to
a(h)†(p) a(h)†(pP) vanishes. Finally, taking into account the anticommutation rela-
tion in eqn (6.100), from the two terms in the first line of eqn (6.139) we obtain
the correct normal ordered energy–momentum operator in eqn (6.115),

:Pµ : =

∫
d3p

(2π)3 2E
pµ
∑

h

a(h)†(p) a(h)(p) . (6.141)

The Fourier expansion in eqn (6.137) assumes a very simple form in the case
of ultrarelativistic neutrinos, which is of practical interest in most experiments. In
this case |�p| � m and the energy can be approximated by

E � |�p| + m2

2|�p| . (6.142)

The effective two-component field operator can be written as

ϕeff(x) =

∫
|
p|�m

d3p

(2π)3
√

2|�p|

[
a(−)(p)χ(−)(�p) e−ip ·x − a(+)†(p)χ(−)(�p) eip ·x] ,

(6.143)
neglecting terms of order m2/|�p|2, which are safely negligible in practice. Under
this approximation the effective neutrino field destroys negative helicity neutrinos
and creates positive helicity neutrinos, as a massless chiral left-handed field (see
sections 2.8.4 and 2.9.2).

6.2.6 CP symmetry

Since neutrinos interact only through weak interactions which violate maximally
the charge-conjugation and parity symmetries (see sections 2.11.1 and 2.11.2), their
properties under these transformations do not lead to physical constraints. On
the other hand, weak interactions do not necessarily violate the symmetry under
a CP transformation (see sections 2.11.3). A violation of the CP symmetry in
weak interactions may be a consequence of the fundamental structure of weak
interactions, but is now presumed to depend on the value of the fermion mass
matrices and the resulting mixing matrix, as discussed in section 4.6 for the case
of quarks, which can be extended by analogy to the mixing of Dirac neutrinos.

In the simplest, albeit unrealistic, case of one Majorana neutrino CP cannot be
violated, as we see below.
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Let us first consider the Majorana Lagrangian in eqn (6.64). Under a CP
transformation the chiral field νL transforms as

UCPνL(x)U−1
CP = ξCP

ν γ0 νC
L (xP) , (6.144)

where ξCP
ν is the CP phase and xµ

P = (x0,−�x). Recall that the theory is CP-
symmetric if there are values of the phase ξCP

ν such that the Lagrangian transforms
as

UCPL (x)U−1
CP = L (xP) . (6.145)

From eqn (6.144), the CP transformation of

νC
L (x) = C νL

T (x) = C (γ0)T ν∗L(x) (6.146)

is given by

UCPν
C
L (x)U−1

CP = −ξCP
ν

∗ C (γ0)T C∗ νL(xP) = −ξCP
ν

∗
γ0 νL(xP) . (6.147)

Here we have used the properties in eqns (2.344)–(2.346) of the charge conjugation

matrix C, which imply C∗ = −C−1. Therefore, νL(x) and νC
L (x) transform as

UCPνL(x)U−1
CP = ξCP

ν

∗
νC

L (xP) γ0 , (6.148)

UCPνC
L (x)U−1

CP = −ξCP
ν νL(xP) γ0 . (6.149)

The kinetic term

L
M
kin(x) =

1

2

(
νL(x) i /

↔
∂ νL(x) + νC

L (x) i /
↔
∂ νC

L (x)

)
. (6.150)

is CP invariant for any value of the phase ξCP
ν :

UCPL
M
kin(x)U−1

CP =
1

2

(
νC

L (xP) γ0 i /
↔
∂ γ0 νC

L (xP) + νL(xP) γ0 i /
↔
∂ γ0 νL(xP)

)
=

1

2

(
νC

L (xP) i
↔
/∂P νC

L (xP) + νL(xP) i
↔
/∂P νL(xP)

)
= L

M
kin(xP) ,

(6.151)

where ∂P
µ = ∂/∂xµ

P. On the other hand, the Majorana mass term in eqn (6.63),

L
M
mass(x) = −1

2
m
[
νC

L (x) νL(x) + νL(x) νC
L (x)

]
, (6.152)

transforms as

UCPL
M
mass(x)U

−1
CP = −1

2
m
[
−(ξCP

ν )2 νL(xP) νC
L (xP) − (ξCP

ν

∗
)2 νC

L (xP) νL(xP)
]
.

(6.153)
Thus, we obtain, from the criterion in eqn (6.145),

ξCP
ν = ±i . (6.154)

Note that the free Majorana case is different from the free Dirac case, in which the
CP phase ξCP

ν is arbitrary, as explained in section 2.11.3.
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The purely imaginary CP parity of a Majorana neutrino does not pose any prob-
lem for the invariance under CP of the charged-current weak interaction Lagrangian
in eqn (6.102). From the CP transformation

UCP �U
−1
CP = ξCP

	 γ0 C �T (6.155)

of the Dirac charged lepton field � and the CP transformation in eqn (4.117) of the
gauge boson field Wµ,

UCPWµ U
−1
CP = −Wµ† , (6.156)

we obtain the following CP transformation for the charged-current weak interaction
Lagrangian in eqn (6.102):

UCP L
CC
I,L U

−1
CP = − g√

2

(
ξCP
ν

∗
ξCP
	 �L γ

µ† νLW
µ† − ξCP

ν ξCP
	

∗
νL γ

µ† �LWµ
)
.

(6.157)
Since

γµ† =
(
γ0†, �γ†

)
=
(
γ0,−�γ

)
= γµ , (6.158)

we obtain

UCP L
CC
I,L U

−1
CP = − g√

2

(
ξCP
ν

∗
ξCP
	 �L γ

µ νL W
†
µ − ξCP

ν ξCP
	

∗
νL γ

µ �LWµ

)
. (6.159)

Comparing with eqn (6.102), one can see that the charged-current weak interaction
Lagrangian is invariant under a CP transformation if

ξCP
ν

∗
ξCP
	 = 1 . (6.160)

Therefore, the purely imaginary CP parity of a Majorana neutrino implies a purely
imaginary CP parity of the charged lepton:

ξCP
ν = ±i =⇒ ξCP

	 = ±i . (6.161)

Such a choice of the CP parities lead to CP conservation.

6.2.7 Effective Majorana mass

The Majorana mass term in eqn (6.63) involves only the neutrino left-handed chiral
field νL, which is present in the SM (one for each lepton generation). Hence, one
should ask if it is possible that SM neutrinos have Majorana masses. The answer
is negative, because, as one can see from Table 3.5, a neutrino left-handed chiral
field νL has third component I3 of the weak isospin equal to 1/2 and hypercharge
Y equal to −1. It then follows that

νC
L νL = −νT

L C† νL (6.162)

has I3 = 1 and Y = −2. Since the SM does not contain any weak isospin triplet
with Y = 2, it is not possible to have a renormalizable Lagrangian term which
can generate a Majorana neutrino mass. In fact, from power counting of divergent
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diagrams, Lagrangian terms which contain products of fields with energy dimension
larger than four are not renormalizable (see, for example, Ref. [634]). Let us recall
that fermion fields with spin 1/2 have dimension [E]3/2, as one can easily deduce
from the Dirac Lagrangian in eqn (2.1), using the fact that the action

∫
d4xL (x) is

dimensionless (hence L (x) ∼ [E]4). On the other hand, boson fields have dimension
of energy.

Considering for simplicity only one generation, the lowest dimensional term
which could generate a Majorana neutrino mass that one can construct with the
SM fields in Tables 3.5 and 3.7, respecting the SM symmetries, is the lepton number
violating term34

L5 =
g

M (LT
L τ2 Φ) C† (ΦT τ2 LL) + H.c. , (6.163)

where g is a dimensionless coupling coefficient and M is a constant with dimension
of mass. In eqn (6.163) LL is the one-generation SM lepton doublet in eqn (3.7)
and Φ is the Higgs doublet in eqn (3.96). Sometimes L5 is also written as

L5 =
1

2

g

M (LT
L C† τ2 �τ LL) · (ΦT τ2 �τ Φ) + H.c. , (6.164)

which is equivalent to the expression in eqn (6.163).
As a consequence of the electroweak symmetry breaking (see section 3.4)

Φ =

(
φ+

φ0

)
Symmetry−−−−−−→
Breaking

1√
2

(
0

v +H

)
, (6.165)

L5 generates the Majorana mass term for νL

L
M
mass =

1

2

g v2

M νT
L C† νL + H.c. , (6.166)

which, by comparison with eqn (6.119), corresponds to the Majorana mass

m =
g v2

M . (6.167)

The Lagrangian term L5 is not acceptable in the framework of the SM because
it contains a product of fields with energy dimension five, which is not renormal-
izable. It is important, however, to realize that the SM cannot be considered as
the final theory of everything, but only as an effective low-energy theory which is
the low-energy product of the symmetry breaking of a high-energy unified theory
(see Refs. [812, 714]). Hence, it is plausible that there are effective low-energy
Lagrangian terms which respect the symmetries of the SM, but are nonrenor-
malizable [1053, 1062, 1055, 1056] (see the review in Ref. [331]). These effective
Lagrangian terms must respect the symmetries of the SM above the electroweak
scale because they are generated by the high-energy theory which must include the
gauge symmetries of the SM in order to be effectively reduced to the SM at low
energies. This approach is analogous to that adopted in the study of weak inter-
action processes at energies well below the electroweak scale through the effective

34 As already explained in footnote 14 on page 71, τa are the Pauli matrices.
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nonrenormalizable Fermi theory of weak interactions (see section 3.7), which is a
low-energy manifestation of the SM.

A Lagrangian term which contains a product of fields with energy dimension
d is called a dimension-d operator, since the fields are operators in quantum field
theory.

Since any Lagrangian term must have a total dimension of [E]4, the coupling
constant of a dimension-d operator with d > 4 is proportional to M4−d, where M is
a heavy mass characteristic of the symmetry-breaking scale of the high-energy uni-
fied theory. This is analogous to the relation in eqn (3.227), in which the dimensional
Fermi constant in the effective low-energy dimension-six operator which constitutes
the Fermi Lagrangian is proportional to m−2

W .
The proportionality to M4−d of the coupling constant of dimension-d operators

represents in practice a strong suppressing factor that limits the observability of the
low-energy effects of the new physics beyond the SM. It is clear that the difficulty
of observing the effects of the effective low-energy nonrenormalizable operators
increase rapidly with their dimensionality.

The effective low-energy nonrenormalizable operator with lowest dimensionality,
compatible with the symmetries of the SM, is the dimension-five effective operator
L5 in eqn (6.163), which generates the Majorana neutrino mass in eqn (6.167),
which is proportional to M−1. From these considerations, it is expected that the
study of neutrino masses provides the most accessible low-energy window on the
new physics beyond the SM.

It is clear that a similar dimension-five effective operator cannot be written for
quarks, because it would generate a quark Majorana mass term that is forbidden,
because quarks are charged particles. In fact, a replacement of LL with QL in
eqn (6.163) would produce a Lagrangian term that is not invariant under a U(1)Y

gauge transformation, because Y (QL) = 1/3 and Y (Φ) = 1. The effective opera-
tor of lowest dimension that involve quark fields are the dimension-six lepton and
baryon number violating operators(

qD
R

T
qU
R

)(
QT

LLL

)
,

(
QT

LQL

)(
qU
R

T
�R
)
,

(
QT

LQL

)(
QT

LLL

)
,(

qD
R

T
qU
R

)(
qU
R

T
�R
)
,

(
qU
R

T
qU
R

)(
qD
R

T
�R
)
. (6.168)

The Lagrangian terms containing these operators are suppressed by coefficients
proportional to M−2. However, they are very interesting and potentially observable,
because they generate proton decay (for example, p→ e+π0).

Turning back to the dimension-five operator L5, it is important to note that the
generated neutrino Majorana mass in eqn (6.167) is proportional to the ratio v2/M.
Since v is the scale of the electroweak symmetry breaking, it sets the scale of the
Dirac fermion masses generated through the Higgs mechanism. Hence, eqn (6.167)
can be written as

m ∝ m2
D

M , (6.169)

where mD is a typical Dirac mass, which could be of the same order as the charged
lepton mass or a quark mass of the same generation. The relation in eqn (6.169)
has the same structure as that obtained with the see-saw mechanism, that will be
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discussed in section 6.4.6. It is so-called because the heavier the mass M, the lighter
is the neutrino mass m.

The relation in eqn (6.169) can explain the observed smallness of neutrino
masses. For example, if we take mD ∼ v ∼ 102 GeV and M ∼ 1015 GeV, which is
a plausible grand unification scale [532, 79, 79, 408], we get m ∼ 10−2 eV, which
is a plausible scale for the neutrino mass, according to the experimental data (see
section 13.3.4).

6.3 Mixing of three Majorana neutrinos

Let us consider now three generations of massive Majorana neutrinos. From the
array of left-handed flavor neutrino fields in eqn (3.138),

ν ′L ≡

⎛⎝ν′eL

ν′µL

ν′τL

⎞⎠ , (6.170)

we can construct the Majorana mass term

L
M
mass =

1

2
ν ′TL C†ML ν ′L + H.c. =

1

2

∑
α,β=e,µ,τ

ν′TαL C†ML
αβ ν

′
βL + H.c. (6.171)

In general, the matrix ML is a complex symmetric matrix. In fact, we have∑
α,β

ν′TαL C†ML
αβ ν

′
βL = −

∑
α,β

ν′TβLM
L
αβ (C†)T ν′αL , (6.172)

where the last expression has been obtained taking the transpose and changing
sign because of the anticommutation property of fermion fields. Since CT = −C
(see eqn (2.346)), we obtain∑

α,β

ν′TαL C†ML
αβ ν

′
βL =

∑
α,β

ν′TβL C†ML
αβ ν

′
αL =

∑
α,β

ν′TαL C†ML
βα ν

′
βL , (6.173)

where in the last expression we have just renamed α � β. Comparing the left and
right sides of eqn (6.173), one can see that ML is symmetric:

ML
αβ = ML

βα . (6.174)

As in the case of Dirac neutrinos discussed in section 6.1, the fields of massive
neutrinos are obtained diagonalizing the Majorana mass term in eqn (6.171). As
shown in section 6.7.1, the symmetric mass matrix ML can be diagonalized with
the transformation

(V ν
L )T ML V ν

L = M , with Mkj = mk δkj (k, j = 1, 2, 3) , (6.175)

with a unitary matrix V ν
L and with real and positive massesmk. The diagonalization

is achieved by expressing the left-handed flavor fields as unitary linear combinations
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of the left-handed components of fields with definite mass:

ν ′L = V ν
L nL with nL =

⎛⎝ν1L

ν2L

ν3L

⎞⎠ . (6.176)

Using eqn (6.175), the Majorana mass term in eqn (6.171) can be written in the
diagonal form

L
M
mass =

1

2
nT

L C†M nL + H.c. =
1

2

3∑
k=1

mk ν
T
kL C† νkL + H.c. , (6.177)

or as

L
M
mass = −1

2
nC

L M nL + H.c. = −1

2

3∑
k=1

mk νC
kL νkL + H.c. (6.178)

The Majorana fields of massive neutrinos

νk = νkL + νC
kL (6.179)

satisfy the Majorana condition

νC
k = νk (6.180)

and allow one to write the three-generation Majorana Lagrangian as

L
M =

1

2

3∑
k=1

νk

(
i /
↔
∂ −mk

)
νk =

1

2
n

(
i /
↔
∂ −M

)
n , (6.181)

with the column matrix of massive Majorana neutrino fields

n =

⎛⎝ν1ν2
ν3

⎞⎠ . (6.182)

The Majorana mass term in eqn (6.177) is not invariant under the global U(1)
gauge transformations

νkL → eiϕ νkL (k = 1, 2, 3) , (6.183)

with the same phase ϕ for all massive neutrinos. As discussed in section 6.2.4,
this fact implies a violation of the conservation of the total lepton number, lead-
ing to interesting phenomena such as the neutrinoless double-β-decay discussed in
section 14.3.
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6.3.1 Weak interactions

Let us now examine the effects of the mixing relations in eqn (6.176) on the leptonic
weak charged current in eqn (3.80). As in the case of Dirac neutrinos (see eqns (6.11)
and (6.12)), the leptonic weak charged current can be written as

jρ
W,L = 2 nL U

† γρ �L , (6.184)

with the mixing matrix

U = V 	†
L V ν

L . (6.185)

The left-handed flavor neutrino fields are conventionally defined as in eqn (6.13),

νL = U nL = V 	†
L ν ′L , with νL =

⎛⎝νeL

νµL

ντL

⎞⎠ , (6.186)

in order to write the leptonic weak charged current as in the SM eqn (3.141),

jρ
W,L = 2 νL γ

ρ �L = 2
∑

α=e,µ,τ

ναL γ
ρ �αL . (6.187)

However, there is an important difference with respect to the mixing of Dirac
neutrinos: the physical CP-violating phases in the Majorana mixing matrix are
three instead of one. This is due to the fact that the Majorana mass term in
eqn (6.177) is not invariant under the global U(1) gauge transformations

νkL → eiϕk νkL (k = 1, 2, 3) . (6.188)

In sections 4.2 and 4.3 it was explained that five of the six phases of the unitary
3×3 CKM mixing matrix of quarks are not physical because they can be eliminated
by a suitable phase transformation of the quark fields, which leaves the Lagrangian
invariant. Similar arguments apply to the mixing of three Dirac neutrinos discussed
in section 6.1, because, apart from the weak CC part, the Lagrangian is invariant
under the global phase transformations in eqns (6.24) and (6.25) of the neutrino
and charged lepton fields. Since in the Majorana case the mass term is not invariant
under the phase transformations in eqn (6.188), the left-handed massive neutrino
fields cannot be rephased in order to eliminate the two phases that can be factorized
on the right of the mixing matrix, as explained in section 4.3. Therefore, the unitary
3×3 mixing matrix of Majorana neutrinos depends on three mixing angles and three
physical CP-violating phases. This mixing matrix can be written as a product of a
unitary matrix UD, with three mixing angles and one phase similar to the mixing
matrix in the Dirac case, and a diagonal unitary matrix DM with two independent
phases:

U = UDDM . (6.189)

The phase in UD is usually called Dirac phase, and the two phases inDM are usually
called Majorana phases. The Dirac three-neutrino mixing matrix UD has properties
analogous to the quark mixing matrix, discussed in chapter 4. In particular, CP
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violation due to the Dirac phase can be quantified in a rephasing-invariant way in
terms of the Jarlskog invariant [640, 639, 562, 395, 1075]

J = �m
[
Uµ3 Ue2 U

∗
µ2 U

∗
e3

]
= �m

[
UD

µ3 U
D
e2 U

D∗
µ2 U

D∗
e3

]
, (6.190)

where the second equality is due to the rephasing invariance of J , which implies
that the Majorana phases do not contribute. All CP and T asymmetries due to the
Dirac phase depend on J (see section 13.1.1 for a discussion of CP and T violations
in neutrino oscillations).

A convenient parameterization for UD is equal to that in eqn (6.31) for Dirac
neutrinos:

UD =

⎛⎝ c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

⎞⎠ , (6.191)

where cab ≡ cosϑab and sab ≡ sinϑab. ϑ12, ϑ13, ϑ23 are the three mixing angles
(0 ≤ ϑab ≤ π/2) and δ13 is the Dirac CP-violating phase (0 ≤ δ13 < 2π).

The diagonal unitary matrix DM can be written as

DM = diag
(
eiλ1 , eiλ2 , eiλ3

)
, with λ1 = 0 . (6.192)

The phases λ2 and λ3 are the two physical Majorana CP-violating phases. Since
all measurable quantities depend only on the differences of the three Majorana
phases λ1, λ2, λ3, the choice λ1 = 0 is a matter of convention and other choices
are equivalent from the physical point of view. In fact, rephasing all the charged
lepton fields by eiϕ, we have eiλk → ei(λk−ϕ), whereas ei(λk−λj) remains constant.

In the parameterization in eqn (6.191) of UD the Jarlskog invariant is given by
eqn (6.32), i.e. by the same expression as in the Dirac case.

6.3.2 CP invariance

We now discuss the conditions on the elements of the mixing matrix for CP invari-
ance. We have seen in subsection 6.2.6 that, in order to satisfy the CP invariance of
the Majorana mass term, a left-handed massive neutrino field νkL must transform
under CP as

UCPνkL(x)U−1
CP = ηk i γ

0 C νkL
T (xP) , (6.193)

with ηk = ±1. First, we investigate the conditions for CP invariance of the leptonic
charged-current weak interaction Lagrangian

L
(CC)
I,L = − g√

2

∑
α=e,µ,τ

3∑
k=1

(
U∗αk νkL γ

ρ �αLWρ + Uαk �αL γ
ρ νkL W

†
ρ

)
. (6.194)

Under a CP transformation, the Dirac charged lepton field � transforms as

UCP �α U
−1
CP = ξCP

	α
γ0 C �α

T
. (6.195)
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Using the transformation of Wµ in eqn (4.117),

UCPWµ U
−1
CP = −Wµ† , (6.196)

and using the relation in eqn (6.158), we obtain

UCP L
(CC)
I,L U

−1
CP = − g√

2

∑
α=e,µ,τ

3∑
k=1

(
− U∗αk ηk i ξ

CP
	α

�αL γ
ρ νkL W

†
ρ

+ Uαk ηk i ξ
CP
	α

∗
νkL γ

ρ �αLWρ

)
. (6.197)

Comparing with eqn (6.194), one can see that CP invariance is realized if

Uαk ηk i ξ
CP
	α

∗
= U∗αk . (6.198)

As we have shown in eqn (6.189), the mixing matrix can always be written as
a product of a Dirac unitary matrix UD and the diagonal matrix of phases in
eqn (6.192),

Uαk = UD
αk e

iλk . (6.199)

Hence, the condition in eqn (6.198) can be written as

UD
αk e

2iλk ηk i ξ
CP
	α

∗
= UD

αk

∗
. (6.200)

The Dirac unitary matrix UD can be parameterized in terms of three mixing angles
and one phase, which cannot be eliminated by rephasing the charged lepton and
neutrino fields in the charged-current interaction Lagrangian. Therefore, the phase
in UD cannot be eliminated by an appropriate choice of the charged lepton CP
phases ξCP

	α
and of the ηk’s. This means that a necessary condition for CP invariance

is the reality of UD, as in the case of Dirac neutrinos:

UD = UD∗ = O , (6.201)

where O is an orthogonal matrix (OT = O−1). In the parameterization in
eqn (6.191), CP is conserved if

δ13 = 0 , π . (6.202)

However, the reality of UD is not sufficient for CP invariance, because of the
presence of the Majorana phases λk. If the condition in eqn (6.201) is satisfied,
eqn (6.200) reduces to

ηk = −i ξCP
	α

e−2iλk , (6.203)

with ηk = ±1. Choosing the CP phases ξCP
	α

of the charged leptons all equal to i,
we find

ηk = e−2iλk . (6.204)

It turns out that there are four possibilities for 0 ≤ λk < 2π, according to Table 6.1.
Since the diagonal matrix in eqn (6.192) has the factors eiλk on the right of the
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Table 6.1. Correspondence among the CP parity ηki of νk, the Majorana phase
λk, and the coefficient eiλk in the diagonal matrix in eqn (6.192).

ηk λk eiλk

+1 0, π ±1
−1 π/2, 3π/2 ±i

mixing matrix, the Lagrangian is symmetric under a CP transformation if all the
elements of each column of the mixing matrix are either real or purely imaginary.
If one column has real elements and another has imaginary elements, the corre-
sponding massive neutrinos have opposite values of ηk, i.e. opposite CP parities.
Obviously, the value of ηk and the associated CP parity of a massive neutrino
have no physical meaning per se, because it depends on the arbitrary choice of the
charged lepton CP phases ξCP

	α
(for example, switching to ξCP

	α
= −i corresponds

to ηk → −ηk). Only the differences of the CP parities of different massive neu-
trinos is physically meaningful. The arbitrariness in the value of ηk is reflected in
the arbitrariness of the value of the phase λk discussed after eqn (6.192), whereas
the physical meaning of the relative CP phases is reflected in the physical mean-
ing of the differences of the Majorana phases in the mixing matrix. Indeed, from
eqn (6.203) we have

ηk

ηj
= e−2i(λk−λj) , (6.205)

which does not depend on the arbitrary CP phases ξCP
	α

of the charged leptons
and is invariant under rephasing of the charged lepton fields, as discussed after
eqn (6.192).

Let us now follow a different approach to CP invariance, analogous to that in
the second part of section 4.6: we consider the charged-current weak interaction
Lagrangian in eqn (3.76) written in terms of the primed lepton fields in eqn (3.66)
and we find which are the conditions on the mass matrices of charged leptons and
neutrinos in order to have CP invariance.

From eqns (3.128) and (6.171) the Lagrangian mass term of leptons is

Ll,mass = −�′LM
′	 �′R − �′RM

′	† �′L +
1

2
ν ′TL C†ML ν ′L +

1

2
ν′†L ML∗ C ν′∗L , (6.206)

where we have taken into account that MLT
= ML (see eqn (6.174)). Let us

consider the general CP transformations of the lepton fields

�′R
CP−−−→WR γ

0 C �′R
T
, (6.207)

�′L
CP−−−→WL γ

0 C �′L
T
, (6.208)

ν ′L
CP−−−→WL γ

0 C ν ′L
T
, (6.209)

where WR and WL are unitary matrices that mix the fields. The mixing of the
left-handed charged lepton and neutrino fields are equal, in order to keep invariant
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the charged-current weak interaction Lagrangian. In this way, the Lagrangian is
trivially invariant under the CP transformations in eqns (6.207)–(6.209), apart
from the mass term in eqn (6.206) (and the charged lepton interaction term with the
Higgs boson in eqn (3.128) whose invariance conditions are the same as those for the
charged lepton mass term). Under the CP transformations in eqns (6.207)–(6.209)
the mass term in eqn (6.206) transforms as

Ll,mass
CP−−−→ − �′R W

T
R M ′	

T
W ∗L �′L − �′L W

T
L M ′	

∗
W ∗R �′R

− 1

2
ν′†L WT

L MLWL C ν′∗L − 1

2
ν ′TL C†W †L ML∗W ∗L ν ′L . (6.210)

The mass term in eqn (6.206) is invariant under a CP transformation if it is possible
to find appropriate unitary matrices WR and WL such that

W †L M
′	WR = M ′	

∗
, (6.211)

WT
L MLWL = −ML∗ . (6.212)

Since these two conditions can be written as

W ∗L M
′	WT

R = M ′	
∗
, (6.213)

WL M
L WT

L = −ML∗ , (6.214)

the matrices WR and WL must also be symmetric.
The condition in eqn (6.211) can always be satisfied with appropriate matrices

WR and WL. Using the same method employed in section 4.6 for quarks we find

WL = V 	
L D

	V 	
L

T
, (6.215)

WR = V 	
R D

	V 	
R

T
, (6.216)

where V 	
L and V 	

R are the unitary matrices that diagonalize the charged lepton mass
matrix through eqn (3.129), and D	 is an arbitrary diagonal matrix of phases.

Substituting WL given by eqn (6.215) in the condition in eqn (6.212) and using
the diagonalization equation (6.175) for ML, we obtain the condition

U †D	 U∗M U †D	 U∗ = −M , (6.217)

with the mixing matrix U given in eqn (6.185). This condition is satisfied if

U †D	 U∗ = η i , (6.218)

where η is a diagonal matrix with eigenvalues equal to ±1. CP is a symmetry if
it is possible to find appropriate matrices D	 and η such that the condition in
eqn (6.218) is satisfied.

Let us note that the condition in eqn (6.218) can also be written as

D	† U η i = U∗ , (6.219)

which coincides with the condition in eqn (6.198) for D	
αβ = ξCP

	α
δαβ and ηkj =

ηkδkj . Hence, we see that the two methods that we have used for finding the
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conditions for CP invariance are equivalent (invariance of the charged-current weak
interaction Lagrangian assuming diagonal mass terms and invariance of the mass
terms assuming a diagonal charged-current weak interaction Lagrangian).

The condition for CP invariance on the lepton mass matrices M ′	 and ML can
be obtained from eqns (6.211) and (6.212) by eliminating WL:

WT
R

[
M ′	

T
ML M ′	

]
WR = −

[
M ′	

T
MLM ′	

]∗
. (6.220)

This condition is satisfied if M ′	T
MLM ′	 can be written as

M ′	
T
ML M ′	 = PT RP , with R = RT = R∗ , P † = P−1 . (6.221)

In this case, the unitary and symmetric matrix WR is given by

WR = i P † P ∗ . (6.222)

Particular simple cases in which the condition in eqn (6.221) for CP invariance
is satisfied are

ML = 0. This is the trivial case of the SM, in which there is no mixing in the
lepton sector.

M ′	. This is an unrealistic case, because we know that charged leptons are massive.
Let us only note, for the sake of curiosity, that also this case is trivial, because
it would imply that there is no mixing in the lepton sector.

Real M ′	T
MLM ′	. In this case, P = ±1 and WR = ±i1. A particular simple

case is

M ′	 = M ′	
∗

and ML = ML∗ . (6.223)

In this case, M ′	 can be diagonalized with orthogonal matrices V 	
L = O	

L, V 	
R =

O	
R. However, as explained in section 6.7.1, the matrix V ν

L is given by a real
orthogonal matrix multiplied by a diagonal matrix with elements equal to ±1
or ±i. Hence, the columns of the mixing matrix U in eqn (6.185) are either real
or imaginary. This is consistent with the result in eqn (6.204).

6.3.3 Effective three-neutrino mixing

As we have discussed in section 6.2.7, it is natural to expect that the SM is an
effective low-energy theory obtained through the symmetry breaking of a unified
theory which describes the physics at very high energies. In this case, the high-
energy theory can manifest itself at low energies through nonrenormalizable effective
Lagrangian terms with product of fields of dimension larger than four, whose effects
are suppressed by the dimensional coupling constants inversely proportional to the
appropriate power of the high-energy mass scale. In the case of one neutrino the
effective Lagrangian term with lowest dimension is the dimension-five lepton num-
ber violating term in eqn (6.163). This term can be straightforwardly generalized
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to the case of three neutrinos:

L5 =
1

M
∑
αβ

gαβ (L′TαL τ2 Φ) C† (ΦT τ2 L
′
βL) + H.c. , (6.224)

where g is a symmetric 3×3 matrix of coupling constants. The electroweak symme-
try breaking VEV of the Higgs field (see section 3.4) leads to the neutrino Majorana
mass term

L
M
mass =

1

2

v2

M
∑
αβ

gαβ ν
′T
αL C† ν′βL + H.c. (6.225)

In this case, the Majorana mass matrix in eqn (6.171) has elements

ML
αβ =

v2

M gαβ . (6.226)

Hence, the scale of the Majorana neutrino masses is set by the small ratio v2/M,
providing a natural explanation of the strong suppression of neutrino masses with
respect to the electroweak scale.

6.4 One-generation Dirac–Majorana mass term

From the discussion in the previous sections of this chapter it should be clear that,
considering for simplicity only one generation, the chiral fields νL and νR are the
building blocks of the neutrino Lagrangian. We know that the chiral field νL exists,
because it is present in the SM and enters in the charged-current weak interaction
Lagrangian. We do not know if the chiral field νR exists, but it is allowed by the
symmetries of the SM. If only νL exists, the neutrino Lagrangian can contain only
the Majorana mass term

L
L
mass =

1

2
mL ν

T
L C† νL + H.c. , (6.227)

and the neutrino is a Majorana particle. If νR also exists, the neutrino Lagrangian
can contain the Dirac mass term

L
D
mass = −mD νR νL + H.c. , (6.228)

which would imply that the neutrino is a Dirac particle. However, in addition to
the Dirac mass term in eqn (6.228), the neutrino Lagrangian can also contain the
Majorana mass term in eqn (6.227) for νL and the Majorana mass term

L
R
mass =

1

2
mR ν

T
R C† νR + H.c. (6.229)

for νR. Therefore, in general it is possible to have the Dirac–Majorana neutrino
mass term

L
D+M
mass = L

D
mass + L

L
mass + L

R
mass . (6.230)

This is a surprise, because, among all the known elementary particles, all of which
have both chiral left-handed and right-handed chiral field components, only neutri-
nos can have the Majorana mass terms L L

mass and L R
mass. This possibility implies
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that neutrinos are very special particles that can generate new physics through
the lepton number violating Majorana mass terms. The Majorana mass term in
eqn (6.227) for νL is not allowed by the symmetries of the SM because it is not
invariant under SU(2)L ×U(1)Y transformations (it can, however, be generated by
new physics beyond the SM, as discussed in section 6.2.7). On the other hand, the
Majorana mass term in eqn (6.229) for νR is allowed by the symmetries of the SM,
because νR is a singlet of SU(3)C×SU(2)L×U(1)Y . Therefore, the Dirac–Majorana
mass term in eqn (6.230) with mL = 0 is allowed in the framework of the SM with
the only addition of the right-handed chiral field νR.

We note that the Majorana mass mR in eqn (6.229) can be chosen to be real and
positive by an appropriate rephasing of the chiral field νR. Once the phase of νR is
fixed, the Dirac mass mD in eqn (6.228) can be chosen to be real and positive by
an appropriate rephasing of the chiral field νL. However, once the phases of νL and
νR are fixed, there is no additional freedom to cancel a possible complex phase of
the Majorana mass mL in eqn (6.227). Therefore, in the following we will consider
real and positive mR and mD and complex mL. Obviously, other choices, such as
real and positive mR and mL and complex mD, are equivalent from the physical
point of view.

In order to understand the implications of the Dirac–Majorana mass term in
eqn (6.230) it is useful to define the column matrix of left-handed chiral fields

NL =

(
νL

νC
R

)
=

(
νL

C νR
T

)
. (6.231)

Using eqn (6.66), we can write the Dirac–Majorana mass term in eqn (6.230) as

L
D+M
mass =

1

2
NT

L C†M NL + H.c. , (6.232)

with the symmetric mass matrix

M =

(
mL mD

mD mR

)
. (6.233)

From the expression in eqn (6.232) it is clear that the chiral fields νL and νR do
not have a definite mass, because of the off-diagonal Dirac mass. In order to find
the fields of massive neutrinos it is necessary to diagonalize the mass matrix in
eqn (6.233). This can be done with a unitary transformation of the chiral fields,

NL = U nL , (6.234)

where

nL =

(
ν1L

ν2L

)
(6.235)

is the column matrix of chiral left-handed massive neutrino fields. The unitary
matrix U must be such that

UT M U =

(
m1 0
0 m2

)
, (6.236)

with real mk ≥ 0. This can always be done, as we have shown in section 6.3 for the
symmetric Majorana mass matrix ML.
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With the transformation in eqn (6.234), the Dirac–Majorana mass term in
eqn (6.232) can be written as

L
D+M
mass =

1

2

∑
k=1,2

mk ν
T
kL C† νkL + H.c. = −1

2

∑
k=1,2

mk νk νk , (6.237)

where we have defined the Majorana massive neutrino field

νk = νkL + νC
kL = νkL + C νkL

T . (6.238)

Hence, we have obtained the important result that a Dirac–Majorana mass term
implies that massive neutrinos are Majorana particles. This should not be a sur-
prise, because the Dirac–Majorana mass term in eqn (6.232) has the structure of a
Majorana mass term for the two chiral fields νL and νC

R .
The values of the masses mk and the elements of the mixing matrix can be cal-

culated with the method presented in section 6.7.1. Remembering that we consider
real and positive mR and mD and complex mL, the masses m1 and m2 are the two
positive eigenvalues of the matrix

M =

⎛⎜⎜⎝
e[mL] mD −�m[mL] 0
mD mR 0 0

−�m[mL] 0 −e[mL] −mD

0 0 −mD −mR

⎞⎟⎟⎠ . (6.239)

We obtain

m2
2,1 =

1

2

[
|mL|2 +m2

R + 2m2
D ±

(
(e[mL] +mR)2

[
(e[mL] −mR)2 + 4m2

D

]
+ (�m[mL])4 + 2(�m[mL])2

(
(e[mL])2 −m2

R + 2m2
D

))1/2]
.

(6.240)

It is easy to check that the expression on the right-hand side is always positive.
Let us write the mixing matrix U as

U =

(
cosϑ sinϑ
− sinϑ cosϑ

)(
eiλ 0
0 1

)
=

(
cosϑ eiλ sinϑ

− sinϑ eiλ cosϑ

)
, (6.241)

with 0 ≤ ϑ ≤ π/2 and 0 ≤ λ < 2π. The value of the mixing angle ϑ is determined
by the second eigenvalue equation of the type in eqn (6.397),⎛⎜⎜⎝

e[mL] mD −�m[mL] 0
mD mR 0 0

−�m[mL] 0 −e[mL] −mD

0 0 −mD −mR

⎞⎟⎟⎠
⎛⎜⎜⎝

sinϑ
cosϑ

0
0

⎞⎟⎟⎠ = m2

⎛⎜⎜⎝
sinϑ
cosϑ

0
0

⎞⎟⎟⎠ , (6.242)

which gives

tan 2ϑ =
2mD

mR −e[mL]
. (6.243)
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One can then determine the value of the phase λ using the first eigenvalue equation⎛⎜⎜⎝
e[mL] mD −�m[mL] 0
mD mR 0 0

−�m[mL] 0 −e[mL] −mD

0 0 −mD −mR

⎞⎟⎟⎠
⎛⎜⎜⎝

cosϑ cosλ
− sinϑ cosλ
cosϑ sinλ
− sinϑ sinλ

⎞⎟⎟⎠ = m1

⎛⎜⎜⎝
cosϑ cosλ
− sinϑ cosλ
cosϑ sinλ
− sinϑ sinλ

⎞⎟⎟⎠ .

(6.244)
We obtain

tan 2λ = − 2�m[mL]

e[mL] +mR −
√

(e[mL] −mR)2 + 4m2
D

. (6.245)

Since 0 ≤ 2λ < 4π, eqn (6.245) gives four values for λ. The values which are really
possible must be selected by checking that the mass eigenvalues obtained through
eqn (6.236) are positive. If CP is conserved, the mass matrix is real and tan 2λ
vanishes. In this case, the four possibilities for eiλ are ±1 and ±i. The selection of
the possible value is discussed in subsection 6.4.2.

Summarizing, in the case of one generation with both left-handed and right-
handed chiral neutrino fields νL and νR, the diagonalization of the most general
Dirac–Majorana mass term implies that there are two massive Majorana neutrino
fields ν1 and ν2. It is usual to refer to νL and νC

R as the left-handed fields in the
flavor basis and refer to ν1 and ν2 as the fields in the mass basis. The two flavor
fields νL and νR are, respectively, active and sterile, because νL participates in
weak interactions, whereas νR is a singlet of the gauge symmetries of the SM. The
mixing between νL and νC

R implies that in general oscillations between active and
sterile neutrinos are possible (see chapter 7). The oscillations between the active
νL and the sterile νC

R depend on the squared-mass difference

∆m2 =

[
(e[mL] +mR)

2
[
(e[mL] −mR)

2
+ 4m2

D

]
+ (�m[mL])4 + 2(�m[mL])2

(
(e[mL])2 −m2

R + 2m2
D

) ]1/2

.

(6.246)

6.4.1 Weak interactions

The mixing relations in eqn (6.234),

νL = U11 ν1L + U12 ν2L , (6.247)

νC
R = U21 ν1L + U22 ν2L , (6.248)

imply that the active neutrino field νL and the sterile field νR are linear combina-
tions of the same massive neutrino fields ν1L, ν2L. In this case, oscillations between
active and sterile states are possible. Indeed, the one-generation charged-current
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weak interaction Lagrangian in eqn (6.102) written in terms of massive fields reads

L
CC
I,L = − g√

2

∑
k=1,2

(
U∗1k νkL γ

µ �L Wµ + U1k �L γ
µ νkL W

†
µ

)
. (6.249)

Hence, charged-current weak interactions create a superposition of the two massive
neutrinos. Since their phases evolve in space-time in a different way, depending on
the masses, the superposition can evolve into a linear combination of active and
sterile neutrinos with an oscillatory probability to detect the active component.
The sterile component cannot be detected and manifests itself through the disap-
pearance of active neutrinos which corresponds to a survival probability of active
neutrinos smaller than one.

For neutral-current weak interactions we have the interesting effect that the
GIM mechanism does not work [933]. Indeed, let us consider the neutrino part of
the one-generation neutral-current weak interaction Lagrangian in eqn (3.41)

L
NC
I,ν = − g

2 cosϑW
νL γ

µ νL Zµ . (6.250)

Under the mixing in eqn (6.247) we obtain

L
NC
I,ν = − g

2 cosϑW

∑
k,j=1,2

U∗1k U1j νkL γ
µ νjL Zµ . (6.251)

Hence, there can be neutral-current transitions among different massive neutrinos.

6.4.2 CP invariance

It is useful to consider the simplest case of a real mass matrix, which implies CP
invariance, as we will see in the following. This means that, besides the real and
positivemR andmD we consider a realmL, which can be either positive or negative.

Since in this case the mass matrix in eqn (6.233) is real and symmetric, it can
be diagonalized through the transformation in eqn (6.236) with the unitary matrix

U = O ρ , (6.252)

where O is an orthogonal 2 × 2 matrix that can be written as

O =

(
cosϑ sinϑ
− sinϑ cosϑ

)
, (6.253)

and ρ is a diagonal matrix of phases

ρ =

(
ρ1 0
0 ρ2

)
, (6.254)

with ρ2
k = ±1. The orthogonal matrix O must be chosen in order to diagonalize the

mass matrix in eqn (6.233):

OT M O =

(
m′1 0
0 m′2

)
, (6.255)
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where m′1 and m′2 are the eigenvalues of the mass matrix

m′2,1 =
1

2

[
mL +mR ±

√
(mL −mR)

2
+ 4m2

D

]
. (6.256)

This is accomplished with

tan 2ϑ =
2mD

mR −mL
. (6.257)

One must note that m′1 is negative if mLmR < m2
D. The role of the matrix ρ is to

change the sign of the first mass eigenvalue if m′1 < 0 through

UTMU = ρTOTMOρ =

(
ρ1 0
0 ρ2

)(
m′1 0
0 m′2

)(
ρ1 0
0 ρ2

)
=

(
ρ2
1m
′
1 0

0 ρ2
2m
′
2

)
.

(6.258)
Hence, the two real and positive neutrino masses are given by

mk = ρ2
k m
′
k , (6.259)

with ρ2
2 = 1, whereas ρ2

1 = 1 if m′1 > 0 and ρ2
1 = −1 if m′1 < 0. It is easy to check

that the values of the masses agree with the general expression in eqn (6.240) in
the case �m[mL] = 0.

Hence, m′2 is always positive and we have

m2 =
1

2

[
mL +mR +

√
(mL −mR)

2
+ 4m2

D

]
. (6.260)

If mLmR ≥ m2
D, we have m′1 ≥ 0 and ρ2

1 = 1, leading to

m1 =
1

2

[
mL +mR −

√
(mL −mR)2 + 4m2

D

]
. (6.261)

Choosing ρ1 = 1 and ρ2 = 1 we obtain the mixing matrix

U =

(
cosϑ sinϑ
− sinϑ cosϑ

)
. (6.262)

If mLmR < m2
D, we have m′1 < 0 and ρ2

1 = −1, which implies

m1 =
1

2

[√
(mL −mR)

2
+ 4m2

D − (mL +mR)

]
. (6.263)

Choosing ρ1 = i and ρ2 = 1, the mixing matrix is given by

U =

(
i cosϑ sinϑ
−i sinϑ cosϑ

)
. (6.264)

The oscillations between the active νL and the sterile νC
R depend on the mixing

angle given by eqn (6.257) and on the squared-mass difference

∆m2 = m2
2 −m2

1 = (mL +mR)

√
(mL −mR)

2
+ 4m2

D . (6.265)

Note that ∆m2 may be negative. This happens if mL < −mR, which is possible,
because mL can be negative.
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In spite of the possible imaginary elements in the mixing matrix U , the
Lagrangian is invariant under CP transformations, and the phase

ξCP
k = i ρ2

k (6.266)

is the CP parity of νk, as we are going to show. The CP transformation of the
column matrix NL of flavor left-handed fields in eqn (6.231) is determined by the
request of CP invariance of the Dirac–Majorana mass term in eqn (6.232),

L
D+M
mass =

1

2

(
NT

L C†M NL −NLM CNL
T
)
, (6.267)

where we have taken into account the symmetry and reality of M, which imply
M † = M . Under a CP transformation, NL and NL transform as

UCPNL U
−1
CP = Ξ

(NL)
CP γ0 CNL

T
, UCPNL U

−1
CP = −NT

L C† γ0 (Ξ
(NL)
CP )∗ , (6.268)

with a diagonal matrix of phases Ξ
(NL)
CP . For the mass term in eqn (6.267) we have

UCP L
D+M
mass U

−1
CP = NL Ξ

(NL)
CP M Ξ

(NL)
CP CNL

T −NT
L C† (Ξ(NL)

CP )∗M (Ξ
(NL)
CP )∗NL .

(6.269)

In order to have CP invariance the diagonal matrix of phases Ξ
(NL)
CP must be such

that
Ξ

(NL)
CP M Ξ

(NL)
CP = −M . (6.270)

Let us take

Ξ
(NL)
CP =

(
i 0
0 i

)
= i 1 , (6.271)

which implies that

UCPNL U
−1
CP = i γ0 CNL

T
. (6.272)

Considering now the CP transformation of the column matrix in eqn (6.235) of
chiral left-handed massive neutrino fields, we have

UCP nL U
−1
CP = U † UCPNL U

−1
CP = i U † γ0 CNL

T

= i U † U∗ γ0 C nL
T = Ξ

(nL)
CP γ0 C nL

T . (6.273)

The diagonal matrix of CP phases of nL is

Ξ
(nL)
CP = i U † U∗ = i U † U∗ = i

(
UT U

)∗
= i

(
ρOT O ρ

)∗
= i ρ2 , (6.274)

where we have used the expression in eqn (6.252) for U . Hence, the CP parities of the
massive Majorana fields are determined by the phases ρk according to eqn (6.266),

ξCP
k = (Ξ

(nL)
CP )kk = i ρ2

k . (6.275)

Indeed, the transformation of the column matrix

n = nL + nC
L = nL + C nL

T (6.276)
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of massive neutrino fields is

UCP nU
−1
CP = Ξ

(nL)
CP γ0 C nL

T − Ξ
(nL)
CP

∗
γ0 nL = i ρ2 γ0 n . (6.277)

This result is consistent with the result in section 6.2.6, where we have shown that
a Majorana neutrino has imaginary CP parity. Here we have two massive Majorana
neutrinos with imaginary CP parities whose sign is determined by ρ2

k.
The CP transformation

UCP νL U
−1
CP = i γ0 C νL

T (6.278)

implicit in eqn (6.272) does not pose any problem for the CP invariance of
weak interactions. For one lepton generation the charged-current weak interaction
Lagrangian is given in eqn (6.102),

L
CC
I,L = − g√

2

(
νL γ

µ �LWµ + �L γ
µ νLW

†
µ

)
. (6.279)

Under a CP transformation the Dirac charged lepton field � transforms as given in
eqn (6.155),

UCP �U
−1
CP = ξCP

	 γ0 C �T , (6.280)

and the gauge boson field Wµ transforms as given in eqn (4.117),

UCPWµ U
−1
CP = −Wµ† . (6.281)

Taking into account the relation in eqn (6.158), we obtain

UCP L
CC
I,L U

−1
CP = − g√

2

(
i ξCP

	 �L γ
µ νL W

†
µ − i ξCP

	

∗
νL γ

µ �LWµ

)
, (6.282)

which coincides with L CC
I,L in eqn (6.102) if

ξCP
	 = −i . (6.283)

Therefore, CP invariance of the one-generation Dirac–Majorana mass term implies
that the charged lepton has an imaginary CP parity (this result is analogous to that
obtained in section 6.2.6 for the simplest case of one massive Majorana neutrino).

6.4.3 Maximal mixing

From the expression in eqn (6.257) for the mixing angle, one can see that the mixing
is maximal, i.e. ϑ = π/4, for

mL = mR . (6.284)

In this case, the eigenvalues in eqn (6.256) of the mass matrix reduce to

m′2,1 = mL ±mD . (6.285)

If mD < mL, m′1 is positive, ρ2
1 = 1 and the mixing is of the type in eqn (6.262),

with ϑ = π/4. On the other hand, if mD > mL, m′1 is negative, ρ2
1 = −1 and the

mixing is of the type in eqn (6.264), with ϑ = π/4, leading to

ν1L =
−i√

2

(
νL − νC

R

)
, (6.286)
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ν2L =
1√
2

(
νL + νC

R

)
. (6.287)

In this case, the two massive Majorana neutrino fields are given by

ν1 = ν1L + νC
1L =

−i√
2

[
(νL + νR) −

(
νC

L + νC
R

)]
, (6.288)

ν2 = ν2L + νC
2L =

1√
2

[
(νL + νR) +

(
νC

L + νC
R

)]
, (6.289)

with respective masses

m1 = mD −mL , (6.290)

m2 = mD +mL , (6.291)

and the squared-mass difference

∆m2 = m2
2 −m2

1 = 4mLmD , (6.292)

which is important for neutrino oscillations (see chapter 7).

6.4.4 Dirac limit

It is interesting to ask what happens if

mL = mR = 0 . (6.293)

In this case, since the Dirac–Majorana mass term in eqn (6.230) reduces to the
Dirac mass term in eqn (6.228), we must obtain a massive Dirac neutrino. Indeed,
from eqn (6.285) we have

m′2,1 = ±mD . (6.294)

Therefore,

ρ2
1 = −1 m1 = mD , (6.295)

ρ2
2 = +1 m2 = mD . (6.296)

In other words, the two massive Majorana neutrinos have the same mass and oppo-
site CP parities. In this case, the two Majorana fields ν1 and ν2 can be combined
to give one Dirac field ν:

ν =
1√
2

(iν1 + ν2) = νL + νR . (6.297)

Similarly, a Dirac field ν can always be split in two Majorana fields by writing
it as

ν =
1

2

[(
ν − νC

)
+
(
ν + νC

)]
=

i√
2

(
−i ν − νC

√
2

)
+

1√
2

(
ν + νC

√
2

)
=
iν1 + ν2√

2
,

(6.298)
with the two Majorana fields (ν1 = νC

1 , ν2 = νC
2 ) given by

ν1 =
−i√

2

(
ν − νC

)
, (6.299)
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ν2 =
1√
2

(
ν + νC

)
. (6.300)

Therefore, in general, a Dirac field is equivalent to two Majorana fields with the

same mass and opposite CP parities.
One can ask which is the CP parity of the Dirac field. Since ρ2

1 = −1 and ρ2
2 = 1,

we have ξCP
1 = −i and ξCP

2 = i, which imply that

ν1
CP−−→ −i γ0 ν1 , (6.301)

ν2
CP−−→ i γ0 ν2 . (6.302)

Using eqns (6.298)–(6.300), for the Dirac field ν we obtain

ν =
1√
2

(iν1 + ν2)
CP−−→ i γ0 1√

2
(−iν1 + ν2) = i γ0 νC . (6.303)

Therefore, the Dirac field ν has the definite CP parity ξCP
ν = i.

6.4.5 Pseudo-Dirac neutrinos

Another interesting case is that in which

|mL| , mR � mD . (6.304)

In this case, from eqn (6.256) we have

m′2,1 � mL +mR

2
±mD . (6.305)

Since m′1 is negative, we have ρ2
1 = −1 and

m2,1 � mD ± mL +mR

2
. (6.306)

The two massive Majorana neutrinos have opposite CP parities and are almost
degenerate in mass, the mass splitting being given by mL +mR � m2,1. These two
almost degenerate Majorana neutrinos are usually called pseudo-Dirac neutrinos
because it is very difficult to distinguish them from a Dirac neutrino, which corre-
sponds to a pair of degenerate Majorana neutrinos, as we have seen in the previous
subsection 6.4.4. The best way to reveal pseudo-Dirac neutrinos are active–sterile
neutrino oscillations due to the small squared-mass difference

∆m2 � mD (mL +mR) . (6.307)

The oscillations occur with practically maximal mixing:

tan 2ϑ =
2mD

mR −mL
� 1 =⇒ ϑ � π/4 . (6.308)
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ν1

ν2

Fig. 6.2. Illustration of the see-saw mechanism: the heavier the mass of ν2 is, the
lighter the mass of ν1 is.

6.4.6 See-saw mechanism

A very interesting case is

mD � mR , mL = 0 . (6.309)

From eqn (6.256) we obtain

m′1 � −m
2
D

mR
, m′2 � mR . (6.310)

Since m′1 is negative, we have ρ2
1 = −1 and

m1 � m2
D

mR
, (6.311)

m2 � mR . (6.312)

Therefore, ν2 is as heavy as mR and ν1 is very light, because its mass is suppressed
with respect to mD by the small ratio mD/mR. This is the famous see-saw mecha-

nism [807, 1079, 512, 814], which acts as the see-saw depicted in Fig. 6.2: the heavy
mass m2 � mR of ν2 is responsible for the lightness of ν1.

The mixing angle is very small:

tan 2ϑ = 2
mD

mR
� 1 , (6.313)

which implies that ν1 is composed mainly of active νL and ν2 is composed mainly
of sterile νR,

ν1L � −i νL , ν2L � νC
R . (6.314)

The see-saw mechanism is very important, because it provides a very plausible
explanation of the smallness of neutrino masses with respect to the masses of the
other fermions in the SM, i.e. charged leptons and quarks. The assumption mL = 0
is natural, since a Majorana mass term for the left-handed chiral field νL is forbidden
by the symmetries and renormalizability of the SM (see section 6.2.7). The Dirac
mass mD, which can be generated through the Higgs mechanism of the SM, is
expected to be of the order of the charged lepton mass of the same generation or of
the order of the up-like quark mass of the same generation. In any case, the order of
magnitude of mD cannot be much larger than the electroweak scale, which is of the
order of 102 GeV. The reason is that a Dirac mass term is forbidden by the unbroken
symmetries of the SM. It can arise only as a consequence of symmetry breaking,
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as for the other particles in the SM. Hence, mD is proportional to the symmetry-
breaking scale. This fact is often summarized by saying that mD is protected by
the symmetries of the SM. On the other hand, since the Majorana mass term
in eqn (6.211) is a singlet of the SM symmetries, the Majorana mass mR of the
right-handed chiral neutrino field νR is not protected by the SM symmetries. It is
plausible that the Majorana mass mR is generated by new physics beyond the SM
and the right-handed chiral neutrino field νR belongs to a nontrivial multiplet of
the symmetries of the high-energy theory. In this case, the mass mR is protected by
the symmetries of the high-energy theory and its order of magnitude corresponds
to the breaking scale of these symmetries, which may be at the grand unification
scale of the order of 1014–1016 GeV [532, 79, 79, 408]. Hence the see-saw expression
in eqn (6.298) may give a light-neutrino mass m1 which is suppressed with respect
to the Dirac mass mD by the small ratio mD/mR ∼ 10−14–10−12.

We also note that the expression for the light-neutrino Majorana mass m1 given
by the see-saw mechanism has the same structure as that of the Majorana mass
in eqn (6.169), obtained with the effective Lagrangian term L5 in eqn (6.163),
if the mass mR is identified with the high-energy mass scale M. This is not a
coincidence, because the see-saw mechanism corresponds to a particular case of the
general effective dimension-five operator L5. This can be seen through the following
alternative derivation of the see-saw mechanism [74].

Let us consider the Dirac–Majorana neutrino mass term in eqn (6.230) with
mL = 0:

L
D+M = −mD (νR νL + νL νR) +

1

2
mR

(
νT

R C† νR + ν†R C ν∗R
)
. (6.315)

Above the electroweak symmetry-breaking scale, the symmetries of the SM require
that L D+M is written as

L
D+M = −yν

(
νR Φ̃† LL + LL Φ̃ νR

)
+

1

2
mR

(
νT

R C† νR + ν†R C ν∗R
)
, (6.316)

where yν is a Yukawa coupling and Φ̃ is the transformed Higgs doublet in
eqn (3.156). Below the electroweak symmetry-breaking scale (see section 3.4), the
Dirac part of L D+M generates the Dirac neutrino mass

mD =
yν v√

2
, (6.317)

whose expression is analogous to those of the Dirac masses of the charged leptons
(eqn (3.135)) and quarks (eqns (3.171) and (3.172)), generated through the same
Higgs mechanism.

If the mass mR is very heavy, at SM energies the right-handed chiral field can
be integrated away by considering it in the static limit in which the kinetic term in
the equation of motion is neglected:

0 � ∂L D+M

∂νR
= mR ν

T
R C† − yν LL Φ̃ . (6.318)
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Solving for νR, we obtain its value in the static approximation:

νR � − yν

mR
Φ̃T C LL

T
. (6.319)

Substituting this expression in the Dirac–Majorana mass term in eqn (6.316), we
get the dimension-five operator

L
D+M
5 � −1

2

(yν)2

mR

[
(LT

L τ2 Φ) C† (ΦT τ2 LL) − (LL τ2 Φ∗) C (Φ† τ2 LL
T
)
]
, (6.320)

which coincides with the Lagrangian in eqn (6.163) if

g = − (yν)2

2
, M = mR . (6.321)

Below the electroweak symmetry-breaking scale (see section 3.4), L
D+M
5 generates

the effective Majorana mass term for the light left-handed chiral neutrino field νL

L
D+M
5 � −1

2

m2
D

mR

(
νT

L C† νL + ν†L C ν∗L
)
, (6.322)

where we have taken into account of the definition in eqn (6.317) of the Dirac
mass mD. Comparing with eqn (6.119), one can see that the sign of the mass
in eqn (6.322) is wrong. To remedy this, we define the massive field ν1L as in
eqn (6.314),

ν1L � −i νL , (6.323)

which allows one to write L
D+M
5 as

L
D+M
5 � 1

2

m2
D

mR

(
νT
1L C† ν1L + ν†1L C ν∗1L

)
. (6.324)

This is a correct Majorana mass term for ν1L, whose mass m1 is given by the
see-saw formula in eqn (6.311),

m1 � m2
D

mR
. (6.325)

This procedure shows that the see-saw mechanism is a particular case of the
effective Lagrangian approach discussed in section 6.2.7. It is obtained when the
dimension-five operator in eqn (6.163) is generated only by the presence of a right-
handed chiral neutrino field (in the case of one generation) having a Majorana
mass of the order of the high-energy scale M. In general, however, there can be
other mechanisms that contribute to the dimension-five effective Lagrangian term
in eqn (6.163).

It is also possible to investigate the viability of the see-saw mechanism when
the left-handed Majorana mass is small but nonzero. For example, in the so-called
type-II see-saw mechanism [814] (see Refs. [810, 813]), the mass mL is generated
by the VEV of a Higgs triplet, which is induced by the breaking of a SU(2)L ×



THREE-GENERATION DIRAC–MAJORANA MIXING 229

SU(2)R×U(1)B−L local gauge symmetry to SU(2)L×U(1)Y at a high-energy scale
vR, where vR is the VEV of another Higgs triplet, and by the symmetry breaking
SU(2)L ×U(1)Y → U(1)Q at the SM electroweak scale v. In this so-called left-right

symmetric model, we have mL ∝ v2/vR.
Without considering a specific model, let us consider the general possibility

mL � mD � mR , (6.326)

with

mL = g
m2

D

M , (6.327)

where g is a numerical coefficient and M is a high-energy scale of new physics
beyond the SM. Since the Majorana mass mL violates the conservation of the total
lepton number L, if the new physics beyond the SM conserves L (or B − L), M
is the scale of L-symmetry (or B − L-symmetry) breaking. In this so-called mixed

see-saw (see Ref. [813]), the masses of ν1 and ν2 are given by

m1 �
∣∣∣∣g m2

D

M − m2
D

mR

∣∣∣∣ , m2 � mR . (6.328)

Conventionally, one speaks of a type-II see-saw when |mL| � m2
D/mR whereas the

normal see-saw, or type-I see-saw, refers to the case in which |mL| � m2
D/mR. In

any case, the light neutrino mass m1 is strongly suppressed with respect to the
Dirac mass mD by the small ratios mD/M and mD/mR. If mR ∼ M, we obtain
the normal see-saw type relation

m1 ∼ m2
D

M . (6.329)

From eqn (6.257), one can see that the mixing angle is extremely small, as in the
normal see-saw case with mL = 0 (see eqn (6.314)). The only difference is that
ν1 � νL if mLmR > m2

D, whereas ν1 � −i νL if mLmR < m2
D.

In conclusion, considering one generation, we have seen that the see-saw mecha-
nism can provide a natural explanation of the smallness of the light neutrino either
if mL = 0 or with a small mL �= 0 generated by new physics beyond the SM.

6.5 Three-generation Dirac–Majorana mixing

It is possible that in addition to the three known active left-handed neutrino fields
ν′eL, ν′µL, ν′τL, there are Ns sterile right-handed neutrino fields νsR, with s =
s1, . . . , sNs . The notation of the sterile right-handed neutrino fields does not need
a prime, because these fields do not take part in weak interactions (on the other
hand, as explained in section 6.5.1, the active left-handed neutrino fields need to
be redefined in order to diagonalize the leptonic weak charged current). With all
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these fields, the most general mass term is the Dirac–Majorana mass term

L
D+M
mass = L

L
mass + L

R
mass + L

D
mass , (6.330)

with the Majorana mass terms

L
L
mass =

1

2

∑
α,β=e,µ,τ

ν′TαL C†ML
αβ ν

′
βL + H.c. , (6.331)

L
R
mass =

1

2

∑
s,s′=s1,...,sNs

νT
sR C†MR

ss′ νs′R + H.c. , (6.332)

and the Dirac mass term

L
D
mass = −

∑
s=s1,...,sNs

∑
α=e,µ,τ

νsRM
D
sα ν

′
αL + H.c. (6.333)

All the three mass matrices ML, MR, and MD are complex. The Majorana mass
matrices ML and MR are symmetric, as we have shown in eqn (6.172). The left-
handed Majorana mass matrix ML is a 3 × 3 square matrix, the right-handed
Majorana mass matrix MR is a Ns ×Ns square matrix, and the Dirac mass matrix
MD is a Ns × 3 rectangular matrix.

The neutrino fields with definite masses are obtained through the diagonaliza-
tion of the Dirac–Majorana mass term in eqn (6.330). It is convenient to define the
column matrix of N = 3 +Ns left-handed fields

N ′L ≡
(

ν ′L
νC

R

)
, (6.334)

with the column matrix of left-handed active neutrinos ν ′L defined in eqn (6.170)
and the column matrix of charge-conjugated right-handed sterile neutrinos

νC
R ≡

⎛⎜⎝ νC
s1R

...

νC
sNsR

⎞⎟⎠ . (6.335)

In this way, the Dirac–Majorana mass term in eqn (6.330) can be written in the
compact form

L
D+M
mass =

1

2
N ′TL C†MD+M N ′L + H.c. , (6.336)

with the N ×N symmetric mass matrix

MD+M ≡
(
ML MDT

MD MR

)
. (6.337)

Now the diagonalization of the Dirac–Majorana mass term is formally written in a
simple form analogous to the diagonalization of the Majorana mass term discussed
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in section 6.3, because the Dirac–Majorana mass term in eqn (6.336) has the struc-
ture of a Majorana mass term, as one can see by comparing it with eqn (6.171). We
write the left-handed flavor fields as unitary linear combinations of the left-handed
components of N fields with definite mass,

N ′L = V ν
L nL , with nL =

⎛⎜⎝ ν1L

...
νNL

⎞⎟⎠ . (6.338)

The unitary matrix V ν
L is chosen in order to diagonalize the symmetric mass matrix

MD+M (see section 6.7.1):

(V ν
L )T MD+M V ν

L = M , where Mkj = mk δkj (k, j = 1, . . . , N) ,
(6.339)

with real and positive masses mk. In this way, the Dirac–Majorana mass term in
eqn (6.336) can be written in terms of the massive left-handed fields as

L
D+M
mass =

1

2
nT

L C†M nL + H.c. =
1

2

N∑
k=1

mk ν
T
kL C† νkL + H.c. , (6.340)

or, using the charge-conjugated fields, as

L
D+M
mass = −1

2
nC

L M nL + H.c. = −1

2

N∑
k=1

mk νC
kL νkL + H.c. (6.341)

We can define the column matrix of massive Majorana neutrino fields

n =

⎛⎜⎝ ν1
...
νN

⎞⎟⎠ , (6.342)

where

νk = νkL + νC
kL (6.343)

are Majorana fields which satisfy the constraint

νC
k = νk . (6.344)

Using these Majorana fields, we can write the free neutrino Lagrangian as

L
D+M =

1

2

N∑
k=1

νk

(
i /
↔
∂ −mk

)
νk = n

(
i /
↔
∂ −M

)
n . (6.345)

Let us emphasize that a general result of the diagonalization of a Dirac–Majorana
mass term is that massive neutrinos are Majorana particles.
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6.5.1 Weak interactions

The mixing of active and sterile neutrino fields in eqn (6.338) has important
consequences for weak interactions.

Let us first examine the leptonic part of the charged-current weak interaction
Lagrangian in eqn (3.76). The leptonic charged-current is given by eqn (3.80), which
can be written as

jρ
W,L = 2 ν ′L γ

ρ �′L , (6.346)

with the column matrix ν ′L of active left-handed neutrino fields in eqn (6.170) and
the column matrix �′L of the left-handed components of the charged lepton fields in
eqn (3.127). From eqns (3.131) and (6.338), the leptonic charged-current written in
terms of massive fields is

jρ
W,L = 2 nL U

† γρ �L , (6.347)

where U is the mixing matrix with components

Uαk =
∑

β=e,µ,τ

(V 	
L

†
)αβ (V ν

L )βk . (6.348)

The matrix V 	
L that diagonalizes the charged lepton mass matrix is a 3× 3 unitary

matrix, whereas the matrix V ν
L that diagonalizes the Dirac–Majorana mass matrix

is an N × N unitary matrix. It follows that the mixing matrix U given by the
product in eqn (6.348) is a rectangular 3 × N matrix. It is not unitary, because
although

U U † = 1 , (6.349)

we have
U † U �= 1 . (6.350)

Although the expression in eqn (6.347) of the leptonic charged-current is for-
mally equal to that in eqn (6.12) for the Dirac case and to that in eqn (6.184) for the
mixing of three Majorana neutrinos, the Dirac–Majorana case under consideration
is very different, because the mixing matrix is a 3 ×N matrix which connects the
three active flavor neutrinos to N massive neutrinos. Keeping in mind this warning,
it is conventional to define the left-handed flavor neutrino fields as in eqns (6.13)
and (6.186),

νL = U nL = V 	†
L ν ′L , with νL =

⎛⎝νeL

νµL

ντL

⎞⎠ . (6.351)

In this way, the leptonic weak charged current can be written as in the SM
eqn (3.141):

jρ
W,L = 2 νL γ

ρ �L = 2
∑

α=e,µ,τ

ναL γ
ρ �αL . (6.352)

Since the parameterization of the rectangular mixing matrix U is rather compli-
cated, it is discussed in separately in section 6.7.3. Here, we remark only that the
rectangular 3×N mixing matrix U can be parameterized in terms of 3+3Ns mixing
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angles and 3+3Ns phases, which are divided into 1+2Ns Dirac phases and 2+Ns

Majorana phases.
The mixing of active and sterile neutrinos is explicitly given by

ναL =
N∑

k=1

Uαk νkL (α = e, µ, τ) , (6.353)

νC
sR =

N∑
k=1

(V ν
L )sk νkL (s = s1, . . . , sNs) . (6.354)

It is possible to write these mixing relations in the compact matrix form

NL = U nL , (6.355)

where we have defined

NL ≡
(

νL

νC
R

)
, U ≡

(
U

V ν
L |Ns×N

)
=

(
V 	

L

†
V ν

L |3×N

V ν
L |Ns×N

)
. (6.356)

Here V ν
L |3×N and V ν

L |Ns×N are, respectively, the 3×N andNs×N matrices obtained
by taking the first three rows and the remainingNs rows of V ν

L . Note that the N×N
matrix U is unitary.

As discussed in section 6.4.1 for the one-generation case, since active and sterile
neutrino fields are linear combinations of the same massive neutrino fields, oscilla-
tions between active and sterile states are possible. This can also be seen by noting
that the nonunitarity of the mixing matrix U implies that the total probability of
active flavors is not conserved.

Let us now consider the neutrino part of the neutral-current weak interaction
Lagrangian. From eqns (3.92) and (6.351), the neutrino neutral current is given by

jρ
Z,ν = ν ′L γ

ρ ν ′L = νL γ
ρ νL , (6.357)

since V 	
L is unitary. However, the nonunitarity of U (eqn (6.350)) implies that the

GIM mechanism does not work. In fact, the neutrino neutral current is not diagonal
in the massive fields:

jρ
Z,ν = nL γ

ρ U † U nL . (6.358)

This means that in the general Dirac–Majorana case it is possible to have neutral-
current transitions among different massive neutrinos.

6.5.2 See-saw mechanism

The see-saw mechanism presented in section 6.4.6 for the one-generation case is
generalized to three generations by considering the Dirac–Majorana mass matrix
in eqn (6.337) with ML = 0,

MD+M =

(
0 MDT

MD MR

)
, (6.359)

and a right-handed Majorana mass matrixMR with elements which are much larger
than the elements of the Dirac mass matrix MD. The physical justifications of these
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assumptions are the same as those in the one-generation case: ML is forbidden by
the SM symmetries and MR is generated by new physics beyond the SM. It is clear,
however, that the three-generation see-saw mechanism is more complicated than the
one-generation case due to the matrix character of the entries in eqn (6.359).

If all the eigenvalues of MR are much larger than all the elements of MD, the
mass matrix can be diagonalized by blocks [654, 934], up to corrections of the order
(MR)−1MD:

WT MD+MW �
(
Mlight 0

0 Mheavy

)
, (6.360)

with

W �
(

1 − 1
2 M

D†(MRMR†)−1MD [(MR)−1MD]†

−(MR)−1MD 1 − 1
2 (MR)−1MDMD†(MR†)−1

)
. (6.361)

The light 3× 3 mass matrix Mlight and the heavy Ns ×Ns mass matrix Mheavy are
given by

Mlight � −MDT
(MR)−1MD , Mheavy �MR . (6.362)

The heavy masses are given by the eigenvalues of MR, whereas the light masses are
given by the eigenvalues of Mlight, whose elements are suppressed with respect to

the elements of the Dirac mass matrixMD by the small matrix factorMDT
(MR)−1.

However, the values of the light neutrino masses and their relative sizes can vary
over wide ranges, depending on the specific values of the elements of MD and MR.
The following two simple possibilities are often considered in the literature (see
Refs. [251, 250]):

Quadratic See-Saw. This is the case with

MR = M I , (6.363)

where I is the Ns ×Ns identity matrix and M is the high-energy scale of new
physics beyond the SM in which the total lepton number is violated. In this
case, we have

Mlight � −M
DT

MD

M . (6.364)

The light neutrino masses are given by

mk =
(mD

k )2

M (k = 1, 2, 3) , (6.365)

where (mD
k )2 are the three eigenvalues of the 3 × 3 matrix MDT

MD. Since
the Dirac mass matrix MD is generated by the SM Higgs mechanism, mD

k are
expected to be of the order of the charged lepton masses or of the order of the
up-like quark masses. The large energy scale in the denominator of the right-
hand side of eqn (6.365) suppresses the light neutrino masses with respect to
the masses of the charged leptons and quarks as in the one-generation see-saw
mechanism (see eqn (6.311)).
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The case under consideration is called the quadratic see-saw, because the
light neutrino masses mk scale as the squares of the masses mD

k :

m1 : m2 : m3 = (mD
1 )2 : (mD

2 )2 : (mD
3 )2 . (6.366)

Linear See-Saw. If Ns = 3, it is possible to have

MR =
M
MD

MD , (6.367)

where MD is the scale of the elements of MD and M � MD is the high-energy
scale of new physics beyond the SM in which the total lepton number is violated.
Since the Dirac mass matrix MD is generated by the SM Higgs mechanism, it is
expected that MD is the energy scale of the SM electroweak symmetry breaking,
i.e. MD ∼ 102 GeV. From eqn (6.362), we obtain

Mlight � −MD

M MD . (6.368)

The light neutrino masses are given by

mk =
MD

M mD
k (k = 1, 2, 3) , (6.369)

where mD
k are the eigenvalues of MD. Hence, the light neutrino masses are

suppressed by the small ratio MD/M with respect to the masses mD
k , which

are expected to be of the order of the charged lepton masses or of the order of
the up-like quark masses.

The name linear see-saw follows from the proportionality of the light neutrino
masses mk to the masses mD

k :

m1 : m2 : m3 = mD
1 : mD

2 : mD
3 . (6.370)

6.6 Special cases

In this section we discuss briefly two special cases which are interesting for neu-
trino oscillations studies (see sections 13.1.3 and 13.1.4): three-neutrino trimaximal
mixing in subsection 6.6.1 and three-neutrino bilarge mixing in subsection 6.6.2.

6.6.1 Three-neutrino trimaximal mixing

Trimaximal mixing means that the absolute values of all the elements of the mixing
matrix are equal. The unitarity relations∑

k

|Uαk|2 = 1 ,
∑
α

|Uαk|2 = 1 (6.371)

imply that the absolute values of all the elements of the mixing matrix must be
equal to 1/

√
3:

|Uαk| =
1√
3
. (6.372)
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However, as discussed in Refs. [831, 1066], it is not possible to construct a real
mixing matrix with this requirement. This means that CP violation is necessary in
order to have trimaximal mixing. Using the parameterization in eqn (6.191) of the
Dirac part of the mixing matrix, trimaximal mixing is obtained for ϑ12 = ϑ23 = π/4,
s13 = 1/

√
3 and sin δ13 = ±1:

UD =

⎛⎜⎝
1√
3

1√
3

∓ i√
3

− 1
2 ∓ i

2
√

3
1
2 ∓ i

2
√

3
1√
3

1
2 ∓ i

2
√

3
− 1

2 ∓ i
2
√

3
1√
3

⎞⎟⎠ =
1√
3

⎛⎝ 1 1 ∓i
e∓i5π/6 e∓iπ/6 1

e∓iπ/6 e∓i5π/6 1

⎞⎠ .

(6.373)
In particular, the Jarlskog invariant in eqn (6.190) has its maximum absolute value,

J = ± 1

6
√

3
=⇒ |J | =

1

6
√

3
= |J |max (6.374)

(see eqn (4.165)). Therefore, according to the definition proposed in Ref. [395], in
trimaximal mixing there is maximal CP violation.

By rephasing appropriately the charged lepton and neutrino fields, the trimax-
imal mixing matrix in eqn (6.373) can be transformed to a more convenient form
with elements given by 1/

√
3 times one of the three cubic roots of one (1, e±i2π/3).

Extracting a phase ±i from the µ, τ , and ν3 fields (i.e. multiplying the second and
third rows by ∓i and the third column by ±i) we obtain

UD =
1√
3

⎛⎝ 1 1 1

e±i2π/3 e∓i2π/3 1

e∓i2π/3 e±i2π/3 1

⎞⎠ . (6.375)

If ν3 is a Majorana particle, the phase ±i can be extracted from the Majorana
phase eiλ3 , which changes its value accordingly. Furthermore, by extracting a phase
e±i2π/3 from the e, µ, τ , and ν3 fields and a phase e∓i2π/3 from the ν2 field (or a
phase e±i2π/3 from eiλ3 and a phase e∓i2π/3 from eiλ2 if ν3 and ν2 are Majorana
particles), we obtain

UD =
1√
3

⎛⎝e∓i2π/3 e±i2π/3 1
1 1 1

e±i2π/3 e∓i2π/3 1

⎞⎠ . (6.376)

One can easily see that the two physically equivalent mixing matrices in eqns (6.375)
and (6.376) can be obtained by a cyclic permutation of the rows of the mixing
matrix, which is equivalent to the cyclic permutation of the flavors e, µ, τ → µ, τ, e.
It is clear that by similar reasoning one can show that the following cyclic per-
mutation of the flavors µ, τ, e → τ, e, µ yields the physically equivalent mixing
matrix

UD =
1√
3

⎛⎝e±i2π/3 e∓i2π/3 1

e∓i2π/3 e±i2π/3 1
1 1 1

⎞⎠ , (6.377)

and it is also possible to obtain physically equivalent mixing matrices by cyclic
permutations of the columns, which is equivalent to cyclic permutations of the
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massive neutrinos ν1, ν2, ν3 � ν2, ν3, ν1 � ν3, ν1, ν2. Using these properties one can
easily see that the exchange of two columns or the exchange of two rows, which
is equivalent to the operation of Hermitian conjugation, inverts all the phases in
the trimaximal mixing matrix. Therefore, it exchanges the two inequivalent mixing
matrices with opposite Jarlskog invariant in eqn (6.374).

Summarizing, a trimaximal Dirac mixing matrix is physically invariant under
the permutations e, µ, τ � µ, τ, e � τ, e, µ and ν1, ν2, ν3 � ν2, ν3, ν1 � ν3, ν1, ν2,
whereas an exchange e � µ or µ � τ or τ � e or ν1 � ν2 or ν2 � ν3 or ν3 � ν1
transforms the two inequivalent trimaximal Dirac mixing matrices with opposite
Jarlskog invariant one into the other. These properties have important consequences
for the symmetries of neutrino oscillation probabilities, which will be discussed in
section 13.1.3.

6.6.2 Three-neutrino bilarge mixing

We have three-neutrino bilarge mixing if all the elements of the mixing matrix
are large, except one. In this case, the small element of the mixing matrix can be
neglected in practice and it is possible to express the mixing matrix in terms of
only two mixing angles.

In general, in three-neutrino mixing the Jarlskog invariant is zero if any of the
elements of the mixing matrix is zero. This follows obviously from the relation in
eqn (6.27). Therefore, in the case of three-neutrino bilarge mixing the Jarlskog
invariant is very small and it is very difficult to observe Dirac-type CP violations
in the lepton sector.

As a useful example, we consider the case in which Ue3 = 0, which is a realistic
approximation of the true mixing matrix, as we will see in chapter 13. In this case,
in the parameterization in eqn (6.191) we have ϑ13 = 0 and the Dirac part of the
mixing matrix reduces to

UD =

⎛⎝ c12 s12 0
−s12c23 c12c23 s23
s12s23 −c12s23 c23

⎞⎠ . (6.378)

Since this matrix is real, it is clear that it cannot induce any CP violation effect. In
section 13.1.4 we will discuss the implications of the mixing matrix in eqn (6.378)
for neutrino oscillations in vacuum.

6.7 Majorana mass matrix

In this section we discuss the properties of a symmetric N × N Majorana mass
matrix MM. In subsection 6.7.1 we discuss the diagonalization of the mass matrix.
In subsection 6.7.2 we discuss the parameterization of the mixing matrix in the case
of three-neutrino mixing introduced in section 6.3. In subsection 6.7.3 we discuss
the parameterization of the mixing matrix in the general case of N -neutrino mixing
with N > 3, which can be applied to the case of Dirac–Majorana mixing discussed
in section 6.5.
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6.7.1 Diagonalization

A symmetric complex N ×N Majorana mass matrix MM can be diagonalized with
the transformation

(V ν
L )T MM V ν

L = M , with Mkj = mk δkj (k, j = 1, . . . , N) , (6.379)

where V ν
L is a unitary matrix and mk are real and positive masses (see Ref. [235]).

The diagonalization equation (6.379) corresponds to eqn (6.175) with MM = ML

in the case of mixing of three Majorana neutrinos, and to eqn (6.339) with MM =
MD+M in the case of Dirac–Majorana mixing.

Let us first note that the number of available parameters for the diagonalization
is sufficient: the N ×N symmetric complex matrix MM is determined by N(N +1)
independent real parameters, which is the same amount as the N2 independent real
parameters in the N ×N unitary matrix V ν

L plus the N independent real elements
of the diagonal N ×N matrix M .

The proof of the diagonalization in eqn (6.7.1) makes use of the fact that, as
shown in subsection 4.1, an arbitrary complex matrix can be diagonalized by the
biunitary transformation

V †MMW = M , with Mkj = mk δkj (k, j = 1, . . . , N) , (6.380)

where V and W are unitary matrices. Therefore,

MM = V M W † , (6.381)

from which we have

MM (MM)† = V M W †WM † V † = V M2 V † , (6.382)

and

(MM)T ((MM)T )† = (W †)T M V T (V T )†M †WT = (W †)T M2WT . (6.383)

Since MM is symmetric, the two expressions in eqns (6.382) and (6.383) are equal:

V M2 V † = (W †)T M2WT . (6.384)

Multiplying on the left by WT and on the right by V , we see that WT V commutes
with M2,

WT V M2 = M2WT V . (6.385)

Since WT V is unitary, it must be a diagonal matrix of phases:

WT V = D with Dkj = eiϕk δkj , (6.386)

with real numbers ϕk. Using eqns (6.381) and (6.386), MM can be written as

MM = V M W † = (WT )†WT V M W † = (W †)T DMW † . (6.387)
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Since D is diagonal, also D1/2 is diagonal and commutes with the diagonal matrix
M , leading to

MM = (W †)T D1/2M D1/2W † = (D1/2W †)T M D1/2W † . (6.388)

It is clear now that the diagonalization in eqn (6.379) is achieved taking

V ν
L
† = D1/2W † =⇒ V ν

L = W D−1/2 . (6.389)

Let us note that if MM is real,

MM = MM∗ , (6.390)

the diagonalization in eqn (6.380) is performed with real orthogonal matrices

V = V ∗ , V T = V −1 , W = W ∗ , WT = W−1 . (6.391)

In this case, the diagonal matrix D is real with elements equal to ±1. From
eqn (6.389) it follows that in this case the matrix V ν

L is given by a real orthog-
onal matrix W multiplied by a diagonal matrix D−1/2 with elements equal to ±1
or ±i. Hence, the columns of the matrix V ν

L are either real or imaginary.
In order to find the masses mk, let us multiply eqn (6.379) on the left by V ν

L
∗

to get
MMV ν

L = V ν
L
∗M . (6.392)

Let us define the vectors v(j) with components

v
(j)
k ≡ [V ν

L ]kj . (6.393)

In other words, the vectors v(j) are the columns of the unitary matrix V ν
L . The

unitarity relation V ν
L
†V ν

L = 1 implies the orthonormality relation∑
k

v
(i)∗
k v

(j)
k = δij . (6.394)

Using the vectors v(j), eqn (6.392) can be written as

MMv(j) = mjv
(j)∗ . (6.395)

Let us separate the real and imaginary parts of eqn (6.395):(
e
[
MM

]
+ i�m

[
MM

]) (
e
[
v(j)

]
+ i�m

[
v(j)

])
= mj

(
e
[
v(j)

]
− i�m

[
v(j)

])
,

(6.396)
which can be written as(

e
[
MM

]
−�m

[
MM

]
−�m

[
MM

]
−e

[
MM

] )(e
[
v(j)

]
�m

[
v(j)

]) = mj

(
e
[
v(j)

]
�m

[
v(j)

]) . (6.397)

This is a real eigenvalue equation for the symmetric matrix

M =

(
e
[
MM

]
−�m

[
MM

]
−�m

[
MM

]
−e

[
MM

] ) , (6.398)

which can be solved numerically. The eigenvalues of M are the masses and the eigen-
vectors give the real and imaginary parts of the columns of the unitary diagonalizing
matrix V ν

L .
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Let us note that, if the dimension of MM is N×N , the eigenvalue equa-
tion (6.397) has 2N solutions. However, if mj is the eigenvalue of eqn (6.397),
also −mj is an eigenvalue: using the relations obtained with eqn (6.397) it is
straightforward to obtain(

e
[
MM

]
−�m

[
MM

]
−�m

[
MM

]
−e

[
MM

] )(−�m
[
v(j)

]
e
[
v(j)

] ) = −mj

(
−�m

[
v(j)

]
e
[
v(j)

] ) . (6.399)

Therefore, there are correctly onlyN positive mass eigenvalues whose corresponding
eigenvectors give the real and imaginary parts of the columns of the matrix V ν

L .

6.7.2 Three-neutrino mixing

In this section we consider the case of mixing of three Majorana neutrinos intro-
duced in section 6.3, for which N = 3. The leptonic mixing matrix U is given by
eqn (6.185),

U = V 	†
L V ν

L , (6.400)

where V 	
L is the unitary matrix that participates in the diagonalization of the

charged lepton mass matrix in eqn (3.129).
In general, a unitary N×N matrix depends on N2 independent real parameters,

which can be divided as in eqns (4.11) and (4.12): N(N−1)/2 angles andN(N+1)/2
phases. However, as in the case of CKM quark mixing discussed in section 4.2, not
all the phases have physical meaning. The mixing matrix enters only in the leptonic
charged-current weak interaction Lagrangian in eqn (6.194)

L
(CC)
I,L = − g√

2

∑
α=e,µ,τ

3∑
k=1

�αLγ
ρUαkνkLW

†
ρ + H.c. = − g√

2
�Lγ

ρUnLW
†
ρ + H.c. ,

(6.401)
with the array �L of left-handed charged lepton fields in eqn (3.131) and the array
nL of left-handed massive Majorana fields in eqn (6.176). Since the other terms in
the Lagrangian are invariant under a global phase shift of the charged lepton fields,
N = 3 phases of the mixing matrix can be eliminated. The neutrino fields cannot
be rephased, because the Majorana mass term is not invariant under such trans-
formation, as shown in eqn (6.120). Therefore, the number of physical parameters
in the mixing matrix is

N2 −N = N (N − 1) = 6 , (6.402)

which can be equally divided into

N (N − 1)

2
= 3 mixing angles , (6.403)

N (N − 1)

2
= 3 physical phases . (6.404)

Since in the case of Dirac neutrinos N − 1 = 2 of the phases in eqn (6.404) can
be further eliminated by appropriate rephasing of the neutrino fields, in analogy to
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the case of quark mixing discussed in section 4.2, in general, the mixing matrix U
can be written as in eqn (6.189),

U = UDDM , (6.405)

where UD is a Dirac-like mixing matrix with

(N − 1) (N − 2)

2
= 1 Dirac phase (6.406)

(see eqn (4.18)), and DM is a diagonal matrix with

N − 1 = 2 Majorana phases . (6.407)

For the parameterization of the 3 × 3 leptonic mixing matrix we can follow a
method similar to that described in section 4.3.2 for the parameterization of the
3 × 3 CKM mixing matrix of quarks. We can start with the parameterization of a
3 × 3 unitary mixing matrix in eqn (4.64), which can be written as

U = DLR23W 13R12DR , (6.408)

with the new definitions

DL ≡ diag
(
eiω1 , ei(ω2−η12) , ei(ω3−η12−η23)

)
, (6.409)

DR ≡ diag
(
1 , eiη12 , ei(η12+η23)

)
. (6.410)

Five phases have been factorized out of the matrix product R23W 13R12: the three
phases ω1, ω2 − η12 and ω3 − η12 − η23 on the left and the two phases η12 and
η12 + η23 on the right.

Considering the leptonic charged-current weak interaction Lagrangian in
eqn (6.401), we make a change of phase of the charged lepton fields

�αL → eiψα �αL , (6.411)

with

ψe = ω1 , (6.412)

ψµ = ω2 − η12 , (6.413)

ψτ = ω3 − η12 − η23 , (6.414)

which eliminate the three phases in DL. Hence, we can write the leptonic mixing
matrix in terms of the physical parameters as in eqn (6.189),

U = UDDM , (6.415)

with the Dirac-like mixing matrix in eqn (6.191), which is identical to the quark
mixing matrix in eqn (4.79), and the diagonal matrix with the two Majorana phases

DM = DL . (6.416)

Calling λ2 = η12 and λ3 = η12 + η23, D
M has the form in eqn (6.192),

DM = diag
(
eiλ1 , eiλ2 , eiλ3

)
, with λ1 = 0 . (6.417)

We have written explicitly all the phases λk because one could choose another phys-
ically equivalent parameterization of DM changing the global phase of the charged
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lepton fields by eiψ, which entails eiλk → ei(λk−ψ), leaving ei(λk−λj) constant. Thus,
only the relative differences λk − λj have physical meaning.

6.7.3 N-neutrino mixing

In this section we consider the general case of a symmetricN×N Majorana neutrino
mass matrix with N > 3, as in the case of Dirac–Majorana mixing discussed in
section 6.5 (see eqn (6.337)).

As explained in section 6.5.1, the mixing matrix U in the leptonic charged-
current weak interaction Lagrangian

L
(CC)
I,L = − g√

2

N∑
k=1

∑
α=e,µ,τ

�αLγ
ρUαkνkL + H.c. = − g√

2
�Lγ

ρU nL + H.c. (6.418)

is the rectangular 3 ×N matrix

U = V 	
L

†
V ν

L , (6.419)

where V 	
L is the unitary matrix that participates in the diagonalization of the

charged lepton mass matrix in eqn (3.129). The mixing matrix U is not unitary,
because

U † U �= 1 , (6.420)

although
U U † = 1 . (6.421)

In order to discuss the parameterization of U in a general way, let us write N as
N = NA +Ns, where NA = 3 is the number of active flavors and Ns is the number
of sterile neutrino fields. Thus, U is a NA × N rectangular matrix which satisfies
eqn (6.421).

A general complex NA ×N rectangular matrix depends on 2NAN real param-
eters. Since in eqn (6.421) 1 is the NA ×NA identity matrix, eqn (6.421) imposes
N2

A constraints, which lower the number of independent real parameters to

NA(NA + 2Ns) . (6.422)

In order to understand how many of these real parameters are mixing angles
and how many are phases, let us consider a unitary N×N matrix V , which depends
on N(N − 1)/2 angles and N(N + 1)/2 phases. We can construct V following the
method described in section 4.3.2. From eqn (4.45), we can write V as

V = D(ω)

[∏
a<b

W ab(ϑab, ηab)

]
(a, b = 1, . . . , N) , (6.423)

where D(ω) is the diagonal unitary matrix in eqn (4.44), which depends on the
set of N phases ω = (ω1, . . . , ωN), and W ab(ϑab, ηab) is the matrix in eqn (4.41)
of a complex rotation in the a-b plane depending on the angle ϑab and the phase
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ηab. We can now construct the NA × N rectangular matrix U by taking the first
NA rows of V . It is rather obvious that in so doing the phases ωa with a > NA

are truncated away. With a little more thinking one can see that also the complex
rotations W ab(ϑab, ηab) with a > NA (which implies b > a > NA) are truncated
away. Therefore, we can write U as

U = [D(ω)]NA×NA

[
NA∏
a=1

N∏
b=a+1

W ab(ϑab, ηab)

]
NA×N

, (6.424)

where the square brackets with subscript NA × NB indicate that the matrix is
truncated to the first NA rows and NB columns.

Equation (6.424) gives us a simple practical way for the construction of the
rectangular NA ×N mixing matrix U . It allows also an easy determination of the
numbers of mixing angles and phases in U . The combinations of the indices ab
allowed in eqn (6.424) are

12

13 23

...
...

. . .

1NA 2NA · · · (NA − 1)NA

1(NA + 1) 2(NA + 1) · · · (NA − 1)(NA + 1) NA(NA + 1)

...
...

...
...

1N 2N · · · (NA − 1)N NAN

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
NA (NA − 1)

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭NANs .

(6.425)
Therefore, there are

NA (NA − 1)

2
+NANs = 3 + 3Ns mixing angles , (6.426)

NA (NA + 1)

2
+NANs = 6 + 3Ns phases , (6.427)

counting both the phases ηab and the phases ωa. The sum of the numbers of mix-
ing angles and phases coincides correctly with the number of real parameters in
eqn (6.422).

Not all the phases counted in eqn (6.427) are physical, because NA phases
can be eliminated by appropriate rephasing of the charged lepton fields in the
charged-current weak interaction Lagrangian in eqn (6.418). Thus, there are

NA (NA − 1)

2
+NANs = 3 + 3Ns physical phases , (6.428)

whose number is the same as that of mixing angles in eqn (6.426), as in the case
of absence of sterile neutrino fields (see eqns (6.403) and (6.404)). This result is
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rather obvious from the expression in eqn (6.424) of U , which shows clearly that
the phases ωa can be eliminated by appropriate rephasing of the charged lepton
fields, leaving one physical phase ηab for each mixing angle ϑab. Thus, a possible
parameterization of the mixing in terms of physical parameters is obtained from
eqn (6.424) by eliminating the diagonal unitary matrix [D(ω)]NA×NA

. However,
it may be more convenient to adopt a parameterization which reduces to that
presented in section 6.7.2 in the three-neutrino mixing case (i.e. Ns = 0). To this
end, we can write the mixing matrix U in a form as close as possible to that in
eqn (6.408):

U = DL

[
R23W 13 R12DR

NA∏
a=1

N∏
b=NA+1

W ab(ϑab, ηab)

]
NA×N

, (6.429)

where DL is the diagonal NA×NA matrix of phases defined in eqn (6.409), whereas
DR is the diagonal N ×N matrix of phases

DR ≡ diag
(
1 , eiη12 , ei(η12+η23) , 1 , . . . , 1

)
. (6.430)

The matrix DL on the left can be eliminated by rephasing the charged lepton fields
as in eqns (6.411)–(6.414). The matrix DR can be moved to the right, leading to

U =

[
R23W 13R12

NA∏
a=1

N∏
b=NA+1

W ab(ϑab, η
′
ab)

]
NA×N

DM , (6.431)

where
DM = diag

(
eiλ1 , eiλ2 , . . . , eiλN

)
, (6.432)

and

λ1 = 0 , (6.433)

λ2 = η12 , (6.434)

λ3 = η12 + η23 , (6.435)

η′ab = ηab + λa − λb , for a = 1, . . . , NA and b = NA + 1, . . . , N . (6.436)

The Ns phases λb for b = NA + 1, . . . , N can be chosen in order to cancel Ns of the
phases η′ab. In this way, the physical phases are separated into

N − 1 = 2 +Ns Majorana phases λa (a = 2, . . . , N) , (6.437)

which can be factorized in the diagonal matrix DM on the right of U in eqn (6.431),
and

(NA − 1) (NA − 2)

2
+ (NA − 1)Ns = 1 + 2Ns Dirac phases . (6.438)

For example, we can choose η′1b = 0 for b = 4, . . . , N . In this case, the Dirac phases
are η13, η

′
24, . . . , η

′
2N , η

′
34, . . . , η

′
3N .
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NEUTRINO OSCILLATIONS IN VACUUM

The ability to perceive or think differently is more important
than the knowledge gained.
David Bohm

Neutrino oscillation is a quantum mechanical phenomenon proposed in the late
1950s by Pontecorvo [880, 881] in analogy with K0-K̄0 oscillations. The oscillations
are generated by the interference of different massive neutrinos, which are produced
and detected coherently because of their very small mass differences.

Since in the late 1950s only one active neutrino was known, the electron neu-
trino, in order to discuss neutrino oscillations, Pontecorvo invented the concept of
a sterile neutrino [883], which is a neutral fermion which does not take part in weak
interactions. The muon neutrino was discovered in 1962 in the Brookhaven experi-
ment of Lederman, Schwartz, Steinberger, et al. [348], who followed up a proposal
made by Pontecorvo in 1959 [882]. Since then, it became clear that oscillations
between different active neutrino flavors are possible if neutrinos are massive and
mixed. In 1962 Maki, Nakagawa, and Sakata [766] considered for the first time a
model with the mixing of different neutrino flavors. In 1967 Pontecorvo [883] pre-
dicted the Solar Neutrino Problem as a consequence of νe → νµ (or νe → νsterile)
transitions even before the first measurement of the solar electron neutrino flux
in the Homestake experiment [323], and in 1969 Gribov and Pontecorvo discussed
solar neutrino oscillations due to neutrino mixing [567].

However, in the above and other papers, the probability of neutrino oscillations
was not calculated in a rigorous way, but simply estimated on the basis of the
analogy with kaon oscillations. As a result, the phase of the oscillations was correct
within a factor of two.

The standard theory of neutrino oscillations in the plane-wave approximation
was developed in 1975–76 by Eliezer and Swift [404], Fritzsch and Minkowski
[466], Bilenky and Pontecorvo [236, 239], and elegantly reviewed by Bilenky and
Pontecorvo in Ref. [237].

In this chapter, we review the standard plane-wave derivation of the neutrino
oscillation probability in section 7.1. In the following sections, we discuss the main
phenomenological aspects of neutrino oscillations in vacuum.

An important feature necessary for the derivation of a simple and general
expression for the probability of neutrino oscillations is the fact that neutrinos
in oscillation experiments are ultrarelativistic, since neutrino masses are smaller
than about one eV (see chapter 14) and only neutrinos with energy larger than
about 100 keV can be detected. Neutrinos are detected in:



246 NEUTRINO OSCILLATIONS IN VACUUM

1. Charged-current or neutral-current weak scattering processes which have an
energy threshold given in eqn (5.37). As shown in Table 5.2 (page 143), current
experimental thresholds are always larger than some fraction of an MeV. The
lowest threshold reached so far is that of the first reaction in Table 5.2, νe +
71Ga → 71Ge + e−, which is used in gallium solar neutrino experiments (see
section 10.5).

2. The elastic scattering process ν + e− → ν + e−, whose cross-section is propor-
tional to the neutrino energy (σ(Eν ) ∼ σ0Eν/me, with σ0 ∼ 10−44 cm2). An
energy threshold of some MeV’s is needed in order to have a signal above the
background. For example, Eth

ν � 5 MeV in the Super-Kamiokande [472] solar
neutrino experiment.

Neutrinos να with flavor α = e, µ, τ are produced35 in charged-current (CC)
weak interaction processes from a charged lepton �−α (i.e. �−α → να transitions)
or together with a charged antilepton �+α (i.e. creation of a �+α να pair). These
processes are generated by the charged-current leptonic interaction Lagrangian (see
eqns (3.76) and (3.77))

L
(CC)
I,L = − g

2
√

2

(
jρ
W,LWρ + jρ†

W,LW
†
ρ

)
, (7.1)

where jρ
W,L is the leptonic charged current

jρ
W,L = 2

∑
α=e,µ,τ

ναL γ
ρ �αL = 2

∑
α=e,µ,τ

∑
k

U∗αk νkL γ
ρ �αL , (7.2)

which is valid both in the case of Dirac (see eqns (6.14) and (6.187)) or Majorana
massive neutrinos (see eqn (6.184)). In the case of Dirac neutrinos, the Fourier
expansion of the field operator νk is (see eqn (2.139))

νkL(x) =

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)†

νk
(p)u

(h)
νkL(p) e−ip ·x + b(h)

νk
(p) v

(h)
νkL(p) eip ·x] .

(7.3)

Hence, the leptonic charged current in eqn (7.2) contains creation operators a
(h)†
νk (p)

of neutrinos with mass mk and, through the charged lepton field �α, it con-
tains destruction operators of �−α and creation operators of �+α , which lead to the
generation of �−α → νk transitions or �+α νk pair creation.

In the case of Majorana neutrinos, we have b
(h)
νk (p) = a

(h)
νk (p) (see eqn (6.99)).

Hence, creation operators a
(h)†
νk (p) of neutrinos with mass mk are present both in

35 Neutrinos can also be produced in the neutral-current (NC) weak interaction process
Z → νν̄, generated by the interaction Lagrangian in eqn (3.90). The Z can be either real
(Z-decay) or virtual (for example in e−e+ → νν̄). In this case, the neutrinos do not have
a definite flavor. However, the produced neutrinos are active and can oscillate into sterile
neutrinos if light sterile neutrinos exist. These oscillations could be observed by measuring
the disappearance of active neutrinos. The theory of active–sterile oscillations can be
obtained by straightforward modifications to the theory of flavor oscillations discussed in
this chapter.
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jρ
W,L and jρ†

W,L. However, jρ†
W,L does not contribute to �−α → νk transitions or �+α νk

pair creation because it contains the charged lepton field in the adjoint form �α,
which does not contain destruction operators of �−α and creation operators of �+α (it
contains creation operators of �−α and destruction operators of �+α ).

The leptonic charged current in eqn (7.2) generates a superposition of massive
neutrinos if the energies and momenta of the particles which participate in the
neutrino production process are not measured with a degree of accuracy which
would allow the determination, through energy–momentum conservation, of the
massive neutrino which is emitted. This is characteristic of neutrino oscillation
experiments, in which a flavor neutrino να is a superposition of massive neutrinos
νk with weights proportional to U∗αk.

7.1 Standard Derivation of the Neutrino Oscillation Probability

In the standard theory of neutrino oscillations [404, 466, 236, 239, 237] a neutrino
with flavor α and momentum �p, created in a charged-current weak interaction
process from a charged lepton �−α or together with a charged antilepton �+α , is
described by the flavor state

|να〉 =
∑

k

U∗αk |νk〉 (α = e, µ, τ) . (7.4)

The presence of the weight U∗αk of the |νk〉 in the flavor state |να〉 is due to the
decomposition in eqn (7.2) of the leptonic charged current jρ

W,L in terms of the
massive neutrino contributions, which contain the creation operators of massive
neutrinos. As we will see in subsection 8.1.1, additional coefficients due to the effect
of the difference of the neutrino masses on the interaction process are negligible for
neutrino oscillations.

For simplicity, we consider a finite normalization volume V , according to the
method discussed in section 2.13, in order to have orthonormal massive neutrino
states:

〈νk|νj〉 = δkj . (7.5)

The unitarity of the mixing matrix implies that also the flavor states are
orthonormal:

〈να|νβ〉 = δαβ . (7.6)

In eqn (7.4) we have not limited the number of massive neutrinos. Since it is
known that the number of active flavor neutrinos is three, corresponding to νe, νµ,
ντ , the number of massive neutrinos must be equal to or greater than three. If
the number of massive neutrinos is greater than three, the additional neutrinos in
the flavor basis are sterile, i.e. they do not participate in weak interactions (since
neutrinos are electrically neutral, sterile neutrinos interact with ordinary matter
only through gravitational interactions or exotic interactions beyond those in the
SM). Transitions of active flavor neutrinos into sterile ones can be observed only
through the disappearance of active neutrinos.
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The massive neutrino states |νk〉 are eigenstates of the Hamiltonian,

H |νk〉 = Ek|νk〉 , (7.7)

with energy eigenvalues

Ek =

√
�p2 +m2

k . (7.8)

The Schrödinger equation

i
d

dt
|νk(t)〉 = H |νk(t)〉 (7.9)

implies that the massive neutrino states evolve in time as plane waves:

|νk(t)〉 = e−iEkt |νk〉 . (7.10)

Let us consider now a flavor state |να(t)〉 which describes a neutrino created with
a definite flavor α at time t = 0. From eqns (7.4) and (7.10), the time evolution of
this state is given by

|να(t)〉 =
∑

k

U∗αk e
−iEkt |νk〉 , (7.11)

such that

|να(t = 0)〉 = |να〉 . (7.12)

Using the unitarity relation

U † U = 1 ⇐⇒
∑
α

U∗αk Uαj = δjk , (7.13)

the massive states can be expressed in terms of flavor states inverting eqn (7.4):

|νk〉 =
∑

α

Uαk |να〉 . (7.14)

Substituting eqn (7.14) into eqn (7.11), we obtain

|να(t)〉 =
∑

β=e,µ,τ

(∑
k

U∗αk e
−iEkt Uβk

)
|νβ〉 . (7.15)

Hence, the superposition of massive neutrino states |να(t)〉, which is the pure flavor
state given in eqn (7.4) at t = 0, becomes a superposition of different flavor states
at t > 0 (if the mixing matrix U is not diagonal, i.e. neutrinos are mixed). The



NEUTRINO OSCILLATION PROBABILITY 249

coefficient of |νβ〉,

Aνα→νβ
(t) ≡ 〈νβ |να(t)〉 =

∑
k

U∗αk Uβk e
−iEkt , (7.16)

is the amplitude of να → νβ transitions as a function of time. The transition
probability is, then, given by

Pνα→νβ
(t) =

∣∣Aνα→νβ
(t)
∣∣2 =

∑
k,j

U∗αk Uβk Uαj U
∗
βj e
−i(Ek−Ej)t . (7.17)

For ultrarelativistic neutrinos, the dispersion relation in eqn (7.8) can be approxi-
mated by

Ek � E +
m2

k

2E
. (7.18)

In this case,

Ek − Ej �
∆m2

kj

2E
, (7.19)

where ∆m2
kj is the squared-mass difference

∆m2
kj ≡ m2

k −m2
j , (7.20)

and
E = |�p| (7.21)

is the neutrino energy, neglecting the mass contribution. Therefore, the transition
probability in eqn (7.17) can be approximated by

Pνα→νβ
(t) =

∑
k,j

U∗αkUβkUαjU
∗
βj exp

(
−i

∆m2
kjt

2E

)
. (7.22)

The final step in the standard derivation of the neutrino oscillation probability is
based on the fact that, in neutrino oscillation experiments, the propagation time
t is not measured. What is known is the distance L between the source and the
detector. Since ultrarelativistic neutrinos propagate almost at the speed of light, it
is possible to approximate t = L, leading to

Pνα→νβ
(L,E) =

∑
k,j

U∗αk Uβk Uαj U
∗
βj exp

(
−i

∆m2
kjL

2E

)
. (7.23)

This expression shows that the source–detector distance L and the neutrino energy
E are the quantities depending on the experiment which determine the phases of
neutrino oscillations

Φkj = −
∆m2

kj L

2E
. (7.24)

Of course, the phases are determined also by the squared-mass differences ∆m2
kj ,

which are physical constants. The amplitude of the oscillations is specified only
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by the elements of the mixing matrix U , which are constants of nature. Therefore
measurements of neutrino oscillations allow one to shed some light on the values of
the squared-mass differences ∆m2

kj and the elements of the mixing matrix U .
Although positive measurements of neutrino oscillations imply massive neutri-

nos, they yield precise information only on the values of the squared-mass differences
∆m2

kj , but not on the absolute values of neutrino masses, except that obviously m2
k

or m2
j must be larger than |∆m2

kj |.
The oscillation probability in eqn (7.23) depends on the elements of the mixing

matrix U through the quartic products

U∗αk Uβk Uαj U
∗
βj , (7.25)

which do not depend on the specific parameterization of the mixing matrix and on
the choice of phases. In fact, the quartic products in eqn (7.25) are invariant under
the rephasing transformation

Uαk → eiψα Uαk e
iφk . (7.26)

Hence, the quartic products eqn (7.25) do not depend on the phases that can be
factorized on the left or on the right of the mixing matrix. This corresponds to a
rephasing of the charged lepton and neutrino fields.

As we have discussed in section 6.3, in the case of Majorana neutrinos the
three-neutrino mixing matrix contains, in addition to the Dirac phase analogous to
that in the CKM mixing matrix of quarks, two Majorana phases which appear in
a diagonal matrix at the right of the mixing matrix. In other words, as shown in
eqn (6.189), we can write

Uαk = UD
αk e

iλk . (7.27)

The rephasing invariants in eqn (7.25) are free from the Majorana phases. This
means that the Majorana phases cannot be measured in neutrino oscillation exper-
iments (see section 9.2 for the proof that this statement holds also in the case of
neutrino oscillations in matter). This statement holds in general for any number of
generations: neutrino oscillations are independent of the Majorana phases, which
are always factorized in a diagonal matrix on the right of the mixing matrix. In
particular, CP and T violations in neutrino oscillations, discussed in sections 7.3.2
and 7.3.3, depend only on the Dirac phases.

It is clear that transitions among different flavors manifest for L > 0, because
the unitarity relation

U U † = 1 ⇐⇒
∑

k

Uαk U
∗
βk = δαβ (7.28)

implies that
Pνα→νβ

(L = 0, E) = δαβ . (7.29)

Sometimes it is convenient to write the probability in eqn (7.23) as

Pνα→νβ
(L,E) =

∑
k

|Uαk|2 |Uβk|2 + 2e
∑
k>j

U∗αk Uβk Uαj U
∗
βj exp

(
−2πi

L

Losc
kj

)
,

(7.30)
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in which we have separated a constant term from the oscillating term and we have
defined the oscillation lengths

Losc
kj =

4πE

∆m2
kj

. (7.31)

The oscillation length Losc
kj is the distance at which the phase generated by ∆m2

kj

becomes equal to 2π.
The oscillating term in eqn (7.30) is produced by the interference of the differ-

ent massive neutrino components of the state in eqn (7.11). Therefore, its existence
depends on the coherence of the massive neutrino components. If, for some reason,
different massive neutrinos are produced or detected in an incoherent way, as dis-
cussed in section 8.2.2, the probability of να → νβ reduces to the constant term in
eqn (7.30), as can also be seen by calculating the incoherent transition probability

P incoherent
να→νβ

=
∑

k

∣∣〈νβ |νk〉 e−iEkt 〈νk|να〉
∣∣2 =

∑
k

|Uαk|2 |Uβk|2 . (7.32)

As discussed in section 7.6, the incoherent average of the oscillation probability in
eqn (7.30) over the energy resolution of the detector or over the uncertainty of the
distance L can also lead to an effectively constant measurable probability which
has the same value as the incoherent transition probability in eqn (7.32):

〈Pνα→νβ
〉 =

∑
k

|Uαk|2 |Uβk|2 . (7.33)

This result follows simply from the fact that the average of the exponential functions
in eqn (7.30) is zero.

The oscillation probability in eqn (7.23) satisfies the two rules of the conservation
of probability which are consequences of the unitary evolution of the states:

1. The sum of the probabilities of transition from a flavor neutrino να to all flavor
neutrinos νβ (including α = β) is equal to unity:∑

β

Pνα→νβ
(L,E) = 1 . (7.34)

2. The sum of the probabilities of transition from any flavor neutrino να (including
α = β) to a flavor neutrino νβ is equal to unity:∑

α

Pνα→νβ
(L,E) = 1 . (7.35)

These sum rules can be derived from eqn (7.23) by using the unitarity relations
in eqns (7.13) and (7.28).

Another useful way to write the oscillation probability in eqn (7.23) is to separate
the real and imaginary parts of Uβk U

∗
αk U

∗
βj Uαj. From the square of the unitarity
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relation in eqn (7.28), we obtain∑
k

|Uαk|2 |Uβk|2 = δαβ − 2
∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

]
, (7.36)

which allows one to write the oscillation probability as

Pνα→νβ
(L,E) = δαβ − 2

∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

] [
1 − cos

(
∆m2

kjL

2E

)]

+ 2
∑
k>j

�m
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kjL

2E

)
, (7.37)

or in the form

Pνα→νβ
(L,E) = δαβ − 4

∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

]
sin2

(
∆m2

kjL

4E

)

+ 2
∑
k>j

�m
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kjL

2E

)
. (7.38)

The oscillation probabilities of the channels with α �= β are usually called transition

probabilities, whereas the oscillation probabilities of the channels with α = β are
usually called survival probabilities. Since, in the case of the survival probabilities,
the quartic products in eqn (7.25) are real and equal to |Uαk|2|Uαj|2, the survival
probabilities can be written in the simple form

Pνα→να
(L,E) = 1 − 4

∑
k>j

|Uαk|2 |Uαj |2 sin2

(
∆m2

kjL

4E

)
. (7.39)

It is interesting to see for which values of |Uαk|2 and |Uβk|2 with α �= β, the
average transition probability in eqn (7.33) has its maximum. Since the values of
|Uαk|2 and |Uβk|2 are subject to the unitarity constraints∑

k

|Uαk|2 = 1 and
∑

k

|Uβk|2 = 1 , (7.40)

we can use the method of the Lagrange multipliers and calculate the stationary
point of

f(|Uαk|2, |Uβk|2) =
∑

k

|Uαk|2 |Uβk|2 − a

(
1 −

∑
k

|Uαk|2
)

− b

(
1 −

∑
k

|Uβk|2
)
,

(7.41)
where a and b are the Lagrange multipliers. The stationary point is given by

0 =
df

d|Uαk|2
= |Uβk|2 + a , 0 =

df

d|Uβk|2
= |Uαk|2 + b . (7.42)



NEUTRINO OSCILLATION PROBABILITY 253

Hence, for fixed α �= β and different values of k, all |Uαk|2 are the same and all
|Uβk|2 are the same too. From the constraints in eqn (7.40) we find the solution

|Uαk|2 = |Uβk|2 =
1

N
for all k =⇒ 〈Pνα→νβ

〉max =
1

N
(α �= β) , (7.43)

where N is the number of massive neutrinos. Similarly, one can show that in the
case of the survival probabilities

|Uαk|2 =
1

N
for all k =⇒ 〈Pνα→να

〉min =
1

N
. (7.44)

Therefore, the case in which all the elements of the N × N mixing matrix have
the same absolute value, usually called N-maximal mixing, corresponds to minimal
average survival probability equal to 1/N and maximal average transition probabil-
ity equal to 1/N in each possible channel, in such a way that the sum of the average
survival probability and all the average transition probabilities add up correctly to
unity.

Let us finally summarize and comment on the three main assumptions adopted
in the standard derivation of the neutrino oscillation probability.

(A1) Neutrinos produced or detected in CC weak interaction processes are
described by the flavor states in eqn (7.4). As we will see in subsection 8.1.1
the states which describe flavor neutrinos can be derived in the framework of
quantum field theory. We will show that these flavor states reduce to the stan-
dard ones in eqn (7.4) in the case of experiments which are not sensitive to the
differences of the contributions of the different neutrino masses to the production
and detection processes. This is the case for all neutrino oscillation experiments.

(A2) Flavor neutrinos have a definite momentum �p, i.e. all the massive neutrino
components have the same momentum. This is sometimes called the equal

momentum assumption. It may have been motivated by the fact that all the
components propagate in the same direction from source to detector. However,
there is no justification for this assumption and we will see in section 8.4.3 that
it is, in fact, unrealistic. Luckily, however, the equal momentum assumption
is irrelevant in the derivation of the oscillation probability, as will be seen in
section 8.1.2.

(A3) The propagation time t is equal to the distance L traveled by the neutrino
between production and detection. It is sometimes called the light-ray approxi-

mation. This assumption is unjustified in a plane-wave treatment of oscillations,
because plane waves extend with the same amplitude over the whole space-time.
However, in quantum theory, localized particles are described by wave packets.
As will be discussed in section 8.2, in the case of neutrino oscillation experi-
ments, neutrinos are described by wave packets [660, 533, 528, 225, 523, 526]
that are localized in the production process at the production time and propa-
gate between the production and the detection processes with a group velocity
close to the velocity of light, justifying the approximation t = L.

From eqn (2.472), the group velocity �vk of an ultrarelativistic neutrino with
mass mk, average wave packet momentum �pk and average wave packet energy
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Ek is given by

�vk =
�pk

Ek
� �pk

|�pk|

(
1 − m2

k

2E2

)
. (7.45)

Since, in oscillation experiments, all massive neutrinos are produced and
detected in the same localized processes, their group velocities have the same
direction. However, since the absolute value of the group velocities of different
massive neutrinos are different, there is a separation of the wave packets which
increases with the distance from the production process. Nevertheless, differ-
ent massive neutrino wave packets can contribute coherently to the detection
process if they overlap in a sufficient way.

If the massive neutrinos are ultrarelativistic and contribute coherently to the
detection process, their wave packets overlap with the detection process for an
interval of time [t− ∆t , t+ ∆t], with

t =
L

v
� L

(
1 +

m2

2E2

)
and ∆t ∼ σx , (7.46)

where v = 1 − m2/2E2 is the average group velocity, m2 is the average of
the squared neutrino masses, and σx is given by the spatial uncertainties of
the production and detection processes summed in quadrature [528] (the spatial
uncertainty of the production process determines the size of the massive neutrino
wave packets). The correction Lm2/2E2 to t = L in eqn (7.46) can be neglected,
because it gives corrections to the oscillation phases which are of higher order in
the very small ratios m2

k/E
2. The corrections due to ∆t ∼ σx are also negligible,

because in all real experiments σx is much smaller than the oscillation length
Losc

kj = 4πE/∆m2
kj ; otherwise oscillations cannot be observed [660, 533, 225,

526]. One can summarize these arguments by saying that the approximation
t = L is correct because the phase of the oscillations is practically constant over
the interval of time in which the massive neutrino wave packets overlap in the
detection process.

7.2 Antineutrino case

As we have discussed in the introduction to this chapter, flavor neutrinos are
produced in weak interaction processes through the action of the leptonic charged-
current in eqn (7.2), which contains the creation operators of massive neutrinos.
Antineutrinos ν̄α with flavor α = e, µ, τ are similarly produced in charged-current
(CC) weak interaction processes from a charged antilepton �+α (i.e. �+α → ν̄α transi-
tions) or together with a charged lepton �−α (i.e. creation of a �−α ν̄α pair), through
the action of the Hermitian conjugate of the leptonic charged-current in eqn (7.2),

jρ†
W,L = 2

∑
α=e,µ,τ

�αL γ
ρ ναL = 2

∑
α=e,µ,τ

∑
k

Uαk �αL γ
ρ νkL , (7.47)

which is included in the charged-current leptonic interaction Lagrangian in
eqn (7.1). In fact, the Hermitian-conjugated leptonic charged-current in eqn (7.47)
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contains, through the adjoint charged lepton field �α, destruction operators of �+α
for the generation of �+α → ν̄α transitions, and creation operators of �−α for the
creation of �−α ν̄α pairs.

In the case of Dirac neutrinos, the Fourier expansion of the field operator νkL

(see eqn (2.139)),

νkL(x) =

∫
d3p

(2π)3 2E

∑
h=±1

[
a(h)

νk
(p)u

(h)
νkL(p) e−ip · x + b(h)†

νk
(p) v

(h)
νkL(p) eip · x

]
,

(7.48)

contains creation operators b
(h)
νk (p) of antineutrinos with mass mk. In neutrino

oscillation experiments, the energies and momenta of the particles involved in
the neutrino production process are not measured with a degree of accuracy
which would allow one to determine, through energy–momentum conservation,
which massive neutrino is emitted. In this case, the Hermitian-conjugated leptonic
charged-current in eqn (7.47) produces flavor antineutrinos ν̄α which are super-
positions of massive antineutrinos ν̄k with weights proportional to Uαk. Neglecting
additional coefficients due to the effect of the difference of the neutrino masses in the
interaction process (see subsection 8.1.1), these flavor antineutrinos are described
by the standard flavor antineutrino states

|ν̄α〉 =
∑

k

Uαk |ν̄k〉 (α = e, µ, τ) . (7.49)

It is to be noted that the coefficients of the massive neutrino components of flavor
antineutrinos are simply related to the corresponding coefficients of the massive
neutrino components of flavor antineutrinos by complex conjugation.

In the case of Majorana neutrinos, there is no difference between neutrinos
and antineutrinos. However, as we have explained in section 6.2.3, it is customary,
by convention, to call Majorana neutrinos with negative helicity neutrinos and
Majorana neutrinos with positive helicity antineutrinos. Hence, the standard flavor
neutrino states in eqn (7.4) describe Dirac or Majorana neutrinos with negative
helicity and the states in eqn (7.49) describe Dirac antineutrinos with positive
helicity or Majorana neutrinos with positive helicity.

Let us now consider the probability of ν̄α → ν̄β oscillations. Since the kine-
matical properties of massive antineutrinos are identical to those of neutrinos, the
derivation of the probability of ν̄α → ν̄β oscillations follows the same lines as that
of να → νβ oscillations presented in the previous section 7.1, the only difference
being that in this case we start with the flavor antineutrino states in eqn (7.49) in
which the elements of the mixing matrix are complex conjugated with respect to
the flavor neutrino states in eqn (7.4). Applying the same transformation to the
neutrino oscillation probability in eqn (7.23), we obtain the antineutrino oscillation
probability

Pν̄α→ν̄β
(L,E) =

∑
k,j

Uαk U
∗
βk U

∗
αj Uβj exp

(
−i

∆m2
kjL

2E

)
. (7.50)
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In particular, we note that the oscillation length of antineutrinos is the same as
that of neutrinos, given in eqn (7.31), since it depends only on the same kinemat-
ical properties of massive neutrinos and antineutrinos. Writing the antineutrino
oscillation probability as

Pν̄α→ν̄β
(L,E) = δαβ − 4

∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

]
sin2

(
∆m2

kjL

4E

)

− 2
∑
k>j

�m
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kjL

2E

)
, (7.51)

one can see that it differs from the corresponding neutrino oscillation probability
in eqn (7.38) only in the sign of the terms depending on the imaginary parts of the
quartic products of the elements of the mixing matrix.

7.3 CPT, CP, and T transformations

Physical neutrinos and antineutrinos are related by a CP transformation which
interchanges neutrinos with antineutrinos and reverses the helicity36 (see subsec-
tion 2.11.3):

να
CP←→ ν̄α . (7.52)

Moreover, a T transformation interchanges the initial and final states. Therefore,
as schematized in Fig. 7.1, a CP transformation interchanges the να → νβ and
ν̄α → ν̄β channels,

να → νβ
CP←→ ν̄α → ν̄β . (7.53)

A T transformation interchanges the να → νβ and νβ → να channels,

να → νβ
T←→ νβ → να , (7.54)

or the ν̄α → ν̄β and ν̄β → ν̄α channels,

ν̄α → ν̄β
T←→ ν̄β → ν̄α . (7.55)

Finally, CPT interchanges the να → νβ and ν̄β → ν̄α channels,

να → νβ
CPT←→ ν̄β → ν̄α . (7.56)

36 As discussed in the previous section 7.2, in the case of Majorana neutrinos, where
the C transformation coincides with the identity, it is conventional to call neutrinos the
states with negative helicity and antineutrinos the states with positive helicity.
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T

CP

CP

T

CPT
CPT

ν̄β → ν̄α

να → νβ

νβ → να ν̄α → ν̄β

Fig. 7.1. Scheme of the CPT, CP, and T transformations that relate different
flavor transition channels.

7.3.1 CPT

The CPT transformation is a symmetry of any local quantum field theory (see
Refs. [988]), such as the SM, presented in chapter 3, and its extensions with the
inclusion of neutrino masses, discussed in chapter 6. Since the theory of neutrino
oscillations which we consider in this book is formulated in the framework of a local
quantum field theory, CPT is a symmetry of the oscillation probabilities. Hence,
we have

Pνα→νβ
= Pν̄β→ν̄α

. (7.57)

In fact, we have, from eqn (7.50),

Pν̄β→ν̄α
(L,E) =

∑
k,j

Uβk U
∗
αk U

∗
βj Uαj exp

(
−i

∆m2
kjL

2E

)
, (7.58)

which coincides with Pνα→νβ
(L,E) in eqn (7.23). The equality in eqn (7.57) is also

easily verified by noting that the probability in eqn (7.58) is invariant under a CP
transformation (ν̄β → ν̄α ⇒ νβ → να) which changes U � U∗, followed by a T
transformation (νβ → να ⇒ να → νβ) which changes α � β.

A special case of the equality in eqn (7.57) is the equality of the survival
probabilities of neutrinos and antineutrinos,

Pνα→να
= Pν̄α→ν̄α

, (7.59)

which has important phenomenological implications.
It is possible, however, that the description of nature through local Quantum

Field Theories is approximate. In this case, there may be small violations of the
CPT symmetry. Neutrino oscillations experiments could reveal such violations by
measuring a nonzero value of the CPT asymmetry

ACPT
αβ = Pνα→νβ

− Pν̄β→ν̄α
. (7.60)



258 NEUTRINO OSCILLATIONS IN VACUUM

7.3.2 CP

As shown in eqns (7.52), (7.53) and Fig. 7.1, the CP transformation interchanges
neutrinos with negative helicity and antineutrinos with positive helicity, trans-
forming the να → νβ channel into the ν̄α → ν̄β channel. As we have discussed in
section 6.1.2, in the case of three-neutrino mixing, the mixing matrix is, in gen-
eral, complex and leads to violations of the CP symmetry. Such violations can be
revealed in neutrino oscillation experiments by measuring the CP asymmetry

ACP
αβ = Pνα→νβ

− Pν̄α→ν̄β
. (7.61)

The CPT symmetry implies that the CP asymmetry is antisymmetric in the flavor
indices α and β,

ACP
αβ = −ACP

βα , (7.62)

because the CPT relation in eqn (7.57), Pνα→νβ
= Pν̄β→ν̄α

, also implies Pν̄α→ν̄β
=

Pνβ→να
. Hence, it is clear that a CP asymmetry can be measured only in transitions

between different flavors.
As discussed in section 7.2, the oscillation probabilities of neutrinos and antineu-

trinos are related by complex conjugation of the elements of the mixing matrix.
Confronting eqns (7.38) and (7.51), one can see that they differ only in the sign of
the terms depending on the imaginary parts of the quartic products of the elements
of the mixing matrix. Thus, only these terms contribute to the CP asymmetry,
leading to

ACP
αβ (L,E) = 4

∑
k>j

�m
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kjL

2E

)
. (7.63)

This expression confirms that a CP asymmetry can be measured only in the tran-
sitions between different flavors, since, for α = β, the imaginary parts in eqn (7.63)
vanish.

Since the quartic products of elements of the mixing matrix in eqn (7.63) depend
only on the Dirac phases in the mixing matrix, as we have discussed in section 6.2.1,
CP violation in neutrino oscillations depend only on the Dirac phases in the mixing
matrix.

A characteristic of the CP asymmetry in eqn (7.63), which is important for
practical applications, is that its average over the distance L or the energy E
vanishes. Therefore, in order to be able to measure CP violations in neutrino oscil-
lations, experiments must be sensitive to the oscillatory behavior of the neutrino and
antineutrino transition probabilities. This means that the distance L and energy E
must be such that at least one of the phases ∆m2

kjL/2E is of order one. If all the
phases are much smaller than unity, the transition probabilities are too small to be
measurable, whereas if all the phases are much larger than unity, the average of the
CP asymmetry in eqn (7.63) over the uncertainty in L and E washes out all the
sine functions. However, as we will see in section 7.7, the phase of order one should
not be generated by the largest squared-mass difference, because in that case the
effective CP asymmetries are identically zero.
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7.3.3 T

If CPT is a symmetry of nature, the violation of CP symmetry implies the violation
of T symmetry, which interchanges the initial and final states in neutrino oscilla-
tions (see eqns (7.54) and (7.55) and Fig. 7.1), as in other processes. In neutrino
oscillation experiments it is possible to observe T violations by measuring the T
asymmetries of neutrinos and antineutrinos

AT
αβ = Pνα→νβ

− Pνβ→να
, (7.64)

ĀT
αβ = Pν̄α→ν̄β

− Pν̄β→ν̄α
. (7.65)

The CPT relation in eqn (7.57) implies that

AT
αβ = −ĀT

αβ = ACP
αβ . (7.66)

In this case, measuring a CP asymmetry is equivalent to measuring a T asymmetry.
As noted for the case of CP violation, T violations in neutrino oscillations depend
only on the Dirac phases of the mixing matrix. In order to measure T violations,
one should carry out neutrino oscillation experiments which are sensitive to the
oscillatory behavior of the flavor transition probabilities.

7.4 Two-neutrino mixing

Two-neutrino mixing is an approximation in which only two massive neutrinos out
of three are considered. That is, one neglects the coupling of the flavor neutrinos
with the third massive neutrino that exists in nature. This approximation is very
useful in practice for two reasons:

1. The oscillation formulas in the case of two-neutrino mixing are much simpler
and depend on fewer parameters than in the case of three-neutrino mixing.

2. Since many experiments are not sensitive to the influence of three-neutrino mix-
ing, the data can be analyzed by using an effective model with two-neutrino
mixing.

In the case of two-neutrino mixing, we consider two flavor neutrinos να and νβ ,
which can be pure flavor neutrinos (α, β = e, µ or α, β = e, τ or α, β = µ, τ) or linear
combinations of pure flavor neutrinos (for example, να = νe and νβ = cµνµ + cτντ ,
with c2µ + c2τ = 1 in electron neutrino disappearance experiments or νe → νµ,τ

experiments where νµ and ντ are not distinguished). The two flavor neutrino states
are linear superpositions of the two massive neutrinos ν1 and ν2 with coefficients
given by the elements of the two-neutrino effective mixing matrix

U =

(
cosϑ sinϑ
− sinϑ cosϑ

)
, (7.67)

where ϑ is the mixing angle, with a value in the interval 0 ≤ ϑ ≤ π/2. In the case
of two-neutrino mixing, there is only one squared-mass difference:

∆m2 ≡ ∆m2
21 ≡ m2

2 −m2
1 . (7.68)
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For convenience, we define ν1 as the lightest of the two massive neutrinos, so that
∆m2 is positive37.

From eqn (7.23), it is straightforward to derive the expression for the probability
of να → νβ transitions with α �= β:

Pνα→νβ
(L,E) =

1

2
sin2 2ϑ

[
1 − cos

(
∆m2L

2E

)]
(α �= β) , (7.69)

or, equivalently,

Pνα→νβ
(L,E) = sin2 2ϑ sin2

(
∆m2L

4E

)
(α �= β) . (7.70)

In the case α = β, the survival probability Pνα→να
(L,E) is easily obtained by

unitarity from the transition probability in eqn (7.70):

Pνα→να
(L,E) = 1 − Pνα→νβ

(L,E) = 1 − sin2 2ϑ sin2

(
∆m2L

4E

)
. (7.71)

From eqn (7.31), the oscillation length in this case is given by

Losc =
4πE

∆m2
, (7.72)

and the average transition probability in eqn (7.33), which is the same as the
incoherent transition probability in eqn (7.32), becomes

〈Pνα→νβ
〉 =

1

2
sin2 2ϑ (α �= β) . (7.73)

This expression can simply be derived from eqn (7.69) by noting that the average
of the cosine function is zero.

One can see from eqn (7.70) that the mixing angle dependence of the transition
probability is expressed by sin2 2ϑ, which is symmetric under the exchange ϑ �

π/2 − ϑ. Since the allowed range of ϑ is 0 ≤ ϑ ≤ π/2, there is a degeneracy of
the transition probability for ϑ and π/2 − ϑ. However, it is important to keep in
mind that the two possibilities correspond to two physically different mixings: if

37 Some authors prefer to constrain the mixing angle in the interval 0 ≤ ϑ ≤ π/4,
considering positive and negative ∆m2. The usefulness of this convention stems from the
consideration that 0 ≤ ϑ ≤ π/4 corresponds to 0 ≤ sin2 2ϑ ≤ 1. Since the flavor transition
probability in eqn (7.69) depends on the mixing angle through sin2 2ϑ, considering 0 ≤
ϑ ≤ π/4 covers all the possibilities, leaving a complete uncertainty on the sign of ∆m2.
We did not adopt such a convention because it may give the false impression that there
is a discontinuity for ϑ = π/4, related to the change of sign of ∆m2. This inconvenience
becomes evident [359] in the case of neutrino oscillations in matter (see section 9.3),
where the mixing-angle dependence of the flavor transition probability is not limited to
sin2 2ϑ. Hence, our convention is more appropriate for a clear unified treatment of neutrino
oscillations in vacuum and in matter. In fact, it is adopted by most authors in the latest
analyses of solar neutrino data, in which the mixing is quantified through tan2 ϑ (see
section 10.10).
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ϑ < π/4 the electron neutrino is composed more of ν1 than ν2 and vice versa for
νµ; if ϑ > π/4 the electron neutrino is composed more of ν2 than ν1 and vice versa
for νµ. The degeneracy is resolved in neutrino oscillations in matter, as will be
explained in section 9.3.

For the analyses of the data of reactor oscillation experiments, in which E ∼
1 MeV, as well as those of accelerator oscillation experiments, in which E ∼ 1 GeV,
it is convenient to write the transition probability in eqn (7.70) as

Pνα→νβ
(L,E) = sin2 2ϑ sin2

(
1.27

∆m2[eV2]L[m]

E[MeV]

)
=sin2 2ϑ sin2

(
1.27

∆m2[eV2]L[km]

E[GeV]

)
. (7.74)

and the oscillation length as

Losc = 2.47
E [MeV]

∆m2 [eV2]
m = 2.47

E [GeV]

∆m2 [eV2]
km . (7.75)

The behavior of the transition probability in eqn (7.70) for sin2 2ϑ = 1 as a
function of L/E [km/GeV] ∆m2 [eV2] is shown by the dashed line in Fig. 7.2. For
fixed values of the squared-mass difference ∆m2 and of the energy E, the axis
represents the distance L. The oscillation length in eqn (7.75) corresponds to the
location of the first dip of the transition probability at L/E [km/GeV] ∆m2 [eV2] =
2.47, where the phase in the cosine function in eqn (7.69) is equal to 2π and the
phase in the sine function in eqn (7.70) is equal to π. The transition probability is
very small for L� Losc and oscillates very rapidly for L� Losc in the logarithmic
scale of L.

From the absence of any phase in the two-neutrino effective mixing matrix in
eqn (7.67), it is clear that there are no CP or T violations and the transition
probabilities of neutrinos and antineutrinos as well as the probabilities of direct
and inverted channels are all equal:

Pνα→νβ
(L,E) = Pνβ→να

(L,E) = Pν̄α→ν̄β
(L,E) = Pν̄β→ν̄α

(L,E) . (7.76)

7.5 Types of neutrino oscillation experiments

The discussion in the previous section helps us to understand the usual classification
of the different types of neutrino oscillation experiments.

Neutrino oscillation experiments are divided into:

Appearance experiments. These experiments measure transitions between dif-
ferent neutrino flavors. If the final flavor to be searched for in the detector is
not present in the initial beam, the background can be very small. In this case,
an experiment can be sensitive to rather small values of the mixing angle.

Disappearance experiments. These experiments measure the survival probabil-
ity of a neutrino flavor by counting the number of interactions in the detector
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Fig. 7.2. Probability of να → νβ transitions for sin2 2ϑ = 1 as a function of
〈L/E〉 [km/GeV] ∆m2 [eV2]. The average ratio 〈L/E〉 can also be expressed in
units [m/MeV]. Solid line: transition probability averaged over a Gaussian L/E
distribution with σL/E = 0.2 〈L/E〉 (see eqn (7.93)). Dashed line: unaveraged
transition probability (see eqn (7.70)), with L/E = 〈L/E〉.

and comparing it with the expected one. Since, even in the absence of oscil-
lations, the number of detected events has statistical fluctuations, it is very
difficult to reveal a small disappearance. Therefore, in this type of experiment,
it is hard to measure small values of the mixing angle.

In the simplest case of two-neutrino mixing, an important characteristic of neu-
trino oscillations is that the transitions to different flavors cannot be measured
if

∆m2L

2E
� 1 . (7.77)

On the other hand, for
∆m2L

2E
� 1 (7.78)

only the average transition probability in eqn (7.73) is observable, yielding
information only on sin2 2ϑ.

Since the value of ∆m2 is fixed by nature, different experiments can be designed
in order to be sensitive to different values of ∆m2, by choosing appropriate values
of the ratio L/E. The so-called sensitivity to ∆m2 of an experiment is the value of
∆m2 for which

∆m2L

2E
∼ 1 . (7.79)

Different types of neutrino oscillation experiments are traditionally classified
depending on the average value of the ratio L/E for an experiment, which
determines its sensitivity to ∆m2 through eqn (7.79) (see Table 7.1):

Short BaseLine experiments (SBL). They are divided as follows:
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Table 7.1. Types of neutrino oscillation experiments with their typical
source–detector distance, energy, and sensitivity to ∆m2, which is given by
E[MeV]/L[m] = E[GeV]/L[km] (see eqn (7.79)).

Type of experiment L E
∆m2

sensitivity

Reactor SBL ∼ 10 m ∼ 1 MeV ∼ 0.1 eV2

Accelerator SBL (Pion DIF) ∼ 1 km � 1 GeV � 1 eV2

Accelerator SBL (Muon DAR) ∼ 10 m ∼ 10 MeV ∼ 1 eV2

Accelerator SBL (Beam Dump) ∼ 1 km ∼ 102 GeV ∼ 102 eV2

Reactor LBL ∼ 1 km ∼ 1 MeV ∼ 10−3 eV2

Accelerator LBL ∼ 103 km � 1 GeV � 10−3 eV2

ATM 20–104 km 0.5–102 GeV ∼ 10−4 eV2

Reactor VLB ∼ 102 km ∼ 1 MeV ∼ 10−5 eV2

Accelerator VLB ∼ 104 km � 1 GeV � 10−4 eV2

SOL ∼ 1011 km 0.2–15 MeV ∼ 10−12 eV2

Reactor SBL. These are experiments that utilize large isotropic fluxes of elec-
tron antineutrinos produced in nuclear reactors by β−-decays of heavy nuclei
(mainly fission fragments of 235U, 238U, 239Pu, 241Pu). A typical energy of
reactor νe’s is of the order of a few MeV and the source–detector distance
in the reactor SBL experiments is several tens of meters. The range of L/E
covered by the reactor SBL experiments and their sensitivity to ∆m2 are

L

E
� 10 m/MeV =⇒ ∆m2 � 0.1 eV2 . (7.80)

Since the antineutrino energy is too low to produce µ’s or τ ’s, only the sur-
vival probability of ν̄e’s can be measured by detecting, in a liquid scintillator,
the inverse β-decay reaction

ν̄e + p→ n+ e+ , (7.81)

with a threshold Eth = 1.8 MeV. Experiments of this type which have been
performed in the past are: ILL [710], Gosgen [1082], Rovno [32], Krasnoyarsk
[1037], Bugey [363], Savannah River [563].

Accelerator SBL. These are experiments with beams of neutrinos produced
by decay of pions, kaons, and muons created by a proton beam hitting a
target. They can be divided as:
Pion Decay In Flight (DIF). These are the experiments with a neutrino

beam composed mainly of muon neutrinos produced by the decay of pions
and kaons initially produced by a proton beam hitting a target. The pions
and kaons are allowed to decay in a decay tunnel of length of the order of
100 m. The beam is composed of νµ’s or ν̄µ’s, depending on the polarity
of the horn which focalizes the pions and kaons. In the case of a νµ beam



264 NEUTRINO OSCILLATIONS IN VACUUM

produced by π+,K+ → µ+ + νµ, there are about 1% of ν̄µ’s and about
1% of νe’s, which are mainly due to µ+ → e+ + νe + ν̄µ decays38. The
typical energy of the neutrinos is of the order of a few GeV, but can be
much larger, depending on the energy of the proton beam. The typical
source–detector distance in the accelerator SBL experiments is of the
order of 1 km. The range of L/E covered by these experiments and their
sensitivity to ∆m2 are

L

E
� 1 km/GeV =⇒ ∆m2 � 1 eV2 . (7.82)

In the case of νµ → ντ and ν̄µ → ν̄τ transitions, the energy must be about
one order of magnitude larger in order to have sufficient τ productions
(the τ production threshold is about 3.5 GeV; see Table 5.2), leading to
L/E � 0.1 km/GeV and a sensitivity to ∆m2 � 10 eV2. Experiments of
this type which have been performed in the past are: BEBC [89] (νµ →
νe), FNAL-E531 [1030] (νµ → ντ ), CDHSW [396] (

(−)

νµ → (−)

νµ), CCFR

(
(−)

νµ → (−)

νµ [983],
(−)

νµ → (−)

ντ [789],
(−)

νµ → (−)

νe [910],
(−)

νe → (−)

ντ [823]), CHARM

[212] (νµ → νµ, νµ → νe, νµ → ντ ), BNL-E776 [265] (
(−)

νµ →(−)

νe), CHORUS
[422] (νµ → ντ , νe → ντ ), NOMAD [116] (νµ → ντ , νe → ντ , νµ → νe),

LSND [121] (νµ → νe), NuTeV [130] (
(−)

νµ →(−)

νe).
Muon Decay At Rest (DAR). These are lower energy experiments with

a beam composed of muon antineutrinos coming from the decay

µ+ → e+ + νe + ν̄µ (7.83)

of the µ+ produced in the pion decay

π+ → µ+ + νµ (7.84)

(the π− are mostly absorbed by nuclei) and stopped in the target. These
ν̄µ’s have energy of the order of several tens of MeV and can be used for
measuring ν̄µ → ν̄e transitions, because ν̄e are not present in the final
products of π+ and µ+-decay. These experiments have a typical source–
detector distance of the order of several tens of meters, with a range of
L/E and a sensitivity to ∆m2 given by

L

E
� 1 m/MeV =⇒ ∆m2 � 1 eV2 . (7.85)

Experiments of this type that have been performed in the past are the
ν̄µ → ν̄e experiments LAMPF-0645 [460], LSND [37], KARMEN [105].

38 Since pions and muons are ultrarelativistic and have about the same time for decaying
in the decay tunnel, the ratio of the numbers of muon and pion decays is approximately
equal to the ratio of the pion and muon lifetimes, which is about 1% (see eqns (A.155)
and (A.162)). The small branching ratio of the π+ → e+ + νe decay channel increases
the electron neutrino fraction only by about 0.01% (see eqn (5.60)). Kaons, which are
typically about 10% of pions, have a branching ratio of about 5% for K+ → π0 + e+ + νe

decays, which give an additional contribution of about 0.5% to the νe contamination.
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Beam Dump. Also called prompt neutrino experiments. In these exper-
iments a proton beam with very high energy, of the order of some
hundreds of GeV, is completely stopped in a thick target, called the beam

dump, where the proton nucleon interactions generate heavy hadrons. The
charmed heavy hadrons decay promptly with practically equal branching
ratios into electrons and muons, emitting equal fluxes of electron and
muon neutrinos with energies of the order of 102 GeV. A detector at a
distance of the order of 1 km can measure the ratio of the electron and
muon neutrino fluxes, whose deviations from unity would signal the pres-
ence of oscillations. The typical range of L/E and sensitivity to ∆m2 are
given by

L

E
� 10−2 m/MeV =⇒ ∆m2 � 102 eV2 . (7.86)

Experiments of this type that have been performed in the past are: BEBC
[465, 559], CHARM [388], CDHSW [208].

Long BaseLine experiments (LBL). These are experiments which have
sources similar to SBL experiments, but the source–detector distance is about
two or three orders of magnitude larger. LBL experiments are classified as
follows:

Reactor LBL. These are reactor neutrino experiments in which the source–
detector distance is of the order of 1 km. The range of L/E covered by these
experiments and their sensitivity to ∆m2 are

L

E
� 103 m/MeV =⇒ ∆m2 � 10−3 eV2 . (7.87)

Experiments of this type which have been performed in the past are: CHOOZ
[100] and Palo Verde [255]. Several future experiments are under study or
in preparation: Double CHOOZ [104], KASKA [994], and others (see the
reviews in Refs. [87, 557]).

Accelerator LBL. These are neutrino experiments with a muon neutrino or
antineutrino beam produced by the decay in flight of pions and kaons created
by shooting a proton beam to a target. The source–detector distance is about
102–103 km, leading to a range of L/E and a sensitivity to ∆m2 given by

L

E
� 103 km/GeV =⇒ ∆m2 � 10−3 eV2 . (7.88)

The only experiment of this type which has produced results is K2K, which
is still running. The results obtained so far have been published in Ref. [48,
46, 66] for the νµ → νµ channel and in Ref. [47] for the νµ → νe channel. The
MINOS experiment [131] (νµ → νµ, νµ → νe) started in 2005. Two future
experiments are under preparation: ICARUS [101] (νµ → ντ , νµ → νe),
OPERA [577] (νµ → ντ ). Another experiment called T2K [633] (νµ → νµ,
νµ → νe) with a neutrino superbeam, i.e. a conventional accelerator neutrino
beam with much larger intensity, is being planned at Tokai, in Japan.
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ATMospheric neutrino experiments (ATM). Primary cosmic rays interact
with the upper layers of the atmosphere producing a large flux of pions and
kaons which decay in the atmosphere into muons and neutrinos. Many muons
further decay into electrons and neutrinos before hitting the ground. Atmo-
spheric neutrino experiments detect these neutrinos. The energy of detectable
atmospheric neutrinos cover a very wide range, from about 500 MeV to about
100 GeV. The source–detector distance ranges from about 20 km for neutrinos
coming from above, to about 1.3 × 104 km for neutrinos coming from below,
initially produced on the other side of the Earth. Therefore, in atmospheric
neutrino experiments, typical values of L/E and the associated sensitivity to
∆m2 are

L

E
� 104 km/GeV =⇒ ∆m2 � 10−4 eV2 . (7.89)

Atmospheric neutrino experiments which have been performed in the past are:
Kamiokande [474], IMB [199], NUSEX [34], Frejus [352], Super-Kamiokande
[110], MACRO [84], Soudan-2 [922]. The Super-Kamiokande and Soudan-2
experiments are still operating. Also the MINOS detector, which started in
2005, is sensitive to atmospheric neutrinos [745].

Very Long-Baseline experiments (VLB). These are experiments with a
source–detector distance larger than LBL experiments by one or two orders
of magnitude. They are:

Reactor VLB. These experiments measure the combined neutrino flux of
many reactors at a distance of the order of 100 km, with a range of L/E
and a sensitivity to ∆m2 given by

L

E
� 105 m/MeV =⇒ ∆m2 � 10−5 eV2 . (7.90)

Only one experiment, KamLAND [398], is still in operation. In the future,
the Borexino [1008] experiment may be able to perform as a reactor VLB
experiment.

Accelerator VLB. These are accelerator neutrino experiments with a source–
detector distance of the order of several thousands of km, comparable with
the diameter of the Earth. They cover the range of L/E and the sensitivity
to ∆m2 given by

L

E
� 104 km/GeV =⇒ ∆m2 � 10−4 eV2 . (7.91)

These experiments are under study; new and more intense neutrino beams
are needed in order to observe a sufficient number of events at such large
distances. Candidate types of beam are: Super-Beam [552], Beta-Beam [1091,
796, 59, 576], and Neutrino Factory [511, 58, 99, 59, 576].

SOLar neutrino experiments (SOL). These are experiments which detect the
neutrinos generated in the core of the Sun by the thermonuclear reactions that
power the Sun. The Sun–Earth distance is about 1.5× 1011 m. Since the energy
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of detectable solar neutrinos is in the range 0.2–15 MeV, the range of L/E and
the sensitivity to ∆m2 in solar neutrino experiments are

L

E
� 1012 m/MeV =⇒ ∆m2 � 10−12 eV2 . (7.92)

Hence, solar neutrino experiments are sensitive to extremely small values of
∆m2, much smaller than the sensitivity of the other experiment discussed above.
Several solar neutrino experiments have been performed in the past: Homestake
[323], Kamiokande [475], GALLEX [588], SAGE [19], GNO [76], SNO [45]. The
SNO experiment is still in operation. In the future, the Borexino [1008] exper-
iment, which is under construction, will start data taking and the KamLAND
experiments may be improved to detect solar neutrinos [399]. Several other
experiments are under study (see Ref. [938]).

The types of neutrino oscillation experiments with their typical source–detector
distance, energy, and sensitivity to ∆m2 are summarized in Table 7.1.

7.6 Averaged transition probability

In practice, it is impossible to measure the oscillation probabilities for precise values
of the neutrino propagation distance L and the neutrino energy E, because in
any experiment both the source and the detection processes have some spatial
uncertainty, i.e. the source has an energy spectrum and the energy resolution of
the detector is finite. Therefore, in practice it is always necessary to average the
oscillation probability over the appropriate distributions of the distance L and the
energy E.

Considering the simplest case of two-neutrino mixing, the transition probability
measured in practice is obtained by averaging the cosine function in eqn (7.69) over
the appropriate distribution φ(L/E) of L/E:

〈Pνα→νβ
(L,E)〉 =

1

2
sin2 2ϑ

[
1 −

〈
cos

(
∆m2L

2E

)〉]
(α �= β) , (7.93)

with 〈
cos

(
∆m2L

2E

)〉
=

∫
cos

(
∆m2L

2E

)
φ

(
L

E

)
d
L

E
. (7.94)

In order to illustrate the effect of these averages, let us consider the simplest
case of a Gaussian L/E distribution with average 〈L/E〉 and standard deviation
σL/E :

φ

(
L

E

)
=

1√
2πσ2

L/E

exp

[
(L/E − 〈L/E〉)2

2 σ2
L/E

]
. (7.95)

In this case, the average of the cosine in eqn (7.93) can be calculated analytically,
yielding〈

cos

(
∆m2L

2E

)〉
= cos

(
∆m2

2

〈
L

E

〉)
exp

[
−1

2

(
∆m2

2
σL/E

)2
]
. (7.96)
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The solid line in Fig. 7.2 shows the corresponding averaged transition probability
as a function of 〈L/E〉 [km/GeV] ∆m2 [eV2] for sin2 2ϑ = 1 and σL/E = 0.2 〈L/E〉.
It is reasonable to assume an uncertainty σL/E proportional to 〈L/E〉. Since the
uncertainties of L and E are independent, we have(

σL/E

〈L/E〉

)2

=

(
σL

〈L〉

)2

+

(
σE

〈E〉

)2

, (7.97)

where 〈L〉 is the average distance, σL is the distance uncertainty, 〈E〉 is the average
energy, and σE is the energy uncertainty.

For fixed values of the squared-mass difference ∆m2 and of the average energy
〈E〉, the horizontal axis in Fig. 7.2 is approximately proportional to the average
distance 〈L〉 and the solid curve represents the behavior of the transition probability
in eqn (7.70) as a function of 〈L〉. One can see that for distances 〈L〉 � Losc,
which corresponds to 〈L/E〉 [km/GeV] ∆m2 [eV2] = 2.47, the averaged transition
probability oscillates as the unaveraged transition probability given by the dashed
line, with amplitude somewhat suppressed, the suppression being dependent on
the width σL/E of the energy distribution (a larger width gives more suppression).
For distances 〈L〉 � Losc, the oscillations are completely suppressed and one can
measure only the average transition probability in eqn (7.73).

If an oscillation experiment does not observe any oscillation, the data imply an
upper limit on the averaged transition probability:

〈Pνα→νβ
(L,E)〉 ≤ Pmax

να→νβ
, (7.98)

which implies an upper limit for sin2 2ϑ as a function of ∆m2: considering the
averaged transition probability in eqn (7.93) we have

sin2 2ϑ ≤
2Pmax

να→νβ

1 −
〈

cos

(
∆m2L

2E

)〉 . (7.99)

The solid line in Fig. 7.3a shows this upper limit as a function of
∆m2 [eV2] 〈L/E〉 [km/GeV] for Pmax

να→νβ
= 0.1, and the Gaussian energy distribution

in eqn (7.95) with σL/E = 0.2 〈L/E〉 (the dashed line shows the upper limit cor-
responding to the unaveraged transition probability, i.e. σL/E = 0). The solid line
in Fig. 7.3a is usually called the exclusion curve, because it separates the allowed
region from the indicated excluded region. From Fig. 7.3a one can see that there is
no limit on sin2 2ϑ for

∆m2

2

〈
L

E

〉
� π ⇐⇒ ∆m2 [eV2]

〈
L

E

〉
[km]

[GeV]
� 1 . (7.100)

The reason is that in this case the cosine function in eqn (7.99) is practically
constant and equal to unity in the range of L/E relevant for the integration. This
is true when the variance of L/E is always much smaller than the square of the
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Fig. 7.3. Upper limit in eqn (7.99) with a Gaussian L/E distribution as a function
of ∆m2 [eV2] 〈L/E〉 [km/GeV] for Pmax
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= 0.1. Solid line: σL/E = 0.2 〈L/E〉.
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(L,E) is the unaveraged transition probability in

eqn (7.70).
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L

E
−
〈
L

E

〉)2
〉

=

〈(
L

E

)2
〉

−
(〈

L

E

〉)2

�
(〈

L

E

〉)2

, (7.101)

which is the case in real experiments.
The most stringent bound on sin2 2ϑ is obtained for

∆m2

2

〈
L

E

〉
� π ⇐⇒ ∆m2 [eV2]

〈
L

E

〉
[km]

[GeV]
� 1.24 . (7.102)

In this case, the cosine function in eqn (7.99) is approximately equal to −1 over the
relevant range of L/E.

For much larger values of ∆m2, the limit on sin2 2ϑ does not depend on ∆m2:

sin2 2ϑ ≤ 2Pmax
να→νβ

, (7.103)

for

∆m2

2

〈
L

E

〉
� π ⇐⇒ ∆m2 [eV2]

〈
L

E

〉
[km]

[GeV]
� 1 . (7.104)

In this case, the argument of the cosine function in eqn (7.99) is very large and
rapidly oscillating in the relevant range of L/E, leading to a vanishing average.

Let us examine more closely the inequality in eqn (7.99) for small values of
∆m2 〈L/E〉. From eqn (7.101), if ∆m2 〈L/E〉 � 2π, the argument of the cosine
function in eqn (7.99) becomes small in the relevant range of L/E and the cosine
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function can be approximated by

cos

(
∆m2L

2E

)
� 1 − 1

2

(
∆m2L

2E

)2

. (7.105)

This approximation allows one to write the bound in eqn (7.99) as

sin2 2ϑ �
2Pmax

να→νβ

1

2

(
∆m2

2

)2
〈(

L

E

)2
〉 . (7.106)

Because of eqn (7.101), we can approximate 〈(L/E)2〉 with (〈L/E〉)2 and obtain

sin2 2ϑ �
2Pmax

να→νβ

1

2

(
∆m2

2

〈
L

E

〉)2 ⇐⇒ sin2 2ϑ �
0.62Pmax

να→νβ(
∆m2 [eV2]

〈
L

E

〉
[km]

[GeV]

)2 .

(7.107)
The right-hand side of this inequality is a quadratic function of ∆m2, which appears
as the straight-line part of the exclusion curve for small ∆m2 [eV2] 〈L/E〉 [km/GeV]
in Fig. 7.3a, due to the logarithmic scale. The intercept of the exclusion curve with
the sin2 2ϑ = 1 axis occurs at

∆m2

2

〈
L

E

〉
� 2

√
Pmax

να→νβ
⇐⇒ ∆m2 [eV2]

〈
L

E

〉
[km]

[GeV]
� 0.79

√
Pmax

να→νβ
.

(7.108)

For example, one can see in Fig. 7.3a, which has been drawn for
√
Pmax

να→νβ
=

0.32, that the intercept of the exclusion curve with the sin2 2ϑ = 1 axis occurs at
∆m2 [eV2] 〈L/E〉 [km/GeV] � 0.25.

The experimental bound on sin2 2ϑ as a function of ∆m2 is usually presented
by rotating and mirroring Fig. 7.3a, as shown in Fig. 7.3b, with sin2 2ϑ on the
horizontal axis and ∆m2, for a fixed value of 〈L/E〉, on the vertical axis. In these
figures which are called the exclusion plots, the excluded region of the oscillation
parameters sin2 2ϑ and ∆m2 always lies on the right of the exclusion curve. Fig-
ure 7.4a shows an example of an exclusion curve obtained for Pmax

να→νβ
= 0.1 and a

Gaussian L/E distribution with 〈L/E〉 = 1 km/GeV and σL/E = 0.2 km/GeV.
In some disappearance experiments, the initial neutrino flux is not well known.

In such a case, if the shape of the initial energy spectrum is known, information on
transitions in different flavors can be obtained by measuring the distortions of the
spectrum. Obviously, in this case one cannot obtain any information on oscillations
if ∆m2〈L/E〉 � 2π, because, as shown in Fig. 7.2 and eqn (7.103), the averaged
transition probability is independent of energy. A similar situation is realized in
experiments in which a near detector is placed upstream of the neutrino beam in
order to measure the neutrino flux, whereas disappearance of the original neutrino
flavor is measured at a far detector. No information on oscillations can be obtained
if ∆m2〈L/E〉near � 2π, because in this case the near detector already measures the
averaged oscillated neutrino flux.
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Fig. 7.4. Examples of exclusion plots in the plane of the two-neutrino oscilla-
tion parameters sin2 2ϑ and ∆m2. (a) Example of an exclusion plot obtained
for Pmax

να→νβ
= 0.1 and a Gaussian L/E distribution with 〈L/E〉 = 1 km/GeV

and σL/E = 0.2 km/GeV. (b) Example of an exclusion plot that could be
obtained in a disappearance experiment with two detectors using eqn (7.111)
with R = 0.9 and a Gaussian L/E distribution with 〈L/E〉near = 0.01 km/GeV,
σnear

L/E = 0.002 km/GeV and 〈L/E〉far = 1 km/GeV, σfar
L/E = 0.2 km/GeV.

As an example, let us consider a disappearance experiment with two detectors
which measure

〈Pνα→να
(L,E)〉far

〈Pνα→να
(L,E)〉near

≥ R , (7.109)

where 0 ≤ R < 1. The inequality in eqn (7.109) means that the experiment did not
find any indication of flavor transitions, which then yields an exclusion curve in the
sin2 2ϑ-∆m2 plane. Since the averaged survival probability is given by

〈Pνα→να
(L,E)〉 = 1 − 1

2
sin2 2ϑ

[
1 −

〈
cos

(
∆m2L

2E

)〉]
, (7.110)

the inequality in eqn (7.109) can be written as

sin2 2ϑ ≤ 2

[
1 − (1 −R)

−1

(〈
cos

(
∆m2L

2E

)〉
far

−R

〈
cos

(
∆m2L

2E

)〉
near

)]−1

.

(7.111)
Figure 7.4b shows the exclusion curve obtained with eqn (7.111) for R = 0.9 and a
Gaussian L/E distribution with 〈L/E〉near = 0.01 km/GeV, σnear

L/E = 0.002 km/GeV

and 〈L/E〉far = 1 km/GeV, σfar
L/E = 0.2 km/GeV. One can see that there is no limit
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on sin2 2ϑ for ∆m2 � 60 eV2, which corresponds to ∆m2〈L/E〉near � 3. For such
large values of ∆m2, oscillations occur between the source and the near detector,
preventing a measurement of the initial neutrino flux.

If an experiment detects a positive signal, the flavor transition probability is
limited in a range which corresponds to an allowed band in the sin2 2ϑ-∆m2 plane,
as shown in the example in Fig. 7.5a, obtained for 0.05 ≤ 〈Pνα→νβ

〉 ≤ 0.15 and
a Gaussian L/E distribution with 〈L/E〉 = 1 km/GeV and σL/E = 0.15 km/GeV.
However, in most experiments the position and energy of each event is measured,
with some uncertainty. Therefore, there is not only one global L/E distribution,
but typically the data are binned and each bin has its own L/E distribution. The
allowed bands of the different bins are combined in a statistical analysis that typ-
ically yields one or more allowed regions in the sin2 2ϑ-∆m2 plane. The effect of
combining the results of different L/E distributions is illustrated by Fig. 7.5b,
where we have plotted two curves obtained with Gaussian L/E distributions, cor-
responding to 〈Pνα→νβ

〉 = 0.11, 〈L/E〉 = 2 km/GeV, σL/E = 0.25 km/GeV and
〈Pνα→νβ

〉 = 0.09, 〈L/E〉 = 0.4 km/GeV, σL/E = 0.05 km/GeV. One can see that

the two curves overlap at several points in the sin2 2ϑ-∆m2 plane. These points
are compatible with both 〈Pνα→νβ

〉’s. If the uncertainties of the two 〈Pνα→νβ
〉’s are

taken into account, a combined fit would yield allowed regions around the points
of overlap of the two curves. It is clear that adding more information, i.e. more
measurements of Pνα→νβ

at different values of 〈L/E〉, results in fewer points of
overlap of the corresponding curves and a smaller number of allowed regions in the
sin2 2ϑ-∆m2 plane. The final experimental goal is, of course, to select only one,
possibly small, allowed region in the sin2 2ϑ-∆m2 plane.

So far we have considered averaged oscillations only in the simplest case of two-
neutrino mixing. In a general case of mixing of any number of neutrinos, the average
of the oscillation probability in eqn (7.37) over an appropriate distribution φ(L/E)
of L/E is given by

〈Pνα→νβ
(L,E)〉 = δαβ − 2

∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

] [
1 −

〈
cos

(
∆m2

kjL

2E

)〉]

+ 2
∑
k>j

�m
[
U∗αk Uβk Uαj U

∗
βj

] 〈
sin

(
∆m2

kjL

2E

)〉
. (7.112)

In the case of a Gaussian L/E distribution, the averaged cosine is given by
eqn (7.96) and the averaged sine is given by

〈
sin

(
∆m2

kjL

2E

)〉
= sin

(
∆m2

2

〈
L

E

〉)
exp

[
−1

2

(
∆m2

2
σL/E

)2
]
. (7.113)

It is clear that, in general, the expression in eqn (7.112) is a complicated function
of several parameters (squared mass differences, mixing angles, and CP phases).
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Fig. 7.5. Examples of plots in the plane of the two-neutrino oscillation parameters
sin2 2ϑ and ∆m2. (a) Example of an allowed region, between the two curves,
obtained for 0.05 ≤ Pνα→νβ

≤ 0.15 and a Gaussian L/E distribution with
〈L/E〉 = 1 km/GeV and σL/E = 0.15 km/GeV. (b) Example of two best-fit
curves obtained with a Gaussian L/E distribution; the curve which reaches
lower values of ∆m2 corresponds to Pνα→νβ

= 0.11, 〈L/E〉 = 2 km/GeV, and

σL/E = 0.25 km/GeV; the other curve, which reaches lower values of sin2 2ϑ
for large ∆m2, corresponds to Pνα→νβ

= 0.09, 〈L/E〉 = 0.4 km/GeV, and
σL/E = 0.05 km/GeV.

7.7 Large ∆m2 dominance

In this section we consider the case in which one scale of neutrino squared-mass
differences is much larger than the others. This means that the massive neutrinos
can be divided in two groups, which we call A and B, such that all the squared-mass
differences between two neutrinos belonging to different groups are much larger than
all the squared-mass differences between two neutrinos belonging to one of the two
groups, as illustrated schematically in Fig. 7.6.

This type of schemes is realized, for example, in the case of three-neutrino
mixing with a hierarchy of ∆m2’s (see Fig. 13.1 on page 453).

Let us denote with NA and NB the numbers of massive neutrinos belonging,
respectively, to A and B, with the total number of massive neutrinos equal to
N = NA + NB. We assign the numbers of the massive neutrinos in such a way
that ν1 , . . . , νNA

∈ A and νNA+1 , . . . , νN ∈ B. Then, there is dominance of the
largest ∆m2 if

|∆m2
N1| � |∆m2

kj | for k, j ≤ NA or k, j > NA . (7.114)



274 NEUTRINO OSCILLATIONS IN VACUUM
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B

Fig. 7.6. Schematic illustration of the two possible types of neutrino mass spectra
with a dominant scale of squared-mass difference. The dots indicate possible
massive neutrinos with squared-mass differences much smaller than |∆m2

N1|.

In this case

|∆m2
kj | � |∆m2

N1| for (k ≤ NA and j > NA) or (k > NA and j ≤ NA) .
(7.115)

Hence, ∆m2
N1 is the dominant squared-mass difference.

Let us consider an experiment which is sensitive to oscillations generated by the
dominant squared-mass difference ∆m2

N1. This means that

|∆m2
N1|

2

〈
L

E

〉
∼ π , (7.116)

and
|∆m2

kj |
2

〈
L

E

〉
� π for k, j ≤ NA or k, j > NA . (7.117)

In this case, the oscillation probability in eqn (7.23),

Pνα→νβ
(L,E) =

∣∣∣∣∣∑
k

U∗αk Uβk exp

(
−i ∆m2

k1L

2E

)∣∣∣∣∣
2

, (7.118)

can be separated into the contributions with k ≤ NA and those with k > NA,

Pνα→νβ
(L,E) =

∣∣∣∣∣∣
∑

k≤NA

U∗αk Uβk exp

(
−i ∆m2

k1L

2E

)

+
∑

k>NA

U∗αk Uβk exp

(
−i ∆m2

k1L

2E

)∣∣∣∣∣
2

. (7.119)

Because of eqns (7.116) and (7.117), we can neglect the phases of the first group and
we can approximate all the phases of the second group with ∆m2

N1L/2E, leading
to the effective probability

P eff
να→νβ

(L,E) =

∣∣∣∣∣∣
∑

k≤NA

U∗αk Uβk + exp

(
−i ∆m2

N1L

2E

) ∑
k>NA

U∗αk Uβk

∣∣∣∣∣∣
2

. (7.120)
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Using the unitarity relation in eqn (7.28), the above probability can be written as

P eff
να→νβ

(L,E) =

∣∣∣∣∣δαβ −
[
1 − exp

(
−i ∆m2

N1L

2E

)]∑̃
k

U∗αk Uβk

∣∣∣∣∣
2

, (7.121)

where the symbol
∑̃

k indicates a sum over the index k that can be performed either
over the range 1 , . . . , NA or over the range NA + 1 , . . . , N :∑̃

k

U∗αk Uβk =
∑

k≤NA

U∗αk Uβk or
∑̃

k

U∗αk Uβk =
∑

k>NA

U∗αk Uβk . (7.122)

The squared modulus in eqn (7.121) is easily evaluated, yielding

P eff
να→νβ

(L,E) = δαβ − 4

⎡⎣δαβ

∑̃
k

|U∗αk|2 −
∣∣∣∣∣∑̃

k

U∗αk Uβk

∣∣∣∣∣
2
⎤⎦ sin2

(
∆m2

N1L

4E

)
.

(7.123)
For the transition probabilities we have

P eff
να→νβ

(L,E) = 4

∣∣∣∣∣∑̃
k

U∗αk Uβk

∣∣∣∣∣
2

sin2

(
∆m2

N1L

4E

)
(α �= β) . (7.124)

Comparing with eqn (7.70), we see that the transition probability in eqn (7.124)
corresponds to an effective two-neutrino-like transition probability,

P eff
να→νβ

(L,E) = sin2 2ϑeff
αβ sin2

(
∆m2

N1L

4E

)
(α �= β) , (7.125)

with effective squared-mass difference ∆m2
N1 and effective mixing angle ϑeff

αβ given
by

sin2 2ϑeff
αβ = 4

∣∣∣∣∣∑̃
k

U∗αk Uβk

∣∣∣∣∣
2

. (7.126)

This definition of an effective mixing angle is consistent, because using the Cauchy–
Schwartz inequality on the two equivalent expressions in eqn (7.122) we have∣∣∣∣∣∑̃

k

U∗αk Uβk

∣∣∣∣∣
2

≤

⎛⎝ ∑
k≤NA

|Uαk|2
⎞⎠⎛⎝ ∑

k≤NA

|Uβk|2
⎞⎠ (7.127)

and ∣∣∣∣∣∑̃
k

U∗αk Uβk

∣∣∣∣∣
2

≤
( ∑

k>NA

|Uαk|2
)( ∑

k>NA

|Uβk|2
)

=

⎛⎝1 −
∑

k≤NA

|Uαk|2
⎞⎠⎛⎝1 −

∑
k≤NA

|Uβk|2
⎞⎠ . (7.128)
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Hence, the maximum of
∣∣∣∑̃k U

∗
αk Uβk

∣∣∣2 is 1/4, reached for
∑

k≤NA
|Uαk|2 =∑

k≤NA
|Uβk|2 = 1/2. The definition in eqn (7.126) corresponds to two possible

values of the effective mixing angle symmetric with respect to π/4, which are given
by

sinϑeff
αβ =

1√
2

⎛⎜⎝1 ±

√√√√1 − 4

∣∣∣∣∣∑̃
k

U∗αk Uβk

∣∣∣∣∣
2
⎞⎟⎠

1/2

. (7.129)

The effective transition probability in eqn (7.125) is very useful for the analysis
of experimental data of appearance experiments which satisfy the conditions in
eqns (7.116) and (7.117), since it implies that the two effective parameters are
sufficient for the description of the data.

It is interesting to note that, although the effective mixing angle in eqn (7.129)
may depend on the Dirac phases in the mixing matrix, it is invariant under CP
or T transformation, which correspond to a charge conjugation of the elements
of the mixing matrix. Hence, the effective mixing angle can depend only on the
cosines of the Dirac phases in the mixing matrix. Its invariance under CP and T
transformation implies that

P eff
να→νβ

= P eff
ν̄α→ν̄β

= P eff
ν̄β→ν̄α

= P eff
νβ→να

, (7.130)

i.e. all the CP and T asymmetries are zero:

AT
αβ = −ĀT

αβ = ACP
αβ = 0 . (7.131)

Therefore, an experiment which is sensitive only to the largest squared-mass
difference cannot probe CP violations.

From eqn (7.121), the survival probabilities in the case of large ∆m2 dominance
are given by

P eff
να→να

(L,E) = 1 − 4

(∑̃
k

|Uαk|2
)(

1 −
∑̃

k

|Uαk|2
)

sin2

(
∆m2

N1L

4E

)
. (7.132)

Comparing with eqn (7.71), one can see that the survival probability in eqn (7.132)
corresponds to an effective two-neutrino-like survival probability,

P eff
να→να

(L,E) = 1 − sin2 2ϑeff
αα sin2

(
∆m2

N1L

4E

)
, (7.133)

with an effective squared-mass difference ∆m2
N1 and an effective mixing angle ϑeff

αα

given by

sin2 2ϑeff
αα = 4

(∑̃
k

|Uαk|2
)(

1 −
∑̃

k

|Uαk|2
)
. (7.134)

This definition of an effective mixing angle makes sense, since the upper bound of

the right-hand side is one, which is reached for
∑̃

k |Uαk|2 = 1
2 . Equation (7.134)



ACTIVE SMALL ∆m2 277

corresponds to two possible values of the effective mixing angle symmetric with
respect to π/4, which are given by

sinϑeff
αα =

∑̃
k

|Uαk|2 or sinϑeff
αα = 1 −

∑̃
k

|Uαk|2 . (7.135)

The effective survival probability in eqn (7.125), which depends only on two
parameters, is very useful for the analysis of experimental data of disappearance
experiments in which the conditions in eqns (7.116) and (7.117) are satisfied.

The effective two-neutrino-like oscillation probabilities averaged over the appro-
priate distributions of the distance L and the energy E have the same properties
as the averaged oscillations in two-neutrino mixing discussed in section 7.6.

Let us emphasize that from a theoretical point of view the large ∆m2 dominance
is a realistic possibility. The simplest and most plausible case in which it is realized
is through a hierarchy of squared-mass differences, which could be due to a hierarchy
of neutrino masses. If there is a hierarchy of squared-mass differences, there is only
one squared-mass which is much larger than the others, leading to a considerable
simplification of the expressions of the effective mixing angles in eqns (7.126) and
(7.134):

sin2 2ϑeff
αβ = 4 |UαN |2 |UβN |2 (α �= β) , sin2 2ϑeff

αα = 4 |UαN |2
(
1 − |UαN |2

)
.

(7.136)
We will see in chapter 13 that the results of neutrino oscillation experiments show
that the neutrino spectrum has a hierarchy of squared-mass differences and the
effective mixing angles in eqn (7.136) can be applied with success to the analysis of
the data of experiments which are sensitive only to the largest ∆m2. The relations
in eqn (7.131) imply that these experiments cannot measure CP or T violations.

7.8 Active small ∆m2

In this section we discuss a case in which there is a scale of neutrino squared-mass
differences which is much smaller than the largest scale of squared-mass differences.
We derive the effective oscillation probabilities in experiments which are sensitive
to such a small ∆m2. In these experiments the small ∆m2 under consideration is
active, because it generates the measurable oscillations which depend on L and E.
It is possible that in addition to the largest squared-mass difference there are also
squared-mass differences much smaller than the active one. Therefore, we consider
a general case in which the massive neutrinos can be divided in three groups that we
call A1, A2, and B, with the following properties. All the squared-mass differences
between a neutrino belonging to A1 and a neutrino belonging to A2 are much
larger than all the squared-mass differences between two neutrinos belonging either
to A1 or to A2 or to B. Moreover, all the squared-mass differences between a
neutrino belonging to A1 and a neutrino belonging to A2 are much smaller than
all the squared-mass differences between a neutrino belonging to A1 or A2 and a
neutrino belonging to B. These properties are illustrated schematically in Fig. 7.7.
A more general case in which there can also be squared-mass differences between two



278 NEUTRINO OSCILLATIONS IN VACUUM

B

∆m2
N1

A2

B

A2

∆m2
N1

A2

∆m2
N1

∆m2
NA1

B

∆m2
N1

∆m2
NA1

B

A1

∆m2
NA1 ∆m2

NA1

A1

A1

A1

A2

Fig. 7.7. Schematic illustration of the four possible types of neutrino mass spectra
considered in section 7.8. The dots indicate possible massive neutrinos with
squared-mass differences much smaller than |∆m2

NA1|.

neutrinos belonging to B which are much larger than the squared-mass differences
between a neutrino belonging to A1 and a neutrino belonging to A2 can also be
treated, but we avoid it because the formalism becomes too cumbersome.

The general case discussed in this section is useful in practice, for example,
in the study of neutrino oscillations in vacuum due to ∆m2

21 in a three-neutrino
mixing scheme with a hierarchy of ∆m2’s, as explained in section 13.1.2.

Let us denote byNA1 , NA2 , andNB the numbers of massive neutrinos belonging,
respectively, to A1, A2, and B, with the total number of massive neutrinos equal to
N = NA1 +NA2 +NB. It is also convenient to call A = A1∪A2 and denote with NA

the number of massive neutrinos belonging to A (NA = NA1 +NA2). Let us assign
the numbers of the massive neutrinos in such a way that ν1 , . . . , νNA1

∈ A1,
νNA1+1 , . . . , νNA

∈ A2 and νNA+1 , . . . , νN ∈ B. We consider a neutrino mass
spectrum such that

|∆m2
NA1| � |∆m2

kj | for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k, j ≤ NA1

or
NA1 < k, j ≤ NA

or
k, j > NA ,

(7.137)

|∆m2
NA1| � |∆m2

kj | for

⎧⎨⎩
k ≤ NA and j > NA

or
k > NA and j ≤ NA .

(7.138)

We are interested in the oscillations generated by ∆m2
NA1. Because of the

inequalities in eqn (7.137), we have

|∆m2
kj | � |∆m2

NA1|
for (k ≤ NA1 and NA1 < j ≤ NA) or (NA1 < k ≤ NA and j ≤ NA1) . (7.139)

In an experiment which is sensitive to the oscillations generated by ∆m2
NA1 we have

|∆m2
NA1|
2

〈
L

E

〉
∼ π , (7.140)
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|∆m2
kj |

2

〈
L

E

〉
� π for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k, j ≤ NA1

or
NA1 < k, j ≤ NA

or
k, j > NA ,

(7.141)

|∆m2
kj |

2

〈
L

E

〉
� π for

⎧⎨⎩ k ≤ NA and j > NA

or
k > NA and j ≤ NA .

(7.142)

The inequalities in eqns (7.141) and (7.142) imply that

〈
cos

(
∆m2

kjL

2E

)〉
� 1 ,

〈
sin

(
∆m2

kjL

2E

)〉
� 1 for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k, j ≤ NA1

or
NA1 < k, j ≤ NA

or
k, j > NA ,
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)〉
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〈
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(
∆m2

kjL

2E

)〉
� 1 for

⎧⎨⎩
k ≤ NA and j > NA

or
k > NA and j ≤ NA .

(7.144)

Using these approximations, the effective probability obtained from eqn (7.37) is

P eff
να→νβ

(L,E) = δαβ

− 2

⎛⎝ ∑
j≤NA1

NA∑
k=NA1+1

e
[
U∗αk Uβk Uαj U

∗
βj

]⎞⎠[
1 − cos

(
∆m2

NA1L

2E

)]

+ 2

⎛⎝ ∑
j≤NA1

NA∑
k=NA1+1

�m
[
U∗αk Uβk Uαj U

∗
βj

]⎞⎠ sin

(
∆m2

NA1L

2E

)
− 2

∑
j≤NA

∑
k>NA

e
[
U∗αk Uβk Uαj U

∗
βj

]
. (7.145)

Let us consider first the survival probabilities. From eqn (7.145) for α = β we
get

P eff
να→να

(L,E) = 1 − 4

⎛⎝ ∑
j≤NA1

|Uαj |2
⎞⎠⎛⎝ NA∑

k=NA1+1

|Uαk|2
⎞⎠ sin2

(
∆m2

NA1L

4E

)

− 2

(
NA∑
k=1

|Uαk|2
)( ∑

k>NA

|Uαk|2
)
, (7.146)
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which can be written as

P eff
να→να

(L,E) = 1 − 4

⎛⎝ ∑
j≤NA1

|Uαj |2
⎞⎠⎛⎝ NA∑

k=NA1+1

|Uαk|2
⎞⎠ sin2

(
∆m2

NA1L

4E

)

− 2

( ∑
k>NA

|Uαk|2
)(

1 −
∑

k>NA

|Uαk|2
)
, (7.147)

Let us separate the contributions due to the mixing of να with the massive neutrinos
νk belonging to the group B from those belonging to the group A. This task can
be accomplished by writing the survival probability in eqn (7.147) as

P eff
να→να

(L,E) =

(
1 −

∑
k>NA

|Uαk|2
)2

P (NA,1)
να→να

(L,E) +

( ∑
k>NA

|Uαk|2
)2

, (7.148)

with

P (NA,1)
να→να

(L,E) = 1 − 4

(∑
k≤NA1

|Uαk|2
)(∑NA

k=NA1+1 |Uαk|2
)

(∑NA

k=1 |Uαk|2
)2 sin2

(
∆m2

NA1L

4E

)
.

(7.149)
This is a two-neutrino-like survival probability that can be written as

P (NA,1)
να→να

(L,E) = 1 − sin2 2ϑeff
αα sin2

(
∆m2

NA1L

4E

)
, (7.150)

with effective squared-mass difference ∆m2
NA1 and effective mixing angle ϑeff

αα given
by

sin2 2ϑeff
αα = 4

(∑
k≤NA1

|Uαk|2
)(∑NA

k=NA1+1 |Uαk|2
)

(∑NA

k=1 |Uαk|2
)2 . (7.151)

This definition of an effective mixing angle is consistent because(∑
k≤NA1

|Uαk|2
)(∑NA

k=NA1+1 |Uαk|2
)

(∑NA

k=1 |Uαk|2
)2 =

∑
k≤NA1

|Uαk|2∑NA

k=1 |Uαk|2

(
1 −

∑
k≤NA1

|Uαk|2∑NA

k=1 |Uαk|2

)
(7.152)

reaches its maximum value 1/4 for
∑

k≤NA1
|Uαk|2/

∑NA

k=1 |Uαk|2 = 1/2. There are

two possible values of the effective mixing angles symmetric with respect to π/4,
given by

sinϑeff
αα =

√√√√∑
k≤NA1

|Uαk|2∑NA

k=1 |Uαk|2
or sinϑeff

αα =

√√√√∑NA

k=NA1+1 |Uαk|2∑NA

k=1 |Uαk|2
. (7.153)

Equation (7.148) is rather meaningful, because it shows that the effective sur-
vival probability P eff

να→να
(L,E) deviates from being two-neutrino-like because of the
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mixing of να with the massive neutrinos belonging to the groupB, which contributes
with a constant term and with a suppression factor of the two-neutrino-like survival

probability P
(NA,1)
να→να(L,E). Both effects depend only on the sum of the squared abso-

lute values of the elements of the mixing matrix that connect να with the massive
neutrinos belonging to the group B.

The effective survival probability P eff
να→να

(L,E) represents a great simplification
with respect to the general form of the survival probability, which depends on
many parameters, whereas eqn (7.148) depends on only three parameters: ∆m2

NA1,

sin2 2ϑeff
αα and

∑
k>NA

|Uαk|2. This is very useful in the analysis of experimental
data.

In the limit of zero or negligible mixing of να with the massive neutrinos belong-
ing to the group B, the present case becomes coincident with the case of dominance
of one scale of squared-mass differences discussed in the previous section 7.7. Indeed,
the effective survival probability in eqn (7.148) is reduced to the two-neutrino-like
survival probability in eqn (7.150), which is analogous to in eqn (7.133) with the
appropriate change of the mixing parameters. The definition in eqn (7.151) of effec-
tive mixing angle becomes analogous to that in eqn (7.134) because in this case∑NA

k=1 |Uαk|2 = 1.
Unfortunately, the calculation of the transition probabilities is more cumber-

some. Taking into account that α �= β, the unitary relation in eqn (7.28) implies
that ∑

j≤NA

∑
k>NA

U∗αk Uβk Uαj U
∗
βj = −

∣∣∣∣∣∑̃
k

U∗αk Uβk

∣∣∣∣∣
2

, (7.154)

where the symbol
∑̃

k has the same meaning as in eqn (7.122). Moreover, we have

∑
j≤NA1

NA∑
k=NA1+1

U∗αk Uβk Uαj U
∗
βj = −

∣∣∣∣∣∣
∑
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∣∣∣∣∣∣
2

−
∑
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∑
k>NA

U∗αk Uβk Uαj U
∗
βj

= −

∣∣∣∣∣∣
NA∑

k=NA1+1

U∗αk Uβk

∣∣∣∣∣∣
2

−
N∑

j=NA+1

NA∑
k=NA1+1

U∗αk Uβk Uαj U
∗
βj .

(7.155)

Choosing the first equality in eqn (7.155) and the second equality in eqn (7.122),
the effective transition probabilities can be written as

P eff
να→νβ

(L,E) = 4

∣∣∣∣∣∣
∑

k≤NA1

U∗αk Uβk

∣∣∣∣∣∣
2

sin2

(
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NA1L

4E

)

+ 4

⎛⎝ ∑
j≤NA1

∑
k>NA

e
[
U∗αk Uβk Uαj U

∗
βj

]⎞⎠ sin2

(
∆m2

NA1L

4E

)
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+ 2

⎛⎝ ∑
j≤NA1

∑
k>NA

�m
[
U∗αk Uβk Uαj U

∗
βj

]⎞⎠ sin

(
∆m2

NA1L

2E

)

+ 2

∣∣∣∣∣ ∑
k>NA

U∗αk Uβk

∣∣∣∣∣
2

. (7.156)

The last term, which is constant, depends on the mixing of να and νβ with the
massive neutrinos belonging to the group B. The first term, which is oscillating,
depends on the mixing of να and νβ with the massive neutrinos belonging to the
group A. The other two oscillating terms depend on the mixing of να and νβ

with both the massive neutrinos belonging to the groups A and B. Clearly, it is
not possible to separate completely the contributions due to the mixing of να and
νβ with the massive neutrinos belonging to the groups A and B and write the
contribution due to the mixing of να and νβ with the massive neutrinos belonging
to the groups A in terms of an effective two-neutrino-like transition probability,
because a two-neutrino-like transition probability cannot account for the effect of
the phases in the mixing matrix, which in general are present in eqn (7.156) if
the mixing of να and νβ with the massive neutrinos belonging to the group B is
not zero. Only if such mixing is zero is there no effect of the phases, because the
present case becomes coincident with the case of dominance of one scale of squared-
mass differences discussed in the previous section 7.7. Indeed, in this limit only the
first term on the right-hand side of eqn (7.156) survives and one can see that it is
analogous to eqn (7.124) with the appropriate change of the mixing parameters.

Nevertheless, one must realize that the effective transition probability
P eff

να→νβ
(L,E) represents a great simplification with respect to the general form

of the transition probability, which depends on many parameters. Indeed,

eqn (7.148) depends on only five parameters: ∆m2
NA1,

∣∣∣∑k≤NA1
U∗αk Uβk

∣∣∣2,∑
j≤NA1

∑
k>NA

e
[
U∗αk Uβk Uαj U

∗
βj

]
,
∑

j≤NA1

∑
k>NA

�m
[
U∗αk Uβk Uαj U

∗
βj

]
, and∣∣∑

k>NA
U∗αk Uβk

∣∣2. This is very useful in practice, because it simplifies considerably
the analysis of experimental data.
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THEORY OF NEUTRINO OSCILLATIONS IN VACUUM

You cannot teach a man anything; you can only help him dis-
cover it in himself.
Galileo Galilei

In section 7.1, we have seen that the standard theory of neutrino oscillations for-
mulated in Refs. [404, 466, 236, 239, 237] is based on the three main assumptions
listed at the end of that section. In this chapter, we present two versions of the
theory of neutrino oscillations which depend on fewer assumptions.

In section 8.1, we present a derivation of the probability of neutrino oscilla-
tions in the plane-wave approximation, in which only the physically motivated
assumption (A3) on page 253, of equal propagation time and distance, is needed.
In particular, we will derive the neutrino flavor states from first principles in the
framework of quantum field theory and we will show that no assumption is needed
on the values of the energies and momenta of massive neutrinos.

However, the plane-wave approximation is not totally consistent, because
energy–momentum conservation implies that the creation of massive neutrinos with
definite energies and momenta is possible only if all the particles involved in the
production process have definite energies and momenta. The problem is that in this
case energy–momentum conservation cannot hold simultaneously for different mas-
sive neutrinos and the production of a superposition of different massive neutrinos
is forbidden. In order to overcome this problem, it is necessary to treat neutrinos
and the other particles participating in the production and detection processes as
wave packets, as discussed in section 8.2. We will see that the wave-packet treat-
ment of neutrino oscillations is free from the three standard assumptions listed at
the end of section 7.1, including the assumption (A3) of equal propagation time
and distance.

From an historical point of view, in 1976, Nussinov [831], for the first time, con-
sidered the wave packet nature of propagating neutrinos and inferred the existence
of a coherence length, beyond which the interference of different massive neutrinos
is not observable. This is due to the different group velocities of different massive
neutrinos, leading to a separation of their wave packets. In 1981, Kayser [660] pre-
sented the first detailed discussion of the problems in the quantum mechanics of
neutrino oscillations, pointing out the necessity of a wave-packet treatment. In 1996,
Kiers, Nussinov, and Weiss [667] first pointed out the importance of the detection
process for the coherence of neutrino oscillations and discussed some implications
for the wave packet approach.

Detailed wave packet models of neutrino oscillations have been developed in
the framework of quantum mechanics [533, 534, 528, 525] and in the framework
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of quantum field theory [531, 536, 668, 301, 224, 523] (see also Ref. [670] and the
reviews in Refs. [1090, 225]).

In section 8.3, we discuss the problem of the determination of the size of neutrino
wave packets. We also estimate the size of neutrino wave packets in some cases of
practical interest. Finally, in section 8.4, we answer some interesting questions that
are often asked and have been debated in the literature.

8.1 Plane-wave approximation

In the standard approach described in chapter 7, the massive neutrino components
of a flavor state are described by plane waves. In this section we adopt this so-
called plane wave approximation. In subsection 8.1.1 we present a derivation of the
flavor neutrino states. In subsection 8.1.2, using these flavor states, we derive the
probability of neutrino oscillations, taking into account the general possibility that
different massive neutrinos may have different momenta as well as different energies
[1064, 533, 540, 522, 526]. In subsection 8.1.3, we show that the corrections to the
standard oscillation phase due to violations of the ultrarelativistic time = distance
approximation and the one-dimensional propagation approximation, adopted in
subsection 8.1.2, are negligible. Furthermore, in subsection 8.1.4 we discuss the
invariance of the neutrino oscillation probability under Lorentz transformations
and in section 8.1.5 we discuss the compatibility of the flavor neutrino states with
the calculation of neutrino production and detection rates.

8.1.1 Flavor neutrino states

In general, in quantum field theory the asymptotic final state |f〉 resulting from an
interaction process with asymptotic initial state |i〉 is given by

|f〉 = S |i〉 , (8.1)

where S is the S-matrix operator. If the final state is a superposition of orthogonal
and normalized states |fk〉, it can be written as

|f〉 =
∑

k

Ak |fk〉 , (8.2)

with the coefficients

Ak = 〈fk|f〉 = 〈fk|S|i〉 , (8.3)

which are just the amplitudes of production of the corresponding states |fk〉.
Let us emphasize that in this section we assume that one-particle states are

normalized and have definite energy and momentum. Therefore, the fermion one-
particle states are not those derived in eqn (2.232) from the quantization of the
corresponding fermion field, which are not normalized. The one-particle states con-
sidered in this section correspond to wave packets of the type in eqn (2.459) with a
very narrow momentum distribution, whose effects are neglected in the plane-wave
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approximation (for simplicity, in this section we consider only neutrinos with neg-
ative helicity), or states obtained with a finite normalization volume, as discussed
in section 2.13.

The state of a flavor neutrino να is defined as the state which describes a neutrino
produced in a charged-current weak interaction process together with a charged
lepton �+α or from a charged lepton �−α (where �±α = e±, µ±, τ± for α = e, µ, τ ,
respectively), or the state which describes a neutrino detected in a charged-current
weak interaction process with a charged lepton �−α in the final state. In fact, the
neutrino flavor can only be measured through the identification of the charged
lepton associated with the neutrino in a charged-current weak interaction process.

Let us first consider a neutrino produced in the generic decay process

PI → PF + �+α + να , (8.4)

where PI is the decaying particle and PF represents any number of final particles.
For example: in the pion decay process

π+ → µ+ + νµ , (8.5)

we have PI = π+, PF is absent and α = µ; in a nuclear β+-decay process

N(A,Z) → N(A,Z − 1) + e+ + νe , (8.6)

we have PI = N(A,Z), PF = N(A,Z − 1) and α = e; in the µ+-decay process

µ+ → ν̄µ + e+ + νe , (8.7)

considering the final νe, we have PI = µ+, PF = ν̄µ and α = e. The following method
can easily be modified in the case of a να produced in the generic scattering process
�−α + PI → PF + να by replacing the �+α in the final state with a �−α in the initial
state.

The final state resulting from the decay of the initial particle PI is given by

|f〉 = S |PI〉 , (8.8)

where S is the S-matrix operator. Since the final state |f〉 contains all the decay
channels of PI, it can be written as

|f〉 =
∑

k

AP
αk |νk, �

+
α ,PF〉 + . . . , (8.9)

where we have singled out the decay channel in eqn (8.4) and we have taken into
account that the flavor neutrino να is a coherent superposition of massive neu-
trinos νk. Since the states of the other decay channels represented by dots in
eqn (8.9) are orthogonal to |νk, �

+
α ,PF〉 and the different states |νk, �

+
α ,PF〉 are

orthogonal and normalized, the coefficients AP
αk are the amplitudes of production
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of the corresponding state in the decay channel in eqn (8.4):

AP
αk = 〈νk, �

+
α ,PF|f〉 = 〈νk, �

+
α ,PF| S |PI〉 . (8.10)

Projecting the final state in eqn (8.9) over |�+α ,PF〉 and normalizing, we obtain the
flavor neutrino state [535, 229, 54, 538, 539]

|νP
α 〉 =

(∑
i

|AP
αi|2

)−1/2∑
k

AP
αk |νk〉 . (8.11)

Therefore, a flavor neutrino state is a coherent superposition of massive neutrino
states |νk〉 and the coefficient AP

αk of the kth massive neutrino component is given by
the amplitude of production of νk. Since, in general, the amplitudes AP

αk depend on
the production process, a flavor neutrino state depends on the production process.
In the following, we will call a flavor neutrino state of the type in eqn (8.11) a
production flavor neutrino state.

Let us now consider the detection of a flavor neutrino να through the generic
charged-current weak interaction process

να + DI → DF + �−α , (8.12)

where DI is the target particle and DF represents one or more final particles. In
general, since the incoming neutrino state in the detection process is a superposition
of massive neutrino states, it may not have a definite flavor. Therefore, we must
consider the generic process

ν + DI , (8.13)

with a generic incoming neutrino state |ν〉. In this case, the final state of the
scattering process is given by

|f〉 = S |ν,DI〉 , (8.14)

This final state contains all the possible scattering channels:

|f〉 = |DF, �
−
α 〉 + . . . , (8.15)

where we have singled out the scattering channel in eqn (8.12). We want to find
the component

|να,DI〉 =
∑

k

AD
αk|νk,DI〉 (8.16)

of the initial state |ν,DI〉 which corresponds to the flavor α, i.e. the compo-
nent which generates only the scattering channel in eqn (8.12). This means that
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|DF, �
−
α 〉 = S |να,DI〉. Using the unitarity of the mixing matrix, we obtain

|να,DI〉 = S† |DF, �
−
α 〉 . (8.17)

From eqns (8.16) and (8.17), the coefficients AD
αk are the complex conjugate of the

amplitude of detection of νk in the detection process in eqn (8.12):

AD
αk = 〈νk,DI|S† |DF, �

−
α 〉 . (8.18)

Projecting |να,DI〉 over |DI〉 and normalizing, we finally obtain the flavor neutrino
state in the detection process in eqn (8.12):

|νD
α 〉 =

(∑
i

|AD
αi|2

)−1/2∑
k

AD
αk |νk〉 . (8.19)

In the following, we will call a flavor neutrino state of this type a detection flavor

neutrino state.
Although the expressions in eqns (8.11) and (8.19) for the production and detec-

tion flavor neutrino states have the same structure, these states have different
meanings. A production flavor neutrino state describes the neutrino created in
a charged-current interaction process, which propagates out of a source. Hence, it
describes the initial state of a propagating neutrino. A detection flavor neutrino
state does not describe a propagating neutrino. It describes the component of the
state of a propagating neutrino which can generate a charged lepton with appropri-
ate flavor through a charged-current weak interaction with an appropriate target
particle. In other words, the scalar product

Aα = 〈νD
α |ν〉 (8.20)

is the probability amplitude to find a να by observing the scattering channel in
eqn (8.12) with the scattering process in eqn (8.13).

In order to understand the connection of the production and detection flavor
neutrino states with the standard flavor neutrino states in eqn (7.4), it is useful to
express the S-matrix operator as

S = 1 − i

∫
d4xHCC(x) , (8.21)

where we have considered only the first order perturbative contribution of the
effective low-energy charged-current weak interaction Hamiltonian

HCC(x) =
GF√

2
j†ρ(x) j

ρ(x) , (8.22)

where GF is the Fermi constant. The weak charged current jρ(x) is given by

jρ(x) =
∑

α=e,µ,τ

να(x) γρ
(
1 − γ5

)
�α(x) + hρ(x)
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=
∑

α=e,µ,τ

∑
k

U∗αk νk(x) γρ
(
1 − γ5

)
�α(x) + hρ(x) , (8.23)

where hρ(x) is the hadronic weak charged current. The production and detection
amplitudes AP

αk and AD
αk can be written as

AP
αk = U∗αk MP

αk , AD
αk = U∗αk MD

αk , (8.24)

with the interaction matrix elements

MP
αk = −i GF√

2

∫
d4x 〈νk, �

+
α | νk(x) γρ

(
1 − γ5

)
�α(x) |0〉JPI→PF

ρ (x) , (8.25)

MD
αk = i

GF√
2

∫
d4x 〈νk| νk(x) γρ

(
1 − γ5

)
�α(x) |�−α 〉JDI→DF

ρ

∗
(x) . (8.26)

Here, JPI→PF
ρ (x) and JDI→DF

ρ (x) are, respectively, the matrix elements of the PI →
PF and DI → DF transitions.

Using eqn (8.24), the production and detection flavor neutrino states can be
written as

|νP
α 〉 =

∑
k

MP
αk√∑

j |Uαj|2 |MP
αj|2

U∗αk |νk〉 , (8.27)

|νD
α 〉 =

∑
k

MD
αk√∑

j |Uαj |2 |MD
αj |2

U∗αk |νk〉 . (8.28)

These states have a structure which is similar to the standard flavor states in
eqn (7.4), with the relative contribution of the massive neutrino νk proportional
to U∗αk. The additional factors are due to the dependence of the production and
detection processes on the neutrino masses.

In experiments which are not sensitive to the dependence of MP
αk or MD

αk on
the difference of the neutrino masses it is possible to approximate

MP
αk � MP

α , MD
αk � MD

α . (8.29)

In this case, since ∑
k

|Uαk|2 = 1 , (8.30)

we obtain, up to an irrelevant phase, the standard flavor neutrino states in eqn (7.4),
which do not depend on the production or detection process. Hence, the standard
flavor neutrino states are approximations of the production and detection flavor
neutrino states in experiments which are not sensitive to the dependence of the
neutrino interaction rate on the difference of the neutrino masses.

In the following section 8.1.2, we will derive the neutrino oscillation probability
starting from the flavor neutrino states in eqns (8.11) and (8.19). We will show
that, with the appropriate approximations, the oscillation probability reduces to
the standard one in eqn (7.23), which was derived from the approximate standard
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flavor neutrino states in eqn (7.4). In section 8.1.5, we show that the expressions
in eqns (8.11) and (8.19) for the flavor neutrino states are important in order to
be able to describe, in a consistent framework, neutrino oscillations and neutrino
production and detection.

8.1.2 Neutrino oscillations

Let us consider a neutrino oscillation experiment in which να → νβ transitions are
studied with a production process of the type in eqn (8.4) and a detection process
of the type in eqn (8.12). In this case, the produced flavor neutrino να is described
by the production flavor state |νP

α 〉 in eqn (8.11). If the neutrino production and

detection processes are separated by a space-time interval (�L, T ), the neutrino
propagates freely between production and detection, evolving into the state

|ν(�L, T )〉 = e−iP0T+i
P ·
L |νP
α 〉 , (8.31)

where P0 and �P are, respectively, the energy and momentum operators. This is the
incoming neutrino state in the detection process. The amplitude of the measurable
να → νβ transitions is given by the scalar product in eqn (8.20):

Aνα→νβ
(�L, T ) = 〈νD

β |ν(�L, T )〉 = 〈νD
β |e−iP0T+i
P ·
L|νP

α 〉 , (8.32)

with the detection flavor state |νD
β 〉 in eqn (8.19).

Since the massive neutrinos have definite kinematical properties (energy and
momentum), we have, in the plane wave approximation,

Pµ |νk〉 = pµ
k |νk〉 , (8.33)

with

p0
k = Ek =

√
|�pk|2 +m2

k . (8.34)

Using the normalization 〈νk|νj〉 = δkj , we obtain the flavor transition amplitude

Aνα→νβ
(�L, T ) =

(∑
i

|AP
αi|2

)−1/2(∑
i

|AD
βi|2

)−1/2∑
k

AP
αk AD∗

βk e
−iEkT+i
pk ·
L ,

(8.35)
Notice that the consideration of the space-time interval between neutrino produc-
tion and detection allows one to take into account both the differences in energy
and momentum of massive neutrinos [1064, 533, 540, 522, 526].

Let us consider the simplest case in which all massive neutrino momenta �pk are

aligned along �L. This assumption is reasonable, because all massive neutrino com-
ponents are created in the same microscopic production process and detected in the
same microscopic detection process, which are separated by the large macroscopic
space interval �L. In subsection 8.1.3, we will show that possible deviations from
this assumption do not lead to any observable effect.
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In this one-dimensional approximation, the transition amplitude depends on
L ≡ |�L| and T :

Aνα→νβ
(L, T ) =

(∑
i

|AP
αi|2

)−1/2(∑
i

|AD
βi|2

)−1/2∑
k

AP
αk AD∗

βk e
−iEkT+ipkL ,

(8.36)
where pk ≡ |�pk|. It is important to note that the consideration of the space-time
interval between neutrino production and detection allows one to take into account
both the differences in energy and momentum of massive neutrinos.

In oscillation experiments in which the neutrino propagation time T is not
measured, it is possible to approximate T = L, as we have discussed in item (A3) on
page 253 (the effects of possible deviations from T = L are shown to be negligible
in subsection 8.1.3 below). In this case, the phase in eqn (8.36) becomes

− EkT + pkL = − (Ek − pk)L = −E
2
k − p2

k

Ek + pk
L = − m2

k

Ek + pk
L � −m

2
k

2E
L , (8.37)

where E is the neutrino energy neglecting mass contributions. It is important to
note that eqn (8.37) shows that the phases of massive neutrinos relevant for the
oscillations are independent of the values of the energies and momenta of different
massive neutrinos [1064, 533, 540, 522, 526], because of the relativistic dispersion
relation in eqn (8.34). In particular, eqn (8.37) shows that the equal momentum
assumption (A2) on page 253, which was adopted in the standard derivation of
the neutrino oscillation probability (see section 7.1), is not necessary in the above
derivation.

The probability of να → νβ transitions in space is given by

Pνα→νβ
(L) =

(∑
i

|AP
αi|2

)−1(∑
i

|AD
βi|2

)−1

×
∑
k,j

AP
αk AD∗

βk AP∗
αj AD

βj exp

(
−i

∆m2
kjL

2E

)
. (8.38)

Using the decomposition in eqn (8.24), the oscillation probability can now be
written as

Pνα→νβ
(L,E) =

∑
k,j

⎛⎜⎜⎝ MP
αk MP∗

αj∑
i

|Uαi|2|MP
αi|2

⎞⎟⎟⎠
⎛⎜⎜⎝ MD∗

βk MD
βj∑

i

|Uβi|2|MD
βi|2

⎞⎟⎟⎠
× U∗αk Uβk Uαj U

∗
βj exp

(
−i

∆m2
kjL

2E

)
. (8.39)

This probability has the same structure as the standard oscillation probability in
eqn (7.23), with additional factors that take into account the effect of the neutrino
masses in the production and detection processes. It is clear from eqn (8.39) that
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these effects have an influence on the amplitude of the oscillations, but not on the
phase, which coincides with the standard one in eqn (7.24).

Since neutrinos in oscillation experiments are ultrarelativistic and the experi-
ments are not sensitive to the dependence of neutrino interactions on the neutrino
masses, the dependence of MP

αk and MD
βk on the neutrino masses can be neglected,

leading to the approximation in eqn (8.29). In this case, the transition probability in
eqn (8.39) reduces to the standard one in eqn (7.23), which can be obtained starting
from the standard flavor states in eqn (7.4). As shown in section 8.1.1, the standard
flavor states are obtained from the production and detection flavor states under the
same approximations. Therefore, the standard flavor states are appropriate for the
description of neutrino oscillation experiments in the plane wave approximation,
as long as the dependence of the production and detection probabilities on the
neutrino masses is negligible. These considerations justify the assumption (A1) on
page 253, which was adopted in the standard derivation of the neutrino oscillation
probability.

8.1.3 Universality of the oscillation phase

In the previous subsection 8.1.2, we have derived the probability of neutrino oscil-
lations under the assumptions that T = L and all massive neutrino momenta �pk

are aligned along �L. In this subsection we will show that possible deviations from
these assumptions do not affect in a significant way the oscillation phases mea-
sured in neutrino oscillation experiments, which are correctly given by the standard
expression in eqn (7.24).

The momentum of a massive neutrino created in a production process depends
on the characteristics of the interaction, on the nature of the other particles taking
part in the process and on the neutrino mass. Let us call�p and E = |�p|, respectively,
the momentum and energy of a massless neutrino. The first order contribution of
the neutrino mass to �pk and Ek must be proportional to m2

k, because the energy–
momentum dispersion relation in eqn (8.34) depends on m2

k. Therefore, in general,
the momentum �pk can be written to first order in m2

k as

�pk � �p−�ξ m
2
k

2E
, (8.40)

where
�ξ

2E
= − ∂�pk

∂m2
k

∣∣∣∣
mk=0

. (8.41)

The value of the vector�ξ depends on the production process. However, as we will see
in the following, the measurable oscillation phases are independent of �ξ. Therefore,
they are universal, i.e. independent of the specific nature of the neutrino production
process, as well as detection.

In the approximation in eqn (8.40), the dispersion relation in eqn (8.34) implies
that the energy of νk is given by

Ek � E +

(
1 − �p ·�ξ

E

)
m2

k

2E
. (8.42)
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Note that eqn (8.40) implies that the directions of propagation of different mas-

sive neutrinos are slightly different if �ξ is not collinear with �p. How this is possible
can be illustrated in the case of the pion decay production process in eqn (8.5)
as follows. In the rest frame of the pion, the energy of νk can be calculated from
energy–momentum conservation to be given by

Ek =
mπ

2

(
1 −

m2
µ

m2
π

)
+

m2
k

2mπ
, (8.43)

where mπ and mµ are the masses of the pion and muon, respectively. Since, in the
rest frame of the pion, the neutrino and the muon are emitted back-to-back, all the
massive neutrinos are emitted in the same direction. Thus, �ξ is collinear with �p,
leading to

Ek = E + (1 − ξ)
m2

k

2E
, pk ≡ |�pk| � E − ξ

m2
k

2E
, (8.44)

with

E =
mπ

2

(
1 −

m2
µ

m2
π

)
� 30 MeV , ξ ≡ |�ξ| =

1

2

(
1 +

m2
µ

m2
π

)
� 0.8 . (8.45)

Note that the different values of the momenta and energies of different massive
neutrinos imply different corresponding values for the momentum and energy of
the outgoing muon. Two different massive neutrinos can be produced coherently
in the same decay process only if the outgoing muon has energy and momentum
uncertainties which are larger, respectively, of the difference of the energies and
momenta of the two massive neutrinos. These uncertainties must come from corre-
sponding uncertainties for the pion. Hence, in a rigorous treatment, the pion and the
muon must be described by wave packets [531, 536, 1090, 824, 301, 225, 224, 523].
This implies that also the massive neutrinos must be described by wave packets
[831, 660, 533, 667, 668, 528, 1090, 523, 526]. The spatial extension of the mas-
sive neutrino wave packets explains how it is possible that the different massive
neutrinos can be detected in the same interaction process even if their space-time
trajectories are different.

Let us now consider a boosted reference frame. If the frame is boosted in the
direction of the emitted massive neutrinos, obviously they are still collinear. Instead,
if the frame is boosted in another direction, collinearity is lost. For example, let
us consider a frame boosted with velocity V in a direction which is orthogonal to
the neutrino direction in the pion rest frame. In this frame, we have, in an obvious
notation,

p′k‖ = pk‖ = pk , p′k⊥ = − V√
1 − V 2

Ek . (8.46)

Hence, the angle of propagation of νk in the boosted frame, with respect to its
direction in the rest frame, is given by

tan θ′k =
p′k⊥
p′k‖

� − V√
1 − V 2

(
1 +

m2
k

2E2

)
. (8.47)

Since this angle depends on the neutrino mass, in the boosted frame different
massive neutrinos are seen to propagate in slightly different directions. In fact, in
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this case, �p′ and �ξ
′
are not collinear, since

p′‖ = p‖ = E , p′⊥ = − V√
1 − V 2

E , ξ′‖ = ξ‖ = ξ , ξ′⊥ =
V√

1 − V 2
(1 − ξ) .

(8.48)
Since many experiments measure the oscillations of neutrinos produced by pion
decay in flight (e.g. atmospheric and accelerator neutrino oscillation experiments),
in which the neutrino direction is not constrained to be collinear with the pion
direction, in order to be realistic, in this section we consider the general case of
noncollinear �p and �ξ.

Let us now calculate the phases

φk = −EkT +�pk ·�L (8.49)

in the transition amplitude in eqn (8.35). We consider a deviation of the time T
between neutrino production and detection from the light-ray approximation T = L
of the type

T =
L

|〈�v〉| (1 + εT ) . (8.50)

Here, 〈�v〉 is the average velocity

〈�v〉 =
1

N

N∑
k=1

�pk

Ek
� �p

E
−
[
�p

E

(
1 − �p ·�ξ

E

)
+�ξ

]
m2

2E2
, (8.51)

where N is the number of massive neutrinos and

m2 =
1

N

N∑
k=1

m2
k (8.52)

is the average of the squared neutrino masses. The absolute value of the average
velocity is given by the usual ultrarelativistic expression

|〈�v〉| � 1 − m2

2E2
. (8.53)

In eqn (8.50), we consider εT � 1, because neutrinos are ultrarelativistic and the
deviation from T = L/|〈�v〉| cannot be larger than the size of the neutrino wave
packets, which must be much smaller than L in order to observe the oscillations
[660, 533]. To first order in the small ratio m2/E2, eqn (8.50) becomes

T � L (1 + εT )

(
1 +

m2

2E2

)
. (8.54)

Now, we consider also deviations from the assumption that the momenta of all
massive neutrinos are aligned along �L. As discussed above, the expression for the
neutrino momenta in eqn (8.40) already implies that, in general, the momenta of
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different massive neutrinos are not collinear. Moreover, we can consider a deviation
from the collinearity of �L and the average momentum

〈�p〉 =
1

N

N∑
k=1

�pk � �p−�ξ m
2

2E
, (8.55)

which we can write as
〈�p〉
|〈�p〉| =

�L

L
+�εL , (8.56)

with |�εL| � 1, for the same reasons as εT � 1. At zeroth order in the small ratio
m2/E2, we have

�p � E

(
�L

L
+�εL

)
, (8.57)

which implies, from eqn (8.42),

Ek � E +

(
1 −

�L ·�ξ
L

−�εL ·�ξ
)
m2

k

2E
. (8.58)

From eqns (8.40), (8.54), and (8.58), for the difference ∆φkj = φk − φj of the
phases in eqn (8.49) we obtain, at first order in the small quantities εT and |�εL|,

∆φkj � −
∆m2

kjL

2E
+ εkj , (8.59)

with the contribution

εkj =

[
�εL ·�ξ − εT

(
1 −

�L ·�ξ
L

)]
∆m2

kjL

2E
, (8.60)

in addition to the standard oscillation phase in eqn (7.24). However, since εT � 1
and |�εL| � 1, the contribution εkj is nonnegligible only for ∆m2

kjL/2E � 1.
But in this case oscillations are not measurable, since they are washed out by the
average over the energy resolution of the detector (see section 7.6). In the case of
∆m2

kjL/2E ∼ 1, in which oscillations are measurable, εkj is extremely small and

can be safely neglected (eiεkj � 1), leading to the validity of the standard expression
in eqn (7.24) for the oscillation phases.

Note the irrelevance for ∆φkj of the lack of collinearity of the trajectories of
different massive neutrinos if εT = |�εL| = 0. It is due to the fact that the deviation
from collinearity of νk and νj is proportional to ∆m2

kj/2E
2 (see the example in

eqn (8.47)). Thus, it induces in the phase difference ∆φkj effects of higher order in
∆m2

kj/2E
2, which are completely negligible.

In conclusion, in this section we have shown that possible small deviations from
the light-ray approximation T = L and from the collinearity of the massive neutrino
momenta �pk and �L are irrelevant for the measurable oscillation phases, which are
universally independent of the specific characteristics of the process of neutrino
production, as well as detection. Hence, the time = distance assumption (A3) on
page 253, which was adopted in the standard derivation of the neutrino oscillation
probability, is correct.
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8.1.4 Lorentz invariance

An important aspect of the derivation of the neutrino oscillation probability in
subsection 8.1.2 is that it is manifestly Lorentz covariant.

This is important because flavor, which is the quantum number that distin-
guishes different types of quarks and leptons, is a Lorentz-invariant quantity. For
example, an electron is seen as an electron by any observer, never as a muon.
Therefore, the probability of flavor neutrino oscillations must be Lorentz invariant
[540, 527].

The flavor transition amplitude in eqn (8.35) is manifestly Lorentz invariant. In
fact, the phases are given by scalar products of four-vectors and the amplitudes AP

αk

and AD
βk are Lorentz invariant39. Also the transition probabilities in eqns (7.23)

and (8.38) are Lorentz invariant, because L transforms as E [527]. Indeed, the
approximation T = L implies that L transforms as T , which transforms as E,
because they are both the time components of four-vectors.

For example, let us consider an inertial system O and another inertial sys-
tem O′ moving with respect to O with velocity v along the direction of neutrino
propagation. The Lorentz transformations of space and time intervals are

L′ = γ (L− v T ) , (8.61)

T ′ = γ (T − v L) , (8.62)

with γ ≡
(
1 − v2

)−1/2
. If we have L = T in the system O, from eqns (8.61) and

(8.62) in the system O′ we have

L′ = T ′ = γ (1 − v)L . (8.63)

On the other hand, the Lorentz transformations of momentum and energy are

p′ = γ (p− v E) , (8.64)

E′ = γ (E − v p) . (8.65)

In the massless limit the relation E = p in the system O implies that in the system
O′

E′ = p′ = γ (1 − v)E . (8.66)

From eqns (8.63) and (8.66), it is clear that the ratio L/E is Lorentz invariant
and the phases in the transition probabilities in eqns (7.23) and (8.38) are Lorentz
invariant.

In general, L is not the instantaneous source–detector distance, which would
transform according to the well-known contraction of distances law ∆x′ =
γ
(
1 − v2

)
∆x = ∆x/γ. This is easily understood by considering an inertial system

in which the detector is moving. Since the detector moves after the propagat-
ing neutrino has left the source, the spatial distance traveled by the neutrino is

39 Considering, for example, the amplitude Aαk in eqn (8.10), we have Aαk =

〈νk, �
+
α , PF|S |PI〉 = 〈νk, �

+
α , PF|U

†
Λ UΛ SU

†
Λ UΛ |PI〉 = 〈ν′k, �

′+
α , P ′

F|S |P ′
I 〉 = A′

αk, since the
S-matrix operator is a Lorentz scalar.
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P

Fig. 8.1. Minkowski diagram showing the distance and time between the space–
time events of neutrino production P and detection D measured in three
coordinate systems: O with axes x, t; O′ with axes x′, t′ moving with respect
to O with velocity v = 3/5 in the x direction along the direction of neu-
trino propagation; O′′ with axes x′′, t′′ moving with respect to O with velocity
v = −3/5 in the x direction. The x′ (x′′) axis is inclined with respect to the
x axis by an angle arctan 3/5 (− arctan 3/5); the t′ (t′′) axis is inclined with
respect to the t axis by an angle − arctan3/5 (arctan 3/5). The hyperbolas

t2 −x2 = t′2 −x′2 = t′′2 −x′′2 = constant fix the scale on the axes. One can see
that L′ = L/2 and L′′ = 2L, in perfect agreement with eqn (8.63).

different from the instantaneous source–detector distance at the time of neutrino
production. The spatial distance traveled by the neutrino coincides with the instan-
taneous source–detector distance at the time of neutrino detection only if the source
is stationary. However, even in this case, since the instantaneous source–detector
distance is time dependent, one cannot apply to L the contraction of distances law
(which would contradict eqn (8.63)).

The correct transformation law of the propagation distance in eqn (8.63) is
illustrated by the Minkowski diagram in Fig. 8.1, in which one can clearly see that
in a system in which source and detector are in motion the spatial distance between
the two space-time events of neutrino production and detection is different from
the instantaneous source–detector distance. The two distances coincide only in the
system O, in which source and detector are at rest.

One can ask what happens if, instead of considering the source and detector at
rest in the system O, we consider a case in which source and detector are in relative
motion. Since the oscillation probability is measured by the detector, the velocity of
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the source with respect to the detector does not matter40. The system O in which
the distance L covered by the neutrino coincides with the instantaneous distance
between source and detector at the time of neutrino emission is always the rest
system of the detector. In Fig. 8.1 the world-line of the detector is constrained to
be the vertical line passing through the space-time event D of neutrino detection,
but the world-line of the source can be any time-like line passing through the
space-time event P of neutrino production.

Let us emphasize that the Lorentz invariance of the phases in the transition
probabilities in eqns (7.23) and (8.38) follows from the fact that L is the dis-
tance traveled by the neutrino in the time T [527]. One could ask41 what happens
to the relation in eqn (8.37) in a frame in which the massive neutrinos are not
ultrarelativistic, where it is not possible to justify the approximations T � L and
Ek +pk � 2E. The answer is that, since the phase −EkT+pkL is Lorentz invariant,
it can be evaluated in any frame. In eqn (8.37), we have chosen to evaluate it in
a frame where the massive neutrinos are ultrarelativistic. Since, as we have just
shown above, the result in the right-hand side of eqn (8.37) is Lorentz invariant, it
applies in any frame, including all the frames in which the massive neutrinos are
not ultrarelativistic.

Let us finally remark that the probability of flavor neutrino oscillations must be
invariant not only under Lorentz transformation, but also under the larger group of
Poincaré transformations, which include also space-time translations. The invari-
ance of the transition amplitudes in eqns (8.32) and (8.36) and the transition
probabilities in eqns (7.23) and (8.38) under space-time translations is obvious,

because Ek, �pk, T , �L are invariant and states transform as in eqn (2.288), leading
to the invariance of the amplitudes AP

αk, AD
βk.

8.1.5 Production and detection rates

In order to measure να → νβ oscillations it is necessary to calculate the neutrino
production rate Γα of να in the source and the detection cross-section σβ of νβ .
The number of transition events as a function of the distance L traveled by the
neutrino between production and detection is given by

Nαβ(L) ∝ Γα Pνα→νβ
(L)σβ , (8.67)

with a constant of proportionality which depends on the size and composition of
the source and detector and on the running time of the experiment. From the
measurement of Nαβ(L) and the knowledge of Γα and σβ , the experimentalist
infers the value of Pνα→νβ

(L), which gives information on the mixing parameters
(elements of the mixing matrix and squared-mass differences) through eqn (7.23).

As discussed in section 14.1.1 below for β-decay, decay rates and cross-sections
are given by the incoherent sum over the different channels corresponding to differ-
ent massive neutrinos [958, 790, 687, 959, 960]. The reason is that massive neutrinos

40 Of course, the velocity of the source must be taken into account in the calculation
of the neutrino energy. For example, if the source is a decaying pion, the neutrino energy
depends on the velocity of the pion.
41 We are grateful to Prof. D.V. Ahluwalia-Khalilova for asking this question.
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are the physical particles which propagate in space-time with definite kinemati-
cal properties. However, in subsection 8.1.2 we derived the oscillation probability
Pνα→νβ

(L) starting from the description of neutrinos through flavor states, which
are coherent superpositions of massive neutrino states. Then, it is natural to ask
if the derivation of the oscillation probability is consistent with the calculation
of decay rates and cross-sections. In the following, we show that the description
of neutrinos through the flavor states in eqns (8.11) and (8.19) leads to the cor-
rect expression for the decay rates and cross-sections. Therefore, all quantities in
eqn (8.67) can be calculated in a consistent way [538, 539].

In order to be definite, let us consider again the generic decay process in eqn (8.4)
in which a flavor neutrino να is produced. Any other process of neutrino production
or detection can be treated in an analogous way.

Using the flavor state in eqn (8.11) and taking into account eqn (8.10), the
amplitude of the general decay process in eqn (8.4) is given by [538, 539]

AP
α = 〈νP

α , �
+
α ,PF| S |PI〉 =

(∑
i

|AP
αi|2

)−1/2∑
k

AP∗
αk 〈νk, �

+
α ,PF|S|PI〉

=

√∑
i

|AP
αi|2 . (8.68)

Therefore, the decay probability is correctly given by an incoherent sum of the
probabilities of production of different massive neutrinos,

|AP
α|2 =

∑
i

|AP
αi|2 . (8.69)

In other words, the coherent character of the flavor state in eqn (8.11) is irrelevant
for the decay probability, which can be obtained either using the flavor neutrino
state in eqn (8.11) or an incoherent mixture of massive neutrino states. The decay
rate is then obtained by integrating each massive neutrino contribution to the decay
probability over its phase space.

Using the expression in eqn (8.24) for the amplitude AP
αk, the decay probability

in eqn (8.69) can be written as

|AP
α|2 =

∑
k

|Uαk|2 |MP
αk|2 , (8.70)

which is an incoherent sum of the probabilities of production of the different massive
neutrinos weighted by |Uαk|2 [958, 790, 687, 959, 960].

Therefore, the flavor neutrino state in eqn (8.11) leads to the correct decay
rate for the general decay process in eqn (8.4). It is clear that this proof can
easily be generalized to any charged-current weak interaction process in which flavor
neutrinos are produced or detected.

If an experiment is not sensitive to the dependence of MP
αk on the different

neutrino masses, it is possible to use the approximation in eqn (8.29). In this case,
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using eqn (8.30), we obtain

|AP
α|2 = |MP

α|2 . (8.71)

If the scale of neutrino masses is negligible in comparison with the experimental
resolution, the dependence of MP

α on the neutrino masses is negligible and the decay
probability in eqn (8.71) reduces to the standard decay probability for massless
neutrinos.

The decay probability in eqn (8.71) can also be obtained starting from the
standard flavor states in eqn (7.4), which are obtained from eqn (8.11) through the
approximation in eqn (8.29). Indeed, in this case the decay amplitude is given by
[524]

AP
α = 〈να, �

+
α ,PF| S |PI〉 =

∑
k

Uαk AP
αk =

∑
k

|Uαk|2 MP
α = MP

α . (8.72)

Let us remark, however, that in the case of an experiment which is sensitive to
the dependence of MP

αk on the different neutrino masses, a derivation of the decay
amplitude starting from the standard flavor states would lead to an incorrect result.
This is due to the fact that in this case the approximation in eqn (8.29) is not valid
and one must take into account the dependence of MP

αk on the different neutrino
masses in the definition of the flavor states.

8.2 Wave-packet treatment

So far, we have considered massive neutrinos as particles described by plane waves
with definite energy and momentum. However, we have seen that the approximation
T = L requires a wave packet description. The reason is clear: since plane waves
cover all space-time in a periodic way they cannot describe the localized events of
neutrino production and detection. As discussed in introductory books on optics
(see [263, 644]) and quantum mechanics (see [936, 259]), real localized particles are
described by superpositions of plane waves known as wave packets.

Moreover, different massive neutrinos can be produced and detected coherently
only if the energies and momenta in the production and detection processes have
sufficiently large uncertainties [660, 667]. The uncertainty of the production process
implies that the massive neutrinos propagating between production and detection
have a momentum distribution [523], i.e. they are described by wave packets.

The propagation of a massless particle between localized production and detec-
tion processes is illustrated schematically in the space-time diagram in Fig. 8.2a.
The interesting case of propagation of a superposition of two neutrinos with definite
masses, one massless (ν1) and one massive but ultrarelativistic (ν2) is illustrated
schematically in Fig. 8.2b. One can note that in these diagrams both the production
and detection processes occupy a finite region in space-time, called the coherence

region, in which the propagating particles are produced or detected coherently.
Indeed, the uncertainty principle implies that any interaction process I has a space
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(a) Propagation of the wave packet of a
massless particle.
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(b) Propagation of the wave packets of a
superposition of a massless and a massive
ultrarelativistic particle.

Fig. 8.2. Space-time diagram representing schematically the propagation of the
wave packets of one particle (a) or a superposition of two particles (b) from a
production process P to a detection process D.

uncertainty σI
x related to the momentum uncertainty σI

p by

σI
x σ

I
p ∼ 1

2
. (8.73)

A process with vanishing space uncertainty would have an infinite momentum
uncertainty. Vice versa, a process with definite momentum would be completely
delocalized in space. The momentum uncertainty can be estimated as the quadratic
sum of the uncertainties of the momenta of the localized particles taking part in
the process:

(σI
p)

2 ∼
∑

i

(σi
p)

2 . (8.74)

The sum is over the initial particles and the final particles which are localized
through interaction with the environment and their momentum uncertainties σi

p are

related to the size σi
x of their wave packets by the uncertainty relation analogous

to eqn (8.73),

σi
x σ

i
p ∼ 1

2
. (8.75)

Therefore, the space uncertainty of the process is given by

(σI
x)−2 ∼

∑
i

(σi
x)−2 . (8.76)

It is clear that the particle with larger momentum uncertainty and associated
smaller space uncertainty gives the dominant contribution.



WAVE-PACKET TREATMENT 301

The coherence time σI
t of an interaction process I is the time over which the

wave packets of the interacting particles overlap. If the process is the decay of a
particle in vacuum, the localization of such particle and its decay products is very
poor and the coherence time σI

t is of the order of the particle lifetime. On the other
hand, if the decay occurs in a medium where the decay particle and its products
are well localized or if the production process is a scattering process, the coherence
time can be estimated by

(σI
t)
−2 ∼

∑
i

(
σi

x

vi

)−2

, (8.77)

where vi is the velocity of the particle i, because σI
t must be dominated by the

particle with smaller ratio σi
x/vi, which is the first to leave the interaction region.

Therefore, in general σI
t � σI

p, in agreement with the physical expectation that the
coherence region of a process must be causally connected.

As illustrated in Fig. 8.2, one can estimate the size of the wave packet of a
massive neutrino created in a production process P as the coherence time σP

t of the
production process,

σν
x ∼ σP

t . (8.78)

Let us emphasize that there is a profound difference between the behavior of
final neutrinos and other particles in the production process. The initial particles
have wave packets which are determined by their creation process or by previous
interactions. The initial particles and the final particles which interact with the
environment contribute to the coherence time σP

t through their contribution to
the momentum uncertainty in eqn (8.74). An initial decaying particle contributes
directly to the coherence time σP

t with its lifetime. On the other hand, neutrinos are
stable and leave the production process without interacting with the environment.
Therefore, they do not contribute to the determination of the coherence time σP

t

and the size of their wave packets is determined by σP
t .

Considering now the detection process D, if there is only one particle propa-
gating between the production and detection processes, as shown in Fig. 8.2a, the
coherence size of the detection process is determined by eqn (8.74), with the sum
over all the participating particles which interact with the environment and the
propagating particle, which is described by a wave packet. In the case of neutrino
mixing, the neutrino propagating between the production and detection processes is
in general a superposition of massive neutrino wave packets which propagate with
different phase velocity, as illustrated in Fig. 8.2b. In this case, in the detection
process, the wave packets of different massive neutrinos are separated by a distance
∆x = ∆v T , where ∆v is the velocity difference. If the source–detector distance is
very large, the separation of the massive neutrino wave packets at detection may be
larger than their size, leading to the lack of overlap [831]. In this case, the effective
coherence size of the neutrino wave function at the detection process is

σν
x,eff ∼

√
(σν

x)2 + (∆x)2 ∼
√

(σP
t )2 + (∆v T )2 . (8.79)

However, eqn (8.76) shows that the particle with smaller space uncertainty gives the
dominant contribution to the coherence size of the detection process. Therefore, if
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the effective coherence size in eqn (8.79) of the neutrino wave function is dominated
by the separation of the wave packets (∆v T � σP

t ) and there is another particle
participating in the detection process which has much smaller space uncertainty,
the different massive neutrinos cannot be detected coherently. In this case, there
cannot be any interference between the different massive neutrino contributions to
the detection process and the probability of transitions between different flavors
does not oscillate as a function of the source–detector distance. In other words, the
incoherent transition probability in eqn (7.32), which coincides with the average
oscillation probability in eqn (7.33), is measured. On the other hand, if all the other
particles participating in the detection process have space uncertainties which are
larger than effective coherence size in eqn (8.79) of the neutrino wave function, the
different massive neutrinos are detected coherently [667], leading to the interference
of their contributions to the detection process which manifests itself as oscillations
of the probability of flavor transitions, according to eqn (7.23).

Hence, a wave-packet treatment of massive neutrinos is important in order to
understand the coherence properties of neutrino oscillations.

8.2.1 Flavor neutrino states

In this subsection, we derive the states which describe flavor neutrinos in the
wave packet approach by following a method which is similar to that presented
in subsection 8.1.1.

For definiteness, we consider again neutrino production in the generic decay
process in eqn (8.4). The final state which is analogous to the final state in eqn (8.9)
and takes into account the momentum distributions of the massive neutrinos is

|f〉 =
∑

k

∫
d3p

(2π)3 2Ek

∑
h

AP
αk(�p, h) |νk(Ek,�p, h), �+α , PF〉 + . . . , (8.80)

where �p is the neutrino momentum, Ek =
√
�p2 +m2

k is the associated energy of

the kth massive neutrino, and h is the neutrino helicity. The coefficient AP
αk(�p, h)

is given by the amplitude of production of |νk(Ek,�p, h)〉:

AP
αk(�p, h) = 〈νk(Ek,�p, h), �+α , PF|f〉 = 〈νk(Ek,�p, h), �+α , PF| S |PI〉 . (8.81)

Projecting the final state in eqn (8.80) on |�+α , PF〉, we obtain the normalized wave
packet flavor neutrino state

|νP
α 〉 = NP

α

∑
k

∫
d3p

(2π)3 2Ek

∑
h

AP
αk(�p, h) |νk(Ek,�p, h)〉 , (8.82)

with the normalization factor

NP
α =

(∑
k

∫
d3p

(2π)3 2Ek

∑
h

|AP
αk(�p, h)|2

)−1/2

. (8.83)

The flavor neutrino state |νP
α 〉 in eqn (8.82) is a wave packet state, because it consists

of a superposition of massive neutrino states with momentum distributions given
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by the production amplitudes in eqn (8.81). Obviously, in order to have momentum
distributions which are not delta-functions, at least one of the particles PI, PF, �+α
must be described by a wave packet with a momentum distribution. The properties
of the massive neutrino wave packets can be derived with the method presented in
section 2.12.

It is important to note that if all the particles PI, PF, �+α are described by
plane waves, the production process is not localized and energy–momentum con-
servation forbids the coherent production of different massive neutrinos. Therefore,
in order to have neutrino oscillations, at least one of the particles PI, PF, �+α
must be described by a localized wave packet with sufficient energy–momentum
uncertainty. If the total energy–momentum uncertainty is so small that different
massive neutrinos cannot be produced coherently, the state in eqn (8.82) becomes
effectively an incoherent mixture of massive neutrino wave packets, because the dif-
ferent energy–momentum conservations contained in the amplitudes in eqn (8.81)
cannot be satisfied simultaneously.

In the discussion of the plane-wave approximation in section 8.1 we swept this
problem under the rug. However, there are no implications for the neutrino pro-
duction and detection rates discussed in subsection 8.1.5 which, as we have seen
in eqn (8.69), are given by an incoherent sum of the probabilities of production
or detection of the different massive neutrinos. On the other hand, the oscillation
probability in eqn (8.38) has, strictly speaking, no physical meaning, because the
exact energy–momentum conservation delta-functions contained in the amplitudes
in eqn (8.10) for different massive neutrinos are mutually exclusive. However, these
delta-functions have been factorized out of the standard oscillation probability in
eqn (7.23), which acquires a physical meaning as the approximation of the oscil-
lation probability in the limit of negligible wave packet effects, as we will see in
subsection 8.2.2.

8.2.2 Neutrino oscillations

In experiments in which να → νβ oscillations are studied, the produced (P) and
detected (D) neutrinos are described by the wave packet states

|νI
α〉 = N I

α

∑
k

∫
d3p

(2π)3 2Ek

∑
h

AI
αk(�p, h) |νk(�p, h)〉 , (8.84)

with the normalization factors

N I
α =

(∑
k

∫
d3p

(2π)3 2Ek

∑
h

|AI
αk(�p, h)|2

)−1/2

, (8.85)

for I = P,D. The amplitude of να → νβ transitions is given by eqn (8.32). Using
the flavor states in eqn (8.84), we obtain

Aνα→νβ
(�L, T ) = NP

α N
D
β

∑
k

∫
d3p

(2π)3 2Ek

∑
h

AP
αk(�p, h)AD∗

βk (�p, h) e−iEkT+i
p ·
L .

(8.86)
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The derivation of the neutrino oscillation probability from the explicit val-
ues of the production and detection amplitudes in eqn (8.86) has been discussed
in Ref. [523]. Since it is rather complicated, here we consider the following
approximation which leads to a similar result for the oscillation probability:

AP
αk(�p, h)AD∗

βk (�p, h) ∝ U∗αk Uβk M̃P
αk(�p, h)M̃D∗

βk (�p, h) exp

[
− (�p− �̃pk)2

4σ2
p

]
, (8.87)

where �̃pk is the average momentum of the kth massive neutrino contribution to the
transition amplitude. The exponential in eqn (8.87) describes energy–momentum
conservation within the momentum uncertainty σp, which can be estimated as
[536, 528, 523, 526]

σ−2
p ∼ (σP

p )−2 + (σD
p )−2 , (8.88)

where σP
p and σD

p are, respectively, the momentum uncertainties in the production
and detection processes. In eqn (8.88), the inverses of the momentum uncertain-
ties in the production and detection processes are summed in quadrature, because
the smaller momentum uncertainty must dominate in the determination of the
total effective momentum uncertainty. On the other hand, the total effective space
uncertainty σx, related to the momentum uncertainty σp by the minimal Heisenberg
relation

σx σp =
1

2
, (8.89)

is dominated by the largest of the space uncertainties of the production and
detection processes,

σx ∼ (σP
x )2 + (σD

x )2 . (8.90)

In eqn (8.87), the value of �̃pk is determined by both the production and detec-
tion processes. One can understand this fact with the following reasoning. Let us
first consider a massless neutrino propagating between the production and detection
processes. Its wave packet, with average momentum �̃p and corresponding energy
Ẽ = |�̃p|, is determined by the production process. Since the neutrino and the target
particle are the initial states in the detection process, their wave packets determine
the kinematics of the interaction and the wave packets of the final particles. Thus,
if the detection matrix element is a smooth function of the energies and momenta
of the interacting particles, the average momenta of the final particles are deter-
mined by energy–momentum conservation. For example, in the detection process in
eqn (8.12) we have p̃ρ+p̃ρ

DI
= p̃ρ

DF
+p̃ρ

	−
β

, in an obvious notation. Let us consider now

a propagating superposition of massive neutrinos which are produced and detected
coherently. According to the argument presented at the beginning of section 8.1.3,
the average momentum of each propagating νk is given by �̃pP

k � �̃p−�ξPm2
k/2Ẽ, where

�ξP depends on the production process. In this case, in the detection process it is
not possible to satisfy simultaneously the different energy–momentum conservation
equations p̃Pρ

k + p̃ρ
DI

= p̃ρ
DF

+ p̃ρ

	−
β

for different values of the massive neutrino index

k and the same values of p̃ρ
DI

, p̃ρ
DF

and p̃ρ

	−
β

. Therefore, the detection process selects
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values of �̃pk which are different from �̃pP
k . The selection is done in order to mini-

mize the violation of energy–momentum conservation within the energy–momentum
uncertainties σP

p and σD
p of the production and detection processes [523].

In the approximation in eqn (8.87), we choose a Gaussian approximation for the
momentum distribution in order to be able to perform the integral over d3p analyt-
ically. Furthermore, in order to simplify the derivation of the oscillation probability
for real experimental setups as much as possible, we consider ultrarelativistic neutri-
nos and we adopt the following assumptions, which in practice are always satisfied:
(a) σp � 〈pk〉, with 〈pk〉 = |�̃pk|; (b) M̃P

αk(�p, h)M̃D∗
βk (�p, h) is a smooth function of�p;

and (c) the experiment is not sensitive to the dependence of M̃P
αk(�p, h)M̃D∗

βk (�p, h)
on the neutrino masses. Under these assumptions, we can approximate

M̃P
αk(�p, h)M̃D∗

βk (�p, h)

Ek
�

M̃P
α(�̃p, h)M̃D∗

β (�̃p, h)

E
, (8.91)

where �̃p is the average neutrino momentum neglecting mass effects and E = |�̃p| is
the corresponding energy. The approximation in eqn. (8.91) is important, because
it allows us to factorize the contribution of the production and detection matrix
elements out of the sum over the massive neutrino index k in eqn. (8.86). In this
way, the production and detection matrix elements become overall factors which
are irrelevant for the flavor transition probability.

The energies Ek(�p) in the phases in eqn (8.86) can be approximated by

Ek(�p) � Ẽk +�vk

(
�p− �̃pk

)
, (8.92)

with

Ẽk = Ek(�̃p) =

√
�̃p2

k +m2
k , (8.93)

�vk =
∂Ek(�p)

∂�p

∣∣∣∣

p=
̃pk

=
�̃pk

Ẽk

. (8.94)

The vector�vk has dimensions of velocity, but it cannot be interpreted as the velocity
of the wave packet of νk, because the average momentum �̃pk is determined by both
the production and detection processes, as discussed after eqn (8.90). On the other
hand, from causality reasons it is clear that the velocity of the wave packet of νk

which propagates between source and detector is determined only by the production
process. Its value can be obtained from a calculation of the wave packet flavor state
in eqn (8.82) for a specific production process [523].

With the above approximations, the flavor transition amplitude in eqn (8.86)
can be written as

Aνα→νβ
(�L, T ) ∝

∑
k

U∗αk Uβk e
−iẼk T+i
̃pk ·
L

∫
d3p e

i(
p−
̃pk) · (
L−
vkT )− (�p−�̃pk)2

4σ2
p ,

(8.95)
where we have omitted all the overall factors which are irrelevant for the normalized
transition probability (including the production and detection matrix elements in
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eqn (8.91)). The integral over d3p in eqn (8.95) is Gaussian, leading to

Aνα→νβ
(�L, T ) ∝

∑
k

U∗αk Uβk exp

[
−iẼk T + i�̃pk ·�L− (�L−�vkT )2

4σ2
x

]
. (8.96)

In order to obtain the oscillation probability as a function of the known distance
�L traveled by the neutrino between production and detection, the probability

Pνα→νβ
(�L, T ) = |Aνα→νβ

(�L, T )|2 (8.97)

must be averaged over the unknown time T [533]:

Pνα→νβ
(�L) ∝

∫
dT Pνα→νβ

(�L, T ) . (8.98)

Since the integral over T is Gaussian, we obtain

Pνα→νβ
(�L) ∝

∑
k,j

U∗αkUβkUαjU
∗
βj exp

{
−i
[(
Ẽk − Ẽj

) �vk +�vj

v2
k + v2

j

−
(
�̃pk − �̃pj

)]
·�L
}

× exp

⎧⎪⎨⎪⎩− L2

2σ2
x

+
(�vk ·�L)2 + (�vj ·�L)2

2σ2
x

(
v2

k + v2
j

) −

[
(�vk −�vj) ·�L

]2
4σ2

x

(
v2

k + v2
j

) −

(
Ẽk − Ẽj

)2

4σ2
p

(
v2

k + v2
j

)
⎫⎪⎬⎪⎭ .

(8.99)

In each term of the sum, the first exponential generates the oscillations, whereas
the second exponential is a damping term, which sets the conditions for the
observability of the oscillations.

In order to simplify the expression in eqn (8.99), let us expand, as in

section 8.1.3, the average momentum �̃pk in powers of m2
k up to the first order:

�̃pk � �p−�ξ m
2
k

2E
. (8.100)

From now on, in this section, we simplify the notation denoting with �p and E = |�p|
the average momentum and the corresponding energy of a massless neutrino. From
eqns (8.93) and (8.94), the energy Ẽk and the velocity �vk are given by

Ẽk � E +

(
1 − �p ·�ξ

E

)
m2

k

2E
, (8.101)

�vk � �p

E
−
[
�p

E

(
1 − �p ·�ξ

E

)
+�ξ

]
m2

k

2E2
. (8.102)
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Note that, although �vk is not a physical velocity, for its absolute value we have the
usual ultrarelativistic expression

vk ≡ |�vk| � 1 − m2
k

2E2
. (8.103)

The average of the average momenta in eqn (8.100) is given by

〈�̃p〉 =
1

N

N∑
k=1

�̃pk � �p−�ξ m
2

2E
, (8.104)

where m2 is the average squared neutrino mass in eqn (8.52). We consider the

possible deviation from the collinearity of 〈�̃p〉 and �L as in eqn (8.56):

〈�̃p〉
|〈�̃p〉|

=
�L

L
+�εL . (8.105)

Since the absolute values of both sides of this equation are equal to unity, we have

�L ·�εL = −1

2
|�εL|2 L , (8.106)

which implies that

|�εL| ≤ 2 . (8.107)

At zeroth order in the expansion in powers of the neutrino masses, we have

�p � E

(
�L

L
+�εL

)
, �vk �

�L

L
+�εL . (8.108)

Then, we obtain, from eqn (8.106),

− L2

2σ2
x

+
(�vk ·�L)2 + (�vj ·�L)2

2σ2
x

(
v2

k + v2
j

) � 2L(�εL ·�L) + (�εL ·�L)2

2σ2
x

= −|�εL|2
(

1 − 1

4
|�εL|2

)
L2

2σ2
x

.

(8.109)
In real experiments, we always have σx � L, because the production and detection
processes are localized in small regions with respect to the source-detector distance.
From the inequality in eqn (8.107), the transition probability in eqn (8.99) is not
suppressed only if

|�εL|2 � σ2
x/L

2 � 1 . (8.110)

This constraint on |�εL|2 is obvious from a physical point of view: if the deviation in

eqn (8.105) from the collinearity of 〈�̃p〉 and �L is not extremely small, the detector
is out of the trajectories of the massive neutrino wave packets and the detection
probability is suppressed. In fact, σ2

x is approximately proportional to the largest
between the areas of coherent neutrino emission and detection (see eqn (8.90)) and
the geometrical divergence of the neutrino trajectory is proportional to L2.
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σP
x

�v1 �v1

�v2 �v2

�v1

L ∼ Lcoh
21 L

0
L � Lcoh

21

�v2

Fig. 8.3. Schematic illustration of the separation of two wave packets with differ-
ent group velocities, produced coherently at L = 0 with widths σP

x determined
by the coherence size of the production process. The coherence size of the
detection process is assumed to be negligible.

Since |�εL|2 � 1, the effect of �εL is negligible in the damping terms in the
expression in eqn (8.99) for the oscillation probability. The effect of �εL could be
relevant only for the oscillation phase, which is given, at first order in |�εL|, by

−
[(
Ẽk − Ẽj

) �vk +�vj

v2
k + v2

j

−
(
�̃pk − �̃pj

)]
·�L � −

∆m2
kjL

2E

(
1 −�εL ·�ξ

)
. (8.111)

However, as discussed in section 8.1.3, such effect of �εL is negligible when the
oscillation phase is measurable, i.e. ∆m2

kjL/2E ∼ 1. In this case, the oscillation

probability at the lowest order in the small quantities m2
k/E

2 is given by

Pνα→νβ
(�L) =

∑
k,j

U∗αkUαjUβkU
∗
βj exp

⎡⎣−2πi
L

Losc
kj

−
(

L

Lcoh
kj

)2

−2π2

(
1 −

�L ·�ξ
L

)2(
σx

Losc
kj

)2
⎤⎦ , (8.112)

with the standard oscillation lengths in eqn (7.31) and the coherence lengths

Lcoh
kj =

4
√

2E2

|∆m2
kj |

σx . (8.113)

As remarked at the end of subsection 8.2.1, in the limit of negligible wave packet
effects, i.e. for L � Lcoh

kj and σx � Losc
kj , the oscillation probability in the wave

packet approach reduces to the standard one in eqn (7.23), obtained in the plane
wave approximation.

Let us discuss the physical meaning of the localization term

exp

⎡⎣−2π2

(
1 −

�L ·�ξ
L

)2(
σx

Losc
kj

)2
⎤⎦ , (8.114)

and the coherence term

exp

⎡⎣−( L

Lcoh
kj

)2
⎤⎦ , (8.115)
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which appear in eqn (8.112) in addition to the standard oscillation phase in
eqn (7.24) [533, 528, 225, 523, 526, 531, 536, 301, 224, 538, 539].

The localization term in eqn (8.115) suppresses the oscillations due to ∆m2
kj

if σx � Losc
kj . This means that in order to measure the interference of the massive

neutrino components νk and νj the production and detection processes must be
localized in space-time regions much smaller than the oscillation length Losc

kj . In
practice this requirement is satisfied in all neutrino oscillation experiments.

The localization term allows one to distinguish neutrino oscillation experi-
ments from experiments on the measurement of neutrino masses. As first shown
in Ref. [660], neutrino oscillations are suppressed in experiments which are
able to measure, through energy–momentum conservation, the mass of the neu-
trino. Indeed, from the energy–momentum dispersion relation in eqn (8.34) the
uncertainty of the mass determination is

δmk
2 =

√(
2 Ẽk δẼk

)2

+
(
2 |�̃pk| δ|�̃pk|

)2

� 2
√

2E σp , (8.116)

where the approximation holds for ultrarelativistic neutrinos. If δmk
2 < |∆m2

kj |,
the mass of νk is measured with an accuracy better than the difference ∆m2

kj . In
this case the neutrino νj is not produced or detected and the interference of νk and
νj which would generate oscillations does not occur. The localization term in the
oscillation probability in eqn (8.112) automatically suppresses the interference of
νk and νj , because

− 2π2

(
σx

Losc
kj

)2

= −
(

∆m2
kj

4
√

2Eσp

)2

� −1

4

(
∆m2

kj

δmk
2

)2

. (8.117)

It is important to note, however, that the validity of this interpretation of the
localization term hinges on the validity of the flavor states in eqn (8.84) not only
for the description of neutrino oscillations but also for the description of neutrino
production and detection, which we will prove in the next subsection 8.2.3. The
suppression of oscillations due to the localization term reflects the effective loss of
coherence of the flavor states discussed after eqn (8.83).

The localization term is the only one in the oscillation probability in eqn (8.112)

which depends on the direction of �L. If the condition

σx � Losc
kj , (8.118)

which is necessary for unsuppressed interference of νk and νj , is satisfied, as usual
in neutrino oscillation experiments, the localization term can be neglected, leading
to the transition probability

Pνα→νβ
(L) =

∑
k,j

U∗αkUαjUβkU
∗
βj exp

⎡⎣−2πi
L

Losc
kj

−
(

L

Lcoh
kj

)2
⎤⎦ , (8.119)

which is a function of the distance L, depending on the oscillation lengths in
eqn (7.31) and the coherence lengths in eqn (8.113).
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In eqn (8.119), each k, j term contains, in addition to the standard oscillation
phase in eqn (7.24), the coherence term in eqn (8.115), which suppresses the interfer-
ence of the massive neutrinos νk and νj for distances larger than the corresponding
coherence length, i.e. for L� Lcoh

kj . This suppression is due to the separation of the
different massive neutrino wave packets, which propagate with different velocities,
as illustrated in Figs. 8.2b and 8.3. When the wave packets of νk and νj are so much
separated that they cannot both overlap with the detection process, the massive
neutrinos νk and νj cannot be absorbed coherently [831, 667]. In this case, only
one of the two massive neutrinos contributes to the detection process and the inter-
ference effect which produces the oscillations is absent. However, in general, the
transition probability does not vanish. For example, if L� Lcoh

kj for all k and j, the
transition probability reduces to the incoherent transition probability in eqn (7.32).
It is possible also to have intermediate cases, in which L� Lcoh

kj for some values of

k and j and L � Lcoh
kj for other values of k and j. For example, if L � Lcoh

21 and

L� Lcoh
kj for all k > 2, the effective transition probability is

Pνα→νβ
(L) =

∑
k

|Uαk|2 |Uβk|2 + 2e

[
U∗α2Uβ2Uα1U

∗
β1 exp

(
−i∆m

2
21 L

2E

)]
.

(8.120)
In this case, it is possible to observe only the unsuppressed oscillations generated
by ∆m2

21.

8.2.3 Production and detection rates

As explained in subsection 8.1.5, in order to have a theoretical interpretation of neu-
trino oscillation experiments, it is necessary to describe in a consistent framework
neutrino oscillations and neutrino production and detection. In this subsection, we
show that the wave packet flavor states in eqn (8.84) are suitable for the calculation
of neutrino production and detection rates. These rates must result from the inco-
herent sum of the rates of the different channels corresponding to different massive
neutrinos, which are the physical particles with definite kinematical properties.

For definiteness, we will consider a decay process of the type in eqn (8.4). Any
other type of neutrino production or detection processes can be treated in a similar
way.

Using the flavor state in eqn (8.82), the amplitude of the general decay process
in eqn (8.4) becomes

Aα = 〈να, �
+
α , PF| S |PI〉

= Nα

∑
k

∫
d3p

(2π)3 2Ek

∑
h

A∗αk(�p, h) 〈νk(Ek,�p, h), �+α , PF| S |PI〉

=

√√√√∑
k

∫
d3p

(2π)3 2Ek

∑
h

|Aαk(�p, h)|2 . (8.121)
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Hence, the decay probability is given by

|Aα|2 =
∑

k

∫
d3p

(2π)3 2Ek

∑
h

|Aαk(�p, h)|2 , (8.122)

which, correctly, is an incoherent sum of the probabilities of production of the
different massive neutrinos. As in the plane-wave approximation discussed in
subsection 8.1.5, the coherent character of the flavor states is irrelevant for the
calculation of neutrino production and detection rates.

Using the first-order perturbative expansion of the S-matrix operator in
eqn (8.21), the amplitudes Aαk(�p, h) can be written as

Aαk(�p, h) = U∗αk Mαk(�p, h) , (8.123)

where Mαk(�p, h) are the matrix elements

Mαk(�p, h) = −iGF√
2

∫
d4x〈νk(Ek,�p, h), �+α , PF|νk(x)γρ(1 − γ5)�α(x)JPI→PF

ρ (x)|PI〉 .
(8.124)

Using the expression in eqn (8.123) in eqn (8.122), it becomes clear that the
decay probability is given by an incoherent sum of the probabilities of production
of the different massive neutrinos weighted by |Uαk|2,

|Aα|2 =
∑

k

|Uαk|2
∫

d3p

(2π)3 2Ek

∑
h

|Mαk(�p, h)|2 . (8.125)

Therefore, a description of the flavor neutrino created in the process in eqn (8.4)
with the process-dependent coherent state in eqn (8.82) leads to the correct neutrino
production and detection rates [958, 790, 687, 959, 960], for which the coherent
character of the superposition of massive neutrinos is irrelevant.

If the experiment is not sensitive to the dependence of Mαk(�p, h) on the neutrino
masses, it is possible to approximate

Mαk(�p, h) � Mα(�p, h) . (8.126)

In this case we obtain

|Aα|2 =

∫
d3p

(2π)3 2Ek

∑
h

|Mα(�p, h)|2 , (8.127)

which coincides with the decay probability for massless neutrinos in the wave-packet
treatment if the common scale of neutrino masses is negligible in comparison with
the experimental resolution.

8.3 Size of neutrino wave packets

As discussed in the introduction of section 8.2, the size of the neutrino wave packet
is determined by the coherence size of the production process. This is a general prop-
erty of the wave packets of all particles which are created in some process, because
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no source of waves vibrates indefinitely (quote from section 11.11 of Ref. [644]). For
example [644],

In light sources, the radiating atoms emit wave trains of finite length.
Usually, because of collisions or damping arising from other causes, these
packets are very short. According to the theorem mentioned above42, the
consequence is that the spectrum lines will not be very narrow but will
have an appreciable width ∆λ. A measurement of this width will yield
the effective lifetime of the electromagnetic oscillators in the atoms and
the average length of the wave packets. A low-pressure discharge through
the vapor of mercury containing the single isotope 198Hg yields very
sharp spectral lines, of width about 0.005 Å. Taking the wavelength
of one of the brightest lines, 5461 Å, we may estimate that there are
roughly 106 waves in a packet and that the packets themselves are some
50 cm long.

The broadening of optical lines due to the finite lifetime of atomic transitions
is known as the natural linewidth.

It is interesting to note that the broadening of optical lines was well known to
experimental physicists in the nineteenth century and explained by classical models
before the advent of quantum theory (see Ref. [271] and references therein). In 1895,
Michelson listed among the hypotheses formulated before that time to account for
the line broadening [798]

The exponential diminution in amplitude of the vibrations due to
communication of energy to the surrounding medium or to other causes.

As explained in Ref. [271],

We consider an emitting atom which we shall proceed to remove to
infinity and reduce the temperature to the point where, classically at
least, no translational motion exists. Now from the classical picture
of a vibrating electron or the simple picture of a pair of energy levels
between which our radiation transition takes place, we should expect
these conditions to yield a spectral line of a single frequency. We, of
course, do not obtain this result, but, rather, we obtain the familiar
natural line shape which is attributable to Michelson’s Cause 3.

A classical derivation of the natural linewidth can be found in section 17.7 of
Ref. [636]. Let us emphasize that the natural linewidth of atomic lines has been
observed experimentally (see section 21.4 of Ref. [1059])!

Another important cause of line broadening known in 1895 was [798]

The change in wavelength due to the Doppler effect of the component
of the velocity of the vibrating atom in the line of sight.

42 “The largest the number N of waves in the group, the smaller the spread ∆λ, and in
fact theory shows that ∆λ/λ0 is approximately equal to 1/N”. (section 11.11 of Ref. [644]).
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The Doppler line broadening due to the thermal motion of atoms in a medium was
calculated by Rayleigh in 1889 [753]. This important effect, which must be aways
taken into account in calculating the spectral shape of monochromatic beams, does
not concern us here, because it does not generate a coherent broadening. It is simply
due to the different motion of different atoms, whose radiation is incoherent.

To these (and other) causes of line broadening Michelson added in 1895 [798]

The limitation of the number of regular vibrations by more or less abrupt
changes of phase amplitude or plane of vibration caused by collisions.

This important coherent effect has been given several names, among which collision

broadening, pressure broadening, and interruption broadening. It has been studied
in depth by many authors (see, for example, Refs.[271, 755]). Even more important,
it has been observed experimentally (see section 21.5 of Ref. [1059])!

In quantum theory, the fact that no source of waves vibrates indefinitely implies
that all particles are produced as wave packets, whose size is determined by the
finite lifetime of the parent particle, or by its finite mean free path if the production
process occurs in a medium. Since also no wave detector vibrates indefinitely, it is
clear that all particles are also detected as wave packets.

Usually, at least in high-energy physics, the wave packet character of particles is
not important and they can be well approximated by plane waves. The phenomenon
of neutrino oscillations is an exception, as shown in 1981 by Kayser [660], because
the localization of the source and detector requires a wave-packet treatment.

In the following subsections, we estimate the size of the massive neutrino wave
packets for some specific production processes. We will write the production pro-
cesses in terms of flavor neutrinos, but one must always keep in mind that a flavor
neutrino is a superposition of massive neutrinos and the massive neutrinos have a
wave packet character, because they are the ones that propagate in space-time with
definite kinematical properties.

Depending on the physical situation, the size of the massive neutrino wave
packets depends on one of the following two physical effects:

Natural Linewidth. If a neutrino is produced in the decay of a particle X with
lifetime τX , the collapse of the particle wave function due to the decay inter-
rupts the coherent emission of the neutrino wave train. In the rest frame of the
decaying particle

σν
x ∼ τX . (8.128)

If the particle decays in flight, its lifetime and the corresponding size of
the neutrino wave packets are dilated by the relativistic γ factor (given in
eqn (B.29)),

σν
x ∼ γ τX , (8.129)

with

γ =
EX

mX
, (8.130)

where EX and mX are, respectively, the energy and mass of the decaying
particle.
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Collision Broadening. If a neutrino is created in a decay process or in a scatter-
ing process occurring in a medium, the coherent emission of the neutrino wave
train is interrupted when one of the other particles taking part to the process
interacts with the medium. Hence, the minimum among the mean times between
two collisions of the particles participating in the production process gives the
size of the massive neutrino wave packets.

If we denote by �X the mean free path of the particle X participating in
the production process and by vX its velocity, the average time between two
collisions of the particle X with the medium is given by

τX =
�X
vX

, (8.131)

and the size of the massive neutrino wave packets due to collision broadening
can be estimated as

σν
x ∼ Min

X
[τX ] . (8.132)

Usually, the velocity vX can be easily evaluated. For the initial particles in
thermal equilibrium with the medium, vX is given by the mean thermal velocity.
For the particles emitted in the production process, vX is given by the kinematics
of the process.

On the other hand, the determination of the mean free path �X is not triv-
ial, because collisions between particles are due to long-range electromagnetic
interactions. Hence, particles interact all the time and it is difficult to establish
when an interaction has been so strong as to be called a collision and to be
considered as being effective for the interruption of the coherent emission of the
neutrino wave train. In practice, the mean free path is evaluated following the
heuristic way often used in optics: for example, from section IV.A of Ref. [271],

A collision has been undergone by the emitter when the phase of the
emitted radiation, η, has changed by unity. This is an admittedly
arbitrary collision definition, but one which has proved quite satis-
factory for certain physical situations and, further, one which forms
one of the bases for the simple form of the interruption theory.

In his 1976 pioneering paper [831], Nussinov wrote:

The effective time τe for the atom (or nucleus) to emit an uninter-
rupted train of waves is the time during which the random phase
change of the emitter due to collisions, i.e. changes of potential
energy, with neighboring atoms does not exceed ≈ π/2.

8.3.1 Pion decay

Let us consider a muon neutrino which is created in the decay of a free pion,

π+ → µ+ + νµ . (8.133)

In the rest frame of the pion, the natural linewidth relation in eqn (8.128) gives σν
x ∼

τπ ∼ 10 m for the size of the massive neutrino wave packets, where τπ = 2.6×10−8 s
is the lifetime of the pion. This value of σν

x corresponds to σν
p ∼ 10−8 eV.
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If a free pion is decaying in flight, eqn (8.129) applies, with γ = Eπ/mπ. For
example, for a pion with 1 GeV energy we have γ � 7, which implies σν

x ∼ 70 m.
If a high-energy pion decays in a decay tunnel, as in many oscillation exper-

iments with accelerator neutrinos, the size σν
x of the neutrino wave packets is of

the order of the minimum between the length of the decay tunnel and γτπ. For
example, for a pion with 10 GeV energy, we have γτπ ∼ 700 m. If the decay tunnel
is as long as 100 m, it is much shorter than γτπ and σν

x is of the order of the length
of the decay tunnel.

If the pion decays in a medium, both the pion and the outgoing antimuon
interact with the surrounding nuclei. The time allowed for a coherent emission
of the decay products is of the order of the time elapsed before the pion or the
antimuon has interacted with the material. In this case σν

x ∼ Min[�π/vπ, �µ/vµ],
where �π and �µ are the pion and antimuon mean free paths and vπ and vµ are the
pion and antimuon velocities. The pion and antimuon mean free paths are of the
order of

� ∼ Max

[
1

πb2N
,

1

N1/3

]
, (8.134)

where N is the nuclear number density and b is the impact parameter for Coulomb
scattering of the pion or the antimuon in the electric field of the nucleus. For a
nucleus with atomic number Z the impact parameter b is given by

b ≈ 4π αZ

T
, (8.135)

where α is the fine-structure constant and T is the kinetic energy of the pion or
of the antimuon. The term 1/N1/3 in eqn (8.134) is the order of magnitude of
the internuclear distance and we have taken into account the fact that b cannot
be larger than the internuclear distance and the mean free path cannot be smaller
than the internuclear distance. In other words, eqn (8.135) is not applicable when T
is too small and what happens physically is that the pion or antimuon trajectory is
strongly deflected as soon as it passes close to a nucleus, interrupting the coherence
of the decay process.

Let us consider, for example, a pion decaying in graphite, which has atomic
number Z = 6, atomic mass about 12, a density of about 2 g/cm3, a nuclear number
density N ≈ 1023cm−3, and an internuclear distance 1/N1/3 ≈ 2× 10−8 cm. In this
case, we have

� ∼ Max

[
3 × 10−2

(
T

MeV

)2

cm , 2 × 10−8 cm

]
. (8.136)

A pion decaying at rest in reality does not decay precisely at rest, because it has
a kinetic energy of the order of the thermal energy of the medium. At 300 K the
kinetic energy of the pion is Tπ ≈ 4×10−2 eV, corresponding to �π ∼ 5×10−17 cm,
which is much smaller than the internuclear distance. Hence �π is given by the
internuclear distance and is of the order of 2 × 10−8 cm. Since the pion velocity
is of the order of 2 × 10−5, from the pion interaction with the medium we have
σν

x ∼ 10−3cm.
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Let us consider now the outgoing antimuon. The antimuon kinetic energy is
(mπ −mµ)2/2mπ � 4 MeV, which corresponds to an antimuon velocity vµ � 0.3.
From eqn (8.136) we have �µ ∼ 5 × 10−1 cm and σν

x ∼ 1 cm.
We see that the collisional broadening of the neutrino line due to the pion

collisions with the medium is dominant over that due to the antimuon collisions
with the medium and the natural linewidth. Hence for a neutrino produced by pion
decay at rest in graphite, we estimate σν

x ∼ 10−3cm and σν
p ∼ 10−2eV.

8.3.2 Muon decay

Let us now consider an electron neutrino νe or a muon antineutrino ν̄µ produced
in the antimuon decay process

µ+ → e+ + νe + ν̄µ . (8.137)

In the rest frame of the antimuon the collapse of the antimuon wave function due
to the decay gives σν

x ∼ τµ ∼ 105 cm, where τµ = 2.2 × 10−6 s is the lifetime of the
muon. This natural linewidth of the neutrino line corresponds to σν

p ∼ 10−10 eV.
If the muon decays in a medium, both the antimuon and the outgoing positron

interact with the surrounding nuclei and, as in the case discussed in the previous
subsection, σν

x ∼ Min[�µ/vµ, �e/ve], where �µ and �e are the antimuon and positron
mean free paths and vµ and ve are the antimuon and positron velocities. The
antimuon and positron mean free paths are given by eqns (8.134) and (8.135),
which lead to eqn (8.136) in graphite.

An antimuon decaying at rest, e.g. in the LAMPF-0645 [460], LSND [37], and
KARMEN [105] experiments, has a kinetic energy of the order of the thermal
energy of the medium: Tµ ≈ 4× 10−2 eV. As in the case of the pion in the previous
subsection, according to eqn (8.136) a kinetic energy of the order of the thermal
energy corresponds to a mean free path which is much smaller than the internuclear
distance. Hence �µ is given by the internuclear distance: �µ ∼ 2 × 10−8 cm. Since
the antimuon velocity is of the order of 2 × 10−5, from the antimuon interaction
with the medium we have σν

x ∼ 10−3cm.
Let us consider now the outgoing positron, which is annihilated as soon as it

meets an electron in the medium. Hence, its mean free path is of the order of the
internuclear distance: �e ∼ 2 × 10−8 cm. Since the positron is relativistic, ve � 1
and we have σν

x ∼ �e ∼ 2 × 10−8 cm.
In the case of antimuon decay the collisional broadening of the neutrino line

due to the annihilation of the outgoing positron with the electrons in the medium
is dominant with respect to that due to the antimuon collisions with the medium
and to the natural linewidth. Hence for a neutrino produced by antimuon decay at
rest in graphite we estimate σν

x ∼ 2 × 10−8cm and σν
p ∼ 2 × 103eV.

8.4 Questions

In this section we answer some interesting questions that are often asked and have
been debated in the literature.
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8.4.1 Do charged leptons oscillate?

Flavor oscillations of charged leptons are not possible, because the flavor of a
charged lepton is defined by its mass, which is the only property that distin-
guishes between different charged leptons. In practice, all detectors reveal particles
through electromagnetic interactions. Since all charged leptons have the same elec-
tromagnetic interactions, as well as other interactions, they are distinguished either
through kinematics or through their decay products. Both these characteristics
depend directly on the charged lepton mass. In other words, flavor is measured
through mass. That is why charged leptons are defined as mass eigenstates and,
as such, cannot undergo flavor oscillations, i.e. periodic changes of flavor during
propagation.

A different type of oscillations of charged leptons is conceivable in principle [843],
but very difficult to realize in practice. Imagine an experiment in which a massive
neutrino interacts with a nucleon through a charged-current interaction. Since a
massive neutrino is a superposition of νe, νµ, and ντ , in appropriate conditions
it could generate a superposition of e, µ, and τ . If this superposition propagates
freely in space-time and interacts with another nucleon through a charged-current
interaction, in appropriate conditions a massive neutrino can be produced. The
phase differences of e, µ, and τ at detection imply that the the final massive neu-
trino may be different from the initial one and the probability of massive neutrino
conversion oscillates as a function of the source-detector distance. However, it must
be clear that this type of oscillations do not involve any conversion of the flavor
of charged leptons, which is a constant, as explained in the previous paragraph.
The new type of oscillations was called charged-lepton oscillations in Ref. [843]
because of the following analogy with neutrino oscillations. In neutrino oscillations,
massive neutrinos propagate unchanged between production and detection, with a
difference of mass (flavor) of the charged leptons involved in the production and
detection processes. In charged-lepton oscillations, massive charged leptons prop-
agate unchanged between production and detection, with a difference of mass of
the neutrinos involved in the production and detection processes. Of course, an
experiment of charged-lepton oscillations is extremely difficult, because it would
have to overcome, at least, the following problems: (1) The initial and final neu-
trinos in the production and detection processes must be massive neutrinos of
known type; this means that the neutrinos masses must be measured. (2) The
propagating charged leptons must be ultrarelativistic, in order to be produced
and detected coherently (if τ is not ultrarelativistic, only e and µ contribute to
the phase). (3) The energy of the propagating charged leptons must be extremely
high, in order to have a measurable oscillation length; for example, the oscillation
length due to the interference of the e and µ components of the wave function is
4πE/(m2

µ−m2
e) � 4πE/m2

µ � 2×10−11 (E/GeV) cm, where E is the charged-lepton
energy.

Let us finally consider the claim presented in Refs. [926, 975, 978] that the
probability of detecting a charged lepton oscillates in space-time. This claim has
been refuted in Ref. [384]. A similar effect, called Lambda oscillations, which has
been claimed to exist [976, 1061] for the Λ’s produced together with a neutral kaon,
as in the process π−+p→ Λ+K0, has been refuted in Refs. [756, 283]. Considering
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the pion decay process π− → µ− + ν̄µ, the authors of Refs. [926, 975, 978, 974]
argued that, since the final state of the muon and antineutrino is entangled, if the
probability of detecting the antineutrino oscillates as a function of distance, also
the probability of detecting the muon must oscillate. However, it is well known
that the probability of detecting the antineutrino, irrespective of its flavor, does
not oscillate. This property is usually called conservation of probability or unitarity

and is represented mathematically by the general relation
∑

β Pν̄µ→ν̄β
= 1. Hence,

this argument in fact proves that the probability of detecting a charged lepton does
not oscillate in space-time!

8.4.2 Is the standard oscillation phase wrong by a factor of 2?

It has been claimed that the standard phase of neutrino oscillations in eqn (7.24)
is wrong by a factor of two [437] or there is an ambiguity by a factor of two in the
oscillation phase [575, 741, 729, 360]. A similar discrepancy by a factor of two in
the phase of K0− K̄0 oscillations has been claimed in Refs. [977, 976, 1061] and an
ambiguity by a factor of two has been claimed in Ref. [740]. These claims, which
have been refuted in Refs. [826, 659, 756, 662, 661, 540, 525, 284], stem from the
following fallacious reasoning.

Different massive neutrinos propagate with different velocities

vk =
pk

Ek
, (8.138)

where Ek and pk are, respectively, the energy and momentum of the neutrino with
mass mk, related by the relativistic dispersion relation in eqn (8.34). According to
the fallacious reasoning, the phases of the different massive neutrinos wave functions
after a propagation distance L should be, due to the different times of propagation
of different massive neutrinos,

Φ̃k = pk L− Ek tk . (8.139)

The propagation times are given by

tk =
L

vk
=
Ek

pk
L , (8.140)

which lead, in the relativistic approximation, to the phase difference

∆Φ̃kj ≡ Φ̃k − Φ̃j = −
∆m2

kj L

E
. (8.141)

This phase difference is twice as large as the standard one in eqn (7.24).
Let us note that in eqn (8.139) we have considered the possibility of dif-

ferent energies and momenta for different massive neutrino wave functions, as
we have done throughout this chapter (see the following item). The authors of
Refs. [740, 575, 741] claimed that a correct way to obtain the standard oscillation
phase is to assume the same energy for the different massive neutrino wave func-
tions. Apart from the fact that this is an unphysical assumption (see the following
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item), it is not true that the disagreement of a factor of two disappears assuming
the same energy for the different massive neutrino wave functions, as clearly shown
by the above derivation of eqn (8.141), in which the energies of the different mas-
sive neutrino wave functions could have been taken to be equal [729, 525]. Indeed,
even if the different massive neutrino wave functions have the same energy, the
time contribution −Etk + Etj to the phase difference ∆Φ̃kj does not disappear if
tk �= tj . This contribution has been missed in Refs. [740, 575, 741].

8.4.3 What are the energies and momenta of massive neutrinos?

In sections 8.1.2 and 8.2.2, we have seen that, because of eqn (8.37), in both the
plane-wave approximation and the wave-packet treatment the phases of massive
neutrinos relevant for the oscillations are independent of the values of the energies
and momenta of different massive neutrinos as long as the relativistic dispersion
relation in eqn (8.34) is satisfied and massive neutrinos are ultrarelativistic.

However, one can still ask if it is physically realistic to assume equal momenta
for the massive neutrinos, as done in the standard derivation of the oscillation
probability presented in section 7.1, or even equal energies, as claimed in Refs. [740,
575, 986, 739, 742].

It is rather easy to understand that, in general, massive neutrinos have neither
equal momenta nor equal energies [540, 522, 526, 526]. The reason is that in general
the energy and momentum of a particle created in some process depend on the
interaction, on the properties of the other particles participating in the process
and on the particle mass. Since different massive neutrinos have different masses,
it is obvious that, in general, their energies and momenta are different. In the
ultrarelativistic approximation, the production-dependent vector �ξ in eqns (8.40)
and (8.42) is, in general, different from the special values zero, which would give
equal momenta, and �p/E, which would give equal energies.

Moreover, it is easy to show that special relativity implies that in a general
reference frame different massive neutrinos have different energies and momenta
[522]. Indeed, from the Lorentz transformations in eqn (B.28) the transformations
of the energy difference ∆Ekj = Ek −Ej and momentum difference ∆�pkj = �pk −�pj

from an inertial system O to another inertial system O′ moving with respect to O
with velocity �v are given by

∆E′kj = γ
[
∆Ekj −�v ·∆�pkj

]
, (8.142)

∆�p′kj = ∆�pkj −
[
(1 − γ)

�v ·∆�pkj

v2
+ γ∆Ekj

]
�v . (8.143)

It is clear that since ∆Ekj and ∆�pkj cannot both be zero, even if one of them is

zero in O, in the boosted frame O′ we have ∆E′kj �= 0 and ∆�p′kj �= 0. Therefore,
even if there is a peculiar inertial frame in which different massive neutrinos have
either the same momentum or the same energy, this property is not satisfied in any
other inertial frame.

In any case, the possible existence of a reference frame in which different mas-
sive neutrinos have either the same momentum or the same energy is irrelevant
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in practice, because neutrinos are produced by sources in which the production
process has a distribution of velocities, sometimes very wide (for example, pion
or muon decay production of atmospheric neutrinos), and different sources may
produce neutrinos with the same production process at very different velocities (for
example pion decay production of neutrinos in different accelerator experiments). If
the equal momentum or the equal energy assumption is valid for a specific velocity
of a specific production process, it does not hold for any other velocity.

Let us finally emphasize that this discussion on the exact determination of
the energies and momenta of massive neutrinos is only of academic interest. It
is irrelevant for neutrino oscillations, which are independent of the energies and
momenta of massive neutrinos, as we have shown in sections 8.1.2 and 8.1.3.

8.4.4 Are wave packets necessary?

As we have discussed several times in this chapter, a wave-packet treatment of
neutrino oscillations is necessary in order to derive the oscillation probability in a
consistent quantum framework, which must take into account the localization of the
production and detection processes and the associated momentum uncertainties.
In particular, the wave-packet treatment is necessary in order to allow the time
average in eqn (8.98) of the space and time dependent probability in eqn (8.97),
which leads to the probability in eqn (8.99) of neutrino oscillations as a function of

the source–detector distance �L.
However, in practical applications, the wave-packet treatment can be avoided,

because the oscillation probability in eqn (8.112) obtained with the wave-packet
treatment cannot be distinguished from the plane-wave oscillation probability in
eqn (7.112) averaged over the Gaussian L/E distribution in eqn (7.95). Indeed,
in this case the averaged plane-wave oscillation probability in eqn (7.112) can be
written as

〈Pνα→νβ
(L,E)〉 =

∑
k,j

U∗αk Uβk Uαj U
∗
βj exp

[
−i ∆m2

2

〈
L

E

〉
− 1

2

(
∆m2

2
σL/E

)2
]
.

(8.144)
If the uncertainty σL/E is proportional to the average 〈L/E〉, as in the example
of Fig. 7.2 on page 262 (see eqn (7.97)), the behavior of the averaged probability
in eqn (8.144) as a function of 〈L/E〉 is identical to the behavior of the wave
packet probability in eqn (8.112) as a function of L/E (the localization term can be
neglected in real oscillation experiments) [667, 526]. This means that in practice one
can take into account the quantum space and momentum uncertainties by adding
them to the classical uncertainties of L and E.

As emphasized in Ref. [667], if one does not have control of both the production
and detection processes, one cannot know if oscillations are suppressed because of
incoherent averaging over the energy and location of different microscopic processes
or because of decoherence due to the separation of wave packets. However, having
good control of both the production and detection processes, it may be possible
to reduce the causes of incoherent broadening of the energy spectrum and the
uncertainty of the spatial location of the production and detection processes in



QUESTIONS 321

such a way to prove experimentally that oscillations can be suppressed because of
wave packet effects (in practice using an approach similar to the one adopted for
the measurement of the natural linewidth and collision broadening of atomic lines
discussed in the introduction of section 8.3).

The fact that coherent and incoherent stationary beams are indistinguishable
without a theoretical analysis is well known in optics (see section 7.5.8 of Ref. [263]),
in neutron interferometry [329, 652], and in general stationary particle beams [216].

Eventually, the existence of massive neutrino wave packets may be revealed
experimentally by measuring the flavor transition probability in eqn (8.97) as a
function of both the distance and time interval between the events of neutrino
production and detection.
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NEUTRINO OSCILLATIONS IN MATTER

All truths are easy to understand once they are discovered; the
point is to discover them.
Galileo Galilei

In 1978, L. Wolfenstein [1065] discovered that neutrinos propagating in matter are
subject to a potential due to the coherent forward elastic scattering with the parti-
cles in the medium (electrons and nucleons). This potential, which is equivalent to
an index of refraction, modifies the mixing of neutrinos. In the case of two-neutrino
mixing, the mixing angle in vacuum is replaced by an effective mixing angle in mat-
ter, which, for suitable matter densities, can become large, even if the mixing angle
in vacuum is very small. Wolfenstein [1065] and other authors in the early 1980s
[171] studied neutrino propagation in a medium with constant matter density43, or
the possibility of detecting relic neutrinos through their coherent interactions with
matter [731, 715]. Unfortunately, in early papers the sign of the matter potential
was incorrect, leading to an enhancement of the transitions of electron antineutri-
nos instead of neutrinos. The correct sign for the matter potential was introduced
in Ref. [715].

In 1985 S.P. Mikheev and A.Yu. Smirnov [801, 802] discovered that it is possi-
ble to have resonant flavor transitions when neutrinos propagate in a medium with
varying density, and there is a region along the neutrino path in which the effective
mixing angle passes through the maximal mixing value of π/4 (see the clear discus-
sion in Ref. [222]). This so-called MSW mechanism quickly become very famous,
because it could explain the flavor conversion of solar neutrinos during their prop-
agation out of the Sun, even in the case of a small vacuum mixing angle. Today we
know that the vacuum mixing angle relevant for solar neutrino oscillations is large
but not maximal and that the flavor transitions of solar neutrinos occur through
the MSW effect (see chapter 10).

Before we proceed to the calculation of neutrino potentials in matter, let us
remark that neutrinos in matter are affected not only by coherent forward elastic
scattering, but also by incoherent scatterings with the particles in the medium.
However, the amount of these incoherent scatterings is extremely small in most

43 It is interesting to note that Wolfenstein [1065] considered not only the effects of
matter potentials for the standard two-neutrino oscillations, but also the possibility of
matter potentials generated by flavor-changing neutral currents, which can generate flavor
transitions in matter even in the case of massless neutrinos, as studied later in Ref. [1031,
580]. He also considered the matter effects on the oscillations of long-baseline accelerator
neutrinos propagating in the Earth, a topic which is presently under intense study (see
Refs. [58, 59]).
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situations and can be safely neglected. We can estimate easily the order of magni-
tude of a mean free path due to incoherent scatterings as follows. From dimensional
arguments, the cross-section of neutrino weak interactions with a charged lepton or
hadron in the center-of-mass frame is given by

σcm ∼ GF s , (9.1)

where s is the Lorentz invariant Mandelstam variable which represents the square
of the total energy in the center-of-mass frame. In the laboratory frame, where the
target particle is at rest, s is given by 2EM , where E is the neutrino energy and
M is the mass of the target particle (we neglected the neutrino mass), yielding

σlab ∼ GFEM ∼ 10−38 cm2 EM

GeV2 . (9.2)

The mean free path of the neutrino in a medium with number density N of target
particles is given by

� ∼ 1

N σ
∼ 1038 cm

(N cm3)
(
EM/GeV2

) . (9.3)

In normal matter, the main target particles are nucleons with mass M ∼ 1GeV and
number density N ∼ NA/cm

3 ∼ 1024/cm3, yielding

�matter ∼
1014 cm

(E/GeV)
. (9.4)

One can see that the Earth, which has a diameter of about 109 cm, is opaque to
neutrinos only if their energy exceeds about 105 GeV, which is extremely high. Solar
neutrinos have energies of the order of 1 MeV, which implies a mean free path in
normal matter of the order of 1017 cm, which is about 0.1 light years! On the other
hand, if the nucleon density is of the order of 1012NA/cm

3, neutrinos with energy
of the order of 1 MeV have a mean free path of only 1 km. Such extremely high
matter densities can be reached in neutron stars and supernova cores, which have
diameters of the order of 1 km and are thus opaque to low-energy neutrinos. Only
in these extreme cases, is it necessary to take into account neutrino incoherent
scattering.

This chapter’s discussion includes the calculation of the effective neutrino poten-
tials in matter in section 9.1, the general evolution of neutrino flavors in matter in
section 9.2, and the MSW effect for two generations in section 9.3. In sections 9.4
and 9.5 we present, respectively, solutions of the evolution equation of neutrino
flavors in the case of a medium whose density can be approximated by a series of
slabs with constant density and in the case of a medium which varies periodically
along the neutrino path. Finally, section 9.6 presents an instructive geometrical
representation of neutrino oscillations.

9.1 Effective potentials in matter

When active flavor neutrinos propagate in matter, their evolution equation is
affected by effective potentials due to the coherent interactions with the medium
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W

νe e−

e− νe

Z

νe, νµ, ντ νe, νµ, ντ

e−, p, n e−, p, n

Fig. 9.1. Feynman diagrams of the coherent forward elastic scattering processes
that generate the CC potential VCC through W exchange and the NC potential
VNC through Z exchange.

through coherent forward elastic weak CC and NC scatterings [1065, 731, 715, 222,
828, 844, 530, 418, 845, 747, 387, 716, 464]. The Feynman diagrams of CC and NC
scattering are shown in Fig. 9.1.

Let us first calculate the CC potential VCC for an electron neutrino propagating
in a homogeneous and isotropic gas of unpolarized electrons [530, 716]. From the
effective low-energy charged-current weak interaction Lagrangian in eqn (3.224),
the effective CC Hamiltonian corresponding to the left diagram in Fig. 9.1 is

H
(CC)

eff (x) =
GF√

2

[
νe(x)γ

ρ
(
1 − γ5

)
e(x)

] [
e(x)γρ

(
1 − γ5

)
νe(x)

]
. (9.5)

In order to separate the neutrino and electron contributions, we apply to eqn (9.5)
the Fierz transformation in eqn (2.508):

H
(CC)

eff (x) =
GF√

2

[
νe(x)γ

ρ
(
1 − γ5

)
νe(x)

] [
e(x)γρ

(
1 − γ5

)
e(x)

]
. (9.6)

The average of the effective Hamiltonian over the electron background in the rest
frame of the medium is given by

H
(CC)

eff (x) =
GF√

2
νe(x)γ

ρ
(
1 − γ5

)
νe(x)

∫
d3pe f(Ee, T )

× 1

2

∑
he=±1

〈e−(pe, he)|e(x)γρ

(
1 − γ5

)
e(x)|e−(pe, he)〉 . (9.7)

The electron states correspond to the electrons in the left diagram in Fig. 9.1. Their
four-momenta and helicities before and after the scattering are identical, because
the interaction must leave the medium unchanged in order to contribute coherently
to the neutrino potential. For simplicity, for the electron background we consider a
finite normalization volume V according to the method discussed in section 2.13,
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with the one-electron states |e−(pe, he)〉 defined according to eqn (2.487):

|e−(pe, he)〉 =
1

2EeV
a(he)†

e (pe) |0〉 . (9.8)

The function f(Ee, T ) is the statistical distribution of the electron energy Ee, which
depends on the temperature T of the electron background and is normalized by∫

d3p f(Ee, T ) = Ne V , (9.9)

where Ne is the electron density of the medium and Ne V is the total number of
electrons.

The average over helicities of the electron matrix element is given by

1

2

∑
he=±1

〈e−(pe, he)|e(x)γρ

(
1 − γ5

)
e(x)|e−(pe, he)〉

=
1

4EeV

∑
he=±1

u
(he)
e (pe)γρ

(
1 − γ5

)
u(he)

e (pe)

=
1

4EeV
Tr

[( ∑
he=±1

u(he)
e (pe)u

(he)
e (pe)

)
γρ

(
1 − γ5

)]

=
1

4EeV
Tr
[
(/pe +me) γρ

(
1 − γ5

)]
=

peρ

EeV
. (9.10)

Hence, we obtain

H
(CC)

eff (x) =
GF√

2

1

V

∫
d3pe f(Ee, T ) νe(x)

/pe

Ee

(
1 − γ5

)
νe(x) . (9.11)

The integral over d3pe becomes∫
d3pe f(Ee, T )

/pe

Ee
=

∫
d3pe f(Ee, T )

(
γ0 − �pe ·�γ

Ee

)
= Ne V γ

0 , (9.12)

where the integral of the �pe/Ee term vanishes because the integrand is odd under
�pe → −�pe. Finally, the normalization volume cancels, leading to

H
(CC)

eff (x) = VCC νeL(x)γ0νeL(x) , (9.13)

with the charged-current potential given by

VCC =
√

2GFNe . (9.14)

The neutral-current potential of neutrinos propagating in a medium with density
Nf of fermions f can be calculated in a similar way starting from the effective low-
energy neutral-current weak interaction Lagrangian in eqn (3.235). The effective
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NC Hamiltonian corresponding to the right diagram in Fig. 9.1 is

H
(NC)

eff (x) =
GF√

2

∑
α=e,µ,τ

[
να(x)γρ

(
1 − γ5

)
να(x)

]∑
f

[
f(x)γρ

(
gf

V − gf
A γ

5
)

f(x)
]
.

(9.15)
Comparing with the effective CC Hamiltonian which generates the potential in
eqn (9.14) one can see that the neutral-current potential of any flavor neutrino να

due to coherent interaction with fermions f is

V f
NC =

√
2GFNf g

f
V . (9.16)

From Table 3.6 on page 78, we have for electrons

ge
V = −1

2
+ 2 sin2 ϑW . (9.17)

Since p = uud and n = udd, we have for protons

gp
V = 2 gu

V + gd
V =

1

2
− 2 sin2 ϑW , (9.18)

and for neutrons

gn
V = gu

V + 2 gd
V = −1

2
. (9.19)

In astrophysical environments with low temperature and density, matter is com-
posed of neutrons, protons, and electrons. Since electrical neutrality implies an
equal number density of protons and electrons, the neutral-current potentials of
protons and electrons cancel each other and only neutrons contribute, yielding

VNC = −1

2

√
2GF Nn . (9.20)

Summarizing, the effective neutrino potential Hamiltonian in astrophysical
environments with low temperature and density is

Heff(x) =
∑

α=e,µ,τ

Vα ναL(x)γ0ναL(x) , (9.21)

with the potentials

Vα = VCC δαe + VNC =
√

2GF

(
Ne δαe −

1

2
Nn

)
. (9.22)

These potentials are very small, because

√
2GF � 7.63 × 10−14 eV cm3

NA
, (9.23)

where NA is Avogadro’s number in eqn (A.144).
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In order to understand the physical meaning of the potentials Vα, let us calculate
the potential energy of a neutrino of flavor α propagating through the medium,
which is given by

V
(h)

α = 〈νwp
α (〈�p〉, h)|

∫
d3xHeff(x)|νwp

α (〈�p〉, h)〉 . (9.24)

Here, we have considered a neutrino wave packet of the type in eqn (2.459),

|νwp
α (〈�p〉, h)〉 =

∫
d3p

(2π)3/2
√

2E
ϕ(�p, 〈�p〉) |να(p, h)〉 , (9.25)

which describes a neutrino with helicity h and average momentum 〈�p〉, as discussed
in section 2.12. Expanding the wave packets in eqn (9.24) and calculating the matrix
element, we obtain, in the case of Dirac neutrinos,

V
(h)

Dα =
1

2
Vα

∫
d3p

2E
|ϕ(�p, 〈�p〉)|2 u(h)

να (p) γ0
(
1 − γ5

)
u(h)

να
(p) . (9.26)

Using eqn (A.94), we have

u
(h)
να (p) γ0

(
1 − γ5

)
u(h)

να
(p) = Tr

[
u(h)

να
(p)u

(h)
να (p) γ0

(
1 − γ5

)]
= Tr

[
(/p+mνα

)

(
1 + γ5 /sh

2

)
γ0
(
1 − γ5

)]
= 2 (E − h |�p|) �

{
4E for h = −1

m2
να
/E for h = +1 ,

(9.27)

where the last approximation holds for ultrarelativistic neutrinos and mνα
is the

mass of να if mixing is neglected. We consider this unrealistic mass only to
show the order of magnitude of the strong suppression of the potential energy
of ultrarelativistic right-handed neutrinos:

V
(+)

Dα � Vα

m2
να

4

〈
1

E2

〉
, (9.28)

where 〈1/E2〉 is the average of 1/E2 over the momentum distribution of the wave
packet, which is approximately equal to 1/〈E2〉 for sharp wave packets.

On the other hand, taking into account the normalization in eqn (2.461) of the
momentum distribution of the wave packet, the potential energy of ultrarelativistic
left-handed neutrinos is given by

V
(−)
Dα � Vα . (9.29)

Thus, Vα is the potential energy of ultrarelativistic left-handed neutrinos of flavor
α propagating through the medium.
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These results for V
(+)

α and V
(−)

α can also be obtained with the finite normaliza-
tion volume approach described in section 2.13. In this case, the potential energy
is given by

V
(h)

α = 〈να(p, h)|
∫

V

d3xHeff(x)|να(p, h)〉 . (9.30)

In the case of Dirac neutrinos, we have

V
(h)
Dα =

Vα

4E
u

(h)
να (p) γ0

(
1 − γ5

)
u(h)

να
(p) . (9.31)

Using eqn (9.27), one obtains the results in eqns (9.28) and (9.29).
Let us now consider Dirac antineutrinos. Considering an antineutrino wave

packet of the type in eqn (2.460),

|ν̄wp
α (〈�p〉, h)〉 =

∫
d3p

(2π)3/2
√

2E
ϕ̄(�p, 〈�p〉) |ν̄α(p, h)〉 . (9.32)

we have

V̄
(h)
Dα = −1

2
Vα

∫
d3p

2E
|ϕ̄(�p, 〈�p〉)|2 v(h)

να (p) γ0
(
1 − γ5

)
v(h)

να
(p) , (9.33)

and

v
(h)
να (p) γ0

(
1 − γ5

)
v(h)

να
(p) = 2 (E + h |�p|) �

{
m2

να
/E for h = −1

4E for h = +1 ,
(9.34)

which leads to

V̄
(+)

Dα � −Vα , (9.35)

and

V̄
(−)
Dα � −Vα

m2
να

4

〈
1

E2

〉
. (9.36)

Hence, the potential energy of ultrarelativistic right-handed Dirac antineutrinos
is opposite in sign to that of left-handed neutrinos and the potential energy of
ultrarelativistic left-handed Dirac antineutrinos is strongly suppressed by the ratio
(mass/energy)2.

These results for V
(±)

Dα and V̄
(±)
Dα are clear from a physical point of view: in

the ultrarelativistic limit, neutrinos can be considered massless in interactions and
eqn (2.222) tells us that, in this approximation, only Dirac neutrinos with negative
helicity and Dirac antineutrinos with positive helicity take part in weak interactions.

On the other hand, in the case of Majorana neutrinos we have

V
(h)

Mα =
1

2
Vα

∫
d3p

2E
|ϕ(�p, 〈�p〉)|2

[
u

(h)
να (p) γ0

(
1 − γ5

)
u(h)

να
(p)

−v(h)
να (p) γ0

(
1 − γ5

)
v(h)

να
(p)
]
. (9.37)
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From eqns (9.27) and (9.34) it follows that

V
(±)
Mα � ∓Vα . (9.38)

Hence, the potential energy of ultrarelativistic left-handed Dirac and Majorana neu-
trinos are the same, whereas the potential energy of ultrarelativistic right-handed
Majorana neutrinos is the same as that of ultrarelativistic right-handed Dirac
antineutrinos. These equalities are a particular case of the general correspondence
discussed in section 6.2.3.

Let us finally remark that the coherent interactions with matter conserve the
neutrino helicity, because using the properties in eqns (2.153), (2.155), and (A.62)
we have

u
(h)
να (p) γ0

(
1 − γ5

)
u(h′)

να
(p) =

(
u

(h)
να (p)

�p · �Σ
h |�p|

)
γ0
(
1 − γ5

)(�p · �Σ
h′ |�p| u

(h′)
να

(p)

)

= hh′ u(h)
να (p) γ0

(
1 − γ5

)
u(h′)

να
(p) , (9.39)

which implies

u
(h)
να (p) γ0

(
1 − γ5

)
u(h′)

να
(p) ∝ δhh′ . (9.40)

9.2 Evolution of neutrino flavors

Let us consider44 an ultrarelativistic left-handed neutrino with flavor α (α = e, µ, τ)
and momentum �p. This neutrino is described by the flavor state in eqn (7.4),

|να〉 =
∑

k

U∗αk |νk〉 , (9.41)

with the normalizations in eqns (7.5) and (7.6). The massive neutrino state |νk〉
with momentum �p is an eigenstate of the vacuum Hamiltonian H0:

H0 |νk〉 = Ek |νk〉 , with Ek =

√
�p2 +m2

k . (9.42)

The total Hamiltonian in matter is

H = H0 + HI , with HI |να〉 = Vα |να〉 , (9.43)

where Vα, given in eqn (9.22), is the effective potential felt by the ultrarelativistic
left-handed flavor neutrino (see eqn (9.29)).

44 A more complicated wave-packet treatment is necessary for the derivation of neutrino
oscillations in matter by taking into account different energies and momenta of the different
massive neutrino components [534].
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In the Schrödinger picture, a neutrino state with initial flavor α obeys the
evolution equation

i
d

dt
|να(t)〉 = H |να(t)〉 , with |να(0)〉 = |να〉 . (9.44)

The amplitude of να → νβ transitions after a time t is given by

ψαβ(t) = 〈νβ |να(t)〉 , with ψαβ(0) = δαβ . (9.45)

Thus, the probability that a neutrino born at t = 0 with flavor α is found to have
flavor β after a time t is

Pνα→νβ
(t) = |ψαβ(t)|2 . (9.46)

From eqns (9.41)–(9.45), the time evolution equation of the flavor transition
amplitudes is

i
d

dt
ψαβ(t) =

∑
η

(∑
k

Uβk Ek U
∗
ηk + δβη Vβ

)
ψαη(t) . (9.47)

It is possible to show that45 ∑
η

ψαη(t)ψ∗βη(t) = δαβ . (9.48)

For α = β, one obtains the equation of conservation of probability∑
β

Pνα→νβ
(t) =

∑
β

|ψαβ(t)|2 = 1 . (9.49)

For ultrarelativistic neutrinos, we have

Ek � E +
m2

k

2E
, p � E , t � x , (9.50)

where x is the distance from the source. With these approximations, eqn (9.47)
becomes the evolution equation in space

i
d

dx
ψαβ(x) =

(
p+

m2
1

2E
+ VNC

)
ψαβ(x)

+
∑

η

(∑
k

Uβk
∆m2

k1

2E
U∗ηk + δβe δηe VCC

)
ψαη(x) . (9.51)

In this expression, we separated out the term
(
p+m2

1/2E + VNC

)
ψαβ(x), which is

irrelevant for the flavor transitions, since it generates a phase common to all flavors.

45 The initial conditions in eqn (9.45) imply that eqn (9.48) is trivially satisfied at t = 0
and, from eqn (9.47), one can find d

dt
ψαη(t)ψ∗

βη(t) = 0.
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It can be eliminated by the phase shift

ψαβ(x) → ψαβ(x) e−i(p+m2
1/2E)x−i

R
x

0
VNC(x′) dx′

, (9.52)

which does not have any effect on the probability of να → νβ transitions in
eqn (9.46) (with t = x). Therefore, the relevant evolution equation for the flavor
transition amplitudes is

i
d

dx
ψαβ(x) =

∑
η

(∑
k

Uβk
∆m2

k1

2E
U∗ηk + δβe δηe VCC

)
ψαη(x) , (9.53)

which shows that neutrino oscillations in matter, as neutrino oscillations in vacuum,
depend on the differences of the squared neutrino masses, not on the absolute value
of neutrino masses. Equation (9.53) can be written in matrix form as

i
d

dx
Ψα = HF Ψα . (9.54)

This equation has the structure of a Schrödinger equation with the effective
Hamiltonian matrix HF in the flavor basis given by

HF =
1

2E

(
U M

2 U † + A
)
. (9.55)

In the case of three-neutrino mixing, we have

Ψα =

⎛⎝ψαe

ψαµ

ψατ

⎞⎠ , M
2 =

⎛⎝0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

⎞⎠ , A =

⎛⎝ACC 0 0
0 0 0
0 0 0

⎞⎠ ,

(9.56)
where

ACC ≡ 2E VCC = 2
√

2EGFNe . (9.57)

One can easily check that HF is Hermitian.
Based on the evolution equation (9.54), one can prove that the Majorana phases

in the mixing matrix do not have any effect on neutrino oscillations in vacuum
[234, 376] as well as in matter [713]. In fact, the diagonal matrix of Majorana phases
DM on the right of the mixing matrix in eqn (6.189) cancels in the product UM

2U †.
Therefore, the Dirac or Majorana nature of neutrinos cannot be distinguished in
neutrino oscillations.

9.3 The MSW effect

Since the case of three neutrino mixing is too complicated for an introductory
discussion, in this section we consider the simplest case of two neutrino mixing
between νe, νµ and ν1, ν2. The case of νe-ντ mixing is identical, since νµ and ντ

have the same matter potential (see eqn (9.22)). In the case of νe-νs mixing, where
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νs is a sterile neutrino, one can use the following formulas with the replacement
VCC → VCC + VNC, which corresponds to the change Ne → Ne −Nn/2.

We assume the initial neutrino to be an electron neutrino, i.e. α = e in the
equations in section 9.2. This is the most interesting case, because of its application
to solar neutrinos, which are created and propagate in the dense interior of the Sun.

Neglecting an irrelevant common phase

exp

[
−i∆m2x/4E − i

2

∫ x

0

VCC(x′) dx′
]
, (9.58)

the evolution equation (9.54) can be written as

i
d

dx

(
ψee

ψeµ

)
=

1

4E

(
−∆m2 cos 2ϑ+ACC ∆m2 sin 2ϑ

∆m2 sin 2ϑ ∆m2 cos 2ϑ−ACC

)(
ψee

ψeµ

)
, (9.59)

where ∆m2 ≡ m2
2 −m2

1 and ϑ is the mixing angle, defined by

νe = cosϑ ν1 + sinϑ ν2 , νµ = − sinϑ ν1 + cosϑ ν2 . (9.60)

For an initial νe, the initial condition for the evolution equation (9.59) is

Ψe(0) =

(
ψee(0)
ψeµ(0)

)
=

(
1
0

)
, (9.61)

and the probabilities of νe → νµ transitions and νe survival are, respectively,

Pνe→νµ
(x) = |ψeµ(x)|2 , Pνe→νe

(x) = |ψee(x)|2 = 1 − Pνe→νµ
(x) . (9.62)

In practice, the evolution equation of the flavor transition amplitudes can always
be solved numerically with sufficient degree of precision given enough computa-
tional power. In the following we will discuss an approximate analytical solution
of the evolution equation (9.59) in the case of a matter density profile which is
sufficiently smooth. This solution is useful in order to understand the qualitative
physical aspects of the problem. It is also very useful in practice for the analysis of
experimental data when the space of mixing parameters must be scanned to find
the allowed regions. In these cases, the numerical solution of the evolution equation
is impractical, since it is too slow.

The evolution equation (9.59) has the structure of a Schrödinger equation with
the effective Hamiltonian matrix in the flavor basis

HF =
1

4E

(
−∆m2 cos 2ϑ+ACC ∆m2 sin 2ϑ

∆m2 sin 2ϑ ∆m2 cos 2ϑ−ACC

)
. (9.63)

This matrix can be diagonalized by the orthogonal transformation

UT
M HF UM = HM , (9.64)

where

HM =
1

4E
diag(−∆m2

M,∆m
2
M) (9.65)
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is the effective Hamiltonian matrix in the mass basis in matter. The unitary matrix

UM =

(
cosϑM sinϑM

− sinϑM cosϑM

)
(9.66)

is the effective mixing matrix in matter, and

∆m2
M =

√
(∆m2 cos 2ϑ−ACC)

2
+ (∆m2 sin 2ϑ)

2
(9.67)

is the effective squared-mass difference. The effective mixing angle in matter ϑM is
given by

tan 2ϑM =
tan 2ϑ

1 − ACC

∆m2 cos 2ϑ

. (9.68)

The interesting new phenomenon, discovered by Mikheev and Smirnov in 1985
[801, 802] (see also the lucid explanation in Ref. [222]), is that there is a resonance
when ACC becomes equal to

AR
CC = ∆m2 cos 2ϑ , (9.69)

which corresponds to the electron number density

NR
e =

∆m2 cos 2ϑ

2
√

2EGF

. (9.70)

At the resonance the effective mixing angle is equal to π/4, i.e. the mixing is
maximal, leading to the possibility of total transitions between the two flavors if
the resonance region is wide enough. This mechanism is called the MSW effect,
named after Mikheev, Smirnov, and Wolfenstein. Note that the effective squared-
mass difference in matter in eqn (9.67) has its minimum value at the resonance,
where

∆m2
M

∣∣
R

= ∆m2 sin 2ϑ . (9.71)

Since, in normal matter, ACC is positive, a resonance can exist only if ϑ < π/4,
because for ϑ > π/4 we have cos 2ϑ < 0. Therefore, the behavior of neutrino
oscillations in matter is different from that of neutrino oscillations in vacuum, whose
probability is symmetric under the exchange ϑ → π/2 − ϑ (see eqn (7.70)). For
antineutrinos the potential is reversed, as explained in section 9.1, and there can
be a resonance only if ϑ > π/4.

Since

cos 2ϑM =
∆m2 cos 2ϑ−ACC

∆m2
M

, sin 2ϑM =
∆m2 sin 2ϑ

∆m2
M

, (9.72)

the evolution equation (9.59) can be written, in terms of the mixing angle in matter,
as

i
d

dx

(
ψee

ψeµ

)
=

1

4E

(
−∆m2

M cos 2ϑM ∆m2
M sin 2ϑM

∆m2
M sin 2ϑM ∆m2

M cos 2ϑM

)(
ψee

ψeµ

)
. (9.73)
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Performing the transformation

Ψe = UM Φe , with Ψe =

(
ψee

ψeµ

)
, Φe =

(
φe1

φe2

)
, (9.74)

which diagonalizes the effective Hamiltonian matrix in eqn (9.63), the evolution
equation (9.59) becomes

i
d

dx

(
φe1

φe2

)
=

1

4E

(
−∆m2

M −4EidϑM/dx
4EidϑM/dx ∆m2

M

)(
φe1

φe2

)
. (9.75)

The off-diagonal terms proportional to dϑM/dx are due to the derivative dΨe/dx =
(dUM/dx)Φe + UM(dΦe/dx). From eqn (9.61), the initial conditions of the
differential equation (9.75) are(

φe1(0)
φe2(0)

)
=

(
cosϑ

(i)
M − sinϑ

(i)
M

sinϑ
(i)
M cosϑ

(i)
M

)(
1
0

)
=

(
cosϑ

(i)
M

sinϑ
(i)
M

)
, (9.76)

where ϑ
(i)
M is the effective mixing angle in matter at the point of neutrino production.

The quantities ψr, with r = 1, 2, can be thought of as the amplitudes of the effective
massive neutrino νM

r in matter (although such a probability is not measurable, since
only flavor neutrinos can be detected).

If the matter density is constant, dϑM/dx = 0 and the evolutions of the ampli-
tudes of the effective massive neutrinos in matter are decoupled, leading to the
transition probability

Pνe→νµ
(x) = sin2 2ϑM sin2

(
∆m2

Mx

4E

)
, (9.77)

which has the same structure as the two-neutrino transition probability in vacuum
in eqn (7.70), with the mixing angle and the squared-mass difference replaced by
their effective values in matter. The oscillation length in matter is

Losc
M =

4πE

∆m2
M

. (9.78)

If the matter density is not constant, it is necessary to take into account the
effect of dϑM/dx, which is given by

dϑM

dx
=

1

2

sin 2ϑM

∆m2
M

dACC

dx
. (9.79)

The effect of the off-diagonal terms proportional to dϑM/dx in the evolution equa-
tion (9.75) is to generate transitions between νM

1 and νM
2 . Such transitions, however,

are negligible if the off-diagonal terms are much smaller than the difference between
the diagonal terms. In order to quantify the amount of such transitions, it is useful
to introduce the so-called adiabaticity parameter

γ =
∆m2

M

4E|dϑM/dx|
=

(∆m2
M)2

2E sin 2ϑM|dACC/dx|
. (9.80)

If γ � 1 in all points of the neutrino trajectory, the evolution is adiabatic, which
means that the transitions between νM

1 and νM
2 are negligible. This is the simplest
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case, because it implies that each amplitude ψr, with r = 1, 2, evolves independently
and the effect of the evolution is a simple phase factor:

φe1(x) = exp

(
i

∫ x

0

∆m2
M(x′)
4E

dx′
)
φe1(0) , (9.81)

φe2(x) = exp

(
−i
∫ x

0

∆m2
M(x′)
4E

dx′
)
φe2(0) . (9.82)

Taking into account the initial conditions in eqn (9.76), the νe survival probability
in eqn (9.62) is given by

P adiabatic
νe→νe

(x) =
1

2
+

1

2
cos 2ϑ

(i)
M cos 2ϑ

(f)
M

+
1

2
sin 2ϑ

(i)
M sin 2ϑ

(f)
M cos

(∫ x

0

∆m2
M(x′)
2E

dx′
)
, (9.83)

where ϑ
(f)
M is the effective mixing angle at the detection point. This survival prob-

ability is composed of a constant term which depends on the mixing angle and
an oscillating term whose phase depends on the effective squared-mass difference
integrated over the neutrino path.

In practice, the adiabatic evolution can be realized in the case of neutrinos pro-
duced in stars, such as solar neutrinos (see section 10.8) or supernova neutrinos (see
chapter 15), because stars are composed of plasma, with a smooth density varia-
tion. In such cases, neutrinos are detected very far away, practically in vacuum46,

and the final effective mixing angle ϑ
(f)
M is equal to the vacuum mixing angle ϑ.

Moreover, since the distance between the neutrino source and the detector is huge,
the phase of the cosine in eqn (9.83) is very large and has a variation much larger
than 2π in the energy resolution interval of the detector. In this case, the cosine
averages to zero and the measurable average survival probability is given by

P
adiabatic

νe→νe
=

1

2
+

1

2
cos 2ϑ

(i)
M cos 2ϑ , (9.84)

which is independent of the source–detector distance.
The behavior of ϑM as a function of the electron number densityNe is illustrated

in Fig. 9.2a, for ∆m2 = 7×10−6 eV2, sin2 2ϑ = 10−3, and E = 1 MeV. One can see
that for Ne � NR

e the effective mixing angle is practically equal to the mixing angle
in vacuum, ϑM � ϑ, for Ne � NR

e the effective mixing angle varies very rapidly
with the electron number density, passing through 45◦ at Ne = NR

e and increasing
rapidly to 90◦ for Ne > NR

e .

46 What is important is the density of the medium in which the neutrino propagates
before reaching the detector. The density of the detector is irrelevant, because the size of
the detector is too small to have significant flavor transitions.
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Fig. 9.2. Effective mixing angle ϑM (a) and the effective squared-masses m2
M1,

m2
M2 (b) in matter as functions of the electron number density Ne divided by

the Avogadro’s number NA, for m1 = 0, ∆m2 = 7 × 10−6 eV2, sin2 2ϑ = 10−3

and E = 1 MeV. NR
e ≡ ∆m2 cos 2ϑ/2

√
2EGF is the electron number density at

the resonance, where ϑM = 45◦.

Figure 9.2b shows the corresponding behavior of the effective squared-masses
m2

M1 and m2
M2, which are given by

m2
M2,1 =

1

2

(
m2

1 +m2
2 +ACC ± ∆m2

M

)
, (9.85)

where we took into account the common phases in eqns (9.51) and (9.58), except
for the neutral-current contribution 2EVNC. From Fig. 9.2b one can see that the
effective squared-mass difference ∆m2

M reaches its minimum value at the resonance.
This figure is useful in order to understand how the presence of a resonance can
induce an almost complete νe → νµ conversion of solar neutrinos. If the mixing
parameters are such that Ne � NR

e at the center of the Sun, the effective mixing
angle is practically 90◦ and electron neutrinos are produced as almost pure ν2. As
the neutrino propagates out, it crosses the resonance at Ne = NR

e , where the energy
gap between ν1 and ν2 is minimum. If the resonance is crossed adiabatically, the
neutrino remains ν2 and exits the Sun as ν2 = sinϑ νe + cosϑ νµ, which is almost
equal to νµ if the mixing angle is small, leading to almost complete νe → νµ

conversion. This is the case in which the MSW effect is most effective and striking,
since a large conversion is achieved in spite of a small mixing angle.

We now discuss the case of nonadiabatic evolution, in which the off-diagonal
terms proportional to dϑM/dx in the evolution equation (9.75) generate transitions
between νM

1 and νM
2 . The transitions are sizable in the regions where the adiabaticity

parameter γ in eqn (9.80) is of the order of or less than unity, and reach their
maximal size at the minimum of γ [803, 804, 463, 744]. In order to find such a
minimum, called the point of maximum violation of adiabaticity (MVA), we find,
from the expression of cos 2ϑM in eqn (9.72),

dACC

dx
= − ∆m2

M

sin2 2ϑM

d cos 2ϑM

dx
, (9.86)
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from which γ can be written as

γ =
∆m2 sin 2ϑ

2E|d cos 2ϑM/dx|
. (9.87)

For the MVA point xMVA, we obtain the condition [744]

d2 cos 2ϑM

dx2

∣∣∣∣
x=xMVA

= 0 . (9.88)

Hence, the MVA point is, in general, different from the resonance point xR, which,
from eqns (9.69) and (9.72), is given by

cos 2ϑM|x=xR
= 0 . (9.89)

However, calculating the second derivative in eqn (9.88), we obtain[
3 cos 2ϑM sin 2ϑM

(
dACC

dx

)2

+ ∆m2 sin 2ϑ
d2ACC

dx2

]
x=xMVA

= 0 . (9.90)

For a linear density, d2ACC/dx
2 = 0. In this case, the MVA point is equal to

the resonance point. If the mixing is small, the second term in eqn (9.90) can
be neglected and the MVA point is well approximated by the resonance point.
In practice, as one can see from the expression in eqn (9.87), for relatively large
values of ∆m2, the adiabaticity parameter is small only for small values of the
mixing angle. Hence, in practice, the nonadiabatic transitions between νM

1 and νM
2

can be calculated with good accuracy by approximating the MVA point with the
resonance point (exceptions for solar neutrinos are discussed in Refs. [463, 744]). In
the following we will adopt this approximation. Note, however, that the resonance
may exist only if ϑ ≤ π/4, whereas the MVA point is defined for any value of ϑ
in its defining interval [0, π/2]. Thus, in the following we will consider the most
interesting case of ϑ ≤ π/4.

We consider neutrinos created at a high density, above the resonance, propagat-
ing in a medium with monotonously decreasing density, and detected practically

in vacuum (see footnote 46 on page 335), where ϑ
(f)
M � ϑ. This may be the case

of solar neutrinos or supernova neutrinos. If the resonance is not crossed adiabat-
ically, νM

1 � νM
2 transitions occur in an interval around the resonance. Neglecting

the width of the resonance region, we can write the amplitudes of νM
1 and νM

2 at
any point x after the resonance crossing as

φe1(x) =

[
cosϑ

(i)
M exp

(
i

∫ xR

0

∆m2
M(x′)
4E

dx′
)
AR

11

+ sinϑ
(i)
M exp

(
−i
∫ xR

0

∆m2
M(x′)
4E

dx′
)
AR

21

]
exp

(
i

∫ x

xR

∆m2
M(x′)
4E

dx′
)
,

(9.91)

φe2(x) =

[
cosϑ

(i)
M exp

(
i

∫ xR

0

∆m2
M(x′)
4E

dx′
)
AR

12
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+ sinϑ
(i)
M exp

(
−i
∫ xR

0

∆m2
M(x′)
4E

dx′
)
AR

22

]
exp

(
−i
∫ x

xR

∆m2
M(x′)
4E

dx′
)
,

(9.92)

where AR
kj is the amplitude of νM

k → νM
j transitions in the resonance. As we have

already noted in connection with eqn (9.83), if the source–detector distance is
very large and ∆m2

M is not too small, all the phases in eqns (9.91) and (9.92) are
very large and rapidly oscillating as functions of the neutrino energy. In this case,
the average of the transition probability over the energy resolution of the detec-
tor washes out all interference terms and the measurable quantity is the averaged
survival probability

P νe→νe
= cos2 ϑ cos2 ϑ

(i)
M |AR

11|2 + cos2 ϑ sin2 ϑ
(i)
M |AR

21|2

+ sin2 ϑ cos2 ϑ
(i)
M |AR

12|2 + sin2 ϑ sin2 ϑ
(i)
M |AR

22|2 , (9.93)

which is independent of the source–detector distance. From the conservation of
probability, we have

|AR
11|2 = |AR

22|2 = 1 − Pc , |AR
12|2 = |AR

21|2 = Pc , (9.94)

where Pc is the νM
1 � νM

2 crossing probability at the resonance. Thus, we obtain
the so-called Parke formula [851] for the averaged νe survival probability:

P νe→νe
=

1

2
+

(
1

2
− Pc

)
cos 2ϑ

(i)
M cos 2ϑ . (9.95)

This formula has been widely used for the analysis of the solar neutrino data.
The main problem in the application of the Parke formula in eqn (9.95) is the

calculation of the crossing probability. This probability must involve the energy gap
∆m2

M/2E between νM
1 and νM

2 and the off-diagonal terms proportional to dϑM/dx in
eqn (9.75), which cause the νM

1 � νM
2 transitions. For the electron density profiles47

in Table 9.1, the crossing probability can be written as [869, 697, 870, 708]

Pc =
exp

(
−π

2 γRF
)
− exp

(
−π

2 γR
F

sin2 ϑ

)
1 − exp

(
−π

2 γR
F

sin2 ϑ

) , (9.96)

where γR is the adiabaticity parameter at the resonance,

γR =
∆m2

M/2E

2|dϑM/dx|

∣∣∣∣
R

=
∆m2 sin2 2ϑ

2E cos 2ϑ |d lnNe/dx|R
. (9.97)

The value of the parameter F depends on the electron density profile. The results
of its calculations by approximate analytic solution of the evolution equation for
three useful density profiles are given in Table 9.1. Especially useful is the case of an
exponential density profile, which is a good approximation for the solar neutrinos
(see section 10.8).

47 The values of Pc for other density profiles have been calculated in Refs. [827, 708].
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Table 9.1. Values of the parameter F for various electron density profiles.

Density profile F Refs.

Ne ∝ x 1
[851, 604, 875]
[868, 708, 157]

Ne ∝ 1/x
(
1 − tan2 ϑ

)2
/
(
1 + tan2 ϑ

)
[708]

Ne ∝ e−x 1 − tan2 ϑ
[869, 697, 870, 875, 1020]

[655, 632, 708, 157]

Since F ∼ 1, one can see, from eqn (9.96), that if γR is large,

P (γR�1)
c � 1 , (9.98)

and the resonance is crossed adiabatically. In this case, eqn (9.95) reduces to the
adiabatic survival probability in eqn (9.84).

On the other hand, if γR is very small, we have the so-called extreme

nonadiabatic limit, for which

P (γR	1)
c � cos2 ϑ . (9.99)

Considering a neutrino produced in a very dense environment, where cos 2ϑ
(i)
M � −1,

the averaged νe survival probability in eqn (9.95) becomes

P
(γR	1)

νe→νe
� 1 − 1

2
sin2 2ϑ . (9.100)

This is the average survival probability of electron neutrino in vacuum (see
eqn (7.73)). The physical reason for this equality can be understood as follows.

Since cos 2ϑ
(i)
M � −1, an electron neutrino is created practically as a νM

2 . The
νe � νM

2 propagates undisturbed towards the resonance, where the density varia-
tion is very rapid. In this case, there is no time to generate flavor transitions and
the neutrino emerges from the resonance as a νe. After the resonance, the effective
mixing is practically equal to the mixing in vacuum and the oscillations from the
resonance to the detector are oscillations in vacuum.

The most important application of the MSW effect is in solar neutrino flavor
transitions, to be discussed in section 10.8.

9.4 Slab approximation

Sometimes neutrinos propagate through a medium whose density can be approx-
imated by a series of slabs with constant density. In such cases, according to
eqn (9.75), the effective massive neutrinos propagate as plane waves in regions
of constant density, with phases exp

(
±i∆m2

M∆x/4E
)
, where ∆x is the width of
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the slab. At the boundaries of slabs the wave functions of flavor neutrinos

Ψe =

(
ψee

ψeµ

)
(9.101)

are joined according to the scheme

Ψe(xn) =
[
UM UM(xn − xn−1)U

†
M

]
(n)

[
UM UM(xn−1 − xn−2)U

†
M

]
(n−1)

. . .
[
UM UM(x2 − x1)U

†
M

]
(2)

[
UM UM(x1 − x0)U

†
M

]
(1)

Ψe(x0) , (9.102)

where x0 is the coordinate of the starting point, x1, x2, . . . , xn are the boundaries
of n slabs, and

UM(∆x) = diag
(
exp

(
i∆m2

M∆x/4E
)
, exp

(
−i∆m2

M∆x/4E
))

(9.103)

is the unitary evolution operator in each slab diagonal basis. The notation [. . .](i)
indicates that all the matter-dependent quantities in the square brackets must be
evaluated with the matter density in the ith slab, which extends from xi−1 to xi.

The unitary evolution operator in the flavor basis in each slab with constant
density

U (x) = UM UM(x)U †M (9.104)

can also be determined as follows. Let us write the effective Hamiltonian matrix in
eqn (9.63) in terms of the Pauli matrices:

HF =
1

4E

[
∆m2 sin 2ϑσ1 −

(
∆m2 cos 2ϑ−ACC

)
σ3
]
. (9.105)

Defining the unit vector

�n =
1

∆m2
M

(
∆m2 sin 2ϑ , 0 , −

(
∆m2 cos 2ϑ−ACC

))
= (sin 2ϑM , 0 , − cos 2ϑM) , (9.106)

we have

HF =
∆m2

M

4E
�n ·�σ . (9.107)

Then, the unitary evolution operator in the flavor basis in each slab with constant
density is given by

U (x) = exp (−iHFx) = cosϕ(x) − i (�n ·�σ) sinϕ(x) , (9.108)

with the phase

ϕ(x) =
∆m2

M x

4E
. (9.109)

This expression is useful in the study of the parametric resonance, discussed in the
following section.
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Fig. 9.3. Castle wall density profile.

9.5 Parametric resonance

The MSW effect can occur when neutrinos propagate through a medium with den-
sity profile which is monotonically varying and smooth. In such a case there may be
a resonance region where the effective mixing angle is close to maximal, leading to
large flavor transitions. However, it is also possible to have large flavor transitions in
another case, the so-called parametric resonance [51, 698, 748, 871, 50, 315, 316]. In
general, a parametric resonance can occur in dynamical systems whose parameters
vary periodically in time. In the case of neutrino oscillations a parametric resonance
can occur if the matter potential varies periodically along the neutrino path. In this
case, the origin of the resonance is different from the MSW effect, because, in gen-
eral, the mixing angle does not need to become large along the neutrino path. The
amplification of the transition probability is due to the modification of the phase
of oscillations.

In this section, we discuss the parametric resonance in the case of the so-called
castle wall density profile depicted in Fig. 9.3, which is a periodic step function
with

ACC(x) =

⎧⎪⎨⎪⎩
A

(1)
CC for x0 ≤ x < x1 ,

A
(2)
CC for x1 ≤ x < x2 ,

ACC(x+X) ,

(9.110)

with the period X = x2 − x0 = X1 +X2, where X1 = x1 − x0 and X2 = x2 − x1.
Using the expression in eqn (9.108) for the unitary evolution operator in the flavor
basis in each of the two periodic slabs with constant density, we have

Uk = ck − i (�nk ·�σ) sk (k = 1, 2) , (9.111)

with ck ≡ cosϕk and sk ≡ sinϕk. Here ϕk = ∆m2
MkXk/4E is the phase in the kth

slab, with effective squared-mass difference ∆m2
Mk. The evolution operator for one

period is given by [50]

UX = U2U1 = R − i�σ ·�I , (9.112)
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with

R = c1c2 − s1s2 (�n1 ·�n2) , (9.113)

�I = s1c2�n1 + c1s2�n2 − s1s2�n1 ×�n2 . (9.114)

Since R2 + |�I|2 = 1, as required by unitarity (UXU
†

X = U
†

XUX = 1), the evolution
operator for one period can also be written as

UX = exp
[
−i
(
�σ · �N

)
ξ
]
, (9.115)

with

ξ = arccosR = arcsin |�I| , (9.116)

�N = �I/|�I| . (9.117)

Furthermore, we have

�n1 ·�n2 = cos 2(ϑM1 − ϑM2) , (9.118)

�n1 ×�n2 = (0 , sin 2(ϑM1 − ϑM2) , 0) , (9.119)

and the components of the vector �I are given by

I1 = s1c2 sin 2ϑM1 + c1s2 sin 2ϑM2 , (9.120)

I2 = −s1s2 sin 2(ϑM1 − ϑM2) , (9.121)

I3 = −s1c2 cos 2ϑM1 − c1s2 cos 2ϑM2 . (9.122)

Considering now a castle wall potential with p periods, the evolution operator
is simply given by the pth power of UX :

UpX = exp
[
−i
(
�σ · �N

)
pξ
]
. (9.123)

Taking into account the initial condition in eqn (9.61), we have

Ψe(pX) = UpX Ψe(0) =

(
[UpX ]11
[UpX ]21

)
. (9.124)

Therefore, the probability of νe → νµ transitions is given by

Pνe→νµ
(pX) = |[UpX ]21|2 =

[
(N1)

2 + (N2)
2
]
sin2 pξ =

(
1 − (I3)

2

|�I |2

)
sin2 pξ .

(9.125)
Therefore, the amplitude of the oscillations can be large if the third component
of �I is small. Parametric resonance occurs for a vanishing I3, which, according to
eqn (9.122), corresponds to the condition

s1c2 cos 2ϑM1 + c1s2 cos 2ϑM2 = 0 . (9.126)

It is to be noted that both the amplitude and the phase of the oscillations are
different from those in either of the two slabs with constant density in the castle
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Fig. 9.4. One and half period castle wall density profile.

wall. In particular, the amplitude can be maximal even if the effective mixing angles
in both slabs are small.

Let us finally consider the one and half period castle wall potential depicted in
Fig. 9.4. This is, for example, a good approximation of the Earth’s density (see
section 10.9). In this case, the evolution operator is given by [50]

U = U1U2U1 = U1UX = Z − i�σ · �W , (9.127)

with

Z = 2c1R − c2 , (9.128)

�W = 2s1R�n1 + s2�n2 . (9.129)

Using eqn (9.113), one can easily check that Z2+ | �W |2 = 1, as required by unitarity
(U U † = U †U = 1). Since W2 = 0, the probability of νe → νµ transitions is given
by

Pνe→νµ
= (W1)

2 = [2s1 sin 2ϑM1 (c1c2 − s1s2 cos 2(ϑM1 − ϑM2)) + s2 sin 2ϑM2]
2 .

(9.130)
This probability can be large, depending on the values of the quantities involved
(for detailed discussions of the maxima of the transition probability see Ref. [50]).

9.6 Geometrical representation

In this section we describe a geometrical representation of neutrino oscillations
developed in Refs. [671, 669]. It is convenient to introduce the density matrix
formalism, which is useful for the description of oscillations of neutrino ensembles
with more than one initial flavor, with possible loss of coherence (for example, the
case of neutrinos in the early Universe; see Ref. [379]).
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A neutrino beam can be described by the Hermitian density matrix operator48

ρ̂(x) =
∑
α

|να(x)〉Wα 〈να(x)| , (9.131)

where Wα is the initial statistical weight of flavor α, i.e. the probability of the flavor
α at x = t = 0. The initial statistical weights are real numbers between zero and
one, such that ∑

α

Wα = 1 . (9.132)

The density matrix operator is suitable for the description of a neutrino beam
composed of an initial incoherent mixture of different neutrino flavors, which are
generated in different processes. The special case of one initial flavor β is obtained
by setting Wα = δαβ . The density matrix is normalized by

Tr[ρ̂(x)] ≡
∑

a

〈νa|ρ̂(x)|νa〉 = 1 , (9.133)

where {|νa〉} is a complete set of states. The probability of detection of a neutrino
with flavor β at a distance x is given by

Pβ(x) = Tr[ρ̂(x)|νβ〉〈νβ |] = 〈νβ |ρ̂(x)|νβ〉 = ρF
ββ(x) , (9.134)

where |νβ〉〈νβ | is the β-flavor operator and ρF(x) is the density matrix in the flavor
basis, with elements given by

ρF
ηξ(x) = 〈νη|ρ̂(x)|νξ〉 =

∑
α

Wα ψαη(x)ψ∗αξ(x) . (9.135)

One can easily verify that the density matrix is Hermitian and its trace is equal
to unity (from the conservation of probability in eqn (9.49)). Moreover, by using
eqn (9.48), one can find that

Tr
[
ρ̂2(x)

]
=
∑
η,ξ

〈νη|ρ̂(x)|νξ〉〈νξ|ρ̂(x)|νη〉 =
∑
α

W 2
α . (9.136)

Hence, the trace of the square of the density matrix is equal to unity only if there is
only one initial flavor. In this case, the beam is coherent. On the other hand, if the
beam is initially composed of more than one flavor, it is incoherent and Tr

[
ρ̂2(x)

]
is less than unity. Note, however, that the trace of ρ̂2(x) depends only on the initial
conditions. This means that there is no loss of coherence during the evolution of
the neutrino beam49.

48 Also called the density operator or statistical operator.
49 The loss of coherence due to inelastic collisions with the medium can be described

by adding a damping term to the evolution equation of the density matrix [985]. A loss of
coherence can also be due to the separation of the massive neutrino wave packets [534].
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The evolution equation of the density matrix in the flavor basis, obtained from
the evolution (9.53) of the flavor transition amplitudes, is

i
dρF

dx
=
[
HF , ρ

F
]
, (9.137)

with the initial condition, from eqn (9.45),

ρF
ηξ(0) = Wη δηξ . (9.138)

Since the effective Hamiltonian matrix HF is Hermitian, it can be diagonalized by
the unitary transformation

U †M HF UM = HM , with (HM)kj = (HM)kk δkj . (9.139)

UM is the unitary effective mixing matrix in matter. For the density matrix in the
effective mass basis in matter,

ρM = U †M ρF UM , (9.140)

we find that the evolution equation

i
dρM

dx
=
[
HM , ρM

]
− i

[
U †M

dUM

dx
, ρM

]
. (9.141)

Considering, for simplicity, the adiabatic case in which the second term in the right-
hand side of eqn (9.141) is negligible, we obtain the decoupled evolution equations

i
dρM

kj

dx
= [(HM)kk − (HM)jj ] ρ

M
kj , (9.142)

for the components of ρM. In this case, the diagonal elements of ρM remain constant
and, for k �= j,

ρM
kj(x) = ρM

kj(0) exp

(
−i
∫ x

0

[(HM(x′))kk − (HM(x′))jj ] dx
′
)
. (9.143)

Let us now consider the simplest case of two-neutrino mixing50 in the νe-
νµ sector discussed in section 9.3, with the effective Hamiltonian matrix HF in
eqn (9.63). Since HF is traceless and the trace of ρF is equal to unity, by using the
decomposition in eqn (A.42), we can write these two 2 × 2 matrices as

HF = −1

2
�σF · �B , ρF =

1

2
1 +

1

2
�σF ·�S , (9.144)

with the vectors

�σF =

3∑
a=1

σa�eFa , �B =

3∑
a=1

Ba
F�e

F
a , �S =

3∑
a=1

Sa
F�e

F
a , (9.145)

where �eF1 , �eF2 , and �eF3 are three orthonormal vectors which form the flavor basis

(�eFa ·�eFb = δab). The components of the vectors �B and �S in the flavor basis are

B1
F = − ∆m2 sin 2ϑ

2E
= −∆m2

M sin 2ϑM

2E
, (9.146)

50 The present treatment can be generalized to three-neutrino mixing by using, instead
of the Pauli SU(2) matrices, the Gell-Mann SU(3) matrices [669, 670].
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Fig. 9.5. Precession of �S around �B in a medium with constant Ne < NR
e in the
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B2
F = 0 , (9.147)

B3
F =

∆m2 cos 2ϑ−ACC

2E
=

∆m2
M cos 2ϑM

2E
(9.148)

and

S1
F = 2eρF

eµ , S2
F = −2�mρF

eµ , S3
F = ρF

ee − ρF
µµ . (9.149)

From the initial condition for the density matrix in eqn (9.138), we obtain

S1
F(0) = 0 , S2

F(0) = 0 , S3
F(0) = We −Wµ . (9.150)

Hence, if the initial state is a pure electron neutrino (We = 1 and Wµ = 0), the

vector �S(0) has unit length and is aligned along �eF3 , as shown in Fig. 9.5. If the

initial state is a pure muon neutrino (We = 0 and Wµ = 1), the vector �S(0) also has

unit length, but it is aligned along −�eF3 . If the initial state is an incoherent mixture

of νe and νµ, the length of �S(0) is shorter than unity and it is directed along ±�eF3 ,

depending on the relative amount of νe and νµ. In general, a length of �S smaller
than unity indicates an incoherent mixture.

From eqns (9.134), (9.144), and (9.145), the probabilities of detection of a νe or
a νµ at a distance x are given by

Pe(x) = ρF
ee(x) =

1

2

(
1 + S3

F

)
=

1

2

(
1 + �S ·�eF3

)
, (9.151)

Pµ(x) = ρF
µµ(x) =

1

2

(
1 − S3

F

)
=

1

2

(
1 − �S ·�eF3

)
. (9.152)



GEOMETRICAL REPRESENTATION 347

The evolution equation of the vector �S is

d�S

dx
= �S × �B . (9.153)

This equation is analogous to that of a magnetic moment �S, with a gyromagnetic
ratio g = 1, precessing around a magnetic field �B. The precession frequency is

ω = −|�B| = −∆m2
M

2E
, (9.154)

where ∆m2
M is the effective squared-mass difference in eqn (9.67) (which reduces

to ∆m2 in vacuum). The negative sign of ω means that �S is precessing in the

anticlockwise sense when viewed along the direction of �B, as shown in Fig. 9.5 for
a medium with constant density (or in vacuum), in which �B is constant. In this

case, �S describes the surface of a cone with the axis along �B and opening angle
2ϑM. In fact, �S · �B/|�S||�B| is a constant of motion and from eqns (9.72), (9.150) and

eqns (9.146)–(9.148), we have �S(0) · �B/|�S(0)||�B| = cos 2ϑM .

The precession of �S around �B becomes clear by rotating the reference frame
from the flavor basis to the mass basis �eM1 , �eM2 , and �eM3 , with

�σM =

3∑
a=1

σa�eMa , �B =

3∑
a=1

Ba
M�e

M
a , �S =

3∑
a=1

Sa
M�e

M
a . (9.155)

The mass basis is obtained by writing the diagonal 2 × 2 effective Hamiltonian in
eqn (9.139) as

HM = −1

2
�σM · �B . (9.156)

From eqns (9.139) and (9.144), we obtain

�σM = U †M�σF UM = HM , (9.157)

which yields

�eM1 = cos 2ϑM�e
F
1 + sin 2ϑM�e

F
3 , (9.158)

�eM2 =�eF2 , (9.159)

�eM3 = − sin 2ϑM�e
F
1 + cos 2ϑM�e

F
3 . (9.160)

Hence, the mass basis is rotated by an angle 2ϑM in the 1-3 plane with respect to
the flavor basis. This means that �eM3 lies along �B, as shown in Fig. 9.5. In fact, we
have

BM
1 = cos 2ϑMBF

1 + sin 2ϑMBF
3 = 0 , (9.161)

BM
2 = BF

2 = 0 , (9.162)

BM
3 = − sin 2ϑMBF

1 + cos 2ϑMBF
3 = ∆m2

M/2E . (9.163)
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In this case, the evolution equation (9.153) becomes

dS1
M

dx
= −ω S2

M ,
dS2

M

dx
= ω S1

M ,
dS3

M

dx
= 0 . (9.164)

Thus, S3
M is constant, whereas S1

M and S2
M obey the harmonic oscillator equations

d2S1,2
M

dx2
+ ω2 S1,2

M = 0 . (9.165)

For the initial conditions in eqn (9.150), the solution is

S1
M(x) = sin 2ϑM (We −Wµ) cos(ω x) , (9.166)

S2
M(x) = sin 2ϑM (We −Wµ) sin(ω x) , (9.167)

S3
M(x) = cos 2ϑM (We −Wµ) , (9.168)
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which confirms that �S describes the surface of a cone with the axis along �B and
opening angle 2ϑM. For the third component of �S in the flavor basis we obtain

S3
F(x) = sin 2ϑM S1

M(x) + cos 2ϑM S3
M(x) = (We −Wµ)

[
1 − 2 sin2 2ϑM sin2 ωx

2

]
.

(9.169)
Hence, the probabilities of νe and νµ detection are, respectively, from eqns (9.151)
and (9.152),

Pe(x) =
1

2
+ (We −Wµ)

[
1

2
− sin2 2ϑM sin2 ωx

2

]
, (9.170)

Pµ(x) =
1

2
+ (Wµ −We)

[
1

2
− sin2 2ϑM sin2 ωx

2

]
. (9.171)

One can easily check that in the case of an initial pure νe beam (We = 1 and
Wµ = 0), the probability of νe → νµ transitions coincides with that in eqn (9.77).

In Fig. 9.5 we considered the case of an initially pure νe beam in a medium
with constant Ne < NR

e . We also assumed ϑ < π/4, which implies ϑM < π/4 for a
density which is smaller than the resonance density. On the other hand, for a density
which is larger than the resonance density, we have ϑM > π/4. Figure 9.6 illustrates
the case of an initially pure νe beam in a medium with constant Ne � NR

e , which
implies ϑM � π/2 (in the figure ϑM is taken to be significantly less than π/2 in order

to have a visible cone). In this case, νe almost coincides with νM
2 and �S describes

the surface of a narrow cone around the negative �eM3 axis.
Let us now consider the more interesting case of a variable matter density. For

simplicity we will consider only the case of solar neutrinos which are created as
νe in the core of the Sun with an electron density much larger than the resonance
electron density. Since well above the resonance the effective mixing angle ϑM is
almost constant and close to π/2 (see Fig. 9.2a), initially �S behaves as shown in
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Fig. 9.6, describing the surface of a narrow cone around the negative�eM3 axis. When

the neutrino passes through the resonance region, the vector �B changes from a value
similar to that in Fig. 9.6 to a value similar to that in Fig. 9.5. Note that only the
component B3

F changes in matter (see eqns (9.146)–(9.148)). Thus, in going from
a region where the matter density is much larger than the resonant density to the
resonance and finally to the vacuum, the vector �B changes as illustrated in Fig. 9.7.

If the resonance is crossed adiabatically, the speed of rotation of �S around �B is
much faster than the change of �B. In this case, �S is dragged by �B and the transition
from the core of the Sun to the vacuum is of the type depicted in Fig. 9.8. One can
see that the neutrino is created as a νe, which is almost a νM

2 in the core of the

Sun. As the neutrino propagates out of the Sun, the cone swept by �S is rotated
upside-down. The neutrino emerging from the Sun almost as a ν2 is almost a νµ if
the mixing angle is small. Thus, there is a large probability of νe → νµ conversion
due to the propagation in the Sun, which is nicely illustrated in the geometrical
representation in Fig. 9.8.

The other extreme case is the one of a completely nonadiabatic transition, in
which the change of �B in the resonance region is much faster than the speed of
rotation of �S around �B. In this case, �S is practically frozen during the resonance
crossing and it is left behind by �B, as shown in Fig. 9.9. The neutrino is created
as a νe, which is almost a νM

2 in the core of the Sun. It remains a νe through
the resonance and oscillates in the vacuum from the Sun to the Earth. If the
vacuum mixing angle is small, the neutrino emerges from the Sun almost as a ν1.
Consequently, the stationarity of �S during resonance crossing in the nonadiabatic
case represents large νM

2 → νM
1 transitions in the resonance.

Other details and examples of the geometrical representation of neutrino oscil-
lations are discussed in Refs. [671, 669, 670]. Finally, it is to be mentioned
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that another graphic description of neutrino oscillations has been developed in
Refs. [803, 804].



10

SOLAR NEUTRINOS

Only neutrinos, with their extremely small interaction cross-
sections, can enable us to see into the interior of a star, and
thus verify directly the hypothesis of nuclear energy generation
in stars.
John N. Bahcall [136]

The experimental and theoretical study of solar neutrinos51 is one of the main
areas of research in neutrino physics. The Sun is a very powerful source of electron
neutrinos with energy of the order of 1 MeV, produced in the thermonuclear fusion
reactions in the solar core52. Since neutrino interactions with matter is extremely
weak, practically all the neutrinos produced in the core of the Sun pass undisturbed
through the solar interior and flow in space. The solar neutrino flux on the Earth
is about 6 × 1010 cm−2 s−1. In spite of this extremely large flux, the detection of
solar neutrinos is difficult and requires large detectors because of the small neutrino
interaction cross-section. These detectors must be placed underground in order to
be shielded by rock from cosmic rays whose interactions in the detector would
largely outnumber and dominate solar neutrino interactions.

Solar neutrinos were detected for the first time in 1970 in the Homestake exper-
iment, which has monitored the solar flux for the next 24 years. In the late 1980s
the Kamiokande experiment obtained the first real-time neutrino image of the Sun.
From 1990 the GALLEX/GNO and SAGE experiments have measured the low-
energy neutrinos produced in the fundamental pp. Starting in the late 1990s, the
Super-Kamiokande and SNO experiments have provided important high-precision
data on the high-energy part of the solar neutrino flux.

The detection of solar neutrinos is considered today mainly an activity of high-
energy physicists interested in the properties of neutrinos. However, in our opinion
it is important to be aware that the first success of solar neutrino experiments is the
detection of solar neutrinos and the proof that the theory of thermonuclear energy
generation in stars is correct. The second success of solar neutrino experiments

51 This chapter is dedicated to the late John N. Bahcall, who was a pioneer and the
champion of solar neutrino physics.
52 In general, nuclear fusion produces electron neutrinos, because heavy stable nuclei

contain a higher fraction of neutrons with respect to light stable nuclei. In this way,
the binding nuclear force acting among nucleons can dominate over the electric repulsion
among protons. Thus, in nuclear fusion processes, protons must be transformed into
neutrons through the weak process p→ n+ e+ +νe, producing electron neutrinos. On the
other hand, for the same reason, the fission of heavy nuclei produces electron antineutrinos
in the transformation n→ p+ e− + ν̄e of neutrons into protons.
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is the discovery (Homestake), confirmation (Kamiokande, GALLEX/GNO, SAGE,
Super-Kamiokande), and solution (SNO) of the solar neutrino problem (SNP) in
favor of neutrino oscillations.

The SNP is a deficit of observed solar νe’s with respect to the standard solar

model (SSM) prediction. This chapter presents a pedagogical introduction to the
main ingredients of the SSM in sections 10.1 and 10.2. In section 10.3 we discuss
the model-independent constraints on solar neutrino fluxes. In sections 10.4–10.6
we present brief summaries of the main aspects and results of solar neutrino exper-
iments. In section 10.7 we briefly discuss vacuum oscillations of solar neutrinos and
in sections 10.8 and 10.9 we discuss, respectively, matter effects in the Sun and in
the Earth. Finally, section 10.10 presents the information on the neutrino oscillation
parameters obtained in global fits of solar neutrino data.

10.1 Thermonuclear energy production

The Sun shines because energy is produced in its core by thermonuclear reactions.
The theory of thermonuclear energy production in the hot and dense core of stars
has been developed since the late 1920s [357], after the crucial discovery by Gamow
in 1928 and independently by Condon and Gurney in 1929 of the tunnel effect
[503, 330], which allows the penetration of the Coulomb barrier between ions (see
Refs. [909, 148]). The modern theory of stellar nucleosynthesis was developed by
Bethe [221] and others [282, 296] (see Ref. [457]).

Thermonuclear reactions release energy because the total mass of a nucleus is
less than the total mass of the constituent nucleons,

m(A,Z) = Zmp + (A− Z)mn −B(A,Z) , (10.1)

where A and Z are, respectively, the atomic mass and number of the nucleus,
mp = 938.272 MeV and mn = 939.565 MeV are, respectively, the mass of the
proton and the neutron, and B(A,Z) is the binding energy. For example, the
binding energy of deuterium (d or 2H) is B(2, 1) = 2.22 MeV, and the binding
energy of 4He is B(4, 2) = 28.296 MeV.

The Sun is powered by the two groups of thermonuclear reactions known as the
pp chain and the CNO cycle, which are depicted, respectively, in Figs. 10.1 and
10.2. The result of both the pp chain and the CNO cycle is the conversion of four
protons and two electrons into a 4He nucleus plus two electron neutrinos:

4 p+ 2 e− → 4He + 2 νe +Q , (10.2)

where the energy release (usually called the Q-value of the process) is given by
(me = 0.511 MeV is the mass of the electron)

Q = 4mp + 2me −m4He = B(4, 2) + 2me − 2 (mn −mp) = 26.731 MeV . (10.3)

This energy is released in the form of photons or kinetic energy of the neutrinos
(the kinetic energy of the 4He nucleus is negligible because of its large mass).
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Fig. 10.1. The pp chain of stellar thermonuclear reactions. The produced
neutrinos are typed in boldface characters. The traditional names of the neu-
trino-producing reactions and the corresponding neutrino fluxes are given in
parentheses. The underlined labels indicate the three main branches of the pp
chain.

The electron neutrinos produced in the process in eqn (10.2) in the core of
the Sun can be detected on the Earth. They provide a unique direct probe of the
interior of the Sun.

In order to understand the basic principles of energy generation in the core of
the Sun, let us consider a generic nuclear reaction

A + B → anything (10.4)

occurring in a stellar gas where there are NA and NB particles per unit volume of
type A and B, respectively. The cross-section σ of the process in eqn (10.4) depends
only on the relative velocity v and one can consider either A or B as a projectile
and the other as a target. Let us consider A as the projectile, with velocity v, and
B as the target at rest. The rate of reaction for each projectile particle A is given
by the cross-section σ times the number density NB of targets. Since the flux of
projectiles is NAv, the rate of the reaction in eqn (10.4) per unit volume is given
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12C + p→ 13N + γ � 13N → 13C + e+ + νe (13N)

�
13C + p→ 14N + γ

�
14N + p→ 15O + γ�15O → 15N + e+ + νe(15O)

�

15N + p→ 12C + 4He

�

CN��
���

�
�

�

�
15N + p→ 16O + γ

�
16O + p→ 17F + γ � 17F → 17O + e+ + νe (17F)

�

17O + p→ 14N + 4He

�

99.9%

0.1%

Fig. 10.2. The CNO cycle of stellar thermonuclear reactions. The produced
neutrinos are typed in boldface characters. The traditional names of the neu-
trino-producing reactions and the corresponding neutrino fluxes are given in
parentheses.

by

RAB =
NANB 〈σv〉AB

1 + δAB
, (10.5)

where 〈σv〉AB is the average of the product σv over the thermal distribution of
velocities in the hot gas and the Kronecker delta prevents double counting of iden-
tical particles. Using a Maxwell–Boltzmann velocity distribution, one obtains (see
Refs. [909])

〈σv〉AB =

√
8

πµ (kBT )3

∫ ∞
0

dE σ(E)E exp

(
− E

kBT

)
, (10.6)

where T is the temperature, kB = 8.617× 10−5 eVK−1 is the Boltzmann constant,
E = 1

2 µ v
2 is the center-of-mass kinetic energy, and µ = mAmB/(mA + mB) is

the reduced mass of the system of interacting particles. The energy distribution
is proportional to E for E � kBT , reaches a peak at E = kBT , and decreases
proportionally to exp(−E/kBT ) for E � kBT .

In the formation of a star, the gas is initially heated by the contraction of the
proto-stellar cloud under the force of gravity until it reaches a temperature sufficient
for the onset of thermonuclear reactions. The central temperature of the Sun is
about 1.5 × 107 K and the gas is in the form of plasma, with ionized atoms that
carry positive charges. In particular, protons (1H nuclei) are stripped of electrons.
In order to ignite the nuclear reaction, the positive A and B ions must overcome
the repulsive Coulomb force, whose potential energy is given by

VC(r) =
ZAZB α

r
, (10.7)
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Coulomb barrier VC(r)

incident particle with energy E

r

Fig. 10.3. Schematic representation of the Coulomb barrier. The repulsive
Coulomb potential dominates for r > RN. If the incident particle has energy
E smaller than the height EC of the Coulomb barrier, it can interact with the
target nucleus only if it penetrates the Coulomb barrier and reaches distances
smaller than the nuclear radius RN, where the attractive nuclear potential dom-
inates. According to classical physics, the incident particle cannot penetrate
the Coulomb barrier and would reach the closest distance to the nucleus at the
classical turning point RC. The penetration of the Coulomb barrier through the
tunnel effect is allowed in quantum mechanics.

where α = e2/4π is the fine-structure constant, ZA and ZB are the atomic numbers
of the A and B nuclei, and r is the distance between them. The repulsive Coulomb
force dominates nuclear interactions for distances larger than the sum RN = RA +
RB of the two nuclear radii. At smaller distances nuclear forces dominate, and the
nuclear reaction can occur. The average radius R of a nucleus with atomic mass
number A is given by

R � R0A
1/3 , (10.8)

with R0 = 1.3 × 10−13 cm.
The potential in eqn (10.7) is called Coulomb barrier. As illustrated in Fig. 10.3,

classical physics forbids the penetration of the Coulomb barrier for an incident
particle with energy E smaller than the height EC = ZAZBα/RN of the Coulomb
barrier. The particle cannot get closer than the classical turning point

RC =
ZA ZB α

E
. (10.9)

For example, the height of the Coulomb barrier for the interaction of two protons is
EC � 550 keV. According to classical physics, the pp interaction should be strongly
suppressed in the interior of the Sun, where T � 1.5×107 K and the average energy
of protons is kBT � 1.3 keV.

This obstacle was removed in 1928 with the discovery of the quantum tunnel
effect [503, 330], which allows the penetration of the Coulomb barrier for an incident
particle with energy E < EC. The probability of penetrating the Coulomb barrier
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is given by

PC =
|ψ(RN)|2
|ψ(RC)|2 , (10.10)

where ψ(r) is the wavefunction of the incident particle that can be calculated by
solving the Schrödinger equation for the Coulomb potential in eqn (10.7). The
probability PC is unity for E ≥ EC and decreases rapidly for E < EC. For low-
energy particles, with E � EC, the tunneling probability in eqn (10.10) can be
approximated by a simple expression known as the Gamow factor

PC � e−2πη , (10.11)

with the Sommerfeld parameter

η =
ZA ZB α

v
=
ZAZB α√

2

√
µ

E
, (10.12)

where v is the relative velocity between the two interacting particles, µ is the
reduced mass, and E is the center-of-mass energy.

The total cross-section of the reaction in eqn (10.4) is given by the nuclear
cross-section times the Gamow factor in eqn (10.11) and can be written as

σ(E) =
1

E
e−2πη S(E) , (10.13)

where the function S(E) contains all nuclear effects and is known as the astrophysi-

cal S-factor. For nonresonant reactions, the astrophysical S-factor is a smooth and
slowly varying function of energy E. Hence, S(E) is useful for extrapolating the
value of a cross-section out of the range of energies in which it is measured. An
important branch of research in solar physics focuses on the determination of the
astrophysical S-factors of the nuclear reactions of the pp chain and the CNO cycle
in the core of the Sun.

Inserting the expression in eqn (10.13) for the cross-section in eqn (10.6), we
obtain the reaction rate per particle pair

〈σv〉AB =

√
8

πµ (kBT )
3

∫ ∞
0

dE S(E) exp

(
− E

kBT
−
√
EG

E

)
, (10.14)

where EG is the Gamow energy

EG = 2µ (π αZA ZB)
2
. (10.15)

Usually, the Gamow energy EG is much larger than the thermal energy kBT .
Since the energy dependence of the astrophysical S-factor S(E) is weak, the

energy dependence of the integrand in eqn (10.14) is determined by the exponential

term, which is a product of exp
(
− E

kBT

)
, due to the Maxwell–Boltzmann energy

distribution, and exp

(
−
√

EG

E

)
, due to the probability of tunneling through the
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E

exp
(
− E

kBT

)
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(
−
√

EG

E

)

Gamow peak

E0kBT

exp

(
− E

kBT
−
√

EG

E

)
× 105

Fig. 10.4. Schematic representation of the Gamow peak, given by the product
of the tail of the Maxwell–Boltzmann energy distribution ∝ exp(−E/kBT ) and

the probability of penetration of the Coulomb barrier ∝ exp
(
−
√
EG/E

)
. For

illustration purposes the Gamow peak has been enhanced by a factor ∼ 105.
The energy E0 of the Gamow peak is generally much larger than the thermal
energy kBT .

Coulomb barrier. The product results in the Gamow peak of the integrand around
the energy

E0 =

(√
EG kBT

2

)2/3

=
[µ
2

(π αZA ZB kBT )2
]1/3

, (10.16)

as illustrated in Fig. 10.4. Usually, since EG � kBT , the energy E0 of the Gamow
peak is much larger than kBT . Nuclear reactions in a stellar core with temperature
T occur in the relatively narrow energy interval E0 − ∆0 � E � E0 + ∆0, where
∆0 is the width of the Gamow peak. Approximating the exponential term in the
integrand of eqn (10.14) with a Gaussian function,

exp

(
− E

kBT
−
√
EG

E

)
� I0 exp

[
−
(
E − E0

∆0/2

)2
]
, (10.17)

where I0 is the peak value of the integrand

I0 = exp

(
−3

E0

kBT

)
, (10.18)

one obtains

∆0 � 4

√
E0 kBT

3
. (10.19)

Since kBT � E0, the width ∆0 of the Gamow peak is much smaller than its
central energy E0. Therefore, the smoothly varying astrophysical S-factor can be
approximated with its value at E0, leading to

〈σv〉AB �
√

8

πµ (kBT )
3 S(E0)

∫ ∞
0

dE exp

(
− E

kBT
−
√
EG

E

)



STANDARD SOLAR MODELS 359

�
√

8

πµ (kBT )3
S(E0) I0

√
π

∆0

2
, (10.20)

where the integration has been performed using the Gaussian approximation in
eqn (10.17). Using the expressions in eqns (10.18) and (10.19) in eqn (10.20), we
obtain the final approximate expression for the reaction rate per particle pair:

〈σv〉AB � 4

√
2

3µ
S(E0)

√
E0

kBT
exp

(
−3

E0

kBT

)
. (10.21)

This reaction rate depends strongly on the exponential I0 in eqn (10.18), which is
due to the Coulomb barrier. This is very important for the life of a star, since it
leads to the existence of different epochs in stellar evolution, called stages of nuclear

burning: hydrogen burning, helium burning, and heavy-ion burning.
From eqn (10.16) one can see that the energy E0 of the Gamow peak increases

with the atomic numbers of the interacting nuclei. This implies that the exponential
I0 and the reaction rate in eqn (10.21) decrease rapidly as the atomic numbers of
the interacting nuclei are increased, keeping the temperature constant. Therefore,
if the astrophysical S-factors do not differ much, reactions involving light nuclei
proceed much faster than reactions involving heavy nuclei. On the other hand, the
exponential I0 increases with the temperature T . Hence, reactions involving heavy
nuclei can proceed with sufficient speed to heat a star when the temperature is
sufficiently high.

When a star starts to form, the contraction of the proto-stellar cloud under
the force of gravity heats the gas until the temperature is high enough to allow
a significant penetration of the Coulomb barrier between the lightest nuclei, i.e.
protons (hydrogen nuclei), igniting the weak interaction reaction

p+ p→ d+ e+ + νe . (10.22)

This is the basic reaction of the pp chain (see Fig. 10.1 on page 354), which heats
the star during the hydrogen burning stage. This is the longest epoch in the life of
a star (for the Sun it is estimated to be about 10 Gy long, of which about 4.5 Gy
have passed), during which the star lies in the main sequence of the Hertzsprung–
Russel diagram (luminosity versus surface temperature). For a brief description of
the main stages of stellar evolution, see chapter 15.

10.2 Standard solar models

A standard solar model (SSM) is a “solar model that is constructed with the
best available physics and input data” [145] and is “required to fit the observed
luminosity and radius of the Sun at the present epoch, as well as the observed
heavy-element-to-hydrogen ratio at the surface of the Sun” (see Table 10.1).

In recent years, several experiments have tested the SSMs by measuring p-
mode oscillations of the Sun (were p stands for pressure). The science that studies
these oscillations is called helioseismology. It has become of primary importance for
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Table 10.1. Fundamental characteristics of the Sun and Sun–Earth system [400].
One astronomical unit is the mean Sun–Earth distance. The solar constant K�
is the mean solar photon flux on the Earth.

Solar luminosity L� = (3.846 ± 0.008)× 1026 W
= (2.400 ± 0.005)× 1039 MeVs−1

Solar radius R� = 6.961× 1010 cm

Solar mass M� = (1.98844± 0.00030)× 1033 g

Astronomical unit 1 au = (149.597870660± 0.000000020)× 106 km

Solar constant K� ≡ L�/4π(1au)2 � 8.534 × 1011 MeVcm−2 s−1

Year 1 yr = 3.15569252× 107 s

Table 10.2. Sources of solar neutrinos [137, 141, 147, 138]. For each reaction
r, 〈E〉r is the average neutrino energy, Emax

r is the maximum neutrino energy,
and αr is the average thermal energy released together with a neutrino from the
source r [139], which enters in the luminosity constraint in eqn (10.23).

Source
r

Reaction
〈E〉r

(MeV)
Emax

r

(MeV)
αr

(MeV)

pp p+ p→ d+ e+ + νe 0.2668 0.423± 0.03 13.0987
pep p+ e− + p→ d+ νe 1.445 1.445 11.9193
hep 3He + p→ 4He + e+ + νe 9.628 18.778 3.7370

7Be e− + 7Be → 7Li + νe
0.3855
0.8631

0.3855
0.8631

12.6008

8B 8B → 8Be∗ + e+ + νe 6.735 ± 0.036 ∼ 15 6.6305
13N 13N → 13C + e+ + νe 0.7063 1.1982± 0.0003 3.4577
15O 15O → 15N + e+ + νe 0.9964 1.7317± 0.0005 21.5706
17F 17F → 17O + e+ + νe 0.9977 1.7364± 0.0003 2.363

understanding the physics of the Sun, since the helioseismological observations give
detailed information on the sound speed and matter density in the interior of the
Sun. It is important to note that the large amount of available helioseismological
data is not used in the construction of SSMs. Therefore, the beautiful agreement of
SSM predictions with helioseismological data is indeed an impressive success (see
Ref. [145]).

Many SSMs have been constructed by several groups and updated in the course
of time as the understanding of the physics of the Sun, the quality and quantity of
input data, and computational power have improved. The SSMs that have played
the major role in neutrino physics are those developed by Bahcall and collaborators
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Table 10.3. BP00 SSM [145] neutrino fluxes, average neutrino cross-sections
[137, 141, 147], and BP00 SSM predictions for the neutrino capture rates [145]
in the chlorine (Cl) Homestake experiment and in the gallium (Ga) GALLEX,
SAGE and GNO experiments.

Source r
Flux Φr

[cm−2 s−1]
〈σCl〉r

[10−44 cm2]
R

(r)
37Cl

[SNU]

〈σGa〉r
[10−44 cm2]

R
(r)
71Ga

[SNU]

pp 5.95 × 1010 (1 ± 0.01) – – 0.117 ± 0.003 69.7

pep 1.40 × 108 (1 ± 0.015) 0.16 0.22 2.04 +0.35
−0.14 2.8

hep 9.3 × 103 390 0.04 714 +228
−114 0.1

7Be 4.77 × 109 (1 ± 0.10) 0.024 1.15 0.717 +0.050
−0.0.021 34.2

8B 5.05 × 106
(
1 +0.20
−0.16

)
114 ± 11 5.76 240 +77

−36 12.1
13N 5.48 × 108

(
1 +0.21
−0.17

)
0.017 0.09 0.604 +0.036

−0.018 3.4
15O 4.80 × 108

(
1 +0.25
−0.19

)
0.068 ± 0.001 0.33 1.137 +0.136

−0.057 5.5
17F 5.63 × 106 (1 ± 0.25) 0.069 0.0 1.139 +0.137

−0.057 0.1

Total 6.54 × 1010 7.6 +1.3
−1.1 128 +9

−7

Table 10.4. Solar neutrino fluxes and radiochemical rates in the BP00 [145],
BP04 [152], BSB05(GS98) [154], and BSB05(AGS05) [154] SSMs. Fluxes are
given in units of cm−2 s−1.

BP00 BP04 BSB05(GS98) BSB05(AGS05)

Φpp / 1010 5.95 (1 ± 0.01) 5.94 (1 ± 0.01) 5.99 (1 ± 0.009) 6.06 (1 ± 0.007)
Φpep / 108 1.40 (1 ± 0.015) 1.40 (1 ± 0.02) 1.42 (1 ± 0.015) 1.45 (1 ± 0.011)
Φhep / 103 9.3 7.88 (1 ± 0.16) 7.93 (1 ± 0.155) 8.25 (1 ± 0.155)
Φ7Be / 109 4.77 (1 ± 0.10) 4.86 (1 ± 0.12) 4.84 (1 ± 0.105) 4.34 (1 ± 0.093)

Φ8B / 106 5.05
(
1 +0.20
−0.16

)
5.79 (1 ± 0.23) 5.69

(
1 +0.173
−0.147

)
4.51

(
1 +0.127
−0.113

)
Φ13N / 108 5.48

(
1 +0.21
−0.17

)
5.71

(
1 +0.37
−0.35

)
3.05

(
1 +0.366
−0.268

)
2.00

(
1 +0.145
−0.127

)
Φ15O / 108 4.80

(
1 +0.25
−0.19

)
5.03

(
1 +0.43
−0.39

)
2.31

(
1 +0.374
−0.272

)
1.44

(
1 +0.165
−0.142

)
Φ17F / 106 5.63 (1 ± 0.25) 5.91

(
1 +0.44
−0.44

)
5.83

(
1 +0.724
−0.420

)
3.25

(
1 +0.166
−0.142

)
R37Cl [SNU] 7.6 +1.3

−1.1 8.5 +1.8
−1.8 8.12 6.58

R71Ga [SNU] 128 +9
−7 131 +12

−10 126.08 118.88

in an impressive series of papers starting in 1962 [142] (see Refs. [137, 145, 152, 154]
and references therein).

In order to study the physics of solar neutrinos, it is convenient to treat sep-
arately the neutrino fluxes produced by the individual thermonuclear reactions
of the pp chain and the CNO cycle, which are shown in Figs. 10.1 and 10.2,
where the produced neutrinos are typed in boldface characters and the neutrino-
producing reactions are associated with the corresponding traditional names. These
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Fig. 10.5. Distribution of the neutrino production as a function of radius for each
of the solar neutrino fluxes in the BSB(GS98) SSM [154]. The dotted line close
to the distribution for the pp flux represents the distribution of the production
of the solar luminosity.

Fig. 10.6. Energy spectra of neutrino fluxes from the pp and CNO chains,
as predicted by the SSM. For continuous sources, the differential flux is in
cm−2 s−1 MeV−1. For the lines, the flux is in cm−2 s−1. Figure taken from
Ref. [307].

sources of solar neutrinos are listed in Table 10.2, together with the correspond-
ing average and maximum neutrino energy. Table 10.3 presents the values of the
neutrino fluxes according to the BP00 SSM [145], together with the correspond-
ing average cross-sections and rates in the radiochemical chlorine and gallium
detectors (see, respectively, sections 10.4 and 10.5). The rate of radiochemical
detectors is conventionally measured in Solar Neutrino Units (SNU), such that
1 SNU ≡ 10−36 events atom−1 s−1.
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Fig. 10.7. Energy spectra of neutrino fluxes from the pp chain, as predicted by the
BP04 SSM [152]. On the top, the energy ranges probed by different solar neu-
trino experiments are indicated. For continuous sources, the differential flux is in
cm−2 s−1 MeV−1. For the lines, the flux is in cm−2 s−1. The percentages indicate
the uncertainties in the values of the fluxes. Figure taken from Ref. [151].

Table 10.4 compares the neutrino fluxes and radiochemical rates of the BP00
[145], BP04 [152], BSB05(GS98) [154] and BSB05(AGS05) [154] SSMs. The dif-
ference between the BSB05(GS98) and BSB05(AGS05) models is the adopted
input abundance of heavy elements: BSB05(GS98) assumes the old heavy element
abundances in Ref. [566], whereas BSB05(AGS05) uses the new heavy element
abundances in Ref. [112], which lead to a disagreement between the predictions of
the model and helioseismological observations [96]. Figure 10.5 shows the distribu-
tion of the neutrino production as a function of radius for each of the solar neutrino
fluxes in the BSB(GS98) SSM [154]. Figure 10.6 shows the energy spectra of the
neutrino fluxes from the pp chain and the CNO cycle in SSMs [307]. The precise
energy spectra of neutrino fluxes of the pp chain in the BP00 SSM [145] are shown
in Fig. 10.7, together with the energy ranges probed by different solar neutrino
experiments.
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Table 10.5. Mass excess ∆MI and binding energy
B(A,Z) = Z∆M1H + (A− Z)∆Mn − ∆MI of the isotopes I that par-
ticipate in the pp chain and the CNO cycle [125]. The mass excess of an
isotope with mass MI and mass number Z is ∆MI = MI − Z amu, where one
atomic mass unit (amu) is, by definition, one twelfth of the mass of 12C (see
eqn (A.143)). The difference between nuclear and atomic mass excesses due to
the electron binding energy is negligible (a few eV’s).

Isotope I ∆MI [MeV] B(A,Z) [MeV]

n 8.0713171± 0.0000005
1H 7.2889705± 0.0000001
2H 13.1357216± 0.0000003 2.2245660± 0.0000006
3He 14.931215± 0.000002 7.718043± 0.000002
4He 2.4249156± 0.0000001 28.295660± 0.000001
7Li 14.90814± 0.00008 39.24404± 0.00008
7Be 15.7700± 0.0001 37.5998± 0.0001
8Be 4.94167± 0.00004 56.49948± 0.00004
8B 22.922± 0.001 37.737± 0.001
12C 0 92.161726± 0.000003
13C 3.1250113± 0.0000009 97.108031± 0.000004
13N 5.3455± 0.0003 94.1052± 0.0003
14N 2.8634170± 0.0000006 104.658596± 0.000004
15N 0.1014380± 0.0000007 115.491892± 0.000004
15O 2.8556± 0.0005 111.9554± 0.0005
16O −4.7370014± 0.0000001 127.619302± 0.000004
17O −0.8088± 0.0001 131.7624± 0.0001
17F 1.9517± 0.0003 128.2196± 0.0003

10.3 Model-independent constraints on solar neutrino fluxes

Thermonuclear reactions in the core of the Sun produce thermal energy and neu-
trinos. Neutrinos escape the Sun in about two seconds, whereas thermal energy
takes more than 104 years to reach the surface, and is liberated into free space as
radiation. In spite of the huge difference between the time scales of neutrino and
thermal energy emission, since the Sun is in a stable state, the solar luminosity is
connected with the neutrino flux through the so-called luminosity constraint, which
can be written as

∑
r

αr Φr = K� (r = pp, pep, hep, 7Be, 8B, 13N, 15O, 17F) , (10.23)

where K� is the solar constant in Table 10.1, φr is the flux of the source r, and αr

is the average thermal energy released together with a neutrino from the source r.
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The values of αr listed in Table 10.2 are independent of the details of the solar
model [139]. They depend on the differences among nuclear masses, with small
corrections due to the average thermal energy of the fusing particles.

Let us consider first the CNO cycle. In order to calculate the value of average
thermal energy αr released together with a neutrino from the source r, one must
take into account that the reactions of the CNO cycle proceed with different speeds.
In particular, since the 14N(p, γ)15O reaction53 is the slowest process in the CN
cycle (see Fig. 10.2), the rate of emission of 13N neutrinos is faster than the rate of
completion of CN cycles, leading to the model-independent inequality

Φ15O ≤ Φ13N . (10.24)

Hence, the average thermal energy α13N released together with a 13N is given by the
thermal energy produced by the 12C(p, γ)13N and 13N → 13C + e+ + νe reactions
minus the average 13N neutrino energy:

α13N = M12C +M1H −M13C − 〈E〉13N . (10.25)

Since the masses of the constituent nucleons cancel, the calculation of eqn (10.25)
can easily be performed replacing each isotopic mass MI with the corresponding
mass excess ∆MI given in Table 10.5. The same consideration applies to the fol-
lowing equations which are similar to eqn (10.25), leading to the values of αr given
in Table 10.2.

The average thermal energy α15O released together with an 15O derives from
the reactions 13C(p, γ)14N, 14N(p, γ)15O, 15O → 15N + e+ + νe and 15N(p, α)12C:

α15O = M13C + 3M1H −M12C −M4He − 〈E〉15O . (10.26)

The 17F neutrino flux is practically negligible, having an energy spectrum similar
to the 15O neutrino flux, but being about 100 times smaller. Nevertheless, one
can calculate the corresponding average thermal energy α17F from the reactions
16O(p, γ)17F and 17F → 17O + e+ + νe:

α17F = M16O +M1H −M17O − 〈E〉17F . (10.27)

Neglecting the small fraction of energy carried away by neutrinos, the luminosity
constraint gives the approximate value of the total solar neutrino flux Φ =

∑
r Φr:

Φ � 2K�
Q

= 6.4 × 1010 cm−2 s−1 . (10.28)

The real total flux of solar neutrinos must have a value slightly larger than that
in eqn (10.28), since more reactions are needed in order to produce the observed
luminosity if some fraction of the energy is carried away by neutrinos. Comparing
the total neutrino flux in the BP00 SSM reported in Table 10.3 with the mini-
mum value in eqn (10.28), one can see that about 2% of the thermonuclear energy
produced in the Sun is carried away by neutrinos.

53 A reaction a + X → Y + b, in which a particle a strikes a nucleus X producing a
nucleus Y and a new particle b, is often symbolized by X(a, b)Y .
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Fig. 10.8. Results of the 108 individual solar neutrino observations made with
the Homestake chlorine experiment from March 1970 to February 1994 [323].
The uncertainty shown for individual measurements is statistical only and is
significantly non-Gaussian for results near zero. The uncertainty shown for
the cumulative result is the combination of the statistical and systematic
uncertainties in quadrature.

Since the 3He nuclei necessary for the formation of 7Be and 8B and for the hep
reaction are created by the pp or pep reactions, there is another model-independent
constraint for the solar neutrino fluxes of the pp chain (see [144]):

Φ7Be + Φ8B + Φhep ≤ Φpp + Φpep . (10.29)

10.4 Homestake experiment

The pioneering Homestake experiment [323] is a radiochemical experiment which
detects solar neutrinos through the Pontecorvo–Alvarez inverse β-decay Cl-Ar
reaction [878, 78]

νe + 37Cl → 37Ar + e− , (10.30)

with neutrino energy threshold Eth
ν = 0.814 MeV. Therefore, this experiment can

detect only intermediate and high-energy neutrinos. Since the detection cross-
section increases with the neutrino energy, the main contribution to the Homestake
event rate comes from high-energy 8B neutrinos, as shown in Table 10.3.

The Homestake Solar Neutrino Observatory is located 1478 m below the surface,
in the Homestake Gold Mine at Lead, in South Dakota, USA, at latitude 44◦20′ N
and longitude 103◦50′ W. The depth of the detector is 4200± 100 meters of water
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equivalent54 (mwe), such that the intensity of cosmic ray muons is about 4 per
square meter per day, with an average energy of about 300 GeV. This cosmic ray
flux generates an 37Ar production background of 0.047 ± 0.013 atomsday−1. The
detector consists of a single horizontal steel tank 6.1 m in diameter and 14.6 m long
(a volume of 6 × 105 liters), containing 2.16 × 1030 atoms of 37Cl (133 ton) in the
form of 615 ton of tetrachloroethylene (C2Cl4).

The problem in such an experiment is to collect and count the few atoms of
37Ar produced by solar neutrinos through the Cl-Ar reaction. In the Homestake
experiment the Argon in the tank is extracted through chemical methods and the
radioactive 37Ar is counted using miniature proportional counters which detect the
Auger electron produced in the electron-capture of the 37Ar nuclei with a lifetime of
about 35 days55. This is the reason why such experiments are called radiochemical.

About 0.5 atoms of 37Ar are produced each day by solar neutrinos (the average
measured rate is 0.478 ± 0.030 ± 0.029 atomsday−1) and about 16 atoms are mea-
sured in each extraction about every two months. The number of extracted 37Ar
atoms is smaller than the number of atoms produced by solar neutrinos (about 30),
because some of them decay before extraction and because the extraction efficiency
is about 90%. The choice of a time interval of about two months between extrac-
tions is due to the fact that the number of 37Ar in the tank produced by solar
neutrinos grows only for about two months. After this time interval the number of
37Ar in the tank remains approximately constant, because the production rate is
equal to the decay rate.

The Homestake experiment was proposed in 1964 [354] and built in the period
1965–1967, following the measurement in 1959 of a relatively high value of the
cross-section of the process 3He + 4He → 7Be + γ (more than a thousand times
larger than was previously believed), which leads to the ppI and ppII branches of
the pp chain. In these branches high-energy 7Be and 8B are produced, which can be
detected with the Cl-Ar reaction in eqn (10.30). Furthermore, Bahcall found that
the cross-section of the Cl-Ar reaction is greatly enhanced above 5.8 MeV (about 20
times larger than previous calculations). This is due to a superallowed transition of
the ground state of the 37Cl nucleus to its isobaric analog 37Ar state [136]. Hence,
a chlorine experiment is particularly sensitive to the high-energy part of the solar
8B flux. This was rightly considered as a great chance to test the theory of stellar
thermonuclear energy generation.

The first data of the Homestake experiment indicated in 1968 [356] that the
solar neutrino flux was less than 3 SNU, well below the rate predicted by the SSM
of Ref. [149]. The Homestake collaboration performed several tests (see [355, 323])

54 One meter of water equivalent of a material is the thickness of that material which
provides a shielding equivalent to one meter of water. It can easily be converted into slant
depth, which is usually measured in units of g cm−2, by multiplying for the density of
water, which is 1 g cm−3.
55 The electron-capture process e− + 37Ar → 37Cl + νe, which is the inverse of the

neutrino capture process in eqn (10.30), occurs through the capture of an inner-shell
electron. The orbit left empty by the captured electron is immediately filled by an higher-
level electron. The released energy is carried away by the Auger electron, first observed
by Pierre V. Auger in the 1920s, which is ejected from a high energy level.
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to make sure that the detector was operating properly. In particular, artificially
produced Argon was introduced in the tank and fully recovered.

In 1970 a new technique (pulse rise time) that improved the signal versus back-
ground discrimination was introduced for the counting of the radioactive 37Ar
atoms. Figure 10.8 shows the 37Ar rates measured in 108 extractions from March
1970 to February 1994. The average solar neutrino rate is [323]

Rexp
37Cl = 2.56 ± 0.16 ± 0.16 SNU = 2.56 ± 0.23 SNU , (10.31)

with the statistical and systematic uncertainties shown separately after the first
equality and added in quadrature after the second equality.

Because of the extremely small production rate of 37Ar, the uncertainties asso-
ciated with the results of the individual extractions shown in Fig. 10.8 are large
and dominated by statistical fluctuations. However, the accumulation of data over
25 years of observation has resulted in a statistical uncertainty for the average rate
of about 6%, which is about equal to the estimated systematic uncertainty.

The solar neutrino rate measured in the Homestake experiment is about one-
third of that predicted by the SSM, with a discrepancy of more than 3σ (see
Tables 10.4, 10.3, and 10.6).

10.5 Gallium experiments

There are three gallium solar neutrino experiments: GALLEX/GNO (sec-
tion 10.5.1) and SAGE (section 10.5.2). These experiments detect solar neutrinos
through the reaction [709]

νe + 71Ga → 71Ge + e− , (10.32)

which has the low neutrino energy threshold Eth
ν = 0.233 MeV. This makes the

detection of solar neutrinos from all sources possible (see Fig. 10.7).
The detection cross-section was calculated by Bahcall in Ref. [147]. The event

rate expected from the BP00 SSM is given in Table 10.3. Since the contributions
to the total predicted event rate from pp, 7Be and 8B neutrinos are, respectively,
54%, 27% and 9%, gallium experiments are very important for the measurement of
the neutrino flux produced in the basic pp reaction of the pp chain, which is closely
related to the luminosity of the Sun.

In gallium experiments, the atoms of 71Ge produced by solar neutrinos are
extracted with chemical methods from a large detector mass containing about 30–
50 ton of 71Ga and counted in small proportional counters by observing their decay
back to 71Ga. In each exposure, lasting about 30 days, a few tens of atoms of 71Ge
must be extracted from about 1029 atoms of 71Ga.

10.5.1 GALLEX/GNO

The GALLium EXperiment (GALLEX) [91, 90, 92, 93, 95, 585, 588] was located
in the Laboratori Nazionali del Gran Sasso (LNGS), in Italy, having an overhead
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Table 10.6. Neutrino capture reaction, neutrino energy threshold, and ratio of the
measured rate (Rexp) and the best-fit BP04 SSM prediction (RBP04

bf ) [152] (see
Table 10.4) for the solar neutrino experiments. The last column gives the number
of standard deviations nσ of the discrepancy between the measured and pre-

dicted rated, calculated as nσ =
(
RBP04

bf −Rexp
bf

)
/
(√

(δRBP04)2 + (δRexp)2
)
.

In the ES and NC reactions α = e, µ, τ .

Experiment Reaction
Eth

ν

(MeV)

Rexp

RBP04
bf

nσ

GALLEX/GNO [77] 0.529± 0.042 5.4

SAGE [19]

νe + 71Ga → 71Ge + e− 0.233

0.540± 0.040 5.0

Homestake [323] νe + 37Cl → 37Ar + e− 0.814 0.301± 0.027 3.3

Kamiokande [475] 6.7 0.484± 0.066 2.2

SK [625]

να + e− → να + e−

4.7 0.406± 0.014 2.6

νe + d→ p+ p+ e− 6.9 0.304± 0.019 3.0

SNO – D2O [43] να + d→ p+ n+ να 2.224 0.879± 0.111 0.5

να + e− → να + e− 5.7 0.413± 0.047 2.5

νe + d→ p+ p+ e− 6.9 0.290± 0.017 3.1

SNO – NaCl [40] να + d→ p+ n+ να 2.224 0.853± 0.075 0.6

να + e− → να + e− 5.7 0.406± 0.046 2.5

shielding of 3300 mwe. The detector consisted of 101 ton of a liquid gallium chlo-
ride (GaCl3-HCl) solution containing 30.3 ton of gallium. GALLEX operated from
May 1991 to January 1997 and was followed by the Gallium Neutrino Observatory
(GNO), which operated from May 1998 to April 2003 with the same detector and
an improved extraction equipment [76, 77].

The functionality of GALLEX was successfully tested by exposing the detector
to an intense artificial 51Cr neutrino source56 [94, 586]. There have been two expo-
sures: the first from June to October 1994 and the second from October 1995 to
February 1996. The combined ratio of the measured and predicted neutrino capture
rates in the two source experiments is

RGALLEX
71Ga (51Cr) = 0.93 ± 0.08 . (10.33)

Moreover, the 71Ge recovery efficiency has been tested by adding to the gallium solu-
tion known amounts of 71As, which decays through electron capture and positron

56 51Cr decays through electron capture (e− + 51Cr → 51V + νe), with a Q-value of
752.73 ± 0.24 keV [1] and a half-life of 27.7025 ± 0.0024 days [125].
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Fig. 10.9. Results of the 123 extraction runs of GALLEX/GNO from May 1991
to April 2003 [77]. The error bars show the statistical uncertainty.

emission into 71Ge with a half-life of 65.28 ± 0.15 days [125]. The measured recov-
ery rate was 0.998 ± 0.008 [587]. These results led the GALLEX collaboration to
conclude that the detector was working properly.

The GALLEX/GNO experiment measured the solar neutrino flux from May
1991 to April 2003 with a total of 123 extraction runs [77]. Figure 10.9 shows the
single-run results. The resulting average solar neutrino capture rate is [77]

R
GALLEX/GNO
71Ga = 69.3 ± 4.1 ± 3.6 SNU = 69.3 ± 5.5 SNU , (10.34)

where the statistical and systematic uncertainties have been added in quadrature.
This rate is about half of that predicted by the SSM, with a discrepancy of more
than 5σ (see Tables 10.4, 10.3, and 10.6).

10.5.2 SAGE

The Soviet–American Gallium Experiment (SAGE) [12, 14, 18, 17, 19, 21] is located
in the Baksan Neutrino Observatory (BNO) of the Russian Academy of Sciences in
the northern Caucasus mountains. BNO is situated 3.5 km from the entrance of a
horizontal adit excavated into the side of Mount Andyrchi. It is at a depth of about
2000 m from the top of the mountain, with an overhead shielding of about 4700
mwe, which reduces the cosmic muon flux to (3 ± 0.15) × 10−9 muons cm−2 s−1.
In order to reduce the neutron and gamma background from the rock, the BNO
laboratory is entirely lined with 60 cm of low-radioactivity concrete, with an outer
6 mm steel shell.

The experiment began data-taking in 1990. From December 1994 to May 1995,
the functionality of the SAGE experiment was successfully tested with an intense
artificial 51Cr neutrino source [15, 16]. The ratio of the measured and predicted
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Fig. 10.10. Results of the 92 extraction runs of SAGE from January 1990 to
December 2001 [19]. The error bars show the statistical uncertainty.

neutrino capture rates has been found to be [16]

RSAGE
71Ga (51Cr) = 0.95+0.11

−0.10
+0.06
−0.05

+0.035
−0.027 = 0.95+0.13

−0.12 , (10.35)

where, after the first equality, the first uncertainty is statistical, the second is
systematic, and the third is theoretical. The three uncertainties have been added
in quadrature after the second equality. As the value of R(51Cr) is consistent with
one, the SAGE collaboration concluded that the experiment was working properly.

More recently, the SAGE collaboration performed another test of the experiment
from April to September 2004 with an artificial 37Ar source57 [20]. The ratio of the
measured and predicted neutrino capture rates is [20]

RSAGE
71Ga (37Ar) = 0.79+0.09

−0.10 . (10.36)

Since this result is almost 2.5σ smaller than unity and the weighted average of the
ratios of measured and predicted neutrino capture rates in the GALLEX/GNO and
SAGE source experiments is 0.88 ± 0.05, the SAGE collaboration suggested that
the calculated detection cross-section may have been slightly overestimated [20].

The capture rates of all SAGE extractions as a function of time are shown in
Fig. 10.10. The average neutrino capture rate from January 1990 to December 2001
is [19]

RSAGE
71Ga = 70.8+5.3

−5.2
+3.7
−3.2 SNU = 70.8+6.5

−6.1 SNU , (10.37)

with the statistical and systematic uncertainties added in quadrature after the
second equality. This rate is in agreement with that measured in GALLEX/GNO

57 37Ar decays through electron capture (e− + 37Ar → 37Cl + νe), with a Q-value of
813.5 ± 0.3 keV [1] and a half-life of 35.04 ± 0.04 days [125].
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(eqn (10.34)). It is about half of that predicted by the SSM, with a discrepancy of
about 5σ (see Tables 10.4, 10.3, and 10.6).

10.6 Water Cherenkov detectors

Water Cherenkov detectors allow the detection of neutrinos in real time by
observing the tracks of the ultrarelativistic charged leptons produced by neutrino
interactions. In general, when a charged particle passes with velocity v > 1/n
through a medium with index of refraction n, the particle emits Cerenkov light in a
cone around the direction of motion. The half-opening angle θ of the cone is given
by cos θ = 1/nv and the spectrum is given by

dN

dλdx
= 2πα

[
1 −

(
1

nv

)2
]
λ−2 , (10.38)

where N is the number of photons, λ is the wavelength, and x is a coordinate along
the track.

Water has an index of refraction n � 1.33 [400], leading to θ � 41◦ for relativistic
particles. For every cm of track length about 340 photons are produced in the
wavelength range between 300 and 600 nm, which is appropriate for detection
by photomultiplier tube (PMT). Through observation of these photons, with a
precise determination of the arrival time at each PMT, it is possible to determine
the neutrino interaction point, the direction of the track of the produced charged
lepton and its energy.

In underground water Cherenkov detectors a large mass of water is surrounded
by an array of PMTs. In order to have a good reconstruction of the neutrino events,
it is important to have a substantial coverage of the enclosing surface, of the order
of 20%.

In the following subsections we describe the setup and the results of the three
solar neutrino water Cherenkov experiments: Kamiokande, Super-Kamiokande, and
SNO.

10.6.1 Kamiokande

The Kamiokande detector was originally built for the search of nucleon decay. In
fact, the name is a contraction of Kamioka Nucleon Decay Experiment. It was
located in the Kamioka mine in Japan, about 1000 m underground, with an
overburden of 2600 mwe.

The first phase of the Kamiokande experiment, called Kamiokande-I, started in
1983. The detector had a water mass of 3000 ton in a cylindrical steel tank of 15.6 m
diameter and 16 m height. An array of 1000 very large PMTs, with a diameter
of 50 cm, covered 20% of the inner surface (one PMT every square meter). The
detector had an inner fiducial volume of about 1 kton of water equipped to observe
events with energy of the order of 1 GeV, which was appropriate for searching
nucleon decays.
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Fig. 10.11. The Kamiokande-II detec-
tor [619].

Fig. 10.12. The Super-Kamiokande
detector [111].

In 1986 the detector was upgraded to Kamiokande-II in order to be able to
observe 8B solar neutrinos [616, 617, 618, 620, 619], which generate events with
an energy of the order of 10 MeV. In order to lower the threshold to such low
energies, the background had to be reduced. For this purpose, the detector was
enlarged, dividing it into an inner detector and an outer detector which acted as an
active shield, which was able to reject background events through anticoincidence.
In order to achieve this configuration, the bottom layer of PMTs was lifted by
1.4 m and the space between the tank and the cave wall on the sides and on the
top of the tank was filled with water, providing a water shield of about 1.7 m on
the sides and 1 m on the top. In this configuration, the inner volume measured
14.4 m in diameter and 13.1 m in height, contained 2142 ton of purified water, and
was equipped with 948 PMTs giving a 20% surface coverage. The outer volume,
containing 1500 ton of water, was equipped with 123 PMTs, one PMT every 9 m2.
The fiducial volume was defined in different ways for different measurements. For
solar neutrino detection it was defined as the volume of 680 m3 lying 2.0 m inside of
the bottom and side inner detector and 3.14 m below the top of the inner detector.
The Kamiokande-II is shown schematically in Fig. 10.11. A detailed description of
the Kamiokande experiment can be found in Ref. [695].

From 1987, the Kamiokande-II experiment observed 8B solar neutrinos with a
recoil electron energy threshold Eth

e = 9.3 MeV. In 1990 about 100 dead PMTs were
replaced, starting the final phase of the experiment, called Kamiokande-III, which
lasted until 1996, when the Super-Kamiokande experiment started. The energy
threshold was lowered to 7.5 MeV during Kamiokande-II and further lowered to
7.0 MeV during Kamiokande-III [475]. Using eqn (5.31), one can find that the
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three neutrino energy thresholds corresponding to Eth
e = 9.3 , 7.5 , 7.0 MeV are,

respectively, Eth
ν = 9.0 , 7.2 , 6.7 MeV.

Kamiokande measured the solar neutrino flux through the elastic scattering
reaction

να + e− → να + e− , (10.39)

which is mainly sensitive to electron neutrinos, whose cross-section is about six
times larger than those of muon and tau neutrinos (see eqn (5.18)). Since the
recoil electron has a sharp forward peak, one can distinguish solar neutrino events
from the isotropic background by measuring the directional correlation of the recoil
electron and the Sun.

The average 8B neutrino flux measured in the Kamiokande experiment from
January 1987 to February 1995 (2079 days) is [475]

ΦKam
8B = (2.80±0.19±0.33)×106 cm−2 s−1 = (2.80±0.38)×106 cm−2 s−1 , (10.40)

where we have added the statistical and systematic uncertainties in quadrature. In
eqn (10.40) it is assumed that the 8B solar νe’s do not oscillate into other flavors
on their way from the production region in the core of the Sun to the detector on
the Earth. In this case, the flux of 8B solar νe’s measured by Kamiokande is about
half of the SSM flux, with a discrepancy of more than 2σ (see Tables 10.4, 10.3,
and 10.6).

The Kamiokande measurement of solar neutrinos, which covers an entire cycle
of the solar sunspot activity, does not show a correlation of the solar neutrino flux
with the sunspot activity [475].

10.6.2 Super-Kamiokande

Super-Kamiokande (SK) is a 50 kton water Cherenkov detector located in the
Kamioka mine, about 500 m from the cavity which was previously occupied by
the Kamiokande detector and now contains the KamLAND experiment (see sec-
tion 12.2.3). The SK detector, shown schematically in Fig. 10.12, consists of two
concentric, optically separated, water Cherenkov detectors contained in a cylindri-
cal steel tank with a diameter of 39.3 m and a height of 42 m. The inner detector
has a diameter of 33.8 m and a height of 36.2 m. Its surface is equipped with 11146
large PMTs with a diameter of 50 cm, giving a coverage of 40%. The surface of the
outer detector is instrumented with 1885 PMTs with a diameter of 20 cm.

The first phase of the SK experiment, called SK-I, started in April 1996 and
ended in July 2001. On 12 November 2001, during the refill of the detector after a
maintenance drain, an accidental explosion of a phototube triggered the explosion
of about half of the phototubes. In the second phase, called SK-II, from January
2003 to February 2004, the inner detector was equipped with the surviving 5182
PMTs, having a coverage of 19%. This was enough to run the second phase of the
K2K experiment (see section 12.3.2). In the following we will present only the main
results of SK-I, which have been published by the SK collaboration [478, 480, 482,
472, 471, 473, 507, 1081, 968, 746, 625].

The SK-I experiment collected 1496 days of solar neutrino data with a recoil
electron energy threshold Eth

e = 6.5 MeV for the first 280 days and Eth
e = 5.0 MeV
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for the remaining 1216 days. The corresponding neutrino energy thresholds are,
from eqn (5.31), Eth

ν = 6.2 MeV and Eth
ν = 4.7 MeV.

Figure 10.13 shows the angular distribution of solar neutrino event candidates
with respect to the direction of the Sun. One can see the forward peak in the
direction of the Sun due to the elastic scattering58 of solar neutrinos. The width of
the peak is due to the multiple scattering of the recoil electron and to the angular
resolution of the detector. The dotted area is the contribution from background
events. A fit of the distribution in Fig. 10.13 with an isotropic background yielded
22404±226+784

−717 solar neutrino events. In the absence of neutrino oscillations59, the
measured interaction rate corresponds to [625]

ΦSK
8B = (2.35±0.02±0.08)×106 cm−2 s−1 = (2.35±0.08)×106 cm−2 s−1 , (10.41)

where we have added the statistical and systematic uncertainties in quadrature.
This flux is smaller than half of the SSM flux, with a discrepancy of more than 2σ
(see Tables 10.4, 10.3, and 10.6).

Figure 10.14 shows the solar zenith angle dependence of the solar neutrino flux
measured in SK. The day and night fluxes could be different because of the Earth

58 From eqn (5.29) one can see that, for Eν � me the differential cross-section is strongly
peaked in the forward direction.
59 In the extraction from the data of the 8B flux in eqn (10.41) it is assumed that all

solar neutrinos are νe.
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matter effect for neutrinos which pass through the Earth during the night (see
section 10.9). The measured day and night fluxes are [625]

ΦSK,day
8B = (2.32 ± 0.03+0.08

−0.07) × 106 cm−2 s−1 , (10.42)

ΦSK,night
8B = (2.37 ± 0.03+0.08

−0.08) × 106 cm−2 s−1 , (10.43)

with an asymmetry

ASK
day–night ≡

ΦSK,day
8B − ΦSK,night

8B

1
2

(
ΦSK,day

8B + ΦSK,night
8B

) = −0.021± 0.020+0.013
−0.012 . (10.44)

Hence, the data are compatible with a null asymmetry.
Figure 10.15 shows the solar neutrino flux measured in SK as a function of time.

The seasonal variation of the flux is displayed in Fig. 10.16. One can see that the
temporal dependence of the solar neutrino flux is in agreement with the seasonal
variation due to the eccentricity of the Earth’s orbit, which causes a modulation
of the flux proportional to 1/L2, where L is the Sun–Earth distance. Since the
eccentricity is about 1.7%, the predicted flux variation is about 7%. From the data,
there is no indication of an additional seasonal variation of the flux which could be
due to vacuum oscillations (see section 10.7).

The energy spectrum of the recoil electrons is depicted in Fig. 10.17, where it
is compared with the Monte Carlo prediction based on the BP04 SSM. One can
see that there is no significant distortion of the shape of the measured spectrum
with respect to the prediction. Therefore, the possible energy dependence of the
rate suppression is severely limited.

The SK collaboration searched for a possible signal of hep neutrinos, whose flux
is expected to be about three orders of magnitudes smaller than the 8B neutrino
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flux. The contribution of hep neutrinos can be investigated through a study of
high-energy events, because the hep neutrino has an end-point of about 18.8 MeV,
which is higher than the end-point of about 16 MeV of the 8B neutrino spectrum
(see Figs. 10.6 and 10.7). Since no significant excess of high-energy events was
observed (see Fig. 10.18), the flux of hep neutrinos has been limited by

Φhep
SK < 73 × 103 cm−2 s−1 (90% CL) , (10.45)

which is compatible with the SSM.

10.6.3 SNO

The Sudbury Neutrino Observatory (SNO) is a real-time heavy-water Cherenkov
detector located in the Creighton mine (INCO Ltd.), near Sudbury (Ontario,
Canada) [258]. It consists of one kiloton of 99.92% isotopically pure D2O contained
inside a spherical 12 m diameter acrylic vessel. Cherenkov light is detected by
9456 20-cm photomultiplier tubes (PMTs) mounted on a spherical stainless steel
geodesic structure with a diameter of 18 m. The acrylic vessel and the geodesic
sphere are immersed in ultrapure water (H2O) which provides shielding against
radioactive background from the geodesic structure and the cavity rock. Schematic
views of the SNO laboratory and detector are shown in Fig. 10.19. The detector is
at a depth of 2092 m, which correspond to 6010 meters of water equivalent. The
background of cosmic ray muons is about 65 per day.
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Fig. 10.19. The Sudbury Neutrino Observatory [258].

The SNO experiment detects solar neutrinos through the three reactions [42,
43, 44, 45, 38, 40, 39]

CC: νe + d→ p+ p+ e− , (10.46)

NC: να + d→ p+ n+ να , (10.47)

ES: να + e− → να + e− , (10.48)

with α = e, µ, τ .
The charged-current (CC) reaction on deuterium in eqn (10.46) is used to find

the energy spectrum of electron neutrinos above the energy threshold Eth,CC
ν =

2mp+me−md = 1.442 MeV by measuring the kinetic energy Te of the final electron:
Eν = Te + Eth,CC

ν . However, since at low energies there are high backgrounds, the
SNO experiment has a threshold of 5.5 MeV for Te, which corresponds to a neutrino
energy threshold of 6.9 MeV. Therefore, the SNO CC reaction is sensitive only to
8B solar neutrinos.

The neutral-current (NC) reaction on deuterium in eqn (10.47) is extremely
important for checking the neutrino oscillation solution of the SNP, because it is
equally sensitive to all active neutrinos [313]. Hence, the NC reaction can measure
the total flux of active neutrinos coming from the Sun. It has a neutrino energy
threshold Eth,NC

ν = mp +mn −md = 2.224 MeV and it is also sensitive only to 8B
solar neutrinos (see Table 10.2).

The elastic scattering (ES) reaction on electrons in eqn (10.48) is the same as
that used in H2O water Cherenkov detectors. The electron kinetic energy threshold
is the same as in the CC process, T th

e = 5.5 MeV. Since the corresponding neutrino
energy threshold is Eth,ES

ν = 5.7 MeV, the SNO ES reaction is also sensitive only
to 8B solar neutrinos.

The SNO experiment is divided in three phases:
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D2O Phase. In this phase the final neutron in the NC process in eqn (10.47) was
detected through the reaction with deuterium

n+ d→ 3H + γ (6.25 MeV) . (10.49)

This phase operated for 306.4 live days, from 2 November 1999 to 28 May 2001
[42, 43].

NaCl Phase. In this so-called salt phase, about 2 ton of NaCl have been added
to the heavy water in order to detect the final neutron in the NC process in
eqn (10.47) with the reaction

n+ 35Cl → 36Cl + several γ’s (8.57 MeV) . (10.50)

This reaction improved SNO’s detection of solar neutrinos in the following three
ways. First, the neutron capture efficiency increased (the thermal neutron cap-
ture cross-section of 35Cl is 44 b, whereas that of deuterium is 0.5 mb), allowing
a significant statistical improvement of the measurement of the NC process. Sec-
ond, the higher total γ-ray energy allowed a precise measurement well above the
low-energy radioactive backgrounds. Third, the isotropy of the hit distribution
of the PMTs from the multiple γ-rays emitted after neutron capture on 35Cl
is significantly different from that produced by the Cherenkov light emitted by
a single relativistic electron. Hence, the signals produced in the CC and NC
reactions can be separated with good accuracy. This phase operated for 391.4
live days, between 26 July 2001 and 28 August 2003 [45, 40].

Third Phase. The SNO collaboration hung in a grid within the heavy water three
hundred 3He proportional counter tubes. Helium-3 has a very large cross-section
for the capture of thermal neutrons, which produces an energetic proton–triton
pair resulting in an electrical pulse in the counter wire. In this phase, which
started in January 2005 and is currently operating, the measurement of the NC
process will be further improved.

The results from the first D2O phase [42, 43, 44] confirmed the deficit of solar
electron neutrinos observed previously. The NC measurement of the total flux of
active neutrinos demonstrated that about two electron solar neutrinos out of three
change their flavor to νµ or ντ on their way from the center of the Sun to the Earth.
These important results have been confirmed by the more precise salt phase data
[45, 40]. Hence, the results of the SNO experiment have proved that the SNP is
due to neutrino flavor transitions.

In the SNO salt phase 2176± 78 CC events, 2010± 85 NC events, and 279± 26
ES events have been observed, corresponding, respectively, to the equivalent fluxes
of 8B electron neutrinos [40]

ΦSNO
CC =

(
1.68 ± 0.06+0.08

−0.09

)
× 106 cm−2 s−1 , (10.51)

ΦSNO
NC =

(
4.94 ± 0.21+0.38

−0.34

)
× 106 cm−2 s−1 , (10.52)

ΦSNO
ES = (2.35 ± 0.22 ± 0.15) × 106 cm−2 s−1 . (10.53)

These are the fluxes of 8B electron neutrinos, with the energy spectrum of 8B decay,
which would be needed to fit the SNO data. However, one can immediately see that
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they are not compatible with each other. This can also be seen from the ratio [40]

ΦSNO
CC

ΦSNO
NC

= 0.340 ± 0.023+0.029
−0.031 , (10.54)

which deviates from unity by 17 standard deviations! Such a large discrepancy
implies that SNO data exclude that 8B solar electron neutrinos arrive on the Earth
unchanged. About two thirds of the 8B solar electron neutrino flux are converted
into νµ or ντ on their way to the Earth. Assuming that the energy spectrum of the
electron neutrino flux on the Earth is not distorted with respect to the 8B decay
spectrum, the CC flux in eqn (10.51) corresponds to the electron neutrino flux:

ΦSNO
CC = ΦSNO

νe
. (10.55)

The flux ΦSNO
νµ,ντ

of µ and τ neutrinos on the Earth can be determined by subtracting

ΦSNO
νe

from the NC and ES fluxes, which are given by

ΦSNO
NC = ΦSNO

νe
+ ΦSNO

νµ,ντ
, (10.56)
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Table 10.7. Day and night fluxes and asymmetries measured in SNO [153].

Type of
signal

ΦSNO,day

[cm−2 s−1]
ΦSNO,night

[cm−2 s−1]
ASNO

day–night

CC 1.73 ± 0.09 ± 0.10 1.64 ± 0.08 ± 0.09 −0.056± 0.074± 0.053
NC 4.81 ± 0.31 ± 0.39 5.02 ± 0.29 ± 0.41 0.042 ± 0.086± 0.072
ES 2.17 ± 0.34 ± 0.14 2.52 ± 0.32 ± 0.16 0.146 ± 0.198± 0.033

ΦSNO
ES = ΦSNO

νe
+ 0.1553 ΦSNO

νµ,ντ
. (10.57)

The resulting values for the flux of µ and τ neutrinos on the Earth are

ΦSNO,NC
νµ,ντ

=
(
3.26 ± 0.25+0.40

−0.35

)
× 106 cm−2 s−1 , (10.58)

ΦSNO,ES
νµ,ντ

=
(
4.36 ± 1.52+0.90

−0.87

)
× 106 cm−2 s−1 , (10.59)

which are in good agreement with each other. Figure 10.20 shows ΦSNO
νµ,ντ

versus

ΦSNO
νe

and illustrates the agreement between ΦSNO
NC and the total 8B solar neutrino

flux predicted by the BSB05(GS98) SSM [153]. From Table 10.6 one can see that the
SNO NC data are also compatible with the BP04 SSM prediction, whose difference
from the BSB05(GS98) SSM is compatible with the theoretical uncertainties.

Table 10.7 gives the day and night fluxes measured in the SNO salt phase
[153], together with the resulting asymmetries, defined similarly to that in
eqn (10.44). One can see that there is no significant day–night asymmetry, within
the uncertainties.

The energy spectrum of SNO CC events is depicted in Fig. 10.21. A statistical
analysis [153] show that the data are compatible with the SSM prediction and with
the slightly distorted LMA solution of the SNP (see section 10.10), both shown in
the figure.

10.7 Vacuum oscillations

In 1967 Pontecorvo [883] predicted that solar electron neutrinos may be converted
into νµ’s (or sterile neutrinos) because of oscillations on their way from the Sun to
the Earth. He considered only the possibility of an averaged constant suppression of
the solar electron neutrino flux. In 1968 the first data of the Homestake experiment
[356] indicated that the solar neutrino flux on the Earth was significantly smaller
than that predicted by the SSM [149]. This discrepancy was called the solar neutrino

problem (SNP). This confirmation of Pontecorvo’s brilliant idea prompted Gribov
and Pontecorvo [567] to elaborate the theory of neutrino oscillations considering the
general case of two-neutrino mixing. Also other authors discussed the possibility
of neutrino oscillations as the most simple and attractive solution of the SNP (see
Ref. [237]).
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In the simplest case of two-neutrino mixing, the survival probability of solar
electron neutrinos due to vacuum oscillations is given by

Pνe→νe
(E,L(t)) = 1 − sin2 2ϑ sin2

(
∆m2 L(t)

4E

)
, (10.60)

where L(t) is the Sun–Earth distance, which depends on the time t of the year due
to the eccentricity of the Earth’s orbit:

L(t) = L0

[
1 − ε cos

(
2π

t

T

)]
. (10.61)

Here L0 = 1 au (see Table 10.1), ε = 0.0167 is the eccentricity of the Earth’s orbit,
T = 1 yr (see Table 10.1) and t = 0 at the perihelion (in early January). Hence, a
fingerprint of vacuum oscillations would be the observation of a seasonal variation of
the rates measured in solar neutrino experiments (see Refs. [567, 237, 427, 776, 358]
and references therein).

Since no significant seasonal variation was observed in solar neutrino data and
the measured energy spectra do not show a distortion compatible with eqn (10.60),
the vacuum oscillation solution of the SNP is currently disfavored. However, the
data can be explained by neutrino oscillations in matter, as explained in the
following sections.

10.8 Resonant flavor transitions in the Sun

Solar neutrinos are produced in the solar core, where the matter density is about
150 gcm−3 and the electron density is about 100NA cm−3, corresponding to the

initial charged-current potential V
(i)
CC ∼ 10−11 eV. For solar neutrinos with energy

of the order of 10 MeV, we have A
(i)
CC ∼ 10−4 eV2, which means that the density

is larger than the resonance density if ∆m2 cos 2ϑ � 10−4 eV2. In this case, solar
neutrinos can undergo MSW resonant transitions on their way towards the surface of
the Sun. Depending on the values of the electron density profile, the neutrino energy
and the mixing parameters ∆m2 and ϑ, the resonance can be crossed adiabatically
or nonadiabatically, leading to different amounts of flavor transitions.

Figure 10.22a shows the SSM electron density profile in the Sun [145], which,
in the interval 0.1 � r/R� � 0.9, is well approximated by the exponential

Ne(r) = Ne(0) exp

(
− r

r0

)
, with Ne(0) = 245NA/cm

3 and r0 =
R�

10.54
,

(10.62)
where r is the distance from the center of the Sun and R� is the solar radius.
Hence, solar neutrino data can be analyzed with a good approximation by using
the Parke formula in eqn (9.95) with the crossing probability in eqn (9.96) and the
parameter F in the third row of Table 9.1. In order to calculate the adiabaticity
parameter at the resonance, the logarithmic derivative |d lnNe/dx|R is needed. The
authors of Ref. [744] suggested the practical prescription, verified with numerical
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Fig. 10.22. (a) SSM electron density profile in the Sun as a function of the ratio
r/R� [145] (solid curve). The straight dotted line represents the approximation
in eqn (10.62). (b) The solid curve represents the density Ne − Nn/2, which
replaces Ne in the case of νe → νs transitions. The straight line represents the
approximation 223 exp(−r/r0), with r0 given in eqn (10.62).

solutions of the differential evolution equation, to calculate it numerically from the
SSM electron density profile for r ≤ 0.904R� and take the constant value 18.9/R�
for r > 0.904R�, where the exponential approximation in eqn (10.62) breaks down.
Figure 10.22a shows the density Ne−Nn/2 as a function of r/R� [145]. This density
must be used in place of Ne for the calculation of νe → νs transitions, where νs

is a sterile neutrino. The figure shows that, in the interval 0.1 � r/R� � 0.9, the
density Ne−Nn/2 is also well approximated by an exponential with the same slope
as Ne.

Figure 10.23a shows the conventional acronyms for the regions in the tan2 ϑ-
∆m2 plane obtained from the analysis of solar neutrino data. The Small Mixing
Angle (SMA) region is the one where the mixing angle is very small and the resonant
enhancement of flavor transitions due to the MSW effect is more efficient. However,
as explained later, there is currently very strong evidence in favor of the large
mixing angle (LMA) region, in which both the mixing angle and ∆m2 are large.
Other regions with large mixing are: the low ∆m2 (LOW) region, the quasi-vacuum-
oscillations (QVO) region, and the vacuum oscillations region (VAC). In the SMA,
LMA, and LOW regions, vacuum oscillations due to the Sun–Earth distance are
not observable because ∆m2 is too large and interference effects are washed out
by the average over the energy resolution of the detector (in these cases the Parke
formula in eqn (9.95) applies). In the QVO region, both matter effects and vacuum
oscillations are important [462, 453, 463, 744]. In the VAC region matter effects are
negligible and the vacuum oscillations discussed in section 10.7 are dominant.

In the following, we will illustrate the main features of the matter effects in the
SMA, LMA, and LOW regions using the formalism derived in section 9.3.
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line: ∆m2 = 8 × 10−8 eV2 , tan2 ϑ = 0.7 (typical LOW).

Figure 10.23b shows the effective mixing angle in matter as a function of Ne/NA

for three typical SMA, LMA, and LOW solutions of the SNP. One can see that when
the mixing angle is very small, as in the SMA case, the size of the resonance region,
where the value of the effective mixing angle changes from its vacuum value to
� 90◦, is narrow. On the other hand, if the mixing angle is large as in the LMA
and LOW solutions, the transition of the effective mixing angle from its vacuum
value to � 90◦ occurs over some orders of magnitude of Ne/NA.

In Fig. 10.24 we have plotted the effective squared masses in matter

m2 =
1

2

[
∆m2 +ACC ± ∆m2

M

]
, (10.63)

where we assumed that m1 = 0 and we neglected the neutral-current contribution,
which does not affect the effective squared-mass difference ∆m2

M given in eqn (9.67).
From Fig. 10.24a one can see that the mass gap at the resonance is rather small
in the case of a typical SMA solution of the SNP. This means that the crossing of
the resonance can likely be nonadiabatic, with large νM

1 � νM
2 transitions. This is

also seen in Fig. 10.25a, in which the solid line shows the value of the resonance
adiabaticity parameter γR in eqn (9.97) for the same typical SMA solution. One can
see that γR is smaller than unity in the energy range of solar neutrinos, signaling
nonadiabatic transitions. The solid line in Fig. 10.25b shows that the crossing prob-
ability Pc is large for E � 1 MeV. On the other hand, from Figs. 10.24b and c, one
can see that the mass gap at the resonance is quite wide in the case of typical LMA
and LOW solutions. Figures 10.25b and 10.25c show that the resonance crossing is
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Ne/NA for E = 5 MeV. The dotted vertical lines show the location of the
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always adiabatic in the case of the LMA solution, whereas in the LOW case it is
adiabatic for E � 10 MeV.

Figure 10.25c shows the survival probability of solar electron neutrinos as a
function of energy for the same typical SMA, LMA, and LOW solutions of the SNP
discussed above. The plotted survival probability is given by the Parke formula
in eqn (9.95) modified in order to take into account the fact that for sufficiently
low-energy neutrinos the matter potential in the center of the Sun is below the
resonance value:

P νe→νe
=

1

2
+

(
1

2
− Pc θ(A

0
CC − ∆m2 cos 2ϑ)

)
cos 2ϑ

(i)
M cos 2ϑ , (10.64)

where A0
CC is the value of ACC in the center of the Sun and θ(x) = 1

2 (1 + x/|x|).
This is a rather crude but reasonably effective approximation [697]. For simplicity,
we considered only neutrinos produced at the center of the Sun, whereas in a
realistic calculation the distribution of neutrino production in the core of the Sun
must be taken into account. From Fig. 10.25c one can see that the solar electron
neutrino survival probability is quite different in the typical SMA, LMA, and LOW
solutions.

In the case of the SMA solution, low-energy neutrinos are created below
the resonance and their survival probability is practically equal to unity. For
0.3 MeV � E � 1 MeV, neutrinos are created above the resonance and cross the
resonance region adiabatically, leading to large flavor conversion. For E � 1 MeV,
the resonance crossing is nonadiabatic and the survival probability increases with
energy.
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Dashed line: ∆m2 = 7 × 10−5 eV2 , tan2 ϑ = 0.4 (typical LMA). Dotted line:
∆m2 = 8 × 10−8 eV2 , tan2 ϑ = 0.7 (typical LOW).

In the case of the LMA solution, there is no resonance for E � 2 MeV, where
the survival probability is equal to its average value in vacuum (see section 7.4),

P νe→νe
� P

vac

νe→νe
= 1 − 1

2
sin2 2ϑ . (10.65)

For E � 2 MeV, the resonance is crossed adiabatically (Pc � 1 in eqn (10.64)),
leading to

P νe→νe
� 1

2
+

1

2
cos 2ϑ

(i)
M cos 2ϑ . (10.66)

For E � 2 MeV, the central density of the Sun is much larger than the resonance

density. In this case, ϑ
(i)
M � π/2 and the survival probability is independent of

energy,

P νe→νe
� sin2 ϑ . (10.67)

These characteristics of the LMA solution are relevant for the analysis of the
present-day solar neutrino data [151], which strongly support the LMA solution
(see section 10.10).

In the case of the LOW solution, there is a resonance for all solar neutrino
energies and the resonance is always crossed adiabatically, leading to a flat survival
probability, except for a small increase for E � 10 MeV.

The different behavior of the survival probability as a function of energy depend-
ing on the values of the mixing parameters implies that different solutions can be
distinguished by measuring the solar neutrino flux on the Earth at different ener-
gies, either with a detector which is energy-sensitive (as real-time water Cherenkov
detectors) or with energy-insensitive detectors with different energy thresholds (as
radiochemical detectors).
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Fig. 10.26. Solid lines: (a) Earth’s density ρ as a function of the radius r [86];
(b) electron number density Ne = NA (ρ/g) 〈Z/A〉, with 〈Z/A〉 = 0.475 for
r ≤ 3480 km (core) and 〈Z/A〉 = 0.495 for r > 3480 km (mantle). Dashed lines:
Two-steps approximation ρcore = 11.5 gcm−3 and ρmantle = 4.5 g cm−3.

10.9 Regeneration of solar νe’s in the Earth

Solar neutrino detectors are located in underground laboratories at latitudes around
35◦-45◦ in the northern hemisphere. Therefore, during the day solar neutrinos come
from above, crossing the atmosphere and the thin part of the Earth crust above the
detector. The matter effects generated during these passages are negligible. On the
other hand, during the night, solar neutrinos come from below, passing through
the Earth. In this case, matter effects in the Earth may not be negligible and may
cause the so-called νe regeneration in the Earth. This mechanism can generate a
day–night asymmetry of solar neutrino data if

ACC ∼ ∆m2 cos 2ϑ , (10.68)

according to the resonance criterion in eqn (9.69). Since the electron number density
in the Earth core is about 6NA cm−3, there can be an Earth matter effect for solar
neutrinos of energy of the order of 1 MeV if

∆m2 cos 2ϑ ∼ 10−6 eV2 . (10.69)

The probability of solar electron neutrino survival after passing through the
Earth can be calculated as follows. For values of ∆m2 as large as those in
eqn (10.69), solar neutrinos arrive at the Earth as an effectively incoherent sum
of the two mass eigenstates ν1 and ν2 [373]. In this case, the survival probability
after the Earth crossing is given by

P Sun+Earth
νe→νe

= P Sun
νe→ν1

PEarth
ν1→νe

+ P Sun
νe→ν2

PEarth
ν2→νe

, (10.70)
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where P Sun
νe→νk

is the probability of νe → νk transitions of solar neutrinos arriving

on the Earth and PEarth
νk→νe

is the probability of νk → νe transitions during the Earth
crossing. Unitarity implies that

P Sun
νe→ν1

= 1 − P Sun
νe→ν2

, PEarth
ν1→νe

= 1 − PEarth
ν2→νe

. (10.71)

Furthermore, since the survival probability of solar electron neutrinos arriving on
the Earth (given by the Parke formula in eqn (10.64)) is given by

P Sun
νe→νe

= P Sun
νe→ν1

cos2 ϑ+ P Sun
νe→ν2

sin2 ϑ , (10.72)

we have

P Sun
νe→ν2

=
cos2 ϑ− P Sun

νe→νe

cos 2ϑ
. (10.73)

Then, the survival probability after the Earth crossing can be written as [804, 159]

P Sun+Earth
νe→νe

= P Sun
νe→νe

+

(
1 − 2P Sun

νe→νe

) (
PEarth

ν2→νe
− sin2 ϑ

)
cos2ϑ

. (10.74)

One can see that, if the matter effects in the Earth are negligible, PEarth
ν2→νe

= sin2 ϑ
and P Sun+Earth

νe→νe
is reduced to P Sun

νe→νe
. On the other hand, if matter effects in the

Earth generate additional ν2 → νe transitions, there is a regeneration of νe’s in the
Earth if P Sun

νe→νe
is small and ϑ < π/4.

Since the Earth’s density profile, shown in Fig. 10.26, is not a smooth function,
the probability P Earth

ν2→νe
must be calculated numerically. A good approximation is

obtained by approximating the Earth’s density profile with a step function and
using the solution of the evolution equation discussed in section 9.4. The simplest
approximation takes into account only the mantle and the core of the Earth, as
shown by the dashed lines in Fig. 10.26, approximating its density with the one and

half period castle wall profile discussed at the end of section 9.5 (see Refs. [871, 50,
315, 316]). The probability PEarth

ν2→νe
can be calculated using the evolution operator in

eqn (9.127) taking into account that the initial state is |ν2〉 = sinϑ|νe〉+ cosϑ|νµ〉:(
ψ2e

ψ2µ

)
= U

(
sinϑ
cosϑ

)
=

(
[U ]11 sinϑ+ [U ]12 cosϑ
[U ]21 sinϑ+ [U ]22 cosϑ

)
. (10.75)

Hence, we have

PEarth(Mantle+Core)
ν2→νe

= |ψ2e|2 = sin2 ϑ+ (W1)
2 cos 2ϑ+W1W3 sin 2ϑ , (10.76)

where we have taken into account the unitarity relation Z2 + | �W |2 = 1 for the
quantities in eqns (9.128) and (9.129). Note that the first term in eqn (10.76), i.e.
sin2 ϑ, is just the probability to find νe in ν2. The other terms express the effect of
oscillations in the Earth.

Using the expression in eqn (10.76), one can calculate rather easily the proba-
bility PEarth

ν2→νe
for any neutrino path which crosses the mantle and the core of the

Earth. For the paths which cross only the mantle, one can use a constant density
approximation with the evolution operator in eqn (9.108), which leads to

PEarth(Mantle)
ν2→νe

= sin2 ϑ+ sin2 φ sin 2ϑM (sin 2ϑM cos 2ϑ+ cos 2ϑM sin 2ϑ) , (10.77)

with the phase φ given in eqn (9.109) and the effective mixing angle ϑM given in
eqn (9.72).
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Fig. 10.27. (a) Allowed region in the tan2 ϑ-∆m2 plane (LMA) obtained from
a global analysis of solar neutrino data [40]. (b) Restricted region obtained by
including KamLAND 766 ton-year data [103].

10.10 Global fit of solar neutrino data

A global fit of all solar neutrino data leads to the conclusion that the LMA solution
of the SNP is correct. This is shown in Fig. 10.27a, taken from Ref. [40], which
depicts the allowed region in the tan2 ϑ-∆m2 plane. The solar neutrino data used
to calculate this region are: the day and night spectra of SNO’s D2O phase, the
day and night CC spectra and ES and NC fluxes of SNO’s salt phase, the rates
measured in the Homestake [323], SAGE [19], GALLEX/GNO [588, 76], and Super-
Kamiokande-I zenith spectra [968]. The 8B flux was left free in the fit, since it is
determined by the SNO NC measurement (see Fig. 10.20). The best-fit oscillation
parameters with 1σ uncertainties are [40]

∆m2 =
(
6.5+4.4
−2.3

)
× 10−5 eV2 , tan2 ϑ = 0.45+0.09

−0.08 . (10.78)

Hence, the mixing angle is quite large, but not maximal (tan2 ϑ = 1 is excluded at
about 6σ).

Figure 10.27b shows that the determination of the allowed region in the tan2 ϑ-
∆m2 plane can be improved by including KamLAND’s data (see section 12.2.3),
which leads to a significant restriction of the allowed range of ∆m2. The resulting
best-fit oscillation parameters are [40]

∆m2 =
(
8.0+0.6
−0.4

)
× 10−5 eV2 , tan2 ϑ = 0.45+0.09

−0.07 . (10.79)

Thus, we do have now a rather precise determination of ∆m2 and ϑ.
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ATMOSPHERIC NEUTRINOS

How wonderful that we have met with a paradox. Now we have
some hope of making progress.
Niels Bohr

Atmospheric neutrinos are created by the interactions of primary cosmic rays with
the nuclei in the atmosphere. The primary cosmic rays are mainly composed of
protons, with a small component of heavier nuclei. The interactions of these primary
cosmic rays with the nuclei in the atmosphere generate secondary cosmic rays, which
include all the hadrons and their decay products, with an energy spectrum which
has a peak in the GeV range and extends to higher energy with an approximate
power law. In particular, many secondary pions are produced. As illustrated in
Fig. 11.1, these pions decay mainly into muons and muon neutrinos (see eqns (5.58)–
(5.60)):

π+ → µ+ + νµ , π− → µ− + ν̄µ . (11.1)

At high energies, also kaons contribute to the production of neutrinos and muons.
The muons which decay before hitting the ground generate electrons, electron
neutrinos, and muon neutrinos through the processes

µ+ → e+ + νe + ν̄µ , µ− → e− + ν̄e + νµ . (11.2)

The neutrinos generated in these reactions are called atmospheric neutrinos.
Those with energies from about 100 MeV to about 100 GeV can be detected
in underground laboratories through scattering on nuclei. The detectors must
be underground in order to provide good shielding from the flux of secondary
cosmic-ray muons, whose frequent interactions would otherwise overwhelm the
detector.

From the multiplicities of neutrinos in the processes in eqns (11.1) and (11.2)
it is clear that at low energies (E � 1 GeV), for which most muons decay before
hitting the ground, the neutrino fluxes satisfy the following ratios

φνµ
+ φν̄µ

φνe
+ φν̄e

� 2 ,
φνµ

φν̄µ

� 1 ,
φνe

φν̄e

� φµ+

φµ−

. (11.3)

At energies higher than 1 GeV the fraction of muons which hit the ground before
decaying increases, leading to an increase of the flavor ratio φνµ

+ φν̄µ
/φνe

+ φν̄e
.

The basic principles of detection of atmospheric neutrinos were already known
in the 1960s [564, 777, 1084]. In 1965 two groups reported the observation of atmo-
spheric neutrinos by detectors in the Kolar Gold Field Mine in South India [26, 27]
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Fig. 11.1. Schematic view of neu-
trino production by cosmic-ray
proton interactions in the atmo-
sphere, with generation of pions
and muons.
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and in the East Rand Proprietary Gold Mine in South Africa [900]. Both experi-
ments were located very deep underground, with overburdens of about 8000 mwe60.
The detectors were made of scintillator, which recorded the tracks of muons. Deep
underground the residual secondary cosmic-ray muon flux is strongly peaked in the
downward-going vertical direction. On the other hand, the atmospheric neutrino
flux is almost isotropic and can generate upward-going and horizontal muons by
interacting with the rock surrounding the detector. Nowadays detectors can distin-
guish upward-going muons from the downward-going secondary cosmic-ray muons,
but at that time it was only possible to reveal the atmospheric neutrino flux by
measuring horizontal muons. The events reported by the Indian and South-African
experiments were of horizontal type, with a very low probability of being generated
by cosmic-ray muons. In the following years, the observation with scintillator detec-
tors of muons generated in the rock by atmospheric neutrinos continued in India
[704, 705], in South Africa [901, 341], in Utah (USA) [211], and in the Baksan
Laboratory in Russia [260, 261, 65].

In the second half of the 1980s, atmospheric neutrinos began to be observed by
the large underground Kamiokande [614, 840, 621, 474, 603] and IMB [581, 243, 306,
199, 200, 322] water Cherenkov experiments, which have been built for the search
of nucleon decay. These detectors could observe events generated by atmospheric
neutrino interactions in the detector, as well as upward-going muons generated
by atmospheric neutrino interactions in the rock below the detector. Initially, the
interactions of atmospheric neutrinos in the detectors were mainly considered as a

60 For an explanation of mwe units, see footnote 54 on page 367.
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background for the nucleon decay searches, although the possibility of atmospheric
neutrino oscillations have been studied before [237, 174, 175, 458, 133, 351, 493]
(neutrino oscillations have been suggested in Refs. [174, 175] as an explanation of
the low fluxes of neutrino-induced muons observed in the Indian [704] and South
African [341] experiment on the basis of the analysis in Ref. [1043], although these
observations had large uncertainties). To take into account such background, the
rates of atmospheric neutrino interactions in the detectors were calculated rather
precisely [495, 349, 493, 490, 822]. However, it turned out that the Kamiokande
[614, 840, 621, 474, 603] and IMB [581, 306, 200] experiments observed a number
of atmospheric muon neutrino interactions which was significantly smaller than the
predicted one. This deficit was commonly called for many years the atmospheric

neutrino anomaly. It was rather controversial, because the fine-grained iron tracking
detectors NUSEX [185, 186, 33, 34] and Frejus [209, 210, 352] did not see any
anomaly. Moreover, the IMB experiment found an anomaly only for the contained
events with energy below 1.5 GeV [581, 306, 200], whereas the upward-going muon
data [199] and the partially contained events with energy above 0.95 GeV [322] did
not show any deviation from expectations.

The breakthrough for the solution of the atmospheric neutrino anomaly in
favor of neutrino oscillations came from the observation of an up-down asymmetry
of high-energy events generated by atmospheric muon neutrinos in the Super-
Kamiokande water Cherenkov detector [476]. This detector started operations in
1996 as a follow-up of the Kamiokande experiment in the Kamioka mine in Japan.
Until 2001, it has provided high-statistics data on the atmospheric neutrino flux
[477, 479, 476, 481, 486, 483, 470, 110, 111], which allowed the Super-Kamiokande
collaboration to determine that the oscillations are from muon to tau neutrinos
[470] and to infer the values of the oscillation parameters with unprecedented accu-
racy [111]. These results are in agreement with those obtained with the fine-grained
iron tracking Soudan 2 [67, 68, 922, 69] and MACRO [41, 81, 82, 83, 84] detectors.
Furthermore, the values of the atmospheric neutrino oscillation parameters are in
agreement with the observed disappearance of muon neutrinos in the accelerator
long-baseline K2K experiment [48, 46, 47, 66].

Figure 11.2 shows the distributions of neutrino energies that generate four
classes of events in atmospheric neutrino detectors (Sub-GeV and multi-GeV
contained events in Kamiokande and Super-Kamiokande and stopping and through-
going muons produced outside the detector). One can see that the range of neutrino
energies in atmospheric experiments is huge, covering about five orders of magni-
tude. The range of pathlengths of atmospheric neutrinos is also very wide, going
from about 20 km for vertical downward-going neutrinos to about 1.3× 104 km for
vertical upward-going neutrinos. These characteristics imply that the ratio L/E,
which determines the sensitivity of an experiment to ∆m2 (see eqn (7.74) and
the discussion in section 7.5), covers a wide range, from about 10−4 eV2 to about
10 eV2 (in the estimate of the upper limit one must consider pathlengths larger
than about 100 km, since only upward-going stopping and through-going muons
can be distinguished from secondary cosmic-ray muons). Hence, atmospheric neu-
trino experiments are a powerful tool for the investigation of neutrino oscillations
due to a ∆m2 in such a wide range.
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In this chapter, we describe the basic principles of the calculation of the flux of
atmospheric neutrinos in section 11.1. In section 11.2, we review the setup and the
results of atmospheric neutrino experiments.

Further information on the general principles of the calculation of neutrino fluxes
and on atmospheric neutrino experiments can be found, respectively, in Refs. [487,
489] and Refs. [695, 1023, 653, 645, 785].

11.1 Flux of atmospheric neutrinos

Figure 11.3 shows the impressive energy spectrum of primary cosmic rays, from
200 MeV up to about 1020 eV (see Ref. [85]). The observed energy and isotropy of
cosmic rays imply that they come from outside the solar system (apart from a small
component coming from solar flares). Only below about 100 MeV does the solar
wind dominate the cosmic ray flux. However, the solar wind decelerates the galactic
cosmic rays with energies below about 10 GeV, causing a so-called modulation of
the cosmic ray flux, which is an anticorrelation of the flux with the eleven-year
cycle of solar activity.

Above a few GeV, the cosmic ray spectrum is approximately proportional to
E−3. More precisely, it is possible to describe it approximately with a series of
power laws: at about 1015.5 eV (the knee) the spectrum steepens from E−2.7 to
E−3.0; at about 1017.7 eV (the dip) the spectrum steepens further to E−3.3; at
about 1018.5 eV (the ankle) the spectrum flattens to E−2.7. Cosmic rays have been
observed up to energies of a few 1020 eV. However, it is believed that the cosmic
ray spectrum should be suppressed above about 1020 eV because of the so-called
Greisen–Zatsepin–Kuzmin (GZK) cutoff [565, 1085] due to the interaction of the
cosmic rays with the cosmic microwave background. The investigation of the GZK
cutoff is presently a very active field of theoretical and experimental research (see
Refs. [963, 85, 647, 500]). However, in the following we will be interested in cosmic
rays of much lower energies, from about 1 GeV to about 104 GeV, whose flux
is sufficiently high to generate an observable flux of atmospheric neutrinos. The
differential flux of primary cosmic-ray nucleons for energies between a few GeV to
some hundreds TeV is given approximately by

φN (E) � φN (E = 1 GeV)

(
E

GeV

)−(1+γ)

, (11.4)

with the integral spectral index γ = 1.7 and

φN (E = 1 GeV) � 1.8 × 104 nucleons

m2 sr s GeV
. (11.5)

Integrating eqn (11.4) from 1 GeV to infinity, we find the integral flux of nucleons
with energy bigger than 1 GeV:

φN (E > 1 GeV) � φN (E = 1 GeV) γ−1 � 1 × 104 nucleons

m2 sr s GeV
. (11.6)

About 79% of primary cosmic-ray nucleons are protons and about 15% are bound
in helium nuclei.
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Fig. 11.3. Compilation of measure-
ments of the differential energy spec-
trum of cosmic rays. The dotted line
shows an E−3 power law for compari-
son. Approximate integral fluxes (per
steradian) are also shown. The energy
in the abscissa is the kinetic energy.
Figure taken from Ref. [85].
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A summary of the measurements of the energy of the main primary cosmic-ray
nuclei is shown in Fig. 11.4. One can see that there are agreements and discrepancies
among the measurements of different experiments (for a more detailed discussion,
see Refs. [498, 497]) Hence, there is some uncertainty on the energy spectrum of
primary cosmic rays. The approximated power-law flux of nucleons in eqn (11.4) is
shown by the heavy black line in Fig. 11.4.

Figure 11.5 shows the elemental abundances in the cosmic-ray flux at energies
below about 105 GeV, compared with the abundances in the solar system. One can
see that the cosmic-ray abundances of several nuclei, such as lithium, beryllium,
and boron, are orders of magnitude larger than in the solar system. This is the
consequence of a process called spallation: when they propagate in the Galaxy, cos-
mic ray nuclei interact with the interstellar medium, breaking apart. The products
of these fragmentations are called secondary nuclei, to be distinguished from the
so-called primary nuclei, which are the ones generated by a cosmic-ray source. The
cosmic-ray abundance of primary nuclei such as carbon, oxygen, and iron, which
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are abundant end-products of stellar nucleosynthesis, is similar to that in the solar
system. Also protons and electrons are primaries. On the other hand, antiprotons
and positrons are in large part secondaries. The amounts of secondary nuclei give
information on the time of propagation of cosmic rays in the galaxy and on the
composition of the interstellar medium. Usually, it is clear from the context if the
adjective secondary refers to particles created by spallation in the Galaxy or by
interaction of cosmic rays in the atmosphere. Otherwise, it is common to use the
more specific adjectives galactic secondary or atmospheric secondary.

In the following subsection 11.1.1 we describe an approximate analytical cal-
culation of the atmospheric neutrino fluxes, which is a simplified version of that
presented in Ref. [736]. Such an analytical calculation can be used to obtain an
order-of-magnitude estimate of the atmospheric neutrino fluxes. However, its main
interest is pedagogical, since it gives an idea of the basic physical problems involved
in the calculations of the atmospheric neutrino fluxes. In subsection 11.1.2 we sum-
marize the main result of the most refined calculations, which are done with Monte
Carlo numerical methods. Finally, in subsection 11.1.3 we discuss the up-down
asymmetry, whose observation in the Super-Kamiokande experiment led in 1998 to
a model-independent proof of atmospheric neutrino oscillations.
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11.1.1 An approximate analytical calculation

In a one-dimensional approximation, the evolution in the atmosphere of the flux φj

of a cosmic ray of type j is given by the cascade equation (see Refs. [487, 736, 553,
498])

dφj(E,X)

dX
= −φj(E,X)

λj(E)
− φj(E,X)

dj(E,X)
+
∑

k

Sk→j(E,X) , (11.7)

where X is the so-called slant depth, or atmospheric depth, which is usually mea-
sured in units of g cm−2. For simplicity, we will consider a downward-going particle
in the vertical direction61. In this case, if h is the height of the position of the
particle, the slant depth as a function of h is given by

X(h) =

∫ ∞
h

ρ(h′) dh′ . (11.8)

Here, ρ(h) is the density of the atmosphere as a function of the height h. Most
cosmic ray interactions occur between 10 and 40 km of height, in the stratosphere,
which is the layer of the atmosphere between the tropopause (from h � 7 km at
the poles to h � 17 km at the equator) and the stratopause (h � 50 km). In a first
approximation, the density in the stratosphere is given by

ρ(h) � ρ0 e
−h/h0 , (11.9)

with ρ0 � 2.03 × 10−3 g cm−3 and h0 � 6.4 km. This is the so-called baromet-

ric formula, or isothermal atmosphere, or exponential atmosphere. In such an
approximation, we have the simple relation between slant depth and height

X(h) � ρ0 h0 e
−h/h0 � h0 ρ(h) , (11.10)

with ρ0h0 � 1300 gcm−2.
The first term on the right-hand side of eqn (11.7) describes the disappearance

of the particle j due to the interactions with the atmosphere with an interaction
length λj(E) in g cm−2. Strictly speaking, the interaction length depends on the
slant depth, since it is given by λj(E,X) = ρ(h(X))/

∑
A σjA(E)nA(h(X)), where

σjA is the inelastic cross-section of the interaction with nuclei with mass number A
(the isospin symmetry of hadronic interactions implies that only the mass number
is relevant) and nA is the number density of these nuclei. However, since the atmo-
spheric composition is approximately constant up to a height of about 100 km, it is
possible to approximate ρ(h) =

∑
AAnA(h)/NA � Ā

∑
A nA(h)/NA, where NA is

61 The case of a particle which is downward-going along a straight trajectory forming
an angle θz with the vertical direction (θz is the zenith angle) can be treated taking
into account that the height h corresponding to a distance � from the ground along the

trajectory is given by h(�, θz) =
q

(� cos θz +R⊕)2 + (� sin θz)
2 − R⊕, where R⊕ is the

radius of the Earth. Since the atmosphere is very thin in comparison with the radius of
the Earth, one can approximate h(�, θz) � � cos θz + �2 sin2 θz/2R⊕.
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the Avogadro’s number and Ā � 14.5 is the average mass number of air. Approx-
imating

∑
A σjA(E)nA(h(X)) � σ̄j(E)

∑
A nA(h(X)), where σ̄j(E) is the average

cross-section, we obtain

λj(E) � Ā

NA σ̄j(E)
. (11.11)

The second term on the right-hand side of eqn (11.7) describes the decay of
the particle, with a decay length dj(E,X) in g cm−2, which is given by (in the
ultrarelativistic approximation)

dj(E,X) = ρ(h(X))
E

mj
τj , (11.12)

where τj is the lifetime and E/mj is the Lorentz time-dilation factor (mj is the
mass of the particle j).

The third term on the right-hand side of eqn (11.7) describes the generation
of secondary cosmic rays of type j due to the interactions of their parent cosmic
rays with the atmosphere. For a hadron j which is produced by the interaction of
a parent hadron k with the atmosphere, the source term is given by

Sk→j(E,X) =

∫ ∞
E

dEk
φk(Ek, X)

λk(Ek)

dnk→j(E,Ek)

dE
. (11.13)

The energy distribution dnk→j(E,Ek)/dE of the hadron j in the k → j production
process is given by

dnk→j(E,Ek)

dE
=

1

σk(Ek)

dσk→j(E,Ek)

dE
. (11.14)

Here, σk(Ek) is the inclusive cross-section for interactions with air of a hadron of
type k with energy Ek and dσk→j(E,Ek)/dE is the differential exclusive cross-
section of production of a hadron of type j with energy E. In the evaluation of the
source term in eqn (11.13), it is convenient to make the following approximations
(see Refs. [487, 736, 553, 498]):

(i) the interaction length λk is independent of energy;
(ii) the dimensionless distribution dnk→j/dxF, where xF = E/Ek is the Feyn-

man x-variable, depends only on xF (Feynman scaling). With these approximations,
the source term in eqn (11.13) can be written as

Sk→j(E,X) =
1

λk

∫ 1

0

dxF

xF
φk

(
E

xF
, X

)
dnk→j

dxF
. (11.15)

In this case, the cascade equation (11.7) can be solved by factorizing the
dependences on energy and slant-depth of the fluxes:

φj(E,X) = φj(E)φj(X) , with φj(E) ∝ E−(1+γ) , (11.16)

where the energy dependence comes from that of the primary nucleon flux in
eqn (11.4). Then, the source term becomes

Sk→j(E,X) =
φk(E,X)

λk
Zkj , (11.17)
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with the so-called Z-factors given by62

Zkj =

∫ 1

0

dxF x
γ
F

dnk→j

dxF
. (11.18)

As a result, the approximations leading to eqn (11.18) allow us to write the general
cascade equation (11.7) for hadrons in the simple form

dφj(E,X)

dX
= −φj(E,X)

λj(E)
− φj(E,X)

dj(E,X)
+
∑

k

φk(E,X)

λk
Zkj . (11.19)

For nucleons, which are stable (neutrons can be considered stable, since their
lifetime is much longer than their transit time through the atmosphere), the cascade
equation reduces to (see Refs. [487, 736, 553, 498])

dφN (E,X)

dX
= −φN (E,X)

λN
+
φN (E,X)

λN
ZNN , (11.20)

62 Since Feynman scaling is not exact, an accurate calculation must consider the Z-
factors as energy dependent [553, 488].
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under the approximation that nucleons are only generated by other nucleons. The
solution with the boundary condition in eqn (11.4) at X = 0 is given by

φN (E,X) � φN (E) e−X/ΛN , (11.21)

where φN (E) is given by eqn (11.4) and ΛN is the attenuation length

ΛN =
λN

1 − ZNN
. (11.22)

For γ = 1.7, we have ZNN � 0.30 [736]. Since λN � 86 g cm−2 [487], we obtain
ΛN � 123 gcm−2, which, from eqn (11.10), corresponds to an altitude of about
15 km. From Fig. 11.6 one can see that eqn (11.21) gives a reasonable approximation
of the energy spectrum of protons measured at different slant depths. Since the
attenuation factor in eqn (11.21) does not depend on energy, the integral flux of
nucleons with energy bigger than 1 GeV is given by

φN (E > 1 GeV, X) � φN (E > 1 GeV, X = 0) e−X/ΛN , (11.23)

with φN (E > 1 GeV, X = 0) given by eqn (11.6). Figure 11.7 shows the behavior
of φN (E > 1 GeV, X) as a function of the atmospheric depth X .
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The cascade equation for pions is (see Refs. [487, 736, 553])

dφπ(E,X)

dX
= −φπ(E,X)

λπ
− φπ(E,X)

dπ(E,X)
+
φN (E,X)

λN
ZNπ +

φπ(E,X)

λπ
Zππ , (11.24)

where we have made the approximation that pions are only generated by nucleons
and pions and, for simplicity, we did not distinguish the charge of the pion. For
γ = 1.7, we have ZNπ � 0.08 and Zππ � 0.27 [736]. The value of the pion interaction
length is λπ � 116 g cm−2 [487]. There is a critical energy, given by the equality
λπ = dπ, below which the decay is more important than re-interactions. Since the
decay length depends on the slant depth X , it is convenient to define the critical
energy at the depth of cascade maximum [487], i.e. for X = λπ. In general, with
such a definition and the approximation in eqn (11.10), the critical energy for a
decaying particle j is given by

εj =
h0mj

τj
. (11.25)

For pions, we have επ � 115 GeV. Below the critical energy, the interactions of
pions in the cascade equation (11.24) can be neglected, including the regeneration
terms, leading to the low-energy approximate solution [736, 553]

φπ(E,X) =
ZNπ

λN
dπ(E,X)φN (E,X) (E � επ) , (11.26)

with ZNπ � 0.08 for γ = 1.7 [736]. On the other hand, in the high-energy regime,
the decay term in eqn (11.24) can be neglected and the solution is

φπ(E,X) =
ZNπ

1 − ZNN

Λπ

Λπ − ΛN

(
e−X/Λπ − e−X/ΛN

)
φN (E) (E � επ) ,

(11.27)
with the pion attenuation length Λπ � 159 g cm−2, which is defined analogously
to the nucleon attenuation length in eqn (11.22): Λπ = λπ/(1 − Zππ). A similar
treatment applies to kaons (see Refs. [736, 553]), which have the critical energy εK �
850 GeV [498]. Note that for energies below the critical energy, the spectral index of
mesons is smaller by one unit of the spectral index of nucleons (φπ(E,X) ∝ E−γ),
because the decay length is proportional to the energy (see eqn (11.12)), whereas
for energies above the critical energy the spectral index of mesons is the same as
that of nucleons (φπ(E,X) ∝ E−(1+γ)). In other words, the pion spectrum and
the spectrum of the neutrinos generated by pion decay are flatter than the primary
nucleon spectrum below the critical energy and steepens around the critical energy
until it reaches the same slope as the primary nucleon spectrum well above the
critical energy. The same is true for kaons. Below the pion critical energy, pions are
the main source of neutrinos. However, since εK � επ, the kaon spectrum remains
flatter above the pion critical energy and rapidly becomes the dominant source of
neutrinos.

In the following we will consider, for simplicity, only the low-energy case. We
will discuss only the calculation of the neutrino fluxes from pion decay (and the
subsequent muon decay) below the pion critical energy, using the pion flux in
eqn (11.26).
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The cascade equation for the flux φ
(π)
νµ (E,X) of atmospheric muon neutrinos

and antineutrinos produced by pion decay (we neglect the small fraction of pion
decays into electron neutrinos and antineutrinos) is simply

dφ
(π)
νµ (E,X)

dX
= Sπ→νµ

(E,X) , (11.28)

since neutrinos are stable and practically do not interact with the atmosphere. The
source term Sπ→νµ

(E,X) of production of νµ from pion decay is given by [736]

Sπ→νµ
(E,X) =

∫ ∞
E

dEπ
φπ(Eπ , X)

dπ(Eπ , X)
Fπ→νµ

(E,Eπ) , (11.29)

where Fπ→νµ
(E,Eπ) is the energy spectrum of νµ from the decay. It can be shown

that in the ultrarelativistic limit the inclusive spectrum of a particle B produced
in the decay of a particle A has the scaling form [736]

FA→B(EB, EA) =
1

EA
FA→B

(
EB

EA

)
. (11.30)

Defining, in analogy with eqn (11.18), the Z-factors

ZAB =

∫ 1

0

dxxγ FA→B(x) (11.31)

and taking into account that from the low-energy pion flux in eqn (11.26) we have
φπ/dπ ∝ φN (E,X) ∝ E−(1+γ), the source term in eqn (11.29) becomes

Sπ→νµ
(E,X) =

ZNπ

λN
φN (E,X)Zπνµ

. (11.32)

Since [736]

Fπ→νµ
(x) =

1

1 − rπ

[
1 − θ

(
1 − (1 − rπ)

)]
, (11.33)

where rπ ≡ (mµ/mπ)2 � 0.57, we obtain

Zπνµ
=

1

1 − rπ

∫ 1−rπ

0

dxxγ =
(1 − rπ)γ

γ + 1
. (11.34)

For γ = 1.7, we have Zπνµ
� 0.087.

Using the source term in eqn (11.32), the cascade equation (11.28) can be inte-
grated analytically taking into account that φN (E,X) ∝ e−X/ΛNN . The result
is

φ(π)
νµ

(E,X) =
ZNπ Zπνµ

1 − ZNN
φN (E)

(
1 − e−X/ΛN

)
. (11.35)

Since the slant depth of the whole atmosphere is much larger than ΛN , the flux of
muon neutrinos from pion decay (below the critical energy επ) measurable in an
underground detector is given by

φ(π)
νµ

(E) =
ZNπ Zπνµ

1 − ZNN
φN (E) . (11.36)

This is a remarkably simple expression, once the values of the Z-factors are known.
Note that the neutrino energy spectrum has the same spectral index as the spectrum
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of the primary nucleons. The integral flux of muon neutrinos from pion decay above
1 GeV is easily obtained by using eqn (11.6).

Let us now consider the muon flux produced by pion decays. The evolution of
the muon flux with slant depth is complicated by the decay of muons and by their
energy loss due to interactions with air. Treating the energy loss as a continuous
process, it can be described approximately by

dE

dX
= −a− bE , (11.37)

where a � 2 MeVcm2 g−1 and b � 3.9 × 10−6 cm2 g−1 for muons in the GeV–TeV
energy range [181, 493]. If a muon with energy E0 is created at the slant depth
X0, its energy E(X − X0, E0) at the slant depth X is obtained by integrating
eqn (11.37), with the result

E(X −X0, E0) =
(a
b

+ E0

)
e−b(X−X0) − a

b
� E0 − a (X −X0) . (11.38)

The last approximation is due to the smallness of b (X −X0) in the atmosphere:
since X −X0 � 1.3 × 103 g cm−2, we have b (X −X0) � 5 × 10−3.

Considering now the effect of muon decay, the probability Pµ(E,X,X0) that a
muon created with energy E0 at the slant depth X0 reaches the slant depth X with
an energy E(X −X0, E0) is given by

Pµ(E,X,X0) = exp

(
−mµ

τµ

∫ X

X0

dX ′

E(E0, X ′ −X0) ρ(h(X ′))

)
. (11.39)

With the approximations in eqns (11.10) and (11.38), the integral in eqn (11.39) is
easily calculated, leading to

Pµ(E,X,X0) =

(
E + a (X −X0)

E

X

X0

)−εµ/(E+aX)

, (11.40)

where εµ = h0mµ/τµ is the muon critical energy, according to eqn (11.25).
Finally, the muon flux at slant depth X generated by pion decay is given by

φµ(E,X) =

∫ X

0

dX0 Sπ→µ(E0, X0)Pµ(E,X,X0) , (11.41)

where the source term Sπ→µ(E0, X0) has the same expression as that in eqn (11.29),
with νµ replaced by µ. Using eqns (11.30) and (11.31), we find that

Sπ→µ(E,X) =
ZNπ

λN
φN (E,X)Zπµ . (11.42)

The expression of Fπ→µ(x) is [736]

Fπ→µ(x) =
1

1 − rπ
θ(x − rπ) . (11.43)

Thus, we obtain

Zπµ =
1

1 − rπ

∫ 1

rπ

dxxγ =
1 − rγ+1

π

(γ + 1) (1 − rπ)
. (11.44)

For γ = 1.7, we have Zπµ � 0.675.
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The last quantity to calculate is the neutrino flux from muon decays. The cas-
cade equation is similar to eqn (11.28), with the difference that now we consider
electron and muon neutrinos (for simplicity, we do not distinguish here between
neutrinos and antineutrinos)63:

dφ
(µ)
να (E,X)

dX
=

∫ ∞
E

dEµ
φµ(Eµ, X)

dµ(Eµ, X)
Fµ→να

(E,Eµ) (α = e, µ) , (11.45)

with the muon flux in eqn (11.41). The quantity on the right-hand side is the source
term and Fµ→να

(E,Eµ) is the energy spectrum of να from muon decay. Using the
property in eqn (11.30), the neutrino flux from muon decays obtained by integration
of eqn (11.45) is given by

φ(µ)
να

(E,X) =

∫ ∞
E

dEµ

Eµ
Fµ→να

(
E

Eµ

)∫ X

0

dX ′
φµ(Eµ, X

′)
dµ(Eµ, X ′)

(α = e, µ) , (11.46)

where we have exchanged, for convenience, the order of the integrations over slant
depth and energy. The neutrino spectra from muon decay are [736]

Fµ→νe

(
E

Eµ

)
= 2 − 6

(
E

Eµ

)2

+ 4

(
E

Eµ

)3

, (11.47)

Fµ→νµ

(
E

Eµ

)
=

5

3
− 3

(
E

Eµ

)2

+
4

3

(
E

Eµ

)3

. (11.48)

In order to obtain the fluxes of electron and muon neutrinos from muon decay
measurable in an underground detector one must integrate numerically eqn (11.46)
up to the slant depth corresponding to the ground level. The muons which do not
decay in the atmosphere rapidly lose energy after hitting the ground. When they
decay, they generate low-energy neutrinos which are not observable with present-
day underground neutrino detectors.

The final result for the fluxes of atmospheric neutrinos and antineutrinos in the
approximate analytical approximation presented above is given by eqn (11.46) for
the electron flavor and by the sum of the fluxes in eqns (11.35) and (11.46) for the
muon flavor. It is possible to refine the above analytical calculations by improving
some approximations and by taking into account sub-leading effects [487, 736, 553,
853, 496, 724], or introducing semi-analytical methods [274, 445]. The resulting
estimates of muon fluxes typically provide acceptable fits with the data (see, for
example, Fig. 11.8).

Among other applications, analytical calculations of the atmospheric neutrino
fluxes allow the estimate of the most probable height of production of neutrinos
in the atmosphere [494], which is interesting for oscillation studies, since the prob-
ability of flavor transitions depends on the distance between neutrino production

63 In a calculation of the neutrino and antineutrino fluxes from muon decays, it is
necessary to take into account the polarization of the muons, which modifies the neutrino
spectra [179]. The analytical treatment of muon polarization is discussed in Ref. [736].
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and detection. The distance L covered by a neutrino produced at a height h and
detected underground at a depth d is given by

L =

√
(R⊕ + h)2 − (R⊕ − d)2 sin2 θz + (R⊕ − d) cos θz , (11.49)

where R⊕ is the radius of the Earth and θz is the zenith angle of the neutrino tra-
jectory. The most probable height of production of muon neutrinos from pion decay
can be estimated in a completely analytical way as follows [494]. From eqns (11.21),
(11.28), and (11.32), we can write the differential equation of neutrino generation
as

dφ
(π)
νµ (E,X)

dX
=
ZNπ Zπνµ

λN
φN (E) e−X/ΛN . (11.50)

Using the approximation in eqn (11.10), the differential equation of neutrino
generation as a function of the height h is given by

dφ
(π)
νµ (E, h)

dh
= ρ0

ZNπ Zπνµ

λN
φN (E) exp

(
− h

h0
−−ρ0 h0

ΛN
e−h/h0

)
. (11.51)
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Fig. 11.9. Distributions of production altitudes of neutrinos from pion and muon
decays [428].

Taking the derivative of this equation with respect to h and equating it to zero
gives the most probable production height

hmost probable = h0 ln

(
ρ0 h0

ΛN

)
� 15 km , (11.52)

which is independent of the neutrino energy. This estimate is in good agreement
with the result of more precise calculations [494]. The most probable height of pro-
duction of neutrinos from muon decay is more complicated to calculate, because
of the integral in the expression of the muon flux in eqn (11.41). Numerical calcu-
lations yield a value which is about 2 km lower than the most probable height of
production of neutrinos from pion decay, because of the longer muon lifetime.

Figure 11.9 shows the distributions of production altitudes of neutrinos from
pion and muon decays obtained in Ref. [428]. One can see that the distribution
of altitudes of production of neutrinos from muon decay is slightly shifted towards
lower altitudes with respect to the distribution of altitudes of production of neutri-
nos from pion decay. As a consequence, the mean pathlength of electron neutrinos,
which are produced only in muon decays, is slightly shorter than the mean path-
length of muon neutrinos. This is illustrated in Fig. 11.10, which shows the relative
difference of the mean pathlengths of electron and muon neutrinos as a function
of zenith angle. As one can see from the figure, in practice the difference of the
mean pathlengths of electron and muon neutrinos is noticeable only in the case of
downward-going neutrinos, since for upward-going neutrinos the difference is a tiny
fraction of the total pathlength from source to detector. Figure 11.11 shows the
value of the mean pathlength distance in the atmosphere of muon neutrinos and
antineutrinos in the range 300–500 MeV as a function of the zenith angle, calcu-
lated in Ref. [178]. One can see the geometrical enhancement of the mean pathlength
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near the horizon. Finally, Fig. 11.12 show the integral probabilities of neutrino pro-
duction height at near-vertical and near-horizontal directions as functions of the
neutrino energy for νµ + ν̄µ and νe + ν̄e. One can see that the integral probabilities
above about 50% are almost independent of the neutrino energy, especially near
the vertical direction.

11.1.2 Monte Carlo calculations

The most refined calculations of atmospheric neutrino fluxes are carried out, nowa-
days, with three-dimensional (3D) Monte Carlo numerical methods [187, 738, 737,
876, 624, 188, 749, 1057, 428, 178, 797], which are improved versions of the pre-
vious one-dimensional (1D) Monte Carlo calculations [177, 623, 36]. Calculations
done before 1996 are compared in Ref. [488]. Recent reviews and comparison of
various calculations can be found in Refs. [489, 1057]. In the Monte Carlo method,
primary cosmic rays are generated numerically at the top of the atmosphere. Their
evolution and the evolution of the secondary shower generated in the atmosphere
are calculated numerically until the detector is reached.
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In 1D calculations, it is assumed that each secondary particle has the same
direction as its parent primary. In such an approximation, the transverse momenta
of the secondaries and the bending of their trajectories in the geomagnetic field are
neglected. Hence, it is sufficient to generate at the top of the atmosphere primaries
with directions which pass through the detector. Three-dimensional calculations
are much more computer-time consuming, because primaries must be generated at
the top of the atmosphere with random directions and very few of the secondaries
produced in the atmosphere hit the detector. As a consequence, the efficiency of a
full 3D calculations is extremely small, about A/R2

⊕ ∼ 10−10 where A ∼ 103 m2 is
the area of the detector and R⊕ is the radius of the Earth. Thus, all calculations
must resort to some approximation which allows an increase of the efficiency. The
two approximations used in the existing 3D Monte Carlo calculations are:

(i) consider a very large detector, with size comparable with the Earth’s radius;
(ii) assume the absence or a dipole symmetry of the geomagnetic field (in this

way, a shower can be shifted along the symmetry direction to find if a neutrino hits
the detector).

Outside of the atmosphere, the geomagnetic field acts as a shield for cosmic rays
with low energy. For the evaluation of the effect of the geomagnetic field on the
trajectory of a charged particle, the important quantity is the magnetic rigidity R
of the particle, which is given

R =
p

|q| , (11.53)

where p is the momentum and q is the charge. Since the gyroradius r of the
trajectory of the particle is given by

r =
R

B
, (11.54)
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where B is the magnetic field, a big rigidity implies a large gyroradius, i.e. a small
bending of the particle trajectory.

The rigidity of a nucleus with mass number A and atomic number Z carrying
an energy EN per nucleon is R � ApN/Ze, with pN =

√
E2

N −m2
N . Therefore,

the rigidities of different nuclei carrying the same energy per nucleon are different.
This effect implies that the nuclear composition of cosmic rays must be taken into
account in a precise calculation.

The shielding of cosmic rays with low energy outside of the atmosphere is taken
into account by applying a rigidity cut-off, which is calculated with the so-called
backtracing technique. In this method, when a cosmic ray primary is generated at
the top of the atmosphere its trajectory is traced back in time to check if it reaches
a distance of some tenths of Earth radii, where the geomagnetic field is negligible
and the cosmic ray flux is isotropic. The events with backtraced trajectories which
spiral back and either remain in the vicinity of the Earth or hit the Earth are
discarded.

Three-dimensional calculations can take into account the bending of the trajec-
tories of cosmic rays in the atmosphere due to the geomagnetic field. This effect is
most important for muons and the neutrinos generated from their decays, because
muons have the longest decay length. The bending angle θ of the trajectory of an
ultrarelativistic muon with a decay length which is shorter than the length of its
potential trajectory in the atmosphere is given by

θ ∼ Eµ

mµ

τµ
rµ

=
Eµ

mµ

τµ
Rµ

B � e τµ
mµ

B , (11.55)

where Eµ/mµ is the Lorentz time-dilation factor, rµ is the gyroradius of the muon
trajectory, Rµ is the muon rigidity, and we have used the ultrarelativistic approxi-
mation pµ � Eµ. Hence, the bending of muon trajectories is independent of energy
when the potential trajectory in the atmosphere is longer than the decay length.
As a consequence, muon bending has some effect even on the flux of neutrinos
with energy in the multi-GeV range, especially for trajectories close to the horizon,
which have the longest path in the atmosphere.

Basically, in the Monte Carlo approach, for each type of primary cosmic-ray
nucleus N , the flux of generated atmospheric να’s is given by a convolution of the
spectrum φN of N outside of the Earth’s magnetosphere, a filter function FN which
represents the effect of the geomagnetic field outside of the Earth’s atmosphere and
the yield YN→να

of να’s for each N due to the interactions and decays in the
atmosphere of the primary nucleus and its secondaries. Summing up all nuclear
types, the flux φνα

of να’s is given by

φνα
=
∑
N
φN ⊗ FN ⊗ YN→να

. (11.56)

Monte Carlo calculations allow the treatment of the primary cosmic ray flux
with a better approximation than the simple power law in eqn (11.4). The pri-
mary spectra of different nuclei with mass number A can be better fitted with the
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expression [492]

φA(Ek) � KA

[
Ek + bA exp

(
−cA

√
Ek

)]−(1+γA)

, (11.57)

where Ek is the kinetic energy. The values of the parameters γA, KA, bA, and bA,
which have been obtained from a fit of the experimental data [489], are listed in
Table 11.1. The resulting proton and helium spectra are shown in Figs. 11.13 and
11.14, together with the experimental data. However, it must be emphasized that,
as one can see from Figs. 11.4, 11.13, and 11.14, there are uncertainties in the
measurements of the primary cosmic ray spectra (since the helium data of different
experiments have some incompatibilities, two fits are given in Table 11.1). Hence,
different groups use different fits of the primary cosmic ray spectra in their Monte
Carlo calculations, leading to somewhat different results for the atmospheric neu-
trino fluxes. The other most important source of differences between the different
calculations is the treatment of the hadronic interactions. Since measurements of
nucleon–nucleus and nucleus–nucleus cross-sections are limited, models are needed
in order to extrapolate them over the needed wide range of energies and over the
phase space of final states.

In the following part of this subsection we will present some selected results of
recent Monte Carlo calculations, which are, at least, indicative of the state-of-the-
art in the field.

Figure 11.15 shows the electron (νe + ν̄e) and muon (νµ + ν̄µ) neutrino fluxes
as functions of energy obtained with the 3D and 1D Monte Carlo calculations
in Ref. [178]. The large difference between the fluxes of low-energy neutrinos at
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Table 11.1. Parameters of the fit in eqn (11.57) of the primary cosmic ray fluxes
[489].

Mass number γA KA bA cA

A = 1 (H) 1.74 ± 0.01 (14.9 ± 0.6) × 103 2.15 0.21
A = 4 (He, high) 1.64 ± 0.01 (0.60 ± 0.03) × 103 1.25 0.14
A = 4 (He, low) 1.74 ± 0.03 (0.75 ± 0.10) × 103 1.50 0.30
A = 14 (CNO) 1.60 ± 0.07 33.2 ± 5 0.97 0.01
A = 25 (Mg–Si) 1.79 ± 0.08 34.2 ± 6 2.14 0.01
A = 56 (Fe) 1.68 ± 0.01 4.45 ± 0.50 3.07 0.41
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Fig. 11.15. Electron (νe + ν̄e) and muon (νµ + ν̄µ) neutrino fluxes as functions of
energy obtained with the 3D (points) and 1D (lines) calculations in Ref. [178].
Empty points and solid lines give the fluxes at Kamioka. Filled points and dotted
lines give the fluxes at Soudan.

Kamioka and Soudan is due to the difference in the corresponding geomagnetic
cutoffs. Kamioka is near the geomagnetic equator, where the cutoff for downward-
going primaries near the vertical direction is large, around 20 GeV. On the other
hand, Soudan is near the geomagnetic pole, where the cutoff for downward-going
primaries near the vertical direction is only a few GeV. Thus, more low-energy pri-
maries are allowed by the geomagnetic field to reach the top of the atmosphere and
generate neutrinos which are detected at Soudan than at Kamioka. From Fig. 11.15
one can also see that the low-energy 3D fluxes at Kamioka are slightly larger than
the corresponding 1D fluxes (about 3% [178]). This is a small improvement of 3D
calculations due to their better treatment of geomagnetic effects.

Figure 11.16a shows the separate fluxes of νe, ν̄e, νµ, and ν̄µ as functions of the
neutrino energy obtained in four different Monte Carlo calculations. Figure 11.16a
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shows the values of the ratios in eqn (11.3) as functions of the neutrino energy
obtained in the same four different Monte Carlo calculations. One can see that
the values of (φνµ

+ φν̄µ
)/(φνe

+ φν̄e
) and φνµ

/φν̄µ
in eqn (11.3) are confirmed by

detailed calculations for low energies, for which most parent muons have time to
decay before hitting the ground.

Three-dimensional calculations improve the estimate of the pathlength distri-
bution of the trajectories near the horizon of low-energy neutrinos. This is due to
the fact that in 1D calculations a horizontal neutrino can only be produced by a
primary which grazes the atmosphere and interacts at a large altitude. On the other
hand, in 3D calculations horizontal neutrinos can also be produced by primaries
which have directions closer to the vertical and interact at lower altitudes. Such
a difference in 3D and 1D calculation is significant only for low-energy neutrinos,
since the trajectory of a high-energy neutrino is practically collinear with that of
its parent primary. This effect can be seen in Fig. 11.11 and, in more detail, in
Fig. 11.17, which shows the distributions of the pathlengths from production to
detection of low-energy electron and muon neutrinos near the vertical and near the
horizon [178]. One can see that the results of 3D and 1D calculations are similar
for the vertical direction, whereas the distributions obtained with the 3D calcula-
tion peaks at a lower pathlength with respect to the corresponding distributions
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(dashed) histograms are electron neutrinos from the 3D (1D) calculation. Here
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obtained with the 1D calculation. The 3D reduction of pathlengths is about 15%
near the horizon for neutrinos with energies in the range 300–500 MeV and rapidly
decreases towards the vertical direction (it is about 2% for 0.2 < | cos θz| < 0.5,
where θz is the zenith angle) [178]. As one can see in Fig. 11.12, the 3D pathlength
reduction at the horizon decreases at higher energies: it is about 10% at 1 GeV
[797] and decreases to an average of about 4% for neutrinos above 1 GeV [178].

In Fig. 11.17 one can also see that near the horizon the 3D fluxes are much larger
than the corresponding 1D fluxes and near the vertical the 3D fluxes are slightly
smaller than the corresponding 1D fluxes [187]. This is a geometrical effect [738]
which is significant for low-energy neutrinos, as one can see from Fig. 11.18, which
shows the zenith angle dependence of the atmospheric neutrino fluxes at Kamioka
in three energy bins. For high-energy neutrinos, there is a broad peak around the
horizon, which is mainly due to the longer pathlength in the atmosphere available
to muons, which allow a larger number of muons to decay before hitting the ground.

An important quantity which affects the analysis of atmospheric neutrino data
is the uncertainty of our knowledge of the neutrino fluxes generated by cosmic
rays in the atmosphere. In the analysis of atmospheric neutrino data in terms of
neutrino oscillations this uncertainty determines the precision of the extraction of
the mixing parameters (the squared-mass difference ∆m2 and the mixing angle ϑ
in the simplest case of two-neutrino mixing). The uncertainties come mainly from
the lack of a precise knowledge of the primary cosmic ray spectrum and of the
hadronic interactions of cosmic rays in the atmosphere. A possibly conservative
estimate of the uncertainty of the cosmic ray spectrum is obtained by considering
the range of measurements, which is about 20% below 100 GeV and about 30%
above [489]. A similar estimate of the uncertainty of hadronic interactions is given
by the range of model predictions, which is about 20–25% [489]. Summing these
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uncertainties in quadrature, as if they were independent statistical uncertainties,
the total uncertainty of the absolute values of the neutrino fluxes can be estimated to
be around 30% for low-energy neutrinos64, which are relevant for contained events in
atmospheric neutrino detectors, and around 35% for higher neutrino energies. Since
these uncertainties are quite large, the absolute fluxes of atmospheric neutrinos
cannot be used to obtain reliable information on neutrino physics from the analysis
of the data. In fact, all analyses use ratios of fluxes, whose estimated uncertainties
are much smaller. Commonly used ratios are (φνµ

+φν̄µ
)/(φνe

+φνe
) and φup/φdown

for contained events and φstopping/φthrough-going and φvertical/φhorizontal for neutrino-
induced upward-going muons.

The flavor ratio (φνµ
+φν̄µ

)/(φνe
+φνe

), which has been used as an indicator of
neutrino oscillations in the analysis of experimental data, has an estimated uncer-
tainty of less than 5% at energies smaller than about 5 GeV [653, 188, 111]. At
higher energies, the contribution of kaon decays to the neutrino production in the
atmosphere becomes more important, as shown in Fig. 11.19. Contrary to pions,
which decay mainly into muons and muon neutrinos according to eqn (11.1), the
kaon branching ratio for such a decay is 0.6343±0.0017 [400]. The other important

semileptonic decay channels of K∓ are K∓ → π0 + e∓ +
(−)

νe, with branching ratio

0.0487 ± 0.0006, and K∓ → π0 + µ∓ +
(−)

νµ, with branching ratio 0.0327 ± 0.0006

[400]. Moreover, the K0
L has the semileptonic decay channels K0

L → π± + e∓ +
(−)

νe

64 Less conservatively, the authors of Ref. [797] estimate an uncertainty of about 10%
for neutrino energies below 10 GeV.
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with branching ratio 0.3881±0.0027, and K0
L → π±+µ∓+

(−)

νµ with branching ratio
0.2719 ± 0.0025 [400]. Since the kaon production cross-section has larger uncer-
tainties than the pion production cross-section, the uncertainty in the flavor ratio
increases at high energies. The comparison of different calculations indicate an
uncertainty of about 10% at 100 GeV [111].

The flavor ratio cannot be measured directly in real experiments, because what is
seen are not the neutrinos, but the Cherenkov light produced by the charged leptons
generated by neutrino interactions. Electron and muon neutrinos have different
cross-sections and the detection efficiencies and selection criteria are different for
events generated by electron and muon neutrinos. Thus, experimental data are
reported in terms of e-like and µ-like events and the ratio used to reveal an anomaly
is the ratio-of-ratios

Rµ/e ≡ (Nµ-like/Ne-like)data

(Nµ-like/Ne-like)MC

, (11.58)

where Nµ-like and Ne-like are, respectively, the numbers of µ-like and e-like events.
The numerator in eqn (11.58) is the measured ratio and the denominator is that
calculated with Monte Carlo. A measurement of a ratio-of-ratios different from
unity is evidence of an anomaly.

In the following subsection we discuss the up-down asymmetry, which have
allowed the Super-Kamiokande collaboration to find, in 1998, a model-independent
proof of the oscillations of atmospheric neutrinos.

11.1.3 The up-down asymmetry

At low energies, the directional flux of atmospheric neutrinos depends on the effect
of the geomagnetic field on the parent cosmic ray primaries and secondaries. This
effect disappears at high energies, above a few GeV. Hence, the production of high-
energy neutrinos in the atmosphere is practically uniform around the globe. This
implies that, in the absence of oscillations, at any location on the surface of the
Earth or below, the fluxes of each neutrino flavor arriving from opposite directions
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are the same, i.e. φνα
(θz) = φνα

(π − θz). This fact can be understood on the basis
of the following elementary geometrical argument illustrated in Fig. 11.20. Let us
consider two underground detectors A and B at the same depth. As shown in the
figure, neglecting the extremely small probability of neutrino interactions in the
Earth, a neutrino passing through the detector A with a direction having zenith
angle θAB

z later passes through the detector B with a direction having zenith angle
π − θAB

z . Hence, we have

φ(A)
να

(θAB
z ) = φ(B)

να
(π − θAB

z ) . (11.59)

Since the production of high-energy neutrinos in the atmosphere is uniform around
the globe, we also have

φ(A)
να

(θAB
z ) = φ(B)

να
(θAB

z ) . (11.60)

Finally, since the location of the detector B is arbitrary, the zenith angle θAB
z can

assume any value. Then, for a generic zenith angle θz we obtain, from eqn (11.59)
and (11.60)

φ(A)
να

(θz) = φ(A)
να

(π − θz) , (11.61)

for any underground detector A.
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This elementary geometrical property of the neutrino fluxes implies that flavor
oscillations of atmospheric neutrinos can be revealed in a model-independent way
by measuring a difference of the upward-going and downward-going fluxes of high-
energy neutrinos with a definite flavor [351, 447]. In fact, downward-going neutrinos
are produced in the atmosphere above the detector and travel a distance of some
tens of km, whereas upward-going neutrinos come from the other side of the globe,
with traveling distances of several thousands km. The larger distances covered by
upward-going neutrinos may allow them to oscillate into other flavors, leading to a
suppression of the upward-going flux with respect to the downward going one. We
will see in section 11.2.3 that irrefutable evidence of atmospheric neutrino oscilla-
tions was obtained in 1998 by the Super-Kamiokande experiment just measuring a
nonzero asymmetry of the upward-going and downward-going fluxes of high-energy
muon neutrinos.

In the argument above we did not discuss the problem of the determination
of the minimum neutrino energy above which the up-down symmetry holds. The
relation between the upward-going and downward-going neutrino fluxes are usually
quantified through the asymmetry

Aup-down
α =

(
U −D

U +D

)
α

(11.62)

or the up-down ratio
Rup-down

α = (U/D)α , (11.63)

where U and D are, respectively, the neutrino fluxes neutrinos integrated in the
ranges 0.2 < cos θz < 1 and −1 < cos θz < −0.2. The subscript α denotes να fluxes
in theoretical calculations and α-like events in experimental measurements, with
α = e, µ.

Figure 11.21 shows the value of the asymmetry Aup-down
µ as a function of the

neutrino energy, obtained with different Monte Carlo calculations in Ref. [178]. In
Fig. 11.21, one can see that the up-down muon asymmetry Aup-down

µ vanishes for

Eν � 2 GeV. The different signs of the deviations from Aup-down
µ = 0 at lower

energies at the locations of Kamioka and Soudan are due to the different geomag-
netic cutoffs. Since Kamioka is near the geomagnetic equator, where the cutoff
for downward-going primaries near the vertical direction is large, the low-energy
upward-going flux is larger than the downward-going one. On the other hand,
Soudan is near the geomagnetic pole, where the cutoff for downward-going primaries
near the vertical direction is small. In this case, the low-energy downward-going flux
is larger than the upward-going one, which is generated all around the globe, where
the cutoff is larger on average.

11.2 Atmospheric neutrino experiments

In this section we describe the setup and main results of the atmospheric neutrino
experiments which have been carried out since the 1980s and have been impor-
tant for the study of atmospheric neutrino oscillations. For simplicity, we omit the
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description of the NUSEX [185, 186, 33, 34] and Frejus [209, 210, 352] experiments,
which did not find any indication of an anomaly in their data65.

In atmospheric neutrino experiments, neutrino fluxes of different flavors are
measured by detection of the charged leptons produced in the neutrino–nucleon
collisions

ν	 +N → �− +X , ν̄	 +N → �+ +X (� = e, µ, τ) . (11.64)

In the experiments carried out so far the charge of the lepton could not be distin-
guished, because the detectors were not magnetized. It is also extremely difficult
to reveal tau neutrinos, because the produced tau leptons decay immediately into
leptons and hadrons, without leaving a clear track.

For a discussion of the data, it is necessary to know that for atmospheric neutrino
detection three classes of events are defined:

Contained Events. These are events in which the neutrinos interact with matter
inside the detector and the trajectories of all the particles which are generated
are contained in the detector.

Stopping Muons. These are tracks of muons which enter the detector and stop
inside. They are generated by neutrino interactions in the rock outside the
detector.

Through-Going Muons. These are tracks of muons which enter the detector and
exit without stopping. They are also generated by neutrino interactions in the
rock outside the detector.

In the Kamiokande and Super-Kamiokande experiments, which have an inner fidu-

cial volume detector surrounded by an outer detector, two subclasses of contained
events have been defined:

Fully Contained (FC) Events. These are events totally contained in the inner
detector.

Partially Contained (PC) Events. These are contained events in which the
neutrinos interact with the material inside the inner detector and some of the
produced particles exit the inner detector, stopping in the outer detector.

Furthermore, in the Kamiokande and Super-Kamiokande experiments, for historical
reasons, two subclasses of FC events have been defined:

Sub-GeV Events. These are FC events with total visual energy Evis < 1.33 GeV.
Multi-GeV Events. These are FC events with total visual energy Evis >

1.33 GeV.

As shown in Fig. 11.2, the energy ranges of neutrinos which generate sub-GeV,
multi-GeV, stopping and through-going events are, respectively, ∼ 0.2–20 GeV,
∼ 10–500 GeV, ∼ 20–1000 GeV, and ∼ 50–20 000 GeV.

65 The value of the ratio-of-ratios in eqn (11.58) obtained in the Frejus experiment is
Rµ/e = 1.00 ± 0.15 ± 0.05 [352] and that found in the NUSEX experiment is Rµ/e =

0.96+0.32
−0.28 [33].
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11.2.1 Kamiokande

The Kamiokande experiment has been described in section 10.6.1 in the context
of solar neutrino detection. The whole inner detector, with a mass of 2142 ton of
purified water, was used as the fiducial volume for the detection of atmospheric
neutrinos [614, 840, 621, 474, 603]. The outer volume, used as shield and anti-
counter, contained 1500 ton of water. For the calculation of geomagnetic effects it
is useful to know that the Kamioka mine is located at 36◦25′36′′N, 137◦18′43′′ E.

The first indication that there is an atmospheric neutrino anomaly came in 1988
[614] from the measurement in Kamiokande of a number of contained sub-GeV µ-
like events which was a fraction 0.59 ± 0.07 of that predicted by a Monte Carlo
calculation, whereas the number of e-like events was in agreement with the Monte
Carlo prediction.

In terms of the ratio-of-ratios in eqn (11.58) the final results of the Kamiokande
experiment for sub-GeV and multi-GeV events are:

Rsub-GeV
µ/e = 0.60+0.07

−0.06 ± 0.05 [621] , (11.65)

Rmulti-GeV
µ/e = 0.57+0.08

−0.07 ± 0.07 [474] . (11.66)

These anomalies are well explained by νµ disappearance due to oscillations. Fur-
thermore, as shown in Fig. 11.22, the Kamiokande collaboration found a zenith
angle dependence of upward through-going muons which supported the interpreta-
tion of the contained events anomaly in terms of neutrino oscillations [603]. The
Kamiokande data could not allow discrimination between νµ � νe and νµ → ντ

transitions. However, in 1997 the results of the CHOOZ [97] long-baseline reactor
experiment excluded the νµ � νe channel. Figure 11.23 shows the regions in the
sin2 2ϑ-∆m2 plane for νµ → ντ oscillations which are allowed by the different sets
of Kamiokande data.

11.2.2 IMB

The IMB (Irvine–Michigan–Brookhaven) [581, 243, 306, 199, 200, 322] detector
was a 24 m × 18 m × 19 m tank filled with about 8000 ton of water. The fiducial
mass was of 3300 ton. It was located deep underground in the Morton Thiokol salt
mine near Cleveland, Ohio (USA), at a depth of 610 m, with an overburden of
1570 mwe. The IMB detector took data from 1982 to 1991. In a first phase called
IMB-1 it was equipped with 2048 photomultiplier tubes (PMTs) with a diameter
of 12.5 cm. The light collection was improved in the second IMB-2 phase. In the
third and final IMB-3 phase, the 2048 PMTs were replaced by larger ones with a
diameter of 20 cm.

The IMB experiment found an anomaly compatible with the Kamiokande data
only in the contained events with energy below 1.5 GeV [581, 306, 200]. On the
other hand, no anomaly was found in the upward-going muon data [199] and in the
partially contained events with energy above 0.95 GeV [322].

The anomaly found in the low-energy contained events is quantified through the
ratio-of-ratios in eqn (11.58) as [663]

Rmulti-GeV
µ/e = 0.54 ± 0.05 ± 0.11 , (11.67)
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CL in the sin2 2ϑ-∆m2 plane for
νµ → ντ oscillations obtained
with different sets of Kamiokande
data [603]. The exclusion curve
of the CDHSW experiment [396]
is also shown. The asterisk indi-
cates the best-fit point for upward–
going muons at sin2 2ϑ = 1.00
and ∆m2 = 3.2 × 10−3 eV2. The
cross indicates the best-fit point
for contained events plus upward-go-
ing muons at sin2 2ϑ = 0.95 and
∆m2 = 1.3 × 10−2 eV2.

which is in agreement with the values in eqn (11.65) and (11.66) obtained in the
Kamiokande experiment.

11.2.3 Super-Kamiokande

The Super-Kamiokande (SK) experiment has been described in section 10.6.2 in the
context of solar neutrino detection. The fiducial volume for atmospheric neutrino
detection [477, 479, 476, 481, 486, 483, 470, 110, 111] is 22.5 ktons.

In 1998 the SK collaboration presented the result [476]

Aup-down
µ = −0.296± 0.048 ± 0.01 , (11.68)
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Fig. 11.24. Number of µ-like events
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shows the Monte Carlo prediction
without oscillations.
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Fig. 11.25. Ratio of the data and
the Monte Carlo prediction for
the number of µ-like events in
Super-Kamiokande as a function of
L/E (points) [110]. The solid his-
togram shows the best-fit expectation
for νµ → ντ oscillations (sin2 2ϑ = 1
and ∆m2 = 2.4 × 10−3 eV2). The
error bars are statistical only. Also
shown are the best-fit expectation
for neutrino decay [173, 172] (dashed
line) and neutrino decoherence [574,
743] (dotted line).

for the up-down asymmetry in eqn (11.62) of multi-GeV and PC µ-like events,
whereas the corresponding electron up-down asymmetry was consistent with zero
(Aup-down

e = −0.036±0.067±0.02). This was considered as a 6σ model-independent
evidence that part of the upward-going atmospheric muon neutrino flux disappears.

The most likely explanation of the up-down muon asymmetry is neutrino oscil-
lations, since the source–detector distance covered by upward-going neutrinos is
much larger than that covered by downward-going neutrinos. This explanation is
confirmed by the distribution of the observed number of µ-like events as a function
of L/E shown in Figs. 11.24 and 11.25. The ratio L/E determines the phase of
the oscillation probability, as explained in chapter 7. From Fig. 11.24 one can see
that the number of events with L/E � 102 kmGeV−1 agrees with the Monte Carlo
calculation. This means that for the corresponding neutrinos the phase of the oscil-
lations is too small, i.e. they did not have enough time to oscillate. On the other
hand, the number of events with L/E � 102 kmGeV−1 shows a deficit with respect
to the Monte Carlo calculation, because the oscillation phase of the correspond-
ing neutrinos was large enough to produce a transition. Figure 11.25 shows that
other explanations are disfavored, since the ratio of the data and the Monte Carlo
prediction shows the dip at L/E � 500 kmGeV−1 which corresponds to the first
maximum of the oscillation probability for sin2 2ϑ = 1 and ∆m2 = 2.4× 10−3 eV2.
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A crucial problem is the determination of the flavor channel of the atmospheric
neutrino oscillations. The results of the CHOOZ [97, 98, 100] and Palo Verde
[254, 253, 255] long-baseline reactor experiment disfavor the νµ � νe channel for
∆m2 � 10−3 eV2. The data of SK favor the νµ → ντ channel over the νµ � νe and
νµ → νs channels, where νs is a sterile neutrino (see chapter 6). The oscillations
νµ � νe are disfavored [111] by the absence of any anomaly in the e-like data.
The νµ → νs channel is disfavored [470] by the observed absence of matter effects
for neutrino oscillations through the Earth66 and by the up-down symmetry of a
sample of events with a considerable neutral-current fraction67.

Recently [111], the SK collaboration presented the final results of SK-I. The
measured values of the up-down ratio Rup-down

α in eqn (11.63) for α = e, µ are
listed in Table 11.2. One can see that e-like events are up-down symmetric at
all energies. At low energies also µ-like events are up-down symmetric, since the

66 In the case of νµ → ντ transitions there are no matter effects, since νµ and ντ have
the same interactions with matter. On the other hand, in the case of νµ → νs transitions
there are matter effects, because sterile neutrinos do not interact with matter.
67 In the case of νµ → νs transitions neutral-current events should show the same up-

down asymmetry as µ-like events. On the other hand, νµ → ντ transitions do not affect
the amount of neutral-current events.
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Table 11.2. Values of the up-down ratio Rup-down
α in eqn (11.63) for α = e, µ

measured in the Super-Kamiokande experiment [111]. p is the charged lepton
momentum.

Flavor sub-GeV (p < 400 MeV) sub-GeV (p > 400 MeV) multi-GeV + PC

e 1.133+0.062
−0.059 ± 0.009 1.082+0.063

−0.060 ± 0.024 0.961+0.086
−0.079 ± 0.016

µ 0.964+0.062
−0.058 ± 0.008 0.670+0.035

−0.034 ± 0.012 0.551+0.035
−0.033 ± 0.004

angular correlation between the neutrino and the produced charged lepton is very
poor, washing out any zenith-angle dependence. The up-down ratio of multi-GeV
and PC µ-like events confirms the result in eqn (11.68) with a statistical significance
of 12σ. Figure 11.26 shows a comparison of the measured values of Rup-down

µ with

that expected in the case of νµ → ντ oscillations as a function of ∆m2, for sin2 2ϑ =
1. One can see that neutrino oscillations explain the data for ∆m2 between about
10−3.5 and 10−2 eV2.

The results [111] of the SK experiment for the ratio-of-ratios in eqn (11.58) are,
for sub-GeV and multi-GeV plus PC events,

Rsub-GeV
µ/e = 0.658 ± 0.016± 0.035 , (11.69)

Rmulti-GeV
µ/e = 0.702+0.032

−0.030 ± 0.101 . (11.70)
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Fig. 11.31. Super-Kamiokande
χ2 − χ2

min as a function of ∆m2 in
the case of νµ → ντ oscillations [111].

These values confirm those measured in Kamiokande (eqns (11.65) and (11.66))
and IMB (eqn (11.67)). From Fig. 11.27 one can see that these values of the ratio
of ratios are consistently explained by νµ → ντ oscillations with maximal mixing
(sin2 2ϑ = 1) and ∆m2 in the range between 10−3 and 10−2 eV2.

Super-Kamiokande also measured the flux of upward-going neutrino-induced
muons. In order to reduce the uncertainty due to the calculation of the neu-
trino fluxes, the SK collaboration considered the vertical/horizontal ratio V/H
of through-going muons, where V and H are, respectively, the numbers of events
with 0.5 < cos θz < 1 and 0 < cos θz < 0.5. The measured value and the value
expected in the absence of oscillations are

(V/H)data = 0.497± 0.022 ± 0.003 , (V/H)MC = 0.586 ± 0.019 , (11.71)

which show a 3σ discrepancy. Figure 11.28 shows the expected value of V/H in the
case of νµ → ντ oscillations as a function of ∆m2, for sin2 2ϑ = 1. One can see
that neutrino oscillations can reproduce the observed ratio if 1 × 10−3 � ∆m2 �

3 × 10−3 eV2 or 5 × 10−2 � ∆m2 � 1 × 10−1 eV2.
Another quantity with reduced uncertainty due to the calculation of the neutrino

fluxes is the ratio Rstop/through of stopping and through-going muons. The measured
value and the value expected in the absence of oscillations are

Rdata
stop/through = 0.229 ± 0.015± 0.003 , RMC

stop/through = 0.430 ± 0.065 , (11.72)

with a discrepancy of more than 3σ. Figure 11.29 shows the expected value of
Rstop/through in the case of νµ → ντ oscillations as a function of ∆m2, for sin2 2ϑ =
1, compared with the observed ratio. One can see that neutrino oscillations are
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consistent with the data if ∆m2 is in the range between about 2 × 10−3 and 4 ×
10−3 eV2.

Super-Kamiokande has measured the atmospheric neutrino fluxes with an accu-
racy which is by far better than those of other experiments (between 1996 and
2001, SK-I observed more than 1.5 × 104 atmospheric neutrino events with energy
between 100 MeV and 10 TeV). Thus, SK data determine our present knowledge
of the oscillations of atmospheric neutrinos. Figure 11.30 shows the regions in the
sin2 2ϑ-∆m2 plane for νµ → ντ oscillations allowed at 68%, 90%, and 99% CL. The
best-fit is at

sin2 2ϑ = 1.00 , ∆m2 = 2.1 × 10−3 eV2 . (11.73)

The 90% CL ranges of the oscillation parameters are

sin2 2ϑ > 0.92 , 1.5 × 10−3 < ∆m2 < 3.4 × 10−3 eV2 . (11.74)

Figure 11.31 shows the value of χ2 − χ2
min as a function of ∆m2. One can see that

the χ2 is rather flat between 2.0× 10−3 eV2 and 2.5× 10−3 eV2. Thus, in practice,
the best-fit value of ∆m2 is not determined within this range. On the other hand,
since the value of χ2 − χ2

min increases when sin2 2ϑ is decreased from the best-fit
value, the data show a preference for maximal mixing.

In Fig. 11.30 and in eqns (11.73) and (11.74) the mixing is quantified through
sin2 2ϑ, because in νµ → ντ oscillations there are no matter effects, since νµ and ντ

have the same interactions with matter. Hence, the transition probability depends
on the mixing angle through sin2 2ϑ, according to eqn (7.70). Notice that in our
convention ∆m2 is defined to be positive (see section 7.4) and each value of sin2 2ϑ
corresponds to two values of ϑ related by ϑ � π/2 − ϑ.
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Fig. 11.33. Allowed region in the
sin2 2ϑ-∆m2 plane for νµ → ντ oscil-
lations obtained in the Soudan 2
experiment [69].
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Fig. 11.34. Regions in the sin2 2ϑ-∆m2

plane for νµ → ντ oscillations allowed
at 90% CL by different data samples
of the MACRO experiment [84].

In Ref. [110], the SK collaboration obtained the allowed region in the sin2 2ϑ-
∆m2 plane corresponding to the L/E analysis in Figs. 11.24 and 11.25. This allowed
region is compared in Fig. 11.32 with that in Fig. 11.30. In spite of the fact that the
L/E analysis does not use the full set of atmospheric data, but only the subset of
the data which allow the determination of L/E, the constraint on the value of ∆m2

is more stringent than that obtained from the analysis of full data set. The reason
is that the location of the dip in Fig. 11.25, corresponding to the first maximum
of the oscillation probability, is very sensitive to the value of ∆m2. On the other
hand, from Fig. 11.32 one can see that the analysis of the full data set provides a
better determination of the value of sin2 2ϑ due to a higher statistics.

11.2.4 Soudan 2

The Soudan 2 experiment was located 710 m underground in the Soudan under-
ground Mine State Park, in Minnesota (USA), with an overburden of 2070 mwe.
The main detector was an iron tracking calorimeter which operates as a time pro-
jection chamber. The total mass was of 963 ton, with a fiducial mass of 770 ton.
The main detector was surrounded by an active shield of aluminum proportional
tubes. The experiment took data from 1989 to 2001 [67, 68, 922, 69].

The Soudan 2 experiment measured the ratio-of-ratios [922]

Rsub-GeV
µ/e = 0.69 ± 0.10 ± 0.06 , (11.75)
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for neutrinos with energy smaller than about 1 GeV. This value, which is in agree-
ment with those measured in Kamiokande, IMB and SK, indicates a disappearance
of muon neutrinos. The zenith-angle distribution of contained events [922] and
upward-going muons [69] in Soudan 2 show a disappearance of muon neutrinos
coming from below, in agreement with the SK measurements.

Figure 11.33 shows the region in the sin2 2ϑ-∆m2 plane for νµ → ντ oscilla-
tions allowed by the data of the Soudan 2 experiment [69]. Comparing with the
SK allowed region in Fig. 11.30, one can see that the results of the two experi-
ments are compatible and the Soudan 2 allowed region is much larger than that
of the SK experiment. This is due to the small statistics collected in the Soudan
2 experiment, compared with that obtained in the SK experiment. Therefore, the
results of the Soudan 2 experiment are considered as a confirmation of the results
of Kamiokande, IMB and SK. However, it must be emphasized that such confir-
mation is very important, since it has been obtained through a detector which is
completely different from the water Cherenkov detectors Kamiokande, IMB, and
SK.

11.2.5 MACRO

MACRO (Monopole Astrophysics and Cosmic Ray Observatory) was a large-area
scintillator detector which could distinguish upward-going muons by measuring
their time of flight [41, 81, 82, 83, 84]. It was located in the Laboratori Nazionali
del Gran Sasso (LNGS), in Italy, with an overburden of 3700 mwe. It operated from
1989 to 1995 with part of the apparatus. After its construction was completed in
1995, MACRO took data with the whole apparatus until 2000. It had dimensions
of 76.6 × 12 × 9.3 m3.

The zenith-angle distribution of upward through-going muons measured by
MACRO show a deviation from the Monte Carlo expectation without neutrino
oscillations. The best fit is obtained with sin2 2ϑ � 1.0 and ∆m2 � 2.5 × 10−3 eV2

in the case of νµ → ντ oscillations [84].
In order to reduce the uncertainty due to the calculation of the neutrino fluxes

and optimize the oscillation signal, the MACRO collaboration considered the ratio
Nlow/Nhigh, where Nlow and Nhigh are, respectively, the number of events with
reconstructed neutrino energy lower than 30 GeV and higher than 130 GeV. The
measured value of Nlow/Nhigh is 0.85± 0.16, whereas the Monte Carlo expectation
without neutrino oscillations is 1.50 ± 0.25, with a discrepancy of about 2σ.

Figure 11.34 shows the regions in the sin2 2ϑ-∆m2 plane for νµ → ντ oscilla-
tions allowed by the angular distribution of MACRO events, by the observed ratio
Nlow/Nhigh and by their combination. Comparing with the SK allowed region in
Fig. 11.30, one can see that the results of MACRO and SK are compatible and the
MACRO allowed region includes the SK allowed region.

Furthermore, MACRO confirmed the SK preference of νµ → ντ oscillations with
respect to transitions into sterile neutrinos, since the matter effects in νµ → νs

oscillations are disfavored by the zenith-angle distribution of upward-going muons
observed in MACRO [83].
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11.2.6 Connection with long-baseline experiments

Long-baseline (LBL) experiments are sensitive to the range of ∆m2 probed by
atmospheric neutrino experiments (see section 7.5). Thus, LBL experiments can
be used to confirm and improve the results of atmospheric neutrino experiments.
Three LBL experiments have been performed so far: the reactor ν̄e-disappearance
experiments CHOOZ and Palo Verde (see section 12.2.2) and the accelerator νµ-
disappearance experiment K2K (see section 12.3.2).

The CHOOZ [97, 98, 100] and Palo Verde [254, 253, 255] experiments did not
measure any disappearance of reactor ν̄e’s, as previous SBL reactor experiments (see
Fig. 12.5). However, the LBL character of the CHOOZ and Palo Verde experiments
led to the extension of the exclusion curve for oscillations of ν̄e into other states to
values of ∆m2 as low as about 10−3 eV2, excluding the νµ � νe oscillation solution
of the atmospheric neutrino anomaly (see Figs. 12.6 and 12.7).

The K2K experiment, on the other hand, observed a disappearance of νµ’s which
is compatible with the results of atmospheric neutrino experiments. This can be
seen by comparing the K2K allowed region in Fig. 12.17 and the SK allowed region
in Fig. 11.30.

Let us emphasize that the K2K observation of neutrino oscillations with the
same values of the mixing parameters as those found in atmospheric neutrino
experiments is extremely important, because it shows without doubt that the disap-
pearance of atmospheric muon neutrinos is due to neutrino oscillations, eliminating
other mechanisms. Of course, other mechanisms are still possible as subleading
effects, but the important point is that atmospheric neutrino experiments and K2K
have proved that neutrinos are massive, that there is a squared-mass difference
of the order of 2 − 3 × 10−3 eV2 and that the mixing relevant for the observed
oscillations is maximal or close to maximal.
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TERRESTRIAL NEUTRINO OSCILLATION EXPERIMENTS

Through all one sees the spirit of catch as catch can, trial and
error, progress by making almost all possible mistakes, the
great point being only to make them as quickly as possible
and to learn from them.
John A. Wheeler, At Home in the Universe

Terrestrial neutrino oscillation experiments started in the late 70s using neutrinos
produced in reactors and accelerators. For a long time, terrestrial neutrino oscilla-
tion experiments did not find neutrino oscillations. Their results led to exclusion
curves which constrained the allowed region in the parameter space of neutrino
oscillations. Recently, the KamLAND reactor experiment [398, 103] and the K2K
accelerator experiment [48, 46, 47, 66] succeeded in finding important evidences of
neutrino oscillations. Both are long-baseline (LBL) experiments, which have been
carried out in order to check the evidence of neutrino oscillations found in solar and
atmospheric neutrino experiments.

In this chapter we discuss mainly the setup and results of KamLAND and
K2K (the controversial results of the LSND experiment are briefly discussed in
section 12.3.1). The other terrestrial neutrino oscillation experiments are only men-
tioned and their exclusion curves shown in figures, with the exception of the CHOOZ
[97, 98, 100] and Palo Verde [254, 253, 255] experiments, which are discussed in
some detail, since they have been important to exclude the νµ � νe channel as an
explanation of the atmospheric neutrino anomaly found in Kamiokande and IMB
(see section 11.2) and for constraining the value of the element Ue3 of the neutrino
mixing matrix in the case of three-neutrino mixing (see section 13.3.1).

In a discussion of the capability of an experiment to measure the oscillation
parameters, it is useful to consider, as a measure of merit, the sensitivity of the
experiment, which is defined and discussed in section 12.1. Generally, the sensitivity
of a neutrino oscillation experiment depends on many factors. The most important
are the source–detector distance, the neutrino energy, the power of the source, the
mass of the detector, the detection cross-section and the background. In the case of
atmospheric neutrinos and neutrinos from astrophysical sources (Sun, supernovae,
etc.), the values of the first three factors are fixed by nature and the experimenter
can improve its measurements only by increasing the mass of the detector, by choos-
ing a better detection material and by decreasing the background. On the other
hand, in terrestrial neutrino experiments there is some freedom to vary the values
of all the five above-mentioned factors. Hence, in the discussions of the capabili-
ties of different terrestrial experiments it is useful to understand the dependence
of the sensitivity of an experiment on the five factors above. This is explained
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in section 12.1. In the following section 12.2 we review reactor neutrino oscilla-
tion experiments (see also Refs. [205, 800]), with special attention to CHOOZ,
Palo Verde and KamLAND. Finally, in section 12.3 we discuss accelerator neutrino
experiments, focusing on the K2K experiment.

12.1 Sensitivity

The sensitivity of an experiment is a measure of merit which characterizes the
potential of the experiment for the measurement of the oscillation parameters. In
the plane of the two-neutrino oscillation parameters sin2 2ϑ and ∆m2, the sensitivity
of an experiment is expressed by its sensitivity curve, which is the exclusion curve
that the experiment would yield in the absence of a signal68. From the discussion
in section 7.6, it is clear that the sensitivity curve depends on the value of the
upper limit (Pmax

να→νβ
)s on the averaged transition probability that an experiment

can obtain in the absence of a signal. It is also useful to define separately the
sensitivities to sin2 2ϑ and ∆m2.

The sensitivity to sin2 2ϑ, denoted by (sin2 2ϑ)s, is defined as the limit on sin2 2ϑ
obtained in the absence of a signal for large ∆m2. From eqn (7.103), we have

(sin2 2ϑ)s = 2 (Pmax
να→νβ

)s , (12.1)

which is independent of ∆m2. Since the sensitivity to sin2 2ϑ is proportional to
(Pmax

να→νβ
)s, experiments which aim to explore small values of the mixing angle must

reach small values of (Pmax
να→νβ

)s.

The sensitivity to ∆m2, denoted by (∆m2)s, is defined as the value of ∆m2 at
which the exclusion curve intercepts the sin2 2ϑ = 1 boundary. From eqn (7.108),
we obtain

(∆m2)s � 4
√

(Pmax
να→νβ

)s
E

L
, (12.2)

where E is the average energy and we neglect the small sizes of the source and the
detector compared with the source–detector distance L. Thus, improvements in the
value of (Pmax

να→νβ
)s have a weak effect on (∆m2)s. In order to improve effectively

the sensitivity to small values of ∆m2 it is necessary to increase the ratio L/E.
In the case of να disappearance experiments, the value of (Pmax

να→νβ
)s, with β �= α,

is determined by the statistical fluctuation of the number of events. In fact, we have

Pνα→νβ
= 1 − Pνα→να

= 1 − Nobs
να

Nno-osc
να

, (12.3)

where Nobs
να

and Nno-osc
να

are, respectively, the number of observed να events and
the number of expected να events in the absence of oscillations. Then, neglecting

68 See, however, the discussion in Ref. [541].
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the uncertainty of Nno-osc
να

, the uncertainty of Pνα→νβ
is given by

∆Pνα→νβ
� ∆Nobs

να

Nno-osc
να

. (12.4)

The observed number of events Nobs
να

has a Poisson distribution with variance
(∆Nobs

να
)2 = Nobs

να
. Since the sensitivity is determined in the absence of a signal, if

the background is negligible, we have Nobs
να

� Nno-osc
να

. Thus, we obtain

(Pmax
να→νβ

)s � ∆Pνα→νβ

∣∣
no-signal

�
(
Nno-osc

να

)−1/2
. (12.5)

From eqn (12.1), it follows that the sensitivity to sin2 2ϑ can improve only as the
square root of the number of events.

In order to understand the behavior of (sin2 2ϑ)s and (∆m2)s as functions of
the main quantities which characterize a neutrino oscillation experiment, we note
that the number of events is given by

Nno-osc
να

∝ N src
να

σνα
(E) ηMdet

L2
, (12.6)

where N src
να

is the number of να’s emitted by the source, σνα
(E) is the average

detection cross-section, η is the detection efficiency, and Mdet is the mass of the
detector. Then, we have

(Pmax
να→νβ

)s ∝
L√

N src
να
σνα

(E) ηMdet

. (12.7)

It is clear that in order to reach a small value of (Pmax
να→νβ

)s and hence of (sin2 2ϑ)s
a small source–detector distance would be convenient. However, such a choice is
undesirable for the sensitivity to ∆m2, which is given by

(∆m2)s ∝ E L−1/2
(
N src

να
σνα

(E) ηMdet

)−1/4
. (12.8)

Thus, lowering the energy and increasing the source–detector distance are the main
factors which determine an improvement of the sensitivity to ∆m2.

Considering the neutrino energy, the cross-section σνα
(E) increases with neu-

trino energy, but it cannot increase faster than E2, since dimensionally at most we
have σνα

(E) ∝ GFE
2. Therefore, eqn (12.8) implies that (∆m2)s can be lowered

by decreasing the energy E. However, in practice there are limits below which the
energy cannot be decreased. One limit is due to the detection threshold, below
which σνα

(E) = 0 (the above dimensional argument is valid well above threshold).
Another limit applies to accelerator experiments (see section 12.3), where the neu-
trino beam is produced by pions generated by accelerated protons hitting a target.
In this case, the intensity of the neutrino beam increases with the proton energy
and hence with the energy of the neutrino beam itself. Thus, N src

να
depends on the

neutrino energy, complicating the energy dependence of (∆m2)s in eqn (12.8). In
this case, the experimental design must be studied in order to optimize the energy
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Fig. 12.1. Sensitivity to ∆m2 as a function of the product of the total reactor
power and the detector fiducial mass [205].

of the beam for the desired sensitivity to ∆m2 within the existing practical limita-
tions. Thus, accelerator experiments typically have neutrino energies from 100 MeV
to 100 GeV. The smallest neutrino energy, of the order of a few MeV, is reached in
reactor experiments, discussed in section 12.2. Typically, these experiments allow
the exploration of very small values of ∆m2.

If the neutrino energy cannot be lowered, the best way to increase the sensitivity
to ∆m2 is to increase the source–detector distance. The resulting loss in sensitiv-
ity to sin2 2ϑ can be avoided or alleviated by increasing the power of the source
and increasing the mass of the detector. For example, (sin2 2ϑ)s remains constant
if N src

να
σνα

(E) ηMdet ∝ L2. Such an increase of N src
να
σνα

(E) ηMdet is also advan-
tageous for the sensitivity to ∆m2, since it implies that (∆m2)s ∝ E/L. This is
illustrated, for the case of reactor experiments, in Fig. 12.1 (taken from Ref. [205]),
where the bottom abscissa is the source–detector length L and the ordinate is the
product of the thermal power of the reactor, which is proportional to N src

να
, and

the mass Mdet of the detector (all reactor neutrino detectors have the same E
and σνα

(E), with similar efficiencies η). The diagonal line represents the function
N src

να
Mdet ∝ L2. The top abscissa gives the value of (∆m2)s ∝ L−1 for experiments

lying on the diagonal line. One can see that all experiments lie near the diagonal
line, in order to reach different sensitivities to ∆m2, keeping the sensitivity sin2 2ϑ
at a significant level. Obviously, the experiments above the diagonal line have better
sin2 2ϑ sensitivity and the sensitivity to ∆m2 increases towards the right.
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Let us consider now a να → νβ appearance experiment, with β �= α. The
transition probability is given by

Pνα→νβ
∝

Nobs
νβ

−Nbck
νβ

φνα
Tobs σνβ

(E) ηMdet
, (12.9)

where Nbck
νβ

is the estimated number of background events, φνα
is the flux of να

through the detector, and Tobs is the observation time. Neglecting the uncertainties
of φνα

, σνβ
(E), and Nbck

νβ
, the uncertainty of the transition probability is given by

∆Pνα→νβ
∝

∆Nobs
νβ

φνα
Tobs σνβ

(E) ηMdet
, (12.10)

where ∆Nobs
νβ

is the statistical fluctuation of the number of observed events. Since
the sensitivity is defined in the absence of a signal, the number of observed events
is due to the background and, from the Poisson distribution of the background, we

have ∆Nobs
νβ

=
√
Nbck

νβ
, leading to

(Pmax
να→νβ

)s � ∆Pνα→νβ

∣∣
no-signal

∝

√
Nbck

νβ

φνα
Tobs σνβ

(E) ηMdet
. (12.11)

It is clear that decreasing the background is crucial in order to improve the sensitiv-
ity. Unfortunately, in practice there is always a form of background that cannot be
eliminated, which is the so-called beam-related background. For example, in accel-
erator experiments measuring νµ → νe transitions with a beam of νµ’s produced
by π+ → µ+ + νµ decays, there is an unavoidable beam-related background of νe’s
mainly due to the µ+ → e+ + νe + ν̄µ decays. Another form of beam-related back-
ground are the να-induced events which are misidentified as νβ events. From these
two examples, it is clear that the beam-related background is approximately pro-
portional to the intensity of the beam. Considering Nbck

νβ
∝ φνα

Tobs σνβ
(E) ηMdet,

we have

(Pmax
να→νβ

)s ∝
L√

N src
να

σνβ
(E) ηMdet

, (12.12)

where N src
να

∝ φνα
Tobs L

2 is the number of να’s emitted by the source. This
expression has the same structure as that in eqn (12.7) obtained for disappear-
ance experiments. Therefore, once all sources of background above the unavoidable
beam-related background have been eliminated, the sensitivity of appearance exper-
iments follows the same rules as that of disappearance experiments, discussed after
eqn (12.7).

12.2 Reactor experiments

Fission reactors are copious sources of electron antineutrinos produced in the β-
decays of neutron-rich nuclei. The power of a reactor is mainly due to the fission
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of four isotopes: 235U (∼ 56%), 238U (∼ 8%), 239Pu (∼ 30%), and 241Pu (∼ 6%).
The electron antineutrinos are produced by the chain of β-decays of the fission
products. Since, on average, each fission produces about 200 MeV, with release of
about six ν̄e’s, the electron antineutrino yield is about 2 × 1020 s−1 for each GWth

of thermal power. Typical modern light-water nuclear power plants have several
reactor cores, each with a thermal power of the order of 3 GWth. Thus, the total
rate of antineutrino production of a typical nuclear power plant is very high. Unfor-
tunately, however, since the antineutrino flux is isotropic, it decreases rapidly with
distance. This is obviously a problem for neutrino oscillation experiments, which
require an appropriate source–detector distance in order to reveal the oscillations.
This drawback is partially compensated by the low-energy of reactor antineutri-
nos, of the order of a few MeV, which implies a relatively short oscillation length.
Such a low energy also implies that only ν̄e disappearance can be investigated in
reactor experiments, since the energy is not sufficient to produce, in a detector,
muons or taus through charged-current interactions. The neutral-current interac-
tions of ν̄µ’s and ν̄τ ’s produced by oscillations are too weak to be distinguished
from the background. The disappearance character of reactor neutrino oscillation
experiments implies that it is very difficult to measure a small mixing, which gives
a small disappearance, because of the statistical fluctuations of the signal.

Reactor electron antineutrinos are detected through the inverse neutron decay

process

ν̄e + p→ n+ e+ , (12.13)

which was already used by Cowan and Reines in their first detection of electron
antineutrinos produced in the Savannah River power plant [899]. This reaction
liberates a total visible energy Ee + me where Ee is the energy of the positron,
which annihilates immediately with a surrounding electron. This energy can be seen
in scintillator detectors [898, 334]. The antineutrino events are distinguished from
the background by the coincidence of the prompt positron signal with the delayed
signal produced by the nuclear capture of the neutron. Neglecting the small recoil
energy of the neutron, the neutrino and positron energies are related by

Eν = Ee + Tn +mn −mp � Ee + 1.293 MeV , (12.14)

where Tn is the negligibly small recoil kinetic energy of the neutron. From
eqn (5.37), the neutrino energy threshold is given by

Eth
ν =

(mn +me)
2 −m2

p

2mp
� 1.806 MeV , (12.15)

which is slightly larger than the naivemn−mp+me � 1.804 MeV. The cross-section
is given by69

σν̄ep
CC =

G2
F |Vud|2
π

(
g2

V + 3 g2
A

)
Ee pe , (12.16)

69 The energy-dependent radiative corrections have been calculated in Refs. [1041, 429].
The corrections of the order Eν/mN and the angular distribution of the positrons are
discussed in Ref. [1042].
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Fig. 12.2. Reactor ν̄e flux, inverse neutron decay cross-section, and ν̄e interaction
spectrum at a detector based on such a reaction: (a) and (b) refer to a 12 ton
fiducial mass detector located 0.8 km from a 12 GWth power reactor [205].

where gV � 1 and gA � 1.27 (see eqn (5.143)). The cross-section can be conveniently
written in terms of the neutron lifetime in eqn (5.140) as

σν̄ep
CC =

2π2

τnm5
e f

Ee pe � 9.56 × 10−44

(
Ee pe

MeV2

)( τn
886 s

)−1

cm2 , (12.17)

where f is the phase space integral in eqns (5.141) and (5.142). This form has the
advantage of expressing the cross-section in terms of the well-measured quantities
me and τn (see eqns (A.150) and (A.158)), eliminating the need to know the values
of |Vud|, gV , and gA.

The threshold of about 1.8 MeV implies that only about 25% of the antineutrinos
produced in a reactor can be detected, since the others are below threshold. The
response of a detector to a reactor ν̄e flux is illustrated by the (a) curve in Fig. 12.2,
which is proportional to the product of the antineutrino spectrum represented by
the (b) curve and the detection cross-section represented by the (c) curve. One can
see that the peak of the antineutrino detection is at the energy of about 3.6 MeV.

The calculation of a reactor antineutrino spectrum is a difficult task, since
the decay of each isotope produces a different neutrino spectrum. The qualitative
features of the existing calculations are reviewed in Refs. [205, 800]. Here we only
mention the following interesting points:

− The threshold of about 1.8 MeV implies that only antineutrinos produced by
β-decays with a relatively large Q-value are detected. Since these β-decays are
relatively fast, the intensity of the ν̄e flux is closely correlated in time with the
thermal power of the reactor.
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Fig. 12.3. The ratio of measured to expected ν̄e flux of different reactor neutrino
experiments as a function of their source–detector distance. The shaded region
indicates the range of flux predictions corresponding to the 95% CL LMA region
found in a global analysis of the solar neutrino data [450]. The dotted curve
corresponds to the best-fit values ∆m2

sol = 5.5× 10−5 eV2 and sin2 2ϑsol = 0.83.
Figure from Ref. [398].

− Reactors require shutdowns for refueling every 12–24 months. The temporal
flux modulation due to these shutdowns can be used to check the background
subtraction methods.

− The intensity of the ν̄e flux is proportional to the thermal power of the reactor,
which is monitored with accuracy better than 1% by the power plant opera-
tors. Also the initial isotope composition of the nuclear fuel is known with high
accuracy.

− Several SBL reactor neutrino oscillation experiments (see section 12.2.1) mea-
sured antineutrino fluxes and energy spectra in agreement with the calculations.
Since these measurements have been done at several different source–detector
distances, it is safe to assume that they represent direct determinations of the
antineutrino spectrum produced in a reactor. These measurements have been
used to reduce the uncertainty of the calculated antineutrino spectrum for LBL
experiments.

Figure 12.3 shows the ratio of measured to expected ν̄e flux of different reac-
tor neutrino experiments as a function of their source–detector distance L. The
experiments with L ∼ 10–100 m are short-baseline (SBL) experiments, the two
experiments (CHOOZ and Palo Verde) with L ∼ 1 km are long-baseline (LBL)
experiments, and the experiment (KamLAND) with L ∼ 200 km is the only very-
long-baseline (VLBL) experiment. These types of reactor experiments are discussed,
respectively, in the following subsections 12.2.1, 12.2.2, and 12.2.3. From Fig. 12.3,
one can see that SBL and LBL reactor experiments, which did not have a suffi-
cient source–detector distance, were not sensitive to the disappearance of ν̄e due to
the small solar ∆m2. As explained in section 12.1, the sensitivity to small values
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Fig. 12.4. Cosmic muon flux and reactor neutrino flux in different underground
experimental sites [100].

of ∆m2 improves by increasing the source–detector distance. In fact, the VLBL
experiment KamLAND was successfully carried out at a very large source detector
distance, in order to reach the sensitivity to small values of ∆m2 required for the
observation of ν̄e disappearance due to the solar ∆m2.

In reactor neutrino experiments, it is important to reduce the background below
the neutrino event rate. This means that reactor neutrino experiments must be
shielded from the cosmic ray background. However, since the neutrino flux from
reactors is very intense, in SBL and LBL experiments it is typically necessary only
to have shielding from the hadronic component of cosmic rays and to have a mod-
erate reduction of the muon component. In this case, an underground location with
a shallow depth is sufficient. This is fortunate, because it could be very difficult
to find an appropriate deep underground location within 100 m or 1 km from a
nuclear power plant. Figure 12.4 shows the cosmic ray muon flux at some under-
ground experimental sites. For the Bugey, Palo Verde, and CHOOZ experiments,
the reactor neutrino flux is shown to be similar to the muon flux (the Perry exper-
iment [982], named in Fig. 12.4, is an unrealized project). The VLBL KamLAND
experiment is located in the Kamioka mine, where the low cosmic muon flux allows
a measurement of the flux of neutrinos from reactors at a distance of more than
100 km, which is of the order of 104 times smaller than the flux at CHOOZ.

12.2.1 Short-baseline reactor experiments

SBL reactor experiments have source–detector distances between 10 and 100 m.
Several experiments of this type have been performed from the late 1970s to the
1990s: ILL [710], Gosgen [1082], Rovno [32], Krasnoyarsk [1037], Bugey [363], and
Savannah River [563]. The masses of the detectors were of the order of a few hundred
kg. As shown in Fig. 12.3, none of these experiments observed a ν̄e disappearance,
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Fig. 12.5. Exclusion curves of the most sensitive reactor experiments: Gosgen
[1082], Krasnoyarsk [1037], Bugey [363], Savannah River (SRP) [563]. Figure
taken from Ref. [563].

because their source–detector distance was not sufficient to reach the sensitivity to
the small values of ∆m2 required for the observation of ν̄e disappearance due to
the solar ∆m2.

The negative results of SBL reactor neutrino oscillation experiments led to exclu-
sion curves in the sin2 2ϑ-∆m2 plane which extend to values of ∆m2 as small as
about 10−2 eV2, since the neutrino energy is relatively small. The most stringent
exclusion curves are shown in Fig. 12.5.

12.2.2 Long-baseline reactor experiments: CHOOZ and Palo Verde

LBL reactor experiment have source–detector distances of the order of 1 km, which
allow the extension of the ∆m2 sensitivity down to about 10−3 eV2. This is a very
interesting range, because it covers the region of ∆m2 corresponding to atmospheric
neutrino oscillations (see section 11.2). In fact, the CHOOZ [97, 98, 100] and Palo
Verde [254, 253, 255] experiments have been carried out in the 1990s in order to
check the νµ � νe oscillation explanation of the atmospheric neutrino anomaly
observed in the Kamiokande [614, 840, 621, 474, 603] and IMB [581, 306, 200]
experiments. With a detector mass of a few ton, the CHOOZ and Palo Verde
experiments were sensitive to values of sin2 2ϑ as small as about 10−1.

The CHOOZ experiment [97, 98, 100] was located near the CHOOZ power plant
of Électricité de France in the Ardennes region of France, which is composed of two
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reactors with a total thermal power of 8.5 GWth. The detector was built in a pre-
existing underground cavity under about 100 m of rock, providing an overburden of
about 300 mwe. The distances from the two reactors were 1115 m and 998 m. The
detector had an active mass of 5 ton composed of liquid scintillators loaded with
gadolinium, which has a high thermal neutron capture cross-section with the release
of photons with a total energy of 8 MeV. This allowed the tagging of the inverse
neutron decay events through the delayed coincidence between the prompt e+ signal
and the delayed neutron-capture signal. Since the two reactors started operation
after the CHOOZ detector started data taking, the background was measured with
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high accuracy and the response of the detector to the increase of the reactor power
was monitored. The CHOOZ experiment took data from April 1997 to July 1998,
finding the ratio of measured to expected ν̄e events [100]

R = 1.01 ± 0.028 ± 0.027 . (12.18)

Also the spectral shape of the events was in agreement with the one expected in
the case of no oscillations. Since no disappearance of ν̄e was observed, the CHOOZ
collaboration obtained, with three different analyses of the data, the three exclusion
curves shown in Fig. 12.6, together with the Kamiokande allowed region for atmo-
spheric νµ � νe oscillations [474]. The solid curve on the left in Fig. 12.6 implies
that, at 90% CL,

sin2 2ϑ � 0.1 for ∆m2 � 2 × 10−3 eV , (12.19)

∆m2 < 7 × 10−4 eV for sin2 2ϑ = 1 . (12.20)

These results are based on an analysis which assumes the knowledge of the absolute
value of reactor neutrino flux.

From Fig. 12.6, one can see that the νµ � νe explanation of the atmospheric
neutrino anomaly found in Kamiokande and IMB is excluded by the CHOOZ result.
The CHOOZ result is also important for our knowledge of the value of the element
Ue3 of the neutrino mixing matrix in the case of three-neutrino mixing, as it will
be discussed in section 13.3.1.

The Palo Verde detector [254, 253, 255] was built near the Palo Verde Nuclear
Generating Station in the Arizona desert, which is the largest nuclear plant in Amer-
ica. It has three reactors with a total thermal power of 11.6 GWth. The detector was
located 890 m from two reactors and 750 m from the third. Since no pre-existing
underground location was available, the detector was located in an underground
bunker 12 m deep, with an overburden of only 32 mwe. The detector had a fiducial
mass of 12 ton which was made, as the CHOOZ detector, of gadolinium-loaded
liquid scintillators. The data taking of the Palo Verde experiment from October
1998 to July 2000 led to the ratio of measured to expected ν̄e events [255]

R = 1.01 ± 0.024 ± 0.053 , (12.21)

with no spectral distortion. The exclusion curves obtained by the Palo Verde col-
laboration with two different analyses of the data are shown in Fig. 12.7, together
with the CHOOZ exclusion curve from Ref. [98] and the Kamiokande allowed region
for atmospheric νµ � νe oscillations [474]. One can see that the results of the Palo
Verde experiment confirmed those of the CHOOZ experiment.

There is an intense activity to develop LBL reactor neutrino experiments which
can improve the sensitivities of the CHOOZ and Palo Verde experiments, with the
hope to measure the ν̄e disappearance due to the atmospheric ∆m2 (see Refs. [87,
718, 557]). Such an observation would provide crucial information on the value
of the element Ue3 of the neutrino mixing matrix, as discussed in section 13.3.1.
Among the projects, the first one to be realized will be Double-CHOOZ [104, 218],
with a near and a far detector at distances, respectively, of about 100 m and 1.05 km
from the CHOOZ power plant (data taking is scheduled to begin in 2008).
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Fig. 12.8. Schematic diagram of the
KamLAND detector [398].
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12.2.3 Very long-baseline reactor experiments: KamLAND

The KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector) experiment
[398, 103] has been designed to detect electron antineutrinos produced by 53 nuclear
power reactors in Japan, with a small contribution from reactors in South Korea
(∼ 2%) and in the rest of the world (� 1%), at distances varying from 80 km
to 800 km. About 80% of the detected neutrinos come from reactors at distances
between 140 km and 215 km, with an average distance of about 180 km.

KamLAND is located in the Kamioka mine, in the cavity that was previously
occupied by the Kamiokande experiment (see section 10.6.1). It consists of 1200 m3

of liquid scintillator, confined in a spherical balloon with a diameter of 13 m. The
luminescence from the scintillator is picked up by 1879 PMTs. The active scintilla-
tor volume is surrounded by a 2.5 m thick layer of ultrapure mineral oil that shields
it from external neutron and gamma radiation. The 3000 ton of liquid scintillator,
buffer oil, and photomultipliers are contained and supported by a stainless-steel
sphere with a diameter of 18 m, as shown schematically in Fig. 12.8. The vol-
ume between the sphere and the cylindrical cavity in the rock is filled with water
that allows the detection of the background of cosmic-ray muons through their
Cherenkov light, which is picked up by the old Kamiokande photomultipliers.

In KamLAND electron neutrinos are detected through the inverse neutron decay
reaction in eqn (12.13) with a threshold of 1.8 MeV (see eqn (12.15)). However, since
at low energy there is a geoneutrino background (see the end of this subsection),
the threshold for the oscillation analysis is at 2.6 MeV. The ν̄e energy is estimated
from eqn (12.14).

The KamLAND experiment has been constructed in order to check the LMA
solution of the solar neutrino problem (see chapter 10). As shown in Fig. 12.3, the
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large source–detector distance allowed the KamLAND experiment to measure the
ν̄e disappearance due to the small solar ∆m2.

The ratio of measured to expected ν̄e events in KamLAND from March 2002 to
January 2004 is [100]

R = 0.658 ± 0.044± 0.047 , (12.22)

which deviates from unity by about 5σ. Moreover, the observed deviations from
the expected spectrum shown in Fig. 12.9 clearly indicate an oscillatory origin of
the deficit. The best fit of the data is obtained for [103]

∆m2 = 7.9+0.6
−0.5 × 10−5 eV2 . (12.23)

The mixing angle has large uncertainty, as one can see from the allowed region in the
tan2 ϑ-∆m2 plane in Fig. 12.10a. Since the KamLAND allowed region overlaps with
the LMA region of solar neutrino oscillations, also shown in Fig. 12.10a, KamLAND
has confirmed the oscillation solution of the solar neutrino problem, excluding other
mechanisms as the dominant effect. Figure 12.10b shows the allowed region in the
tan2 ϑ-∆m2 plane obtained with a combined fit of solar and KamLAND data, which
gives [100]

∆m2 = 7.9+0.6
−0.5 × 10−5 eV2 , tan2 ϑ = 0.40+0.10

−0.07 . (12.24)

Comparing with eqn (12.23), one can see that the precision of the determination
of ∆m2 is determined by the KamLAND data. This is due to the sensitivity of
the spectral distortion in Fig. 12.9 to the value of ∆m2. On the other hand, the
precision of the determination of tan2 ϑ is determined by the solar data, as one can
also understand from Fig. 12.10a.
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Fig. 12.11. The expected 238U,
232Th, and 40K decay chain elec-
tron antineutrino energy distribu-
tions [102]. KamLAND can only
detect electron antineutrinos to the
right of the vertical dotted black line;
hence it is insensitive to 40K electron
antineutrinos.

Fig. 12.12. ν̄e energy spectra in Kam-
LAND [102]. Main panel: experimen-
tal points together with the total
expectation (upper dotted line), the
total expected spectrum excluding
the geoneutrino signal (thick solid
line), the expected signals from 238U
(dot-dashed line) and 232Th (lower
dotted line) geoneutrinos, and the
backgrounds due to reactor ν̄e (upper
dashed line), 13C(α, n)16O reac-
tions (middle dotted line), and ran-
dom coincidences (lower dashed line).
Inset: expected spectra extended to
higher energy.

A future improvement of the determination of ∆m2 with a reactor experiment
may be possible by adjusting the source–detector distance to the optimal distance
corresponding to the first oscillation maximum, where the argument of the sine in
eqn (7.74) is equal to π/2. In this case, the measurable disappearance of reactor ν̄e’s
is maximal, since the first oscillation maximum is that which suffers the smallest
suppression due to the average over the L/E distribution, as shown in Fig. 7.2.
In Fig. 12.3 one can see that the average source–detector distance in the Kam-
LAND experiment is longer than the optimal distance and KamLAND is sensitive
to averaged oscillations near the second maximum. For ∆m2 � 8 × 10−5 eV2 and
E � 4 MeV, the first oscillation maximum occurs at a source–detector distance of
about 60 km.

Let us finally remark that KamLAND is the first experiment which was
able to detect electron antineutrinos emitted in the decay chains of the radioac-
tive isotopes 238U and 232Th in the Earth [102], which are called geoneutrinos

[397, 779, 129, 703, 686, 888, 913, 440, 439, 830, 773, 443, 444, 452, 442]. Together
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with 40K, the decay of these isotopes is one of the major sources of the heat gen-
erated in the Earth. However, KamLAND can observe only ν̄e’s generated in the
238U and 232Th decay chains, since the energy spectrum of those generated in the
40K decay chain is below the 1.8 MeV threshold, as shown in Fig. 12.11. In the
KamLAND analysis, the geoneutrino spectra are calculated from a reference model
of the Earth’s composition [413], which assumes 16 TW radiogenic power from 238U
and 232Th. The data and expected spectrum are shown in Fig. 12.12, together with
the estimated backgrounds from various sources, among which the reactor neutri-
nos are dominant above about 2.3 MeV. One can see the excess due to geoneutrinos
above the background, which is in agreement with the prediction of the geophysical
model. The KamLAND measurement has opened a new field of research, which
may lead to a future accurate determination of the composition of the Earth.

12.3 Accelerator experiments

As explained in section 7.5, accelerator experiments can be classified according to
the method of production of the neutrino beam: pion decay in flight, muon decay
at rest and beam dump.

In addition, the experiments with neutrino beams generated by pion decay in
flight are further classified in three categories:

Wide band (WB) beam. These are experiments having a high-intensity neu-
trino beam with a wide energy spectrum which can span one or two orders of
magnitude. This type of beam is convenient for investigating new oscillation
signals in a wide range of values of ∆m2.

Narrow band (NB) beam. The neutrino beams of these experiments have a nar-
row energy spectrum, which is obtained by selecting the momenta of the parent
pion and kaons. The resulting intensity of the neutrino flux of a NB beam is
reduced comparing with a WB beam obtained from the same proton beam. NB
beams are convenient for precise measurements of ∆m2.

Off-axis (OA). These are experiments which use a high-intensity WB beam with
the detector shifted by a small angle from the axis of the beam, where the
neutrino energy is almost monochromatic. The OA principle is a new concept
[198], which will be implemented in future experiments (see section 12.3.3). We
will explain it in subsection 12.3.3.

In the following two subsections we summarize the results of SBL accelerator
experiments and the only LBL accelerator experiment K2K.

12.3.1 Short-baseline accelerator experiments

Many SBL accelerator experiments have been carried out in order to explore the
different flavor transition channels, as one can see from the list in Table 12.1. All the
experiments used neutrino beams from pion decay in flight, except for the ν̄µ → ν̄e

experiments and the beam dump experiments.
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[1032] experiments and the sensitivity
curve of the MiniBooNE experiment
[189].

All the SBL accelerator experiments did not find any indication of neutrino
oscillations, except for the LSND experiment, which found a signal in the ν̄µ → ν̄e

channel [118, 120, 119, 37] and a weaker signal in the νµ → νe channel [122, 121].

The allowed region in the sin2 2ϑ-∆m2 plane for
(−)

νµ →(−)

νe oscillations obtained in the
LSND experiment [37] is shown in Fig. 12.13, together with the exclusion curves
of other SBL experiments. One can see that part of the LSND-allowed region is
not excluded by the results of other experiments. Figure 12.14 shows the result of
combined statistical analysis of the data of the LSND and KARMEN experiments
[320]. The resulting allowed region is in some parts not incompatible with the
exclusion curves of other experiments. The LSND signal is under investigation in
the MiniBooNE experiment at Fermilab [319, 189, 892]. This check is important,
because a confirmation of the LSND signal could require an extension of the three-
neutrino mixing scheme discussed in chapter 13 (see Refs. [231, 556]).
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Table 12.1. SBL neutrino oscillation accelerator experiments.

Channel Experiments

νµ → νµ CHARM [212]
(−)

νµ →(−)

νµ CDHSW [396], CCFR [983]
νµ → νe BEBC [89], CHARM [212], LSND [121], NOMAD [116]
ν̄µ → ν̄e LAMPF-0645 [460], LSND [37], KARMEN [105]

(−)

νµ →(−)

νe BNL-E776 [265], CCFR [910], NuTeV [130]
νµ → ντ FNAL-E531 [1030], CHARM [212], CHORUS [422], NOMAD [115]

(−)

νµ →(−)

ντ CCFR [789]
νe → ντ CHORUS [422], NOMAD [115]

(−)

νe →(−)

ντ CCFR [823])
Beam dump BEBC [465, 559], CHARM [388], CDHSW [208]
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Fig. 12.15. Exclusion curves in the sin2 2ϑ-∆m2 plane for
(−)

νµ → (−)

ντ (a) and
(−)

νe →(−)

ντ (b) oscillations obtained in several experiments. Figure from Ref. [115].

Figure 12.15 shows the exclusion curves in the sin2 2ϑ-∆m2 plane for
(−)

νµ →(−)

ντ

and
(−)

νe → (−)

ντ oscillations obtained in several experiments. The exclusion curves of
the CDHS ≡ CDHSW [396] and CHOOZ [100] experiments, which are disappear-

ance experiments, constrain, respectively,
(−)

νµ and
(−)

νe disappearance into any other

state, including
(−)

ντ . The other curves correspond to appearance experiments listed
in Table 12.1.
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12.3.2 Long-baseline accelerator experiments: K2K

The K2K experiment is a Japanese accelerator LBL experiment with a distance of
250 km from the source in the KEK laboratory to the Super-Kamiokande detector
in the Kamioka mine [48, 46, 47, 66]. The neutrino beam is a pulsed WB beam with
a mean energy of 1.3 GeV. It is an almost pure νµ beam (∼ 98% νµ+ ∼ 1% ν̄µ+ ∼
1% νe). Every 2.2 s about 6 × 1012 protons are extracted from the KEK proton-
synchrotron (KEK-PS) in nine bunches lasting in total 1.1µs. The protons are
focused on an aluminum target and the produced positive pions are focused towards
a decay tunnel 200 m long, where they decay into antimuons and muon neutrinos.
At the end of the decay tunnel there is an iron and concrete beam dump which stops
all charged particles, except muons with energy greater than 5.5 GeV. After the
beam dump there is a muon monitor and, after about 70 m of earth which eliminates
all particles except neutrinos, there is a near neutrino detector system which is used
to calibrate the neutrino beam (about 300 m from the production target). The near
detector system consists of two detector sets: a 1 kton water Cherenkov detector
and a fine-grained detector system. The water Cherenkov detector uses the same
technology and analysis algorithms as the Super-Kamiokande far detector. It also
has the same type and arrangement of PMTs.

The Super-Kamiokande has been described in section 10.6.2 in the context of
solar neutrino detection. Here, it has to be added that the events for the K2K
experiment are selected by synchronization with the proton extraction from the
KEK-PS, which is done with high accuracy through the Global Positioning System
(GPS). The K2K experiment has been divided, so far, in two phases. The first phase,
called K2K-I, is a fraction of the Super-Kamiokande-I phase which lasted from June
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iment (February 2004) [47]. The
dashed line indicates the sensitivity
of the experiment. The dotted line
shows the 90% CL exclusion curve of
CHOOZ [100].

Fig. 12.19. The 90% and 99% CL
upper bounds on the νµ → νe oscilla-
tion parameters obtained in the K2K
experiment (March 2006) [1078]. The
sensitivities of the K2K experiment
for each CL are indicated with dashed
lines.

1999 to July 2001. On 12 November 2001 the Super-Kamiokande detector suffered
the accidental loss of about half of the PMTs. The second phase, called K2K-
II, coincides with the Super-Kamiokande-II phase from January 2003 to February
2004, in which 19% of the inner Super-Kamiokande detector has been covered with
the surviving 5182 PMTs.

The K2K experiment has been built for a laboratory check of atmospheric
neutrino oscillations. The optimal source–detector distance for measuring νµ disap-
pearance with E � 1.3 GeV and the atmospheric squared-mass difference ∆m2 �
2.5 × 10−3 eV2 would be about 650 km, corresponding to the first oscillation max-
imum, where the argument of the sine in eqn (7.74) is equal to π/2. Such a
source–detector distance would maximize the measurable disappearance of νµ’s,
since the first oscillation maximum is the only one which is almost unaffected by
the average over the experimental L/E distribution, as illustrated in Fig. 7.2. The
source–detector distance of 250 km in the K2K experiment has been determined
by the pre-existing locations of the K2K laboratory and the Super-Kamiokande
detector. Although it is not optimal, it has been sufficient for the measurement of
νµ disappearance.

The K2K experiment observed 107 fully contained µ-like events in the 22.5
ktons fiducial volume of Super-Kamiokande, with an expected number without
oscillations of 151+12

−10. There is a discrepancy of about 3σ which indicates muon
neutrino disappearance. Figure 12.16 shows the energy distribution of K2K events
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together with the spectrum expected without oscillations and the best-fit spectrum
with oscillations, corresponding to the mixing parameters

sin2 2ϑ = 1.0 , ∆m2 = 2.8 × 10−3 eV2 . (12.25)

It is clear that the energy distribution of the data is in good agreement with the
oscillation hypothesis.

Figure 12.17 shows the region in the sin2 2ϑ-∆m2 plane of neutrino oscillations
allowed by the K2K data. This region is in good agreement with that in Fig. 11.30,
which was obtained in the Super-Kamiokande atmospheric neutrino experiment.
Therefore, the results of the K2K experiment provide a very important confirma-
tion of the oscillations observed in atmospheric neutrino experiments, excluding
other explanations of the atmospheric neutrino anomaly (see also the discussion in
section 11.2.6).

The K2K collaboration has also investigated the possibility of νµ → νe oscilla-
tions by looking at e-like events in the Super-Kamiokande detector synchronized
with the proton extraction from the KEK-PS [47, 1078]. Since no events above
the expected background were observed, K2K confirmed the CHOOZ and Palo
Verde exclusion of νµ � νe oscillations with a squared-mass difference larger than
about 10−3 eV. The 90% CL exclusion curve obtained by the K2K collaboration
in February 2004 [47] is compared with the CHOOZ exclusion curve in Fig. 12.18.
Figure 12.19 shows the 90% and 99% CL exclusion curves obtained by the K2K col-
laboration in March 2006 [1078]. The effective mixing angle ϑµe (which is equivalent
to ϑeff

µe in eqn (13.16) in the case of three-neutrino mixing) is bounded by

sin2 2ϑµe < 0.13 (90% CL) at ∆m2 = 2.8 × 10−3 eV2 . (12.26)

This limit can be interpreted as a bound on |Ue3| in the case of three-neutrino
mixing (see section 13.3.1).

12.3.3 Future LBL experiments: off-axis

There is intense activity aimed at the development of new LBL experiments, with

the primary objective to discover
(−)

νµ �
(−)

νe oscillations generated by the atmo-
spheric ∆m2. Such a measurement would give information on the element Ue3 of
the neutrino mixing matrix in the case of three-neutrino mixing (see section 13.3.1),
opening up the possibility to observe CP violation in neutrino oscillations and to
distinguish the two three-neutrino mixing schemes in Fig. 13.1 through their dif-
ferent matter effects for LBL neutrino beams propagating in the Earth. The next
accelerator LBL experiments are listed in Table 12.2. Other proposals for future
LBL accelerator experiments are the so-called β-beams [1091, 796, 59, 576] and
the Neutrino Factory [511, 58, 99, 59, 576]. β-beams are pure electron neutrino or
antineutrino beams produced by the β-decays of accelerated radioactive isotopes
with a short lifetime. A Neutrino Factory consists of a storage ring with a high cur-
rent of muons whose decay produces an intense flux of electron and muons neutrinos
(ν̄e + νµ in the case of µ− and νe + ν̄µ in the case of µ+).

Some of the future LBL experiments, such as the T2K and NOνA experiments
in Table 12.2, will adopt the new off-axis (OA) configuration, which yields an almost
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Table 12.2. The next LBL experiments with their oscillation channels, source–de-
tector distance L, average neutrino energy E, and scheduled starting year.

Beam Detector Channels L [km] E [GeV] Start

NuMI [694] MINOS [375]
νµ → νe

νµ → νµ
730 3.5 2005

CNGS [393]
OPERA [577, 691, 867]

ICARUS [106, 101]
νµ → ντ

νµ → νe
732 18 2007

T2K [633] Super-Kamiokande
νµ → νe

νµ → νµ
295 0.7 2009

NOνA [132, 80] Low-Z Calorimeter [132]
νµ → νe

νµ → νµ
∼ 800 2 � 2010

monochromatic neutrino flux in a detector shifted by a small angle from the axis of
a high-intensity WB beam [198]. In the following, we explain the basic principles
of OA experiments.

Let us consider a muon neutrino produced in the pion decay process π+ →
µ+ + νµ. Since the final state has two particles, the conservation of energy and
momentum implies that, in the rest frame of the pion which is the center-of-mass
frame of the decay, the neutrino energy and momentum are given by

Ecm = pcm =
mπ

2

(
1 −

m2
µ

m2
π

)
� 29.79 MeV , (12.27)

where we have neglected the neutrino mass. Let us now consider the laboratory
frame, in which the high-energy pion moves along the z axis with velocity v =

pπ/Eπ � 1 and a Lorentz boost factor γ =
(
1 − v2

)−1/2
= Eπ/mπ � 1. The

neutrino energy E and momentum component along the z axis pz are given by

E = γ (Ecm + v pz
cm) , (12.28)

pz = γ (v Ecm + pz
cm) , (12.29)

where pz
cm is the momentum component along the z axis in the center-of-mass

frame. We want to find the dependence of the neutrino energy E on the small
off-axis angle θ of displacement of the detector with respect to the pion direction
of flight along the z axis. Since pz = p cos θ, eliminating pz

cm in eqns (12.28) and
(12.29) we obtain

E =
Ecm

γ (1 − v cos θ)
� γ (1 + v)

1 + γ2 θ2 v (1 + v) /2
Ecm � 2 γ

1 + γ2 θ2
Ecm , (12.30)
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where the first approximation is due to cos θ � 1 − θ2/2 and the second one to
v � 1. Using eqn (12.27) for Ecm, eqn (12.30) can be written as

E �
(

1 −
m2

µ

m2
π

)
Eπ

1 + γ2 θ2
=

(
1 −

m2
µ

m2
π

)
Eπ m

2
π

m2
π + E2

π θ
2
. (12.31)

This is the crucial equation which shows the monochromatic character of the
neutrino energy off-axis.

For an on-axis detector, θ = 0 and the neutrino energy is proportional to the
pion energy, leading to a WB beam if the range of pion energies is wide. However,
as soon as one moves slightly off-axis, both the numerator and denominator in
eqn (12.31) increase with the pion energy, leading to a quenched dependence of E
from Eπ. This can be seen quantitatively by calculating the derivative of E with
respect to Eπ :

dE

dEπ
�
(

1 −
m2

µ

m2
π

)
1 − γ2 θ2

(1 + γ2 θ2)
2 . (12.32)

The derivative vanishes for θ = γ−1 = mπ/Eπ, which gives

E �
(

1 −
m2

µ

m2
π

)
mπ

2 θ
� 29.79 MeV

θ
. (12.33)

Thus, if 〈Eπ〉 is the average energy of the pion beam, a detector at an off-axis angle
θ � mπ/〈Eπ〉 receives an almost monochromatic neutrino beam with an average
energy given by eqn (12.33).

The dependence of the neutrino energy E as a function of pion energy Eπ as
given by eqn (12.31) is illustrated in Fig. 12.20a. One can see that off-axis the
neutrino energy E is almost constant in the range of pion energies shown in the
figure. Another advantage of the OA configuration is that, as one can see from
Fig. 12.20a, the neutrino energy is much smaller than the pion energy, leading to a
shorter oscillation length and an enhanced sensitivity to small values of ∆m2.

The disadvantage of the OA configuration is that off-axis the neutrino flux is
less intense that on-axis. However, the off-axis neutrino flux of a WB beam is much
higher than that achievable with a traditional NB beam [847].

In order to calculate the intensity loss with respect to the on-axis configuration,
let us first consider the rest frame of the pion, where the neutrino flux is isotropic.
Along the z direction, with z = 0 and zcm = 0 corresponding to the pion decay
point, we have

φcm =
dN

d cos θcm
∝ 1

z2
cm

. (12.34)

Since z is the instantaneous source–detector distance in the laboratory frame, we
have zcm = γ z. We need now to express cos θcm in terms of cos θ. For this purpose,
we note that in the direction orthogonal to the z axis we have E sin θ = Ecm sin θcm.
The ratio of this equation to eqn (12.29) with pz = E cos θ and pz

cm = Ecm cos θcm
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Fig. 12.20. Neutrino energy E as a function of pion energy Eπ (a) and suppression
of the off-axis neutrino flux with respect to the on-axis flux (b). The curves
correspond to off-axis angles θ = 0.0◦, 0.5◦, 1.0◦, 1.5◦, 2.0◦.

yields

tan θ � sin θcm
γ (1 + cos θcm)

. (12.35)

This is the relation between θ and θcm, from which one finds, for small off-axis
angles,

d cos θcm �
(

2 γ

1 + γ2 θ2

)2

d cos θ . (12.36)

Thus, we finally obtain, in the laboratory frame,

φ(θ) =
dN

d cos θ
∝
(

2

1 + γ2 θ2

)2
1

z2
. (12.37)

Figure 12.20b shows the suppression φ(θ)/φ(0) of the off-axis flux with respect to
the on-axis flux for θ = 0.0◦, 0.5◦, 1.0◦, 1.5◦, 2.0◦. One can see that the suppression
is rather severe, leading to the necessity of having a very intense beam (superbeam)
and a very large detector.
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PHENOMENOLOGY OF THREE-NEUTRINO MIXING

Without experimentalists, theorists tend to drift. Without the-
orists, experimentalists tend to falter.
T.D. Lee [725]

Solar and atmospheric neutrino experiments have shown that neutrinos oscillate
with two different squared-mass differences, which we denote by ∆m2

SOL and
∆m2

ATM, respectively. This has been confirmed by independent measurements of the
terrestrial KamLAND and K2K experiments. Therefore it is well established that
there are at least two independent squared-mass differences. The minimal possibil-
ity of just two independent squared-mass differences is realized in three-neutrino
mixing schemes, in which the left-handed components ναL of the three flavor neu-
trinos (α = e, µ, τ) are linear combinations of the left-handed components νkL of
three neutrinos with masses mk:

ναL =

3∑
k=1

Uαk νkL , (13.1)

where U is the 3 × 3 unitary mixing matrix. The three light massive neutrinos
could have a Dirac nature (see section 6.1.2) or a Majorana nature (see section 6.3)
or they could be generated by a Dirac–Majorana mass term through the see-saw
mechanism (see section 6.5).

Although in the case of three-neutrino mixing there are three squared-mass
differences,

∆m2
21 ≡ m2

2 −m2
1 , ∆m2

31 ≡ m2
3 −m2

1 , ∆m2
32 ≡ m2

3 −m2
2 , (13.2)

only two of them are independent, since

∆m2
32 + ∆m2

21 − ∆m2
31 = 0 . (13.3)

Hence, the observed hierarchy

∆m2
SOL � ∆m2

ATM (13.4)

can be accommodated in the two types of three-neutrino mixing schemes shown
schematically in Fig. 13.1. We choose the arbitrary labeling numbers of the massive
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Fig. 13.1. The two three-neutrino schemes allowed by the hierarchy
∆m2

SOL � ∆m2
ATM.

neutrinos in order to have

∆m2
SOL = ∆m2

21 , ∆m2
ATM = |∆m2

31| , (13.5)

with
∆m2

21 � ∆m2
31 � ∆m2

32 . (13.6)

From the hierarchy in eqn 13.4, we have ∆m2
32 = ∆m2

31 −∆m2
SOL � ∆m2

31. There-
fore, considering |∆m2

31| or |∆m2
32| as the atmospheric squared-mass difference is

the same in discussions of atmospheric and LBL experiments, which are not sensi-
tive to ∆m2

SOL. It is also the same in discussions of solar and VLBL experiments.
These experiments are sensitive to ∆m2

SOL, but can observe only the averaged
transition probabilities generated by ∆m2

32 and ∆m2
31, which do not depend on the

exact values of these two squared-mass differences. A precise distinction between
∆m2

32 and ∆m2
31 is necessary only in discussions of LBL experiments which are

sensitive to the subleading oscillations due to ∆m2
SOL (see Ref. [451]).

In this chapter, we discuss the main aspects of the phenomenology of three-
neutrino mixing, with emphasis on the realistic schemes in Fig. 13.1. In sections 13.1
and 13.2 we discuss the general features of neutrino oscillations in vacuum and in
matter, respectively. In section 13.3 we present the main results of the analysis of
the oscillation data in the three-neutrino mixing framework.

13.1 Neutrino oscillations in vacuum

In the case of three-neutrino mixing, there are three flavor transition channels for
neutrinos:

νe � νµ , νe � ντ , νµ � ντ , (13.7)

and the corresponding three channels for antineutrinos. The probabilities of neu-
trino oscillations depend on six independent parameters: two independent ∆m2

(often ∆m2
21 and ∆m2

31 are used), three mixing angles and one Dirac phase (ϑ12,
ϑ13, ϑ23, and δ13 in the parameterization given in eqn (6.191) of the Dirac part of
the mixing matrix).
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Table 13.1. Real parts of the quartic products of elements of the mixing matrix
entering in the three-neutrino oscillation probabilities in eqns (13.9) and (13.10)
with the parameterization in eqn (6.191) of the Dirac part of the mixing matrix.
The last column gives the coefficients sαβ;kj .

αβ kj e
[
U∗αk Uβk Uαj U

∗
βj

]
sαβ;kj

21
− 1

4 sin 2ϑ12 c
2
13

[
sin 2ϑ12

(
c223 − s223s

2
13

)
+ cos 2ϑ12 sin 2ϑ23 s13 cos δ13]

+1

eµ 32 −s12s23c213s13 (s12s23s13 − c12c23 cos δ13) +1

31 −c12s23c213s13 (c12s23s13 + s12c23 cos δ13) −1

21

1
16 sin2 2ϑ12 sin2 2ϑ23

(
1 + s213

)2 − 1
4

(
sin2 2ϑ12 + sin2 2ϑ23

)
s213

− 1
16 sin 4ϑ12 sin 4ϑ23

(
1 + s213

)
s13 cos δ13

+ 1
4 sin2 2ϑ12 sin2 2ϑ23 s

2
13 cos2 δ13

+1

µτ
32

− 1
4 sin 2ϑ23 c

2
13

[
sin 2ϑ23

(
c212 − s212s

2
13

)
+ sin 2ϑ12 cos 2ϑ23 s13 cos δ13]

+1

31
1
4 sin 2ϑ23 c

2
13

[
sin 2ϑ23

(
c212s

2
13 − s212

)
+ sin 2ϑ12 cos 2ϑ23 s13 cos δ13]

−1

21
1
4 sin 2ϑ12 c

2
13

[
sin 2ϑ12

(
c223s

2
13 − s223

)
+ cos 2ϑ12 sin 2ϑ23 s13 cos δ13]

+1

τe 32 −s12c23c213s13 (s12c23s13 + c12s23 cos δ13) +1

31 −c12c23c213s13 (c12c23s13 − s12s23 cos δ13) −1

21 1
4 sin2 2ϑ12 c

4
13 0

ee 32 1
4s

2
12 sin2 2ϑ13 0

31 1
4c

2
12 sin2 2ϑ13 0

21

1
4 sin2 2ϑ12

(
c423 + s423s

2
13

)
+ 1

4

(
1 − 1

2 sin2 2ϑ12

)
sin2 2ϑ23 s

2
13

+ 1
4 sin 4ϑ12 sin 2ϑ23

(
c223 − s223s

2
13

)
s13 cos δ13

− 1
4 sin2 2ϑ12 sin2 2ϑ23 s

2
13 cos2 δ13

0

µµ
32 s223c

2
13

(
c212c

2
23 + s212s

2
23s

2
13 − 1

2 sin 2ϑ12 sin 2ϑ23 s
2
13 cos2 δ13

)
0

31 s223c
2
13

(
s212c

2
23 + c212s

2
23s

2
13 + 1

2 sin 2ϑ12 sin 2ϑ23 s
2
13 cos2 δ13

)
0

21

1
4 sin2 2ϑ12

(
s423 + c423s

2
13

)
+ 1

4

(
1 − 1

2 sin2 2ϑ12

)
sin2 2ϑ23 s

2
13

+ 1
4 sin 4ϑ12 sin 2ϑ23

(
s223 − c223s

2
13

)
s13 cos δ13

− 1
4 sin2 2ϑ12 sin2 2ϑ23 s

2
13 cos2 δ13

0

ττ
32 c223c

2
13

(
c212s

2
23 + s212c

2
23s

2
13 + 1

2 sin 2ϑ12 sin 2ϑ23 s
2
13 cos2 δ13

)
0

31 c223c
2
13

(
s212s

2
23 + c212c

2
23s

2
13 − 1

2 sin 2ϑ12 sin 2ϑ23 s
2
13 cos2 δ13

)
0
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As discussed in section 6.1, in the case of three-neutrino mixing all the imaginary
parts of the rephasing invariant quartic products given in eqn (7.25) are equal up
to a sign,

�m
[
U∗αk Uβk Uαj U

∗
βj

]
= sαβ;kj J , (13.8)

with the coefficients sαβ;kj = ±1 as given in Table 13.1 and the Jarlskog invariant
J given in eqn (6.26).

Using eqn (13.8) we can write the neutrino oscillation probability in eqn (7.38)
as

Pνα→νβ
(L,E) = δαβ − 4

∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

]
sin2

(
∆m2

kjL

4E

)

+ 2 J
∑
k>j

sαβ;kj sin

(
∆m2

kjL

2E

)
, (13.9)

and the oscillation probability of antineutrinos as

Pν̄α→ν̄β
(L,E) = δαβ − 4

∑
k>j

e
[
U∗αk Uβk Uαj U

∗
βj

]
sin2

(
∆m2

kjL

4E

)

− 2 J
∑
k>j

sαβ;kj sin

(
∆m2

kjL

2E

)
, (13.10)

where we have changed the signs of the contributions of the imaginary parts of the
quartic products in eqn (7.25) of elements of the mixing matrix, as explained in
sections 7.3.2.

In Table 13.1 we have listed the real parts of the relevant quartic products of
elements of the mixing matrix and the coefficients sαβ;kj for the transition channels

(−)

νe →(−)

νµ,
(−)

νµ →(−)

ντ ,
(−)

ντ →(−)

νe and for the survival channels
(−)

νe →(−)

νe,
(−)

νµ →(−)

νµ,
(−)

ντ →
(−)

ντ . The oscillation probabilities for the T-conjugated transition channels
(−)

νµ →(−)

νe,
(−)

ντ → (−)

νµ,
(−)

νe → (−)

ντ can be obtained by changing the sign of the corresponding
coefficients sαβ;kj .

13.1.1 CP and T violations

In the case of three-neutrino mixing, the CP asymmetries in eqn (7.61), which are
equivalent to the T asymmetries in eqn (7.66), are given by

ACP
αβ (L,E) = 4 J

∑
k>j

sαβ;kj sin

(
∆m2

kjL

2E

)
. (13.11)

From the values of the coefficients sαβ;kj listed in Table 13.1, it follows that all the
CP asymmetries are equal up to a sign:

ACP
eµ = ACP

µτ = ACP
τe = −ACP

µe = −ACP
τµ = −ACP

eτ . (13.12)
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13.1.2 Hierarchy of ∆m2’s

A simple case of three-neutrino mixing is realized when there is the hierarchy of
squared-mass differences in eqn (13.6). This is the case which is of interest in
practice, as explained in the introduction of this chapter, since we can identify the
three-neutrino squared-mass differences with the solar and atmospheric squared-
mass differences according to eqn (13.5). In the following we will consider the two
types of three-neutrino mass spectra in Fig. 13.1, which can accommodate the
observed hierarchy of squared-mass differences in eqn (13.4).

Atmospheric and LBL experiments, in which

|∆m2
31|

2

〈
L

E

〉
∼ π , (13.13)

are sensitive to the oscillations due to ∆m2
31. In this case the hierarchy in eqn (13.6)

implies that there is a dominance of the largest squared-mass difference ∆m2
31.

Hence, the general discussion in section 7.7 applies, with the two groups of massive
neutrinos A = {ν1 , ν2} and B = {ν3}. The two-neutrino-like effective oscillation
probability is given by eqn (7.125) for appearance experiments,

P eff
να→νβ

(L,E) = sin2 2ϑeff
αβ sin2

(
∆m2

31L

4E

)
(α �= β) , (13.14)

and by eqn (7.133) for disappearance experiments,

P eff
να→να

(L,E) = 1 − sin2 2ϑeff
αα sin2

(
∆m2

31L

4E

)
. (13.15)

The effective mixing angles in appearance and disappearance experiments are given
by eqn (7.136):

sin2 2ϑeff
αβ = 4 |Uα3|2 |Uβ3|2 (α �= β) , sin2 2ϑeff

αα = 4 |Uα3|2
(
1 − |Uα3|2

)
.

(13.16)
Note the following important features of the oscillation probabilities in eqns (13.14)
and (13.15):

1. All oscillation channels,
(−)

νe �
(−)

νµ,
(−)

νµ �
(−)

ντ and
(−)

ντ �
(−)

νe, are open and have the
same oscillation length

Losc =
4πE

∆m2
31

. (13.17)

2. As already remarked after eqn (7.136), the oscillation probabilities are indepen-
dent of the phases in the mixing matrix and there is no possibility of revealing
CP and T violations. In other words, P eff

να→νβ
= P eff

ν̄α→ν̄β
and P eff

(−)

να→
(−)

νβ

= P eff
(−)

νβ→
(−)

να

.

3. The transition probabilities are determined by three parameters: ∆m2
31, |Ue3|,

and |Uµ3| (the unitarity of the mixing matrix implies that |Uτ3| = 1 − |Ue3| −
|Uµ3|). The expressions of |Ue3| and |Uµ3| in terms of the mixing angles in
the standard parameterization in eqn (6.191) are |Ue3| = sin2 ϑ13 and |Uµ3| =
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cos2 ϑ13 sin2 ϑ23. Hence, the oscillation probabilities depend only on the two
mixing angles ϑ13 and ϑ23. They are independent of the mixing angle ϑ12.

4. The two-neutrino form of the oscillation probabilities allows for a straightforward
interpretation in terms of three-neutrino mixing of the analyses of experimental
data which have been done using a two-neutrino mixing framework70. The two-
neutrino squared-mass difference is identified with ∆m2

31 and the two-neutrino
mixing angle ϑ is identified with the appropriate effective mixing angle in
eqn (13.16).

Let us now consider solar and VLBL experiments, in which

|∆m2
21|

2

〈
L

E

〉
∼ π . (13.18)

Hence, these experiments are sensitive to the oscillations due to ∆m2
21 and the dis-

cussion in section 7.8 applies: the small squared-mass difference ∆m2
21 is active and

oscillations due to the large squared-mass difference ∆m2
31 are washed out. There

is only one massive neutrino in each of the three groups considered in section 7.8:
ν1 ∈ A1, ν2 ∈ A2, ν3 ∈ B. From eqns (7.148) and (7.149), the effective survival
probabilities are given by

P eff
(−)

να→
(−)

να

(L,E) =
(
1 − |Uα3|2

)2
P

(1,2)
(−)

να→
(−)

να

(L,E) + |Uα3|4 , (13.19)

with the effective two-neutrino-like survival probability

P
(1,2)

(−)

να→
(−)

να

(L,E) = 1 − sin2 2ϑeff
αα sin2

(
∆m2

21L

4E

)
, (13.20)

and the effective mixing angle given by

sin2 2ϑeff
αα = 4

|Uα1|2|Uα2|2

(|Uα1|2 + |Uα2|2)2
. (13.21)

The effective probability of να → νβ transitions derived from eqn (7.156) is

P eff
να→νβ

(L,E) = 4 |Uα1|2 |Uβ1|2 sin2

(
∆m2

21L

4E

)
+ 4e

[
U∗α3Uβ3 Uα1 U

∗
β1

]
sin2

(
∆m2

21L

4E

)
+ 2 sαβ;31 J sin

(
∆m2

21L

2E

)
70 The important difference between a two-neutrino mixing scheme and the three-

neutrino mixing scheme in the approximation under consideration is that a two-neutrino
mixing scheme describes only transitions between two flavors, whereas in the three-
neutrino mixing scheme simultaneous transitions among all three flavors are allowed, as
remarked in item 1.
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+ 2 |Uα3|2 |Uβ3|2 . (13.22)

In practice, the effective survival probability in eqn (13.19) has been used in the
analysis of experimental data of disappearance experiments (see chapter 13), but
the effective transition probability in eqn (13.22) has never been used so far because
there are no appearance experiments71 which are sensitive to the oscillations gener-
ated by ∆m2

21. Note that the transition probabilities of neutrinos and antineutrinos
are different if J �= 0.

13.1.3 Trimaximal mixing

In the hypothetical but interesting case of trimaximal mixing presented in sec-
tion 6.6.1, all the elements of the mixing matrix have the same absolute value equal
to 1/

√
3. This is the case when we have ϑ12 = ϑ23 = π/4, s13 = 1/

√
3, sin δ13 = ±1

in the parameterization given in eqn (6.191).
In the case of trimaximal mixing, all the survival probabilities are equal, as one

can see immediately from eqn (7.39), which implies

Pνα→να
(L,E) = 1 − 4

9

∑
k>j

sin2

(
∆m2

kjL

4E

)
. (13.23)

As an example, Fig. 13.2 shows the survival probability of να as a function of
〈L/E〉 [km/GeV] ∆m2

31 [eV2] in the case of trimaximal mixing for ∆m2
21/∆m

2
31 =

10−3, averaged over a Gaussian L/E distribution with σL/E = 0.2 〈L/E〉. The ratio
∆m2

21/∆m
2
31 = 10−3 implies the hierarchy of squared-mass differences in eqn (13.6).

From Fig. 13.2 one can see that the survival probability starts to oscillate when
〈L/E〉 [km/GeV] ∆m2

31 [eV2] ∼ 1. In this regime, ∆m2
31 is the dominant squared

mass difference and the effective survival probabilities are given by eqn (13.15) with
the effective mixing angle ϑeff

αα given by

sin2 2ϑeff
αα =

8

9
. (13.24)

The oscillations due to ∆m2
31 are damped for 〈L/E〉 [km/GeV] ∆m2

31 [eV2] � 1.
In the interval 10 � 〈L/E〉 [km/GeV] ∆m2

31 [eV2] � 100 the survival probability is
averaged to

〈P eff
να→να

〉 = 1 − 1

2
sin2 2ϑeff

αα =
5

9
, (13.25)

shown by the dashed horizontal line in Fig. 13.2.
When 〈L/E〉 is such that 〈L/E〉 [km/GeV] ∆m2

31 [eV2] ∼ 103, the sur-
vival probability in Fig. 13.2 starts oscillations due to ∆m2

21, because

71 Some solar neutrino experiment are sensitive to νµ’s and ντ ’s generated by transitions
from solar νe’s. However, since they cannot distinguish νµ’s from ντ ’s, they can measure
only the inclusive transition probability Pνe→νµ +Pνe→ντ = 1−Pνe→νe , which is equivalent
to a measurement of the survival probability of solar νe’s.
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Fig. 13.2. Survival probability of να as a function of 〈L/E〉 [km/GeV] ∆m2
31 [eV2]

in the case of trimaximal mixing (ϑ12 = ϑ23 = π/4, s13 = 1/
√

3, sin δ13 = ±1;
see section 6.6.1) for ∆m2

21/∆m
2
31 = 10−3, averaged over a Gaussian L/E

distribution with σL/E = 0.2 〈L/E〉.

〈L/E〉 [km/GeV] ∆m2
21 [eV2] ∼ 1. In this regime, the small ∆m2

21 is active and
the effective survival probability is given by eqn (13.19) with |Uα3|2 = 1/3,

P eff
να→να

(L,E) =
4

9
P (1,2)

να→να
(L,E) +

1

9
, (13.26)

and the effective two-neutrino-like survival probability in eqn (13.20) with maximal
effective mixing angle ϑeff

αα,
sin2 2ϑeff

αα = 1 . (13.27)

The oscillations due to ∆m2
21 are damped for 〈L/E〉 [km/GeV] ∆m2

31 [eV2] � 103.
The effective two-neutrino-like survival probability in eqn (13.20) averages to

〈P (1,2)
να→να

(L,E)〉 = 1 − 1

2
sin2 2ϑeff

αα =
1

2
, (13.28)

implying that the averaged effective survival probability becomes

〈P eff
να→να

〉 =
1

3
, (13.29)

as shown by the dotted horizontal line in Fig. 13.2. This average value is the mini-
mum possible average value of the survival probability for any mixing, as we have
shown in eqn (7.44).

As discussed in section 6.6.1, a trimaximal Dirac mixing matrix is physically
invariant under the cyclic permutations e, µ, τ � µ, τ, e � τ, e, µ and ν1, ν2, ν3 �

ν2, ν3, ν1 � ν3, ν1, ν2. Therefore, the transition probabilities are invariant under the
same cyclic permutations. Taking also into account the CPT relation in eqn (7.57),
we have the equalities

Pνe→νµ
= Pνµ→ντ

= Pντ→νe
= Pν̄µ→ν̄e

= Pν̄e→ν̄τ
= Pν̄τ→ν̄µ

, (13.30)
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Pνµ→νe
= Pνe→ντ

= Pντ→νµ
= Pν̄e→ν̄µ

= Pν̄µ→ν̄τ
= Pν̄τ→ν̄e

. (13.31)

As we have shown in section 6.6.1, one of the exchanges e � µ or µ � τ or τ � e
or ν1 � ν2 or ν2 � ν3 or ν3 � ν1 transforms the two inequivalent trimaximal Dirac
mixing matrices in eqn (6.373) with opposite Jarlskog invariant (see eqn (6.374))
one into the other. Therefore, under one of these exchanges, the contributions to the
transition probabilities of the terms proportional to the Jarlskog invariant change
sign. This means that the probabilities in eqns (13.30) and (13.31) are different and
they are related by such a change of sign.

We can easily calculate one of the transition probabilities starting from the
expression in eqn (7.118). Let us calculate Pνe→νµ

(L,E), which is one of the equal
probabilities in eqn (13.30). Using the form in eqn (6.375) for the mixing matrix
we obtain [529]

Pνe→νµ
(L,E) =

∣∣∣∣∣∑
k

U∗ek Uµk exp

(
−i ∆m2

k1L

2E

)∣∣∣∣∣
2

=
1

9

∣∣∣∣e±i2π/3 + e∓i2π/3 exp

(
−i ∆m2

21L

2E

)
+ exp

(
−i ∆m2

31L

2E

)∣∣∣∣2
=

1

9

∣∣∣∣1 + exp

[
−i
(

∆m2
21L

2E
∓ 2π

3

)]
+ exp

[
−i
(

∆m2
31L

2E
± 2π

3

)]∣∣∣∣2
= 1 − 4

9

[
sin2

(
∆m2

21L

4E
∓ π

3

)
+ sin2

(
∆m2

31L

4E
± π

3

)
+ sin2

(
∆m2

32L

4E
∓ π

3

)]
, (13.32)

where the upper and lower signs correspond, respectively, to a positive and a neg-
ative Jarlskog invariant (see eqn (6.374)). The probabilities in eqn (13.31) can be
obtained by changing the signs of the phases π

3 : for example

Pν̄e→ν̄µ
(L,E) = 1 − 4

9

[
sin2

(
∆m2

21L

4E
± π

3

)
+ sin2

(
∆m2

31L

4E
∓ π

3

)
+ sin2

(
∆m2

32L

4E
± π

3

)]
. (13.33)

We note that, in agreement with the discussion above, the probabilities in
eqns (13.32) and (13.33) are invariant under the cyclic permutations ν1, ν2, ν3 �

ν2, ν3, ν1 � ν3, ν1, ν2 and transform one into the other under one of the exchanges
ν1 � ν2 or ν2 � ν3 or ν3 � ν1.

Figure 13.3 shows the probabilities in eqns (13.32) and (13.33) averaged
over a Gaussian L/E distribution with σL/E = 0.2 〈L/E〉, as functions of

〈L/E〉 [km/GeV] ∆m2
31 [eV2], for ∆m2

21/∆m
2
31 = 10−3 and J = 1/6

√
3, which

implies that the upper signs in eqns (13.32) and (13.33) apply. One can see that
the probabilities of νe → νµ (solid line) and ν̄e → ν̄µ (dashed line) transitions
start to oscillate for 〈L/E〉 [km/GeV] ∆m2

31 [eV2] ∼ 1, where the effect of the small
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Fig. 13.3. Probabilities of νe → νµ (solid line, eqn (13.32) with upper signs)
and ν̄e → ν̄µ (dashed line, eqn (13.33) with upper signs) transitions as func-
tions of 〈L/E〉 [km/GeV] ∆m2

31 [eV2] in the case of trimaximal mixing with
J = 1/6

√
3 (ϑ12 = ϑ23 = π/4, s13 = 1/

√
3, sin δ13 = 1; see section 6.6.1)

for ∆m2
21/∆m

2
31 = 10−3, averaged over a Gaussian L/E distribution with

σL/E = 0.2 〈L/E〉.

squared-mass difference ∆m2
21 is negligible. In this case, since ∆m2

32 � ∆m2
31, the

two probabilities are practically equal and are given by eqn (13.14) with effective
mixing angle

sin2 2ϑeff
eµ =

4

9
. (13.34)

For 〈L/E〉 [km/GeV] ∆m2
31 [eV2] � 1, the oscillations due to ∆m2

31 are damped
out and the two probabilities average to

〈P(−)

νe→
(−)

νµ

〉 =
2

9
, (13.35)

as shown by the dashed horizontal line in Fig. 13.3. For 〈L/E〉 [km/GeV] ∆m2
31 [eV2] �

10, the effects of ∆m2
21 start to be significant and the two probabilities deviate from

each other. Since the sign of the phase π/3 is negative in the squared-sine depending
on ∆m2

21 of Pνe→νµ
(L,E), there is an initial cancellation between the contributions

of ∆m2
21L/4E and π/3. Since the squared-sine has negative sign, the probability of

νe → νµ transitions increases when the effect of ∆m2
21 starts to become significant.

The probability of ν̄e → ν̄µ transitions suffers just the opposite effect, leading to
an initial decrease. For 〈L/E〉 [km/GeV] ∆m2

31 [eV2] � 103, the oscillations due to
∆m2

21 are damped out and both probabilities average to 1/3.
The CP asymmetries can easily be calculated from eqns (13.30)–(13.33), yielding

ACP
eµ (L,E) = ± 2

3
√

3

[
sin

(
∆m2

21L

2E

)
− sin

(
∆m2

31L

2E

)
+ sin

(
∆m2

32L

2E

)]
.

(13.36)
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Fig. 13.4. Averaged CP asymmetry 〈ACP
eµ (L,E)〉 as a function of

〈L/E〉 [km/GeV] ∆m2
31 [eV2] in the case of trimaximal mixing with J = 1/6

√
3

(ϑ12 = ϑ23 = π/4, s13 = 1/
√

3, sin δ13 = 1; see section 6.6.1) and
∆m2

21/∆m
2
31 = 10−3, averaged over a Gaussian L/E distribution with

σL/E = 0.2 〈L/E〉. The vertical axis ranges from −2/3
√

3 to 2/3
√

3.

The other CP asymmetries are equal to ACP
eµ (L,E) up to a sign, according to the

general equalities in eqn (13.12) in three-neutrino mixing.
Figure 13.4 shows the CP asymmetry ACP

eµ (L,E) averaged over a Gaussian L/E

distribution with σL/E = 0.2 〈L/E〉, as a function of 〈L/E〉 [km/GeV] ∆m2
31 [eV2]

for trimaximal mixing with J = 1/6
√

3 and ∆m2
21/∆m

2
31 = 10−3. One can see that

there is no CP asymmetry for 〈L/E〉 [km/GeV] ∆m2
31 [eV2] � 1, where ∆m2

31 is the
dominant squared mass difference, in agreement with the discussion in section 7.7.
Indeed, since the phase due to ∆m2

21 is negligible and ∆m2
32 � ∆m2

31, only the
two sine functions in eqn (13.36) which depend on ∆m2

31 and ∆m2
32 contribute and

cancel each other.
The CP asymmetry starts to deviate from zero at 〈L/E〉 [km/GeV] ∆m2

31 [eV2] ∼
102 and oscillates for 〈L/E〉 [km/GeV] ∆m2

31 [eV2] ∼ 103, where 〈L/E〉 [km/GeV] ∆m2
21 [eV2] ∼

1. This means that the small squared-mass difference ∆m2
21 is active. In this regime,

the two sine functions in eqn (13.36), which depend on ∆m2
31 and ∆m2

32, are aver-
aged to zero and the sine function which depends on ∆m2

21 gives the nonvanishing
oscillating contribution. Since the vertical axis in Fig. 13.4 ranges from −2/3

√
3 to

2/3
√

3, one can see that in the first maximum the averaging procedure has very
little effect. The averaging starts to damp the oscillations in a significant way at
the first minimum and acts so quickly that the third maximum is barely visible.

For 〈L/E〉 [km/GeV] ∆m2
31 [eV2] � 104, the CP asymmetry is damped to zero,

because the averages of all the sine functions in eqn (13.36) vanish. This is a concrete
example of the general property discussed at the end of section 7.3.2.
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13.1.4 Bilarge mixing

As discussed in section 6.6.2, we have bilarge mixing if one of the elements of the
mixing matrix is zero or much smaller than the others, so that it can be neglected
in practice. In this case, with an appropriate parameterization, it is possible to
express the mixing matrix in terms of only two mixing angles. Hence, the mixing
matrix is real, the Jarlskog invariant is zero, and there are no CP or T violations
in neutrino oscillations, yielding

Pνα→νβ
= Pν̄α→ν̄β

= Pν̄β→ν̄α
= Pνβ→να

. (13.37)

The oscillation probabilities in eqn (7.38) reduce to

Pνα→νβ
(L,E) = δαβ − 4

∑
k>j

Uαk Uβk Uαj Uβj sin2

(
∆m2

kjL

4E

)
. (13.38)

As a useful example, let us consider the case in which Ue3 = 0, which is a
realistic approximation of the true mixing matrix, as we will see in section 13.3. In
this case, the Dirac part of the mixing matrix can be parameterized as in eqn (6.378)
in terms of the mixing angles ϑ12 and ϑ23,

UD =

⎛⎝ c12 s12 0
−s12c23 c12c23 s23
s12s23 −c12s23 c23

⎞⎠ . (13.39)

The electron neutrino is a mixture of ν1 and ν2 only and its survival and
transition probabilities can be written in the two-neutrino-like form

Pνe→νβ
(L,E) = δeβ + (1 − 2δeβ) sin2 2ϑeff

eβ sin2

(
∆m2

21L

4E

)
(β = e, µ, τ) ,

(13.40)
with the effective mixing angles ϑeff

eβ given by

ϑeff
ee = ϑ12 , sin2 2ϑeff

eµ = sin2 2ϑ12 c
2
23 , sin2 2ϑeff

eτ = sin2 2ϑ12 s
2
23 . (13.41)

The survival probabilities of muon and tau neutrinos are given by

Pνµ→νµ
(L,E) = 1 − sin2 2ϑ23

[
s212 sin2

(
∆m2

31L

4E

)
+ c212 sin2

(
∆m2

32L

4E

)]
− sin2 2ϑ12 c

4
23 sin2

(
∆m2

21L

4E

)
, (13.42)

Pντ→ντ
(L,E) = 1 − sin2 2ϑ23

[
s212 sin2

(
∆m2

31L

4E

)
+ c212 sin2

(
∆m2

32L

4E

)]
− sin2 2ϑ12 s

4
23 sin2

(
∆m2

21L

4E

)
, (13.43)

and the probability of νµ → ντ transitions is given by

Pνµ→ντ
(L,E) = sin2 2ϑ23

[
s212 sin2

(
∆m2

31L

4E

)
+ c212 sin2

(
∆m2

32L

4E

)]
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− 1

4
sin2 2ϑ12 sin2 2ϑ23 sin2

(
∆m2

21L

4E

)
. (13.44)

Therefore, the data of neutrino oscillation experiments in which electron neutri-
nos or antineutrinos are produced or detected can be conveniently analyzed with a
two-neutrino-like oscillation probability which depends only on two effective param-
eters. However, they can provide information only on ∆m2

21 and ϑ12. On the other
hand, neutrino oscillation experiments that do not involve electron neutrinos or
antineutrinos can yield information on all the five oscillation parameters, the two
mixing angles ϑ12, ϑ23 and the three squared-mass differences ∆m2

21, ∆m2
31, ∆m2

32,
but they must be analyzed with more complicated formulas.

The oscillation probabilities in eqns (13.42)–(13.44) lead to simpler approximate
expressions in the case of a hierarchy of squared-mass differences of the type in
eqn (13.6), which, in fact, is of practical interest. Since ∆m2

31 � ∆m2
32, we have

Pνµ→νµ
(L,E) � 1 − sin2 2ϑ23 sin2

(
∆m2

31L

4E

)
− sin2 2ϑ12 c

4
23 sin2

(
∆m2

21L

4E

)
,

(13.45)

Pντ→ντ
(L,E) � 1 − sin2 2ϑ23 sin2

(
∆m2

31L

4E

)
− sin2 2ϑ12 s

4
23 sin2

(
∆m2

21L

4E

)
,

(13.46)

Pνµ→ντ
(L,E) � sin2 2ϑ23 sin2

(
∆m2

31L

4E

)
− 1

4
sin2 2ϑ12 sin2 2ϑ23 sin2

(
∆m2

21L

4E

)
.

(13.47)

In experiments sensitive to the oscillations due to ∆m2
31, where eqn (13.13) is

satisfied, the contributions of ∆m2
21 are negligible and we have

P eff
νµ→νµ

(L,E) = 1 − sin2 2ϑ23 sin2

(
∆m2

31L

4E

)
, (13.48)

P eff
ντ→ντ

(L,E) = 1 − sin2 2ϑ23 sin2

(
∆m2

31L

4E

)
, (13.49)

P eff
νµ→ντ

(L,E) = sin2 2ϑ23 sin2

(
∆m2

31L

4E

)
, (13.50)

which agree with the general expressions in eqns (13.14) and (13.15). These
experiments can give information on ∆m2

31 and ϑ23.
In experiments sensitive to the oscillations due to ∆m2

21, where the condition in
eqn (13.18) holds, the oscillations due to the largest squared-mass difference ∆m2

31

are washed out, leading to the effective probabilities

P eff
νµ→νµ

(L,E) = 1 − 1

2
sin2 2ϑ23 − sin2 2ϑ12 c

4
23 sin2

(
∆m2

21L

4E

)
, (13.51)

P eff
ντ→ντ

(L,E) = 1 − 1

2
sin2 2ϑ23 − sin2 2ϑ12 s

4
23 sin2

(
∆m2

21L

4E

)
, (13.52)
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P eff
νµ→ντ

(L,E) =
1

2
sin2 2ϑ23 −

1

4
sin2 2ϑ12 sin2 2ϑ23 sin2

(
∆m2

21L

4E

)
, (13.53)

which are consistent with the general expressions in eqns (13.19) and (13.22). If the
value of ϑ23 is not known independently from other experiments which are sensitive
to the oscillations due to ∆m2

31, and thus measure the effective probabilities in
eqns (13.48)–(13.50), the data from these experiments must be analyzed in terms
of the three parameters ∆m2

21, ϑ12, and ϑ23.

13.2 Matter effects

In general, the discussion of oscillations in matter for three neutrino mixing is quite
complicated, because of the possible interplay of the effects of the different ∆m2’s
(see Ref. [707]). Fortunately, in the case of the hierarchy of squared-mass differ-
ences in eqn (13.6), which is of interest in practice, the effects of the large and
small squared-mass differences can be separated out, leading to a considerable sim-
plification of the discussion and a clear understanding of the physical mechanisms at
work in experiments. In section 13.1.2 we have already discussed the most important
phenomenological aspects of oscillations in vacuum in this scenario. In matter, we
will consider two regimes: the case of largest ∆m2 dominance in section 13.2.1 and
the case of active small ∆m2 in section 13.2.2. However, before discussing these
cases, we elaborate the evolution equation (9.54) in order to simplify irrelevant
degrees of freedom.

As shown in eqn (4.77), the mixing matrix in the standard parameterization in
eqn (6.31) can be written as

U = R23W 13R12 , (13.54)

in the notation introduced in section 4.3.2. We do not consider additional Majorana
phases in the case of Majorana neutrinos (see eqn (6.189)), since they are irrelevant
for neutrino oscillations, as explained at the end of section 9.2. The parameteriza-
tion in eqn (13.54) is convenient, since the rotation matrix R23 commutes with the
matter potential matrix A in eqn (9.56):

R23†
AR23 = A . (13.55)

Indeed, since a rotation in the 2-3 plane mixes νµ and ντ , which have the same
matter potential, it is irrelevant for the matter effect. This property allows us to
write the evolution equation (9.54) as

i
d

dx
Ψα =

1

2E
R23

(
W 13R12

M
2 R12†W 13† + A

)
R23†Ψα . (13.56)

Defining the new column matrix of amplitudes

Ψ̃α = R23†Ψα , (13.57)
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we obtain the evolution equation

i
d

dx
Ψ̃α =

1

2E

(
W 13R12

M
2 R12†W 13† + A

)
Ψ̃α , (13.58)

which is independent of ϑ23. It is however to be noted that the amplitudes in the
second and third entries of Ψ̃α do not have a definite flavor or mass character. Only
the first entry, corresponding to να → νe transitions, is the same in Ψα and Ψ̃α:

⎛⎝ψαe

ψαµ

ψατ

⎞⎠ =

⎛⎜⎝ ψ̃α1

c23 ψ̃α2 + s23 ψ̃α3

−s23 ψ̃α2 + c23 ψ̃α3

⎞⎟⎠ . (13.59)

The flavor transition probabilities are given by

Pνα→νe
(x) = |ψαe(x)|2 = |ψ̃α1(x)|2 , (13.60)

Pνα→νµ
(x) = |ψαµ(x)|2

= cos2 ϑ23|ψ̃α2(x)|2 + sin2 ϑ23|ψ̃α3(x)|2 + sin 2ϑ23e
[
ψ̃∗α2(x)ψ̃α3(x)

]
,

(13.61)

Pνα→ντ
(x) = |ψατ (x)|2

= sin2 ϑ23|ψ̃α2(x)|2 + cos2 ϑ23|ψ̃α3(x)|2 − sin 2ϑ23e
[
ψ̃∗α2(x)ψ̃α3(x)

]
.

(13.62)

Moreover, the initial conditions for the evolution equation (13.58) depend on ϑ23.
For example, if the initial neutrino is a νµ, we have

Ψ̃µ(0) =

⎛⎝1 0 0
0 cosϑ23 sinϑ23

0 − sinϑ23 cosϑ23

⎞⎠⎛⎝0
1
0

⎞⎠ =

⎛⎝ 0
cosϑ23

− sinϑ23

⎞⎠ . (13.63)

Hence, the transition probabilities depend on ϑ23, as they must, according to the
discussion in section 7.3 of neutrino oscillations in vacuum. The meaning of the
independence of the evolution equation (13.58) from ϑ23 is that this mixing angle
is not modified in matter, whereas the mixing angles ϑ12 and ϑ13, on which the
evolution equation (13.58) depends, acquire effective values in matter, as we will
see in the following.

Since for antineutrinos the matter potential changes sign (see section 9.1), in
matter the oscillation probabilities of neutrinos and antineutrinos are different, even
if the fundamental Lagrangian is CP invariant (i.e. even if the Jarlskog invariant of
the mixing matrix is zero). In other words, there is a matter-induced CP violation
in the oscillation probabilities due to the fact that the medium is not CP-invariant.
Moreover, since the medium is also not CPT-invariant, there is a matter-induced
CPT violation in the oscillation probabilities.
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13.2.1 ∆m2
31 dominance

In this subsection we consider atmospheric and LBL neutrino oscillation experi-
ments in which eqn (13.13) holds. These experiments are sensitive to the largest
squared-mass difference ∆m2

31 and the small squared-mass difference ∆m2
21 can be

neglected in a study of the dominant effects due to ∆m2
31. Hence, in this case we

have
M

2 � diag(0, 0,∆m2
31) . (13.64)

This approximation leads to a substantial simplification, since now R12 commutes
with ∆M, leading to the evolution equation

i
d

dx
Ψ̃α =

1

2E

(
W 13

M
2W 13† + A

)
Ψ̃α . (13.65)

Moreover, from eqns (4.62) and (4.77) we have W 13 = D1(−δ13)R13D1†(−δ13)
and, from the explicit expression of D1 in eqn (4.56), one can immediately see that

D1†(−δ13)M2D1(−δ13) = M
2. Since we also have, from the explicit expression of

A in eqn (9.56), D1(−δ13)AD1†(−δ13)A, we can redefine

Ψ̃α → D1(−δ13) Ψ̃α , (13.66)

in order to obtain the evolution equation

i
d

dx
Ψ̃α =

1

2E

(
R13

M
2 R13† + A

)
Ψ̃α , (13.67)

which depends only on the mixing angle ϑ13. Since the redefinition in eqn (13.66) is

just a phase shift of the first component of Ψ̃α, it does not change the expressions
of the flavor transition probabilities in eqns (13.60)–(13.62), which are, therefore,
independent72 of the CP-violating phase δ13. Thus, CP violation is not observable
in neutrino oscillations in matter, as well as in vacuum (see section 13.1.2), in
experiments which are only sensitive to the oscillations generated by the largest
squared-mass difference ∆m2

31. This does not mean, however, that the oscillation
probabilities of neutrinos and antineutrinos are the same, because of the matter-
induced CP-violation discussed above.

Explicitly, the evolution equation (13.67) reads

i
d

dx

⎛⎜⎝ψ̃α1

ψ̃α2

ψ̃α3

⎞⎟⎠ =
1

2E

⎛⎝s213∆m2
31 +ACC 0 c13s13∆m

2
31

0 0 0
c13s13∆m

2
31 0 c213∆m

2
31

⎞⎠
⎛⎜⎝ψ̃α1

ψ̃α2

ψ̃α3

⎞⎟⎠ . (13.68)

Thus, the component ψ̃α2 is constant,

ψ̃α2(x) = ψ̃α2(0) , (13.69)

and the evolution equation is reduced to an effective two-neutrino-like evolution
equation for the flavor transition amplitudes ψ̃α1 and ψ̃α3. Neglecting an irrelevant

72 One could have obtained the same result in a simpler way by using for the mix-
ing matrix the parameterization U = R23 R13W 12, instead of the standard one in
eqn (13.54). Since W 12 commutes with ∆M in eqn (13.64), the evolution equation is
obviously independent of the CP-violating phase in W 12 [537].
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common phase exp
[
−i∆m2

31x/4E − i
2

∫ x

0
VCC(x′) dx′

]
, the evolution equation for

these two components can be written in a form similar to that in eqn (9.59):

i
d

dx

(
ψ̃α1

ψ̃α3

)
=

1

4E

(
−∆m2

31 cos 2ϑ13 +ACC ∆m2
31 sin 2ϑ13

∆m2
31 sin 2ϑ13 ∆m2

31 cos 2ϑ13 −ACC

)(
ψ̃α1

ψ̃α3

)
.

(13.70)
Hence, the MSW effect discussed in section 9.3 occurs in the 1-3 sector. In
particular, the effective mixing angle ϑM

13 in matter is given by

tan 2ϑM
13 =

tan2ϑ13

1 − ACC

∆m2
31 cos 2ϑ13

, (13.71)

and there is a resonance when ACC becomes equal to

AR
CC = ∆m2

31 cos 2ϑ13 . (13.72)

The effective 3–1 squared-mass difference in matter is given by

∆m2
M31 =

√
(∆m2

31 cos 2ϑ13 −ACC)
2
+ (∆m2

31 sin 2ϑ13)
2
. (13.73)

The discussion in section 9.3 for a medium with smooth density variations
can be straightforwardly adapted to the present case. However, in practice we
are interested in neutrino beams which propagate in the Earth, where the slab
approximation discussed in section 9.4 is more appropriate. In this case, the flavor
transition amplitudes are given by the analog of eqn (9.102):

Ψα(xn) =
[
UM UM(xn − xn−1)U

†
M

]
(n)

[
UM UM(xn−1 − xn−2)U

†
M

]
(n−1)

. . .
[
UM UM(x2 − x1)U

†
M

]
(2)

[
UM UM(x1 − x0)U

†
M

]
(1)

Ψα(x0) , (13.74)

where x0 is the coordinate of the starting point, x1, x2, . . . , xn are the boundaries
of n slabs and the notation [. . .](i) indicates that all the matter-dependent quantities
in the square brackets must be evaluated with the matter density in the ith slab,
which extends from xi−1 to xi. The unitary evolution operator in each slab diagonal
basis is given by

UM(∆x) = diag
(
exp

(
−im2

M1∆x/2E
)
, 1 , exp

(
−im2

M3∆x/2E
))
, (13.75)

with the effective squared-masses

m2
M3,1 =

1

2

(
∆m2

31 +ACC ± ∆m2
M31

)
. (13.76)

The second diagonal entry in UM(∆x) is equal to unity because the corresponding
effective squared-mass is equal to zero,

m2
M2 = 0 , (13.77)

as one can see immediately from eqn (13.68).
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We determine the effective mixing matrix in matter UM by noting that the
evolution equation (13.68) is diagonalized by the orthogonal transformation

Ψ̃α = R13
M Φα , (13.78)

with

R13
M =

⎛⎝ cosϑM
13 0 sinϑM

13

0 1 0

− sinϑM
13 0 cosϑM

13

⎞⎠ . (13.79)

Thus, we obtain, from eqn (13.57),

Ψα = UM Φα , (13.80)

with the effective mixing matrix in matter

UM = R23R13
M =

⎛⎝ cosϑM
13 0 sinϑM

13

− sinϑ23 sinϑM
13 cosϑ23 sinϑ23 cosϑM

13

− cosϑ23 sinϑM
13 − sinϑ23 cosϑ23 cosϑM

13

⎞⎠ . (13.81)

This effective mixing matrix does not depend on the mixing angle ϑ12 because we
are working in the approximation ∆m2

21 = 0, in which there is no mixing in the 1-2
sector. Note that the third column of the effective mixing matrix in matter has the
same structure of the third column of the mixing matrix U (see eqn (6.191)), in
terms of the mixing angle ϑ23 and the effective mixing angle in matter ϑM

13, which
replaces the mixing angle ϑ13 (the CP-violating phase is irrelevant, as explained
above). On the other hand, the first row of the effective mixing matrix in matter
is simpler than that of the mixing matrix U , since the approximation ϑ12 → 0
implies that the electron neutrino is only affected by the mixing in the 1-3 sector.
Physically, the special status of the electron neutrino is a consequence of its charged-
current interactions with the electrons in the medium, represented by the potential
VCC. The element UMe2 of the effective mixing matrix is equal to zero because the
electron neutrino cannot mix with the second effective massive neutrino, whose
squared-mass does not depend on VCC (see eqn (13.77)).

Since the mixing angle ϑ23 does not change in matter, eqn (13.74) can be
simplified to

Ψα(xn) = R23
[
R13

M UM(xn − xn−1)R
13
M
†]

(n)

[
R13

M UM(xn−1 − xn−2)R
13
M
†]

(n−1)

. . .
[
R13

M UM(x2 − x1)R
13
M
†]

(2)

[
R13

M UM(x1 − x0)R
13
M
†]

(1)
R23†Ψα(x0) ,

(13.82)

where one must take into account only the changes of the values of ϑM
13 and ∆m2

M31

in the transitions between slabs with different matter densities.
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In the simplest case of a constant matter density, the flavor transition
probabilities at a distance L from the source can be calculated analytically from

Ψα(L) = UM UM(L)UM
†Ψα(0) . (13.83)

Since ψαβ(0) = δαβ , the effective probability P eff
να→νβ

= |ψαβ |2 of να → νβ

transitions is given by

P eff
να→νβ

=

∣∣∣∣∣
3∑

k=1

UMαk UMβk exp

(
−im

2
Mk L

2E

)∣∣∣∣∣
2

. (13.84)

Since this expression has the same structure as that of the transition probability in
vacuum, given in eqn (7.118), we can use the same method for the calculation of
the transition probabilities. Using the unitarity relation

3∑
k=1

UMαk UMβk = δαβ , (13.85)

one obtains that the transition and survival probabilities are given by, respectively,

P eff
να→νβ

= 4U2
Mα3 U

2
Mβ3 S

2
31 − 4UMα1 UMβ1 UMα2 UMβ2 S

2
1

− 4UMα2 UMβ2 UMα3 UMβ3

(
S2

3 − S2
31

)
, (13.86)

P eff
να→να

= 1 − 4U2
Mα3

(
1 − U2

Mα3

)
S2

31 − 4U2
Mα1 U

2
Mα2 S

2
1

− 4U2
Mα2 U

2
Mα3

(
S2

3 − S2
31

)
, (13.87)

with

S2
1 ≡ sin2

(
m2

M1 L

4E

)
, S2

3 ≡ sin2

(
m2

M3 L

4E

)
, S2

31 ≡ sin2

(
∆m2

M31 L

4E

)
. (13.88)

One can easily see that in vacuum these probabilities reduce to the two-neutrino-
like forms in eqns (13.14) and (13.15). In general, however, in matter it is not
possible to reduce the oscillation probabilities to the two-neutrino-like forms of
the type in eqn (9.77), because in matter there are two independent squared-mass
differences: ∆m2

M31 and ∆m2
M21 = −m2

M1 (the third squared-mass difference is
m2

M3 = ∆m2
M32 = ∆m2

M31 − ∆m2
M21). Such a reduction is only possible for the

oscillation probabilities involving the electron neutrino, which has UMe2 = 0:

P eff
νe→νe

= 1 − sin2 2ϑeff
ee S

2
31 , P eff

νe→νβ
= sin2 2ϑeff

eβ S
2
31 (β = µ, τ) , (13.89)

with

sin2 2ϑeff
ee = sin2 2ϑM

13 , (13.90)

sin2 2ϑeff
eµ = sin2 ϑ23 sin2 2ϑM

13 , (13.91)

sin2 2ϑeff
eτ = cos2 ϑ23 sin2 2ϑM

13 . (13.92)
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As remarked above, the oscillation probabilities in matter of neutrinos and
antineutrinos are different, since the lack of CP-invariance of the medium induces,
through the matter potential, a violation of the CP symmetry of the oscillation
probabilities. The oscillation probabilities are also CPT asymmetric. However,
for a constant medium the oscillation probabilities are T-invariant, as one can
immediately see from the invariance of eqn (13.86) under the exchange α � β.

The resonance condition for neutrinos in eqn (13.72) can be satisfied for an
appropriate matter density if the product ∆m2

31 cos 2ϑ13 is positive. In that case
there cannot be a resonance for antineutrinos, which have a matter potential with
opposite sign. Vice versa, if the product ∆m2

31 cos 2ϑ13 is negative, there can be a
resonance for antineutrinos only.

Since we know that ϑ13 is small (see section 13.3.1), cos 2ϑ13 is positive. Thus,
it is possible to find the sign of ∆m2

31 and distinguish the two schemes in Fig. 13.1
by measuring the matter effect in LBL experiments: if there is a resonance for
neutrinos, ∆m2

31 > 0 and we have a normal scheme; if there is a resonance for
antineutrinos, ∆m2

31 < 0 and we have an inverted scheme. Future LBL experiments
(see section 12.3.3) are aimed at this goal.

13.2.2 Active ∆m2
21

We now consider solar and VLBL experiments, in which the validity of eqn (13.18)
implies that the small squared-mass difference ∆m2

21 is active and oscillations due
to the large squared-mass difference ∆m2

31 are averaged out. We also consider a
matter potential

ACC ∼ ∆m2
21 , (13.93)

which can affect the oscillations due to ∆m2
21.

For the study of this case, it is convenient to define the new column matrix of
amplitudes

Ψ̂α = W 13†R23†Ψα , (13.94)

which follows the evolution equation

i
d

dx
Ψ̂α =

1

2E
M̂

2 Ψ̂α . (13.95)

The effective squared-mass matrix

M̂
2 =

(
R12

M
2R12† +W 13†

AW 13
)

(13.96)

is explicitly given by

M̂
2 =

⎛⎝s212∆m2
21 + c213ACC c12s12∆m

2
21 −c13s13e−iδ13ACC

c12s12∆m
2
21 c212∆m

2
21 0

−c13s13eiδ13ACC 0 ∆m2
31 + s213ACC

⎞⎠ , (13.97)

One must now note that the hierarchy of squared-mass differences in eqn (13.6)

implies that the 3-3 entry in the effective squared-mass matrix M̂
2 is much larger
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than all the other entries. Thus, to lowest order in the power expansion in the small
quantities ∆m2

21/∆m
2
31 ∼ ACC/∆m

2
31, the third eigenvalue of M̂

2 is given by

m̂2
M3 = ∆m2

31 . (13.98)

In this approximation, the evolution of the amplitude ψ̂α3 is decoupled from the
evolution of the amplitudes ψ̂α1 and ψ̂α2, leading to

ψ̂α3(x) = exp

(
−i∆m

2
31 x

2E

)
ψ̂α3(0) . (13.99)

Since, from eqns (9.45) and (13.94),

ψ̂αk(0) =
∑

ρ=e,µ,τ

(W 13†R23†)kρ ψαρ(0) = (W 13†R23†)kα = (R23W 13)∗αk , (13.100)

taking into account that Uα3 = (R23W 13)α3, we obtain

ψαβ(x) =
∑

k=1,2

(
R23W 13

)
βk
ψ̂αk(x) + U∗α3 Uβ3 exp

(
−i∆m

2
31 x

2E

)
. (13.101)

Considering now the transition probability Pνα→νβ
(x) = |ψαβ(x)|2, we note that

eqns (13.6) and (13.18) imply that ∆m2
31x/2E is very large. In this case, the inter-

ference between the two terms on the right-hand side of eqn (13.101) is washed
out by the average over the experimental energy resolution, leading to the effective
oscillation probability

P eff
να→νβ

(x) =

∣∣∣∣∣∣
∑

k=1,2

(R23W 13)βk ψ̂αk(x)

∣∣∣∣∣∣
2

+ |Uα3|2 |Uβ3|2 . (13.102)

This effective oscillation probability does not depend on ∆m2
31, but retains a

dependence on the elements of the third column of the mixing matrix.
The amplitudes ψ̂α1 and ψ̂α2 remain to be determined. Their coupled evolution

is governed by

i
d

dx

(
ψ̂α1

ψ̂α2

)
=

1

2E
M̂

2
2×2

(
ψ̂α1

ψ̂α2

)
, (13.103)

with the effective 2 × 2 squared-mass matrix

M̂
2
2×2 =

∆m2
21 + c213ACC

2

+
1

2

(
− cos 2ϑ12∆m

2
21 + c213ACC sin 2ϑ12∆m

2
21

sin 2ϑ12∆m
2
21 cos 2ϑ12∆m

2
21 − c213ACC

)
. (13.104)

Apart from the irrelevant common term (∆m2
21 + cos2 ϑ13ACC)/2, the evolution

equation is the same as the two-generation evolution equation (9.59), with ACC



MATTER EFFECTS 473

replaced by cos2 ϑ13ACC. Therefore, the evolution equation (13.103) can be solved
with the method discussed in section 9.3 through the analogy

ψ̂α1 ∼ ψ(1,2)
ee , ψ̂α2 ∼ ψ(1,2)

eµ , (13.105)

where ψ
(1,2)
ee and ψ

(1,2)
eµ are the two-neutrino flavor amplitudes in the 1-2 sector.

Obviously, this analogy becomes an exact equality in the limit of no mixing between
the 1-2 sector and ν3, i.e. ϑ23 = ϑ13 = 0.

The effective mixing angle in matter ϑM
12 is given by

tan 2ϑM
12 =

tan2ϑ12

1 − cos2 ϑ13 ACC

cos 2ϑ12 ∆m2

. (13.106)

There is a resonance for ACC = AR
CC, with

cos2 ϑ13A
R
CC = cos 2ϑ12∆m

2
21 . (13.107)

The effective squared-mass eigenvalues are

m̂2
M2,1 =

1

2

(
∆m2

21 + cos2 ϑ13ACC ± ∆m2
M21

)
, (13.108)

with

∆m2
M21 =

√
(∆m2

21 cos 2ϑ21 − cos2 ϑ13ACC)
2

+ (∆m2
21 sin 2ϑ21)

2
. (13.109)

For the calculation of the transition probability in eqn (13.102), it is convenient

to express the evolution of the amplitudes ψ̂α1 and ψ̂α2 through a unitary evolution
matrix U (x) such that

ψ̂αk(x) =
∑

j=1,2

Ukj(x) ψ̂αj(0) =
∑

j=1,2

Ukj(x) (R23W 13)∗αj (k = 1, 2) . (13.110)

Thus, we obtain

P eff
να→νβ

(x) =

∣∣∣∣∣∣
∑

k,j=1,2

(R23W 13)∗αj (R23W 13)βk Ukj(x)

∣∣∣∣∣∣
2

+ |Uα3|2 |Uβ3|2 . (13.111)

The evolution equation for U (x) is

i
d

dx
U (x) =

1

2E
M̂

2
2×2 U (x) , (13.112)

with the initial condition
Ukj(0) = δkj . (13.113)

In practice, it is useful only to calculate the survival probability of electron
neutrinos, since the conditions in eqns (13.18) and (13.93) are satisfied only by
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Ue1

Uµ1 Uµ2

Uτ1 Uτ2

ATM

Uτ3

Uµ3

Ue3

U =

SOL Ue2

Fig. 13.5. Schematic description of the contributions of the elements of the mixing
matrix to solar (SOL) and atmospheric (ATM) neutrino oscillations.

solar neutrinos. Since (R23W 13)e1 = cosϑ13, (R23W 13)e2 = 0 and (R23W 13)e3 =
sinϑ13 e

−iδ13 , we obtain [957]

P eff
νe→νe

(x) = cos4 ϑ13 |U11(x)|2 + sin4 ϑ13 . (13.114)

This simple result can also be written in terms of |Ue3|, which is parameterization-
independent, as

P eff
νe→νe

(x) =
(
1 − |Ue3|2

)2
P (1,2)

νe→νe
(x) + |Ue3|4 , (13.115)

where P
(1,2)
νe→νe(x) = |U11(x)|2 is the effective two-neutrino-like survival probability

of νe due to the mixing in the 1-2 sector. Since eqn (13.115) has the same structure
as eqn (13.19), which gives the survival probability in vacuum, it can be considered

as valid in general, with appropriate values of P
(1,2)
νe→νe in vacuum and in matter.

The expression in eqn (13.115) for the νe survival probability can be applied
to the analysis of solar neutrinos in the three-neutrino mixing framework. In fact,
it has been used in order to obtain information on the value of |Ue3| from solar
neutrino data [769, 150, 558, 451] (see section 13.3.1).

13.3 Analysis of oscillation data

In chapters 10 and 11 we discussed the results of solar and atmospheric neutrino
experiments and their interpretation in terms of two-neutrino oscillations, which led
to the establishment of the two squared-mass differences in eqn (13.4). Since these
two ∆m2’s are determined by the different scales of the oscillations in solar and
atmospheric neutrino experiments, they cannot change when the data are analyzed
in a three-neutrino mixing scheme. On the other hand, the information on the
mixing of neutrino could drastically change when the separate two-neutrino analyses
of the solar and atmospheric data is replaced by a combined three-neutrino analysis,
because three-neutrino mixing, with its three mixing angles, has more degrees of
freedom than a simple doubling of two neutrino mixing. Luckily, this is not the case
in practice, since |Ue3|, which is the only element of the mixing matrix which enters
in both solar and atmospheric neutrino oscillations, is small (see subsection 13.3.1).
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In order to see that Ue3 is the only element of the mixing matrix which enters in
both solar and atmospheric neutrino oscillations, let us first consider solar neutrino
experiments, which have observed the disappearance of electron neutrinos. In gen-
eral, such disappearance depends only on the elements of the mixing matrix which
connect νe with the three massive neutrinos. These are the three elements Ue1, Ue2,
and Ue3 in the first row of the mixing matrix, as shown schematically in Fig. 13.5.
Considering now atmospheric neutrino experiments, the general evolution equation
of flavor amplitudes discussed in section 13.2.1 depends only on the mixing angles
ϑ23 and ϑ13, which are determined by the elements in the third column of the
mixing matrix through73

sinϑ23 =
|Uµ3|√

1 − |Ue3|2
, sinϑ13 = |Ue3| . (13.116)

Therefore, atmospheric neutrino oscillations depend only on the third column of
the elements of the mixing matrix, as shown schematically in Fig. 13.5, and Ue3

is the only element of the mixing matrix which causes a correlation of solar and
atmospheric neutrino oscillations.

The experimental bound on |Ue3| is discussed in subsection 13.3.1. In subsec-
tion 13.3.2 we discuss the interpretation of the oscillation data in the approximate
case of bilarge mixing (see sections 6.6.2 and 13.1.4) with Ue3 = 0. However, since
there is no reason to believe that Ue3 is exactly zero, a correct analysis of the data
must take into account a possible contribution of a small Ue3. In subsection 13.3.3
we discuss the results of such an analysis. Finally, in subsection 13.3.4 we discuss
the implications for the absolute values of the neutrino masses.

13.3.1 Bound on |Ue3|
In section 13.1.2 it has been shown that the squared-mass hierarchy in eqn (13.6)
implies that the survival probabilities of να and ν̄α in disappearance experiments
sensitive to the oscillations due to |∆m2

31| are given by eqn (13.15) with the effective
mixing angle in eqn (13.16), which depends only on |Uα3|. In particular, the CHOOZ
and Palo Verde LBL reactor experiments (see section 12.2.2) were sensitive to ν̄e

disappearance due to |∆m2
31|, with an effective mixing angle given by

sin2 2ϑeff
ee = 4 |Ue3|2

(
1 − |Ue3|2

)
= sin2 2ϑ13 . (13.117)

These experiments did not observe any disappearance of reactor νe’s. Their exclu-
sion curves in the ∆m2-sin2 2ϑ plane, shown in Figs. 12.6 and 12.7, can be
interpreted in the framework of three-neutrino mixing simply by replacing sin2 2ϑ
with sin2 2ϑ13 and ∆m2 with |∆m2

31|. Thus, we have an upper bound (sin2 2ϑ13)max

on sin2 2ϑeff
ee as a function of |∆m2

31|. In order to transform this limit into a bound

73 Since the mixing angles are limited between 0 and π/2, the relations in eqn (13.116)
determine ϑ23 and ϑ13 in a unique way.
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on the value of |Ue3|, we invert eqn (13.117):

|Ue3|2 =
1

2

(
1 ±

√
1 − sin2 2ϑ13

)
. (13.118)

A small value of sin2 2ϑ13 corresponds either to a small value of |Ue3|2 (minus sign)
or to a value of |Ue3|2 close to one (plus sign). However, the following argument
shows that a value of |Ue3|2 close to one is incompatible with solar and atmospheric
neutrino oscillations.

Let us consider |Ue3|2 = 1− ε with ε� 1. Then, since from the unitarity of the
mixing matrix we have |Ue1|2 + |Ue2|2 = ε, the mixing of the electron neutrino with
ν1 and ν2 is very small. In this case, the large observed disappearance of solar νe’s
cannot occur through ∆m2

21. With an analogous reasoning, since |Uµ3|2+|Uτ3|2 = ε,
the mixing of the muon neutrino with ν3 is very small and the large observed
disappearance of atmospheric νµ’s and ν̄µ’s cannot occur through ∆m2

31.
Therefore, the CHOOZ and Palo Verde bounds on sin2 2ϑ13 are compatible with

solar and atmospheric oscillations only if |Ue3|2 is small [228], i.e. for

|Ue3|2 ≤ 1

2

(
1 −

√
1 − (sin2 2ϑ13)max

)
. (13.119)

From the 90% CL exclusion curve of the CHOOZ experiment in Fig. 12.6 one can
obtain (sin2 2ϑ13)max � 0.18 for |∆m2

31| � 2 × 10−3 eV2, which implies |Ue3|2 �
5×10−2. A precise statistical analysis of the CHOOZ data, taking into account the
constraints on |∆m2

31| given by the Super-Kamiokande atmospheric neutrino data
(see section 11.2.3) yielded [448]

|Ue3|2 < 5 × 10−2 (99.73% CL) . (13.120)

The absence of a νµ → νe oscillation signal in the LBL accelerator experiment
K2K [47, 1078] (see section 12.3.2) confirms the CHOOZ and Palo Verde bounds
on |Ue3|2. In fact, the effective mixing angle for the νµ → νe channel in the K2K
experiment is, from eqn (13.16),

sin2 2ϑeff
µe = 4 |Uµ3|2 |Ue3|2 = sin2 ϑ23 sin2 2ϑ13 , (13.121)

where sin2 ϑ23 � 1/2 from the atmospheric neutrino data (see eqns 11.74 and
13.131 and Table 13.2 below). The effective mixing angle ϑeff

µe coincides with ϑµe in
Figs. 12.18 and 12.19, where we have also ∆m2 = ∆m2

31. These figures show that
the value of ϑeff

µe is severely bounded by K2K data for ∆m2
31 � 103 eV2. Assuming

sin2 ϑ23 = 1/2, we have sin2 2ϑeff
µe = sin2 2ϑ13/2 � 2 sin2 ϑ13 = 2|Ue3|2, for a small

ϑ13. Thus, we obtain, from the K2K bound in eqn (12.26), |Ue3|2 � 7× 10−2 (90%
CL) at ∆m2 = 2.8 × 10−3 eV2.

Also the analysis of Super-Kamiokande atmospheric neutrino data in a three-
neutrino mixing framework yield a bound on sin2 2ϑ13, since the measured electron
neutrino flux does not show any anomaly with respect to the expectations without
oscillations. The allowed Super-Kamiokande region in the sin2 2ϑ13-∆m

2
31 plane is

shown in Fig. 13.6. One can see that the Super-Kamiokande constraint on sin2 2ϑ13
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Fig. 13.6. Allowed Super-Kamiokande region in the plane of the oscillation param-
eters sin2 2ϑ = sin2 2ϑ13 and ∆m2 = ∆m2

31. Also shown are the exclusion curves
of the CHOOZ [100] and Palo Verde [255] experiments. Figure from Ref. [205].

is not as stringent as the CHOOZ and Palo Verde limits. However, the Super-
Kamiokande result is important in order to restrict the allowed range of ∆m2

31,
which is not constrained at all by CHOOZ and Palo Verde

Finally, also solar neutrino and KamLAND data constrain the value of |Ue3|.
The survival probability of solar νe’s depends on |Ue3| through eqn (13.115),
which takes into account the matter effects. The survival probability of the
reactor ν̄e’s observed in KamLAND, which propagate in vacuum, is given by
eqn (13.19) with α = e. Figure 13.7 shows the allowed region at 2σ in the
parameter space (∆m2

21, sin
2 ϑ12, sin

2 ϑ13) obtained in Ref. [451]. One can see
that the solar+KamLAND bound on |Ue3| = sin2 ϑ13 is comparable with the
atmospheric+CHOOZ bound in eqn (13.120).

13.3.2 Bilarge mixing

The bound on |Ue3|2 in eqn (13.120) implies that, in a first approximation, the data
of solar and atmospheric neutrino experiments can be analyzed assuming bilarge
mixing (see sections 6.6.2 and 13.1.4) with Ue3 = 0. The mixing matrix, given in
eqn (6.378), depends only on ϑ12 and ϑ23. In this case, the oscillations of solar and
atmospheric neutrinos are decoupled [228] and have two-neutrino expressions.
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Fig. 13.7. Three-neutrino analysis of solar and KamLAND data (both sepa-
rately and in combination) in the parameter space (δm2, sin2 ϑ12, sin

2 ϑ13), with
δm2 ≡ ∆m2

21 [451]. The contours represent projections of the region allowed at
2σ (∆χ2 = 4).

Solar and atmospheric neutrino data give information, respectively, on ϑ12 and
ϑ23. In fact, for atmospheric neutrinos there are no matter effects (from eqn (13.71),
ϑM

13 = ϑ13 = 0) and the oscillation probabilities are given by eqns (13.14) and
(13.15). Since Ue3 = 0, we have ϑeff

ee = ϑeff
eµ = ϑeff

eτ = 0 and ϑeff
µτ = ϑ23. Hence,

the atmospheric mixing angle coincides with ϑ23. On the other hand, the survival
probability of solar ν′es in eqn (13.115) reduces to the effective two-neutrino-like
survival probability due to the mixing in the 1-2 sector, which depends on ϑ12.

In this approximation one can call

ϑSOL = ϑ12 , ϑATM = ϑ23 , (13.122)

and write the mixing matrix as

U =

⎛⎝ cosϑSOL sinϑSOL 0
− sinϑSOL cosϑATM cosϑSOL cosϑATM sinϑATM

sinϑSOL sinϑATM − cosϑSOL sinϑATM cosϑATM

⎞⎠ . (13.123)

The massive neutrino composition of νe is

νe = cosϑSOL ν1 + sinϑSOL ν2 . (13.124)
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Solar electron neutrinos undergo transitions into the orthogonal state

νSOL = − sinϑSOL ν1 + cosϑSOL ν2

= cosϑATM νµ − sinϑATM ντ . (13.125)

This is a linear combination of νµ and ντ , whose relative amount is determined by
the atmospheric mixing angle ϑATM. Since atmospheric mixing is close to maximal,
in a first approximation one can assume ϑATM = π/4. In this approximation, the
mixing matrix is given by

U =

⎛⎝ cosϑSOL sinϑSOL 0

− sinϑSOL/
√

2 cosϑSOL/
√

2 1/
√

2

sinϑSOL/
√

2 − cosϑSOL/
√

2 1/
√

2

⎞⎠ . (13.126)

Solar νe’s undergo transitions into the state

νSOL =
1√
2

(νµ − ντ ) , (13.127)

which is an equal superposition of νµ and ντ . If one could detect separately the mu
and tau neutrinos in the solar neutrino flux on the Earth, in this approximation,
one would measure an equal amount of νµ’s and ντ ’s. Furthermore, since the SNO
charged-current to neutral-current ratio in eqn (10.54) is close to 1/3, the fluxes of
solar νe, νµ, and ντ on the Earth are approximately the same and equal to 1/3 of
the total flux.

As a final approximation, one can consider ϑSOL = π/6, which gives
tan2 ϑSOL � 0.33. This value is within the 2σ measured range in eqn (10.79).
In this approximation, the mixing matrix assumes the simple form

U =

⎛⎝
√

3/2 1/2 0

−1/2
√

2
√

3/2
√

2 1/
√

2

1/2
√

2 −
√

3/2
√

2 1/
√

2

⎞⎠ . (13.128)

Let us however emphasize that this expression for the mixing matrix is very approx-
imate. In a realistic calculation it is better to consider the value of the mixing
matrix obtained from the global analysis of oscillation data presented in the next
section 13.3.3.

13.3.3 Global analysis of oscillation data

In this subsection we review the results obtained with a global analysis of all the
oscillation data, with the exception of the LSND signal (see section 12.3.1), without
any assumption on the value of Ue3. In such a global analysis, the five mixing
parameters ∆m2

21, ∆m2
31, ϑ12, ϑ23, ϑ13 are considered as free parameters to be

determined by the fit of the data. Since the current experiments are not sensitive
to the CP-violating phase δ13, the mixing matrix used in practice is

U = R23R13R12 =

⎛⎝1 0 0
0 c23 s23
0 −s23 c23

⎞⎠⎛⎝ c13 0 s13
0 1 0

−s13 0 c13

⎞⎠⎛⎝ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠
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Fig. 13.8. Three-neutrino analysis of SK+K2K+CHOOZ data in the parameter
space (∆m2, sin2 ϑ23, sin

2 ϑ13), with ∆m2 ≡ ∆m2
31 [451].

Table 13.2. Best-fit values, 2σ, 3σ, and 4σ intervals (one degree of freedom) for
the three-neutrino oscillation parameters from global data [769].

Parameter Best fit 2σ 3σ 4σ

∆m2
21 [10−5 eV2] 8.1 7.5–8.7 7.2–9.1 7.0–9.4

∆m2
31 [10−3 eV2] 2.2 1.7–2.9 1.4–3.3 1.1–3.7

sin2 ϑ12 0.30 0.25–0.34 0.23–0.38 0.21–0.41

sin2 ϑ23 0.50 0.38–0.64 0.34–0.68 0.30–0.72

sin2 ϑ13 0.000 ≤ 0.028 ≤ 0.047 ≤ 0.068

=

⎛⎝ c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

⎞⎠ .

(13.129)

From the discussion in the previous sections, it is clear that ∆m2
21 and ϑ12 (R12)

are determined mainly by the solar and KamLAND data, ∆m2
31 and ϑ23 (R23) are

determined mainly by the atmospheric and K2K data, and ϑ13 (R13) is determined
mainly by CHOOZ data.
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Fig. 13.9. Projections of the allowed regions from the global oscillation data
at 90%, 95%, 99%, and 99.73% (3σ) CL for two degrees of freedom for various
parameter combinations [769]. Also shown is ∆χ2 as a function of the oscillation
parameters sin2 ϑ12, sin
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The global analysis of oscillation data presented in Ref. [451] yielded the values

∆m2
21 = 7.92 (1 ± 0.09) × 10−5 eV2 sin2 ϑ12 = 0.314

(
1+0.18
−0.15

)
, (13.130)

∆m2
31 = 2.4

(
1+0.21
−0.26

)
× 10−3 eV2 sin2 ϑ23 = 0.44

(
1+0.41
−0.22

)
, (13.131)

sin2 ϑ13 = 0.9+2.3
−0.9 × 10−2 , (13.132)

where the intervals represent 2σ uncertainties (95% CL). Figure 13.7 and 13.8 show,
respectively, the allowed regions in the parameter spaces (∆m2

21, sin
2 ϑ12, sin

2 ϑ13)
and (∆m2

31, sin
2 ϑ23, sin

2 ϑ13). Other authors [555, 769, 554] obtained similar
results. For example, the authors of Ref. [769] obtained the values of the mixing
parameters listed in Table 13.2 and the allowed regions in Fig. 13.9.

From the best-fit values of the mixing angles in eqns (13.130)–(13.132), it is
possible to infer the best-fit estimate of the absolute values of the elements of the
mixing matrix in eqn (13.129):

|U |bf �

⎛⎝ 0.82 0.56 0.09
0.31 − 0.43 0.51 − 0.59 0.75
0.37 − 0.47 0.59 − 0.66 0.66

⎞⎠ . (13.133)

The intervals in the µ, τ -2, 3 sector are due to the lack of any information on the
value of the phase δ13. Taking into account the 2σ uncertainties of the mixing angles
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Fig. 13.10. Values of neutrino masses as functions of the lightest mass m1 in
the normal scheme and m3 in the inverted scheme. Solid lines correspond to
the best-fit values of the squared-mass differences in Table 13.2. Dashed lines
enclose 3σ ranges.

in eqns (13.130)–(13.132), one can find the following intervals for the absolute values
of the elements of the mixing matrix (neglecting the small correlations among the
uncertainties of the mixing parameters):

|U |2σ �

⎛⎝0.78 − 0.86 0.51 − 0.61 0.00 − 0.18
0.19 − 0.57 0.39 − 0.73 0.61 − 0.80
0.20 − 0.57 0.40 − 0.74 0.59 − 0.79

⎞⎠ . (13.134)

One should note that the neutrino mixing matrix is very different from the quark
mixing matrix in eqn (4.2), which has large diagonal entries and small off-diagonal
entries structured in the hierarchical way described by the Wolfenstein parameteri-
zation in eqn (4.83). All the entries in the neutrino mixing matrix are large, except
for Ue3.

13.3.4 Absolute scale of neutrino masses

For the neutrino masses, although we do not know the absolute mass scale, we
have the information in eqns (13.130) and (13.131) on the squared-mass differ-
ences. Thus, it is possible to express the neutrino masses as functions of only one
unknown parameter representing the absolute mass scale. It is convenient to take
this parameter as the value of the lightest mass, which is m1 in the normal scheme
and m3 in the inverted scheme. In the normal scheme

m2
2 = m2

1 +∆m2
21 = m2

1 +∆m2
SOL , m2

3 = m2
1 +∆m2

31 = m2
1 +∆m2

ATM , (13.135)
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and in the inverted scheme

m2
1 = m2

3−∆m2
31 = m2

3 +∆m2
ATM , m2

2 = m2
1 +∆m2

21 = m2
3 +∆m2

ATM +∆m2
SOL .

(13.136)
Figure 13.10 shows the values of the three neutrino masses as functions of the
lightest mass in the two schemes. One can see that in both schemes there is
quasidegeneracy of the three masses when

m1 � m2 � m3 � mν (quasidegenerate) , (13.137)

with

mν �
√

∆m2
ATM � 5 × 10−2 eV . (13.138)

In this case, it is very difficult to distinguish the two schemes. On the other hand,
the two schemes have very different features if the lightest mass is much smaller
than

√
∆m2

ATM. In this case, in the normal scheme there is a hierarchy of masses:

m1 � m2 � m3 (normal hierarchy) . (13.139)

In the inverted scheme there is a so-called inverted hierarchy

m3 � m1 � m2 (inverted hierarchy) , (13.140)

in which m1 and m2 are quasidegenerate. In fact, in the inverted scheme m1 and
m2 are always quasidegenerate, because their separation is due to the small solar
squared-mass difference ∆m2

SOL.
Let us finally emphasize that, independently of the mass scheme, at least two

neutrinos are massive, with masses larger than about 8 × 10−3 eV. This is clearly
shown in Fig. 13.10.
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DIRECT MEASUREMENTS OF NEUTRINO MASS

I don’t see the logic of rejecting data just because they seem
incredible.
Fred Hoyle

In this chapter we present the main aspects of the methods used for direct
measurements of neutrino masses.

In the letter sent by Pauli on 4 December 1930 to the physics conference at
Tubingen, in which he proposed the existence of the neutrino, he mentioned that
the neutrino mass “should be of the same order of magnitude as the electron mass
and in any event not larger than 0.01 proton masses” (see Ref. [855]). In 1933 Fermi
[430, 432, 431] and Perrin [865] studied the effect of the neutrino mass in β-decays
and concluded that the existing data were compatible with a massless neutrino.
Further experiments showed that neutrinos could be massless and, in any case, the
neutrino mass is much smaller than the electron mass. In 1952 a tritium decay
experiment [717] yielded an upper limit of about 250 eV. After the formulation in
1957 of the two-component theory of the neutrino [711, 727, 919], stimulated by
the discovery of parity violation in weak interactions [1073], it was widely thought
that neutrinos are massless. This conviction led to the SM description of neutrinos
as massless particles.

As we have seen in chapters 10–13, the results of neutrino oscillation experiments
have recently proved that neutrinos are massive. Since these experiments give only
information on the neutrino squared-mass differences, we currently know that there
are at least two massive neutrinos, one with a mass larger than about

√
∆m2

21 �
9 × 10−3 eV and another with a mass larger than about

√
∆m2

31 � 5 × 10−2 eV,
as shown in Fig. 13.10. Further information about the absolute values of neutrino
masses must be investigated with other methods.

In section 14.1 we discuss the effect of neutrino mass in β-decays, including
the effects of neutrino mixing. We will see that the present upper bound for the
neutrino masses in the case of three-neutrino mixing is about 2 eV. Hence, neutrinos
are the lightest known massive particles, with a gap of about six orders of magnitude
from the next lightest particle, the electron, as illustrated by the mass spectrum in
Fig. 14.1.

In section 14.2 we discuss very briefly the effect of neutrino masses in pion
and tau decays. The resulting experimental constraints on the neutrino masses are
much less stringent than those obtained in β-decay experiments. However, they are
historically interesting and can be used to constrain the mixing of νµ and ντ with
heavy neutrinos beyond three-neutrino mixing.
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Fig. 14.1. Order of magnitude of the masses of leptons and quarks.

In section 14.3 we discuss neutrinoless double-β-decay, which is considered as
the best way to investigate the Majorana nature of neutrinos. Let us empha-
size the fundamental importance of determining the nature of neutrinos, which
plays a crucial role in the theory of neutrino masses (see chapter 6). In particu-
lar, there are two known natural explanations of the smallness of neutrino masses
with respect to those of the other elementary particles: the see-saw mechanism
discussed in section 6.4.6 and the mechanism of effective generation of a Majo-
rana mass term by physics beyond the SM discussed in section 6.2.7. In both cases
massive neutrinos are Majorana particles, leading to the possibility of observing
neutrinoless double-β-decay. In section 14.3 we will discuss in detail the contri-
bution of massive neutrinos to the neutrinoless double-β-decay process, taking
into account neutrino mixing in the case of three generations. Other important
aspects of neutrinoless double-β-decay (the calculation of nuclear matrix elements
and the inclusion of other mechanisms) are discussed in detail in the reviews in
Refs. [605, 377, 1018, 997, 426, 1036].

14.1 Beta decay

The most sensitive known method to measure the electron neutrino mass is by
observing the electron spectrum in nuclear β-decay

N (A,Z) → N (A,Z + 1) + e− + ν̄e , (14.1)

where A and Z are, respectively, the mass and atomic numbers of the parent
nucleus.

As we have seen in sections 6.1 and 6.2.1, the electron neutrino, in general, does
not have a definite mass, but is a mixture of massive neutrinos. However, following
the tradition, in this section we treat the electron neutrino as a mass eigenstate.
We will discuss the effects of neutrino mixing in nuclear β-decay in section 14.1.1.

The differential decay rate in allowed74 β-decays is given by

dΓ

dEe
=
G2

Fm
5
e

2 π3
cos2 θC |M|2 F (Z,Ee)Ee pe Eν pν , (14.2)

where θC is the Cabibbo angle, M is the nuclear matrix element, Ee (Eν) and pe

(pν) are the electron (neutrino) energy and momentum, and F (Z,Ee) is the Fermi

74 Allowed β-decays are characterized by the fact that the matrix element M in
eqn (14.2) is a constant, independent of the electron energy Ee.
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function which describes the electromagnetic interaction of the produced electron
with the final-state nucleus (taking into account also atomic corrections due to
the surrounding electrons). The two factors Ei pi in eqn (14.2), with i = e, ν,
come from the phase-space factor of the final state: d3pi = p2

i dpi dcos θi dφi =
piEi dEi dcos θi dφi, where θi and φi are the polar angular coordinates of �pi.

Since the final nucleus N (A,Z + 1) is much heavier than the final leptons, its
kinetic energy is negligible and the total energy of the leptons is given by the mass
difference of the initial and final nuclei. The neutrino energy is given by

Eν = Qβ − T , (14.3)

where T = Ee −me is the kinetic energy of the electron and Qβ is the so-called
Q-value of the process, which is the total energy of the leptons minus the electron
mass, given by

Qβ = Mi −Mf −me . (14.4)

Here Mi and Mf are, respectively, the masses of the initial and final nuclei. The Q-
value of the process is the maximal kinetic energy of the electron if the neutrino is
massless. On the other hand, if the electron neutrino has a mass mνe

, the maximal
kinetic energy of the electron is

Tmax = Qβ −mνe
. (14.5)

Since the neutrino momentum is given by

pν =
√
E2

ν −m2
νe

=

√
(Qβ − T )2 −m2

νe
, (14.6)

the differential decay rate in eqn (14.2) can be written, for T ≤ Tmax, as75

dΓ

dT
=
G2

Fm
5
e

2 π3
cos2 θC |M|2 F (Z,Ee)Ee pe (Qβ − T )

√
(Qβ − T )

2 −m2
νe
, (14.8)

where we used the equality dT = dEe.
It is important to note that the effect of neutrino mass in β-decay is due to

the kinematical relation in eqn (14.6), which is satisfied irrespective of the Dirac
or Majorana nature of neutrinos. Thus, the direct measurement of neutrino mass

75 For the measurement of a neutrino mass of the order of a few eV or smaller it is
necessary to take into account also the excited energy levels of the electrons in the final
atom (or molecule) through the differential decay rate

dΓ

dT
=
G2

Fm
5
e

2π3
cos2 θC |M|2 F (Z,Ee)Ee pe

X
i

Wi

“
Qi

β − T
” r“

Qi
β − T

”2

−m2
νe
.

(14.7)
The sum runs over all the possible electronic final states i with branching ratios Wi and
end-point energies Qi

β = Qβ−E
ex
i , where Eex

i are the electron excitation energies measured
from the ground state. In practice experimenters must take into account also the energy
dissipation of the emitted electron in the source (which is minimized choosing a source
as thin as possible) and in the measuring apparatus and effects due to the finite energy
resolution of the apparatus. In our discussion we neglect these complications.
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with β-decay experiments, as well as other kinematical methods, do not give any
information on the Dirac or Majorana origin of the neutrino mass.

If the electron neutrino mass mνe
is small, its effect on the electron spectrum is

maximal at the upper end of the spectrum, where T is close to Tmax and Qβ −T ∼
mνe

. This is the so-called end-point of the spectrum. The problem in measuring the
end-point of the electron spectrum is that very few events occur near the end-point.
We can estimate the relative number of events occurring in an interval of energy
∆T below the end-point as follows. Below the end-point we have

T � Qβ =⇒
{
Ee � Qβ +me

pe =
√
E2

e −m2
e �

√
Qβ (Qβ + 2me) .

(14.9)

Ignoring the neutrino mass and the Fermi function, we have

dΓ

dT

∣∣∣∣ T�Qβ

mνe=0

∝ (Qβ +me)
√
Qβ (Qβ + 2me) (Qβ − T )

2
, (14.10)

and ∫ Qβ

Qβ−∆T

dΓ

dT
dT ∝ (Qβ +me)

√
Qβ (Qβ + 2me) (∆T )3 . (14.11)

The total number of events is proportional to∫ Qβ

0

dΓ

dT
dT ∝

∫ Qβ

0

(T +me)
√
T (T + 2me) (Qβ − T )

2
dT , (14.12)

where we have neglected again the Fermi function and the neutrino mass. Since
we are interested in an order-of-magnitude estimate, we consider Qβ � me, which
leads to the approximation ∫ Qβ

0

dΓ

dT
dT ∝ Q5

β . (14.13)

Thus, the relative number of events occurring in an interval of energy ∆T below
the end-point is given by

n(∆T )

n
∝
(

∆T

Qβ

)3

. (14.14)

One can obtain the same result considering Qβ � me. From eqn (14.14) it is clear
that in order to maximize the fraction of decay events that occur near the end-point
of the spectrum, it is desirable to have the Q-value as small as possible.

The most stringent information on the electron neutrino mass has been obtained
with experiments measuring the end-point of the electron spectrum in the β-decay
of tritium (see Ref. [622]),

3H → 3He + e− + ν̄e , (14.15)

which has Qβ = 18.574 keV. The main reason why tritium β-decay experiments are
the most sensitive to the electron neutrino mass is that tritium β-decay has one
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of the smallest Q-values among all known β-decays. Moreover, tritium β-decay is
a superallowed transition between mirror nuclei76 with a relatively short half-life
(about 12.3 years), which implies an acceptable number of observed events during
the experiment lifetime. Another advantage of tritium β-decay is that the atomic
structure is less complicated than those of heavier atoms, leading to a more accurate
calculation of atomic effects.

For the measurement of the electron neutrino mass it is convenient to define the
Kurie function

K(T ) ≡
√

dΓ/dT
G2

F m5
e

2 π3 cos2 θC |M|2 F (Z,Ee)Ee pe

=

[
(Qβ − T )

√
(Qβ − T )

2 −m2
νe

]1/2

. (14.16)

If the electron neutrino mass is zero, the Kurie function is a linear function of the
kinetic energy T of the electron:

K(T )|mνe=0 = Qβ − T . (14.17)

Therefore, a nonzero electron neutrino mass implies a deviation of the Kurie func-
tion from the linear function in eqn (14.17). This is illustrated in Fig. 14.2, where the
diagonal dotted line represents the linear function in eqn (14.17) and the dashed line
is the Kurie function for mνe

= 5 eV (the solid line illustrates the case of neutrino
mixing discussed in subsection 14.1.1). One can see that if the electron neutrino is
massive, there is an early falloff of the electron spectrum near the end-point, which
is shifted from Tmax = Qβ to Tmax = Qβ −mνe

. In principle, one could measure the
neutrino mass by measuring this shift of the end-point of the electron spectrum,
but in practice a precise measurement of the end-point is very difficult because the
frequency of events goes to zero near the end point. Therefore, in practice, infor-
mation on the value of the neutrino mass is obtained by looking for a distortion of
the Kurie plot with respect to the linear function near the end-point. Using this
technique, the Mainz [699] and Troitzk [751] tritium experiments obtained the most
stringent upper bounds on the electron neutrino mass:

mνe
< 2.3 eV (95%CL) [699] , (14.18)

mνe
< 2.5 eV (95%CL) [751] . (14.19)

In these experiments the electron energy is measured with spectrometers using
appropriate configurations of magnetic and electric fields that allow a high energy
resolution. The Mainz and Troitzk collaborations have recently merged in a joint
collaboration which is working at an improved experiment, called KATRIN [264],
which will reach a sensitivity of about 0.2 eV.

76 Superallowed transitions are allowed transitions between nuclei belonging to the same
isospin multiplet. Mirror nuclei are pairs of nuclei which have equal numbers of protons
and neutrons plus an extra proton in one case and an extra neutron in the other. In this
case, the overlap of the initial and final nuclear wave functions is close to one, leading to
a large nuclear matrix element.
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Fig. 14.2. Kurie plot for tritium β-decay. Dotted line: the linear Kurie function
in eqn (14.17) for mνe

= 0. Dashed line: Kurie function in eqn (14.16) for
mνe

= 5 eV. Solid line: Kurie function in eqn (14.24) for two-neutrino mixing
with m1 = 5 eV, m2 = 15 eV, and ϑ = π/4.

An alternative method is to use cryogenic microcalorimeters, which measure
the total energy released in β-decays. The main advantage of this method is the
irrelevance of the atomic and molecular final state effects, which are difficult to
calculate and are model-dependent. An experiment in Genoa using 187Re, which
has the smallest known Q-value (Qβ = 2.47 eV [501]), found

mνe
< 26 eV (95%CL) [509] . (14.20)

At the moment this limit is less restrictive than that obtained in tritium
experiments, but considerable improvements are expected in the future.

14.1.1 Neutrino mixing

In the case of neutrino mixing, the electron neutrino field νe is a superposition of
massive neutrino fields νk with weights given by the elements Uek of the neutrino
mixing matrix. The tritium β-decay in eqn (14.15) is, in fact, an incoherent sum of
the separate decay modes

3H → 3He + e− + ν̄k . (14.21)

The sum is incoherent because of the different final states. This means that the
total decay rate is given by the sum of the decay rates relative to the processes in
eqn (14.21). The probability of the decay mode in which the massive antineutrino
ν̄k is produced is proportional to∣∣∣〈e−, ν̄k|jρ

W,L
†|0〉 〈3He|jW,Q

ρ |3H〉
∣∣∣2 = |Uek|2

∣∣ueγ
µ
(
1 − γ5

)
vνk

〈3He|jW,Q
ρ |3H〉

∣∣2 ,
(14.22)

where jW,Q
ρ is the hadronic weak charged current in eqn (3.176). The leptonic

charged current jρ
W,L has the same expression for Dirac and Majorana neutrinos
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(see eqns (6.12), (6.14), (6.184), and (6.187)):

jρ
W,L = 2

∑
α=e,µ,τ

νeL γ
ρ �αL = 2

∑
α=e,µ,τ

3∑
k=1

νkL U
∗
αk γ

ρ �αL . (14.23)

The mixing matrix U is different in the Dirac and Majorana cases, because in
the Majorana case it contains two additional phases, as explained in section 6.3.1.
However, the probability in eqn (14.22) depends only on the squared modulus
|Uek|2, which is the same in the Dirac and Majorana cases. Therefore, also in the
case of neutrino mixing the Dirac and Majorana character of neutrinos cannot be
distinguished in tritium or other nuclear β-decays.

The Kurie function in tritium β-decay experiments is given by [958, 790, 687]

K(T ) =

[
(Qβ − T )

3∑
k=1

|Uek|2
√

(Qβ − T )2 −m2
k

]1/2

. (14.24)

This is a function of five parameters, the three neutrino masses and two mixing
parameters (the unitarity of the mixing matrix implies that

∑3
k=1 |Uek|2 = 1). The

main characteristics of the distortion of the Kurie function with respect to the linear
function in eqn (14.17) are:

(a) A shift of the end-point of the spectrum from T = Q to T = Q−mlht, calling
νlht the lightest massive neutrino component of νe (if Ue3 = 0, νlht = ν1 in both
the normal and inverted schemes; otherwise, νlht = ν1 in the normal scheme and
νlht = ν3 in the inverted scheme).

(b) Kinks at the electron kinetic energies Tk = Qβ − mk, for νk �= νlht, with
corresponding strength determined by the value of |Uek|2.
This behavior of the Kurie function is illustrated by the solid line in Fig. 14.2,

which describes the case of two-neutrino mixing (Ue3 = 0) with m1 = 5 eV, m2 =
15 eV, and ϑ = π/4 (|Ue1|2 = |Ue2|2 = 1/2).

If, in the future, effects of the neutrino masses are discovered in tritium or
other β-decay experiments, a precise analysis of the data may reveal kinks of the
Kurie function due to mixing of the electron neutrino with more than one massive
neutrino77. In this case, the data will have to be analyzed using eqn (14.24).

However, so far tritium experiments did not find any effect of the neutrino
masses and their data have been analyzed in terms of the one-generation Kurie
function in eqn (14.16), leading to the upper bounds in eqns (14.18) and (14.19).
How can this result be interpreted in the framework of three-neutrino mixing, in
which eqn (14.24) holds? The exact expression of K(T ) in eqn (14.24) cannot be
reduced to the one-generation Kurie function in eqn (14.16). In order to achieve such
a reduction in an approximate way, one must note that, if an experiment does not

77 In eqn (14.24) we considered the case of three-neutrino mixing, indicated by oscillation
data (see chapter 13). However, tritium decay experiments (as well as other β-decay
experiments) have the possibility of revealing a possible mixing of the electron neutrinos
with more than three massive neutrinos, especially if the additional massive neutrinos are
heavier than a few eV. In that case, the sum in eqn (14.24) must be extended to k > 3.
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find any effect of the neutrino masses, its resolution for the measurement of Qβ −T
is much larger than the values of the neutrino masses. Considering mk � Qβ − T ,
we have

K2 = (Q− T )2
∑

k

|Uek|2
√

1 − m2
k

(Q− T )2
� (Q− T )2

∑
k

|Uek|2
[
1 − 1

2

m2
k

(Q− T )2

]

= (Q− T )
2

[
1 − 1

2

m2
β

(Q− T )
2

]
� (Q− T )

2

√
1 −

m2
β

(Q− T )
2

= (Q− T )
√

(Q− T )
2 −m2

β , (14.25)

with mβ given by

m2
β =

∑
k

|Uek|2m2
k . (14.26)

The approximate expression of K(T ) in terms of mβ is the same as the expression
in eqn (14.16) of the one-generation Kurie function in terms of mνe

. Therefore, mβ

can be considered as the effective electron neutrino mass in β-decay. In the case
of three-neutrino mixing, the upper bounds in eqns (14.18) and (14.19) must be
interpreted as bounds on mβ :

mβ < 2.3 eV (95%CL) . (14.27)

If future experiments do not find any effect of neutrino masses, they will provide
more stringent bounds on the value of mβ .

In the standard parameterization of the mixing matrix in eqn (6.191), we have

m2
β = c212 c

2
13m

2
1 + s212 c

2
13m

2
2 + s213m

2
3 . (14.28)

Although neutrino oscillation experiments do not give information on the absolute
values of neutrino masses, they give information on the squared-mass differences
∆m2

21 and ∆m2
31 and on the mixing angles ϑ12 and ϑ13 (see Table 13.2). The values

of the neutrino masses are determined according to eqns (13.135) and (13.136) in
the normal and inverted schemes, respectively, as functions of the lightest mass (m1

in the normal scheme and m3 in the inverted scheme; see section 13). Therefore,
also mβ can be considered as a function of the lightest mass, as shown in Fig. 14.3.
The middle solid lines correspond to the best fit and the extreme solid lines delimit
the 3σ allowed range. We have also shown with dashed lines the best-fit and 3σ
ranges of the neutrino masses (same as in Fig. 13.10), which help us to understand
their contribution to mβ .

From Fig. 14.3 one can see that, in the case of a normal mass hierarchy (normal
scheme with m1 � m2 � m3), the main contribution to mβ is due to m2 or m3

or both, because the upper limit for mβ is larger than the upper limit for m2. The
best-fit value of mβ is close to the lower limit, because the largest uncertainty is
due to sin2 ϑ13, which weights the contribution of the heaviest neutrino ν3. Since
the best-fit value of sin2 ϑ13 is zero and coincides with its lower limit, the difference



492 DIRECT MEASUREMENTS OF NEUTRINO MASS

m3

m2

m1

NORMAL SCHEME

KATRIN

←

↓ Mainz & Troitsk ↓

m1 [eV ]

m
β

[e
V

]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

m1,m2

m3

INVERTED SCHEME

KATRIN

←

↓ Mainz & Troitsk ↓

m3 [eV ]
m
β

[e
V

]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

Fig. 14.3. Effective neutrino mass mβ in tritium β-decay experiments as a func-
tion of the lightest mass (m1 in the normal scheme and m3 in the inverted
scheme; see Fig. 13.1). Middle solid lines correspond to the best-fit values in
Table 13.2. Extreme solid lines enclose 3σ ranges. Dashed lines show the best–
fit values and 3σ ranges of individual masses. In the inverted scheme, the best-fit
values and 3σ ranges of m1 and m2 are practically the same and coincide with
the best-fit value and 3σ range of mβ .

between the best-fit value of mβ and its lower limit is only due to the uncertainty
of sin2 ϑ12m

2
2, which is small.

In the case of an inverted mass hierarchy (inverted scheme with m3 � m1 �
m2), mβ has practically the same value as m1 and m2.

In the case of a quasidegenerate spectrum, mβ coincides with the approximately
equal value of the three neutrino masses in both the normal and inverted schemes.
In fact, in this case we have, from eqn (13.137),

m2
β � m2

ν

3∑
k=1

|Uek|2 = m2
ν , (14.29)

and the uncertainties of the neutrino oscillation parameters are irrelevant.
Figure 14.3 shows that the Mainz and Troitsk experiments (eqns (14.18) and

(14.19)) and the near-future KATRIN experiment [264] give information on the
absolute values of neutrino masses in the quasidegenerate region in both normal and
inverted schemes. From the Mainz upper bound in eqn (14.18), for the individual
neutrino masses we obtain

mk < 2.3 eV (95%CL) , (14.30)

with k = 1, 2, 3.
One can note from Fig. 14.3 that the allowed ranges of mβ in the normal and

inverted schemes in the case of a mass hierarchy are quite different and nonoverlap-
ping: the lower limit for mβ in the inverted scheme is about 4 × 10−2 eV, whereas
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the upper limit for mβ in the normal scheme is about 1.3×10−2 eV. If future exper-
iments find an upper bound for mβ which is smaller than about 4 × 10−2 eV, the
inverted scheme will be excluded, leaving the normal scheme as the only possibility.

Figure 14.3 shows also that β-decay experiments will not have to improve indef-
initely for finding the effects of neutrino masses: the ultimate sensitivity is set
at about 4 × 10−3 eV, which is the lower bound for mβ in the case of a normal
mass hierarchy. Of course, if some β-decay experiment were to reveal the effects
of neutrino masses, a more complicated analysis using the expression of K(T ) in
eqn (14.24) will be needed. In that case, it may be possible to distinguish between
the normal and inverted schemes even if both are allowed (i.e. mβ � 4 × 10−2 eV).

Let us finally mention that β-decay measurements of various nuclei [937, 609,
155, 390, 502] allowed the derivation of constraints on the possible mixing of the
electron neutrino with heavy neutrinos, beyond the three-generation light neutrinos.

14.2 Pion and tau decays

Accurate measurements of the kinematics in the decay of charged pions can give
information on the neutrino masses. Let us consider the decay

π+ → µ+ + νµ , (14.31)

which has been used in the most sensitive experiment performed at PSI [113].
Since the π+ decay has a two-body final state, the mass of the neutrino can be
determined by energy–momentum conservation if the momenta of the pion and
muon are measured with sufficient accuracy. In the case of neutrino mixing, the
muon neutrino is a superposition of different massive neutrinos. A measurement of
the neutrino mass forces the superposition to collapse on the massive neutrino whose
mass has been measured. Therefore, the decay rate must have peaks corresponding
to the values of the neutrino masses, which are given by

m2
k = m2

π +m2
µ − 2mπ

√
m2

µ + |�pµ|2 (k = 1, 2, 3) , (14.32)

for pions decaying at rest.
The value of the muon momentum measured in the PSI experiment [113] is

|�pµ| = 29.792 00± 0.000 11 MeV , (14.33)

leading to
mk < 0.17 MeV (90% CL) , (14.34)

for k = 1, 2, 3.
Also τ -decays have been used for the measurement of neutrino masses. The

decays

τ− → 2 π− + π+ + ντ , τ− → 3 π− + 2 π+ + ντ (+π0) (14.35)

have been studied in the ALEPH experiment [161], with the result

mk < 18.2 MeV (95% CL) , (14.36)

for k = 1, 2, 3.
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Fig. 14.5. Schematic illustration of
the energy level structure of the
2β−-decay of 76Ge into 76Se.

The upper bounds on the neutrino masses obtained in pion and tau decay exper-
iments are much less stringent than those obtained in tritium decay experiments
(eqn (14.30)). Since it is unlikely that in the future the measurements of neutrino
masses with pion and tau decays experiments may improve so much to reach a preci-
sion at the eV level, comparable with β-decay experiments, their interest lies mainly
in the possibility of constraining the admixture of the muon and tau neutrinos with
heavy neutrinos beyond three-neutrino mixing [114].

14.3 Neutrinoless double-beta decay

Neutrinoless double-β-decay experiments are considered as the most promising
way to find if neutrinos are Majorana particles. In order to introduce neutrino-
less double-β-decay, let us first consider the so-called two-neutrino double-β-decay
processes (2β2ν) of the types

N (A,Z) → N (A,Z + 2) + 2 e− + 2 ν̄e (2β−2ν) , (14.37)

N (A,Z) → N (A,Z − 2) + 2 e+ + 2 νe (2β+
2ν) , (14.38)

which were first suggested by M. Goeppert-Mayer in 1935 [546]. A 2β−2ν (2β+
2ν)

process consists of the simultaneous β− (β+) decay of two neutrons (protons) in the
same nucleus. The 2β2ν processes are generated at second-order in the perturbative
expansion of weak interactions in the SM. The tree-level quark diagram of 2β−2ν

decays is shown in Fig. 14.4. Figure 14.5 shows, as an example, the nuclear level
structure of the 2β−-decay 76Ge → 76Se.

The neutrinoless double-β-decay processes (2β0ν) of the types

N (A,Z) → N (A,Z + 2) + 2 e− (2β−0ν) , (14.39)

N (A,Z) → N (A,Z − 2) + 2 e+ (2β+
0ν) , (14.40)

which have been proposed by W.H. Furry in 1939 [485], are forbidden in the SM.
As explained in subsection 14.3.1, 2β0ν-decays are possible if neutrinos are massive
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Fig. 14.6. Q-values of the 2β−-decay
N (A,Z) → N (A,Z + 2)
(Q2β−) and of the β−-decay
N (A,Z) → N (A,Z + 1) (Qβ−).
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Fig. 14.7. Q-values of the 2β+ (Q2β+),
ECβ+ (QECβ+) and 2EC (Q2EC)
decays N (A,Z) → N (A,Z − 2) and
of the β+ (Qβ+) and EC (QEC)
decays N (A,Z) → N (A,Z − 1).

Majorana particles. In this case, a nucleus which can decay through a 2β2ν process
can also decay through a 2β0ν process, albeit with a different lifetime.

Since the 2β2ν-decays have a four-body leptonic final state, the sum of the
kinetic energies of the two decay electrons have a continuous spectrum from zero to
the Q-value of the decay process (the recoil energy of the final nucleus is negligible),
which is given by

Q2β = Mi −Mf − 2me , (14.41)

where Mi and Mf are, respectively, the masses of the initial and final nuclei (i.e. the
energy levels of their ground states; if the transition occurs into an excited energy
level of the final nucleus, Mf must be replaced with the appropriate energy). On
the other hand, in the 2β0ν-decays the sum of the kinetic energies of the two decay
electrons is equal to the Q-value.

A nucleus N (A,Z) can decay through a 2β∓ process if its ground state has
an energy which is larger than the ground-state energy of the nucleus N (A,Z±2)
plus twice the electron mass. Moreover, if a nucleus can decay through both the
β and 2β processes, in practice the 2β-decay process is not observable, because its
β-decay lifetime is much shorter than its 2β-decay lifetime. Therefore, in practice
the 2β-decay of a nucleus is observable only if its β-decay is energetically forbid-
den or strongly suppressed because of a large change of spin. The β−-decay of a
nucleus N (A,Z) is energetically forbidden if its ground-state energy is lower than
the ground-state energy of the nucleus N (A,Z+1) plus the electron mass (Qβ− < 0
in Fig. 14.6). Typically, in 2β−-decays the energy levels of the three nuclei N (A,Z),
N (A,Z+1), and N (A,Z+2) are of the type depicted in Fig. 14.5, where the specific
case of the 76Ge, 76As, and 76Se nuclei is considered.

The 35 naturally occurring isotopes which can decay through the 2β− process,
with forbidden or suppressed β−-decay, are listed in Table 14.1. All of the initial
and final nuclei in the 2β− process listed in Table 14.1 are even-even, i.e. they
have an even number of protons and neutrons. Their binding energy is larger than
that of the intermediate odd-odd nuclei because of the pairing force acting between
identical nucleons. For the same reason, all of the initial and final nuclei in the
2β− process listed in Table 14.1 have a 0+ ground state. Therefore, all ground-
state to ground-state transitions are 0+ → 0+. However, ground-state transitions
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Table 14.1. 2β−-decays of natural isotopes, with their Q-value and experimental
measurements of the half-life of the 2ν and 0ν decay modes. The values are
taken from Ref. [1024]. The percentage in parentheses is the confidence level.
Results obtained in geochemical and radiochemical experiments are indicated,
respectively, with (G) and (R).

2β−-decay Q2β [keV] T 2ν
1/2 [y] T 0ν

1/2 [y]

46Ca → 46Ti 990.4 ± 2.4 > 1.0 × 1017 (90%)
48Ca → 48Tia 4272 ± 4 4.2+3.3

−1.3 × 1019 > 1.5 × 1021 (90%)
70Zn → 70Ge 1000.9± 3.4 > 4.8 × 1014

76Ge → 76Se 2039.006± 0.050 (1.8 ± 0.1) × 1021 > 1.9 × 1025 (90%)
80Se → 80Kr 133.9 ± 3.7
82Se → 82Kr 2995.1± 2.0 (8.3 ± 1.2) × 1019 > 2.7 × 1022 (68%)
86Kr → 86Sr 1255.6± 2.4
94Zr → 94Mo 1144.1± 2.0 > 1.1 × 1017 (90%) > 1.9 × 1019 (90%)
96Zr → 96Moa 3350.4± 2.9 2.1+0.8

−0.4 × 1019 > 1.0 × 1021 (90%)
98Mo → 98Ru 112 ± 6 > 1.0 × 1014

100Mo → 100Ru 3034 ± 6 6.8+0.8
−0.9 × 1018 > 5.5 × 1022 (90%)

104Ru → 104Pd 1300 ± 4
110Pd → 110Cd 2000 ± 11 > 6.0 × 1016 > 6.0 × 1016

114Cd → 114Sn 536.8 ± 3.3 > 9.2 × 1016 (99%) > 2.0 × 1020 (90%)
116Cd → 116Sn 2805.0± 3.8 2.6+0.7

−0.4 × 1019 > 7.0 × 1022 (90%)
122Sn → 122Te 366.2 ± 2.8 > 5.8 × 1013

124Sn → 124Te 2287.0± 1.5 > 1.0 × 1017 > 2.4 × 1017 (95%)
128Te → 128Xe 867.2 ± 1.0 (2.2 ± 0.3) × 1024 (G) > 8.6 × 1022 (90%)
130Te → 130Xe 2528.8± 1.3 (7.9 ± 1.0) × 1020 (G) > 1.4 × 1023 (90%)
134Xe → 134Ba 830.1 ± 3.0 > 1.1 × 1016 > 8.2 × 1019 (68%)
136Xe → 136Ba 2468 ± 7 > 8.1 × 1020 (90%) > 4.4 × 1023 (90%)
142Ce → 142Nd 1416.9± 2.1 > 1.6 × 1017 (90%) > 1.5 × 1019 (68%)
146Nd → 146Sm 70.2 ± 2.9
148Nd → 148Sm 1928.8± 1.9 > 3.0 × 1018 (90%) > 3.0 × 1018 (90%)
150Nd → 150Sm 3367.5± 2.2 (6.8 ± 0.8) × 1018 > 1.2 × 1021 (90%)
154Sm → 154Gd 1251.0± 1.3 > 2.3 × 1018 (68%) > 2.3 × 1018 (68%)
160Gd → 160Dy 1729.7± 1.3 > 1.9 × 1019 (90%) > 1.3 × 1021 (90%)
170Er → 170Yb 653.6 ± 1.7 > 3.2 × 1017 (68%) > 3.2 × 1017 (68%)
176Yb → 176Hf 1086.7± 1.9 > 1.6 × 1017 (68%) > 1.6 × 1017 (68%)
186W → 186Os 488.0 ± 1.7 > 5.9 × 1017 (90%) > 2.7 × 1020 (90%)
192Os → 192Pt 413.5 ± 3.0 > 9.8 × 1012

198Pt → 198Hg 1047 ± 3 > 3.2 × 1014

204Hg → 204Pb 416.3 ± 1.5
232Th → 232U 842.2 ± 2.5
238U → 238Pu 1145.0± 1.3 (2.0 ± 0.6) × 1021 (R)

a β−-decay energetically allowed but enormously suppressed.
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to an excited state of the final nucleus may be energetically allowed, as in the case
of the 76Ge → 76Se 2β−-decay in Fig. 14.5, in which there is an accessible 2+

excited state of 76Se. Since generally 1+ states and states with negative parity have
large excitation energies, in practice the only relevant ground-state to excited-state
transitions are 0+ → 2+ for all the 2β−-decays in Table 14.1.

There are only six naturally occurring isotopes which can decay through the
2β+ process (see Ref. [605]). These isotopes have small Q-values and lifetimes
which are much longer than the lifetimes of the 2β− in Table 14.1. The reason for
the rarity of 2β+-decaying isotopes and their small Q-values can be understood
with the help of Fig. 14.7, which shows that the decay N (A,Z) → N (A,Z − 1)
can occur either through the β+ process N (A,Z) → N (A,Z − 1) + e+ + νe or
through the electron-capture process e− + N (A,Z) → N (A,Z − 1) + νe. Since
QEC = Qβ+ +2me, the electron-capture process can occur even if the β+ process is
energetically forbidden (Qβ+ < 0). Thus, in order have an energetically forbidden
N (A,Z) → N (A,Z − 1) transitions, the ground-state energy of N (A,Z) must be
smaller than the ground-state energy of the nucleus N (A,Z−1) minus the electron
mass (QEC < 0 in Fig. 14.7). Considering as a reference energy the ground-state
energy of the intermediate nucleus (N (A,Z + 1) in 2β−-decays and N (A,Z − 1) in
2β+-decays), the ground-state energy of the initial nucleus in a 2β+-decay must be
at least 2me lower than in the case of a 2β−-decay. This implies that 2β+-decaying
isotopes are more rare than 2β−-decaying isotopes. Moreover, for the same energy
difference between the ground states of the intermediate and final nuclei, the energy
difference between the ground states of the initial and final nucleus in a 2β+-decay
is at least 2me lower than in the case of a 2β−-decay, leading to a correspondingly
smaller Q-value. For these reasons, 2β+-decay has been less studied than 2β−-decay
and in the following we will consider only 2β−-decays. In any case, the neutrino
properties of 2β+-decays are the same as those of 2β−-decays. Let us only mention
that, as shown in Fig. 14.7, N (A,Z) → N (A,Z − 2) transitions can occur not
only through 2β+ processes, but also through the ECβ+

2ν process e− + N (A,Z) →
N (A,Z − 2) + e+ + 2 νe, the 2EC2ν process 2 e− +N (A,Z) → N (A,Z − 2) + 2 νe,
and their neutrinoless analogs.

There are three experimental methods for the observation of 2β-decay (see
Ref. [605] for more details): geochemical, radiochemical and direct. In the geo-
chemical method the 2β-decay half-life is measured by determining the abundance
of the final nucleus in an old ore sample containing the initial nucleus. With this
method the accumulation of the decay products over a very long time can be used
to measure very long half-lives. In the radiochemical method a well-prepared arti-
ficial sample of the parent nucleus is used and the abundance of the final nucleus
is measured after some years. The drawback of the geochemical and radiochemical
methods is that the 2ν and 0ν decay modes cannot be distinguished. Hence, they
are not interesting for our discussion on the search for 2β0ν-decay. On the other
hand, in direct experiments 2β-decay is measured in real time by measuring the
energies of the decay electrons or their sum. The 2ν and 0ν decay modes are dis-
tinguished by the different distributions of the sum of the kinetic energies of the
decay electrons: a continuous spectrum in the case of 2β2ν-decay and a line at the
Q-value in the case of 2β0ν-decay.
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Of the 35 2β− processes listed in Table 14.1, 28 processes have been studied
experimentally in direct experiments and seven 2β−2ν processes have been observed
for the nuclei 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, and 150Nd. Although the main
experimental effort is directed towards the discovery of 2β−0ν , so far no experiment
observed an unquestionable signal78. The lower bound on a 2β−0ν half-life which is
most sensitive to the Majorana neutrino mass is that obtained in the Heidelberg–
Moscow 76Ge experiment [680]:

T 0ν
1/2(

76Ge) > 1.9 × 1025 y (90% CL) . (14.42)

The IGEX 76Ge experiment [3] obtained the comparable limit T 0ν
1/2(

76Ge) > 1.57×
1025 y (90% CL).

For the future, many new 2β0ν experiments are planned and under preparation
(see Refs. [405, 4]), since the quest for the Majorana nature of neutrinos is of
fundamental importance.

14.3.1 Effective Majorana mass

In neutrinoless double-β-decay the conservation of the total lepton number is
violated by two units:

∆L = ±2 (2β∓0ν) . (14.43)

Since in the SM the total lepton number is conserved (see section 3.5), the 2β0ν-
decay is forbidden in the SM. Figure 14.8 helps us to understand what is missing
in the SM in order to make 2β−0ν decay possible. Since no antineutrino is emitted,
the two antineutrino lines in the 2β−2ν tree-level quark diagram in Fig. 14.4 should
be joined as indicated in Fig. 14.8 in order to form a virtual neutrino line which
propagates between the two leptonic weak-interaction vertices. In the SM this is
not possible for the two reasons illustrated in Fig. 14.8:

78 There is a claim of a measurement of the 2β−
0ν of 76Ge with T 0ν

1/2 = 1.19+1.00
−0.17 × 1025 y

[679, 681]. However, this measurement is rather controversial [433, 2, 156].
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The particle–antiparticle mismatch. A ν̄e emitted in the upper leptonic ver-
tex cannot be absorbed in the lower leptonic vertex, which is capable only of
absorbing a νe.

The helicity mismatch. The helicity of the neutral lepton emitted in the upper
leptonic vertex is positive and the lower leptonic vertex can absorb only a neutral
lepton with negative helicity.

Therefore, there are two necessary conditions for the occurrence of 2β0ν-decay
processes (for simplicity, for the moment we do not consider neutrino mixing, which
will be taken into account later):

Particle–antiparticle matching: ν̄e = νe. The electron neutrino must be a
Majorana particle. In this case, the total lepton number is not conserved (see
section 6.2.4).

Helicity matching: mνe
�= 0. In this case, the upper leptonic vertex can emit

a neutrino with negative helicity with relative amplitude mνe
/Eνe

(see
eqn (6.106)), which is absorbed by the lower leptonic vertex with relative
amplitude equal to unity.

These two conditions are illustrated in Fig. 14.9. It is clear that, if these two
conditions are satisfied, i.e. if the electron neutrino is a massive Majorana particle,
the amplitude of a 2β0ν-decay process is proportional to the Majorana mass mνe

of the electron neutrino (Fig. 14.10).
Let us now consider neutrino mixing with the SM weak leptonic current in

eqn (14.23). Since, in this case, the electron neutrino field is a superposition of Majo-
rana massive neutrino fields, the massive Majorana neutrinos propagate between
the two leptonic weak interaction vertices, as illustrated in Fig. 14.11. For the prop-
agation of the massive Majorana neutrino νk, each leptonic weak interaction vertex
in Fig. 14.11 is described by eL γ

ρ Uek νkL, leading to a factor U2
ek in the amplitude

of the process. In order to satisfy the helicity matching condition, there is also
a factor mk. Summing over the contributions of the three massive neutrinos, we



500 DIRECT MEASUREMENTS OF NEUTRINO MASS

obtain the effective Majorana mass in 2β0ν-decay

m2β =

3∑
k=1

U2
ek mk . (14.44)

The decay amplitude is proportional to m2β . In fact, the propagator describing the
internal neutrino line in Fig. 14.11 is given by

G(x1 − x2) = 〈0|T
[
νeL(x1)ν

T
eL(x2)

]
|0〉

=
1 − γ5

2

3∑
k=1

U2
ek 〈0|T

[
νk(x1)ν

T
k (x2)

]
|0〉

(
1 − γ5

2

)T

= − 1 − γ5

2

3∑
k=1

U2
ek 〈0|T[νk(x1)νk(x2)] |0〉 C

1 − (γ5)T

2

= − i

3∑
k=1

U2
ek

∫
d4p

(2π)4
mk

p2 −m2
k

e−ip · (x1−x2)
1 − γ5

2
C , (14.45)

where we have used the property79 νT
k = −νk C, the property of C in eqn (2.347),

the expression of the fermionic propagator in eqn (2.250), and the property(
1 − γ5

)
/p
(
1 − γ5

)
= 0. The squared neutrino mass in the denominator of the prop-

agator is negligible in comparison with the average neutrino energy and momentum,
〈p0〉 ∼ 〈|�p|〉 ∼ 1/R where R is the nuclear radius, which is approximated by the
empirical formula R = 1.2A1/3 fm. For A ∼ 100, we have 〈p0〉 ∼ 〈|�p|〉 ∼ 35 MeV,
which is much larger than the three light neutrino masses80 (see eqn (14.30)). Hence,
the neutrino propagator can be approximated by

G(x1 − x2) = −im2β

∫
d4p

(2π)4
e−ip · (x1−x2)

p2 −m2
k

1 − γ5

2
C , (14.46)

which is proportional to the effective Majorana mass in eqn (14.44).
Note that the value of the effective Majorana mass m2β given by eqn (14.44)

depends not only on the values of the Majorana neutrino masses, but also on
the elements of the mixing matrix which connect the electron neutrino with the
massive neutrinos (the first row of the mixing matrix). Moreover, each element,
which is in general a complex number, appears in the sum as squared, leading
to possible cancellations among the different mass contributions. In fact, in the
standard parameterization in eqns (6.189), (6.191), and (6.192), we have, with
λ1 = 0,

m2β = c212 c
2
13m1 + e2iλ2 s212 c

2
13m2 + e2i(λ3−δ13) s213m3

79 From the Majorana condition νk = νC
k = C νk

T , since CT = −C (eqn (2.346)), we
obtain νT

k = νk CT = −νk C.
80 We do not consider here the possibility of mixing of the electron neutrino with heavy

massive neutrinos. In that case, if the heavy neutrino mass is of the order of 1/R, the
exact expression for the propagator in eqn (14.45) must be used. If the heavy neutrino
mass is much larger, the squared mass in the denominator suppresses the contribution of
the heavy neutrino.
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= |Ue1|2m1 + eiα2 |Ue2|2m2 + eiα3 |Ue3|2m3 , (14.47)

with the convenient definitions

α2 ≡ 2λ2 , α3 ≡ 2 (λ3 − δ13) . (14.48)

Since the values of λ2, λ2, and δ13 are completely unknown, in the following we will
consider 0 ≤ αk < 2π, for k = 2, 3. The only special cases to be studied are those
in which the CP symmetry is conserved. In section 6.3.2 we have seen that CP is
conserved if δ13 = 0 , π and λ2,3 = 0 , π/2 , π , 3π/2. Hence, for the two phases α2

and α3 we have the physically relevant cases

αk = 0 , π ⇒ eiαk = ±1 (CP invariance) , (14.49)

for k = 2, 3. Thus, if CP is conserved m2β is real and there are four possible cases:

(++) α2 = α3 = 0 ⇒ m2β = |Ue1|2m1 + |Ue2|2m2 + |Ue3|2m3 ,
(14.50)

(−−) α2 = α3 = π ⇒ m2β = |Ue1|2m1 − |Ue2|2m2 − |Ue3|2m3 ,
(14.51)

(+−) α2 = 0 , α3 = π ⇒ m2β = |Ue1|2m1 + |Ue2|2m2 − |Ue3|2m3 ,
(14.52)

(−+) α2 = π , α3 = 0 ⇒ m2β = |Ue1|2m1 − |Ue2|2m2 + |Ue3|2m3 .
(14.53)

The (++) case corresponds to the maximum possible value of |m2β |, for given values
of |Uek|2mk (k = 1, 2, 3), irrespective of CP invariance. In the other three cases, the
possible cancellations among the three mass contributions due to the phases eiα2

and eiα3 are maximal. Which of the three cases gives the minimum value of |m2β |
depends on the values of |Uek|2mk, for k = 1, 2, 3. Thus, the smallest and largest
values of |m2β | for given values of Uek and mk (k = 1, 2, 3) are obtained in the case
of CP invariance.

14.3.2 Necessity of Majorana neutrinos

So far we have seen that 2β0ν-decay occurs if neutrinos are massive Majorana par-
ticles (unless a fine-tuned cancellation occurs in the sum over the different mass
contributions to m2β). However, a 2β0ν-decay process can occur through other
mechanisms besides the exchange of Majorana massive neutrinos with SM inter-
actions illustrated in Fig. 14.11. These other mechanisms involve new interactions
and/or new particles beyond the SM (see Refs. [605, 377, 426, 1036]). In general,
each of these mechanisms gives a contribution to the 2β0ν-decay amplitude which
is proportional to a small parameter which reflects the suppression of the corre-
sponding new physics beyond the SM in low-energy phenomenology. For example,
the helicity matching condition can be overcome if there is a V + A interaction.
In this case, the 2β0ν-decay amplitude has a contribution proportional to a small
effective V +A coupling constant.
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Fig. 14.12. (a) Black-box diagram of the elementary 2β0ν process 2 d→ 2 u+2 e−.
(b) ν̄e → νe transition diagram through a 2β0ν black-box.

In view of these considerations, one may ask if the massive Majorana character of
neutrinos is not only a sufficient, but also a necessary condition for 2β0ν-decay. The
answer is positive [935, 1005]. The reason is illustrated in Fig. 14.12. Figure 14.12a
shows a schematic representation of 2β0ν-decay in which the square box labeled
2β0ν includes all possible mechanisms at all orders in perturbation theory. Only the
external lines of the quarks and the two final electrons are visible. Figure 14.12b
shows that these external lines can be joined with SM weak interaction vertices to
neutrino lines in order to obtain a diagram for a ν̄e → νe transition. This diagram
generates a contribution to the Majorana mass of the electron neutrino through
radiative corrections at some order of perturbation theory, even if there is no tree-
level Majorana neutrino mass term. In order to have an electron neutrino Majorana
mass it is necessary that the contribution generated by the diagram in Fig. 14.12b is
not canceled by the contributions of other diagrams. Such a cancellation is unlikely,
since it would require a fine-tuned arrangement of masses and mixing at all orders
of perturbation theory, unless there is a global symmetry which forbids the electron
neutrino Majorana mass term

LM,νe
mass = −1

2
mee

(
−νT

eL C† νeL + νeL C νeL
T
)
. (14.54)

However, the existence of such symmetry is incompatible with 2β0ν-decay [1005].
The proof goes as follows. Since the other parts of the full Lagrangian must be
invariant under the symmetry, it can only be a phase transformation of νeL:

νeL → eiϕν νeL . (14.55)

The symmetry can be either discrete or continuous. In the latter case it coincides
with the global U(1) transformation associated with lepton number conservation,
which is violated by 2β0ν-decay. Hence, only the discrete case with

ϕν �= 0 (14.56)

remains. Introducing the associated phase transformations

e→ eiϕe e , u→ eiϕu u , d→ eiϕd d , W ρ → eiϕW W ρ , (14.57)
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from the invariance of charged-current weak interactions we have

νeL γ
ρ eLWρ ⇒ ϕν − ϕe − ϕW = 0

uL γ
ρ dLWρ ⇒ ϕu − ϕd − ϕW = 0

}
⇒ ϕν = ϕd − ϕu + ϕe . (14.58)

On the other hand, the existence of the 2β0ν-decay process 2 d→ 2 u+2 e− requires
that

ϕd − ϕu + ϕe = 0 . (14.59)

Equations (14.58) and (14.59) imply ϕν = 0, which is incompatible with eqn (14.56).
Therefore, if 2β0ν-decay exists, there is no symmetry which can forbid the existence
of a Majorana mass term for the electron neutrino, which is generated at some level
of perturbation theory by the diagram in Fig. 14.12b.

For the sake of clarity, let us emphasize that if the main contribution to 2β0ν-
decay is due to a mechanism different from the exchange of Majorana massive
neutrinos with SM interactions illustrated in Fig. 14.11, the induced Majorana
mass for the electron neutrino could be very small. It is certainly much smaller
than the value of m2β which would generate the same decay, since the amplitude of
the process in Fig. 14.11 is suppressed by a factor G2

F with respect to the 2β0ν-decay
amplitude corresponding to the black-box.

It is also interesting to ask if the absence of 2β0ν-decay in the case of Dirac
massive neutrinos is consistent with the equivalence of a Dirac neutrino with two
degenerate Majorana neutrinos discussed in section 6.4.4. Considering for simplicity
only one generation, according to eqn (6.298) the electron neutrino field can be
written as νe = (iν1 + ν2)/

√
2, where ν1 and ν2 are Majorana fields with the same

mass m1 = m2 = mD
νe

, with mD
νe

denoting the Dirac mass of νe. Then, the 2β0ν-
decay amplitude is described by the diagram in Fig. 14.11 with Ue1 = i and Ue2 = 1.
It follows that m2β = U2

e1m1 + U2
e2m2 = 0, leading to the absence of 2β0ν-decay

in the Dirac case [1067]. Since the factors i and unity in front of ν1 and ν2 reflect
the opposite CP parities of ν1 and ν2 (see section 6.4.4)), it is usually said that
the contributions of the two Majorana neutrinos to m2β cancel because of their
opposite CP parities.

14.3.3 Phenomenology

The 2β0ν half-life of a nucleus N is given by (see Refs. [605, 377, 997])

[T 0ν
1/2(N )]−1 = GN0ν |MN

0ν |2
|m2β |2
m2

e

, (14.60)

where MN
0ν and GN0ν are, respectively, the nuclear matrix element and the phase

space factor. The phase space factor can be calculated with small uncertainties (see,
for example, Table 3.4 of Ref. [377] and Table 6 of Ref. [997]). For 76Ge, we have
[997]

G
76Ge
0ν = 6.31 × 10−15 y−1 . (14.61)

On the other hand, the calculation of the nuclear matrix element MN
0ν is very dif-

ficult, because it requires an accurate nuclear model (see Refs. [997, 405]). Table 14.2
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Table 14.2. Realistic calculations of |M76Ge
0ν | (from Table 2 of Ref. [405]). The

values of |m2β | correspond to T 0ν
1/2(

76Ge) = 1.9 × 1025 y, which is the current

90% CL lower bound (eqn (14.42)).

|M76Ge
0ν | |m2β | [eV] Method Reference

4.59 0.32 QRPA [127]
4.32 0.34 QRPA [1018]
4.21 0.35 QRPA [820, 980]
4.04 0.37 RQRPA [965]
3.64 0.41 QRPA [321]
3.62 0.41 RQRPA [426]
3.62 0.41 QRPA [162]
3.45 0.43 Number-projected QRPA [998]
3.41 0.43 QRPA [846]
3.32 0.44 QRPA [998]

3.21 − 3.82 0.39 − 0.46 Second QRPA [987]
3.13 0.47 RQRPA with forbidden [965]

2.95 − 3.16 0.47 − 0.50 RQRPA [252]
2.68 0.55 QRPA with forbidden [908]
2.40 0.62 RQRPA with forbidden [908]

2.31 − 3.68 0.40 − 0.64 Full RQRPA [987]
2.09 0.71 Full RQRPA [966]

1.87 − 3.74 0.39 − 0.79 RQRPA [987]
1.74 0.85 Large-scale shell model [308]

1.71 − 4.45 0.33 − 0.86 QRPA [987]
1.69 − 1.87 0.79 − 0.87 QRPA [252]

1.50 0.98 QRPA with np pairing [846]

shows a list of realistic calculations of the matrix element for the 76Ge → 76Se
transition, |M76Ge

0ν |, taken from Table 2 of Ref. [405]. One can see that the value of

|M76Ge
0ν | obtained in these calculations lies in the range

1.5 � |M76Ge
0ν | � 4.6 . (14.62)

Hence, there is a systematic uncertainty of about a factor of three for the extrac-
tion of the value of |m2β | from a measurement of T 0ν

1/2(
76Ge): from the bound in

eqn (14.42), we obtain (see the |m2β | column in Table 14.2)

|m2β | � 0.3 − 1.0 eV . (14.63)

It is clear that in order to improve our knowledge of |m2β | an improvement in the
reliability of the calculation of the nuclear matrix element would be very beneficial.
On the other hand, let us emphasize that a positive signal of 2β0ν-decay would prove
the Majorana nature of neutrinos, regardless of the value of the nuclear matrix
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element. Measurements of 2β0ν-decays of different nuclei could help to reduce the
nuclear matrix element uncertainty [232, 240, 241].

As we have seen in section 13.3.3, the results of neutrino oscillation exper-
iments gave us detailed information on the values of the mixing parameters in
three-neutrino mixing. However, it is still unknown whether the neutrino mass
scheme is normal or inverted (see Fig. 13.1) and which is the absolute value of the
neutrino mass scale, except for the upper bound from tritium β-decay in eqn (14.30)
(see also Fig. 14.3). In the following we discuss separately the implications of the
results of neutrino oscillation experiments for |m2β | in the normal and inverted
schemes.

14.3.3.1 Normal scheme In the normal scheme, since ∆m2
SOL � ∆m2

ATM, we
have

m2β � |Ue1|2m1 + eiα2 |Ue2|2
√
m2

1 + ∆m2
SOL + eiα3 |Ue3|2

√
m2

1 + ∆m2
ATM .

(14.64)
Figure 14.13 shows the behavior of |m2β | as a function of m1 in the four CP-
conserving cases in eqns (14.50)–(14.53).

In the quasidegenerate region (m1 �
√

∆m2
ATM � 5 × 10−2 eV), we have

m2β � m1

(
|Ue1|2 + |Ue2|2 eiα2

)
, (14.65)

since |Ue3|2 � |Ue1|2, |Ue2|2. Hence, for the four CP-conserving cases we obtain:

(++) , (+−) : m2β � m1 , (14.66)

(−−) , (−+) : m2β � m1

(
|Ue1|2 − |Ue2|2

)
� m1 cos 2ϑ12 . (14.67)

This is in agreement with Fig. 14.13, which shows that in the quasidegenerate
region |m2β | practically coincides with m1 in the cases (++) and (+−) and is
smaller than m1 in the cases (−−) and (−+), with an uncertainty due to the
uncertainty of sin2 ϑ12. Note that, for a given value of m1 in the quasidegenerate
region, |m2β | is bounded from below because the solar mixing angle is not maximal
(see eqn (10.78)).

In the hierarchical region (m1 � m2 � m3), we have

m2 �
√

∆m2
SOL , m3 �

√
∆m2

ATM . (14.68)

In order to understand the behavior of |m2β | as a function of m1, let us consider the
best-fit values of the oscillation parameters in Table 13.2. Since the best-fit value
of |Ue3| is zero, we have

|m2β |bf �
∣∣∣∣cos2 ϑbf

12m1 + eiα2 sin2 ϑbf
12

√
(∆m2

SOL)bf

∣∣∣∣ . (14.69)

Then, it is possible to have a vanishing |m2β |bf in the CP-conserving cases (−−)
and (−+) if

m1 � tan2 ϑbf
12

√
(∆m2

SOL)bf � 4 × 10−3 eV , (14.70)
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Fig. 14.13. Absolute value |m2β | of the effective Majorana neutrino mass in
2β0ν-decay as a function of the lightest massm1 in the normal scheme in the four
CP-conserving cases in eqns (14.50)–(14.53). Middle solid lines correspond to the
best-fit values in Table 13.2. Extreme solid lines enclose 3σ ranges. Dashed lines
show the best-fit values and 3σ ranges of individual masses. The two horizontal
dotted lines correspond to the extremes of the upper bound range in eqn (14.63).

as shown in Fig. 14.13. For smaller values of m1, we can approximate

|m2β | �
∣∣∣∣|Ue2|2

√
∆m2

SOL + ei(α3−α2) |Ue3|2
√

∆m2
ATM

∣∣∣∣ . (14.71)

Hence, the value of |m2β | corresponding to the best-fit values of the oscillation
parameters in Table 13.2 is

|m2β|bf � sin2 ϑbf
12

√
(∆m2

SOL)bf � 2.7 × 10−3 eV (14.72)
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Fig. 14.14. Absolute value |m2β | of the effective Majorana neutrino mass in
2β0ν-decay as a function of the lightest mass m1 in the normal scheme (a) and
m3 in the inverted scheme (b). The shadowed region is the union of the 3σ
regions in the four CP-conserving cases in eqns (14.50)–(14.53) (Fig. 14.13 in
the normal scheme and Fig. 14.15 in the inverted scheme). The two horizontal
dotted lines correspond to the extremes of the upper bound range in eqn (14.63).
The two vertical dotted lines show the corresponding upper bounds for m1 (a)
and m3 (b).

in all cases, irrespective of CP invariance. For the lower bound on |m2β|, as one
can see from Fig. 14.13, there can be a cancellation between the contributions
of
√

∆m2
SOL and

√
∆m2

ATM in the CP-conserving cases (+−) and (−+), where
ei(α3−α2) = −1. This is due to the fact that there is an overlap of the allowed
ranges of |Ue2|2

√
∆m2

SOL and |Ue3|2
√

∆m2
ATM: from the 3σ ranges in Table 13.2

we have

2 × 10−3 � |Ue2|2
√

∆m2
SOL � 4 × 10−3 eV , |Ue3|2

√
∆m2

ATM � 3 × 10−3 eV .

(14.73)
Note, however, that in the absence of a fine-tuned cancellation between the two
contributions, the contribution due to

√
∆m2

SOL may be dominant [521], with a
lower bound |m2β | � 2 × 10−3 eV.

The union of the allowed regions of |m2β | as a function of m1 in the four CP-
conserving cases is shown by the shadowed region in Fig. 14.14a. One can note
that there is an unshaded strip within the shadowed band in Fig. 14.14a. Since for
each value of m1 the allowed interval for |m2β | is connected and the extreme values
are obtained in the case of CP conservation, the band in Fig. 14.14a includes the
possibility of CP violation and the unshaded strip corresponds to values of |m2β |
which can be obtained only in the case of CP violation.
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It is clear from Fig. 14.14a that in the hierarchical region, |m2β | is not bounded
from below, but it is bounded from above by

|m2β | � 6 × 10−3 eV for m1 � 10−3 eV . (14.74)

Figure 14.14a shows also that the current upper bound range for |m2β | in
eqn (14.63) probes the quasidegenerate region, with the corresponding upper bound
range

mk � 1.6 − 5.6 eV , (14.75)

for k = 1, 2, 3.

14.3.3.2 Inverted scheme In the inverted scheme, since m1 � m2 �√
m2

3 + ∆m2
ATM, we have

m2β �
(
|Ue1|2 + eiα2 |Ue2|2

)√
m2

3 + ∆m2
ATM + eiα3 |Ue3|2m3 . (14.76)

It is important to note that there cannot be a complete cancellation between |Ue1|2
and |Ue2|2, even if α2 = π, because the solar mixing angle is not maximal (see
eqn (10.78)) and there is no overlap between the allowed ranges of |Ue1|2 and |Ue2|2
at several σ’s (see the 2σ ranges of |Ue1| and |Ue2| in eqn (13.134)).

Figure 14.15 shows the behavior of |m2β | as a function of m3 in the four CP-
conserving cases in eqns (14.50)–(14.53). One can see that, since |Ue3|2 is small,
|m2β| is practically the same in the cases (++) and (+−), as well as in the cases
(−−) and (−+).

In the quasidegenerate region (m3 �
√

∆m2
ATM � 5 × 10−2 eV), the behavior

of m2β is similar to that in the normal scheme, given in eqns (14.65)–(14.67), with
m1 replaced by m3.

In the inverted-hierarchy region (m3 � m1 � m2), since m3 is very small,
there cannot be a cancellation between

(
|Ue1|2 + eiα2 |Ue2|2

)√
m2

3 + ∆m2
ATM and

|Ue3|2m3, even if α3 = π. Therefore, as one can see from Fig. 14.15, |m2β | is
bounded from below. Neglecting m3, we have

m2β �
(
|Ue1|2 + eiα2 |Ue2|2

)√
∆m2

ATM . (14.77)

Thus, in the four CP-conserving cases we can approximate

(++) , (+−) : m2β �
√

∆m2
ATM , (14.78)

(−−) , (−+) : m2β �
√

∆m2
ATM

(
|Ue1|2 − |Ue2|2

)
�
√

∆m2
ATM cos 2ϑ12 .

(14.79)

In fact, from Fig. 14.15 one can see that in the cases (++) and (+−)m2β practically
coincides with m1 � m2, and in the cases (−−) and (−+) it is smaller, with an
uncertainty due to the uncertainty of sin2 ϑ12. In any case, |m2β | is bounded from
below.

The shadowed region in Fig. 14.14b shows the union of the allowed regions of
|m2β| as a function of m3 in the four CP-conserving cases. As in the case of a
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Fig. 14.15. Absolute value |m2β | of the effective Majorana neutrino mass in
2β0ν-decay as a function of the lightest mass m3 in the inverted scheme in the
four CP-conserving cases in eqns (14.50)–(14.53). Middle solid lines correspond
to the best-fit values in Table 13.2. Extreme solid lines enclose 3σ ranges. Dashed
lines show the best-fit values and 3σ ranges of individual masses. The two hor-
izontal dotted lines correspond to the extremes of the upper bound range in
eqn (14.63). In the cases (++) and (+−), the best-fit values and 3σ ranges of
m1 and m2 are practically the same and coincide with the best-fit value and 3σ
range of m2β.

normal hierarchy (Fig. 14.14a), the band in Fig. 14.14b includes the possibility of
CP violation and the unshaded strip corresponds to values of |m2β| which can be
obtained only in the case of CP violation.

Figure 14.14b shows that in the inverted-hierarchy region |m2β | is bounded from
below and above:

9 × 10−3 � |m2β| � 5 × 10−2 eV for m3 � 10−2 eV . (14.80)
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Comparing this interval with the upper bound in eqn (14.74) in the case of a normal
hierarchy, or comparing Figs. 14.14a and 14.14b, one can see that the allowed ranges
for |m2β | in the cases of a normal or inverted hierarchy do not overlap. Thus, future
experiments may be able to distinguish the two hierarchies. In particular, if future
experiments do not observe 2β0ν-decay with a sensitivity below |m2β | � 9 × 10−3,
the inverted scheme will be excluded.

On the other hand, the normal and inverted schemes cannot be distinguished
in the quasidegenerate region, which is probed by the current upper bound range
for |m2β | in eqn (14.63). Comparing Figs. 14.14a and 14.14b, one can see that the
resulting upper bound range for the neutrino masses in the inverted scheme is the
same as that in the normal scheme, which is given in eqn (14.75).



15

SUPERNOVA NEUTRINOS

There are two ways to slide easily through life; to believe every-
thing or to doubt everything. Both ways save us from thinking.
A. Korzybski

Supernovae (SNe) are extremely powerful explosions which terminate the life of
some stars. Typically, some solar masses are ejected in the interstellar space with
a kinetic energy of the order of 1051 erg. The ejecta contain heavy elements that
are important for the chemical evolution of galaxies, stars, planets, and life. Some
SNe produce a compact remnant, a neutron star or a black-hole, which may be
observed.

Historically, after the realization in the 1920s that if the spiral nebulae are
extragalactic star systems some of the novae observed in these spiral nebulae have
been extremely bright (see Ref. [1025]), the study of SNe was initiated by W. Baade
and F. Zwicky in the early 1930s [134]. They already suggested that the source of
the enormous quantity of energy released in SNe is the gravitational collapse of a
star to a neutron star and that SNe may be sources of cosmic rays. In the following
years Zwicky and others started to organize systematic searches of SNe which have
led to the present knowledge of thousands of SNe (see, for example, Ref. [842]). In
the early 1960s Zwicky and collaborators suggested the currently adopted naming
scheme of SNe: each supernova is designated with the SN prefix followed by the
year of discovery, which is followed, in years with more than one supernova, by an
upper-case letter A through Z for the first 26 SNe discovered in a given year or the
lower-case letters aa, ab, . . . for the following SNe discovered in the same year.

Some SNe that have exploded in our galaxy have been observed with the naked
eye during the last 2000 years (see Ref. [561]). The most famous is the 1054 super-
nova, which produced the Crab nebula and the Crab pulsar (see Ref. [877]). The
1006 supernova is the brightest SN of all times. The last galactic SNe were observed
with the naked eye in 1572 (Tycho Brahe) and 1604 (Joannes Kepler). In the
last few centuries many SNe occurring in other galaxies have been observed with
telescopes, since their light emission is comparable to that of an entire galaxy.
Supernova SN1987A, which occurred on 23 February 1987 in the Large Magellanic
Cloud, is the best studied of all SNe (see Refs. [996, 770, 850, 267] and references
therein) and it is the only one which was detected also through its neutrino burst
(see Refs. [1027, 695, 1058]). As we will see in the following, this first historical
observation of neutrinos produced outside of the solar system (and even outside of
our galaxy) is important not only for the study of SN dynamics, but also for the
study of neutrino properties (in particular, neutrino masses).
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Fig. 15.1. The classification scheme of supernovae.

Introductions and reviews of the physics of SNe are given in Refs. [1025, 1026,
1071, 887, 1058, 638, 696, 1070]. Future perspectives for the detection of SN neu-
trinos have been reviewed in Refs. [309, 949]. This chapter is a revised and updated
version of section 8 of Ref. [230].

15.1 Supernova types

For historical reasons, SNe are divided into different types characterized by their
spectroscopic characteristics near maximum luminosity and by the properties of the
light curve, which depend on the composition of the envelope of the SN progenitor
star (see Fig. 15.1). The two wide categories called type I and type II are charac-
terized by the absence or presence of hydrogen lines. However, the most important
physical characteristic is the mechanism that generates the supernova, which dis-
tinguishes SNe of type Ia from SNe of type Ib, Ic and II, as shown in Fig. 15.1.
This difference becomes noticeable in the light spectrum some months after maxi-
mum luminosity, when the ejecta become optically thin and the innermost regions
become visible: the spectrum of SNe Ia is dominated by Fe emission lines, whereas
SNe Ib, Ic, and II show O and C emission lines.

Typically, the optical emission of both type I and II SNe start with a rise in
luminosity during the first week or two due to the expansion of the luminous surface.
Type I SNe have typically a narrow luminosity peak, whereas type II have broad
peaks, of the order of 100 days. After the peak, the luminosity decreases for about
one year.

Type Ia SNe are thought to be generated by carbon–oxygen white dwarfs that
have a close companion star from which the white dwarf can accrete mass. White
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dwarfs are the evolutionary products of stars which ended thermonuclear fuel burn-
ing. Weighting about one solar mass, they have a radius of about 5000 km and a
density of the order of 106 g cm−3. The pressure of degenerate electrons support
white dwarfs against the inward pull of gravity (see, for example, Ref. [952]). In
1931 Chandrasekhar discovered that white dwarfs have a maximum mass of about
1.4M�, above which the star collapses (see Ref. [311]).

In 1932 Landau [712] presented the following qualitative derivation81 of the
Chandrasekhar limit (see Ref. [952]), which can be applied also to the calculation
of the limit of stability of neutron stars by replacing electrons with neutrons. Let
us consider a white dwarf with N electrons and radius R. According to the Pauli
exclusion principle, the volume per electron is v ∼ R3/N , which has a character-
istic size r ∼ v1/3 ∼ R/N1/3. Applying the Heisenberg uncertainty principle, the
momentum of an electron is p ∼ r−1 ∼ N1/3/R. The pressure that balances the
inward pull of gravity is due to degenerate electrons. For small stellar masses these
electrons are nonrelativistic and the star can find an equilibrium between pressure
and gravity. For more massive stars, during contraction the central density becomes
so high that the relativistic regime is reached. In this case, the electron mass can
be neglected and the pressure energy is given by EP � p ∼ N1/3/R. Each electron
is associated with a mass m � mN/Ye, where mN is the nucleon mass and Ye is
the electron fraction (Ye = Np/(Np +Nn), where Np and Nn are, respectively, the
numbers of protons and neutrons). Therefore, the gravitational energy per electron
is EG ∼ −GNMm/R ∼ −GNm

2
NNY

−2
e /R, where M � mN � mNN/Ye is the

total mass. The equilibrium of the star is reached at a minimum of the total energy

E = EP + EG ∼ N1/3

R
− GNm

2
N N Y −2

e

R
. (15.1)

Since both terms scale as 1/R, if the sign of E is negative, the total energy can
be decreased without limit by decreasing R, leading to the collapse of the star. In
order to have a stable configuration, the total energy must be nonnegative, yielding
the upper bound

N < NC ∼
(
GNm

2
N Y −2

e

)−3/2
=

(
MP Ye

mN

)3

� 2 × 1057 Y 3
e . (15.2)

The corresponding mass is the Chandrasekhar mass82:

MC ∼ NCmN Y −1
e ∼ 2 × 1057 Y 2

e GeV � 2 Y 2
e M� . (15.3)

A more accurate calculation yields (see Refs. [311, 952])

MC � 5.83 Y 2
e M� . (15.4)

For a typical value of Ye � 0.5, we have MC � 1.46M�.

81 We thank S.M. Bilenky for suggesting this instructive derivation.
82 From the value of the solar mass in Table 10.1 and the appropriate conversion factor

in Table A.1, we have M� � 1.1 × 1057 GeV.
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When the mass of a white dwarf reaches the Chandrasekhar limit, the star
becomes unstable, because the pressure of the degenerate electron gas can no longer
sustain the gravitational weight. The white dwarf begins to collapse, triggering the
fusion of carbon and oxygen to heavy nuclei, which liberates an enormous quantity
of energy, causing the thermonuclear explosion of the star (see Ref. [1072]). This
explosion disrupts the progenitor white dwarf and generates an expanding nebula
without a central compact object.

The light emission of type Ia SNe is mainly due to the decay of 56Ni, which
is produced in great quantities during the collapse of the outer layer of the white
dwarf core. It contains silicon absorption lines, because Si is a product of C and O
fusion. The 56Ni decays into 56Co, which in turn decays into 56Fe, whose emission
lines dominate the spectrum after some months. Iron and other heavy elements are
ejected in interstellar space by the explosion.

Since SNe of type Ia are all generated under similar physical circumstances,
they have almost identical characteristics, the most important being the amount
of released energy and the light curve, i.e. they release almost the same total light
and the visible light decays at the same rate. This fact has been verified by the
observation of many type Ia SNe in nearby galaxies of known distance.

An empirical relation between the duration of the peak phase of the light curve
and the luminosity of type Ia SNe has been discovered by Phillips in 1993 [872]
from the catalog of observed type Ia SNe in nearby galaxies with known distance.
This width-luminosity relation (broader is brighter) allows the use of type Ia SNe as
standard candles for the measurement of the distance of galaxies as far as 100 Mpc
or more (see Ref. [964] and references therein).

The observation by the Hubble Space Telescope of SNe of type Ia in galaxies at
cosmological distances has been used for the measurement of the Hubble constant
and the deceleration parameter. Contrary to expectations, it has been found that
the expansion of the Universe is accelerating [903, 863] (see section 16.2.3). This
surprising behavior can be explained in the framework of the Standard Cosmological
Model through the presence of a relatively large energy density of the vacuum,
dubbed as dark energy (see section 16.3 and Ref. [841]).

For the point of view of neutrino physics, type Ib, Ic, and II SNe are much more
interesting than type Ia SNe, simply because they produce a huge flux of neutrinos
of all types. These SNe are generated by the collapse of the core of massive stars
(M � 8M�), which leaves a compact remnant. During the few seconds following the
collapse, the compact remnant is very hot and neutrinos of all types are copiously
produced. Since the remnant and the surrounding envelope are optically thick,
about 99% of the gravitational binding energy liberated by the collapse (about 3×
1053 erg) is carried away by neutrinos. The average energy of the emitted neutrinos
is of the order of 10 MeV, and their number is about 1058, one order of magnitude
larger than the lepton number of the collapsed core.

Type II SNe are thought to be generated by the core collapse of red (or blue
as SN1987A) giant stars with a mass between about 8–9 and 40–60 solar masses.
Since the size and mass of the hydrogen envelope can be very different from star
to star, even if they have the same initial mass, the visible effects of the supernova
explosion have a wide range of variability, leading to a further classification of type
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II SNe into the subtypes (see Refs. [300, 816]): IIL if the decrease of the luminosity
is approximately linear in time; IIP if the time evolution of the luminosity shows
a plateau; IIF if the SN is faint; IIb if helium dominates over hydrogen; IIn if the
spectrum shows narrow line emissions; IIpec if the SN has peculiar characteristics.
Subtypes determined by spectral properties are denoted by lower-case letters and
subtypes determined by properties of the light curve are denoted by upper-case
letters. It is believed that the SN is of type Ib if the exploding star does not have
a hydrogen envelope. If the helium shell is also missing, the SN is of type Ic. All
these classes are not clear-cut and intermediate cases exist.

It is also believed that, in a typical SN of type IIP, the envelope mass is about
5−10M� and the radius is of the order of 1015 cm. The shock wave produced by the
collapse of the core (see section 15.3) rapidly ionizes the hydrogen in the envelope
and causes its violent ejection. The energy from the recombination of hydrogen
keeps the photosphere, from which we receive light, at an almost constant radius and
temperature, leading to the luminosity plateau. The time duration of the plateau
depends on the envelope mass. If the envelope mass is too small (� 1 − 2M�),
there is no plateau, the decrease of the luminosity is approximately linear in time,
and the SN is classified as type IIL. Most SNe of type IIL are brighter than SNe of
type IIP.

Supernova SN1987A was an extreme case of type IIP, since the luminosity
increased for about 3 months after the collapse and the supernova was rather faint.
Therefore, sometimes SN1987A is classified as IIP [300, 816], sometimes as IIF [842]
and sometimes as IIpec [816]. Its faintness is very likely due to the compactness
of the progenitor (a radius of about 1012 cm). In this case, much of the available
energy is used in the expansion and the luminosity increases for some time because
of the growing contribution of radioactive decay of heavy elements in inner shells,
which become more visible as the envelope expands.

15.2 Supernova rates

A very important problem is how to estimate SN rates. Figure 15.2 shows the
estimates of SN rates presented in Ref. [772]. One can see that the SN rates depend
rather strongly on the galaxy type. No core-collapse SNe of type Ib/c and II have
been observed in elliptical galaxies, which are very old and have little star formation
that could produce short-lived massive stars ending their life with a core-collapse
supernova explosion.

One of the most crucial questions for SN neutrino astronomy is the rate of core-
collapse SNe in our galaxy, which could produce observable neutrino bursts with
high statistics in neutrino telescopes. Estimates of the rate of core-collapse SNe in
the Milky Way are summarized in Table 15.1. It is clear that the large uncertainty
leaves the problem open to further study. The lack of observation of neutrinos
from core-collapse SNe in our galaxy since the Baksan Underground Scintillator
Telescope (see section 15.4.3) began observations in June 1980 imply an upper
bound of 13 SNe per century in the Milky Way at 90% CL [62]. This measurement
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Fig. 15.2. SN rate as a function
of the galactic morphological index
[772]. Upper panel: SN rate expressed
in SNuK (number of SNe per cen-
tury per 1010L� of luminosity in
the K band). Lower panel: SN rate
expressed in SNuM (number of SNe
per century per 1010M�). The lines
correspond to type Ia (solid), type II
(dotted) and Ib/c (dashed), with 1σ
error bars.

Fig. 15.3. The allowed bands for the
rates of type Ia (SNIa) and core-col-
lapse (SNII) supernovae as a func-
tions of the redshift z [990]. The SNIa
and SNII data are, respectively, from
Refs. [347, 247] and Refs. [347, 299].

is consistent with the estimated rates and shows that the true rate cannot be much
higher than the estimations.

The rate of core-collapse SNe is also important for the estimation of the
Relic Supernova Neutrino Background (RSNB) (see Ref. [88]). Figure 15.3 shows
the allowed bands found in Ref. [990] for the rates of type Ia and core-collapse
supernovae as functions of the redshift z (defined in section 16.2.2). The Super-
Kamiokande collaboration [768] searched for ν̄e’s of the RSNB by means of the
inverse neutron decay process in eqn (12.13), for neutrino energies above the end
points of the 8B and hep solar neutrino spectra (see Table 10.2). Since no signal
was observed, the Super-Kamiokande data yielded the upper bound [768]

Φν̄e
(E > 19.3 MeV) < 1.2 cm−2 s−1 (90% CL) . (15.5)
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Table 15.1. Estimates of the rate of core-collapse SNe in the Milky Way.

Rate [10−2 y−1] Reference

5.8 ± 2.4 Tammann (1982) [1006]

1.2+1.7
−0.7 Ratnatunga & van den Bergh (1989) [890]

3+2
−1 Strom (1990) [991]

4.0 ± 2.0 Muller et al. (1992) [818]
2.0 ± 1.1 Cappellaro et al. (1993) [297]
3.0 ± 1.5 van den Berg (1993) [1033]

2.5+0.8
−0.5 Tammann et al. (1994) [1007]

5.7 ± 1.7 Strom (1994) [992]
1.3 ± 0.9 Cappellaro et al. (1997) [298]
3.4 ± 2.8 Timmes et al. (1997) [1016]
8.4 ± 2.8 Dragicevich et al. (1999) [389]
1.5 ± 1.0 Cappellaro & Turatto (2000) [300]

1 − 2 Reed (2005) [894]

15.3 Core-collapse supernova dynamics

Supernovae produced by the collapse of the core of massive stars produce large fluxes
of neutrinos that could be detected on the Earth. Here we present a short description
of the current standard theory of the dynamics of core-collapse SNe and the result-
ing neutrino flux (see Refs. [952, 289, 637, 754, 1071, 887, 1058, 638, 696, 1070]
and references therein). As explained in section 15.1, core-collapse SNe are clas-
sified as of types II, Ib, or Ic depending on their spectroscopic characteristics at
maximum luminosity. However, these characteristics depend only on the composi-
tion of the envelope, which plays no role in the collapse of the core and neutrino
production. Hence, the following theory applies equally well to all types II, Ib, and
Ic core-collapse SNe.

Core-collapse SNe are the final explosion of single stars with mass between about
8–9 and 40–60 solar masses. The explosion is due to the shock wave created when
the core collapses to a proto-neutron star, which ejects the stellar envelope. Stars
lighter than about 9M� end their life as white dwarfs (but may explode as type Ia
SNe if they belong to a multiple system). As illustrated in Figs. 15.4 and 15.5, stars
heavier than about 40M� can end their life in a supernova explosion if they have
a sufficient initial metallicity [607], i.e. abundance of heavy elements (especially
iron), which implies a larger photon opacity. During their life, these stars suffer
significant mass losses through the stellar wind, leading to smaller envelopes which
can explode when the core collapses to a proto-neutron star. The core of low and
medium metallicity stars with masses between about 25 and 40 solar masses initially
collapses to a proto-neutron star, generating a weak SN IIp, and later collapses to a
black-hole because of the increase of mass of the proto-neutron star due to fallback
of the envelope.
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Fig. 15.4. Remnants of massive single stars as a function of initial mass (x axis)
and initial metallicity (y axis) [607]. The line marked no H envelope separates
the regimes where the stars keep their hydrogen envelope (left and lower right)
from those where the hydrogen envelope is lost (upper right and small strip
at the bottom between 100 and 140M�). The line marked direct black-hole

indicates the border of the regime of direct black-hole formation (black). This
domain is interrupted by a strip of pair-instability supernovae that leave no
remnant (white). Outside the direct black-hole regime, at lower mass and higher
metallicity, lies the regime of black-hole formation by fallback. Outside of this,
lies the region corresponding to the formation of neutron stars. The lowest-mass
neutron stars may be made by O/Ne/Mg core collapse instead of iron core
collapse (vertical dash-dotted lines at the left). At even lower masses, the cores
do not collapse and only white dwarfs are made (white strip at the very left).

Stars with mass in excess of about 10 solar masses are thought to undergo all
the stages of nuclear fusion of hydrogen, helium, carbon, oxygen, neon, silicon (see
Table 15.2), until the star has an onion-like structure shown in Fig. 15.6, with
an iron core surrounded by shells composed of elements with decreasing atomic
mass. At this point the iron core has a mass of about 1 solar mass, a radius of a
few thousand km, a central density of about 1010 g cm−3, a central temperature of
about 1 MeV, and its weight is sustained by the pressure of degenerate relativistic
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Fig. 15.5. Supernovae types of nonrotating massive single stars as a function
of initial metallicity and initial mass [607]. The lines and axes have the same
meaning as in Fig. 15.4.

electrons. Since iron is the most tightly bound nucleus, there remains no ther-
monuclear fuel to burn. The core contracts and the increased temperature causes
photodissociation of iron through the process

γ + 56Fe → 13α+ 4n . (15.6)

This reaction absorbs about 124 MeV of energy and reduces the kinetic energy and
pressure of the electrons. Electron capture of nuclei,

e− + N (Z,A) → N (Z − 1, A) + νe , (15.7)

and free protons,
e− + p→ n+ νe , (15.8)

favored by the high electron Fermi energy, additionally reduce the number and pres-
sure of the electrons. At the onset of collapse, when the density of the iron core is not
too high, the electron neutrinos produced by electron capture leave the core carry-
ing away most of the kinetic energy of the captured electrons. The combined effect
of iron photodissociation and electron capture lowers the electron pressure, decreas-
ing the value of the Chandrasekhar mass, until the Chandrasekhar mass becomes
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Table 15.2. Central temperature Tc, central density ρc, and time scale ∆t of the
evolutionary burning phases of Population I stars with initial masses 15M� and
25M� (values taken from Ref. [1071]). By comparison, the H-burning phase of
a star with initial mass 1M� lasts about 1.1 × 1010 y, with Tc � 1.57 × 107 K
and ρc � 153 g cm−2. The thermonuclear life of such a star ends with the
He-burning phase, which lasts about 1.1 × 108 y, with Tc � 1.25 × 108 K and
ρc � 2.0 × 104 g cm−2.

15M� 25M�

Phase
Tc

[K]
ρc

[g cm−3]
∆t
[yr]

Tc

[K]
ρc

[g cm−3]
∆t
[yr]

H 3.53 × 107 5.81 1.11 × 107 3.81 × 107 3.81 6.70 × 106

He 1.78 × 108 1.39 × 103 1.97 × 106 1.96 × 108 7.62 × 102 8.39 × 105

C 8.34 × 108 2.39 × 105 2.03 × 103 8.41 × 108 1.29 × 105 5.22 × 102

Ne 1.63 × 109 7.24 × 106 0.732 1.57 × 109 3.95 × 106 0.891
O 1.94 × 109 6.66 × 106 2.58 2.09 × 109 3.60 × 106 0.402
Si 3.34 × 109 4.26 × 107 5.01 × 10−2 3.65 × 109 3.01 × 107 2.01 × 10−3
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Fig. 15.6. Onion-like interior structure of a Population I star of 25M� just before
the onset of collapse (see Ref. [1025]). Fe represents assorted iron-peak elements:
48Ca, 50Ti, 54Fe, 56Fe, 58Fe, 66Ni. The Si shell contains less abundant amounts
of S, O, Ar, Ca, the O shell contains less abundant amounts of Ne, C, Mg,
Si, the He shell contains less abundant amounts of C, Ne, O, and the H shell
contains less abundant amounts of He, Ne, O, N, C.
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smaller than the core mass. At this moment the pressure of degenerate relativistic
electrons can no longer sustain the weight of the core and the collapse commences.
As the density and temperature increase, the processes in eqn (15.6)–(15.8) pro-
ceed faster, lowering further the electron pressure and favoring the collapse, which
accelerates.

According to theory (see Figs. 15.4 and 15.5), stars with mass between about
9 and 10 solar masses burn hydrogen, helium, carbon, but the core does not get
hot enough to burn oxygen. However, the core contains neon and magnesium at
high density, which can undergo electron capture, reducing the electron pressure
that sustains the core against gravity. As a result, the core collapses and, during
the collapse, oxygen, neon and magnesium are converted to iron. Therefore, also
in this case, the supernova explosion energy is produced by the collapse of an iron
core.

The collapse of the core produces a neutron star and the huge liberated grav-
itational energy is released mainly as a flux of neutrinos, with a small fraction as
electromagnetic radiation and kinetic energy of the ejecta, which form the visi-
ble explosion. The liberated gravitational energy is about 3 × 1053 erg, of which
only about 0.01% is transformed into electromagnetic radiation and about 1% is
transformed into kinetic energy of the ejecta.

Let us examine in more detail the mechanism of formation of the neutron star,
of neutrino production, and of supernova explosion.

The electron neutrinos produced by the electron capture processes in eqns (15.7)
and (15.8) initially leave the core freely, carrying away energy and lepton number,
since their mean free path is longer than the radius of the core. In this so-called
capture phase electron neutrinos have a nonthermal spectrum and average energy
that grows from about 12 to about 16 MeV (see Ref. [289]). The luminosity reaches
about 1053 erg s−1, but, in total, only about 1051 erg are released before the core
bounce, because the capture phase is too short (less than about 10 ms).

When the density of the inner part of the core (about 0.8M�) exceeds about
3 × 1011 g cm−3, neutrinos are trapped in the collapsing material leading to an
adiabatic collapse with constant lepton number. During this stage, the inner part
of the core collapses homologously, i.e. with subsonic velocity proportional to the
radius. The outer part of the core collapses with supersonic free-fall velocity.

After about one second from the start of instability, the density of the inner
core reaches the density of nuclear matter, about 1014 g cm−3, and the pressure
of degenerate nonrelativistic nucleons abruptly stops the collapse. The inner core
settles into hydrostatic equilibrium, forming a proto-neutron star with a radius of
about 10 km, while a supersonic shock wave caused by the halting and rebound
of the inner core forms at its surface. The shock propagates outward through the
outer iron core, which is still collapsing, with an initial velocity of the order of
100 kmmsec−1. The gas that is infalling at a velocity near free-fall is abruptly
decelerated within the shock. Below the shock it falls much more slowly on the
surface of the proto-neutron star, accreting it. Therefore, the proto-neutron star
develops an unshocked core and a shocked mantle. The core has a radius of the
order of 10 km with a density of the order of 1014 g cm−3, as a nucleus. The mantle
has a radius of about 100 km, with a density decreasing from the nuclear density
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of the core to about 109 g cm−3 at the surface of the proto-neutron star, where the
density has a steep decrease of several orders of magnitude.

As the shock propagates through the infalling dense matter of the outer core, its
energy is dissipated by the photodissociation of nuclei into protons and neutrons.
Thus, the material behind the shock wave is mainly composed of free nucleons. Free
protons have a high electron capture rate, leading to the transformation of most
protons into neutrons, with huge production of electron neutrinos. These neutrinos
pile up behind the shock, which is dense and opaque to them, until the shock
reaches a zone with density about 1011 g cm−3 (shock breakout) a few milliseconds
after the bounce and the electron neutrinos behind the shock are released in a few
milliseconds. This neutrino emission is usually called a prompt electron neutrino

burst or neutronization burst or breakout pulse, to be distinguished from the thermal
production of all neutrino flavors. The neutronization burst has a luminosity of
about 6 × 1051 erg s−1 and carries away a few 1051 erg in a few milliseconds. In
spite of his name, the neutronization burst is too short to carry away a significant
part of the electron lepton number of the core, which remains trapped. Only the
low-density periphery of the proto-neutron star is neutronized.

The energy loss due to photodissociation of nuclei and neutrino emission weakens
the shock (about 1.5×1051 erg are dissipated for each 0.1 solar masses of photodisso-
ciated material). In the so-called prompt SN explosion scenario, the shock, although
somewhat weakened, is able to expel the envelope of the star generating the SN
explosion on a time scale of the order of 100 msec. If the star weighs more than
about 10 solar masses, the shock is weakened and stalls about 100 ms after the
bounce, at a radius of about 200–300 km, with insufficient energy to reach the
outer layers of the star. Matter continues to fall through the stalled shock and be
photodissociated. If too much matter lands on the proto-neutron star, the pressure
of degenerate nucleons is not sufficient to maintain stability and the core collapses
into a black-hole, presumably without a supernova explosion. The conditions that
lead to a prompt supernova explosion, without a stalling shock, are controversial
and are thought to depend on the mass of the progenitor star and on the equation
of state of nuclear matter, which determines the energy transfered to the shock
wave by the bounce.

If the shock stalls, a supernova explosion can be achieved only if the shock is
revived by some mechanism that is able to renew its energy. The mechanism which
is currently thought to be able to revive the shock is the energy deposition by the
huge neutrino flux produced thermally in the proto-neutron star [326, 223]. It has
recently been realized that the shock revival is helped by convection behind the
shock, which can lead to an asymmetric explosion (see Ref. [1070]). Also acoustic
power generated by oscillations of the accreting protoneutron star may help the
shock revival [290]. If the shock is revived, a so-called delayed supernova explosion
is produced on a time scale of the order of 0.5 s after the bounce.

Neutrinos of all flavors are produced in the hot core of the proto-neutron star (see
Refs. [952]), which has a temperature of about 40 MeV, through electron–positron
pair annihilation,

e− + e+ → ν + ν̄ , (15.9)
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Fig. 15.7. Time evolution of neutrino luminosity and average energy obtained
with the numerical SN model in Ref. [1021]. The time starts at the onset of
collapse. The left panel shows the early phase in a linear time coordinate. The
right panel shows the time evolution until about 10 s after the onset of collapse
using a logarithmic time coordinate. The dashed lines are for νe, the solid lines
for ν̄e, and the dot-dashed lines for νµ, ν̄µ, ντ , ν̄τ , which are collectively denoted
by νx. The neutronization burst is visible as a peak of luminosity and energy of
electron neutrinos, which happens 40–50 msec after the onset of collapse.

electron–nucleon bremsstrahlung,

e± +N → e± +N + ν + ν̄ , (15.10)

nucleon–nucleon bremsstrahlung,

N +N → N +N + ν + ν̄ , (15.11)

plasmon decay
γ → ν + ν̄ , (15.12)

and photoannihilation
γ + e± → e± + ν + ν̄ . (15.13)

Electron neutrinos are also produced by the electron capture process in eqn (15.8),
and electron antineutrinos are produced by positron capture on neutrons (e++n→
p+ ν̄e). In spite of their weak interactions, these neutrinos are trapped in a SN core
because of the very high matter density. Neutrinos can free-stream out of the mantle
of a proto-neutron star only at a distance from the center where the matter density
is low enough (of the order of 1011 g cm−3) so that the neutrino mean free path is
larger than radius of the core. The sphere from which neutrinos stream out freely
is called the neutrinosphere, and it lies within the mantle of the proto-neutron star.
Since neutrino interactions depend on flavor and energy, there are different energy-
dependent neutrinospheres for different flavor neutrinos. More precisely, since the
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Fig. 15.8. Luminosities and mean energies (defined as ratio of energy flux to
number flux) for νe, ν̄e and νµ,τ , ν̄µ,τ as functions of time for a model with
stellar mass 11.2M� (s11.2) and a rotating model with stellar mass 15M�
(s15r) [279], measured by an observer comoving with the stellar medium at a
radius of 500 km. The time origin is at the bounce. The left panels show the
prompt νe burst. The right panels enlarge the post-bounce evolution. The thin
lines represent results of 1D simulations for comparison.

medium is composed of protons, neutrons, and electrons, and the neutrino energy
does not allow creation of muons and taus, the flavor neutrinos νe and ν̄e can
interact with the medium through both charged-current and neutral-current weak
processes, whereas the neutrinos νµ, ν̄µ, ντ , ν̄τ can interact only through neutral-
current weak processes, which are flavor-independent. Therefore, there are three
energy-dependent neutrinospheres: one for νe, one for ν̄e and one for νµ, ν̄µ, ντ ,
ν̄τ . From now on, in this chapter, we will denote νµ, ν̄µ, ντ , ν̄τ collectively as
νx, as usually done in the literature. Each energy-dependent neutrinosphere emits
a black-body thermal flux of neutrinos at the considered energy. The estimated
radii of the neutrinospheres lie between about 50 and 100 km. As we have seen
above, when the shock passes through the electron neutrino neutrinosphere (shock
breakout) a few milliseconds after the bounce, a large flux of electron neutrinos is
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released in a few milliseconds in the neutronization burst. After the shock breakout,
each neutrinosphere produces a thermal flux of the corresponding neutrino flavor.

The opacities of νe and ν̄e are dominated, respectively, by the charged-current
weak interaction processes

νe + p→ n+ e− , (15.14)

ν̄e + n→ p+ e+ . (15.15)

These reactions allow exchanges of energy and lepton number between the neutrinos
and the medium. For example, in the process in eqn (15.14) the neutrino energy is
mainly transferred to the final electron83 whose creation increases by one unit the
lepton number of the medium.

Since the mantle of the proto-neutron star is neutron-rich, the opacity of νe

of a given energy is larger than the opacity of ν̄e with the same energy, and the
corresponding νe neutrinosphere has a larger radius than the ν̄e neutrinosphere.
Therefore, for a fixed neutrino energy ν̄e’s are emitted by a deeper and hotter layer
than νe’s, leading to a ν̄e mean energy larger than the νe mean energy. Moreover, the
spectra do not have a perfect black-body shape (Fermi–Dirac distribution), but are
pinched, i.e. both the low- and high-energy tails are suppressed with respect to the
tails of a black-body thermal spectrum with the same mean energy. Figures 15.7 and
15.8 show the time evolution of neutrino luminosity and average energy obtained,
respectively, with the numerical SN models in Ref. [1021] and [279]. Other similar
estimates of the neutrino luminosity and average energy have been obtained with
the numerical simulations in Refs. [735, 280]. Rough estimates of the time-integrated
average energies are

〈Eνe
〉 ≈ 10 MeV , 〈Eν̄e

〉 ≈ 15 MeV , 〈Eνx
〉 ≈ 20 MeV . (15.16)

Figures 15.9 and 15.10 show, respectively, the energy spectra of νe’s and ν̄e’s in the
numerical SN models of Ref. [1015] and [1021]. Note, however, that the model in
Ref. [1015] did not lead to a successful SN explosion, which at present is difficult
to reach in numerical simulations. The dashed curves in Fig. 15.10 correspond to
Fermi–Dirac approximations with the number distribution

dN

dE
=

120L

7π4 T 4

E2

eE/T + 1
, (15.17)

where T = 180ζ(3)〈E〉/7π4 � 〈E〉/3.1514 is the effective temperature (ζ(3) �
1.20206 is the Riemann zeta function of 3; see eqns (A.130) and (A.131)) and L =∫∞
0 dE E dN/dE is the total luminosity (released energy; eqn (A.128) is helpful for

the calculation of the integral). In most numerical simulations the time-integrated

83 The recoil kinetic energy of the final neutron is negligible. Indeed, momentum conser-
vation implies that the momentum pn of the final neutron is of the order of the momentum
pνe of the initial neutrino, which is practically equal to the neutrino energy, because of
the smallness of neutrino masses. Since the neutrino energy is smaller than a few tens of
MeV, the recoil kinetic energy of the neutron, p2

n/2mn, is suppressed by the large mass
mn of the neutron.
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Fig. 15.9. Luminosity spectrum of νe’s
at infinity at various pre- (thin solid
lines) and post-breakout (dashed
lines) times for a SN with a progeni-
tor of 11 solar masses [1015]. Time is
measured relative to the peak break-
out spectrum (thick solid line). The
thin solid lines correspond to 11.6,
5.1, and 1.3 ms before the peak and
the dashed lines to 4.2, 9.6, and 40.5
ms after the peak.

Fig. 15.10. Energy spectrum of ν̄e’s
in the numerical SN model of
Ref. [1021]. The time (after the
bounce) is indicated in the figure.
The dashed lines are the Fermi–Dirac
fits (with zero chemical potential)
which have the same luminosity
and average energy of the numerical
curves.

luminosities of the different flavor neutrinos are approximately equal. A better fit of
the spectra obtained in numerical SN simulations can be achieved adding a pinching
parameter η which acts as an effective chemical potential:

dN

dE
=

L

F (η)T 4

E2

eE/T−η + 1
, (15.18)

with F (η) =
∫∞
0 dxx3/(ex−η + 1). In this case, 〈E〉/T � 3.1514 + 0.1250 η +

0.0429η2 + O(η3). Typical values of η are ηνe
� 2, ην̄e

� 3, ηνx
� 1 [664].

Another widely used parameterization of the neutrino spectrum is [664, 665]

dN

dE
=

(1 + β)
1+β

L

Γ(1 + β)E
2

(
E

E

)β

e−(1+β)E/E , (15.19)

where L is the total energy released in neutrinos, E is the average neutrino energy,
and β is a parameter. The fitting values of E, β and L for the time-integrated ν̄e

and νx spectra in the calculations of Refs.[1021, 1015] are listed in Table 15.3, which
is reproduced from Ref. [88]. One can see that there are significant uncertainties on
the value of the average neutrino energy.
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Table 15.3. Fitting parameters of eqn (15.19) for the time-integrated ν̄e and
νx (i.e νµ, ν̄µ, ντ , ν̄τ ) spectra in three different calculations. Table reproduced
from Ref. [88]. In Ref. [88] it is assumed that in the models of Ref. [1015]
Lν̄e

= Lνx
= 5.0 × 1052 erg, although such equipartition is not realized in the

models, since the models of Ref. [1015] do not produce a SN explosion and the
total energy released in neutrinos is unknown.

Ref.
Mass
[M�]

Eν̄e

[MeV]
Eνx

[MeV]
βν̄e

βνx

Lν̄e

[erg]
Lνx

[erg]

[1021] 20 15.4 21.6 3.8 1.8 4.9 × 1052 5.0 × 1052

11 11.4 14.1 3.7 2.2 – –
[1015] 15 11.4 14.1 3.7 2.2 – –

20 11.9 14.4 3.6 2.2 – –

In the delayed supernova explosion scenario, the stalled shock lies at a radius of
about 100–300 km, well outside of the neutrinosphere. The post-shock temperature
is about 1.5 MeV and the density of the order of 108 g cm−3. The capture of a small
fraction, about 5–10% [285], of the thermal flux of neutrinos emitted from the
neutrinosphere could revive the shock, leading to the explosion. The largest energy
deposition is due to electron neutrinos and antineutrinos, which have a charged-
current cross-section on the free nucleons behind the shock that is larger than the
neutral-current cross-section of all neutrino types.

If enough energy is deposited behind the shock, about a half second after the
bounce the shock is revived and starts to sweep the outer layers of the star gen-
erating the explosion. However, most one-dimensional (i.e. spherically symmetric)
computer simulations [889, 735, 286, 1015, 734] do not generate a successful explo-
sion, which was recently obtained only by the Livermore group [1021] (they used the
so-called neutron finger convection in the proto-neutron star to enhance the early
neutrino luminosity, which leads to a large energy deposition behind the shock).
In recent years several groups have performed multidimensional simulations which
resulted in successful explosions [288, 469, 468, 290] and partial [281, 278] and
complete [794, 279] failures. The multidimensionality of the simulations is impor-
tant in order to take into account convection effects that enhance the efficiency
of the neutrino energy deposition behind the shock. Intense computational efforts
to perform accurate numerical multidimensional SN simulations are underway (see
Refs. [302, 303, 305, 304]).

While the shock is stalled, matter continues to accrete on the proto-neutron
star passing through the shock. During this so-called accretion phase the shocked
hot material behind the shock, composed mainly of free nucleons, electrons and
photons, is heated by the accretion and produces neutrinos and antineutrinos of all
flavors through the processes in eqn (15.9)–(15.13). Since the stalled shock is out
of the neutrinosphere, these neutrinos can free-stream out of the star and cause
the so-called hump in the neutrino luminosity curve shown in Figs. 15.7 and 15.8.
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The average neutrino energy is low during the hump because the dense matter in
the shock is opaque to high-energy neutrinos. As shown in Fig. 15.7, as the shock
gradually revives at about 0.5 s after the bounce, the matter density decreases and
the average neutrino energy increases.

Summarizing, in the prompt explosion scenario there are two phases of the
neutrino flux: first a brief and intense burst of prompt electron neutrinos from
shock breakout, with a degenerate spectrum of high energy, which is, however, so
brief that little energy and lepton number are carried away. Then there is a less
intense thermal emission of neutrinos of all flavors, which last for a few seconds and
carries away most of the binding energy of the neutron star. The total number of
emitted neutrinos exceeds by an order of magnitude the original lepton number of
the collapsed core.

In the delayed explosion scenario, in addition to the prompt electron neutrino
burst and the thermal emission of neutrinos of all flavors one expects an accretion
phase which prolongs the peak of the thermal neutrino luminosity over a time scale
of about half a second (hump).

The delayed explosion scenario is a sort of standard model of core-collapse super-
nova explosion. However, the possibility of shock revival through neutrino heating
is still under study (see Ref. [793, 285, 733, 795, 272]).

15.4 SN1987A

On 24 February 1987 a very bright SN of type II, SN1987A, was discovered in the
Large Magellanic Cloud, which is a satellite galaxy of the Milky Way, at a distance
of about 50 kpc from the solar system (see Refs. [1027, 1058]). At that time four
large underground neutrino detectors potentially sensitive to SN neutrinos were in
operation: Kamiokande-II [613, 615], IMB [242, 270, 1034], Baksan [64, 63, 318],
and LSD [346]. These detectors observed an unusual number of events with energy
of the order of 10 MeV within a time window of the order of 10 s in the hours before
the optical discovery of SN1987A. The events observed in the Kamiokande-II, IMB,
and Baksan happened at the same time (within uncertainties of the absolute time
calibration of the detectors and the random occurrence of the events), whereas
the LSD events have been recorded about five hours before those of the other
detectors, at a time when the other detectors did not see any signal. Therefore,
there is a controversy on the origin of the LSD events (see Refs. [361, 939]) and
usually the LSD events are not included in the analysis of SN1987A data. In the
following subsections we describe briefly the data of the Kamiokande-II, IMB and
Baksan detectors, which are used to set limits on neutrino properties.

Supernova SN1987A is the best studied of all SNe not only because of the
detection of its neutrinos but also because it was the first SN visible to the naked
eye after the Kepler SN in 1604. Furthermore, it is the only SN for which the
progenitor star is known: it was a blue supergiant star named Sanduleak −69◦202
[969].

The evolution of the remnant of SN1987A have been extensively studied in all
spectral bands: radio [770], infrared [266, 267], optical [799, 996, 560], ultraviolet
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[678, 969], and x-rays [602, 291, 961, 848, 1088, 850, 849] (see also Refs. [1027,
1058]). Although no compact remnant has been identified with certainty so far,
there is some indication of the presence of a 2.14 ms optical pulsar [799].

The observation of SN1987A neutrinos marked the beginning of extrasolar

system neutrino astronomy84. It has been one of the great achievements of the
Kamiokande detector, which was designed by Masatoshi Koshiba and earned him
the 2002 Nobel Prize in Physics.

15.4.1 Kamiokande-II

The Kamiokande-II water Cherenkov detector has been described in section 10.6.1
in the context of solar neutrino detection. After the optical discovery of supernova
SN1987A, the Kamiokande-II collaboration examined carefully their data looking
for a significant number of events above background in a time interval of the order
of 10 s and energy of the order of 10 MeV. They found such a collection of events at
7:35:35 UT of 23 February 1987. Unfortunately, before the discovery of supernova
SN1987A the Kamiokande-II collaboration did not think that an accurate time
measurement was necessary and the clock of the experiment was set by hand. As
explained in Ref. [615], “it would be straightforward after SN1987A to have made
an absolute calibration of the clock ..., but an abrupt power outage took place
in the Kamioka mine on 25 February 1987, and precluded that alternative mea-
sure”. Therefore, there is an uncertainty of about one minute in the Kamiokande-II
determination of the time in which the SN1987A neutrino burst passed the Earth.

Electron antineutrinos with energy larger than 1.8 MeV can be detected with the
inverse neutron decay reaction in eqn (12.13), with the cross-section in eqn (12.17).
The produced positron can be observed in water Cherenkov detectors, as in
Kamiokande-II. Since it is emitted almost isotropically, the information on the
incoming neutrino direction is lost. On the other hand, the energy of the inci-
dent ν̄e can be measured through the relation in eqn (12.14). The Kamiokande-II
detector could observe SN neutrinos also through the elastic scattering reaction in
eqn (5.5), which was used for the solar neutrino detection. However, for SN neu-
trinos the elastic scattering cross-section is much smaller than the inverse neutron
decay cross-section: neglecting me and mn −mp, from eqns (12.17) and (5.33), we
have

σν̄ep
CC � 9 × 10−44 E2

ν̄e

MeV2 cm2 and σνee
ES � 9 × 10−45 Eνe

MeV
cm2 . (15.20)

Table 15.4 shows the main characteristics of the 16 events measured in the
Kamiokande-II detector during the supernova SN1987A neutrino burst. It is impor-
tant to keep in mind that it is impossible to know with certainty which events have
been really produced by neutrinos coming from SN1987A and which events are
due to background. Therefore, in Table 15.4 we listed all the known events, taken
from Refs. [615, 754], even those that are likely to be due to background and

84 Solar neutrino astronomy was started by Raymond Davis Jr., co-winner of the 2002
Nobel Prize in Physics, with the Homestake chlorine experiment.
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Table 15.4. Time t, energyEe, and angle θe with respect to the direction opposite
to SN1987A of the Kamiokande-II events [615, 754]. B(Ee), PB(prompt), and
PB(delayed) are, respectively, the event background rate and the probability
that the event is due to background in the best-fit prompt and delayed supernova
explosion models calculated in Ref. [754]. The event number 6 is reported in the
original Kamiokande-II publication [615], but is excluded in their signal analysis
because of a low number of hit photomultipliers. The events numbered 13–16
are not reported in the original Kamiokande-II publications, but have been used
in the accurate analysis of Ref. [754] in which background effects were taken into
account. The angles of these events have not been reported in Ref. [754].

Kamiokande-II

Event
Time t

(s)
Energy Ee

(MeV)
Angle θe

(degrees)
B(Ee) [754]

(s−1)
PB [754]
(prompt)

PB [754]
(delayed)

1 0 20.0 ± 2.9 18 ± 18 1.6 × 10−5 5.8 × 10−5 2.4 × 10−5

2 0.107 13.5 ± 3.2 40 ± 27 1.9 × 10−3 6.3 × 10−3 1.9 × 10−3

3 0.303 7.5 ± 2.0 108 ± 32 2.9 × 10−2 0.16 4.7 × 10−2

4 0.324 9.2 ± 2.7 70 ± 30 1.2 × 10−2 5.4 × 10−2 1.7 × 10−2

5 0.507 12.8 ± 2.9 135 ± 23 2.1 × 10−3 7.6 × 10−3 3.2 × 10−3

6 0.686 6.3 ± 1.7 68 ± 77 3.7 × 10−2 0.25 0.15
7 1.541 35.4 ± 8.0 32 ± 16 4.5 × 10−5 1.2 × 10−3 1.5 × 10−3

8 1.728 21.0 ± 4.2 30 ± 18 8.2 × 10−5 5.7 × 10−4 1.0 × 10−3

9 1.915 19.8 ± 3.2 38 ± 22 1.5 × 10−5 9.9 × 10−5 1.9 × 10−4

10 9.219 8.6 ± 2.7 122 ± 30 1.5 × 10−2 0.33 0.49
11 10.433 13.0 ± 2.6 49 ± 26 1.9 × 10−3 0.11 0.12
12 12.439 8.9 ± 1.9 91 ± 39 1.6 × 10−2 0.54 0.60
13 17.641 6.5 ± 1.6 ? 3.8 × 10−2 0.92 0.89
14 20.257 5.4 ± 1.4 ? 2.9 × 10−2 0.97 0.94
15 21.355 4.6 ± 1.3 ? 2.8 × 10−2 0.97 0.93
16 23.814 6.5 ± 1.6 ? 3.8 × 10−2 0.99 0.94

were excluded by all statistical analyses of the data, except for the very accurate
and reliable analysis of Ref. [754] in which background effects were properly taken
into account. For each event we list also the estimated background rate B(Ee)
calculated in Ref. [754], which depends on the event energy Ee, and the probabil-
ities PB(prompt) and PB(delayed) that the event is due to background according
to the best-fit prompt and delayed supernova explosion models (see section 15.3)
calculated in Ref. [754].

The event number 6 is reported in the original Kamiokande-II publication [615],
but is excluded in their signal analysis because of a low number of hit photomul-
tipliers, which implies a significant probability that it is a background event. The
events numbered 13–16 are not reported in the original Kamiokande-II publication
[615] (although they can be seen in Fig. 9 of Ref. [615]), but have been used in
the accurate analysis of Ref. [754]. From the last two columns one can see that,
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according to the calculation in Ref. [754], these events have a high probability to be
due to background. However, the probability that at least one of them is a signal
event is not negligible and it is correct to include them in the data analysis, as done
in Ref. [754]. The angles of the events numbered 13–16 have not been reported in
Ref. [754], since all the events have been assumed to be due either to background or
to the inverse neutron decay reaction in eqn (12.13) in which the positron is emitted
almost isotropically. This assumption is acceptable because of the dominance of the
cross-section of the inverse neutron decay reaction (see eqn (15.20)). In fact, most
authors agree that it is most likely that all Kamiokande events have been generated
through the inverse neutron decay reaction [928].

Nevertheless, some authors [615, 912] have speculated on the fact that the first
event point is almost in the opposite direction of the LMC85, which could be an
indication that it is due to an electron neutrino interacting in the detector through
the elastic scattering process in eqn (5.5).

15.4.2 IMB

The IMB water Cherenkov detector has been described in section 11.2.2 in the
context of atmospheric neutrino detection. On 23 February 1987 the IMB detector
recorded eight neutrino-produced events with energies between 20 and 40 MeV
in a time interval of 6 s starting from 7:35:41.37 UT (the clock had an absolute
uncertainty of 50 msec and a relative uncertainty of 0.5 msec). The background
rate is negligible, about two per day in the range 20–2000 MeV.

The important characteristics of the eight IMB events are listed in Table 15.5.
Since these events are most likely due to the inverse neutron decay process in
eqn (12.13), the neutrino energy is given by eqn (12.14).

Taking into account the trigger efficiency and about 13% dead time of the detec-
tor, the IMB collaboration estimated that 35±15 neutrino events with energy above
20 MeV occurred in the detector [270].

15.4.3 Baksan

The Baksan Underground Scintillation Telescope [64, 63, 318] is located in the
Baksan neutrino Observatory at a depth of 850 mwe in the Baksan Valley in North
Caucasus, Russia. The telescope consists of 3150 parallelepipedal tanks filled with
oil-based liquid scintillator viewed by a 15 cm photomultiplier. The energy thresh-
old for SN neutrinos is about 10 MeV. The total target mass is about 330 ton. The
background, mainly caused by cosmic ray muons and discharges in the photomul-
tipliers, is relatively large. Therefore, only 1200 inner tanks with lower background
and a mass of about 130 ton are used as signal triggers, and the inner tanks plus
part of the external tanks are used as fiducial volume, with a mass of about 200 ton.

85 In the first Kamiokande-II publication [613], the angle of the second event was
reported to be 15 ± 27, pointing almost backward from the direction of the Large
Magellanic Cloud. This angle was corrected in the second Kamiokande-II publication
[615].
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Table 15.5. IMB supernova SN1987A events from Ref. [270]. The time of each
event is relative to the first one, which occurred at 7:35:41.37 UT of 23 February
1987. There is an additional systematic uncertainty in the energy scale estimated
to be about 10%. The background rate is negligible (about two events per day).

IMB

Event
Time t

(s)
Energy Ee

(MeV)
Angle θe

(degrees)

1 0 38 ± 7 80 ± 10
2 0.412 37 ± 7 44 ± 15
3 0.650 28 ± 6 56 ± 20
4 1.141 39 ± 7 65 ± 20
5 1.562 36 ± 9 33 ± 15
6 2.684 36 ± 6 52 ± 10
7 5.010 19 ± 5 42 ± 20
8 5.582 22 ± 5 104 ± 20

As water Cherenkov detectors, the Baksan Underground Scintillation Telescope
is mostly sensitive to electron antineutrinos which interact with protons through
the inverse neutron decay reaction in eqn (12.13).

At the time of SN1987A, the Baksan Underground Scintillation Telescope had
been in operation for about six years. During this period of time, including 23
February 1987, it never happened that more than seven events were observed in
an interval of 20 s. The Baksan collaboration was expecting about 35 antineutrino
events in the trigger mass and about 54 events in the fiducial mass for a SN at a
distance of 10 kpc (i.e. within the Milky Way). In the period from 1 to 23 February
1987 the Baksan Underground Scintillation Telescope did not measure pulse clusters
that differ significantly from the background. Therefore, the Baksan collaboration
could not claim an independent observation of SN1987A neutrinos. However, when
supplemented by the information of the Kamiokande-II and IMB observations, the
Baksan collaboration identified five events in a 10 s interval that may overlap with
the Kamiokande-II and IMB, taking into account an uncertainty of +2

−54 s in the
absolute Baksan clock measurement. The Baksan clock had a relative accuracy of
about one millisecond and a nominal absolute accuracy of about 2 s, but on 11
March 1987 it was found that the clock had developed a forward shift in time of
54 s that could have happened in one step or gradually since 17 February 1987.
Since the Baksan clock time of the five candidate SN events is about 30 s after
the IMB events (which were measured with absolute time uncertainty of about
50 msec), the simultaneous occurrence of Baksan and IMB events is possible.

The main characteristics of the five Baksan events are listed in Table 15.6, where
one can see that the background rate is rather high. For this reason, most authors
did not include the Baksan data in the analysis of SN1987A neutrino events. How-
ever, the authors of Ref. [754] properly took into account the background rate and
proved that the Baksan events are compatible with a SN signal. The probabilities
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Table 15.6. Time t, energy Ee, and angle θe with respect to the direction oppo-
site to SN1987A of the Baksan events [615, 754]. B(Ee), PB(prompt), and
PB(delayed) are, respectively, the event background rate and the probability
that the event is due to background in the best-fit prompt and delayed supernova
explosion models calculated in Ref. [754].

Baksan

Event
Time t

(s)
Energy Ee

(MeV)
B(Ee) [754]

(s−1)
PB [754]
(prompt)

PB [754]
(delayed)

1 0 12.0 ± 2.4 8.4 × 10−4 2.1 × 10−2 4.9 × 10−3

2 0.435 17.9 ± 3.6 1.3 × 10−3 3.6 × 10−2 1.9 × 10−2

3 1.710 23.5 ± 4.7 1.2 × 10−3 7.4 × 10−2 0.12
4 7.687 17.6 ± 3.5 1.3 × 10−3 0.30 0.35
5 9.099 20.3 ± 4.1 1.3 × 10−3 0.55 0.52

PB(prompt) and PB(delayed) that an event is due to background according to the
best-fit prompt and delayed supernova explosion models in Ref. [754] are listed in
Table 15.6 and show that some of the Baksan events could be due to SN electron
antineutrinos.

15.4.4 Comparison with supernova theory

The neutrino events have been compared with theoretical predictions in many
papers [146, 971, 928, 929, 939, 701, 999, 754]. Although only about two dozens
out of the estimated 1028 neutrinos that passed through the Earth were detected,
these few events delivered us precious information about the physics of core-collapse
SNe. Most authors agree that the detected neutrino events are compatible with the
general features of the standard core-collapse SN scenario described in section 15.3.

In the accurate analysis in Ref. [754] it was found that models of supernova
explosion with the delayed mechanism explained in section 15.3 are about 100 times
more probable than prompt explosion models. The electron antineutrino average
energy is about 15 MeV, as expected from the cooling of the proto-neutron star
(see eqn (15.16)). The cooling time scale is about 4 s, and the time scale of the
accretion component is about 0.7 s, in agreement with numerical calculations. The
total inferred number of electron antineutrinos emitted is about 3 × 1057, imply-
ing a binding energy of the neutron star of about 3 × 1053 erg, as expected from
simple estimates (see section 15.3). Unfortunately, as explained in Ref. [754], the
SN1987A neutrino data are too sparse to obtain more detailed information on the
SN mechanism.
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15.5 Neutrino mass

The basic idea of constraining neutrino masses from the observation of SN neutrinos
was discussed first by Zatsepin in 1968 [1083] and later by Cabibbo [293] and Piran
[874] in the early 1980s.

An extremely relativistic neutrino with mass m � E propagates with a group
velocity

v =
p

E
=

√
1 − m2

2E2
� 1 − m2

2E2
. (15.21)

If a neutrino flux is emitted by a source at a distance D, the time-of-flight delay of
a massive neutrino with respect to a massless particle (as a photon or a graviton)
emitted by the same source is

∆t =
D

v
−D � m2

2E2
D = 2.57

(m
eV

)2
(

E

MeV

)−2
D

50kpc
s . (15.22)

If neutrinos are emitted in a burst with intrinsic duration ∆T0, the observation
of events separated by a time interval larger than ∆T0 would provide a direct
measurement of the neutrino mass (assuming D known and E measurable). If the
neutrino energy spectrum has mean value E and width ∆E, neutrinos produced at
the same time with different energies would reach a detector at a distance D in the
time interval

∆T � m2

E2
D

∆E

E
. (15.23)

The model-independent sensitivity to the neutrino mass is found by requiring this
time interval to be smaller than the intrinsic duration of the neutrino burst:

∆T < ∆T0 ≤ ∆Tobs , (15.24)

where ∆Tobs is the observed time interval of the neutrino burst. The inequalities
in eqn (15.24) imply the upper bound

m � E

√
E

∆E

∆Tobs

D
� 14 eV

(
E

10 MeV

)√
E

∆E

(
∆Tobs

10 s

)1/2 (
50 kpc

D

)1/2

.

(15.25)
It is clear that a large distance, a quick neutrino burst, a low neutrino energy,
and a wide energy range are advantageous for the measurement of an effect due to
the neutrino mass. Unfortunately, increasing the distance decreases the neutrino
flux at the detector in proportion to D−2 and decreasing the energy decreases the
detection event rate. In practice, the energy of neutrinos coming from a SN is of the
order of 10 MeV and the existing detectors allow only the observation of neutrinos
produced by SNe in our galaxy or in its satellites (the Small and Large Magellanic
Clouds).

Supernova SN1987A occurred in the Large Magellanic Cloud, at a distance of
about 50 kpc from the solar system. The measured neutrino burst had an average
energy E � 15 MeV, a width ∆E ∼ 15 MeV, and a time duration ∆Tobs � 12 s.
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Assuming that the observed events are due to electron antineutrinos and neglecting
neutrino mixing, eqn (15.25) implies the model-independent bound86 [939]

mνe
� 30 eV . (15.26)

Many authors have calculated upper bounds on the electron antineutrino mass from
the SN1987A neutrino data with specific model-dependent assumptions, often well-
motivated, about the intrinsic spread of the neutrino burst, obtaining upper bounds
for mνe

lying in the 5–30 eV range [143, 1004, 107, 928, 939, 701, 972, 13]. The
accurate analysis in Ref. [754] yielded

mνe
< 5.7 eV (95% CL) . (15.27)

15.6 Neutrino mixing

Since neutrino are mixed, an electron neutrino does not have a definite mass, but
it is a superposition of different massive neutrinos. In this case, mνe

must be con-
sidered as an effective electron neutrino mass, which represents the masses of the
massive neutrinos which have a substantial mixing with νe.

In the three-neutrino mixing scenario discussed in chapter 13, νe has large mix-
ings only with ν1 and ν2. However, since the squared-mass differences are very small
(see Table 13.2), the kinematical upper limit in eqns (15.26) and (15.27) apply to
all three neutrino masses:

mk � 30 eV (model-independent) , (15.28)

mk < 5.7 eV (95% CL) [754] , (15.29)

for k = 1, 2, 3.
It is, however, still possible that the electron antineutrino has a small mixing

with one or more heavy massive neutrinos. The interaction probability of a heavy
massive neutrino νh is proportional to |Ueh|2, where Ueh is the element of the lepton
mixing matrix connecting the electron neutrino to the heavy neutrino. Since |Ueh|2
is small, the SN1987A Kamiokande-II and Baksan data do not place any constraint
on mh, because these detectors had a relatively high background rate and a weakly
interacting heavy massive neutrino arriving on the Earth is indistinguishable from
the background. On the other hand, the IMB detector had a negligible background
and the IMB collaboration found no neutrino events in the 3.9 hours after the
SN1987A neutrino burst. Since the IMB neutrino burst consisted of eight events,
there is some probability that a heavy neutrino arriving much later interacts in the
detector if |Ueh|2 � 1/8. From eqn (15.22), such a neutrino should be lighter than
about 1.1 keV in order to arrive on the Earth within 3.9 hours. Therefore, using

86 Note that the mass of a particle and its antiparticle are equal (see chapter 2).
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the model-independent limit in eqn (15.26), we estimate

mh � 30 eV or mh � 1.1 keV for |Ueh|2 �
1

8
. (15.30)

For smaller values of |Ueh|2, the SN1987A neutrino data do not put any constraint
on mh.

From the results of the CHOOZ long-baseline reactor ν̄e → ν̄e oscillation exper-
iment (see section 12.2.2), we know that the mixing of νe with a heavy neutrino νh

is small. In fact, the effective mixing angle for two-neutrino ν̄e → ν̄h oscillations is
sin2 2ϑeff

eh = 4|Ueh|2
(
1 − |Ueh|2

)
and the limit in eqn (12.19) implies that

|Ueh|2 � 2.6 × 10−2 (90% CL) . (15.31)

In this case, the SN1987A neutrino data do not put any constraint on mh. However,
if the absolute value of the reactor ν̄e flux is considered to be uncertain, the spectral
distribution of CHOOZ data do not put any limit on the mixing of νe with a
heavy neutrino νh (see Fig. 12.6) and the SN1987A limit in eqn (15.30) becomes
interesting.

Since the Kamiokande-II SN1987A events appear to be clustered in two groups
separated by a time interval of about 10 s, some authors [335, 631] have claimed
that there is evidence of two mass groupings at about 4 eV and 22 eV [335]. How-
ever, these authors had to assume that electron antineutrinos are emitted from
the SN in a very short time, of the order of 0.1 s. This assumption is contrary to
our understanding of the core-collapse SN mechanism, according to which electron
antineutrinos are emitted during the cooling phase of the proto-neutron star on a
time scale of about 10 s (see section 15.3). Moreover, the existence of neutrinos with
masses of about 4 eV and 22 eV which have large mixing with the electron antineu-
trino is excluded by the tritium upper bound on the effective electron antineutrino
mass (see section 14.1).

Other information on neutrino mixing was obtained from SN1987A data con-
sidering the effect of vacuum oscillations or MSW resonant transitions on the fluxes
of different flavors [758, 806, 649, 648, 759, 332, 168]. Large ν̄x � ν̄e transitions
are disfavored, because they would imply a spectrum of ν̄e’s on the Earth which is
more energetic than the one observed.

15.7 Other neutrino properties

For the sake of completeness, we briefly list some of the other neutrino properties
that have been constrained by using the SN1987A neutrino data.

Since electron antineutrinos arrived at the Earth from a distance of about 50 kpc,
their lifetime τν̄e

is constrained by [615, 939]

τν̄e
� 1.6 × 105 (mνe

/Eν̄e
) yr . (15.32)

The total amount of emitted energy inferred from the measured ν̄e flux is com-
patible with the binding energy of a neutron star only if the number Nν of neutrino
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flavors is limited by [409, 939, 701]

Nν � 6 . (15.33)

The cooling of the proto-neutron star constrains the Dirac masses of νµ and ντ

by [886, 570, 506, 1029, 287]

mDirac
νµ

� 14 keV

mDirac
ντ

� 14 keV or mDirac
νµ

� 34 MeV . (15.34)

The absence of γ emission accompanying the SN1987A neutrino burst implies
a lower bound between about 106 and 1010 yr for the lifetime of a heavy massive
neutrino with mass 2me < mh � 100 MeV which has a substantial mixing with the
active light flavor neutrinos and decays via νh → νk + e+ + e− [140, 350, 1004].

The observed 10 s time scale of cooling of the proto-neutron star implies an
upper bound [550, 719, 166, 165].

µνe
� 10−12 µB (15.35)

for the electron neutrino magnetic moment which could flip neutrino helicity
through scattering with electrons and nucleons or through interactions with the
strong magnetic field, generating sterile right-handed neutrinos that escape freely,
cooling the proto-neutron star in less than 1 s.

The absence of a similar cooling by right-handed neutrino emission constrains
also the charge radius of right-handed neutrinos by [569]

〈r2〉R � 2 × 10−33 cm2 . (15.36)

The electric charge of the electron neutrino is bounded by [163]

qνe
� 10−17 e , (15.37)

otherwise the galactic magnetic field would have lengthened the neutrino path and
neutrinos of different energy could not have arrived on the Earth within a few
seconds.

15.8 Future

Several detectors sensitive to SN neutrinos are currently in operation (Super-
Kamiokande [768], SNO [1040], LVD [35], KamLAND [995], AMANDA [49], Mini-
BooNE [954]) or under preparation or study (see Refs. [309, 195, 791, 520, 949]).
Many authors have studied future possibilities of SN neutrino detection and its
potential sensitivity to neutrino masses (see Refs. [289, 441, 1022, 193, 190, 191,
192] and references therein). Current and future SN neutrino detectors are much
larger than the detectors in operation during 1987. The order of magnitude of
the number of events expected when the next galactic SN will explode is 104. Such
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impressive statistics will be precious in oder to test our understanding of SN physics
and improve our knowledge of neutrino properties.

There is a general consensus among the experts in the field that future SN
neutrino detections cannot be sensitive to an effective electron neutrino mass smaller
than a few eV, because of the intrinsic spread in time of the neutrino burst. In
Ref. [1022] it has shown that using the correlation between neutrino energy and
arrival time implied by eqn (15.22), it is possible to reach a sensitivity of about
3 eV for the effective electron neutrino mass. The authors of Ref. [191, 192] have
shown that an abrupt termination of the neutrino signal due to black-hole formation
may allow the Super-Kamiokande detector to be sensitive to an electron neutrino
mass as low as 1.8 eV.

However, since the current upper limit for the effective electron neutrino mass
is already about 2 eV (see section 14.1) and the future KATRIN experiment [839]
will be able to push the limit down to about 0.3 eV, a SN limit on mνe

of the
order if 1 eV would not look extremely exciting. Therefore, several authors have
concentrated on the possibility of constraining the effective masses of νµ and ντ

[289, 441, 193, 190, 191, 192], whose laboratory limits are well above the eV scale
(see section 14.1).

The flux of SN νµ, ν̄µ, ντ , and ν̄τ is of the same order as that of νe and ν̄e,
but the problem is to distinguish them, because they can be observed only through
neutral-current interactions, which are flavor blind (the energy is too low to produce
µ or τ in charged-current reactions). Therefore, the νµ, ν̄µ, ντ , ν̄τ signal can only be
extracted on a statistical basis by subtracting the νe and ν̄e contributions from the
measured neutral-current signal. The νe and ν̄e contributions are estimated from
the νe and ν̄e charged-current signals.

Unfortunately, in the usual neutral-current neutrino interactions (as ν + d →
p + n + ν used in SNO; see section 10.6.3), the energy of the neutrino is not
determined. Therefore, it is not possible to use the correlation between neutrino
energy and arrival time in eqn (15.22) for the measurement of neutrino masses,
and the upper limit on the effective masses of νµ and ντ cannot be pushed below
about 30 eV [289, 441, 193]. An interesting exception is the abrupt termination
of the neutrino signal due to black-hole formation, which may allow a sensitivity
to the effective masses of νµ and ντ as low as about 6 eV [191, 192]. Another
promising technique [194] is the measurement of the recoil proton kinetic energy in
neutral-current neutrino-proton elastic scattering,

ν + p→ ν + p . (15.38)

For an incoming neutrino energy Eν , the proton kinetic energy Tp ranges from zero
to Tmax

p , given by

Tmax
p =

2E2
ν

mp + 2Eν
� 2E2

ν

mp
, (15.39)

which is obtained when the neutrino recoils backwards with momentum Eν and the
proton recoils forward with momentum 2Eν . In this case, the neutrino energy can
be directly obtained from the proton kinetic energy. Since the recoil protons have
a kinetic energy of the order of 1 MeV, they are nonrelativistic and cannot be seen
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in water Cherenkov detectors. However, they can be observed in liquid scintillator
detectors such as KamLAND [995] and Borexino [1008]. Unfortunately, the proton
direction cannot be measured in scintillator detectors, denying the possibility of
reconstructing the neutrino energy from simple kinematics on an event-by-event
basis. However, the authors of Ref. [194] have shown that a fit of the proton kinetic
energy distribution could allow a measurement of the neutrino temperature and the
total neutrino energy with an accuracy of about 10%.

Obviously, a major problem in SN neutrino physics is the actual occurrence of
a core-collapse SN at a galactic scale distance. As we have seen in section 15.2,
the estimated rate of core-collapse SNe in the Milky Way is of the order of a few
per century. Since the corresponding waiting time of a SN neutrino detector may
be very long, there is active research to study the feasibility of huge detectors that
could observe a few dozens of events produced by a SN in the local group of galaxies
(see Ref. [309]).



16

COSMOLOGY

We must fall back upon the old axiom that when all other con-
tingencies fail, whatever remains, however improbable, must
be the truth.
A.C. Doyle, The Adventure of the Bruce–Partington Plans

16.1 Basic general relativity

The Standard Cosmological Model (see Refs. [1052, 832, 689, 858, 911, 856, 325,
213]) is based on the Einstein equation of gravity87

Rµν − 1

2
R gµν − Λ gµν = 8πGN T

µν . (16.1)

Here, gµν is the symmetric metric tensor, which, in general relativity, describes
the curvature of space-time. In an empty and flat space-time, gµν reduces to its
Minkowski limit diag(1,−1,−1,−1), which is the metric tensor of special relativity
(see appendix B). In eqn (16.1), Λ is the cosmological constant and GN is Newton’s
constant of gravitation. The tensor T µν is the symmetric energy–momentum tensor
of matter and radiation, which generates the gravitational field. The Ricci tensor

Rµν and Ricci scalar R are defined by

Rµν = Rαµν
α , R = Rµ

µ , (16.2)

where Rµ
νρσ is the Riemann tensor

Rµ
νρσ =

∂Γµ
νσ

∂xρ
−
∂Γµ

νρ

∂xσ
+ Γµ

ηρ Γη
νσ − Γµ

ησ Γη
νρ . (16.3)

The Christoffel symbols

Γµ
αβ =

1

2
gµρ

(
∂gβρ

∂xα
+
∂gαρ

∂xβ
− ∂gαβ

∂xρ

)
(16.4)

determine the motion of free-falling bodies through the geodesic equation

d2xµ

dτ2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 , (16.5)

87 We use the conventions of Ref. [689].
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where dτ is the infinitesimal proper-time interval given by

dτ2 = gαβ dxα dxβ , (16.6)

with gαβ and gαβ related by

gαρ gρβ = δα
β . (16.7)

In general relativity, vectors and tensors have definite transformation properties
under general coordinate transformations x → x′. A contravariant four-vector V µ

transforms as dxµ and a covariant four-vector Vµ transforms as ∂µ:

V ′µ =
∂x′µ

∂xν
V ν , W ′µ =

∂xν

∂x′µ
Wν . (16.8)

Hence, the scalar product V ·W = V µWµ is invariant. The transformation rules in
eqn (16.8) are easily generalized for tensors of higher rank with contravariant and
covariant indices. For example, the rank-two covariant metric tensor gαβ transforms
as

g′αβ =
∂xρ

∂x′α
∂xσ

∂x′β
gρσ . (16.9)

Hence, the infinitesimal proper-time interval in eqn (16.6) is invariant. Using
eqn (16.7), it is possible to show that the rank-two contravariant metric tensor
gαβ correctly transforms as

g′αβ =
∂x′α

∂xρ

∂x′β

∂xσ
gρσ . (16.10)

Note that the Christoffel symbols Γµ
αβ are not the components of a tensor, since

Γ′µαβ =
∂x′µ

∂xν

∂xρ

∂x′α
∂xσ

∂x′β
Γ′νρσ +

∂x′µ

∂xν

∂2xν

∂x′α∂x′β
. (16.11)

The Equivalence Principle, based on the observed equality of inertial and
gravitational masses, states that a free-falling observer does not experience any
gravitational effect. This means that a free-falling observer can describe space-time
with a metric which is locally flat, i.e. it reduces locally to the Minkowski metric
and has locally vanishing Christoffel symbols. In this case, the geodesic equation
(16.5) is reduced locally to the special relativity equation of motion for an inertial
body, d2xµ/dτ2 = 0.

Many macroscopic systems can be considered, with a good approximation, as
perfect fluids, i.e. systems composed of weakly interacting objects in which an
observer moving with the velocity of the fluid sees the fluid as isotropic. This
happens if the mean free path between collisions is small with respect to the scale
of lengths used by the observer, so that the observer sees an average distribution
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of objects. The energy–momentum tensor of a perfect fluid is

T µν = (ρ+ p)uµ uν − p gµν , (16.12)

where ρ is the energy density, p is the pressure, and uµ = dxµ/dτ is the four-velocity
of the fluid. In the rest frame of the fluid, where uµ = (1, 0, 0, 0), we have

T µν =

⎛⎜⎜⎝
ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞⎟⎟⎠ . (16.13)

Energy–momentum conservation implies that for any volume V

d(ρV ) + p dV = 0 . (16.14)

This is the first law of thermodynamics

d̄ Q = dU + d̄ L , (16.15)

where d̄ Q = 0 is the heat given to the system, dU = d(ρV ) is the variation
of internal energy, and d̄ L = p dV is the work done by the system. Here, dU
is an exact differential and U(T, V ) is a function of state of the system (T is the
temperature). On the other hand, d̄ Q and d̄ L are not exact differentials and cannot
be integrated.

The cosmological constant Λ can be interpreted as the energy density of the
vacuum, also called the dark energy, which is defined as the state of lowest attainable
energy. With this interpretation, the contribution of the cosmological constant in
the Einstein equation (16.1) can be moved from the left-hand side to the right-hand
side as a contribution to the energy–momentum tensor given by

T µν
Λ =

Λ

8πGN
gµν . (16.16)

Comparison with eqn (16.13) shows that in a locally inertial frame a cosmological
constant is equivalent to a perfect fluid with constant energy density

ρΛ =
Λ

8πGN
, (16.17)

and constant negative pressure
pΛ = −ρΛ . (16.18)

A negative pressure can be puzzling at first sight, but it is easily shown to be a
consequence of the energy conservation equation (16.14), which can be written as

dρ = − (ρ+ p) dV . (16.19)

For a normal fluid with positive pressure, an increase in volume implies a decrease
of energy density. The energy density can remain constant only if p = −ρ. In other
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words, if we take a volume V with constant energy density ρΛ and increase it by dV ,
the total energy increases by ρΛdV . In order to perform such an operation, energy
must be supplied to the system by performing on it the work −pΛ dV = ρΛdV ,
which shows that pΛ = −ρΛ.

Including in the energy–momentum tensor the vacuum contribution in
eqn (16.16), we have

T µν = T µν
M + T µν

R + T µν
Λ , (16.20)

where the subscripts M and R denote, respectively, matter and radiation. Einstein
equation (16.1) can now be written in the simpler form

Rµν − 1

2
R gµν = 8πGN T

µν . (16.21)

Matter and radiation must be treated separately, because they have different
equations of state. Matter implies nonrelativistic particles with vanishing pressure:

pM = 0 , (16.22)

whereas radiation implies relativistic particles with

pR =
1

3
ρR . (16.23)

It is convenient to write the general equation of state

pi = wi ρi , (16.24)

with i = M,R,Λ and

wM = 0 (matter) , (16.25)

wR = 1/3 (radiation) , (16.26)

wΛ = − 1 (vacuum energy) . (16.27)

In section 16.3, we will see that the different equations of state of matter, radiation,
and vacuum energy imply that their energy densities evolve in very different ways
in the history of the Universe.

16.2 Robertson–Walker metric

Since observations of the Universe have shown that it is spatially homogeneous
and isotropic88 on large scales (� 100 Mpc), the Standard Cosmological Model (see
Refs. [1052, 689, 858, 911, 856]) assumes that there is a frame in which the total

88 Note that isotropy for two observers at different locations in space implies homogene-
ity. The assumption of spatial homogeneity and isotropy of the Universe is historically
known as the cosmological principle. By contrast, the perfect cosmological principle
assumes that the Universe does not change in time. This principle, which has generated
the steady state cosmological model, has been refuted by observations.
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matter and radiation of the Universe can be described on large scales by a perfect
fluid with the energy momentum tensor in eqn (16.13). In such a comoving frame,
the geometry of space-time is described by the Robertson–Walker metric

dτ2 = dt2 −R2(t)

[
dr2

1 − k r2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (16.28)

On average, galaxies are at rest in the comoving frame described by the Robertson–
Walker metric, which is defined as the frame in which the cosmic microwave
background radiation (CMBR) is isotropic.

The scale factor R(t) in the Robertson–Walker metric has dimension of length
and describes the expansion of the Universe as a function of time t. In eqn (16.28),
k is the spatial curvature constant normalized to

k =

⎧⎨⎩
−1 open Universe ,
0 flat Universe ,
+1 closed Universe .

(16.29)

The comoving radial coordinate r is dimensionless and time-independent. If k = 1,
the three-dimensional space is finite and positively curved. It can be considered
as the three-dimensional surface of a hypersphere with radius R(t) in the four-
dimensional Euclidean space. In this case, the value of r ranges from 0 to 1. If
k = 0, the three-dimensional space is infinite and flat, i.e. Euclidean. If k = −1,
the three-dimensional space is infinite and negatively curved (negative curvature
can be visualized as that of the two-dimensional surface of a saddle). For k = 0 and
k = −1, the value of r ranges from 0 to infinity.

In order to illustrate the spatial geometry described by the Robertson–Walker
metric, we can consider a circle of coordinate radius r in the φ = const. plane,
whose circumference is 2πR(t)r. The physical radius is given by R(t)Ak(r), with

Ak(r) =

∫ r

0

dr′√
1 − k r′2

=

⎧⎨⎩ arcsin r for k = +1 ,
r for k = 0 ,
arcsinh r for k = −1 .

(16.30)

Hence, the physical radius is equal to the Euclidean R(t) r only for k = 0, i.e. if
the spatial geometry is flat. If k = +1, the physical radius is larger than R(t) r.
On the other hand, if k = −1, the physical radius is smaller than R(t) r. This is
illustrated in Fig. 16.1, which shows Ak(r) as a function of r in the three cases.
Similarly, eqn (16.30) gives the radius of a two-dimensional sphere of coordinate
radius r, having area 4πR2(t)r2.

The physical distance, also called the proper distance, at the time t between two
objects at coordinate radii r1 = 0 and r2 = r is given by

dp(t) = R(t)

∫ r

0

dr′√
1 − k r′2

. (16.31)

The physical distance in practice is not measurable, because its measurement would
require a set of synchronized measurements of local distances all along the line
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Fig. 16.1. The function Ak(r) in eqn (16.30) for k = +1 (solid line), for k = 0
(dashed line), and for k = −1 (dotted line).

between the two objects. Since we are limited to observations from the Earth, we
cannot measure the proper distance to comoving astrophysical objects. However,
there are other distances which are measurable, and hence very useful for the cos-
mological interpretation of astrophysical data. The most interesting ones are the
luminosity distance and the angular diameter distance presented, respectively, in
sections 16.2.3 and 16.2.4.

16.2.1 Geodesic motion

It is useful to consider the geodesic equation (16.5) in order to find the motion of
an object in free-fall in the Robertson–Walker metric. Let us write the geodesic
equation as

duµ

dτ
+ Γµ

αβ u
α uβ = 0 , (16.32)

where uµ = dxµ/dτ is the four-velocity of an object. Let us consider the four-
velocity89 uµ in the comoving frame described by the Robertson–Walker metric.
Considering the µ = 0 component and taking into account that the only non-
vanishing components of Γ0

αβ in the comoving frame are Γ0
kj = −gkjṘ/R, we

obtain

du0

dτ
+
Ṙ

R
|�u|2 = 0 , (16.33)

89 The four-velocity uµ can be expressed in terms of the ordinary three-velocity �v =

d�x/dt as uµ = (γ , γ�v), where γ =
`
1 − |�v|2

´−1/2
, with |�v|2 = −gkj v

k vj . The three-
velocity �v of an object in the comoving frame is usually called the peculiar velocity.
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where |�u|2 = −gkju
kuj. Since90 u2 = 1, we have (u0)2 − |�u|2 = 1 and u0 du0 =

|�u| d|�u|, which allows us to write eqn (16.33) as

1

u0

d|�u|
dτ

+
Ṙ

R
|�u| = 0 . (16.34)

Finally, since u0 = dt/dτ , we obtain

1

|�u|
d|�u|
dt

= − Ṙ
R

=⇒ |�u| ∝ R−1 . (16.35)

Hence, as the Universe expands, the velocity |�u| of an object in free-fall decreases
as R−1. This means that eventually the objects comes practically at rest in the
comoving frame.

Since the four-momentum is pµ = muµ, we obtain the important scaling relation
of the three-momentum of a free-falling object as the Universe expands:

|�p| ∝ R−1 . (16.36)

16.2.2 Redshift

The variation with time of the scale factor R(t) in the Robertson–Walker metric
implies that the wavelength of freely propagating photons changes in proportion
to R(t). To see this, let us consider a wave propagating radially in the Robertson–
Walker metric in eqn (16.28)91. Since dτ = 0 for a photon, the arrival time t0
of a wave crest at r = 0 is related to its emission time te at the comoving radial
coordinate r = re by the relation

∫ t0

te

dt

R(t)
=

∫ re

0

dr√
1 − k r2

. (16.37)

If we now consider the following wave crest emitted at te+δte at the same comoving
radius re, its time of arrival t0 + δt0 at r = 0 is given by

∫ t0+δt0

te+δte

dt

R(t)
=

∫ re

0

dr√
1 − k r2

. (16.38)

Since the right-hand sides of eqns (16.37) and (16.38) are the same (the comoving
distance is unchanged) and R(t) is practically constant over the small intervals δte

90 u2 = gαβ u
α uβ = gαβ

dxα

dτ
dxβ

dτ
= dτ2

dτ2 = 1.
91 One can always choose the reference frame in such a way that an arbitrary free

particle propagates radially.
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and δt0, by equating the left-hand sides, we obtain

δt0
R(t0)

=
δte
R(te)

. (16.39)

Since the wavelength λ of the radiation is equal to the speed of light times the time
interval between the two crests (c δt), we obtain the relation92

λ0

λe
=
R(t0)

R(te)
≡ 1 + z , (16.40)

where λe is the emitted wavelength, λ0 is the observed wavelength, and we have
defined the redshift

z ≡ λ0 − λe

λe
=

∆λ

λ
. (16.41)

The redshift is a very useful quantity because the redshift of light coming from
astronomical objects can be directly measured by observing the frequency shift of
known emission or absorption lines in their spectra. Since astronomical observations
show that distant galaxies have redshifted spectra (i.e. z > 0), the Universe is
expanding.

Since the Universe is expanding, the scale factor R(t) decreases going backward
in time. This means that the present energy density in each comoving volume was
confined to a smaller physical volume. In other words, the Universe was more dense
than today and the density increases going backwards in time. If, in the past,
the Universe was always expanding, there must have been an initial time t = 0
when R(t = 0) = 0 which is the start of the expansion. This is the so-called Big

Bang. At t = 0 the energy density is infinite and our laws of physics break down.
In fact, the laws of physics that we know already break down at the Plank time,
when the energy density reaches the Plank density MP

4 � 3 × 10117 GeVcm−3,
where MP is the Planck mass in eqn (A.167). At this enormous density, classical
general relativity breaks down because of quantum effects. However, since we are
interested in what happens after the Big Bang, we neglect the initial singularity
approximating t = 0 with the Planck time.

16.2.3 Hubble’s law

The Robertson–Walker metric implies an approximate linear relation between the
distance of a comoving astronomical object and its redshift, if the redshift is small
(z � 1). This is the famous Hubble’s law, which is one of the pillars of the standard
Big Bang model. In order to formulate Hubble’s law, it is necessary to define a
measurable distance of a comoving astronomical object. Since Hubble’s law concerns

92 The redshift equation (16.40) could also have been obtained from the scaling of
momentum in eqn (16.36), using the quantum-mechanical relation λ = h/|�p| between
photon wavelength and momentum.
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the light emitted by astronomical objects, we define the luminosity distance dL by

dL
2 ≡ L

4πF
, (16.42)

where L is the absolute luminosity of the source, i.e. the energy produced per unit
time by the source in its rest frame, and F is the measured flux, i.e. the energy
per unit time per unit area measured on the Earth. The luminosity distance of
a luminous astronomical object is measurable if its absolute luminosity is known.
In order to connect the luminosity distance dL to the redshift z, we note that the
energy of photons coming from the source under consideration is decreased by a
factor (1 + z)−1 due to the redshift relation in eqn (16.40). Moreover, the number
of photons arriving at the detector per unit time is decreased by the same factor
(1 + z)

−1
, which can be derived with the same reasoning that led to eqn (16.40).

Hence, the measured energy flux is decreased with respect to that near the source
by a factor (1 + z)

−2
. Assuming, without loss of generality, that the detector is

located at r = 0, the measured flux at the time t0 is given by

F =
L

4π R0
2 r2e (1 + z)

2 , (16.43)

where re is the comoving radial coordinate of the source and 4π R0
2 r2e is the area of

the two-dimensional sphere centered on the source and passing through the detector,
with R0 ≡ R(t0). From eqns (16.42) and (16.43), we obtain

dL = R0 re (1 + z) . (16.44)

In order to derive Hubble’s law it is still necessary to express re in eqn (16.44) in
terms of z. From eqn (16.37), we obtain

re = Sk

(∫ t0

te

dt

R(t)

)
, (16.45)

where te is the emission time and

Sk(x) =

⎧⎨⎩ sinx for k = +1 ,
x for k = 0 ,
sinhx for k = −1 .

(16.46)

For the luminosity distance, we obtain the expression

dL = (1 + z)R0 Sk

(∫ t0

te

dt

R(t)

)
. (16.47)

Note that the luminosity distance of a comoving object is different from its proper
distance, which, from eqns (16.31) and (16.37), is given by

dp(t0) = R0

∫ r

0

dr′√
1 − k r′2

= R0

∫ t0

te

dt′

R(t′)
. (16.48)

The two distances coincide only in a flat and static Universe.
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Although eqn (16.47) is the exact relation between dL and z, it does not show
the well-known linear dependence of dL on z, which is the characteristic of Hubble’s
law. The reason is that the linear Hubble’s law is valid as an approximation for
small z. We can obtain such an approximation by expanding the Sk in eqn (16.47)
in Taylor series about z = 0, which corresponds to the present time t0. Expanding
first R(t)/R0 up to (t− t0)

2, we obtain

(1 + z)−1 =
R(t)

R0
= 1 +H0 (t− t0) −

1

2
q0H0

2 (t− t0)
2 + O((t − t0)

3) , (16.49)

where H0 ≡ H(t0) is the Hubble constant and q0 = q(t0) is the deceleration

parameter, with (a dot indicates a time derivative)

H(t) ≡ Ṙ(t)

R(t)
, (16.50)

q(t) ≡ − R̈(t)

H2(t)R(t)
. (16.51)

The function H(t) is very important, because it represents the expansion rate of
the Universe. The second-order term proportional to (t − t0)

2 in the expansion in
eqn (16.49) will give the first correction of order z2 to the linear Hubble’s law.
Inverting eqn (16.49), we obtain t(z):

t = t0 −H0
−1
[
z −

(
1 +

q0
2

)
z2 + O(z3)

]
. (16.52)

Using eqns (16.49) and (16.52), we can now calculate the integral in eqn (16.47):∫ t0

te

dt′

R(t′)
= R0

−1H0
−1

[
z − 1

2
(1 + q0) z

2 + O(z3)

]
. (16.53)

Finally, since Sk(x) = x+ O(x3), we obtain the desired relation:

H0 dL = z +
1

2
(1 − q0) z

2 + O(z3) . (16.54)

For small z (z � 1), we have the linear Hubble’s law93

z � H0 dL . (16.55)

93 The original version of Hubble’s law was written as v = H0 dL, where v is the recession
velocity of a comoving object, obtained by interpreting its redshift as a Doppler shift. In
fact, for v 	 1 the Doppler shift formula gives 1+z = λ0/λ = γ (1 + v) � 1+v. With this
interpretation, eqn (16.55) is equivalent to the original version of Hubble’s law. Although
this interpretation is rather common, it is not correct. A Doppler shift is due to the fact
that emitter and observers are at rest in different inertial frames. On the other hand, the
cosmological redshift is measured by observers which are at rest in the comoving reference
frame, detecting light emitted by sources at rest in the same comoving reference frame.
The cosmological redshift is due to the cumulative expansion of space during photon
propagation from source to observer.

Another apparent possibility arises from the time derivative of the proper distance in
eqn (16.31): ḋp(t) = H(t) dp(t), where ḋp(t) could be interpreted as a velocity. This linear
relation is exact, but useless. The reason is that, as remarked after eqn (16.31), the proper
distances of astrophysical objects are not measurable.
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Fig. 16.2. Hubble diagram from Ref. [461]. d is the luminosity distance that we
have denoted with dL (see eqns (16.42)–(16.54)). The solid line corresponds to
H0 = 72 kms−1 Mpc−1, and the dashed lines represent ±10% variations.

The Hubble constant is usually written as

H0 = 100 h kms−1 Mpc−1 , (16.56)

where h is the normalized dimensionless Hubble constant.
For many decades astronomers have struggled to measure the dL and z of distant

objects in order to infer the value of H0 (see, for example, Ref. [914]), which is now
known with about 10% precision from the Hubble Space Telescope Key Project:
[461]:

h = 0.72 ± 0.08 . (16.57)

Figure 16.2 shows the Hubble diagram from which this value was derived. The Hub-
ble constant is perhaps the most important quantity in the Standard Cosmological
Model, since it gives the present rate of expansion of the Universe, on which most
of the other measurable quantities depend.

The inverse of the Hubble constant, called the Hubble time, gives the time scale
of the age of the Universe:

H0
−1 = 9.778 h−1 Gyr = 13.6 ± 1.5 Gyr . (16.58)

This can be understood by taking the first-order approximation in eqn (16.49):
R(t)/R0 = 1 +H0 (t− t0). Since R(t = 0) = 0, we have t0 = H0

−1. Beyond this
crude approximation, the real age of the Universe depends on the type and amount
of energy density, which can slow or accelerate the expansion rate, as we will see in
the following section 16.3.

When expressed in distance units, the inverse of the Hubble constant is called
the Hubble distance. It gives the distance covered by light in a Hubble time, i.e. the



ROBERTSON–WALKER METRIC 551

scale of the dimensions of the observable Universe:

H0
−1 = 2.998 × 103 h−1 Mpc = 4.16 ± 0.46 Gpc . (16.59)

The deviations of the relationship between z and dL from the linear Hubble’s
law at z � 1 give information on the value of the deceleration parameter q0. In 1998
remarkable observations of high-z supernovae of type Ia (SNIa; see section 15.1)
showed that the deceleration parameter q0 is negative [903, 863], implying that the
expansion of the Universe is currently accelerating. This is contrary to the previous
belief that the Universe is decelerating because of the attractive force of gravity.
Thus the name deceleration parameter. As we will see in the following section 16.3,
the accelerated expansion can be explained with a large contribution of vacuum
energy to the average density of the Universe.

Figure 16.394 shows the Hubble diagram obtained with high-z SNIa whose mea-
surements have been released in 1998 by the High-z SN Search Team [903] and the
Supernova Cosmology Project [863]. On the vertical axis the luminosity distance
is represented in terms of the so-called distance modulus, which is the difference
between the apparent magnitude95 m and the absolute magnitude M , related to the
luminosity distance by m−M = 5 log(dL/10pc). From the upper part of Fig. 16.3
one can see that at z ∼ 1 the Hubble diagram deviates from the linear relation in
eqn (16.55). The High-z SN Search Team found [903]

q0 = −1.0 ± 0.4 . (16.60)

The negative sign of q0 is also illustrated in Fig. 16.4, obtained with more recent
data [905], where one can see that q0 = 0 is excluded with more than 99.7%
confidence.

16.2.4 Angular diameter–redshift relation

Besides the luminosity distance–redshift relation there are other measurable rela-
tions which depend on the properties of the Universe. An important relationship is
the angular diameter–redshift relation which connects the size of an object to its
observed angular diameter. Let us consider an object at the comoving radius r = re
which emits light at the cosmic time t = te. Such light is now seen on the Earth,
at r = 0, t = t0. From the Robertson–Walker metric in eqn (16.28) the physical
size dl of the object along the latitudinal coordinate θ is related to the observed
angular diameter dθ through

dl = R(te) re dθ . (16.61)

The angular diameter distance dA, defined as

dA ≡ dl

dθ
, (16.62)

94 The meanings of ΩM and ΩΛ are explained in eqn (16.79).
95 The apparent magnitude m of an astrophysical object is given by m = −2.5 log(F )+

constant, where the constant depends on the units of the flux F and the energy band in
which it is measured. The absolute magnitude M of an astrophysical object is equal to
the apparent magnitude it would have if it were at a distance of 10 pc.
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Fig. 16.3. Hubble diagram presented
in Ref. [864]. The high-z SNIa were
measured by the High-z SN Search
Team [903] and the Supernova Cos-
mology Project [863].
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is given by

dA = R(te) re =
dL

(1 + z)
2 , (16.63)

where we have used eqn (16.44) for the luminosity distance dL. In a static and
spatially flat Universe, dA = dL is the time-independent physical distance of the
object. Using the approximation in eqn (16.54) for small values of z we obtain

H0 dA = z − 1

2
(3 + q0) z

2 + O(z3) . (16.64)

Thus, one can get information onH0 and q0 also by measuring the angular diameter
of far-away objects of a known size.

16.2.5 Particle horizon

Since the Universe had a beginning, it is possible that not all the Universe is in
causal contact and for each observer there is a so-called particle horizon, or causal
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horizon, which limits the past light cone. In fact, considering, without loss of gener-
ality, an observer at r = 0, there may be a finite value rH(t) of the comoving radial
coordinate for which a light signal emitted towards the observer at the beginning of
time at r = rH(t) reaches the observer at a time t. In this case, rH(t) is the radial
coordinate of the particle horizon, since no signal emitted at r > rH(t) can reach
the observer before the time t.

Since the light signal is moving radially (dθ = dφ = 0) with dτ = 0, the
Robertson–Walker metric implies that the physical distance to the particle horizon
at the time t is given by

dH(t) = R(t)

∫ rH(t)

0

dr′√
1 − k r′2

= R(t)

∫ t

0

dt′

R(t′)
. (16.65)

The behavior of R(t) near the singularity at t = 0 is critical for the existence of
the particle horizon. If R(t) ∝ tα for t → 0, there is a particle horizon if α < 1. In
the time interval in which R(t) ∝ tα is approximately correct, we have the finite
particle horizon dH(t) = t/(1−α). Note that, in this case, we have H(t) = α/t and
the deceleration parameter is constant, q = (1 − α)/α. Hence, there is a particle
horizon if q > 0, i.e. if the expansion of the Universe decelerates. Although different
comoving points are arbitrarily close for t→ 0, they cannot communicate, because
the time variation of their proper distance diverges for t→ 0: from eqn (16.31) we
have ḋp(t) = H(t) dp(t).

Often the integral over time in eqn (16.65) is called conformal time and denoted
by

η ≡
∫ t

0

dt′

R(t′)
. (16.66)

Conformal time allows one to write the Robertson–Walker metric as

dτ2 = R2(t)

[
dη2 − dr2

1 − k r2
− r2

(
dθ2 + sin2 θ dφ2

)]
. (16.67)

This expression shows explicitly that for k = 0 the Robertson–Walker metric is
related to the Minkowski metric through the conformal transformation gµν →
R2(t) gµν . The particle horizon at the conformal time η is simply written as

dH(η) = η R(η) . (16.68)

16.3 Dynamics of expansion

In the Standard Cosmological Model, the large-scale structures of the Universe are
described by a perfect fluid with the energy–momentum tensor in eqn (16.13) in
the comoving frame with the Robertson–Walker metric in eqn (16.28). In this case
(see Refs. [1052, 689, 858, 911, 856]), the Einstein equation (16.21) leads to the
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Friedmann equation96

H2 =
8πGN

3
ρ− k

R2
, (16.70)

and the acceleration equation

R̈

R
= −4πGN

3
(ρ+ 3 p) . (16.71)

By taking the derivative of the Friedmann equation (16.70) with respect to time
and by using eqn (16.71), one can derive the covariant law of energy conservation

ρ̇ = −3H (ρ+ p) , (16.72)

which is equivalent to eqn (16.19) with V ∝ R3.
From the Friedmann equation (16.70) one can immediately see that k = 0, i.e.

the Universe is spatially flat, if the density is equal to the critical density

ρc ≡
3H2

8πGN
. (16.73)

The present critical density is given by

ρ0
c =

3H0
2

8πGN
= (10.5369± 0.0016)h2 keV cm−3 = 5.5 ± 1.2 keVcm−3 . (16.74)

It is customary to express the energy density in terms of the dimensionless
density

Ω ≡ ρ

ρc
. (16.75)

Rewriting the Friedmann equation (16.70) in the form97

Ω − 1 =
k

H2R2
=

k

Ṙ2
, (16.76)

one can see that Ω is constant only if it is equal to unity and the Universe is spatially
flat (k = 0). If Ω > 1, we have k = 1 and Ω increases when the expansion velocity
Ṙ decreases. When Ṙ → 0 the dimensionless density Ω diverges because ρc → 0,
but ρ stays finite, as one can see from the Friedmann equation (16.70) for H = 0.

96 It is interesting to write the Friedmann equation (16.70) as

1

2
Ṙ2 −GN

4
3
π ρR3

R
= −

1

2
k , (16.69)

which represents the energy-conservation equation for a comoving unit mass in the New-
tonian gravitational potential due to the mass 4

3
π ρR3, with total energy −k/2. The value

−k/2 is a consequence of Einstein equation which cannot be guessed by use of classical
mechanics alone.
97 Some authors use the definition Ωk = 1−Ω = −k/R2H2 to represent curvature. We

refrain from this practice, which could be confusing, since Ωk does not have a definite sign
and the associated ρk = Ωkρc is not an energy density.
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On the other hand, if Ω < 1, we have k = −1 and Ω decreases with the expansion
velocity Ṙ. However, the expansion velocity cannot vanish, since Ω > 0 implies that
Ṙ2 > 1.

By considering the quantities in eqn (16.76) at the present time, we can express
the curvature parameter k as

k = H0
2R0

2
(
Ω0 − 1

)
, (16.77)

where Ω0 denotes the present value of Ω. Then, from eqn (16.76), the Friedmann
equation can also be written as

H2 = H0
2 (1 + z)2

(
Ω0 − 1

Ω − 1

)
. (16.78)

It is useful to divide Ω into its matter, radiation, and vacuum contributions,

Ω = ΩM + ΩR + ΩΛ , (16.79)

with present values denoted, respectively, by Ω0
Λ Ω0

M, and Ω0
R. Since these three

contributions have different equations of state which relate ρ and p, they evolve in
different ways as functions of time. Using the general equation of state in eqn (16.24)
for each component, the energy-conservation relation in eqn (16.72) becomes

ρ̇i

ρi
= −3 (1 + wi)

Ṙ

R
, (16.80)

with i = M,R,Λ. The solution of this equation is

ρi ∝ R−3(1+wi) . (16.81)

Therefore, the energy density decreases with the expansion of the Universe if wi >
−1. This is the case of matter and radiation, whereas the energy density of the
vacuum remains constant:

wM = 0 =⇒ ρM ∝ R−3 ∝ (1 + z)3 (matter) , (16.82)

wR = 1/3 =⇒ ρR ∝ R−4 ∝ (1 + z)
4

(radiation) , (16.83)

wΛ = −1 =⇒ ρΛ = constant (vacuum energy) . (16.84)

The behavior of the energy density of matter is very easy to understand: since
matter is composed of nonrelativistic particles, its energy density is given by the
mass density. In this case, as the Universe expands, the energy density of matter
in any comoving volume V ∝ R3 decreases proportionally to V −1(t). The energy
density of radiation decreases as the scale factor R(t) increases by one power of R
faster than the decrease of the energy density of matter. This is the result of the
redshift of radiation in eqn (16.40), due to the expansion, which implies that the
energy of radiation decreases proportionally to R−1(t).

Since the energy density of the vacuum is constant, it dominates the dynamics
of the expansion at large values of the time t (if the Universe expands forever). On
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the other hand, the energy density of radiation, which has the fastest increase when
R decreases, dominates the dynamics of the expansion at small values of t. Matter
may dominate at intermediate values of t.

Since the vacuum energy density is constant and the energy density of matter
increases with redshift as given in eqn (16.82), we have

ρΛ

ρM
=
ρ0
Λ

ρ0
M

(
R

R0

)3

=
ρ0
Λ

ρ0
M

(1 + z)
−3

. (16.85)

Hence, there is a redshift ztr given by

1 + ztr =

(
Ω0

Λ

Ω0
M

)1/3

, (16.86)

at which there is a transition from a matter-dominated to a vacuum-dominated
Universe. If Ω0

Λ > Ω0
M, as indicated by current data (see section 17.8), we have

ztr > 0, which means that this transition has occurred in the past. For z � ztr the
Universe was matter dominated, up to the redshift at which the energy density of
radiation and matter were equal. Since, from eqns (16.82) and (16.83), we have

ρM

ρR
=
ρ0
M

ρ0
R

R

R0
=
ρ0
M

ρ0
R

(1 + z)
−1

, (16.87)

the redshift zeq of matter–radiation equality is given by

1 + zeq =
Ω0

M

Ω0
R

. (16.88)

For z � zeq the Universe was radiation dominated.
Using eqns (16.82)–(16.84), the definition of ρc in eqn (16.73), and the Fried-

mann equation written in the form given in eqn (16.78), one can get the following
expression for Ω − 1 as a function of z:

Ω − 1 =
Ω0 − 1

1 − Ω0 + Ω0
Λ (1 + z)

−2
+ Ω0

M (1 + z) + Ω0
R (1 + z)

2 . (16.89)

This expression shows that if |Ω0 − 1| is different from zero, |Ω − 1| increases with
z only if the vacuum energy dominates. If matter or radiation dominates, |Ω − 1|
decreases rapidly with z. In this case, a value of Ω0 not far from unity requires a
value of Ω at early times which is very close, but different from unity. Since Ω0

is indeed close to unity and observations show that the Universe in the past was
dominated first by radiation and then by matter (see section 17.8), in the Standard
Cosmological Model there is a problem of fine-tuning of Ω at early times, which is
called the flatness problem.

The behavior of |Ω − 1| as a function of 1 + z is illustrated in Fig. 16.5a for an
open Universe with Ω0

Λ = 0.71, Ω0
M = 0.25, Ω0

R = 8× 10−5 (solid line) and a closed
Universe with Ω0

Λ = 0.71, Ω0
M = 0.27, Ω0

R = 8×10−5 (dashed line). As we will see in
section 17.8, these values are quite realistic. In the figure it is difficult to distinguish
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Fig. 16.5. (a) Value of |Ω−1| as a function of 1+z according to eqn (16.89). Solid
line: open Universe with Ω0

Λ = 0.71, Ω0
M = 0.27, Ω0

R = 8 × 10−5. Dashed line:
closed Universe with Ω0

Λ = 0.75, Ω0
M = 0.29, Ω0

R = 8 × 10−5. The two vertical
dotted lines show the redshifts of matter–vacuum equality and matter–radiation
equality given by eqns (16.86) and (16.88), respectively. (b) Cosmic time t and
lookback time tlb as functions of 1 + z for a flat Universe with Ω0

Λ = 0.73,
Ω0

M = 0.27, Ω0
R = 8 × 10−5. The dashed lines illustrate the behavior of t in a

Universe which is dominated always by radiation (RD) or by matter (MD).

the two lines, which are slightly shifted only for 1 � z � 104, which correspond to
the matter-dominated era. For z � 1 the large value of Ω0

Λ causes an increase of
|Ω − 1|. For z � 1 the vacuum energy is negligible and |Ω − 1| decreases rapidly
with increasing z. For 1 � z � 104, corresponding to the matter-dominated era,
|Ω−1| ∝ (1 + z)

−1
, and for 1 � z � 104, corresponding to the radiation-dominated

era, |Ω−1| decreases faster and behaves as ∝ (1 + z)
−2

. Note, however, that in the
derivation of eqn (16.89) we have implicitly assumed that vacuum energy, matter,
and radiation maintain their character as z increases. This assumption fails to
represent real nature at large values of z, because, as we will see in section 16.8, in
the hot early Universe, the particles which now contribute to the matter component
(electrons, protons, and neutrons) were relativistic and contribute to the radiation
component. Moreover, it is possible that in a very early era a new form of vacuum
energy dominates the expansion of the Universe. This scenario, called inflation,
could solve the flatness problem by driving |Ω − 1| to a very small value.

Using eqn (16.89) in the Friedmann equation (16.78), we obtain the expansion
rate as a function of the redshift:

H(z) = H0 (1 + z)

√
1 − Ω0 + Ω0

Λ (1 + z)
−2

+ Ω0
M (1 + z) + Ω0

R (1 + z)
2
. (16.90)
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This expression is convenient because it can be integrated to yield the time t as a
function of z. Since R = R0 (1 + z)

−1
, we have

dz

dt
= −H (1 + z) , (16.91)

which yields, with x = (1 + z)
−1

,

t(z) = H0
−1

∫ (1+z)−1

0

dx√
1 − Ω0 + Ω0

Λ x
2 + Ω0

M x−1 + Ω0
R x
−2

. (16.92)

Taking z = 0, we obtain the current age of the Universe:

t0 = H0
−1

∫ 1

0

dx√
1 − Ω0 + Ω0

Λ x
2 + Ω0

M x−1 + Ω0
R x
−2

. (16.93)

As noted before eqn (16.58), the Hubble time H0
−1 gives the scale of the age of the

Universe. If the Universe is flat (Ω0 = 1), eqn (16.93) can be integrated analytically
neglecting the radiation contribution (in this approximation, Ω0

M = 1 − Ω0
Λ):

t0 =
2

3
H0
−1 1√

Ω0
Λ

ln
1 +

√
Ω0

Λ√
1 − Ω0

Λ

. (16.94)

In practice, this is a good approximation of the age of the Universe, since the
radiation contribution is presently very small and dominates the density only at
very early times (see section 17.8). The age of the Universe has to be longer than
the age of the oldest stars in globular clusters, which is estimated to be 12.8±1 Gyr
[702]. From eqn (16.94) one can calculate that in order to have an age of the Universe
which is longer than the Hubble time H0

−1 it is necessary to have Ω0
Λ � 0.74. This

increase of the age of the Universe for large values of Ω0
Λ is due to the fact that a

vacuum-dominated Universe accelerates its expansion, as explained in section 16.7.
In this case, the expansion was slower in the past, leading to a longer age of the
Universe.

In eqns (16.92)–(16.94) we have neglected the above-mentioned break-down of
eqn (16.89), and hence of eqn (16.90), for very large values of z, because in practice
very large values of z give a negligible contribution to the age of the Universe (unless
there is a previous exponential expansion driven by vacuum energy; in this case, we
call age of the Universe the time elapsed after inflation). It is also useful to define
the so-called lookback time, which does not suffer from this problem,

tlb(z) = t0−t(z) = H0
−1

∫ 1

(1+z)−1

dx√
1 − Ω0 + Ω0

Λ x
2 + Ω0

M x−1 + Ω0
R x
−2

. (16.95)

Figure 16.5b shows the cosmic time t and the lookback time tlb as functions of
1 + z for a flat Universe with Ω0

Λ = 0.73, Ω0
M = 0.27, Ω0

R = 8 × 10−5. The dashed
lines represent the cosmic time t in the approximations of a radiation-dominated
(RD) and matter-dominated (MD) Universe:

t(z) =
1

2
H0
−1 Ω0

R
−1/2

(1 + z)−2 (RD) , (16.96)
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t(z) =
2

3
H0
−1 Ω0

M
−1/2

(1 + z)
−3/2

(MD) . (16.97)

One can see from the figure that the RD approximation is appropriate for z �
zeq � 3 × 103, corresponding to t � teq � 6 × 104 yr. The MD approximation is
successful for ztr � z � zeq, with ztr � 0.4, corresponding to ttr � 10 Gyr. For
z � ztr the Universe starts to be dominated by vacuum energy, which slows down
the increase of t with decreasing z. From the curve of the lookback time tlb it is
clear that almost all the age of the Universe is covered by z � 5 and has been spent
under matter domination and matter–vacuum domination.

From the expression of H(z) in eqn (16.90), one can calculate the deceleration
function q in eqn (16.51) as a function of z:

q(z) = (1 + z)H−1 dH

dz
− 1

= (1 + z)
1
2 Ω0

M − Ω0
Λ (1 + z)

−3
+ Ω0

R (1 + z)

1 − Ω0 + Ω0
Λ (1 + z)

−2
+ Ω0

M (1 + z) + Ω0
R (1 + z)

2 . (16.98)

Thus, the present deceleration parameter is related to the different energy densities
by

q0 =
1

2
Ω0

M − Ω0
Λ + Ω0

R . (16.99)

It is clear that the only way to explain the negative value of q0 in eqn (16.60),
obtained with high-z SNIa, is by a large contribution of the vacuum energy, such
that Ω0

Λ > Ω0
M/2 + Ω0

R. This is illustrated in Fig. 16.4, where q0 = Ω0
M/2 − Ω0

Λ,
because Ω0

R � Ω0
M in our Universe (see section 17.8). Note that a flat matter

dominated Universe (Ω0 � Ω0
M � 1), which corresponds to q0 � 0.5, is practically

excluded. Considering a flat Universe with Ω0
Λ = 1 − Ω0

M, the High-z SN Search
Team found [905]

Ω0
M = 0.29+0.05

−0.03 , (16.100)

which is compatible with
Ω0

M = 0.25+0.08
−0.07 , (16.101)

obtained by the Supernova Cosmology Project [684].
The expression for the expansion rate in eqn (16.90) allows one to calculate also

the particle horizon in eqn (16.65) as a function of redshift. Using eqn (16.91), we
obtain

dH(z) = H0
−1 (1 + z)

−1
∫ (1+z)−1

0

dx

x
√

1 − Ω0 + Ω0
Λ x

2 + Ω0
M x−1 + Ω0

R x
−2

.

(16.102)
In fact, what is often interesting is not the value of the particle horizon at redshift
z, but the corresponding value today, after it has been expanded by a factor 1 + z:

d0
H(z) = (1 + z)dH(z) = H0

−1

∫ (1+z)−1

0

dx

x
√

1 − Ω0 + Ω0
Λ x

2 + Ω0
M x−1 + Ω0

R x
−2

.

(16.103)
An important quantity for the formation of structures in the Universe, which will be
discussed in section 17.7 is the amount of matter in the causal horizon as a function
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of redshift, which must be compared with the amount of matter in a typical galaxy
such as our Milky Way, given by

Mgal ∼ 1012M� . (16.104)

Since matter is comoving, we can calculate it from a measurement of the current
energy density of matter using d0

H(z): considering a sphere with radius d0
H(z)/2, we

have

MH(z) =
4π

3

(
d0
H(z)

2

)3

ρ0
M =

H0
2

16GN

(
d0
H(z)

)3
Ω0

M . (16.105)

It is useful to consider the case of dominance of one of the three components of
Ω. Let us consider Ωa � Ωb for b �= a at all times. If the Universe is spatially flat
or the curvature term −k/R2 is negligible, the Friedmann equation (16.70) can be
integrated to yield

R ∝ t2/[3(1+wa)] , (16.106)

t =
2

3 (1 + wa)

1

H(t)
, (16.107)

ρa ∝ t2 , (16.108)

for wa > −1. In this approximation the age of the Universe is shorter than the
Hubble time in eqn (16.58) if wa > −1/3. In the following sections 16.4 and 16.5
we discuss, respectively, the cases of dominance of matter and radiation, in which
eqns (16.106)–(16.108) are applicable. In sections 16.6 and 16.7 we discuss the
special cases of curvature and vacuum dominance.

16.4 Matter-dominated Universe

This is an important case, because the Universe is practically flat and was matter-
dominated for a long time (for 3 × 103 � z � 1, corresponding to 6 × 104 yr � t �
10 Gyr).

If ρM � ρR, ρΛ and the Universe is flat, or the curvature term −k/R2 in the
Friedmann equation (16.70) is negligible, eqns (16.106)–(16.108) are applicable with
a = M and wM = 0, leading to

R ∝ t2/3 , (16.109)

t =
2

3

1

H(t)
. (16.110)

Hence, if the present Universe were dominated by matter98, neglecting the early
radiation-dominated era (see section 16.5), its age would be approximatively

t0 � 2

3
H0
−1 � 9.1 ± 1.0 Gyr , (16.111)

98 This was widely believed until 1998, when a large component of dark energy was
discovered [903, 863] (see the end of section 16.2 and section 17.8).
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in agreement with eqn (16.94) with Ω0
Λ = 0. This age of the Universe is too short

compared with the estimated age of globular clusters discussed after eqn (16.94).
In a flat matter-dominated Universe, the conformal time (see eqn (16.66)) is

given by
η ∝ t1/3 ∝ R1/2 , (16.112)

and the particle horizon (see eqn (16.65)) is given by

dH(t) = 3 t = 2H−1(t) ∝ R3/2 . (16.113)

One can see that the inverse of the expansion rate sets the scale of the particle
horizon. Since

dH(t)

R(t)
∝ R1/2 ∝ t1/3 , (16.114)

the particle horizon grows faster than the scale factor and with the passing of time
the size of the comoving part of the Universe, which is in causal contact with each
observer, increases.

If matter-domination were a good approximation for most of the history of the
Universe, we would have a particle horizon

d0
H = 3 t0 = 2H0

−1 = 27.2 ± 3.0 Gly = 8.32 ± 0.92 Gpc , (16.115)

where we used the values of H0
−1 in eqns (16.58) and (16.59) in order to express

d0
H in light-years and parsecs.

Let us now consider our Universe in the interval of redshift between matter–
radiation equality in eqn (16.88) and matter–vacuum transition in eqn (16.86), when
it was matter-dominated. Since the Universe is practically flat (see eqn (16.232)), for
z � 1 the expansion rate as a function of the redshift in eqn (16.90) is approximately
given by

H(z) � H0 z
3/2

√
Ω0

M (ztr � z � zeq) . (16.116)

In this case, the particle horizon as a function of redshift is given by

dH(z) � 2H0
−1 z−3/2 (Ω0

M)−1/2 (ztr � z � zeq) . (16.117)

From eqns (16.103) and (16.105), the corresponding amount of matter in the causal
horizon is given by

MH(z) � 1

2GNH0 z3/2
√

Ω0
M

� 4 × 1022M� z−3/2 (Ω0
M)−1/2 (ztr � z � zeq) .

(16.118)
Thus, a mass M � MH(zeq) entered the causal horizon during the matter-
dominated era, at the redshift

zH(M) ∼ 1 × 107 (Ω0
M)−1/3

(
M

Mgal

)−2/3

, (16.119)

where Mgal is the galactic mass in eqn (16.104).



562 COSMOLOGY

16.5 Radiation-dominated Universe

This is another important case, since the early Universe was dominated by radiation
until the matter–radiation equality given by eqn (16.88).

Radiation dominates the Universe if ρR � ρM, ρΛ. If the Universe is flat or
the curvature term −k/R2 in the Friedmann equation (16.70) is negligible, from
eqns (16.106)–(16.108) with a = R and wR = 1/3, we obtain

R ∝ t1/2 , (16.120)

t =
1

2

1

H(t)
. (16.121)

Hence, for a given value of H , the age of a radiation-dominated Universe is shorter
than the age of a matter-dominated Universe, which is given by eqn (16.110). In
the present Universe, the energy density of radiation has been much smaller than
the energy density of matter for a long time. However, since the energy density of
radiation decreases with the expansion of the Universe faster than the energy den-
sity of matter, radiation was dominating in the early Universe (see eqn (16.88)). In
fact, the evolution of the early Universe is described by eqns (16.120) and (16.121).

In a radiation-dominated Universe we have

η ∝ t1/2 ∝ R , (16.122)

and
dH(t) = 2 t = H−1(t) ∝ R2 . (16.123)

Hence, the particle horizon is equal to the inverse of the expansion rate. Since

dH(t)

R(t)
∝ R ∝ t1/2 , (16.124)

the growth in time of the particle horizon with respect to the scale factor is faster
than in the case of matter domination (eqn (16.114)). Also in this case there is
an increase with time of the size of the comoving part of the Universe which is in
causal contact with each observer.

Let us now consider our Universe before matter–radiation equality in
eqn (16.88), when it was radiation-dominated. In this early radiation-dominated
era the expansion rate as a function of the redshift in eqn (16.90) is approximately
given by

H(z) � H0 z
2
√

Ω0
R (z � zeq) , (16.125)

with the particle horizon

dH(z) � H0
−1 z−2 (Ω0

R)−1/2 (z � zeq) . (16.126)

From eqns (16.103) and (16.105), the corresponding amount of matter in the causal
horizon is given by

MH(z) � Ω0
M

16GNH0 z3 (Ω0
R)3/2

� 5 × 1021M� z−3 z3/2
eq (Ω0

M)−1/2 (z � zeq) .

(16.127)
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Note that this approximate expression for MH(z) in the radiation-dominated era
matches with that in eqn (16.118) for the matter-dominated era for z = zeq/4, with
zeq given by eqn (16.88).

From eqn (16.127), a mass M �MH(zeq) entered the causal horizon during the
radiation-dominated era, at the redshift

zH(M) ∼ 2 × 103 √zeq (Ω0
M)−1/6

(
M

Mgal

)−1/3

, (16.128)

where Mgal is the galactic mass in eqn (16.104).

16.6 Curvature-dominated Universe

In a curvature-dominated Universe the curvature term −k/R2 in the Friedmann
equation (16.70) dominates over the energy density contribution 8πGNρ/3. This is
possible only if ρ� ρc, which means that the Universe is open and k = −1. In this
case, from the Friedmann equation we have

Ṙ = 1 =⇒ R = t . (16.129)

Thus, a curvature-dominated Universe is open and always expanding, with the
scale factor equal to time. Since the curvature term decreases only as R−2, whereas
ρM ∝ R−3 and ρR ∝ R−4, if ρΛ = 0, an open Universe eventually becomes
curvature-dominated. On the other hand, if the Universe is curvature-dominated
at one time, but ρΛ �= 0, eventually the vacuum contribution in the Friedmann
equation dominates.

16.7 Vacuum-dominated Universe

From the acceleration equation (16.71) one can see that if the vacuum energy with
pΛ = −ρΛ dominates the Universe, the acceleration of the expansion rate is positive.
Hence, the expansion accelerates instead of decelerating which is the case of matter
or radiation domination. The rate of expansion for a vacuum-dominated Universe
which is flat or with a negligible curvature term can easily be calculated from the
Friedmann equation (16.70): since ρΛ is constant, H is also constant:

H =

√
8πGN

3
ρΛ . (16.130)

From the definition of H in eqn (16.50, we get the solution

R ∝ eHt . (16.131)

Hence, a vacuum-dominated Universe inflates exponentially if inflation lasts for a
time much longer than H−1.
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It is believed that the Universe underwent an early era of vacuum dominance
called inflation [579], which could explain some features of the observable Universe.
Of course, the vacuum energy could not be exactly constant, otherwise inflation
never ended. It is plausible that the vacuum energy was due to the potential energy
of a scalar field, called inflaton, which was not constant. When the scalar field
reached the minimum of the potential, inflation ended and the inflaton field decayed
generating the hot plasma which formed the matter and radiation in the Universe.
From then on, the Big Bang evolved according to the Standard Cosmological Model
(see Ref. [689]).

One of the features of the Universe which is not explained if the Universe just
started with the radiation-dominated era is its near flatness. As shown in Fig. 16.5a,
in order to have Ω0 equal to unity within a few percent, the value of Ω at early
times must have been much closer to unity. Such a highly fine-tuned primordial
value of Ω, called flatness problem could be explained with inflation. Let us denote
with Ωi, Hi, and Ri, respectively, the values of Ω, H , and R at the beginning of
inflation. Since during inflation H = Hi is constant and R = Rie

Ht, we obtain,
from eqn (16.76),

Ω − 1

Ωi − 1
=
H2

i R
2
i

H2R2
= e−2Ht . (16.132)

Thus, whatever the value of Ωi − 1 during inflation, Ω − 1 rapidly becomes very
small, leading to a practically flat Universe.

Another important quantity during inflation is the horizon distance. From
eqn (16.65) and the exponential growth of R in eqn (16.131), we get

dH(t) = dH(ti) +H−1
[
eH(t−ti) − 1

]
∼ H−1 eHt ∝ R , (16.133)

where ti is the time of the beginning of inflation, which is assumed to be very
small. Hence, during inflation the causal horizon grows exponentially, as the scale
factor R. In fact, this behavior is what one could have expected, because regions of
space which were in causal contact before inflation become separated by a physical
distance proportional to the scale factor during the inflation of the Universe. This
dramatic growth of the horizon distance during inflation could explain the so-called
horizon problem: widely separated regions in the Universe which would be out of
the respective causal horizons without inflation appear to have the same statistical
properties. Thus, inflation explains the observed large-scale homogeneity of the
Universe.

16.8 Thermodynamics of the early Universe

Since the scale factor R(t) decreases going backwards in time, the density of matter
and radiation in the early Universe was so large that there was thermal equilibrium
due to rapid interactions of the particles. In this case, each particle species χ forms
a dilute weakly-interacting gas whose number density nχ, energy density ρχ and
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pressure density pχ are given by

nχ =
gχ

(2π)3

∫
fχ(�p) d3p , (16.134)

ρχ =
gχ

(2π)3

∫
Eχ(�p) fχ(�p) d3p , (16.135)

pχ =
gχ

(2π)3

∫ |�p|2
3Eχ(�p)

fχ(�p) d3p , (16.136)

where gχ is the number of internal degrees of freedom (spin) and Eχ(�p) =√
|�p|2 +m2

χ is the energy. The statistical distribution fχ(�p) depends on the energy

Eχ, the chemical potential µχ, and the temperature99 Tχ. It is given by

fχ(�p) =
1

e(Eχ−µχ)/Tχ ± 1
, (16.137)

where the plus sign applies to fermions and the minus sign to bosons, respectively. If
a particle species is in chemical equilibrium, its chemical potential is related to the
chemical potentials of the other species with which it interacts. For example, the
reaction a+b � c+d implies µa +µb = µc +µd. Since a particle and its antiparticle
can annihilate into different numbers of photons (or other neutral channels), they
have opposite chemical potentials. Photons and other self-conjugated particles have
vanishing chemical potential. If a particle has a conserved charge, its chemical
potential at equilibrium is different from zero if the number densities of particles
and antiparticles are different. Since all the observed astrophysical objects appear
to be neutral, the chemical potential associated with electric charge is zero or
extremely small. On the other hand, since all the observed astronomical objects
appear to be made of baryons and not antibaryons, the observed Universe has
a finite baryon number. However, since the baryon-to-photon ratio is very small
(see section 17.6), the chemical potential associated with baryon number can be
neglected for most of the history of the Universe. Hence, in the following discussion
we will often neglect chemical potentials.

The integrals in eqns (16.134)–(16.136) can be calculated analytically in the
following useful approximations:

Nonrelativistic limit. For mχ � Tχ and mχ � µχ we have, for both bosons and
fermions,

fχ(�p) � e(µχ−mχ)/Tχ e−|
p|
2/2mTχ , (16.138)

which leads to

nχ � gχ

(
mχ Tχ

2π

)3/2

exp

(
µχ −mχ

Tχ

)
, (16.139)

99 We consider the general case in which different species may have thermal distributions
with different temperatures. As we will see later, this is what happens to neutrinos, which
have a different temperature than the photons, whose temperature was increased by e+-e−

annihilations when electrons became nonrelativistic, after neutrino decoupling from the
thermal bath.
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ρχ � mχ nχ

(
1 +

3

2

Tχ

mχ

)
(16.140)

pχ � nχ Tχ � ρχ . (16.141)

The average energy is given by

〈Eχ〉 ≡
ρχ

nχ
� mχ +

3

2
Tχ . (16.142)

This is the case of nonrelativistic matter, with the equation of state in
eqn (16.22).

Relativistic limit. For Tχ � mχ and Tχ � µχ, we have

fχ(�p) � 1

e|
p|/Tχ ± 1
, (16.143)

which leads to100

nχ �

⎧⎪⎨⎪⎩
ζ(3)

π2
gχ T

3
χ (χ = boson) ,

3

4

ζ(3)

π2
gχ T

3
χ (χ = fermion) ,

(16.144)

ρχ �

⎧⎪⎨⎪⎩
π2

30
gχ T

4
χ (χ = boson) ,

7

8

π2

30
gχ T

4
χ (χ = fermion) ,

(16.145)

pχ � 1

3
ρχ , (16.146)

where ζ(3) � 1.20206 is the Riemann zeta function of 3 (see eqns (A.130) and
(A.131)). The last equation is the origin of the equation of state for radiation
in eqn (16.23). The average energy is given by

〈Eχ〉 � 〈|�pχ|〉 �

⎧⎪⎪⎨⎪⎪⎩
π4

30 ζ(3)
Tχ � 2.701Tχ (χ = boson) ,

7π4

180 ζ(3)
Tχ � 3.151Tχ (χ = fermion) .

(16.147)

A very important quantity is the number density of photons nγ , given by the
bosonic expression in eqn (16.144) with gγ = 2. Since the present photon num-
ber density is known to a great accuracy from the measurements of the Cosmic
Microwave Background Radiation (CMBR)(see eqn (16.210)), it is convenient to
use it as a reference for the number densities of other particles.

For a nonrelativistic particle χ in equilibrium, the ratio of its number density
and the photon number density is given by

nχ

nγ
=

π1/2

27/2 ζ(3)
gχ

(
mχ

Tγ

)3/2

exp

(
µχ −mγ

Tγ

)
100 The integrals can be evaluated using the formulas in eqns (A.127) and (A.128).
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� 0.13 gχ

(
mχ

Tγ

)3/2

exp

(
µχ −mχ

Tγ

)
, (16.148)

with Tχ = Tγ . Since mχ � Tγ , this ratio is exponentially suppressed.
The difference between the number densities of a fermion and its antifermion

can be obtained from eqn (16.139) in the nonrelativistic limit. On the other hand,
in the relativistic limit we have101 [196]

nχ − nχ̄ =
1

6
gχ T

3
χ

[
µχ

Tχ
+

1

π2

(
µχ

Tχ

)3
]

(Tχ � mχ) . (16.149)

This formula is useful, since it implies that in the relativistic limit

ηχ ≡ nχ − nχ̄

nγ
=

π2 gχ

12 ζ(3)

(
Tχ

Tγ

)3
[
µχ

Tχ
+

1

π2

(
µχ

Tχ

)3
]
, (16.150)

where we have used eqn (16.144) for the photon number density nγ . Hence, if the
asymmetry ηχ is small, it is approximately proportional to the chemical potential:

ηχ � π2 gχ

12 ζ(3)

(
Tχ

Tγ

)3
µχ

Tχ
� 0.68 gχ

(
Tχ

Tγ

)3
µχ

Tχ
. (16.151)

The sum of the energy densities of a relativistic fermion and its antifermion are
given by [196]

ρχ + ρχ̄ =
7

8

π2

15
gχ T

4
χ

[
1 +

30

7 π2

(
µχ

Tχ

)2

+
15

7 π4

(
µχ

Tχ

)4
]
. (16.152)

A fermion with µχ � Tχ is called degenerate, because its distribution has most
of the lowest energy quantum levels filled and, if gχ > 1, there is a substantial
probability to find more than one fermion in the same energy level. On the other
hand, the antifermion distribution with chemical potential µχ̄ = −µχ is strongly
suppressed. In the limit Tχ → 0, all the fermion levels with energy smaller than µχ

are occupied and all the levels with energy larger than µχ are empty. In this case,
there are no antifermions and µχ is called the Fermi energy.

Since, in the early hot Universe, the energy density is dominated by relativistic
particles, it is convenient to write it as (see eqn (16.145))

ρ =
π2

30
gρ T

4
γ , (16.153)

where Tγ is the photon temperature and the coefficient gρ is given by the sum over
the contributions of all particles that populate the Universe:

gρ =
∑

χ

g(χ)
ρ . (16.154)

101 The integrals leading to eqns (16.149) and (16.152) can be obtained from the general
formula in eqn (A.129).
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From eqns (16.135) and (16.137), the contribution of the particle species χ to gρ is
given by

g(χ)
ρ = gχ

15

π4

(
Tχ

Tγ

)4 ∫ ∞
xχ

dz
z2
√
z2 − x2

χ

ez−ξχ ± 1
, (16.155)

with xχ ≡ mχ/Tχ and ξχ ≡ µχ/Tχ. The plus sign applies to fermions and the
minus sign to bosons. In general, the integral in eqn (16.155) must be evaluated
numerically. However, if the particle χ is relativistic (Tχ � mχ and Tχ � µχ), the

value of g
(χ)
ρ can be inferred from eqn (16.145) to be approximately given by

g(χ)
ρ �

{
gχ (Tχ/Tγ)

4
(χ = boson) ,

(7/8) gχ (Tχ/Tγ)
4

(χ = fermion) .
(16.156)

The contribution to gρ of relativistic particles is dominant in the early radiation-
dominated era. If all the particles are either relativistic or nonrelativistic,
eqn (16.154) is well approximated by

gρ =
∑

χ=relativistic
bosons

gχ

(
Tχ

Tγ

)4

+
7

8

∑
χ=relativistic

fermions

gχ

(
Tχ

Tγ

)4

, (16.157)

where we assumed µχ � Tχ.
The value of gρ changes when the temperature drops below the mass of a particle

in the plasma. This particle becomes nonrelativistic and its number, energy, and
pressure densities are suppressed according to eqns (16.139)–(16.141). Then, this
particle drops out of the sum in eqn (16.157). The transition between the two values
of gρ must be calculated numerically using the exact expression in eqn (16.155) for
the contribution of the particle which becomes nonrelativistic.

For me/3 � 0.2 MeV � Tγ � 35 MeV � mµ/3, the thermalized relativistic
particles are the photons, electrons, positrons, and neutrinos, all with the same
temperature, yielding

gρ = 2 + 2
7

8
2 + 6

7

8
=

43

4
= 10.75 (0.2 MeV � Tγ � 35 MeV) . (16.158)

For mµ/3 � 35 MeV � Tγ � 300 MeV � ΛQCD, where ΛQCD is the energy
scale of the quark–hadron phase transition, there are also muons and antimuons
(contributing 7/2), leading to

gρ =
57

4
= 14.25 (35 MeV � Tγ � 300 MeV) . (16.159)

For Tγ � 300 MeV � ΛQCD, there are also three colors of u, d, and s quarks and
antiquarks (contributing 63/2), eight gluons (contributing 16), c quarks and anti-
quarks (contributing 21/2 for Tγ � mc/3 � 400 MeV), τ ’s and τ̄ ’s (contributing
7/2 for Tγ � mτ/3 � 600 MeV), b quarks and antiquarks (contributing 21/2 for
Tγ � mb/3 � 1.4 GeV), W±’s and Z’s (contributing 6 for Tγ � mZ/3 � 30 GeV),
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t quarks and antiquarks (contributing 21/2 for Tγ � mt/3 � 60 GeV), H
(contributing 1 for Tγ � mH/3 ∼ 100 GeV), for a total

gρ =
427

4
= 106.75 (Tγ � 100 GeV) . (16.160)

We did not calculate the value of gρ for Tγ � me/3 � 0.2 MeV, because at that
temperature neutrinos are decoupled and have a temperature which is different
from the photon temperature. The relation between the neutrino and photon tem-
peratures and the value of gρ for Tγ � me/3 � 0.2 MeV will be calculated in
section 17.2.

In the early radiation-dominated epoch, the curvature term, k/R2, in the
Friedmann equation (16.70) was negligible102. Neglecting also the contribution of
nonrelativistic particles, and using eqn (16.153), the expansion rate is given by

H =
2 π3/2

3
√

5MP

√
gρ T

2
γ � 0.2066

√
gρ

(
Tγ

MeV

)2

s−1 , (16.161)

where MP is the Planck mass in eqn (A.167). If gρ was constant (the case of
a temperature-dependent gρ is discussed later), from eqn (16.121) we obtain the
cosmic time as a function of temperature:

t(Tγ) =
3
√

5MP

4 π3/2
g−1/2

ρ T−2
γ � 2.420 g−1/2

ρ

(
Tγ

MeV

)−2

s . (16.162)

Moreover, from eqn (16.120) it follows that the scale factor R and the temperature
Tγ are inversely proportional:

Tγ ∝ R−1 . (16.163)

16.9 Entropy

Let us now consider the case of a temperature-dependent gρ. In order to find the
relation between Tγ and R in this case, it is necessary to consider the second law
of thermodynamics, which says that in eqn (16.15) d̄ Q = T dS, where S(T, V ) is a

102 From eqn (16.77), the curvature term can be written as k/R2 =
`
Ω0 − 1

´
H0

2 (1 + z)2.

Since the photon density is proportional to R−4 (see eqn (16.83)), the photon contribution

to the Friedmann equation is given by 8π GN ργ/3 = Ω0
γ H0

2 (1 + z)4. At early times,
corresponding to large values of z, the photon contribution was much larger than the
curvature term: even if |Ω0 − 1| were as large as unity, the photon contribution would

dominate over the curvature term for 1 + z � (Ω0
γ)−1/2 � 140, with Ω0

γ � 5 × 10−5 (see
eqn (16.212)). This value of the redshift is much smaller than the redshift of matter–
radiation equality zeq � 3 × 103 (see eqns (16.88) and (17.23)), beyond which radiation
dominates.
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function of state of the system called the entropy. From eqn (16.15) we have

T dS(T, V ) = d[ρ(T )V ] + p(T ) dV = V
dρ(T )

dT
dT + [ρ(T ) + p(T )] dV . (16.164)

Hence,

∂S(T, V )

∂T
=
V

T

dρ(T )

dT
,

∂S(T, V )

∂V
=
ρ(T ) + p(T )

T
. (16.165)

The integrability condition

∂2S(T, V )

∂V ∂T
=
∂2S(T, V )

∂T∂V
(16.166)

implies that
dp(T )

dT
=
ρ(T ) + p(T )

T
. (16.167)

Using this equality in eqn (16.15) with d̄ Q = T dS, we obtain

dS = d

[
ρ+ p

T
V

]
. (16.168)

This means that, apart from an additive constant, the entropy S(T, V ) of the
volume V at the temperature T is given by

S(T, V ) =
ρ+ p

T
V . (16.169)

In thermal equilibrium the entropy S(T, V ) is conserved (T dS = d̄ Q = 0). It is
useful to define the entropy density

s =
S

V
=
ρ+ p

T
, (16.170)

and the conservation of entropy in the expanding Universe implies that

s ∝ R−3 . (16.171)

It is convenient to write the entropy density of the plasma as a function of the
photon temperature Tγ , which is the temperature of the plasma:

s =
2π2

45
gs T

3
γ , (16.172)

where gs is given by the sum over the effective coefficients of the interacting
particles:

gs =
∑

χ=interacting

g(χ)
s . (16.173)

From eqns (16.135)–(16.137) and (16.170), the value of g
(χ)
s is given by

g(χ)
s = gχ

15

4π4

∫ ∞
xχ

dz

(
4z2 − x2

χ

)√
z2 − x2

χ

ez−ξχ ± 1
, (16.174)

where xχ ≡ mχ/Tγ and ξχ ≡ µχ/Tγ . The plus sign applies to fermions and the
minus sign to bosons. The exact value of the integral in eqn (16.174) must be eval-
uated numerically. However, at temperatures at which the particle χ is relativistic
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(Tγ � mχ and Tγ � µχ), the value of g
(χ)
s can be inferred from eqns (16.145) and

(16.146):

g(χ)
s �

{
gχ (χ = boson) ,
(7/8)gχ (χ = fermion) .

(16.175)

On the other hand, for a nonrelativistic particle (mχ � Tγ and mχ � µχ), from
eqns (16.139)–(16.141) we obtain

g(χ)
s � gχ

45

25/2 π7/2

(
mχ

Tγ

)5/2

exp

(
µχ −mχ

Tγ

)
, (16.176)

for both bosons and fermions. It is clear that the contribution to the entropy of a
nonrelativistic particle is strongly suppressed by the exponential factor with respect
to the contribution of a relativistic particle.

Since the contribution to the entropy of relativistic particles is dominant, it is
common to write

gs =
∑

χ=interacting
relativistic

bosons

gχ +
7

8

∑
χ=interacting

relativistic
fermions

gχ . (16.177)

Equation (16.177) gives the value of gs when the interacting particles are either
relativistic or nonrelativistic. When a relativistic interacting particle becomes non-
relativistic as a consequence of the temperature decrease of the expanding Universe,
its entropy is transferred to the other particles and its contribution to gs must be
calculated solving numerically the exact relevant expression in eqn (16.174).

Note that when the approximation in eqn (16.177) is valid, the entropy density s
is proportional to the number density of relativistic interacting particles. Therefore,
conservation of entropy implies that the number of relativistic interacting particles
in a comoving volume is constant when gs is constant.

From eqns (16.171) and (16.172), we obtain

Tγ ∝ g−1/3
s R−1 . (16.178)

This equation is the generalization of eqn (16.163) including possible variations of
the number of relativistic interacting particles. During the cooling of the expanding
Universe, when a particle species becomes nonrelativistic, its entropy is transferred
to the remaining interacting relativistic particles through a change of the factor

g
−1/3
s . Since in this case the value of gs decreases, the cooling of the plasma is

slowed down with respect to the cooling for constant gs, given by Tγ ∝ R−1.
Equation (16.178) allows us to calculate the behavior of Tγ as a function of 1+z:

Tγ = T 0
γ

(
g0

s

gs

)1/3
R0

R
= T 0

γ

(
2

gs

)1/3

(1 + z) , (16.179)

where T 0
γ is the present temperature of the CMBR (see eqn (16.209)) and

g0
s = g(γ)

s = gγ = 2 (16.180)
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is the present value of gs. A useful quantity is the photon number density nγ , which
is related to its present value n0

γ by

nγ = n0
γ

2

gs
(1 + z)3 . (16.181)

Figure 16.6a shows the behavior of Tγ as a function of 1+z up to z � 1012. One
can see that Tγ is proportional to 1+z everywhere, except at Tγ ∼ me/3 ∼ 0.2 MeV.
At that temperature the electrons and positrons became nonrelativistic and their
entropy was transferred to the photons through e+-e− annihilations. The decrease
of temperature is slowed down because of the change of value of gs from

gs = g(γ)
s + g(e±)

s = 2 +
7

8
4 =

11

2
for

me

3
� Tγ � mµ

3
, (16.182)

to the present value in eqn (16.180) (at Tγ ∼ mµ/3 ∼ 35 MeV there is another
change of gs due to µ+-µ− annihilations). From eqn (16.179) we obtain

Tγ = T 0
γ

(
4

11

)1/3

(1 + z) for
me

3
� Tγ � mµ

3
. (16.183)

In Fig. 16.6b we have plotted Tγ as a function of cosmic time t. We used
eqn (16.92) for Tγ < 104 eV. For Tγ > 104 eV eqn (16.92) is not accurate, because
it has been derived under the implicit assumption that the numbers of relativistic
and nonrelativistic particles are constant. This assumption breaks down at the time
of electron–positron annihilation. Since from eqn (16.178) we have

H =
Ṙ

R
= − Ṫγ

Tγ

(
1 +

1

3

d ln gs

d lnTγ

)
, (16.184)

in the early radiation-dominated Universe, from eqn (16.161) we obtain

t(Tγ) =
3
√

5MP

2 π3/2

∫ ∞
Tγ

dT ′γ√
gρ T ′γ

3

(
1 +

1

3

d ln gs

d lnT ′γ

)
. (16.185)

One can easily check that if gρ and gs were constant, t(Tγ) would be given by
eqn (16.162). Since gs increases with Tγ , when gs changes the variation of Tγ is
slower than for constant gs. In other words, when gs decreases during the expansion
of the Universe, the cooling of the plasma is slowed down with respect to the cooling
Tγ ∝ t−1/2 for constant gs.

An important application of the relation in eqn (16.183) is the calculation of
the temperature of relic neutrinos, which is shown by the dash-dotted lines in
Figs. 16.6a and b. This application will be discussed in section 17.2.

16.10 Decoupling

In general, a particle decouples from the primordial plasma when its interaction
rate Γ becomes smaller than the rate of change of the temperature, |Ṫγ |/Tγ or the
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Fig. 16.6. (a) Photon temperature Tγ (solid curve) as a function of 1 + z from
eqn (16.179). The dash-dotted line shows the behavior of the neutrino temper-
ature Tν = T 0

ν (1 + z), with T 0
ν given in eqn (17.17). (b) Photon temperature

Tγ (solid curve) as a function of cosmic time t. The dash-dotted line shows the
neutrino temperature Tν as a function of cosmic time t. The dashed lines illus-
trate the behavior of Tγ in a Universe which is dominated always by radiation
(RD) or by matter (MD).

expansion rate H . When this happens, the interactions are not rapid enough to
adjust the momentum distribution function to the change in temperature and the
particle drops out of equilibrium, i.e. decouples. Neglecting changes in gρ for an

order of magnitude estimate, since Tγ ∝ R−1, we have Ṫγ/Tγ = −H , which leads
to the decoupling relation

Γ ∼ H . (16.186)

Another way to understand this decoupling relation is to consider the mean free
path of the particle given by Γ−1. Since the particle horizon in a radiation-
dominated Universe is given by H−1 (see eqn (16.123)), when Γ � H the mean
free path becomes larger than the particle horizon, leading to decoupling.

After decoupling, the number of decoupled particles in a comoving volume
remains constant, and the number density scales as R−3:

nχ = nχ-dec
χ

(
R

Rχ-dec

)−3

. (16.187)

From eqn (16.181) the ratio between the present number density of a decoupled
particle χ and the present photon number density is given by

n0
χ

n0
γ

=
2

gχ-dec
s

nχ-dec
χ

nχ-dec
γ

. (16.188)

This quantity is useful, because the present photon number density is known with
great accuracy from measurements of the CMBR (see eqn (16.210)).
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Furthermore, since the momentum scales as R−1 (see eqn (16.36)),

|�p| = |�p|χ-dec

(
R

Rχ-dec

)−1

, (16.189)

for the momentum distribution function we have

fχ(�p) =
d3nχ

d3p
=

d3nχ

d3p

∣∣∣∣
χ-dec

= fχ(�p)|χ-dec . (16.190)

Since we have T T χ-dec
χ = T χ-dec

γ at the decoupling, the momentum distribution
function after decoupling is given by

fχ(�p) =

⎡⎣exp

⎛⎝
√

|�p|2 (R/Rχ-dec)
2

+m2
χ − µχ-dec

χ

T χ-dec
γ

⎞⎠± 1

⎤⎦−1

. (16.191)

In general, it is not possible to define an effective temperature and an effective
chemical potential (which must be momentum-independent) which describe the
evolution of the momentum distribution function after the decoupling. Such a sim-
ple description is possible only in the relativistic and nonrelativistic limits which
we are going to discuss. Note, however, that these limits are of practical interest:
most particles decouple when they are either relativistic or nonrelativistic, since
the coincidence of the values of their mass and decoupling temperature is unlikely.

If the particle χ decouples when it is relativistic (T χ-dec
γ � mχ and T χ-dec

γ �
µχ-dec

χ ), it is called a hot relic. From eqn (16.191), after decoupling its momentum
distribution function is approximately given by

fχ(�p) �
[
exp

(
|�p| (R/Rχ-dec)

T χ-dec
γ

)
± 1

]−1

=
1

e|
p|/Tχ ± 1
, (16.192)

with the effective temperature

Tχ = T χ-dec
γ

(
R

Rχ-dec

)−1

. (16.193)

Hence, after decoupling a hot relic maintains a relativistic momentum distribution
function (compare eqn (16.192) with eqn (16.143)), with an effective temperature
scaling as R−1. Note that this behavior is independent of the mass of the par-
ticle (as long as mχ � T χ-dec

γ ): even if the particle χ becomes nonrelativistic
after decoupling, its momentum distribution function has the relativistic form in
eqn (16.192).
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Since we have, from eqn (16.178),

Tγ = T χ-dec
γ

(
gs

gχ-dec
s

)−1/3(
R

Rχ-dec

)−1

, (16.194)

the relation between Tχ and Tγ after decoupling is

Tχ =

(
gs

gχ-dec
s

)1/3

Tγ . (16.195)

This relation is very useful, because it allows us to calculate the present temperature
of χ from the well-known present temperature of the CMBR (given in eqn (16.209)).
After decoupling, we also have the useful relation

nχ = B

(
gs

gχ-dec
s

)
nγ , (16.196)

between the number density of χ and the photon number density. The factor B is
equal to 1 or 3/4 if χ is a boson or a fermion, respectively.

Consider now a cold relic, i.e. a particle χ which decouples when it is nonrela-
tivistic. From eqn (16.191), after decoupling its momentum distribution function is
approximately given by

fχ(�p) � exp

(
µχ-dec

χ −mχ − |�p|2 (R/Rχ-dec)
2
/2mχ

T χ-dec
γ

)
= e(µχ−mχ)/Tχ e|
p|

2/2mχTχ ,

(16.197)
with the effective temperature

Tχ = T χ-dec
γ

(
R

Rχ-dec

)−2

, (16.198)

and the effective chemical potential

µχ = mχ+
(
µχ-dec

χ −mχ

)( T

Tχ-dec

)
= mχ+

(
µχ-dec

χ −mχ

)( R

Rχ-dec

)−2

. (16.199)

Hence, after decoupling a cold relic maintains a nonrelativistic momentum dis-
tribution function (compare eqn (16.197) with eqn (16.138)), with an effective
temperature which scales as R−2, decreasing with the expansion of the Universe
faster than in the relativistic case. Note the behavior of the chemical potential,
which is just a parameter in the distribution function, because the decoupled par-
ticle is noninteracting. Its behavior has been chosen in order to keep (µχ −mχ)/Tχ

equal to its decoupling value (µχ-dec
χ −mχ)/T χ-dec

γ . In particular, even if µχ-dec
χ = 0,

the chemical potential after decoupling is different from zero. Moreover, after decou-
pling, we have µχ �= −µχ̄: from eqn (16.199) and µχ-dec

χ = −µχ-dec
χ̄ , we have

µχ + µχ̄ = 2mχ

[
1 − (R/Rχ-dec)

−2
]
.
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It is useful to calculate the present ratio of the number density of a cold relic χ
and the photon number density. Equation (16.148) gives the value of this ratio at
χ decoupling:

nχ-dec
χ

nχ-dec
γ

� 0.13 gχ

(
mχ

T χ-dec
γ

)3/2

exp

(
µχ-dec

χ −mχ

T χ-dec
γ

)
. (16.200)

Then, from eqn (16.188), the present ratio is given by

n0
χ

n0
γ

� 0.26
gχ

gχ-dec
s

(
mχ

T χ-dec
γ

)3/2

exp

(
µχ-dec

χ −mχ

T χ-dec
γ

)
. (16.201)

This rather simple equation allows an approximate calculation of the present
number density of a cold relic once its decoupling temperature is known.

A more accurate calculation of the number density nχ of a relic particle χ can
be performed by solving the Boltzmann equation (see Refs.[689, 856, 379])

dnχ

dt
= −3H nχ − 〈σv〉

[
n2

χ − (neq
χ )2

]
, (16.202)

where neq
χ is the number density that the particle species χ would have if it were

in thermal equilibrium, which is given by eqn (16.134) with Tχ = Tγ .
The first term on the right-hand side of eqn (16.202) represents the decrease

of the number density nχ due to the expansion of the Universe: in the absence of
the interaction term on the right-hand side, the solution of eqn (16.202) would be
nχ ∝ R−3, which is a simple geometrical decrease of the number density.

The cross-section σ in eqn (16.202) refers to all the possible processes of χ-χ̄
annihilation, which can change the number of χ’s and χ̄’s in a comoving volume.
The angular brackets represent thermal averaging and v is the particle velocity. The
quantity 〈σv〉n2

χ represents annihilation of χ-χ̄ pairs and the quantity 〈σv〉 (neq
χ )2

represent the inverse processes of creation of χ-χ̄ pairs from other particles in ther-
mal equilibrium. The rate of these inverse processes is related to the equilibrium
number density neq

χ by the principle of detailed balance. Indeed, in a static Universe
(H = 0), there is equilibrium if the number density remains constant, which implies
nχ = neq

χ .
In order to scale out the effect of the expansion of the Universe, it is convenient

to consider the number of particles in a comoving volume R3,

Nχ = nχR
3 . (16.203)

The Boltzmann equation (16.202) assumes the simple form (see Ref. [856])

d lnNχ

d lnR
= − Γ

H

[
1 −

(
N eq

χ

Nχ

)2
]
, (16.204)

where
Γ = 〈σv〉nχ (16.205)

is the annihilation rate. The ratio Γ/H regulates the rate of change of the num-
ber of particles in a comoving volume as the Universe expands. The solutions of
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eqn (16.204) when either Γ or H dominate are easily seen to be

Nχ = N eq
χ for Γ � H , (16.206)

Nχ = constant for Γ � H . (16.207)

In general, the transition between the two regimes, which gives the value of the
constant relic Nχ for Γ � H , must be calculated by solving the differential equa-
tion numerically. However, it can be solved approximately in the relativistic and
nonrelativistic limits.

If the particle χ decouples when it is relativistic, before decoupling we have
Nχ = N eq

χ ∝ T 3
γ R

3. If gρ is constant during decoupling, N eq
χ remains constant

before, during, and after decoupling, because Tγ scales as R−1 (see eqn (16.163)).
Therefore, for a hot relicNχ = N eq

χ is a solution of the Boltzmann equation (16.204)
during and after decoupling. Since Nχ ∝ T 3

χ R
3 remains constant after decoupling,

we have Tχ ∝ R−1, in agreement with eqn (16.193), obtained in a different way.
If the particle χ decouples when it is nonrelativistic, from eqn (16.139) we

have N eq
χ ∝ T

3/2
γ exp[(µχ −mχ) /Tγ ]R3. The Boltzmann factor e−mχ/Tγ implies

that N eq
χ decreases rapidly as the Universe expands and cools. On the other hand,

according to eqn (16.207) Nχ becomes constant after decoupling. Hence, there is a
deviation of Nχ from N eq

χ at decoupling. The relic number density in eqn (16.201)
was derived in the approximation in which the constant relic Nχ is given by the
value of N eq

χ at the decoupling temperature T χ-dec
γ defined by Γ = H . In such an

approximation, the small deviation of Nχ from N eq
χ for Tγ > T χ-dec

γ and the small

evolution of Nχ for Tγ < T χ-dec
γ are neglected.

16.11 Cosmic microwave background radiation

The cosmic microwave background radiation (CMBR), discovered in 1965 by Pen-
zias and Wilson [860, 368], is one of the main sources of information on the physics
and history of the Universe. It was generated after the temperature of the expanding
Universe became low enough to allow electrons and nuclei to form neutral atoms.
This process, called the recombination, occurred at (see Refs. [689, 858, 856])

T rec
γ � 0.3 eV , zrec � 1.1 × 103 , trec = 3.8 × 105 yr . (16.208)

Before the recombination, matter and photons were in thermal equilibrium through
rapid scattering of photons on free electrons. At the recombination, the number
of free electrons dropped dramatically and the Universe became transparent to
photons, leading to photon decoupling. After the primordial photons have decoupled
from matter, they traveled undisturbed until the present time, when we see them
as the CMBR. The only change that they have suffered is the redshift of their
wavelength by the factor zrec � 1100, which implies a temperature T 0

γ � 3 ×
10−4 eV � 3 K. In fact, the observed CMBR has the perfect blackbody spectrum
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Fig. 16.7. CMBR spectrum and its blackbody fit (indistinguishable) from
Ref. [446]. Experimental uncertainties are a small fraction of the line thickness.

shown in Fig. 16.7, with temperature [944]

T 0
γ = 2.725 ± 0.001 K = (2.348 ± 0.001)× 10−4 eV , (16.209)

which was measured with the FIRAS detector on the COBE satellite [782, 446, 783].
From eqns (16.144) and (16.145) with gγ = 2, the CMBR temperature

corresponds to the number and energy densities

n0
γ =

2 ζ(3)

π2
(T 0

γ )3 = 410.5 ± 0.5 cm−3 , (16.210)

ρ0
γ =

π2

15
(T 0

γ )4 = 0.2604± 0.0004 eVcm−3 . (16.211)

The contribution to the energy density of the Universe is

Ω0
γ = (2.471 ± 0.004)× 10−5 h−2 = (4.7 ± 1.0) × 10−5 . (16.212)

In the last equality we used the value of h in eqn (16.57). Since Ω0 � 1 (see the
following eqn (16.232)), the current contribution of CMBR to the energy density
of the Universe is practically negligible.

In 1992 the DMR detector on the COBE satellite measured small variations of
the temperature of the CMBR in different directions [967]. As we will see in the
following, these anisotropies give important cosmological information.

The anisotropies are fluctuations ∆Tγ(θ, φ) ≡ Tγ(θ, φ) − Tγ of the temperature
Tγ(θ, φ) with respect to the average temperature Tγ in eqn (16.209), which depend
on the polar angles θ and φ. It is convenient to expand the anisotropies in spherical
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harmonics (given in eqn (A.138)):

∆Tγ

Tγ
(θ, φ) =

∞∑
	=0

	∑
m=−	

a	m Y m
	 (θ, φ) , (16.213)

where a	m are the multipole moments. Since the spherical harmonic Y m
	 corre-

sponds to angular variations ∆θ ∼ π/�, low values of � correspond to anisotropies
on large scales, whereas large values of � correspond to anisotropies on small scales.
From the orthonormality relation of spherical harmonics in eqn (A.139), the mul-

tipole moments are given by a	m =
∫ ∆Tγ

Tγ
(θ, φ)Y m

	
∗(θ, φ) dcos θ dφ. Note that

the monopole moment a00 of the fluctuations is equal to zero, because Tγ is the
monopole moment of the temperature: Tγ =

∫
Tγ(θ, φ)Y m

	
∗(θ, φ) dcos θ dφ. The

first nontrivial multipole moments of the temperature anisotropies are the dipole
moments with � = 1. The COsmic Background Explorer (COBE) [967] and Wilkin-
son Microwave Anisotropy Probe (WMAP) [206] experiments measured a dipole
amplitude which is interpreted as the result of a Doppler shift due to the motion of
the solar system with respect to the comoving frame. The measured velocity of the
barycenter of the solar system is 368±2 kms−1, which implies a velocity of the local
group of galaxies of 627 ± 22 kms−1. Since the dipole does not carry cosmological
information, it is subtracted from the data for the study of cosmological CMBR
anisotropies. The multipoles with � ≥ 2 are interpreted as due to perturbations
in the energy density of the Universe at the time of last scattering of the photons
(zrec � 1100).

In order to understand the treatment of perturbations of the cosmic energy den-
sity, it is important to realize from the beginning that given a cosmological model in
which perturbations are generated, it is not possible to calculate the exact amount
of perturbations in the observable Universe, because we do not know the initial
conditions. However, a proper cosmological model must be able to predict the sta-
tistical properties of the perturbations, extracted from a statistical ensemble of
possible universes. The real Universe is assumed to be a member of such an ensem-
ble and the observed perturbations are a realization of the statistical distribution
of possible perturbations. Comparison of a cosmological model with observations is
done by comparing the predicted and measured statistical properties of the pertur-
bations. Of course, we do not have experimental access to an ensemble of universes
(which does not necessarily exist). Thus, from the observational point of view the
statistical properties of perturbations are obtained by averaging over large volumes
or different directions in the sky. According to the ergodic assumption, the pertur-
bations in widely separated parts of the Universe are independent and averaging
over a sufficiently large volume is equivalent to the average over an ensemble of
universes.

It is convenient to work with measurable quantities which depend on the sta-
tistical distribution of the temperature fluctuations. A widely used quantity is the
two-point correlation function (see Refs. [1060, 628, 275, 180, 510, 626, 206])

C(θ) ≡
〈

∆Tγ

Tγ
(θ1, φ1)

∆Tγ

Tγ
(θ2, φ2)

〉
, (16.214)



580 COSMOLOGY

where θ is the angle, given in eqn (A.141), between the directions (θ1, φ1) and
(θ2, φ2). The average is done over the model-dependent statistical distribution of
temperature fluctuations. Since the fluctuations are assumed to be statistically
isotropic, i.e. with statistical properties which are independent on the direction of
view, the two-point correlation function is the same for all directions (θ1, φ1) and
(θ2, φ2) which subtend the same angle θ. Hence, C(θ) depends only on θ.

Since ∆Tγ/Tγ is real, we can replace the second one in eqn (16.214) with its
complex conjugate and obtain, from eqn (16.213),

C(θ) =
∑

	1,m1

∑
	2,m2

〈
a	1m1 a

∗
	2m2

〉
Y m1

	1
(θ1, φ1)Y

m2

	2

∗(θ2, φ2) . (16.215)

The average over the statistical distribution of temperature fluctuations is equiva-
lent to an average over the statistical distribution of the multipoles. If the multipoles
are independent random variables, the matrix of covariances 〈a	m a∗	′m′〉 is diag-
onal, i.e. 〈a	m a∗	′m′〉 ∝ δ		′δmm′ . Moreover, if the temperature fluctuations are
statistically isotropic, the variances of the multipoles do not depend on m, leading
to

〈a	m a∗	′m′〉 = C	 δ		′ δmm′ , (16.216)

with

C	 =
1

2�+ 1

	∑
m=−	

〈|a	m|2〉 . (16.217)

The set of C	’s forms the so-called angular power spectrum. Using eqn (16.216) in
eqn (16.215), and the addition theorem of spherical harmonics in eqn (A.140), we
obtain

C(θ) =
∑

	

2�+ 1

4π
C	 P	(cos θ) . (16.218)

Therefore, the two-point correlation function gives information on the angular
power spectrum: from the relation of orthogonality of Legendre polynomials in
eqn (A.134) we have

C	 =

∫ 1

−1

C(θ)P	(cos θ) d cos θ . (16.219)

If the temperature fluctuations have a Gaussian distribution, as predicted by
simple inflationary models (see Refs. [762, 182]), the statistical distribution of each
multipole has zero mean (〈a	m〉 = 0) and is fully characterized by only one parame-
ter, the variance C	. In this case, the two-point correlation function C(θ) completely
characterizes the temperature fluctuations.

The angular power spectrum C	 is a theoretical quantity that can be evaluated in
each cosmological model. In order to test the cosmological models it is necessary to
compare the theoretical angular power spectrum C	 with the experimental angular
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Fig. 16.8. Angular power spectrum of CMBR temperature anisotropies measured
by WMAP [970] (black dots with error bar). The gray dots are unbinned data.
The solid line represent the angular power spectrum in the best-fit flat ΛCDM
model, in which h = 0.72 ± 0.05, Ω0

Bh
2 = 0.024 ± 0.001, Ω0

Mh
2 = 0.14 ± 0.02.

power spectrum Ĉ	, obtained from the data using eqn (16.217):

Ĉ	 =
1

2�+ 1

	∑
m=−	

|â	m|2 , (16.220)

where â	m are the measured multipoles. Figure 16.8 shows the angular power
spectrum of CMBR temperature anisotropies measured by WMAP [970], com-
pared with the theoretical angular power spectrum obtained in the best-fit flat
ΛCDM model (see section 17.8), in which h = 0.72 ± 0.05, Ω0

Bh
2 = 0.024 ± 0.001,

Ω0
Mh

2 = 0.14 ± 0.02. One can note that the error bars of the experimental data
points are large for small and large values of �. Since large values of � correspond to
fluctuations with small size, i.e. small angle of view, the largeness of the error bars
is due to the finite resolution of the detector. Hence, in that case the uncertainty
can be reduced by experiments with a better angular resolution. On the other hand,
the largeness of the error bars at small values of � is due to an intrinsic uncertainty
called cosmic variance. It is due to the fact that for small values of � the number
2� + 1 of measurable multipoles is small and the estimate Ĉ	 of C	 has a large
uncertainty. If the multipoles are random Gaussian variables,

∑
m |â	m|2/C	 has a

χ2 distribution with 2�+1 degrees of freedom (see, for example, Ref. [400]), and its
variance is 2(2�+1). Taking into account that Var(ax) = a2 Var(x), the uncertainty
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of the measure of C	 is given by

√
Var(Ĉ	) =

√
2

2�+ 1
Ĉ	 . (16.221)

Therefore, even in a perfect experiment it is impossible to know the value of C	

with a fractional uncertainty better than (�+ 1/2)−1/2.
The peaks in the angular power spectrum in Fig. 16.8 are called acoustic

peaks, because they are due to gravity-driven density oscillations in the primordial
plasma. It is assumed that some mechanism, such as inflation, has generated an
initial spectrum of density perturbations which could evolve dynamically only after
matter–radiation equality, at zeq � 3×103 and teq � 6×104 yr (see eqn (17.23) and
Fig. 16.5b), because before matter–radiation equality their evolution was damped
by the dominating photon pressure. Since the initial perturbations are small, it
is possible to study their evolution using a linear theory, i.e. neglecting all the
effects which are quadratic or higher-order in the perturbations. In this case, it is
convenient to Fourier transform the relative density fluctuations,

δ(t,�x) ≡ ρ(t,�x) − 〈ρ(t)〉
〈ρ(t)〉 =

∫
d3k

(2π)3
δ(t,�k) ei
k ·
x . (16.222)

This trick allows one to transform differential equations into algebraic ones. In the
linear theory, the algebraic equations for the amplitude of each fluctuation mode
with wavenumber �k are independent. In other words, the amplitude δ(t,�k) of each
fluctuation mode evolves in time independently of the others and can be conve-
niently studied separately. If �x is a physical distance, �k is a physical wavenumber
(contrasted with the often used comoving wavenumber given by �kR), and

λ(t) =
2π

|�k|
(16.223)

is the corresponding physical wavelength. In the linear approximation, the
wavelength of each Fourier mode evolves independently as the Universe expands.

If the physical wavelength of a Fourier mode is larger than the particle hori-
zon, its amplitude cannot evolve dynamically. Since its comoving wavelength is
fixed, its physical wavelength grows with the scale factor. As we have seen in
eqns (16.114) and (16.124), the particle horizon grows faster than the scale factor
both in a matter-dominated and in a radiation-dominated Universe. Hence, if there
is enough time, a Fourier mode may enter the causal horizon before recombination.
After entering the causal horizon, gravity causes an increase of the density of over-
dense regions and a decrease of the density of underdense regions, until the photon
pressure reverts the process, leading to a series of density oscillations called cos-

mic acoustic oscillations. These oscillations stop at recombination, when photons
decouple. The CMBR carries a picture of the last oscillations just before pho-
ton decoupling, which manifest themselves in the acoustic peaks in Fig. 16.8. The
angular scale θ ∼ π/� shown on the top axis corresponds to the physical wavelength
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λ(trec) through eqn (16.61):

θ =
λ(trec)

dA
rec

=
λ(trec)

Rrec rrec
, (16.224)

where dA
rec = Rrec rrec is the angular diameter distance of the last-scattering

surface, which we see now at comoving coordinate rrec. From eqn (16.45) we have

rrec = Sk

(∫ t0

trec

dt′

R(t′)

)
= Sk(η0 − ηrec) � Sk(η0) , (16.225)

where η0 and ηrec are, respectively, the present conformal time and the much smaller
conformal time at recombination. Thus, we have

dA
rec � Rrec Sk(η0) , (16.226)

which shows that the angular diameter distance of the last-scattering surface
depends on the geometry of the Universe. This important fact allows us to probe
the geometry of the Universe by measuring the locations of the acoustic peaks in
the angular power spectrum, if the wavelength corresponding to the peaks is known.
In fact, it is possible to calculate rather precisely the wavelength of the peaks (see
Refs. [628, 275, 626]), which depends on the rapidity of the acoustic oscillations,
governed by the speed of sound

vs ≡
√
∂p

∂ρ
. (16.227)

In the primordial plasma, pressure was dominated by photons, leading to vs �
1/

√
3. Since the first peak corresponds to the wavelength which has undergone the

first maximal compression, it is given by the distance that sound has traveled from
the Big Bang to the recombination time, which is the so-called sound horizon given
by an expression analogous to that for the particle horizon in eqn (16.68):

λ1(trec) = vs ηrecRrec �
1√
3
ηrecRrec . (16.228)

From eqns (16.224)–(16.228), the first peak corresponds to the angle

θ1 � 1√
3

ηrec
Sk(η0)

. (16.229)

For a flat matter-dominated Universe, from eqn (16.112) we have ηrec/η0 = (1 +
zrec)

−1/2. For zrec � 1100, we obtain

θ1 � 0.02 � 1◦ (flat MD) , (16.230)

corresponding to the angular momentum

�1 � π

θ1
� 200 . (16.231)

From Fig. 16.8 one can see that the first peak is indeed close to � = 200, which
is evidence for an almost flat Universe. A detailed calculation allowed the WMAP
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Fig. 16.9. Constraints on the geometry of the Universe in the Ω0
M-Ω0

Λ plane
[970]. The dark and light areas are, respectively, 68% and 95% likelihood
regions for four combinations of data: WMAP only, WMAPext (WMAP +
other CMBR experiments), WMAP + Hubble Space Telescope Key Project,
WMAP + Hubble Space Telescope Key Project + high-z supernovae data.

collaboration [970] to obtain from their data the constraints on the geometry of the
Universe shown in Fig. 16.9. The most stringent constraint on the value of the total
energy density of the Universe has been obtained by combining WMAP data with
the Hubble Space Telescope Key Project determination of h in eqn (16.57) [461]
and high-z supernovae data [903, 904]:

Ω0 = 1.02 ± 0.02 . (16.232)

Thus, the Universe is flat or almost flat, with very stringent limits on the possible
deviation from flatness.

The other peaks in Fig. 16.8 correspond to multiples of �1. Their amplitudes are
progressively damped by the viscosity of the primordial plasma and by the average
over the finite interval of time of photon decoupling. These mechanisms imply that
the amplitudes of the peaks give information on the amount of matter. In fact,
the WMAP collaboration could measure with remarkable accuracy the baryon and
matter densities as given by

Ω0
B h

2 = 0.0224± 0.0009 , (16.233)

Ω0
M h2 = 0.135+0.008

−0.009 . (16.234)
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The clear discrepancy between the two numbers is evidence that most of the matter
in the Universe is nonbaryonic. This so-far unknown form of matter is usually
called dark matter and its density is written as ΩDM. Strictly speaking one should
distinguish between baryonic and nonbaryonic dark matter, because only about
10% of the baryonic matter is luminous [484]:

Ω0
lum h

2 = 0.0024+0.0012
−0.0009 . (16.235)

However, from the astrophysical point of view there is no problem in the exis-
tence of a large amount of dark baryonic matter in the form of dead stars (black
dwarfs, neutron stars, black-holes), failed stars (brown dwarfs) and giant planets
(see Ref. [1028]). Hence, unless otherwise specified, the term dark matter usually
refers to nonbaryonic dark matter.

The baryon density in eqn (16.233) implies that the baryon-to-photon ratio is
very small. From eqns (16.74), (16.210), and (A.169), this quantity, usually denoted
by η (easily distinguished from the conformal time in eqn (16.66) from the context),
is given by

η ≡ nB

nγ
� ρB

mp nγ
=
ρc ΩB

mp nγ
� 2.7 × 10−8 Ω0

B h
2 = (6.1 ± 0.3) × 10−10 . (16.236)

Since the Universe at present is composed of baryons, but not antibaryons, η is
equal to the baryon asymmetry ηB ≡ (nB − nB̄)/nγ . The ratio η has remained
constant after electron–positron annihilation at Tγ ∼ 0.2 MeV, because both nB

and nγ have decreased proportionally to R−3. From eqn (16.183) it follows that
before electron–positron annihilation the value of η was larger by a factor 11/4,
keeping that value up to the quark–hadron phase transition at Tγ ∼ 200 MeV.
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RELIC NEUTRINOS

The most incomprehensible thing about the world is that it is
comprehensible.
Albert Einstein

Relic neutrinos are an important product of the standard hot Big Bang. Neutri-
nos were in thermal equilibrium in the hot plasma which filled the early Universe
through weak interactions with the other particles. As the Universe expanded and
cooled, the rates of weak interaction processes decreased and neutrinos decoupled
when these rates became smaller than the expansion rate (decoupling is discussed in
section 16.10). Since for the three known light neutrinos with masses smaller than
about 1 eV the decoupling occurred when they were relativistic, these neutrinos
are hot relics.

Relic neutrinos pervade space, but their temperature T 0
ν is extremely small,

being of the order of 10−4 eV (see eqn (17.17)). This implies that their weak
interaction cross-section with matter is extremely small, of the order of

σ ∼ G2
F(T 0

ν )2 ∼ 10−64 cm2 , (17.1)

if neutrinos are massless. If neutrinos are massive and nonrelativistic, the cross-
section is larger, but still very small, being of the order of

σ ∼ G2
Fm

2
ν ∼ 10−56

( mν

1 eV

)2

cm2 . (17.2)

Therefore, the direct detection of relic neutrinos is an extremely difficult task with
present experimental techniques [838, 984, 732, 294, 715, 907, 515, 906].

However, as we will see in this chapter, relic neutrinos are an essential ingredient
of the Standard Cosmological Model. The ability of the Standard Cosmological
Model to explain the astrophysical data is indirect evidence of the existence of the
relic neutrino background. Moreover, the astrophysical observations provide us of
information on the neutrino properties, in particular on their mass.

In the following sections 17.1, 17.2, 17.3, and 17.4, we discuss, respectively,
the decoupling of light neutrinos at Tγ ∼ 1 MeV, the effect of electron–positron
annihilation at Tγ ∼ me/3 ∼ 0.2 MeV, the present neutrino temperature and the
energy density of light massive neutrinos. In section 17.5, we consider hypothetical
heavy active flavor neutrinos. In sections 17.6 and 17.7, we review, respectively, the
main properties of Big-Bang nucleosynthesis and large-scale structure formation,
which are cornerstones of the Standard Cosmological Model and depend on relic
neutrinos and their properties. In section 17.8 we present the results of recent global
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fits of cosmological data, with an emphasis on the resulting limits on neutrino
masses. Finally, in sections 17.9 and 17.10 we review, respectively, the cosmological
constraints on the number of neutrino species and on the neutrino asymmetries.

17.1 Neutrino decoupling

In the early Universe, when 1 MeV � Tγ � 100 MeV, neutrinos were kept in
equilibrium with the primordial plasma by the weak interactions

ν + ν̄ � e+ + e− , (17.3)

(−)

ν + e± �
(−)

ν + e± . (17.4)

The reactions with nucleons were negligible, because the number density of the
nonrelativistic nucleons was much smaller than the density of relativistic electrons
and positrons. The interaction rate for each neutrino was given by

Γ = n 〈σv〉 , (17.5)

where n is the number density of target particles, σ is the cross-section and v � 1
is the neutrino velocity. The angle brackets denote thermal averaging. For the weak
interaction processes in eqns (17.3) and (17.4), we have

〈σv〉 ∼ G2
F T

2
γ , (17.6)

where the temperature Tγ of the thermal bath gives the order of magnitude of the
energies of the relativistic particles participating in the reactions. Since the number
density of relativistic particles was n ∼ T 3

γ , the interaction rate for each neutrino
was

Γ ∼ G2
F T

5
γ . (17.7)

One can see that the neutrino interaction rate decreases rapidly with the decrease
of temperature due to the expansion of the Universe.

In order to find the neutrino decoupling temperature, we use the relation in
eqn (16.186),

Γ ∼ H . (17.8)

Using the expression of H as a function of Tγ for a radiation-dominated Universe
in eqn (16.161),

H ∼
T 2

γ

MP
, (17.9)

we obtain the decoupling temperature

T ν-dec
γ ∼

(
MPG

2
F

)−1/3 ∼ 1 MeV . (17.10)

More precise calculations, which take into account the different interactions of
(−)

νe and
(−)

νµ,τ , yield (see Ref. [379])

T
(−)

νe-dec
γ � 1.3 MeV , T

(−)

νµ,τ -dec
γ � 1.5 MeV . (17.11)
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The decoupling temperature of
(−)

νe is smaller than that of
(−)

νµ,τ because
(−)

νe interact

with electrons and positrons more strongly than
(−)

νµ,τ (see section 5.1.1).

17.2 Electron-positron annihilation

Since neutrinos were relativistic at decoupling, their temperature evolves after the
decoupling according to eqn (16.193):

Tν ∝ R−1 for Tγ < T ν-dec
γ ∼ 1 MeV . (17.12)

Since before the decoupling when the temperature was equal to the photon
temperature, Tγ scaled also as R−1 for Tγ � mµ/3 ∼ 35 MeV, we have

Tν = T 0
ν (1 + z) for Tγ � mµ

3
. (17.13)

On the other hand, as we have explained in section 16.9, the photon temperature
does not evolve as R−1, because at a temperature of about me/3 � 0.2 MeV,
after neutrino decoupling, electrons and positrons became nonrelativistic and their
entropy was transferred to the photons, which are the only remaining relativistic
particles in equilibrium. This was done through e+-e− annihilations into photons.

Comparing eqn (16.179) and eqn (17.13) for Tγ � T ν-dec
γ , when Tν = Tγ ,

we easily obtain the following relation between the present neutrino and photon
temperatures:

T 0
ν =

(
4

11

)1/3

T 0
γ . (17.14)

Unfortunately, this very precise theoretical prediction has not been checked exper-
imentally so far, because of the enormous difficulty of detecting relic neutrinos due
to their extremely weak interactions.

Since both the neutrino and photon temperatures scaled as R−1 after e+-e−

annihilation, they have maintained the same ratio since that time:

Tν =

(
4

11

)1/3

Tγ � 0.7138Tγ (Tγ � 0.2 MeV) . (17.15)

This relation can also be obtained from eqn (16.195) with the present value of gs

in eqn (16.180) and the value of gs at neutrino decoupling given in eqn (16.182).
Using eqn (17.15), we can calculate the value of gρ for Tγ � 0.2 MeV:

gρ = gγ + 6
7

8

(
Tν

Tγ

)4

= 2 +
21

4

(
4

11

)4/3

� 3.363 (Tγ � 0.2 MeV) , (17.16)

where we have used the fact that there are three left-handed neutrinos and three
right-handed antineutrinos.
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17.3 Neutrino temperature

From the measured temperature of the CMBR in eqn (16.209) we can infer the
present neutrino temperature with remarkable accuracy:

T 0
ν =

(
4

11

)1/3

T 0
γ = 1.945 ± 0.001 K = (1.676 ± 0.001)× 10−4 eV . (17.17)

Let us compare this temperature with the constraints on the values of neutrino
masses obtained in neutrino oscillations experiments (see section 13.3.4). Since at
least two neutrino species have masses larger than about 8×10−2 eV (see Fig. 13.10),
at least the neutrinos belonging to these two species are nonrelativistic in the relic
neutrino background. From eqn (17.13), the massive neutrino νj with mass mj

became nonrelativistic at redshift

zνj-nr ∼
mj

3T 0
ν

� 2.0 × 103
(mj

eV

)
. (17.18)

However, as explained in section 16.10, since neutrinos were relativistic at the
decoupling, the number density of relic neutrinos is given by the relativistic expres-
sion in eqn (16.144) independently from the values of their masses. In other words,
light neutrinos are hot relics and contribute to the hot dark matter in the Universe.
From eqns (16.179) and (16.193), for any value of the light neutrino masses, (which
are much smaller than T ν-dec

ν ∼ 1 MeV), the present neutrino temperature is given
by

T 0
ν = T ν-dec

ν (1 + zν-dec)
−1

=

(
4

11

)1/3

T 0
γ , (17.19)

in agreement with eqn (17.17).
For any value of the light neutrino masses, the present number density of each

neutrino generation is given by eqn (16.144) with the neutrino temperature in
eqn (17.17) (see also eqn (16.196)):

n0
ν + n0

ν̄ =
3

2

ζ(3)

π2
gν (T 0

ν )3 =
6

11

ζ(3)

π2
(T 0

γ )3 =
3

11
n0

γ = 111.9 ± 0.1 cm−3 , (17.20)

where gν = 1, because one has to take into account only left-handed neutrinos and
right-handed antineutrinos which were in thermal equilibrium in the primordial
plasma for Tγ � T ν−dec

γ .
An important quantity is the present contribution of neutrinos to the energy

density of the Universe. Massless neutrinos and neutrinos with masses much smaller
than the effective neutrino temperature in eqn (17.17) are still relativistic. For each
of them, the contribution to the energy density of the Universe is given by the
photon contribution in eqn (16.212) times (4/11)4/3:

Ω0
ν-relativistic =

(
4

11

)4/3

Ω0
γ = (0.6414± 0.001)× 10−5 h−2 = (1.2 ± 0.3) × 10−5 .

(17.21)
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The total radiation density in the case of three relativistic neutrinos is given by

Ω0
R =

[
1 + 3

(
4

11

)4/3
]

Ω0
γ = (4.395± 0.007)× 10−5 h−2 = (8.4 ± 1.8) × 10−5 ,

(17.22)
which is very small, practically negligible in comparison with the matter and vac-
uum contributions (see section 17.8). This is the case of the SM, where neutrinos
are massless.

Assuming that all the three light neutrinos were relativistic before matter–
radiation equality, we can calculate the redshift zeq of matter–radiation equality
from eqns (16.88) and (17.22):

zeq � 2.3 × 104 Ω0
M � 3.1 × 103 , (17.23)

where we have used the values of Ω0
M h2 in eqn (16.234) and h in eqn (16.57). From

eqn (17.18), we have zνj-nr < zeq for mj � 1.5 eV. Therefore, the estimate of zeq
in eqn (17.23) is valid if all the light neutrino masses are lighter than about 1.5 eV.
Since the laboratory upper bound on the light neutrino masses is of the order of 2
eV (see section (14.1.1)), the estimate of zeq in eqn (17.23) is rather plausible. The
corresponding photon temperature is

T eq
γ � 0.73 eV . (17.24)

An important consequence of the value of zeq in eqn (17.23) is that the mass
that could form a galaxy, given in eqn (16.104), entered the horizon shortly before
the time of matter–radiation equality, as one can see from eqn (16.128) (the corre-
sponding eqn (16.119) in a matter-dominated Universe is not applicable, because
it would give a redshift of the order of 107, which is out of the range corresponding
to a matter-dominated Universe).

17.4 Energy density of light massive neutrinos

Nonrelativistic massive neutrinos may give a significant contribution to the energy
density of the Universe. From eqn (16.140), for each massive neutrino species νj ,
the energy density of left-handed νj ’s and right-handed ν̄j ’s is given by the mass
mj times the number density in eqn (17.20):

ρ0
νj

+ ρ0
ν̄j

= mj

(
n0

ν + n0
ν̄

)
, (17.25)

which corresponds to

Ω0
νj
h2 =

mj

94.14 eV
. (17.26)

It is common to express the total contribution of neutrinos to the energy density
of the Universe as

Ω0
ν h

2 =

∑
j mj

94.14 eV
, (17.27)

where we have omitted the negligible contribution of massless neutrinos, given
by eqn (17.21). Thus, the neutrino energy density is proportional to the sum of
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neutrino masses. This value is relevant for the present energy balance if there are
neutrinos with masses of the order of 1 eV or more.

Equation (17.27) is very important from a historical point of view, because
one can obtain, in a straight forward way, a powerful bound on the sum of neu-
trino masses from the well-known fact that the Universe is not over-closed by
matter. From the WMAP measurement of the matter content of the Universe in
eqn (16.234), we obtain

Ω0
ν h

2 < Ω0
M h2 � 0.14 =⇒

∑
j

mj � 13 eV . (17.28)

This type of limit on the masses of light neutrinos (depending on the constraint
imposed on Ω0

ν h
2) is often called the Gershtein–Zeldovich limit [518] or Cowsik–

McClelland limit [336].
The bound in eqn (17.28) is less stringent than the limit on neutrino masses

obtained in tritium β-decay experiments (see section 14.1.1). However, we will see
in section 17.7 that massive neutrinos have a significant effect on the formation
of structures in the early Universe. Using this effect, rich experimental surveys of
structures at high redshift lead to a constraint on the sum of neutrino masses which
is more powerful than that in eqn (17.28) and competitive with the bound obtained
in tritium β-decay (see section 17.8).

17.5 Energy density of heavy neutrinos

The existence of more than three active flavor neutrinos with mass smaller than
mZ/2 � 45 GeV has been excluded in 1990 by LEP measurements of the invisible
width of the Z boson (see section 5.1.3). Before this very important result, it was
common to consider the contribution to the energy density of the Universe of heavy
active flavor neutrinos νh, which were nonrelativistic at the decoupling. Thus, such
a νh is called a cold relic. We present, in the following, an estimate of such an energy
density for historical completeness and also because its method can be generalized
to the calculation of the energy density of other particles with different interactions.

First, we must estimate the decoupling temperature, which is different from
that of light flavor neutrinos because of the different interaction rate. Since, for
a nonrelativistic particle, the average energy is practically equal to its mass (see
eqn (16.142)), the νh-ν̄h annihilation cross-section of heavy active flavor neutrinos
with mass mνh

� mZ/2 � 45 GeV is of order

〈σv〉 ∼ G2
Fm

2
νh
. (17.29)

The case mνh
� mZ/2 � 45 GeV, in which one must take into account the Z-boson

propagator, will be discussed at the end of this section.
Considering the nonrelativistic number density in eqn (16.139) in the nonde-

generate case, the νh-ν̄h annihilation rate, which changes the number of νh’s and



592 RELIC NEUTRINOS

ν̄h’s in a comoving volume, is given by

Γ ∼ 0.1G2
Fm

7/2
νh

T 3/2
γ e−mνh

/Tγ . (17.30)

From eqn (16.161), the expansion rate of the Universe is given by

H ∼
√
gρ

MP
T 2

γ . (17.31)

The decoupling relation Γ ∼ H implies that the decoupling temperature T νh-dec
γ is

given by
mνh

T νh-dec
γ

− ln
mνh

T νh-dec
γ

∼ ln
G2

FMP

10
√
gρ

+ 3 lnmνh
. (17.32)

Considering mνh
� 1 GeV, we have gρ ∼ 102 and ln(G2

FMP/10
√
gρ) ∼ 15 for

mνh
in units of GeV. Since the logarithm on the left-hand side of eqn (17.32)

can be neglected, the decoupling temperature is approximately given by (see also
Refs. [689, 379])

mνh

T νh-dec
γ

∼ 15 + 3 ln
(mνh

GeV

)
. (17.33)

From eqn (16.201), we can calculate the present ratio of the number density of
νh + ν̄h’s and the photon number density: for a nondegenerate (µνh-dec

νh
= 0) Dirac

neutrino (gνh
= 2) and gνh-dec

s = gνh-dec
ρ ∼ 102 we have

n0
νh

+ n0
ν̄h

n0
γ

∼ 10−2

(
mνh

T νh-dec
γ

)3/2

e−mνh
/T

νh-dec
γ . (17.34)

Assuming that mνh
is roughly of the order of 1 GeV, we obtain, from eqns (17.33)

and (17.34),
n0

νh
+ n0

ν̄h

n0
γ

∼ 2 × 10−7
(mνh

GeV

)−3

. (17.35)

From ρ0
c/h

2 � 8 × 10−47 GeV4 from eqn (16.74) and n0
γ � 3 × 10−39 GeV3 from

eqn (16.210), the contribution of νh to the energy density of the Universe is given
by

Ω0
νh
h2 =

mνh

(
n0

νh
+ n0

ν̄h

)
ρ0
c/h

2
∼ 10

(mνh

GeV

)−2

. (17.36)

The dependence of Ω0
νh
h2 on m−2

νh
implies that an upper bound on Ω0

νh
h2 implies

a lower bound for mνh
. This behavior is opposite to that which was obtained in

section (17.4) for light neutrinos.
From the dark matter measurement in eqn (16.234) we obtain

Ω0
νh
h2 < Ω0

M h2 � 0.14 =⇒ mνh
� 8 GeV . (17.37)

Requiring instead that Ω0
νh
h2 < 1, we would have obtained mνh

� 3 GeV, which
is close to the so-called Lee–Weinberg bound, mνh

� 2 GeV, obtained through a
more precise calculation in Ref. [723] and, independently, in Refs. [629, 1044, 927]
(details are discussed in Refs. [700, 690, 973]).
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Z

νh f

νh f̄

f f̄

(a) (b)

Fig. 17.1. (a) Diagram of the annihilation channel in eqn (17.38) for a heavy Majo-
rana neutrino νh. (b) Configuration of the final state of the annihilation channel

in eqn (17.38) generated by the term fL γ
µ
(
gf

V − gf
A γ

5
)

fL in eqn (17.40). The

thin and thick arrows represent, respectively, momentum and spin.

For heavy Majorana neutrinos, the annihilation cross-section is suppressed with
respect to that in eqn (17.29) [700] because Fermi statistics requires the antisym-
metric state of annihilating Majorana fermions to be in a p-wave [547]. In order to
understand this statement, let us consider the annihilation channel of two heavy
Majorana neutrinos into f-̄f,

νh + νh → f + f̄ , (17.38)

where f is a fermion with mf < mνh
, through the diagram in Fig. 17.1a. The

creation of the f-̄f pair occurs through the weak neutral current

jµ
Z,f = f γµ

(
gf

V − gf
A γ

5
)

f , (17.39)

with the vector and axial couplings given in Table 3.6 (page 78). Decomposing f

into its left-handed and right-handed chiral components, we have

jµ
Z,f = fL γ

µ
(
gf

V − gf
A γ

5
)

fL + fR γ
µ
(
gf

V − gf
A γ

5
)

fR . (17.40)

Since typically mf � mνh
, we can consider f as massless in a first approximation. In

this case, fL describes particles with negative helicity and antiparticles with positive
helicity, whereas fR describes particles with positive helicity and antiparticles with

negative helicity (see section 2.9.2). This means that the term fL γ
µ
(
gf

V − gf
A γ

5
)

fL

can create a negative helicity f and a positive helicity f̄, as illustrated in Fig. 17.1b.
In the center-of-mass frame the total angular momentum will be J = 1 (assuming
the favored s-wave orbital configuration). The same holds for the other term. Thus,
the total angular momentum of the initial state must also be J = 1. The problem
arises from the fact that, if νh is a Majorana particle, the initial state must be
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antisymmetric, because the two νh’s in the initial state are identical. This can
be obtained either with a spin-0 and s-wave configuration or a spin-1 and p-wave
configuration. In fact, a spin-0 state

|0, 0〉 =
1√
2

(|↑↓〉 − |↓↑〉) . (17.41)

is antisymmetric and an s-wave wavefunction is symmetric, since the exchange of
the two particles is equivalent to a parity transformation in the center-of-mass frame
(see eqn (A.142)). On the other hand, a p-wave wavefunction is antisymmetric (see
again eqn (A.142)) and the spin-1 states

|1, 1〉 = |↑↑〉 , |1, 0〉 =
1√
2

(|↑↓〉 + |↓↑〉) , |1,−1〉 = |↓↓〉 (17.42)

are symmetric. Between the two configurations, the total angular momentum J = 1
can be obtained only with the spin-1 and p-wave configuration. The p-wave results
in a dependence of the annihilation cross-section on the squared momentum |�p|2 �
m2

h v
2, instead of m2

h in eqn (17.29). Therefore, the annihilation cross-section is
suppressed with respect to that in eqn (17.29) by an additional factor v2,

〈σv〉 ∼ GFm
2
νh
v2 , (17.43)

which is small at the decoupling temperature, when νh was nonrelativistic. A
smaller annihilation cross-section implies a larger decoupling temperature and,
through eqn (17.34), a larger relic number density, which is only partially com-
pensated by the halving of the number of degrees of freedom. A calculation of these
effects leads to a lower bound for the mass of a heavy Majorana neutrino which is
about three times larger than the corresponding one in the Dirac case [700].

The contribution of a stable Dirac or Majorana neutrino with mass m to the
cosmological energy density as a function of m is shown in Fig. 17.2 for 1eV <
m � 10 GeV. The left part of the figure shows the increase of the contribution
proportional to m for a light neutrino, according to eqn (17.26). In the right part
of the figure, for m � 1MeV, the neutrino is nonrelativistic at decoupling and its
contribution decreases as m−2, according to eqn (17.36).

Figure 17.3 shows the relic density Ων h
2 of a stable Dirac or Majorana neutrino

up to a mass of 103 TeV. As mentioned at the beginning of this section, since there
are only three active flavor neutrinos with mass smaller than mZ/2 � 45 GeV,
the lower bound in eqn (17.37) is interesting only for historical and pedagogical
reasons. Instead, the part of Fig. 17.3 above 45 GeV is more interesting. In order
to understand the qualitative behavior of Ωνh

h2 for mνh
� 45 GeV, it is useful to

find the dependence of Ωνh
h2 on the thermally averaged annihilation cross-section

〈σv〉. For this purpose, we write the annihilation rate Γ in eqn (17.30) in terms of
〈σv〉 as

Γ ∼ 0.1 〈σv〉m3/2
νh

T 3/2
γ e−mνh

/Tγ . (17.44)

From Γ ∼ H , we obtain, with the expansion rate in eqn (17.31),

mνh

T νh-dec
γ

∼ ln
MP 〈σv〉mνh

10
√
gρ

. (17.45)
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Fig. 17.2. Contribution of a stable
Dirac or Majorana neutrino with
mass m to the cosmological energy
density as a function of m for
1eV < m � 10 GeV [689].
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Fig. 17.3. Relic density Ων h
2 of a

stable Dirac neutrino as a function
of its mass mν , including a possible
asymmetry ην = 5×10−11 [650, 834].

Substituting this value in eqn (17.34), we have

n0
νh

+ n0
ν̄h

n0
γ

∼ 10−2

(
ln
MP 〈σv〉mνh

10
√
gρ

)3/2 10
√
gρ

MP 〈σv〉mνh

. (17.46)

Neglecting the logarithm in eqn (17.46), we finally obtain the approximate relation

Ω0
νh
h2 ∝ 〈σv〉−1 , (17.47)

which is consistent with eqn (17.36) when 〈σv〉 is given by eqn (17.29).
From Fig. 17.3 one can see that at mνh

= mZ/2 � 45 GeV there is a deep drop
of Ωνh

h2 = Ων h
2 due to the Z-boson pole in the νh-ν̄h annihilation process, which

enhances 〈σv〉 dramatically.
Consider next the case of mZ/2 < mνh

� mW , i.e. 45 GeV < mνh
� 80 GeV. In

this regime, the Fermi constant in eqn (17.29) is replaced by the Z-boson propagator(
p2 +m2

Z

)−1 ∼
(
m2

νh
+m2

Z

)−1 ∼ m−2
νh

, leading to 〈σv〉 ∝ m−2
νh

. Equation (17.47)
shows that, in this case, Ω0

νh
h2 increases approximately as m2

νh
.

For mνh
� mW � 80 GeV, the annihilation cross-section is enhanced by the νh+

ν̄h →W+ +W− channel [415], which leads to 〈σv〉 ∝ m2
νh

. Hence, Ω0
νh
h2 decreases

approximately as m−2
νh

, up to a mass of a few TeV. At these very high masses, the
tree-level annihilation cross-section violates the unitarity bound [568, 414]. This
means that the annihilation process is nonperturbative. The value of Ω0

νh
h2 in

Fig. 17.3 for mνh
� 1 TeV can be estimated using the unitarity limit, leading to

〈σv〉 ∝ m−2
νh

and Ω0
νh
h2 ∝ m2

νh
. One can see from the figure that this increase of

Ω0
νh
h2 implies an upper bound form2

νh
of about 300 TeV, above which νh over-closes

the Universe.
In summary, a heavy stable weakly interacting neutrino may have a mass

between a few GeV and a few hundred TeV. However, if the heavy neutrino has an
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asymmetry ηνh
≡ (nνh

−nν̄h
)/nγ , its present energy density could be determined by

the asymmetry [630], instead of the annihilation cross-section. The present energy
density due to the asymmetry, mνh

|ηνh
|n0

γ , implies

Ω0
νh
h2 � 4 × 107 |ηνh

|
(mνh

GeV

)
. (17.48)

If this value of Ω0
νh
h2 is greater than that in eqn (17.36), the asymmetry dominates.

The behavior of Ω0
νh
h2 for ην = 5 × 10−11 is shown by the dotted line in Fig. 17.3

for mνh
� 10 GeV, where the asymmetry is dominant. It is clear that, with such

large values of the asymmetry, the allowed window for mνh
is strongly reduced or

disappears entirely.

17.6 Big-Bang nucleosynthesis

Big-Bang nucleosynthesis (BBN) is one of the cornerstones of the Big Bang model
(see Refs. [1052, 217, 689, 423, 924, 940, 837, 683, 438, 834]). Already in the late
1940s Alpher, Bethe, Gamow and Herman [504, 70, 71, 72] realized that the condi-
tions in the hot early Universe was suitable for the formation of light nuclei. Their
insight led to the prediction of the existence of the CMBR, which was discovered
many years later by Penzias and Wilson [860, 368].

The following studies led to the understanding that the BBN is responsible
for the formation of the four light isotopes 2He, 3He, 4He, 7Li, whose primordial
abundances can be inferred from astrophysical measurements. It is not possible to
form heavier nuclei, because there are no stable nuclei with atomic mass 5 and 8.

The BBN is very powerful, in the sense that it gives us information about the
Universe at a temperature of about 0.1 MeV, corresponding to a time of about
1 s, much earlier than the time of photon decoupling probed (∼ 105 yr) by our
observations of the CMBR.

Before the neutrino decoupling, around Tγ � 1 MeV, the weak interaction
processes

n+ e+ � p+ ν̄e , (17.49)

p+ e− � n+ νe (17.50)

n � p+ e− + ν̄e (17.51)

were in equilibrium. The amount of nucleosynthesis depends crucially on the num-
ber of neutrons present in the thermal plasma, because neutrons are necessary to
make nuclei (at the time of BBN, the temperature and density were high enough to
form nuclei only from the pre-existing neutrons and protons). When the weak inter-
action processes in eqns (17.49)–(17.51) were in equilibrium, the number densities
of protons and neutrons were given by eqn (16.139), leading to the ratio

nn

np
� exp

[
−mn −mp − (µn − µp)

Tγ

]
, (17.52)

with mn −mp � 1.293 MeV. We have neglected the small difference between the
proton and neutron masses in the factor in front of the exponential. The thermal
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equilibrium of the weak interaction processes in eqns (17.49)–(17.51) implies that
the chemical potentials of protons, neutrons, electrons, and neutrinos are related
by

µp + µe = µn + µνe
. (17.53)

The chemical potentials of protons and neutrons were different from zero, because
the Universe is made of baryons103. The chemical potential of electrons is small,
because from electrical charge neutrality of the Universe and the value of the
baryon-to-photon ratio η in eqn (16.236), we have ne/nγ = np/nγ ∼ nB/nγ =
η ∼ 10−9. Since η was almost constant up to Tγ ∼ 200 MeV, from eqn (16.151) we
obtain µe/Tγ ∼ 10−9. On the other hand, the electron neutrino chemical poten-
tial µνe

is not constrained by other measurements. In the standard BBN, it is
assumed that µνe

is also negligible (the effect of a nonnegligible µνe
is discussed

in section 17.10). In this case, from eqn (17.53), we get (µn − µp)/Tγ ∼ 10−9,
which is negligible with respect to (mn −mp)/Tγ ∼ 1 for Tγ ∼ 1 MeV. Thus, the
neutron-to-proton ratio in thermal equilibrium before BBN was given by

nn

np
� exp

[
−mn −mp

Tγ

]
. (17.54)

The weak interaction processes in eqns (17.49)–(17.51) go out of equilibrium at
the freeze-out temperature (see Ref. [379])

T fr
γ � 0.7

( gρ

10.75

)1/6

MeV . (17.55)

The dependence on g
1/6
ρ comes from the equality at freeze-out of the interaction

rate Γ ∝ G2
F T

5
γ (analogous to eqn (17.7)) and the expansion rate H ∝ g

1/2
ρ T 5

γ

(according to eqn (16.161)).
In the standard BBN, we have gρ = 10.75 for Tγ � 0.2 eV (see eqn (16.158)),

leading to the freeze-out temperature

T fr
γ � 0.7 MeV . (17.56)

From eqn (16.162), the freeze-out time is

tfr � 1.5 s . (17.57)

At freeze-out, the neutron-to-proton ratio is given by(
nn

np

)
fr

� exp

[
−mn −mp

T fr
γ

]
� 1

6
. (17.58)

After freeze-out, the neutron-to-proton ratio is affected only by the neutron decay
process

n→ p+ e− + ν̄e . (17.59)

Although the nuclear binding energies of light nuclei are larger than 0.7 MeV,
as one can see from Table 10.5, the nucleosynthesis effectively occurs between Tγ �

103 If the chemical potentials of baryons were equal to zero, the number of baryons
and antibaryons in the hot early Universe would have been the same, leading to total
annihilation during the cooling due to the expansion.
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0.3 MeV and Tγ � 0.1 MeV. This is due to the large number of photons in the high-
energy tail of the distribution, which break up nuclei as soon as they are formed.
In other words, the high entropy of the Universe implies that the isotope I with
atomic number Z and atomic mass A becomes thermodynamically favored at the
temperature TI , approximately given by (see Refs. [689, 940])

TI [1.5 ln(mp/TI) − ln η] � B(A,Z)

A− 1
, (17.60)

where B(A,Z) is the binding energy. For η � 6 × 10−10 (from eqn (16.236)), we
have T2H � 0.07 MeV, T3He � 0.11 MeV, T4He � 0.28 MeV, and T7Li � 0.07 MeV.
Although 4He becomes thermodynamically favored before 2H, it cannot be pro-
duced in large quantities before T2H is reached because its production occurs
through the chains of reactions

p (n, γ) 2H
(
2H, p

)
3H

(
2H, n

)
4He , (17.61)

and

p (n, γ) 2H
(
2H, n

)
3He

(
2H, p

)
4He , (17.62)

which require a substantial previous formation of 2H. This is the so-called deuterium

bottleneck, which leads to the effective BBN temperature

TBBN � 0.07 MeV , (17.63)

which in turn corresponds, from eqn (16.162), to the BBN time

tBBN � 150 s . (17.64)

Since the neutron lifetime is about 886 s (see eqn (A.158)), some neutrons
decay in the time interval from freeze-out to nucleosynthesis, lowering the neutron-
to-proton ratio at the nucleosynthesis value to(

nn

np

)
BBN

� 1

7
. (17.65)

Since almost all the neutrons end up in forming 4He, which is the most tightly
bound stable light nucleus (see Table 10.5), the resulting mass fraction of 4He,
usually denoted by Yp, is given by

Yp �
(

2nn

np + nn

)
BBN

=
2 (nn/np)BBN

1 + (nn/np)BBN
� 0.25 . (17.66)

The value of Yp inferred from astrophysical data requires the subtraction of 4He
produced in stars and other astrophysical corrections. Recent estimates of Yp are
Yp = 0.2391 ± 0.0020 [760], Yp = 0.2421 ± 0.0021 [635], Yp = 0.249 ± 0.009 [836],
with a conservative allowed range 0.232 ≤ Yp ≤ 0.258 [836]. These values are in
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Fig. 17.4. Theoretical predictions of the BBN abundances of light nuclei as func-
tions of η10 ≡ 1010η [438]. Y ≡ Yp is the mass fraction of 4He. The abundances
of D ≡ 2H, 3He, and 7Li are given as number densities relative to the num-
ber density of p ≡ 1H ≡ H. The boxes indicate the observed abundances: the
small boxes indicate 2σ statistical uncertainties, whereas the large boxes indicate
2σ statistical plus systematic uncertainties added in quadrature. The narrow
vertical band corresponds to the WMAP measurement of η in eqn (16.236).

remarkable agreement with the rough estimation in eqn (17.66), confirming the
basic formulation of the standard BBN. In the following, we will use the value

Yp = 0.249± 0.009 (17.67)

from Ref. [836], in which some likely sources of systematic uncertainties in the
determination of Yp were taken into account.

Figure 17.4 shows the results of a precise calculation of the BBN abundances
of light nuclei as functions of the baryon-to-photon ratio η10 ≡ 1010η. One can see
that the sensitivity of the 4He abundance Yp to the value of η is weak. The slow
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increase of Yp with η is due to the increase of the BBN temperature (i.e. the 2H
formation temperature from eqn (17.60)), which anticipate the time at which BBN
occurs, leaving less time for neutrons to decay. With 3 � η10 � 10 and a neutron
lifetime of 886 s (see eqn (A.158)), the amount of 4He is approximately given by
[256, 217, 1048, 424]

Yp � 0.227 + 0.010 ln η10 , (17.68)

which gives
Yp � 0.245 for η10 � 6.1 . (17.69)

From a more accurate numerical calculation, the authors of Ref. [344] obtained

Yp = 0.2484+0.0004
−0.0005 for η10 = 6.14 ± 0.25 . (17.70)

On the other hand, the primordial deuterium abundance is very sensitive to the
value of η. From Fig. 17.4, one can see that the deuterium abundance decreases
almost exponentially as η increases. This rapid depletion of deuterium is caused by
the process 2H(p, γ)3He, whose rate is proportional to the proton number density.
Since deuterium can only be depleted in stars and other astrophysical processes,
the present abundance of deuterium is an upper limit to the primordial value and
a measurement of the deuterium abundance implies an upper limit on the baryon
density [896, 420]. For these reasons, deuterium is considered as the best cosmic

baryometer.
Unfortunately, the astrophysical evolution of 3He is not sufficiently well known

to infer a useful estimate of the primordial abundance of 3He from astrophysical
observations. The estimate of the primordial abundance of 7Li from the data suffers
also from large systematic uncertainties, as one can see from Fig. 17.4.

Figure 17.4 shows that there is agreement among the predicted and measured
abundances for [438]

3.4 ≤ η10 ≤ 6.9 (95% CL) . (17.71)

Taking into account the difficulty of measurements and the huge extrapolation
back in time, this is an impressive feat indeed, which makes the BBN a pillar of
the Standard Cosmological Model.

The narrow vertical band in Fig. 17.4 shows the WMAP measurement of η in
eqn (16.236), which is in good agreement with the deuterium abundance. Since
this determination of η is very precise, it is possible to assume it as an input in
the BBN calculation. In this case, the standard BBN becomes a theory without
undetermined parameters. This fact is very useful, since it allows one to use the
measured light element abundances to constrain possible physics beyond the SM,
which can affect the BBN. The BBN constraints on the number of neutrino genera-
tions and on neutrino asymmetries are to be discussed, respectively, in sections 17.9
and section 17.10.2.

17.7 Large-scale structure formation

The formation of large-scale structures (LSS) is one of the main topics in modern
cosmology. It allows one to test a cosmological model against the observations,
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which have reached an impressive wealth of information with the 2dF Galaxy Red-
shift Survey (2dFGRS) [861, 327, 324], the Sloan Digital Sky Survey (SDSS) [9, 28],
and other surveys of astrophysical objects. As we will see in the following, the LSS
formation gives information on the values of the masses of light neutrinos, which
contribute to the hot dark matter in the Universe, since they decoupled when they
were relativistic (see section 17.1).

The comparison of the measured distribution of large objects in the Universe
with theoretical predictions is usually done through the so-called power spectrum

of density fluctuations. In order to derive the power spectrum, let us consider the
two-point correlation function

ξ(t, y) ≡ 〈δ(t,�x) δ(t,�x +�y)〉 , (17.72)

where δ(t,�x) is the field of relative density fluctuations in eqn (16.222). The angle
brackets indicate an average over a model-dependent ensemble of universes (see
the discussion before eqn (16.214)). Since it is assumed that the fluctuations are
statistically homogeneous in space, the two-point correlation function does not
depend on �x. Moreover, since it is assumed that the fluctuations are statistically
isotropic, the two-point correlation function depends only on y ≡ |�y|.

Consider now the correlation function in Fourier space 〈δ(t,�k) δ(t,�k′)〉. Since
from eqn (16.222) we have

δ(t,�k) =

∫
d3x δ(t,�x) e−i
k ·
x , (17.73)

we obtain the correlation function in Fourier space

〈δ(t,�k) δ(t,�k′)〉 = (2π)3 δ3(�k +�k
′
)P (k, t) , (17.74)

with the power spectrum P (k, t) given by the Fourier transform of the two-point
correlation function:

P (k, t) =

∫
d3y ξ(t, y) e−i
k ·
y = 4π

∫ ∞
0

ξ(t, y)
sin(ky)

ky
y2 dy . (17.75)

It is often convenient to consider a finite volume in which the wavenumber �k is
quantized by periodic boundary conditions. In this case, we have (2π)3 δ3(�k+�k

′
) →

δ
k,−
k
′ . Taking into account that δ(t,−�k) = δ∗(t,�k), which follows from the reality

of δ(t,�x) in eqn (16.222), the power spectrum can be written as

P (k, t) = 〈|δ(t,�k)|2〉 . (17.76)

Hence, the power spectrum is the variance of the distribution of fluctuations in
Fourier space. If the fluctuations have a Gaussian distribution, as predicted by
simple inflationary models (see Refs. [762, 182]), their distribution depends only on
one parameter, the variance (obviously, the mean is equal to zero). Thus, Gaussian
fluctuations are completely characterized by the power spectrum.

According to the standard picture (see Refs. [689, 856, 325]), the Universe
started in an almost perfectly homogeneous state, with tiny primordial density
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inhomogeneities which could have been generated by the amplification of quan-
tum fluctuations in the inflationary era (see Refs. [762, 182]). In many models the
primordial power spectrum P�(k) have, at least approximately, a power-law form

P�(k) = Akns , (17.77)

where the power ns is called the spectral index. The simplest primordial power
spectrum, predicted by simple inflationary models (see Refs. [762, 182]), is the
so-called scale-invariant or Harrison–Zeldovich primordial power spectrum with
ns = 1 [598, 859, 1086]. The reason why it is called scale-invariant is that the
fluctuations of the gravitational potential have an amplitude independent of scale
(see Refs. [689, 325]). If ns �= 1, the power spectrum is called tilted.

In the linear theory, the density fluctuations δ(t,�k) at some cosmological time

t can be written as δ(t,�k) = T (t, k) δ�(�k), where δ�(�k) are the primordial density

fluctuations and T (t, k) is the transfer function. Since P�(k) = 〈|δ�(�k)|2〉, we have,
for the power spectrum,

P (k, t) = T 2(t, k)P�(k) . (17.78)

When the time is not specified, the present time is implicitly assumed:

P (k) ≡ P (k, t0) = T 2(t0, k)P�(k) ≡ T 2(k)P�(k) . (17.79)

The calculable effects of the evolution of the Universe after the primordial era
(inflation or whatever) on the observed power spectrum P (k) are encoded in the
transfer function T 2(k). In the following, we review the fundamental aspects of the
evolution of the density perturbations in inflationary scenarios and the resulting
effects on the power spectrum.

During inflation the particle horizon grows exponentially, as the scale factor R
(see eqn (16.133)). For the sake of clarity, we will call the inflated horizon, denoted
by dIH, the particle horizon obtained from eqn (16.65) by assuming that t = 0 is
the beginning of inflation. It corresponds to the size of the regions in the Universe
which have been in causal contact since the beginning of inflation. On the other
hand, following a common convention, we will simply call the horizon, denoted by
dH, the particle horizon obtained from eqn (16.65) by assuming that t = 0 is the
end of inflation. Hence, the horizon corresponds to the size of the regions in the
Universe which have been in causal contact since the end of inflation. In other words,
the horizon coincides with the particle horizon in the Standard Cosmological Model
without inflation. As illustrated in Fig. 17.5, the physical wavelengths of primordial
fluctuations were stretched beyond the horizon by the exponential expansion of
the Universe in the inflationary era. However, primordial fluctuations were always
within the inflated horizon, as required by causality: any physical process which
generated the fluctuations could have acted only within the causal horizon. After
the end of inflation, the horizon grew faster than the scale factor R(t), both in the
radiation-dominated era (dH ∝ R2; see eqn (16.123)) and in the matter-dominated
era (dH ∝ R3/2; see eqn (16.113)). Thus, gradually, the physical wavelengths of the
density perturbations entered the horizon. Let us emphasize that for the physical
processes which led to structure formation, the horizon is relevant, not the inflated
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Fig. 17.5. Schematic description of the behavior of physical wavelengths λ ∝ R of
primordial fluctuations with respect to the horizon dH and the inflated horizon
dIH.

horizon, because all the particles were generated by the decay of the inflation field
at the end of inflation. In this sense, the end of inflation can be considered as the
origin of time for the standard hot Big Bang.

Let us first determine the behavior of the fluctuations with wavelengths larger
than the horizon, called superhorizon perturbations. We will then discuss the
behavior of the perturbations after they entered the horizon.

Since superhorizon perturbations are not affected by causal processes, their
behavior is governed only by the expansion of the Universe and can be estimated
with the following approximate reasoning. Consider a flat Universe, in agree-
ment with inflation, in which the average energy density 〈ρ〉 obeys the Friedmann
equation

H2 =
8πGN

3
〈ρ〉 . (17.80)

Now consider a Universe with the same expansion rate H , but slightly different
energy density ρ. In this case, the Friedmann equation must contain the curvature
term:

H2 =
8πGN

3
ρ− k

R2
, (17.81)

where k = ±1, defined in eqn (16.29) (this k should not be confused with the
wavenumber). For the relative density difference, we get

δ ≡ ρ− 〈ρ〉
〈ρ〉 =

k

H2R2
∝
{
R2 ∝ t (RD) ,

R ∝ t2/3 (MD) .
(17.82)
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The behaviors in the radiation dominated (RD) and matter-dominated (MD) eras
have been obtained from eqns (16.120), (16.121) and eqns (16.109), (16.110), respec-
tively. Thus, we see that the amplitude of superhorizon fluctuations grows with the
expansion of the Universe, independently of the wavenumber.

When a perturbation enters the horizon, more complicated things happen.
Luckily, however, their study is simplified by the fact that within the horizon an
approximate Newtonian analysis is sufficient for most purposes. In general, if there
are several components of the energy density, ρ =

∑
i ρi, the evolution of the den-

sity perturbations δi(t,�k) of the ith component is given by the differential equation
(see Ref. [689])

δ̈i(t,�k) + 2H δ̇i(t,�k) + (vi
s)

2 k2 δi(t,�k) − 4πGN

∑
j

ρj δj(t,�k) = 0 , (17.83)

where k ≡ |�k| and vi
s is the sound velocity of the ith component, given by the

generalization of eqn (16.227). In the following subsections we will discuss separately
the evolution of the density perturbations of baryonic matter (section 17.7.1), cold
dark matter (section 17.7.2) and hot dark matter (section 17.7.3).

By definition hot dark matter (HDM) and cold dark matter (CDM) are com-
posed of weakly interacting massive particles (WIMPs) which participated in
structure formation in the form of a collisionless fluid. The distinction between
HDM and CDM lies in their average velocities:

Hot dark matter is composed of hot relic WIMPs with a number density of the
same order of magnitude as the photon density in the CMBR. This means that
HDM particles must have decoupled when they were relativistic, at a tempera-
ture below the quark–hadron phase transition temperature of about 300 MeV.
This was the time when the cooling of the CMBR with the expansion of the Uni-
verse was strongly suppressed by the transfer of entropy from the annihilations
of nonrelativistic hadrons and antihadrons. The temperature of WIMPs which
decoupled before the quark–hadron phase transition would be much smaller than
the CMBR temperature, leading to a negligible number density.

Neutrinos with masses of the order of 1 eV are natural candidates for HDM.
Note that, although HDM particles are nonrelativistic today, they still have a
relatively large average velocity. In fact, if χ is a HDM particle, from eqn (16.147)
we have 〈|�pχ|〉 � 3Tχ. Since today |�pχ| = mχ|�vχ|, the average velocity is given
by

|�v0
χ| � 150

(
T 0

χ

T 0
ν

)( mχ

1 eV

)−1

km s−1 , (17.84)

where we have normalized the temperature with respect to the present neutrino
temperature in eqn (17.17).

When HDM particles were relativistic, the HDM perturbations within the
horizon were erased by the so-called free-streaming discussed in section 17.7.3.
This is due to the random particle velocities close to the velocity of light,
which allowed the HDM particle to escape the overdense regions, leading to
the equalization of the HDM density within the horizon.
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Cold dark matter is composed of cold relic WIMPs. Since they decoupled while
they were nonrelativistic, their number density may be very small and the mass
very high, with negligible thermal velocity. Heavy massive neutrinos of the type
discussed in section 17.5 are possible candidates. Other possible candidates are
sterile heavy neutrinos and supersymmetric particles (neutralinos, sneutrinos,
gravitinos, axinos). It is also possible to have CDM which was produced non-
thermally, for example superheavy particles (wimpzillas), axions, and primordial
black-holes (see Refs. [646, 392, 219]).

17.7.1 Baryonic matter

The evolution of the density perturbations of baryonic matter (BM) are of primary
interest, because baryons form the observable objects in the Universe. The forma-
tion of these objects must have occurred through the collapse of large structures
due to gravitational instability. As we will see, this could happen after the recombi-
nation. Before the recombination, the growth of baryon density perturbations was
hindered by the pressure of photons with which baryons interacted.

The theory of gravitational instability of a collisional fluid, as BM, was studied
by Jeans in 1902 in a Newtonian framework. He showed that the evolution of density
fluctuations of a homogeneous background depends on the balance between self-
gravitation, which induces the collapse of overdense regions, and pressure, which
tends to restore hydrostatic equilibrium. If self-gravitation dominates over pressure,
an overdense region can accumulate material from its surroundings, increasing its
density and eventually collapsing into a gravitationally bound object.

One can derive approximately the Jeans criterion for fluctuation growing by
comparing the characteristic time scales of gravitational collapse and pressure
response. If the fluctuation has a scale λ and a mass M , the gravitational accel-
eration at its surface is g = GNM/λ2 ∼ GNρλ, with a time scale for gravitational
collapse given by τg ∼

√
λ/g ∼ (GNρ)

−1/2. On the other hand, the time scales
of pressure response is given by τp ∼ λ/vs, where vs is the sound velocity in
eqn (16.227). A fluctuation can grow if gravitational collapse occurs before pres-
sure forces can respond to restore hydrostatic equilibrium: τg � τp, which implies
λ � λJ, with the Jeans length λJ ∼ vs/

√
GNρ.

From eqn (17.83), the evolution of baryonic perturbations δB(t,�k) in a baryonic
matter-dominated Universe (ρ � ρB) is given by (see Refs. [689, 856, 325])

δ̈B(t,�k) + 2H δ̇B(t,�k) +
[
v2
s k

2 − 4πGN ρ
]
δB(t,�k) = 0 . (17.85)

Since the qualitative behavior of the solution depends on the sign of the quantity
in square brackets104, the physical Jeans wavenumber kJ is given by

k2
J =

4πGN ρ

v2
s

, (17.86)

104 In a static Universe (H = 0) the solution of eqn (17.85) has the form δB(t,�k) ∝ e±iωt,

with ω =
p
v2
s k2 − 4π GN ρ. In this case, it is clear that δB(t,�k) oscillates for k > kJ,

whereas for k < kJ there is an exponentially growing solution.



606 RELIC NEUTRINOS

with the corresponding physical Jeans length

λJ =
2π

kJ
= vs

√
π

GNρ
, (17.87)

in agreement with the estimate above.
The solution of eqn (17.85) for k > kJ implies that fluctuations with a wave-

length smaller than the Jeans length oscillate as acoustic waves. On the other hand,
for k < kJ there are unstable solutions in which the perturbations grow with time.
To see this in a simple way, consider k � kJ and a flat matter-dominated Universe.
In this case, using eqn (16.110) and 4πGNρ = 3H2/2 from the Friedmann equation,
eqn (17.85) reduces to

δ̈B(t,�k) +
4

3 t
δ̇B(t,�k) − 2

3 t2
δB(t,�k) = 0 . (17.88)

One can immediately check that there is a growing solution

δB(t,�k) ∝ t2/3 . (17.89)

These growing modes can generate structures after the recombination.
The reason why baryonic structures can be generated only after the recombina-

tion is that before the recombination the Jeans length is very large, because of the
pressure of photons, even in the matter dominated era. This depends on the large
sound speed vs. In the baryon–photon plasma before recombination, the energy
density is ρ = ρB + ργ and the pressure is provided by photons: p = pγ = ργ/3.
In order to calculate vs through eqn (16.227), one must take into account that we
are considering adiabatic perturbations. Since both entropy and baryon number are
conserved, the entropy per baryon,

sB =
s

nB
, (17.90)

is conserved. Taking into account that s ∝ T 3
γ , ργ ∝ T 4

γ , and ρB = mBnB, we
obtain, from δsB = 0,

δρB

ρB
= 3

δTγ

Tγ
=

3

4

δργ

ργ
=⇒ ∂ρB

∂ργ
=

3

4

ρB

ργ
. (17.91)

Hence, the sound speed is given by

v2
s =

1

3

(
1 +

∂ρB

∂ργ

)−1

=
1

3

(
1 +

3

4

ρB

ργ

)−1

=
1

3

(
1 +

3

4

Ω0
B

Ω0
γ

(1 + z)
−1

)−1

,

(17.92)
for z > zrec � 1.1×103. Using the values of Ω0

γ and Ω0
B in eqns (16.212) and (16.233),

one can find that before recombination 1/6 � v2
s ≤ 1/3. From eqn (17.87), con-

sidering a flat Universe, the baryon Jeans length before recombination is bounded
by

λJB �

√
π

6GNρ
=

2π

3H
. (17.93)

Comparing with eqn (16.113), one can see that the baryon Jeans length before
recombination was larger than the horizon. This means that before recombination
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only the baryon perturbations with superhorizon wavelength can grow according to
eqn (17.82). When the perturbations enter the horizon, their growth stops, because
the perturbation amplitude starts to oscillate in response to the photon distribution.
This scenario is in agreement with the discussion in section 16.11 of the generation
of CMBR anisotropies.

After recombination, the baryon Jeans length drops dramatically, because the
photon pressure disappears. The relevant energy density for the evaluation of the
baryon sound speed is the baryon energy density ρB. From eqns (16.140) and
(16.141), the baryon pressure is pB = ρBTB/mB. The resulting baryon sound speed
is given by

v2
s =

∂pB

∂ρB
=

TB

mB
+
ρB

mB

∂TB

∂ρB
� 5

3

TB

mB
. (17.94)

Since baryons are nonrelativistic, TB � mB, the baryon sound speed after recombi-
nation is very small. In this case, the Jeans length is much smaller than the horizon.
Furthermore, since, from eqn (16.198), after recombination TB decreases propor-
tionally to R−2, the baryonic Jeans length decreases proportionally to R−1 ∝ 1+z.
Thus, after recombination subhorizon baryonic perturbations larger than the Jeans
length can grow according to eqn (17.89) until they reach δB(t,�k) ∼ 1. At that
point, the linear theory no longer applies and the perturbations rapidly collapse to
form structures.

It is very plausible that the matter in the Universe is composed not only of
baryons, but there is also a large amount of cold dark matter. As we will see
in section 17.7.2, subhorizon cold dark matter perturbations start to grow at
matter–radiation equality, which occurs earlier than recombination. Thus, at recom-
bination, the CDM perturbations are much larger than the baryon perturbations. It
can be shown that in this case the growth of baryon perturbations is enhanced by the
presence of the CDM perturbations. As a result, the baryon perturbations rapidly
reach the same amplitude as the CDM perturbations (see Refs. [689, 856, 325]). In
this case, the transfer functions of the baryon and CDM density fluctuations are
practically equal.

17.7.2 Cold dark matter

Cold dark matter is composed of cold relic WIMPs. This means that during the
structure formation CDM is a gas of nonrelativistic collisionless particles. Since
the velocity dispersion of such a gas is very small, its free-streaming is practically
negligible. The evolution of subhorizon CDM density perturbations δCDM(t,�k) in
a smooth radiation background is given by eqn (17.83) with i = CDM, vCDM

s � 0

and negligible δj(t,�k) for j �= CDM (see Refs. [689, 856, 325]):

δ̈CDM(t,�k) + 2H δ̇CDM(t,�k) − 4πGN ρCDM δCDM(t,�k) = 0 . (17.95)

This equation is similar to eqn (17.85) for baryonic perturbations, with the differ-
ence that the sound velocity of CDM is negligible and that we have considered a
model in which ρCDM may be different from the total energy density ρ. This hap-
pens in the radiation-dominated era, when ρ � ρR. In order to solve eqn (17.95), it
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is convenient to define

y ≡ ρCDM

ρR
=

R

Req
. (17.96)

Then, from the Friedmann equation for a flat Universe, we have H =√
8πGNρR(1 + y)/3 and, hence, eqn (17.95) can be written as

δ′′CDM +
2 + 3y

2y (1 + y)
δ′CDM − 3

2y (1 + y)
δCDM = 0 , (17.97)

where a prime denotes the derivative with respect to y. One can immediately check
that there is a growing solution,

δCDM ∝ y +
2

3
, (17.98)

which has δ′′CDM = 0.
Before the matter–radiation equality, when the Universe was radiation-

dominated, y was very small. During this era, the CDM perturbations did not
grow. From eqn (17.98), one can see that they were practically frozen at a constant
value:

δCDM � constant for t� teq . (17.99)

Only after matter–radiation equality, y became large and the CDM perturbations
could grow in the usual way (see eqn (17.89)):

δCDM ∝ y ∝ R ∝ t2/3 for t� teq . (17.100)

The stagnation of CDM perturbation during the radiation-dominated era is called
the Meszaros effect [792]. Physically, it is due to the fact that the CDM gravitational
self-interaction 4πGN ρCDM is too slow in comparison with the large expansion rate
H �

√
8πGNρR/3.

In summary, for scales greater than the horizon, CDM perturbations grow as
other perturbations according to eqn (17.82). The growth is gradually stopped when
a CDM perturbation enters the horizon during the radiation-dominated era and can
smoothly increase to that in eqn (17.100) after the matter–radiation equality.

Let us emphasize that the above treatment is valid as long as the perturbations
are small, δCDM � 1. When δCDM grows to the order of unity, the linear approxi-
mation breaks down and the evolution of perturbations with different wavelength
is no longer independent. Numerical simulations show that the nonlinear behavior
of the perturbations lead to collapse and formation of structures.

The structures observed in our Universe have statistical properties compatible
with those obtained in numerical simulations of a Universe in which matter is
mainly composed of CDM. The biggest problem of CDM models is that so far CDM
has never been directly detected and the nature of CDM is completely unknown
(although there are many plausible candidates; see Refs. [646, 392, 219]).

17.7.3 Hot dark matter

Hot dark matter is composed of hot relic WIMPs with a number density of the
same order of magnitude as the CMBR density. Relic neutrinos with masses of the
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order of 1 eV are HDM, since they decoupled at a temperature of the order of
1 MeV while they were relativistic and their number density is a fraction 3/11 of
the CMBR (see section 17.3).

Since WIMPs decoupled much earlier than the time of matter–radiation equality,
when galactic-size masses entered the horizon, they were a collisionless gas during
LSS formation. As long as the HDM gas is relativistic, the HDM perturbations
within the horizon are erased by free streaming: the random particle velocities
close to the velocity of light disperse all HDM overdensities with sizes smaller than
the horizon. Free-streaming ceases when the HDM gas becomes nonrelativistic, at
redshift znr. Thus, only the HDM perturbations with wavelength larger than the
horizon distance at znr survive and can partake in the generation of structures in
the Universe. Since the horizon distance at znr is typically much larger than the
volume corresponding to galactic-size masses, in a Universe dominated by HDM,
the formation of structures must proceed according to a top-down mechanism,
in which very large-scale structures, of supercluster size, form first. Later, these
structures fragment and generate galaxies. It turns out that the observed Universe
has statistical properties which are different from those of a Universe generated
in this way. Hence, it is currently believed that our Universe is not dominated by
HDM. The observations favor a CDM-dominated Universe in which the formation of
structures proceed according to a bottom-up mechanism: small-scale structures of
galactic size form first, and later merge to form clusters and superclusters. The LSS
observations are used in order to constrain the amount of HDM, which suppresses
the formation of small-scale structures through free-streaming.

Considering specifically a light neutrino νj with mass mj , let us estimate
the current physical free-streaming scale λ0

νj-fs
as the present physical distance

corresponding to the horizon distance at the redshift zνj-nr, when νj became
nonrelativistic. Assuming a neutrino mass smaller than about 1.5 eV, it became non-
relativistic after the matter–radiation equality (see the discussion after eqn (17.23)).
In this case, in a first approximation, we can use the expression for the horizon dis-
tance in a matter-dominated Universe, given in eqn (16.117). Using the value of
zνj-nr in eqn (17.18), the current physical free-streaming scale is given by

λ0
νj-fs � zνj-nr dH(zνj-nr) � 2H0

−1 z−1/2
νj-nr (Ω0

M)−1/2

� 1.3 × 102
(mj

eV

)−1/2

(Ω0
M)−1/2 h−1 Mpc . (17.101)

Neutrino free-streaming suppresses the power spectrum of density fluctuations for
physical wavenumbers larger than the current physical free-streaming wavenumber

k0
νj-fs �

2π

λ0
νj -fs

� 4.7 × 10−2
(mj

eV

)1/2√
Ω0

M hMpc−1 . (17.102)

The suppression of the power spectrum of density fluctuations in the case of
massive neutrinos is illustrated in Fig. 17.6, where we have plotted the ratio of
the CDM transfer functions for massive and massless neutrinos (as explained at
the end of section 17.7.1, the baryon and CDM transfer functions are practically
the same). One can see that massive neutrinos suppress the transfer function for
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Fig. 17.6. Ratio of the CDM transfer functions for massive and massless neu-
trinos, obtained with the CMBFAST code [946] in a flat ΛCDM model with
h = 0.72, Ω0

B = 0.05, Ω0
Λ = 0.70 and three quasidegenerate massive neutri-

nos. Solid line:
∑

j mj = 1 eV (Ω0
ν � 0.02). Long-dashed line:

∑
j mj = 2 eV

(Ω0
ν � 0.04). Short-dashed line:

∑
j mj = 3 eV (Ω0

ν � 0.06). The CDM density

is Ω0
CDM = 1 − Ω0

Λ − Ω0
B − Ω0

ν .

values of k approximately larger than k0
νj-fs

, within an order of magnitude. The

partial suppression for values of k just below k0
νj -fs is due to the high-energy tail of

the neutrino distribution and residual free-streaming after neutrinos have become
nonrelativistic but still have high velocities.

The amount of the suppression of the power spectrum can be evaluated approx-
imately as follows [1012]. Let us consider the matter-dominated era, when the
subhorizon CDM perturbations could grow, as explained in section 17.7.2. How-
ever, in section 17.7.2 we did not take into account the possible presence of a
HDM component. Next, let us consider a HDM component made of massive neu-
trinos with masses of the order of 1 eV, which became nonrelativistic shortly after
the matter–radiation equality. After the neutrinos became nonrelativistic, they
contributed to the matter-dominated energy density of the Universe, but their
perturbations are suppressed below the free-streaming scale. In this case, below the
free-streaming scale only the CDM density perturbations δCDM(t,�k) are nonnegli-
gible (baryonic perturbations contribute only after the recombination, as explained
in section 17.7.1; in this approximate derivation we neglect the baryon contribution,
which is small since Ω0

B/Ω
0
M � 0.17 from eqns (16.233) and (16.234)). Hence, from

the general evolution equation (17.83), we obtain again, for the CDM density per-
turbations, the evolution equation (17.95). However, in this case we are considering
the matter-dominated era, with ρ � ρCDM + ρν . From the Friedmann equation for
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a flat Universe, it follows that

4πGN ρCDM =
3

2
H2 ΩCDM , (17.103)

where ΩCDM = ρCDM/ρ. Since, in a matter dominated Universe, H = 2/3t (see
eqn (16.110)), the evolution equation (17.95) in this case can be written as

δ̈CDM(t,�k) +
4

3 t
δ̇CDM(t,�k) − 2

3 t2
ΩCDM δCDM(t,�k) = 0 . (17.104)

This equation can easily be solved by assuming

δCDM(t,�k) ∝ tp . (17.105)

One finds the two solutions for p [262]:

p± = ±
√

1 + 24 ΩCDM ∓ 1

6
. (17.106)

The exponent p+ gives a growing solution. Note that for ΩCDM = 1, which corre-
sponds to Ων = 0, i.e. massless neutrinos, we have p+ = 2/3 and one recovers the
growth of CDM perturbations in a CDM-dominated Universe given in eqn (17.100).
On the other hand, if there is a neutrino component, we have p+ < 2/3 and the
evolution of CDM perturbations is suppressed. For Ων � 1, we have

p+ � 2

3

(
1 − 3

5
Ων

)
. (17.107)

In this case, the growth of CDM perturbations is approximately given by (the
contribution of the solution corresponding to p− rapidly disappears)

δCDM(t,�k) ∝ t
2
3 (1− 3

5 Ων) ∝ R1− 3
5 Ων . (17.108)

CDM perturbations grew in this way from the matter–radiation equality to the
matter–vacuum transition, when their growth was slowed down by an effect similar
to the Meszaros effect discussed in section 17.7.2. Hence, the growing factor of CDM
perturbations is

δCDM(ttr,�k)

δCDM(teq,�k)
∼
(
Rtr

Req

)1− 3
5 Ων

=

(
1 + zeq
1 + ztr

)1− 3
5 Ων

=

(
(Ω0

M)4/3

Ω0
R (Ω0

Λ)1/3

)1− 3
5

Ω0
ν

Ω0
M

,

(17.109)
where we have written Ων in the matter-dominated era as the present fraction
Ω0

ν/Ω
0
M, and we have used the eqns (16.86) and (16.88) for 1 + ztr and 1 + zeq,

respectively. From eqn (17.76), the ratio of the power spectra for massive and
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massless neutrinos is given by

P (k,Ω0
ν)

P (k,Ω0
ν = 0)

∼
(

(Ω0
M)4/3

Ω0
R (Ω0

Λ)1/3

)− 6
5

Ω0
ν

Ω0
M

= exp

[
−6

5

Ω0
ν

Ω0
M

ln

(
(Ω0

M)4/3

Ω0
R (Ω0

Λ)1/3

)]
.

(17.110)
Thus, for Ω0

ν � Ω0
M, the suppression of the power spectrum below the neutrino

free-streaming scale estimated in eqn (17.101) is approximately given by

∆P (k)

P (k)
∼ −6

5

Ω0
ν

Ω0
M

ln

(
(Ω0

M)4/3

Ω0
R (Ω0

Λ)1/3

)
. (17.111)

Since the neutrino perturbations are erased below the free-streaming scale, the
suppression of the power spectrum is proportional to the ratio Ω0

ν/Ω
0
M, which

gives the relative neutrino energy density during the matter-dominated era (Ων

in eqn (17.108)).
Considering a flat Universe with Ω0

M � 0.3 and Ω0
R given by eqn (17.22), we

obtain (see also Ref. [627])

∆P (k)

P (k)
∼ −10

Ω0
ν

Ω0
M

∼ −
(∑

j mj

1eV

)(
0.1

Ω0
M h2

)
. (17.112)

From this suppression, one can constrain the amount of HDM and, as a consequence,
the sum of the masses of light neutrinos from measurements of the power spectrum.

17.8 Global fits of cosmological data

The current astronomical observations indicate that the Universe is described on
large scales by a spatially flat Robertson–Walker metric, with an energy density
which consists of about 5% of baryons, about 25% of CDM, and about 70% of dark
energy105. The statistical distribution of structures is in good agreement with that
predicted by CDM models with a scale-invariant primordial power spectrum. This
cosmological model is called the flat ΛCDM model or concordance model, since it
is in good agreement with all data.

Figures 17.7 and 17.8 show, respectively, summaries of the experimental data on
the angular power spectrum of CMBR temperature anisotropies [1010] and the cur-
rent matter power spectrum [1012], which are used in global cosmological fits. The
angular power spectrum of CMBR temperature anisotropies in Fig. 17.7 extends the
WMAP data points in Fig. 16.8 with other measurements at large values of �. The
current matter power spectrum in Fig. 17.8 is obtained mainly from CMBR data
at small wavenumbers (large wavelengths), LSS data at intermediate wavenumbers,
and Lyman-α forest data at large wavenumbers (small wavelengths). It is assumed

105 Considering a general dark energy equation of state pDE = wDE ρDE, the first year
data of the Supernova Legacy Survey [117] combined with SDSS data [401] imply wDE =
−1.023± 0.090± 0.054 in a spatially flat ΛCDM model [117], in agreement with the value
wDE = −1 for a cosmological constant (see eqn (16.84)).
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Fig. 17.7. Angular power spectrum
of CMBR temperature anisotropies
from Ref. [1010]. Besides the WMAP
data [206], there are data from
Boomerang [916], DASI [582], MAX-
IMA [722], VSA [1009, 369], CBI
[962, 893], and ACBAR [706].

Fig. 17.8. Current matter power spec-
trum P (k) from Ref. [1012] (see also
Ref. [1011]). The solid curve shows
the theoretical prediction for a flat
ΛCDM model with a scale-invariant
primordial power spectrum, matter
density Ω0

M = 0.28, Hubble con-
stant h = 0.72, and baryon frac-
tion Ω0

B/Ω
0
M = 0.16. The dashed

curve shows a suppression of small-
-scale power by about a factor of two
due to a replacement of 7% of the
CDM with massive neutrinos having∑

j mj = 1 eV.

that galaxies trace dark matter up to a constant factor b, called the bias, which
implies that the galaxy power spectrum Pg(k) and the dark matter power spectrum
PDM(k) are related by

Pg(k) = b2 PDM(k) . (17.113)

The value of the bias factor is usually extracted from the fits of the data in the
framework of a specific cosmological model.

The Lyman-α forest data are absorption lines in the spectrum of distant quasars
due to intermediate hydrogen clouds which absorb the Lyman-α line at wavelength
λα = 1215.67 Å, corresponding to an electron transition from the ground state
to the first excited state. If the quasar is at redshift zq, the emission Lyman-α
line of the quasar has observed wavelength λq

α = (1 + zq)λα. Since the absorption
clouds are at different redshifts, smaller than the quasar redshift, it is common to
observe a forest of absorption Lyman-α lines below the emission Lyman-α line of
the quasar. At still smaller wavelengths, the intermediate clouds can also absorb
the Lyman-β line at λβ = 1025.72 Å, corresponding to an electron transition from
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α+βα+β+γ+...

Lyman Lyman ForestαLyman

4000 4500 5000
Fig. 17.9. Lyman-α forest in the spectrum of quasar Q2139-4434, at redshift

zq � 3.23 [374]. x axis: measured wavelength in Angstrom. y axis: flux intensity.

the ground state to the second excited state. Therefore, the Lyman-α forest lies in
the region between λq

β = (1 + zq)λβ and λq
α, where only Lyman-α photons can be

absorbed. An example is shown in Fig. 17.9, for a quasar at redshift zq � 3.23, with
λq

α � 5144 Å and λq
β � 4339 Å. One can see the indicated Lyman-α forest between

these two observed wavelengths. From the characteristics of the absorption lines, it
is possible to infer the power spectrum of density fluctuations for relatively small
wavelengths λ ∼ 2 − 20 h−1 Mpc, as shown in Fig. 17.8 (see Refs. [338, 891, 337,
788]). Unfortunately, since the extraction of the power spectrum from Lyman-α
data is very difficult and model dependent, the systematic uncertainty may be
large [948]. For this reason several authors do not consider Lyman-α data.

An important feature of the matter power spectrum in Fig. 17.8 is the peak
at λ ∼ 300 h−1 Mpc. This peak corresponds, approximately, to the horizon dis-
tance at the matter–radiation equality. The reason is that wavelengths larger
than the horizon distance at matter–radiation equality, on the left of the peak
in Fig. 17.8, entered the horizon during the matter-dominated era and the cor-
responding CDM fluctuations could always grow, independently of λ, before the
horizon-entering according to eqn (17.82) and after the horizon-entering according
to eqn (17.100). Hence, the power spectrum on the left of the peak is proportional to
the primordial power spectrum P�(k), which is consistent with being scale-invariant
(P (k) ∝ P�(k) ∝ k on the left of the peak). On the other hand, wavelengths smaller
than the horizon distance at the matter–radiation equality, on the right of the peak
in Fig. 17.8, entered the horizon during the radiation-dominated, and the Meszaros
effect, discussed in section 17.7.2, suppressed the growth of the corresponding CDM
fluctuations from horizon-entering to the matter–radiation equality. As one can see
from Fig. 17.8, the suppression was larger for smaller wavelengths, which passed
a longer time within the horizon during the radiation-dominated era. In order to
check this interpretation, we can get an order-of-magnitude estimate of the current
length corresponding to the horizon distance at the matter–radiation equality using
the approximation for the radiation-dominated era in eqn (16.126):

d0
H(zeq) = zeq dH(zeq) ∼ H0

−1 z−1
eq (Ω0

R)−1/2 = H0
−1 z−1/2

eq (Ω0
M)−1/2 � 100 h−1 Mpc .

(17.114)
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Within a factor of three, this rough approximation coincides with the peak of
the power spectrum in Fig. 17.8. Obviously, the exact location of the peak can be
obtained only with a detailed calculation of the evolution of the density fluctuations
through the transition between radiation and matter domination, which spans a
large redshift interval, as one can see, for example, in Fig. 16.5b. The solid curve
in Fig. 17.8 is the result of such a detailed calculation in a flat ΛCDM model which
fits the power spectrum.

The dashed curve in Fig. 17.8 shows the change in the power spectrum due to a
replacement of 7% of the CDM with HDM composed of massive neutrinos having∑

j mj = 1 eV. One can see that the power at small scales is suppressed, according
to the discussion in section 17.7.3. The lack of such suppression in the measured
power spectrum implies an upper limit for the sum of the masses of light neutrinos.

In Table 17.1, we have summarized the information on the main cosmological
parameters in flat ΛCDM models obtained with global fits of astronomical data
by the WMAP collaboration [970] and the SDSS collaboration [1010]. The WMAP
fit in the second column allowed a running spectral index with constant slope.
However, one can see that the spectral index is compatible with scale-invariance
(ns = 1 within 2.3 σ and dns/d ln k = 0 within 1.9 σ). The SDSS fits in columns
3–6 assume a constant spectral index. In the fit in column 3, the spectral index
is assumed to be equal to unity, whereas in the other column it is obtained as a
result of the fit. One can see that in any case it is compatible with scale invariance
within less than 1.4 σ. The other parameters have compatible values, within the
uncertainties.

From the point of view of neutrino physics the most important results are in the
last two rows of Table 17.1, which give the upper bound for the neutrino density
and the corresponding upper bound for the sum of the masses of the three light
neutrinos (from eqn (17.27)). These bounds follow from the small-scale suppression
of the power spectrum approximated by eqn (17.112) and illustrated by the dashed
curve in Fig. 17.8. One can see that the bounds are rather stringent, especially
those obtained in Refs. [970, 947] which included Lyman-α information on small-
scale structures, whose power spectrum is very sensitive to the presence of neutrino
HDM.

As shown in the summary in Table 17.2 (see also the reviews in Refs. [595, 403,
596]), other authors obtained similar results analyzing sets of cosmological data
which do not overlap completely. In particular, the authors of Ref. [449] performed
two fits, without and with SDSS Lyman-α data [788], obtaining, respectively, the
upper bounds 1.4 eV and 0.47 eV for the sum of light neutrino masses. These results
illustrate the power of Lyman-α data. The rather stringent result obtained by the
SDSS collaboration in Ref. [945] is due to an extraction from their data of the bias
factor b (see eqn (17.113)), which is usually a free parameter in the fit.

All the upper limits on the sum of neutrino masses, which depends on the type
of analysis and on the data considered, can be summarized by the approximate
upper bound range

∑
j

mj � 0.5 − 1 eV . (17.115)
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Table 17.1. Parameters of flat ΛCDM models obtained with global fits of astro-
nomical data by the WMAP collaboration [970] and the SDSS collaboration
[1010]. The values without uncertainty are assumed. The missing values are
not reported in the cited papers (but can be derived). The value of the spec-
tral index ns reported by the WMAP collaboration [970] refers to the physical
wavenumber k = 0.05 Mpc−1. The upper limits in the last two rows have 95%
confidence.

Parameter WMAP [970] SDSS [1010] SDSS [1010] SDSS [1010] SDSS [947]

ns 0.93 ± 0.03 1 0.966+0.025
−0.020 0.972+0.041

−0.027 0.989+0.026
−0.023

dns

d ln k
−0.031+0.016

−0.018 0 0 0 0

h 0.71+0.04
−0.03 0.708+0.023

−0.024 0.685+0.027
−0.026 0.645+0.048

−0.040 0.710+0.023
−0.022

Ω0
B h

2 0.0224± 0.0009 0.0238+0.0006
−0.0006 0.0228+0.0010

−0.0008 0.0234+0.0014
−0.0011 0.0236+0.0009

−0.0009

Ω0
B 0.044± 0.004

Ω0
M h2 0.135+0.008

−0.009 0.1471+0.0090
−0.0080 0.1459+0.0077

−0.0071 0.158+0.015
−0.012

Ω0
M 0.27 ± 0.04 0.293+0.039

−0.031 0.309+0.040
−0.032 0.380+0.087

−0.074 0.284+0.025
−0.023

Ω0
Λ 0.73 ± 0.04 0.707+0.031

−0.039 0.691+0.032
−0.040 0.620+0.074

−0.087

t0 [Gyr] 13.7 ± 0.2 13.40+0.13
−0.12 13.62+0.20

−0.20 13.65+0.25
−0.28

Ω0
ν h

2 < 0.0072 0 0 < 0.018∑
j

mj [eV] < 0.68 0 0 < 1.74 < 0.42

This upper bound range is depicted in Fig. 17.10, which shows the sum of neutrino
masses in the two schemes of three-neutrino mixing indicated by neutrino oscilla-
tion data (see chapter 13), as a function of the lightest mass. In the quasidegenerate
region (m1 � m2 � m3 �

√
∆m2

31 � 5 × 10−2 eV), the sum of neutrino masses is
the same in both normal and inverted schemes. On the other hand, in the hierar-
chical region the sum of neutrino masses in the inverted scheme is about twice as
large as in the normal scheme, because it gets the contributions of the two almost
equal heavy masses with value m1 � m2 �

√
∆m2

31. One can see from the figure
that the approximate cosmological upper bound range in eqn (17.115) limits the
sum of neutrino masses in the quasidegenerate region, corresponding to an upper
limit of one-third of the sum for each mass in both schemes:

mj � 0.17 − 0.33 eV (j = 1, 2, 3) . (17.116)

Although this limit does not allow one to distinguish the normal and inverted
schemes, it is very stringent in comparison with the direct kinematical measurement
of the effective mass in tritium β-decay (see eqn (14.30)).
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Table 17.2. Upper limits on the sum of light neutrino masses obtained by different
authors from global fits of cosmological data using WMAP [206] CMBR data
and the other CMBR data listed in the third column, LSS data listed in the
fourth column, and other data listed in the fifth column.

Ref.
Max

∑
j mj

(95% CL)
[eV]

CMBR LSS Other data

Spergel et al.
[970] 0.68

CBI [962]
ACBAR [706]

2dFGRS [861]

SNIa [903, 904]
H0 [461]
bias [1035]
Lyα [337, 545]

Hannestad
[592] 1.01 WTJZ [1050] 2dFGRS [861]

SNIa [863]
H0 [461]

Tegmark et al.
[1010] 1.74 SDSS [9]

Barger et al.
[170] 0.75 WTJZ [1050]

2dFGRS [861]
SDSS [1011]

H0 [461]

Crotty et al.
[340] 0.6 ACBAR [706]

2dFGRS [861]
SDSS [1011]

SNIa [1019]
H0 [461]

Seljak et al.
[945]

0.54 SDSS [7] bias [945]

Seljak et al.
[947] 0.42 SDSS [1011]

bias [945]
Lyα [786, 787, 788]
SNIa [905]

Fogli et al.
[449]

1.4

Boomerang [916]
DASI [582]
MAXIMA [722]
CBI [893]
VSA [369]

2dFGRS [861]
SDSS [1011]

SNIa [905]
H0 [461]

Fogli et al.
[449]

0.47

Boomerang [916]
DASI [582]
MAXIMA [722]
CBI [893]
VSA [369]

2dFGRS [861]
SDSS [1011]

SNIa [905]
H0 [461]
Lyα [788]

Hannestad
[596] 0.65 SDSS [1011]

SNIa [905]
H0 [461]
Lyα [337, 545]

MacTavish et al.
[764] 1.20

Boomerang [780]
DASI [582]
MAXIMA [722]
ACBAR [706]
CBI [893]
VSA [369]

2dFGRS [861]
SDSS [1011]

SNIa [905]
H0 [461]

Sanchez et al.
[921] 1.16

ACBAR [706]
CBI [893]
VSA [369]

2dFGRS [324]
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Fig. 17.10. Sum of neutrino masses in the two schemes of three-neutrino mixing
indicated by neutrino oscillation data, as a function of the lightest mass (m1 in
the normal scheme in (a) and m3 in the inverted scheme in (b)). The three solid
lines represent the best-fit and 2σ uncertainty band obtained from the squared–
mass differences in eqns (13.130) and (13.131). The two horizontal dotted lines
represent the approximate cosmological upper bound range in eqn (17.115), and
the two vertical dotted lines give the corresponding upper bound range for the
lightest mass. The dashed curves show the three individual masses.

In the future, high-precision astrophysical data on the CMBR and large galaxy
surveys may allow us to explore the more interesting hierarchical region, reaching
a sensitivity to neutrino masses of the order of a few 10−2 eV [591, 658, 730, 1049],
where the normal and inverted schemes may be distinguished. One should note
from Fig. 17.10 that a future limit of about 8 × 10−2 eV on the sum of neutrino
masses would imply the exclusion of the inverted scheme.

17.9 Number of neutrinos

It is well known that there are only three light active neutrino flavors (see sec-
tion 5.1.3). However, it is possible that the effective number of neutrinos Nν in the
Universe is larger than three if there are light sterile neutrinos (see chapter 6) or
other neutral relativistic nonstandard particles which have been thermalized during
the early expansion of the Universe. In this case, the energy density of radiation is
increased by a change of gρ given by

∆gρ =
7

4
∆Nν , (17.117)
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where ∆Nν ≡ Nν − 3 is the effective number of additional neutrinos. In general,
∆Nν is given by

∆Nν =
∑

χ=fermions

gχ

2

(
Tχ

Tν

)4

+
8

7

∑
χ=bosons

gχ

2

(
Tχ

Tν

)4

, (17.118)

where the sums run over relativistic nonstandard particles (sterile neutrinos and
others) which have been thermalized in the early Universe. If such particles exist,
they are very weakly interacting (otherwise they would have been already detected)
and must have decoupled at a temperature much higher than the BBN temperature.
After their decoupling their temperature scaled as R−1, without being affected by
subsequent entropy releases due to the annihilations of massive heavy particles when
they became nonrelativistic. This implies that the temperature at BBN was much
lower than the neutrino temperature, suppressing their contribution to ∆Nν . This
argument can be used to constrain the interactions of these nonstandard particles,
which must be weak enough to give a sufficiently high decoupling temperature.

Among others (see Refs. [924, 379, 438, 834]), BBN data have been used
to constrain: the magnetic moments of Dirac neutrinos, which would imply a
production of right-handed neutrinos through scattering [817] or through spin
rotation in the primordial magnetic field [953, 761]; the lifetime of heavy neu-
trinos [927, 370], whose decay products would increase the entropy of the Universe;
and the mixing with sterile neutrinos, which can be produced through oscillations
[378, 416, 651, 417, 164, 418, 956, 833, 238, 675, 676, 364, 674, 10, 677, 365, 386].

Note that even in the SM with three neutrinos, there are two effects which
give contributions to ∆Nν [371]. The first one is the correction to the neutrino
distribution functions due to the fact that neutrinos are not completely decou-
pled during electron–positron annihilation, which gives a contribution ∆Nν � 0.03
[382, 383, 425, 379]. The second one is due to finite-temperature electromag-
netic corrections to the energy density of the relativistic photon–electron–positron
plasma, leading to ∆Nν � 0.01 [752, 771]. Hence,

∆NSM
ν � 0.04 . (17.119)

In the following subsections 17.9.1–17.9.3, we discuss the constraints on ∆Nν

which have been obtained, respectively, from CMBR, CMBR + LSS, and BBN
measurements.

17.9.1 Limit from CMBR

The effective number of additional neutrinos ∆Nν can be constrained by the mea-
surements of the anisotropies of the CMBR [593, 594, 339, 873, 592]. Since the
Universe is not completely matter-dominated at the recombination, the addition of
radiation density due to ∆Nν increases the expansion rate, leading to an enhance-
ment of the first acoustic peak. Moreover, the peaks are shifted to larger values of �,
because the increased radiation density implies a smaller conformal time of recom-
bination ηrec and a smaller sound horizon in eqn (16.228) [873]. A fit of WMAP
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[206] data leads to [592]

∆Nν = −0.9+6.7
−2.2 (95% CL) . (17.120)

17.9.2 Limit from CMBR + LSS

Also the formation of large-scale structures is sensitive to ∆Nν , since an increase
of the energy density of radiation delays the time of matter–radiation equality. As
explained in section 17.7.2, the growth of CDM perturbations within the horizon is
practically frozen during the radiation-dominated era. This implies that a delay of
matter–radiation equality suppresses the power spectrum on the right of the peak
in Fig. 17.8, which correspond to short fluctuation wavelengths which have been
within the horizon during the radiation-dominated era for a longer time. Since the
peak corresponds to the horizon distance at matter–radiation equality, a delay of
matter–radiation equality shifts the peak to a larger wavelength, i.e. to a lower
wavenumber.

Several authors have derived bounds on ∆Nν from a combined analysis of
CMBR and LSS data [339, 873, 592, 340]. A fit of WMAP [206] CMBR data
and 2dFGRS [861, 784] LSS data yielded [592]

∆Nν = 0.1+3.9
−2.8 (95% CL) . (17.121)

Using also the Hubble Space Telescope Key Project measurement of h in
eqn (16.57), the Supernova Cosmology Project constraint Ω0

M = 0.28 ± 0.14 [863],
and other CMBR measurements [1050], the author of Ref. [592] obtained

∆Nν = 1.0+3.0
−2.1 (95% CL) . (17.122)

The improvement with respect to the range in eqn (17.120), obtained with CMBR
data alone, is apparent.

17.9.3 Limit from BBN

The BBN limits on physics beyond the SM are obtained mainly from the 4He abun-
dance Yp, which is rather sensitive to the neutron-to-proton ratio (see eqn (17.66)).
The neutron-to-proton ratio at BBN depends on the value of the freeze-out tem-
perature, which is given by Γ ∼ H , where Γ is the interaction rate of the processes
in eqns (17.49)–(17.51). During BBN the Universe was radiation-dominated and
the expansion rate H was given by eqn (16.161), which depends on the amount
of relativistic particles through gρ. Since the freeze-out temperature was above the
electron–positron annihilation temperature, the value of gρ can be written as

gρ = 10.75 +
7

4
∆Nν , (17.123)

where 10.75 is the SM value (see eqn (16.158)). If Nν > 0, gρ and H are larger than
in the SM, leading to a higher freeze-out temperature. In this case, the neutron-to-
proton ratio is larger than in the SM, yielding a larger amount of 4He [857, 981].
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From eqn (17.66), the change ∆Yp of the 4He abundance due to a small change
∆(nn/np)BBN of the neutron-to-proton ratio at BBN is given by

∆Yp � Yp

(
1 − Yp

2

)
∆(nn/np)BBN

(nn/np)BBN
. (17.124)

From eqns (17.58) and (17.55), we have

∆(nn/np)BBN

(nn/np)BBN
� mn −mp

T fr
γ

∆T fr
γ

T fr
γ

� 1

6

mn −mp

T fr
γ

∆gρ

gρ
. (17.125)

Taking the standard values Yp � 0.25, T fr
γ � 0.7 MeV, gρ = 10.75, and ∆gρ =

(7/4)∆Nν from eqn (17.8), we obtain (see also [256, 217, 1048, 424, 367])

∆Yp � 7 Yp

24 gρ

(
1 − Yp

2

)
mn −mp

T fr
γ

∆Nν � 0.011 ∆Nν . (17.126)

Using this approximation, the experimental value of Yp in eqn (17.67) and the
standard theoretical prediction in eqn (17.70) imply the bound

|∆Yp| � 0.009 =⇒ |∆Nν | � 0.82 . (17.127)

The precisely calculated abundances of 4He, 2He, 3He, 7Li are shown in
Fig. 17.11 as functions of η for Nν from 2 to 7. Taking into account the exper-
imental uncertainties, it is clear that Yp is the abundance most sensitive to Nν . A
fit of the 4He and 2He data and the use the WMAP value of η in eqn (16.236) yield
[345]

η = 6.10+0.24
−0.22 × 10−10 , Nν = 3.24+0.61

−0.57 , ∆Nν < 1.44 (95% CL) . (17.128)

Hence, the BBN abundances are in good agreement with the SM value Nν = 3 and
additional degrees of freedom are constrained, albeit not very severely.

17.10 Neutrino asymmetry

In the Standard Cosmological Model it is assumed that neutrinos are very far from
degenerate, with asymmetries

ηνα
≡ nνα

− nν̄α

nγ
=

π2

12 ζ(3)

(
Tν

Tγ

)3 [
ξνα

+
ξ3να

π2

]
(17.129)

which are zero or negligibly small. In eqn (17.129) we have rewritten eqn (16.150)
with gνα

= 1 and the usual notation ξνα
≡ µνα

/Tν .
It is natural to expect that the neutrino asymmetries are of the same order

of magnitude as the charged lepton and baryon asymmetries, leading to negligi-
ble cosmological effects. However, since there is no constraint on the values of
the cosmological neutrino asymmetries from simple considerations (such as electri-
cal neutrality of astrophysical objects, which constraints the electron asymmetry),
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Fig. 17.11. Theoretical predictions of the BBN abundances of light nuclei as
functions of η for Neff ≡ Nν from 2 to 7, as indicated by the numbers in the
figure [343]. The bands for Nν = 3 represent the 1σ uncertainties.

it is interesting to consider the cosmological effects of relatively large neutrino
asymmetries.

From eqn (16.152), the energy density of neutrinos and antineutrinos of flavor
α is given by

ρνα
+ ρν̄α

=
7

8

π2

15
T 4

ν

[
1 +

30

7

(
ξνα

π

)2

+
15

7

(
ξνα

π

)4
]
. (17.130)

If ξνα
is large, the neutrino energy density can be much larger than in the

nondegenerate case.
Comparing eqn (17.130) and eqn (16.153), one can see that the contribution of

degenerate neutrinos to gρ is given by the quantity in square brackets in eqn (17.130)
times 7/4. Then, from eqn (17.123), the contribution of neutrino chemical potentials
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to the expansion rate is equivalent to

∆N ξ
ν =

∑
α=e,µ,τ

30

7

[(
ξνα

π

)2

+
1

2

(
ξνα

π

)4
]
. (17.131)

Neutrino asymmetries are always equivalent to a positive effective number of
additional neutrinos.

Since light neutrinos were relativistic at decoupling, from eqn (16.193) we have
Tν ∝ R−1 after decoupling. Moreover, after decoupling the number densities of
neutrinos and antineutrinos decreased as R−3, since they were noninteracting.
Hence, from eqn (16.149) one can see that after neutrino decoupling the value
of ξνα

≡ µνα
/Tν remained constant during the expansion of the Universe, i.e.

µνα
∝ Tν . (17.132)

For light degenerate neutrinos, the neutrino chemical potentials in eqn (17.130)
cannot be too large, otherwise the Universe would be over-closed. In analogy with
the bound on the sum of neutrino masses in eqn (17.28), taking µνα

� Tν in
eqn (17.130) and requiring that

∑
α ρ

0
να

+ ρ0
να

� ρ0
M, we obtain

∑
α=e,µ,τ

(µ0
να

)4 � 8 π2
(
Ω0

M h2
) ρ0

c

h2
�
(
5.5 × 10−3 eV

)4
, (17.133)

where we have used the value of Ω0
M h2 in eqn (16.234) and the value of ρ0

c/h
2 in

eqn (16.74). This bound on the neutrino chemical potentials is not very restrictive.
In fact, from the neutrino temperature in eqn (17.17), we have∑

α=e,µ,τ

(ξνα
)4 � (33)4 . (17.134)

In principle, the asymmetries of the three flavor neutrinos could be very dif-
ferent. However, it has been shown in Refs. [930, 757, 380, 1069, 11] that the
three-neutrino oscillation parameters obtained from experimental data (see sec-
tion 13.3.3) imply that oscillations equilibrate the distribution functions of the
three flavors before neutrino decoupling. This implies that the three flavor asym-
metries ξνe

, ξνµ
, and ξντ

are practically equal after decoupling. In this case, the
bound in eqn (17.134) leads to

− 25 � ξνe
� ξνµ

� ξντ
� 25 . (17.135)

17.10.1 Limit from CMBR and LSS

The equivalence in eqn (17.131) of a lepton asymmetry with a positive effec-
tive number of additional neutrinos allows us to derive from constraints on ∆Nν

corresponding constraints on the lepton asymmetries [593].
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Taking into account the equality of the asymmetries of the three flavor neutrinos,
from eqn (17.131), we have

ξνe
� ξνµ

� ξντ
� π

[√
1 +

7

45
∆N ξ

ν − 1

]1/2

, (17.136)

for ∆N ξ
ν ≥ 0. Using the upper bound for ∆Nν in eqn (17.122), ∆N ξ

ν ≤ ∆Nν � 4,
we obtain

− 1.6 � ξνe
� ξνµ

� ξντ
� 1.6 , (17.137)

which is much more stringent than the allowed range in eqn (17.135).

17.10.2 Limit from BBN

The good agreement of the standard BBN with astrophysical observations implies
constraints on the neutrino asymmetries, which must be small enough not to modify
too much the standard BBN predictions of the light element abundances [1046, 895,
196, 1077, 197, 1013, 1014, 835, 656, 688, 424, 597, 342].

Large neutrino asymmetries have two effects on BBN (see Refs. [385, 767, 924,
379]):

1. An electron neutrino asymmetry modifies the freeze-out neutron-to-proton ratio
in eqn (17.58) into (

nn

np

)
fr

� exp

[
−mn −mp

T fr
γ

− ξνe

]
, (17.138)

which follows from eqns (17.52) and (17.53), with ξνe
≡ µfr

νe
/T fr

να
. A positive

chemical potential of electron neutrinos decreases the neutron-to-proton ratio at
freeze-out, leading to an abundance of 4He which is smaller than in the standard
BBN. The variation ∆Yp of the value of Yp with respect to the standard one can
be calculated straightforwardly from eqn (17.138) for a small ξνe

[367]: since

∆

(
nn

np

)
BBN

� −ξνe

(
nn

np

)
BBN

, (17.139)

we obtain, from eqn (17.124) (see also [217, 367, 380]),

∆Yp � −ξνe
Yp

(
1 − Yp

2

)
� −0.22 ξνe

. (17.140)

Comparing this variation with that in eqn (17.126) one can see that for the
production of primordial 4He a small ξνe

is equivalent to

∆N
ξνe
ν (Yp) � −20 ξνe

. (17.141)

2. Large neutrino chemical potentials increase the energy density of the Universe
in comparison with the standard BBN scenario, leading to a faster expansion.
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Since neutrons have less time to decay between freeze-out and the onset of nucle-
osynthesis, the neutron-to-proton ratio during nucleosynthesis is larger than the
standard BBN, leading to a larger abundance of 4He.

Since these two effects work in opposite directions if ξνe
is positive, it is difficult

to exclude a conspiracy between the values of ξνe
and ξνµ

, ξντ
which could lead to

cancellations. In general, for the primordial 4He production, we have

∆Nν(Yp) = ∆Nν + ∆N ξ
ν + ∆N

ξνe
ν (Yp) , (17.142)

where ∆Nν , given by eqn (17.118), represents the contribution to the energy density
of relativistic nonstandard particles (sterile neutrinos and others), ∆N ξ

ν , given by
eqn (17.131), represents the contribution to the energy density of neutrino chemical

potentials, and ∆N
ξνe
ν (Yp), given by eqn (17.141), represents the effect on Yp of ξνe

due to the variation of the neutron-to-proton ratio at freeze-out. Since ∆N
ξνe
ν (Yp) is

negative for a positive ξνe
, it can compensate the effects of ∆Nν and ∆N ξ

ν , leading
to a small [424, 342] or even negative total value of ∆Nν(Yp). Note, however, that
a cancellation requires some fine tuning among the values of the neutrino chemical
potentials and the number of nonstandard particles thermalized before BBN. For

simplicity, in the following, we will discuss the effects of ∆N ξ
ν and ∆N

ξνe
ν (Yp)

separately.
From the contribution of neutrino chemical potentials to the expansion rate in

eqn (17.131) and the bound on ∆Nν in eqn (17.127) we obtain∑
α=e,µ,τ

ξ4να
� (2.5)4 (95% CL) , (17.143)

which is much more stringent that the bound in eqn (17.134).
From eqn (17.141) and the bound on ∆Nν in eqn (17.127), obtained from Yp,

we find
|ξνe

| � 0.04 . (17.144)

Hence, ξνe
is much more tightly constrained than ξνµ

and ξντ
.

So far, we did not take into account the equilibration of the values of the
three flavor neutrino asymmetries through neutrino oscillations before neutrino
decoupling and BBN [930, 757, 380, 1069, 11]. This implies that the three fla-
vor asymmetries ξνe

, ξνµ
, and ξντ

are practically equal at BBN and the bound in
eqn (17.144) applies to all of them:

− 0.04 � ξνe
� ξνµ

� ξντ
� 0.04 . (17.145)

This is the most stringent bound on the asymmetries of the three flavor neutrinos
which can be obtained from the present experimental data.

The cosmological scenario becomes much more complicated if there are light
sterile neutrinos which mix with the active ones. It has been shown in Ref. [455] that
active–sterile oscillations can generate large neutrino asymmetries. This mechanism
has been studied in detail in Refs. [456, 202, 955, 454, 381, 366, 367, 757, 419, 364,
365, 169, 8].



APPENDIX A

CONVENTIONS, USEFUL FORMULAS, AND PHYSICAL
CONSTANTS

A.1 Conventions

In this book, we use natural units in which

c = � = kB = 1 , (A.1)

where c is the velocity of light (eqn (A.154)), � is the reduced Planck constant
(eqn (A.166)), and kB is the Boltzmann constant (eqn (A.145)). The natural units
imply the conversion factors in Table A.1.

Other conventions that we use in the book are:

− Space-time contravariant four-vector:

xµ = (x0, x1, x2, x3) = (t,�x) . (A.2)

− Gradient covariant four-vector:

∂µ =
∂

∂xµ
=

(
∂

∂x0
,
∂

∂�x

)
=
(
∂0, �∇

)
. (A.3)

− Energy–momentum contravariant four-vector:

pµ = (p0,�p) . (A.4)

− Contravariant and covariant representations of a four-vector V :

V µ = (V 0, �V ) = gµν Vν , Vµ = (V 0,−�V ) = gµν V
ν . (A.5)

− Metric tensor:
gµν = gµν = diag(1,−1,−1,−1) . (A.6)

− Scalar product between two four-vectors A and B:

A ·B = AµBµ = gµνA
µBν = gµνAµBν = A0B0 − �A · �B . (A.7)

− Norm of a four-vector V :

|V |2 = V ·V = (V 0)2 − �V 2 . (A.8)

Four-vectors are divided in three groups according to the sign of their norm:

|V |2 > 0 time-like (A.9)
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Table A.1. Conversion factors for natural units (suggested by Ref. [379]). It is
also useful to know that 1 in ≡ 2.54 cm, 1 Å ≡ 10−8 cm, 1 fm ≡ 10−13 cm,
1 J ≡ 107 erg, 1 W ≡ 1 J s−1.

s−1 cm−1 K eV amu erg g

s−1 1 3.336 × 10−11 7.638 × 10−12 6.582 × 10−16 7.066 × 10−25 1.055 × 10−27 1.173 × 10−48

cm−1 2.998 × 1010 1 2.290 × 10−1 1.973 × 10−5 2.118 × 10−14 3.162 × 10−17 3.518 × 10−38

K 1.309 × 1011 4.367 1 8.617 × 10−5 9.251 × 10−14 1.381 × 10−16 1.536 × 10−37

eV 1.519 × 1015 5.068 × 104 1.160 × 104 1 1.074 × 10−9 1.602 × 10−12 1.783 × 10−33

amu 1.415 × 1024 4.721 × 1013 1.081 × 1013 9.315 × 108 1 1.492 × 10−3 1.661 × 10−24

erg 9.483 × 1026 3.163 × 1016 7.243 × 1015 6.242 × 1011 6.701 × 102 1 1.113 × 10−21

g 8.522 × 1047 2.843 × 1037 6.510 × 1036 5.610 × 1032 6.022 × 1023 8.988 × 1020 1

|V |2 = 0 light-like (A.10)

|V |2 < 0 space-like (A.11)

Light-like four-vectors are orthogonal to themselves. A four-vector that is
orthogonal to a time-like four-vector is space-like, and vice versa. For a particle
with mass m

p2 = m2 =⇒ p0 =

√
�p2 +m2 ≡ E . (A.12)

− Kronecker delta:
δkj = δkj = δk

j . (A.13)

− Totally antisymmetric tensors of rank 2:

εkj = εkj , with ε12 = 1 , (A.14)

εij εk	 =
∣∣∣ δik δi�

δjk δj�

∣∣∣ , (A.15)∑
i

εij εi	 = δj	 , (A.16)

∑
i,j

εij εij = 2 . (A.17)

− Totally antisymmetric tensors of rank 3:

εkjl = εkjl , with ε123 = 1 , (A.18)

εijk ε	mn =

∣∣∣∣ δi� δim δin

δj� δjm δin

δk� δkm δkn

∣∣∣∣ , (A.19)∑
i

εijk εimn =
∣∣∣ δjm δjn

δkm δkn

∣∣∣ , (A.20)

∑
i,j

εijk εijn = 2 δkn , (A.21)

∑
i,j,k

εijk εijk = 6 . (A.22)
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− Totally antisymmetric tensors of rank 4:

εµνρσ = −εµνρσ , with ε0123 = 1 , (A.23)

εµνρσ εαβγδ = −

∣∣∣∣∣∣
gµα gµβ gµγ gµδ

gνα gνβ gνγ gνδ

gρα gρβ gργ gρδ

gσα gσβ gσγ gσδ

∣∣∣∣∣∣ , (A.24)

∑
σ

εµνρσ εαβγ
σ = −

∣∣∣∣ gµα gµβ gµγ

gνα gνβ gνγ

gρα gρβ gργ

∣∣∣∣ , (A.25)

∑
ρ,σ

εµνρσ εαβ
ρσ = −2

∣∣∣ gµα gµβ

gνα gνβ

∣∣∣ , (A.26)

∑
ν,ρ,σ

εµνρσ εανρσ = −6 gµα , (A.27)

∑
µ,ν,ρ,σ

εµνρσ εµνρσ = −24 . (A.28)

A.2 Pauli matrices

− Definition:

σ1 = σ1 =

(
0 1
1 0

)
σ2 = σ2 =

(
0 −i
i 0

)
σ3 = σ3 =

(
1 0
0 −1

)
.

(A.29)
− Properties: (

σk
)2

= 1 , (A.30)

σk =
(
σk
)†
, (A.31)(

σk
)T

=
(
σk
)∗
, (A.32)

σ2σkσ2 = −
(
σk
)T
. (A.33)

− Commutation and anticommutation:[
σk, σj

]
= 2i

∑
	

εkj	 σ	 , (A.34)

{
σk, σj

}
= 2δkj1 . (A.35)

− Products:

σiσj = δij + i
∑

k

εijkσk , (A.36)

σiσjσk = iεijk + δijσk − δikσj + δjkσi . (A.37)
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− Traces:
Tr
[
σi
]

= 0 , (A.38)

Tr
[
σiσj

]
= 2δij , (A.39)

Tr
[
σiσjσk

]
= 2iεijk , (A.40)

Tr
[
σiσjσkσ	

]
= 2

[
δijδk	 − δikδj	 + δi	δjk

]
. (A.41)

− Every 2 × 2 matrix X can be written as

X =
1

2

(
Tr[X ] +

∑
k

Tr
[
Xσk

]
σk

)
. (A.42)

A.3 Dirac matrices

− Defining relations:
{γµ, γν} ≡ γµγν + γνγµ = 2 gµν , (A.43)

γ0 γµ† γ0 = γµ . (A.44)

− Properties (k = 1, 2, 3):

(γ0)† = γ0 , (γk)† = −γk ⇐⇒ (γµ)† = γµ ≡ gµν γ
ν . (A.45)

(γ0)2 = 1 , (γk)2 = −1 =⇒ γµγµ = 4 , (A.46)

− Definition and properties of γ5:

γ5 ≡ γ5 ≡ i γ0 γ1 γ2 γ3 = − i

4!
εµνρσ γ

µ γν γρ γσ , (A.47)

{
γ5, γµ

}
= 0 , (A.48)(

γ5
)2

= 1 , (A.49)(
γ5
)†

= γ5 , (A.50)

γµ γ5 =
i

6
εµνρσ γν γρ γσ . (A.51)

− Definition and properties of σµν :

σµν ≡ i

2
[γµ, γν ] = i γµ γν − i gµν = i gµν − i γν γµ , (A.52)[

γ5 , σµν
]

= 0 , (A.53)

γ0 (σµν)† γ0 = σµν . (A.54)

σµν γ5 =
i

2
εµνρσ σρσ . (A.55)
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− Definition and properties of �Σ:

Σk ≡ 1

2

∑
j,l

εkjl σjl =
i

2

∑
j,l

εkjl γj γl = γ0 γk γ5 , (A.56)

�Σ = (iγ2γ3, iγ3γ1, iγ1γ2) = (σ23, σ31, σ12) , (A.57)

σjk =
∑

	

εjk	 Σ	 . (A.58)

[Σk,Σj ] = 2 i
∑

l

εkjl Σl , (A.59)

{Σk,Σj} = 2 δkj , (A.60)

(Σk)† = Σk , (A.61)

[Σk, γ0] = [Σk, γ5] = 0 , (A.62)

[Σk, γj] = 2i
∑

	

εkj	 γ	 . (A.63)

− Products of γ matrices:
γµ γν = gµν − i σµν , (A.64)

γµ γν γ5 = gµν γ5 +
1

2
εµνρσ σρσ , (A.65)

γµ γν γρ = gµν γρ − gµρ γν + gνρ γµ + i εµνρσ γσ γ5 , (A.66)

γµ γα γµ = −2 γα , (A.67)

γµ γα γβ γµ = 4 gαβ , (A.68)

γµ γα γβ γρ γµ = −2 γρ γβ γα . (A.69)

− Traces:

Tr[γµ1 ] = 0 , Tr[γµ1 γµ2 γµ3 ] = 0 , . . . , Tr[γµ1 γµ2 . . . γµ2n+1 ] = 0 ,
(A.70)

Tr[γµ1 γµ2 . . . γµn−1 γµn ] = Tr[γµn γµn−1 . . . γµ2 γµ1 ] , (A.71)

Tr[γµ1 γµ2 ] = 4 gµ1µ2 , (A.72)

Tr[γµ1 γµ2 γµ3 γµ4 ] = 4 (gµ1µ2 gµ3µ4 − gµ1µ3 gµ2µ4 + gµ1µ4 gµ2µ3) , (A.73)

Tr[γµ1γµ2γµ3γµ4 · · · γµ2n−1γµ2n ] = gµ1µ2Tr [γµ3γµ4 · · · γµ2n−1γµ2n ]

− gµ1µ3Tr [γµ2γµ4 · · · γµ2n−1γµ2n ]

+ · · ·
+ gµ1µ2nTr [γµ2γµ3γµ4 · · · γµ2n−1 ] . (A.74)

Tr
[
γ5
]

= 0 , Tr
[
γµ1 γ5

]
= 0 , Tr

[
γµ1 γµ2 γ5

]
= 0 , Tr

[
γµ1 γµ2 γµ3 γ5

]
= 0 ,

(A.75)
Tr
[
γµ1 γµ2 γµ3 γµ4 γ5

]
= −4 i εµ1µ2µ3µ4 . (A.76)
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− Left-handed and right-handed projectors:

PL =
1 − γ5

2
, PR =

1 + γ5

2
, (A.77)

P 2
L = PL , P 2

R = PR , PL PR = PR PL = 0 . (A.78)

− Defining equations of four-momentum and helicity eigenstate spinors:

(/p−m)u(h)(p) = 0 , (A.79)

(/p+m) v(h)(p) = 0 . (A.80)

�p ·�Σ
|�p| u(h)(p) = hu(h)(p) , (A.81)

�p ·�Σ
|�p| v(h)(p) = −h v(h)(p) . (A.82)

− Normalization:

u(h)(p)u(h′)(p) = 2mδhh′ , (A.83)

v(h)(p) v(h′)(p) = −2mδhh′ . (A.84)

− Useful relations:

u(h)(p) γµ u(h′)(p) = v(h)(p) γµ v(h′)(p) = 2 pµ δhh′ , (A.85)

u(h)(p) γ5 u(h′)(p) = v(h)(p) γ5 v(h′)(p) = 0 , (A.86)

u(h)†(p0,�p) v(h′)(p0,−�p) = 0 , (A.87)

γ0 u(−h)(p0,−�p) = η(�p, h)u(h)(p0,�p) ,

γ0 v(−h)(p0,−�p) = −η∗(�p, h) v(h)(p0,�p) ,

}
with

{
|η(�p, h)|2 = 1 ,
η(−�p,−h) = η∗(�p, h) ,

(A.88)

γ5 v(−h)(p) = ζ(h)u(h)(p) ,

γ5 u(−h)(p) = −ζ∗(h) v(h)(p) ,

}
with

{
|ζ(h)|2 = 1 ,
ζ(−h) = −ζ(h) .

. (A.89)

− Gordon identities:

u(h2)(p2) γ
µ u(h1)(p1) =

1

2m
u(h2)(p2) [(p2 + p1)

µ + i σµν (p2 − p1)ν ]u(h1)(p1) ,

(A.90)

v(h2)(p2) γ
µ v(h1)(p1) = − 1

2m
v(h2)(p2) [(p2 + p1)

µ
+ i σµν (p2 − p1)ν ] v(h1)(p1) .

(A.91)

− Projectors on components with positive and negative energy:

Λ+(p) =
m+ /p

2m
=

∑
h=±1

u(h)(p)u(h)(p)

2m
, (A.92)
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Λ−(p) =
m− /p

2m
= −

∑
h=±1

v(h)(p) v(h)(p)

2m
. (A.93)

− Projectors on components with definite energy and helicity:

Λh
+(p) =

(
m+ /p

2m

)(
1 + γ5 /sh

2

)
=
u(h)(p)u(h)(p)

2m
, (A.94)

Λh
−(p) =

(
m− /p

2m

)(
1 + γ5 /sh

2

)
= −v

(h)(p) v(h)(p)

2m
, (A.95)

with the polarization four-vector

sµ
h = h

( |�p|
m
,
E

m

�p

|�p|

)
, s2h = −1 , sh · p = 0 , (A.96)

− Charge conjugation matrix:

C γT
µ C−1 = −γµ , (A.97)

C† = C−1 , (A.98)

CT = −C . (A.99)

C (γ5)T C−1 = γ5 , (A.100)

C (σµν)T C−1 = −σµν . (A.101)

u(h)(p) = C v(h)
T
(p) , v(h)(p) = C u(h)

T
(p) , (A.102)

− Dirac representation:

γ0
D =

(
1 0
0 −1

)
, �γD =

(
0 �σ
−�σ 0

)
, γ5

D =

(
0 1
1 0

)
, (A.103)

�ΣD =

(
�σ 0
0 �σ

)
, CD = i γ2

D γ
0
D = −i

(
0 σ2

σ2 0

)
, (A.104)

σ0k
D = i αk

D = i

(
σk 0

0 −σk

)
, σkj

D =
∑

	

εkj	 Σ	
D =

∑
	

εkj	

(
σ	 0

0 σ	

)
,

(A.105)

u
(h)
D (p) =

( √
E +mχ(h)(�p)

h
√
E −mχ(h)(�p)

)
, (A.106)

v
(h)
D (p) =

(
−
√
E −mχ(−h)(�p)

h
√
E +mχ(−h)(�p)

)
. (A.107)

ζ(h) = −h . (A.108)
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− Chiral representation

γ0
C =

(
0 −1
−1 0

)
, �γC =

(
0 �σ
−�σ 0

)
, γ5

C =

(
1 0
0 −1

)
, (A.109)

γµ
C =

(
0 σ̄µ

−σµ 0

)
, with σµ = (1 , �σ) , σ̄µ = (−1 , �σ) , (A.110)

�ΣC =

(
�σ 0
0 �σ

)
, CC = i γ2

C γ
0
C = −i

(
σ2 0
0 −σ2

)
. (A.111)

σ0k
C = i αk

C = i

(
σk 0

0 −σk

)
, σkj

C =
∑

	

εkj	 Σ	
C =

∑
	

εkj	

(
σ	 0

0 σ	

)
,

(A.112)

u
(h)
C (p) =

(
−
√
E + h |�p|χ(h)(�p)√
E − h |�p|χ(h)(�p)

)
, (A.113)

v
(h)
C (p) = − h

(√
E − h |�p|χ(−h)(�p)√
E + h |�p|χ(−h)(�p)

)
, (A.114)

ζ(h) = −h . (A.115)

− Two-component helicity eigenstate spinors:

�p ·�σ
|�p| χ

(h)(�p) = hχ(h)(�p) , (A.116)

(
χ(h)(�p)

)†
χ(h′)(�p) = δhh′ , (A.117)

iσ2
(
χ(h)(�p)

)∗
= −hχ(−h)(�p) , (A.118)

χ(−h)(−�p) = η(�p, h)χ(h)(�p) with

⎧⎨⎩ |η(�p, h)|2 = 1 ,
η(−�p,−h) = η∗(�p, h) ,
η(�p,−h) = −η∗(�p, h) ,

(A.119)

(
χ(h)(�p)

)†
σk χ(h)(�p) =

pk

h |�p| . (A.120)

For �p = |�p| (sinθ cosφ, sinθ sinφ, cosθ),

χ(+)(�p) =

(
cos θ

2

sin θ
2 e

iφ

)
, χ(−)(�p) =

(
− sin θ

2 e
−iφ

cos θ
2

)
, (A.121)

η(�p, h) = h e−ihφ . (A.122)
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A.4 Mathematical formulas

− Dirac δ-function: ∫
f(x) δ(x) dx = f(0) , (A.123)

δ(g(x)) =
∑

a

δ(x− a)

|g′(a)| , for g(a) = 0 , g′(a) �= 0 . (A.124)

− For a matrix M106

Det
[
eM

]
= eTrM . (A.125)

− Useful series: ∞∑
k=0

xk = (1 − x)−1 (x < 1) . (A.126)

− Useful integrals107: ∫ ∞
0

xn

ex − 1
dx = n! ζ(n+ 1) , (A.127)∫ ∞

0

xn

ex + 1
dx =

(
1 − 2−n

)
n! ζ(n+ 1) , (A.128)

∑
s=±1

∫ ∞
0

sn+1 xn dx

ex−sξ + 1
=

ξn+1

n+ 1

+
n−1∑
k=0

[
1 + (−1)n+k+1

] (
1 − 2k−n

) n!

k!
ζ(n− k + 1) ξk .

(A.129)

− Riemann zeta function:

ζ(n) ≡
∞∑

k=1

k−n (k > 1) , (A.130)

ζ(2) =
π2

6
, ζ(3) � 1.2020569032 , ζ(4) =

π4

90
, (A.131)

∞∑
k=1

(−1)k−1 k−n =
(
1 − 21−n

)
ζ(n) . (A.132)

106 The proof is easy: Det
h
eM

i
= Det

»
lim

n→∞

„
1 +

M

n

«n–
= lim

n→∞

„
Det

»
1 +

M

n

–«n

=

lim
n→∞

„
1 +

TrM

n

«n

= eTrM .

107 The integrals in eqns (A.127) and (A.128) can be evaluated by using the series
in eqn (A.126), which implies (ex ± 1)−1 = e−x(1 ± e−x)−1 = e−x P∞

k=0

`
∓e−x

´
=P∞

k=1(∓1)k−1 e−kx. The calculation is done through integration by parts, taking into
account the definition of the Riemann zeta function in eqn (A.130) and the property in
eqn (A.132).

The integral in eqn (A.129) can be calculated with the change of variable y = x − sξ,

using the identity (ey + 1)−1 +
`
e−y + 1

´−1
= 1 [410].
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− Legendre polynomials (� ≥ 0):

P	(x) =
1

2	 �!

d	

dx	

(
x2 − 1

)	
(Rodrigues’ formula) , (A.133)

∫ +1

−1

Pk(x)P	(x) dx =
2

2�+ 1
δk	 . (A.134)

− Associated Legendre polynomials (|m| ≤ �):

Pm
	 (x) =

(
1 − x2

)m/2 dm

dxm
P	(x) =

1

2	 �!

(
1 − x2

)m/2 d	+m

dx	+m

(
x2 − 1

)	
,

(A.135)

P−m
	 (x) = (−1)m (�−m)!

(�+m)!
Pm

	 (x) , Pm
	 (−x) = (−1)	+m Pm

	 (x) , (A.136)∫ +1

−1

Pm
k (x)Pm

	 (x) dx =
2

2�+ 1

(�+m)!

(�−m)!
δk	 . (A.137)

− Spherical harmonics:

Y m
	 (θ, φ) = (−1)m

[
2�+ 1

4π

(�−m)!

(�+m)!

]1/2

Pm
	 (cos θ) eimφ , (A.138)

∫ +1

−1

∫ 2π

0

Y m
	 (θ, φ)Y m′

	′
∗
(θ, φ) dcos θ dφ = δ		′ δmm′ . (A.139)

− Addition theorem:

	∑
m=−	

Y m
	 (θ1, φ1)Y

m
	
∗(θ2, φ2) =

2�+ 1

4π
P	(cos θ) , (A.140)

where θ is the angle between the directions (θ1, φ1) and (θ2, φ2), given by

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2) . (A.141)

− Parity:

Y m
	 (θ, φ)

P−−→ Y m
	 (π − θ, π + φ) = (−1)	 Y m

	 (θ, φ) . (A.142)

A.5 Physical constants

In this section we give a list of values of physical constants used in the book. The
values without reference are taken from the Review of Particle Physics in Ref. [400].
The one-σ uncertainties in the last digits are given in parentheses.

Atomic Mass Unit amu ≡M(12C)/12 = 931.494 043 (80)MeV ,
(A.143)
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Avogadro Number NA = 6.022 1415 (10)× 1023 mol−1 , (A.144)

Boltzmann Constant kB = 8.617 343 (15)× 10−5 eVK−1 , (A.145)

CMBR Temperature Tγ = 2.725 (1)K , (A.146)

Conversion Constant � c = 1.973 269 68 (17)× 10−5 eV cm , (A.147)

Earth Mass M⊕ = 5.972 3 (9)× 1027 g , (A.148)

Earth Mean Equatorial Radius R⊕ � 6.378140× 108 cm , (A.149)

Electron Mass me = 0.510 998 918 (44)MeV , (A.150)

Fermi Constant GF = 1.166 37 (1)× 10−5 GeV−2 , (A.151)

Hubble Constant H0 = 72 (8) kms−1 Mpc−1 [461] , (A.152)

Fine-Structure Constant α−1 ≡ (e2/4π�c)−1 = 137.035 999 11 (46) ,
(A.153)

Light’s Velocity c ≡ 299 792 458 ms−1 , (A.154)

Muon Lifetime τµ = 2.197 03 (4)× 10−6 s , (A.155)

Muon Mass mµ = 105.658 369 (9)MeV , (A.156)

Newton Constant GN = 6.6742 (10)× 10−11 m3 kg−1 s−2 , (A.157)

Neutron Lifetime τn = 885.7 (8) s , (A.158)

Neutron Magnetic Moment µn = −1.913 042 73 (45)µN , (A.159)

Neutron Mass mn = 939.565 36 (8)MeV , (A.160)

Parsec pc = 3.085 677 580 7 (4)× 1016 m � 3.262 ly ,
(A.161)

Pion π± Lifetime τπ± = 2.603 3 (5)× 10−8 s , (A.162)

Pion π± Mass mπ± = 139.570 18 (35)MeV , (A.163)

Pion π0 Lifetime τπ0 = 8.4 (6)× 10−17 s , (A.164)

Pion π0 Mass mπ0 = 134.976 6 (6)MeV , (A.165)

Planck Constant Reduced � = 6.582 119 15 (56)× 10−16 eV s , (A.166)

Planck Mass MP ≡
√

�c/GN = 1.220 90 (9)× 1019 GeV ,
(A.167)

Proton Magnetic Moment µp = 2.792 847 351 (28)µN , (A.168)

Proton Mass mp = 938.272 029 (80)MeV , (A.169)

Tau Mass mτ = 1776.99+0.29
−0.26 MeV , (A.170)

Weak Mixing Angle sin2 ϑW = 0.231 49 (15) , (A.171)



APPENDIX B

SPECIAL RELATIVITY

Physical laws are expressed in terms of functions of the spatial coordinates �x and
the temporal coordinate t. However, physical laws describe events which occur
independently of the system of coordinates, also called the reference frame, which is
adopted by an observer. Therefore, the transformations between different reference
frames and the quantities which are independent of the reference frame play a
crucial role in the formulation of physical theories.

According to the principle of relativity, the physical laws are equally valid in all
reference frames. In other words, there is no privileged frame of reference. Therefore,
the structure of the equations representing physical laws must be independent of
the adopted reference frame. This is achieved by expressing physical laws through
covariant equations, i.e. equations written in tensorial form. This is called the
principle of covariance.

The theory of special relativity treats the relations between different inertial
reference frames, which are systems of coordinates in which free particles propagate
with uniform motion, in the absence of gravity. The relative velocity of different
inertial reference frames is constant. They are related by Lorentz transformations,
which are a consequence of the observed invariance of the velocity of light (see
Refs. [183, 951]).

B.1 The Lorentz group

A Lorentz transformation is a linear homogeneous coordinate transformation

xµ → x′µ = Λµ
ν x

ν , (B.1)

from a reference frame S with coordinates xµ = (x0, x1, x2, x3) to a reference frame
S′ with coordinates x′µ = (x′0, x′1, x′2, x′3). The constant 4 × 4 matrix Λµ

ν must
satisfy the constraints in eqn (B.14). In each reference frame x0 = t is the time
coordinate and �x = (x1, x2, x3) is the three-vector of spatial coordinates. Hence,
the coordinates of xµ are often indicated as xµ = (x0,�x) or xµ = (t,�x). The indices
µ and ν in eqn (B.1) are called Lorentz indices. In eqn (B.1) and in the following
equations, Lorentz indices run from 0 to 3 and repeated indices, one low and one
high, are summed from 0 to 3.

Four-vectors are geometrical objects which form a vector space. They are rep-
resented in each reference frame by four real numbers called components. The
components of a four-vector transform as the coordinates under Lorentz transforma-
tions. We denote four-vectors through their four components in a given reference
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frame: for example, V µ = (V 0, V 1, V 2, V 3) = (V 0, �V ), with �V = (V 1, V 2, V 3).
Then, under the Lorentz transformation in eqn (B.1) a four-vector V µ transforms
as

V µ → V ′µ = Λµ
ν V

ν . (B.2)

In particular, xµ is the coordinate four-vector. Note that the index of a four-vector
is always placed in the upper position.

Covariant four-vectors108, denoted with a low index, e.g. Vµ = (V0, V1, V2, V3),
are geometrical objects analogous to four-vectors, whose components transform as
the components of the four-gradient ∂µ ≡ ∂/∂xµ = (∂0, ∂1, ∂2, ∂3). Since ∂µx

ν =
δν
µ = ∂′µx

′ν , the four-gradient transforms as

∂µ → ∂′µ = (Λ−1)ν
µ ∂ν . (B.3)

High indices are called contravariant and low indices are called covariant. Thus,
sometimes four-vectors are also called contravariant four-vectors in order to
distinguish them from the covariant four-vectors.

Tensors are geometrical objects whose components have one or more indices and
transform as products of contravariant and/or covariant four-vectors. The number
of indices is the rank of the tensor. Contravariant and covariant four-vectors are
tensors of rank one, or, more precisely, of rank ( 1

0 ) and ( 0
1 ), respectively. For exam-

ple, T µ
ν is a tensor of rank two or, more precisely, of rank ( 1

1 ), which transforms
as

T µ
ν → T ′µν = Λµ

α (Λ−1)β
ν T

α
β . (B.4)

The scalar product of two four-vectors V µ and Wµ is defined by

V ·W ≡ gµν V
µ Wµ , (B.5)

where gµν is the metric tensor. The norm of a four-vector V µ is given by

|V |2 ≡ V ·V . (B.6)

The metric tensor allows the lowering of the indices of vectors and tensors. For
example, for each four-vector V µ there is a corresponding covariant four-vector Vµ

given by

Vµ = gµν V
ν . (B.7)

A tensor can be represented in contravariant (e.g. T µν), covariant (e.g. Tµν =
gµρgνσT

ρσ), or mixed form (e.g. T µ
ν = gνρT

µρ). The contravariant metric tensor

108 In differential geometry, covariant four-vectors are called dual four-vectors or one-
forms (see Refs. [808, 1047, 941]). They form the dual vector space of linear functions of
four-vectors into the real numbers.
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gµν , which allows the raising of indices, is defined by

gµρ g
ρν = δν

µ . (B.8)

For example,

V µ = gµν Vν , T µν = gµρ Tρ
ν . (B.9)

Using contravariant and covariant indices, the scalar product in eqn (B.5) can be
written in the alternative forms

V ·W = V µWµ = VµW
µ = gµν VµWν . (B.10)

Let us introduce the infinitesimal space-time interval dτ , also called the
infinitesimal proper-time interval109, which is given by

dτ2 = gµν dxµ dxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = (dt)2 − (d�x)2 , (B.11)

with the metric tensor

gµν = diag(1,−1,−1,−1) . (B.12)

Space-time with this metric is called Minkowski space-time. Equation (B.8) implies
that the contravariant and covariant metric tensors are equal:

gµν = diag(1,−1,−1,−1) = gµν . (B.13)

The invariance of the velocity of light implies that dτ2 is Lorentz-invariant (for
light rays dτ2 = 0 in all reference frames). Hence, the matrix Λµ

ν is subject to the
condition

gµν Λµ
ρ Λν

σ = gρσ , (B.14)

which is the fundamental relation defining the Lorentz transformations. This con-
dition implies the Lorentz-invariance of the metric tensor and of the scalar product.
It can also be written as

(ΛT )ρ
µ
gµν Λν

σ = gρσ , (B.15)

or in the compact matrix form

ΛT g Λ = g . (B.16)

Equation (B.8) allows one to write eqn (B.15) as

gαρ (ΛT )ρ
µ
gµν Λρ

ν = δα
ν , (B.17)

which shows that

(Λ−1)α
ν = gαρ (ΛT )ρ

µ
gµν , i.e. Λ−1 = gΛT g . (B.18)

109 In the rest frame, where dx1 = dx2 = dx3 = 0, we have dτ = dx0.
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The Lorentz transformations form the Lie group110 L . Taking the determinant
of eqn (B.16) and taking into account that DetMT = DetM for any matrix M , one
finds

(DetΛ)
2

= 1 =⇒ DetΛ = ±1 . (B.19)

The Lorentz transformations with DetΛ = +1 are called proper and form the
subgroup L+ of the Lorentz group. The Lorentz transformations with DetΛ = −1
are called improper and form the set L−, which is not a group.

Taking ρ = σ = 0 in eqn (B.14), we obtain

(
Λ0

0

)2
= 1 +

3∑
i=1

(
Λi

0

)2
, (B.20)

which implies that(
Λ0

0

)2 ≥ 1 =⇒ Λ0
0 ≥ +1 or Λ0

0 ≤ −1 . (B.21)

The subgroup L ↑ of Lorentz transformations with Λ0
0 ≥ +1 is called

orthochronous. The set L ↓ of antichronous Lorentz transformations with Λ0
0 ≤ −1

do not form a group.
Therefore, the set of all Lorentz transformations is divided into four subsets

according to the signs of DetΛ and Λ0
0. The subgroup L

↑
+ of proper orthochronous

Lorentz transformations is called the restricted Lorentz group. The restricted
Lorentz group is a six-parameter continuous group. This can be seen by considering
an infinitesimal Lorentz transformation

Λµ
ν = δµ

ν + ε ωµ
ν , (B.22)

with infinitesimal ε. The condition in eqn (B.14), which defines Lorentz transfor-
mations, implies that ω is an antisymmetric matrix:

ωµν = −ωνµ . (B.23)

Since ω is a 4 × 4 matrix, it contains six independent components111. A finite
restricted Lorentz transformation matrix Λ can be written as an infinite product of
infinitesimal transformations, leading to the exponential form

Λµ
ν = lim

N→∞

(
δµ
ρ1

+
ωµ

ρ1

N

)(
δρ1
ρ2

+
ωρ1

ρ2

N

)
· · ·

(
δρN−1
ν +

ωρN−1
ν

N

)
110 A group G is a set of objects, called elements of G, which can be combined to form
an operation called the product, denoted by ab, for a, b ∈ G. The product must satisfy the
following four conditions:

1. ab ∈ G, if a, b ∈ G.
2. (ab)c = a(bc), if a, b, c ∈ G (associativity).
3. There is a unit element I ∈ G such that Ia = aI = a for all a ∈ G.
4. Each a ∈ G has an inverse a−1 ∈ G such that aa−1 = a−1a = I .

A Lie group is a group whose elements can be parameterized and the parameters of a
product are analytic functions of the parameters of the factors.
111 The number of independent components of a N×N antisymmetric matrix is
N (N − 1) /2.
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= lim
N→∞

[(
1 +

ω

N

)N
]µ

ν

= [eω]
µ

ν . (B.24)

Any Lorentz transformation can be written as a product of a restricted Lorentz
transformation times one of the following three discrete transformations:

Space inversion: P = diag (1,−1,−1,−1) ∈ L
↑
−,

Time inversion: T = diag (−1, 1, 1, 1) ∈ L
↓
−,

Total inversion: PT = diag (−1,−1,−1,−1) ∈ L
↓
+.

Spatial rotations have

Λ0
0 = 1 , Λ0

k = Λk
0 = 0 , Λk

j = Rk
j , (B.25)

where R is a unimodular (DetR = +1) orthogonal (RT = R−1) matrix. Spatial
rotations form a subgroup of the restricted Lorentz group. For a rotation by an
angle θ (0 ≤ θ ≤ π) around the unit vector �n we have

Rk
j = cos θ δk

j + (1 − cos θ)nk nj + sin θ εkjl nl . (B.26)

Given a unimodular orthogonal matrix R, the angle θ and the unit vector �n are
given by

cos θ =
TrR− 1

2
, nk =

εkjl Rj
l

2 sin θ
. (B.27)

A Lorentz transformation which connects two coordinate systems with different
velocities is called a boost. The elements of the matrix Λµ

ν of a Lorentz boost that
connects a coordinate system x with a coordinate system x′ moving with velocity
�v relative to x are

Λ0
0 = γ , Λ0

k = Λk
0 = −γ vk , Λk

j = δk
j − (1 − γ)

vk vj

v2
, (B.28)

with
v ≡ |�v|2 and γ ≡

(
1 − v2

)−1/2
. (B.29)

For a boost with velocity v in the direction of the xk axis we have

Λ0
0 = Λk

k = γ = coshϕ , Λ0
k = Λk

0 = −γ v = − sinhϕ , (B.30)

with the so-called rapidity ϕ, given by

tanhϕ = v ⇐⇒ ϕ = ln[γ (1 + v)] =
1

2
ln

1 + v

1 − v
. (B.31)

Rapidities are quite useful because they add in successive boosts along the same
axis. Indeed, two successive boosts along the same axis with velocities and rapidities
�v1, ϕ1 and �v2, ϕ2 are equivalent to a boost along the same axis with velocity �v and
rapidity ϕ given by

�v =
�v1 +�v2

1 +�v1 ·�v2
, ϕ = ϕ1 + ϕ2 . (B.32)

In general a orthochronous Lorentz transformation can always be decomposed
into a rotation times a boost (see Ref. [951]). To show this, let us write the
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transformation matrix Λµ
ν as

Λµ
ν =

(
γ −aT

−b M

)
, (B.33)

where a and b are 3×1 column matrices and M is a 3×3 matrix, and γ ≥ 0. From
eqn (B.18), we get

(Λ−1)µ
ν =

(
γ bT

a MT

)
. (B.34)

The relations Λ−1Λ = 1 and ΛΛ−1 = 1 lead, respectively, to the constraints

γ2 − b2 = 1 , MT b = γ a , MT M = a aT + 1 , (B.35)

γ2 − a2 = 1 , M a = γ b , M MT = b bT + 1 . (B.36)

The origin of the reference frame S′, with coordinates x′µ = (x′0, 0, 0, 0), in the
reference frame S has coordinates given by x = Λ−1x′: x0 = γx′0, �x = ax′0. Hence,
in the reference frame S the origin of the reference frame S′ moves with constant
velocity

�v =
∆�x

∆x0
=

a

γ
. (B.37)

From eqn (B.28) we can write the corresponding boost as

(Λ
v)
µ

ν =

⎛⎝ γ −γ �vT

−γ�v 1 +
γ2

1 + γ
�v �vT

⎞⎠ =

⎛⎝ γ −aT

−a 1 +
a aT

1 + γ

⎞⎠ , (B.38)

Let us now consider ΛΛ−1

v , which should correspond to a rotation. Indeed, since

Λ−1

v = Λ−
v, we obtain

[Λ Λ−1

v ]µ

ν
=

(
1 0T

0 R

)
= (ΛR)µ

ν , with R = M − baT

1 + γ
, (B.39)

and 0 is the zero 3×1 column matrix. ΛR represents a rotation, because the relations
in eqns (B.35) and (B.36) imply that RT = R−1. Hence, the general orthochronous
Lorentz transformation Λ in eqn (B.33) can be written as the product of the rotation
ΛR and the boost Λ
v:

Λ = ΛR Λ
v . (B.40)

Using the relations in eqns (B.35) and (B.36) one can easily show that Λ can also
be written as the product of the boost ΛR
v and the rotation ΛR:

Λ = ΛR
v ΛR . (B.41)
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B.2 Representations of the Lorentz group

The Lorentz transformation of four-vectors in eqns (B.1) and (B.2) is the defining
representation of the Lorentz group. A general representation of the Lorentz group
is made by objects Ψ that transform as

Ψ → Ψ′ = D(Λ)Ψ , (B.42)

with operators D(Λ) that satisfy the multiplication rule of the Lorentz group: for
two Lorentz transformations Λ1 and Λ2

D(Λ2)D(Λ1) = D(Λ2Λ1) . (B.43)

For an infinitesimal Lorentz transformation in eqn (B.22) the operator D(Λ)
must be infinitesimally close to the identity and can be written as

D(1 + εω) = 1 +
i

2
ε ωµν J

µν , (B.44)

where Jµν = −Jνµ is a set of six operators which are the generators of the Lorentz
group in the representation under consideration. If the operators Jµν are Hermitian,
the representation is unitary (D† = D−1).

The condition in eqn (B.43) implies that the generators Jµν must satisfy the
commutation relations

[Jµν , Jρσ ] = i (Jµρ gνσ − Jνρ gµσ − Jµσ gνρ + Jνσ gµρ) . (B.45)

The problem of finding all the representations of the restricted Lorentz group is
reduced to finding all the sets of operators that satisfy the commutation relations
in eqn (B.45).

The defining four-vector representation is a matrix representation of the Lorentz
group. Comparing eqns (B.22) and (B.44), we obtain the generators

[Jρσ]µν = −i (gρµ δσ
ν − gσµ δρ

ν) . (B.46)

These matrices are Hermitian and generate a unitary representation.
In general, the expression of D(eω) for a finite restricted Lorentz transforma-

tion Λ = eω in eqn (B.24) can be written as an infinite product of infinitesimal
transformations by using the multiplication property in eqn (B.43), leading to the
exponential form

D(eω) = D
(

lim
N→∞

[
1 +

ω

N

]N
)

= lim
N→∞

[
D
(
1 +

ω

N

)]N

= lim
N→∞

[
1 +

i

2

1

N
ωµν J

µν

]N

= exp

(
i

2
ωµν J

µν

)
. (B.47)



644 SPECIAL RELATIVITY

The six generators Jµν can be divided into the angular momentum three-vector
operators112

Jk = −1

2

∑
j,l

εkjl Jjl =⇒ �J = (−J23,−J31,−J12) (B.49)

and the boost three-vector operator

Kk = J0k =⇒ �K = (J01, J02, J03) , (B.50)

that satisfy the commutation relations

[Jk, Jj ] = i
∑

l

εkjl J l , (B.51)

[Jk,Kj] = i
∑

l

εkjl K l , (B.52)

[Kk,Kj ] = −i
∑

l

εkjl J l . (B.53)

The commutation relations in eqn (B.51) are those of angular momentum operators,
which generate three-dimensional rotations. Since the angular momentum operators
satisfy a closed algebra, rotations form a group. On the other hand, eqn (B.53)
shows that Lorentz boosts do not form a group.

The operator D(1 + εω) in eqn (B.44) can be written as

D(Λ) = 1 + i ε
∑

k

λk K
k + i ε

∑
k

ηk J
k , (B.54)

with

λk = ω0k , (B.55)

ηk = −1

2

∑
j,l

εkjl ωjl . (B.56)

For a boost with rapidity ϕ in the direction of the xk axis, we have

ω0
k = ωk

0 = −ϕ =⇒ λk = −ϕ =⇒ Dk
boost(εϕ) = 1− i ε ϕKk .

(B.57)
In the case of a boost with finite rapidity ϕ in the direction of the xk axis we have

Dk
boost(ϕ) = e−i ϕ Kk

. (B.58)

For a rotation by an angle θ around the xk axis we have

ωj
l = εj lk θ =⇒ ηk = θ =⇒ Dk

rot(εθ) = 1 + i ε θ Jk . (B.59)

For a rotation by a finite angle θ around the xk axis we have

Dk
rot(θ) = ei θ Jk

. (B.60)

112 The inverse relation is
Jkj = −

X
l

εkjl J l . (B.48)
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B.2.1 Fields

Under a Lorentz transformation in eqn (B.1), a multicomponent field

ψ(x) ≡

⎛⎜⎝ψ1(x)
...

ψn(x)

⎞⎟⎠ (B.61)

transforms as
ψ(x) → ψ′(x′) = S(Λ)ψ(x) , (B.62)

where S(Λ) is a n×n matrix that depends on the spin of the particle. For example,
for a scalar field n = 1 and S(Λ) = 1 and for a vector field n = 4 and S(Λ) = Λ.

For an infinitesimal Lorentz transformation in eqn (B.22) let us write S(1+ εω)
as

S(1 + εω) = 1 +
i

2
ε ωµν S

µν , (B.63)

where Sµν is the spin part of the generators of the Lorentz group in the
representation under consideration.

Taking into account the transformation of coordinates, the full transformation
of ψ(x) under a Lorentz transformation is given by

ψ(x) → ψ′(x′) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1x′) = D(Λ)ψ(x′) . (B.64)

Using eqn (B.63) and taking into account the antisymmetric character of ωµν (see
eqn (B.23)), for the infinitesimal Lorentz transformation in eqn (B.22), we have

ψ′(x) =

(
1 +

i

2
ε ωµν S

µν

)
ψ(x − εωx)

=

{
1 +

i

2
ε ωµν

[
− i (xµ ∂ν − xν ∂µ) + Sµν

]}
ψ(x) . (B.65)

Therefore, the operator D(1 + εω) that implements the infinitesimal Lorentz
transformation in eqn (B.22) on ψ(x) is given by

D(1 + εω) = 1 +
i

2
ε ωµν

[
− i (xµ ∂ν − xν ∂µ) + Sµν

]
. (B.66)

Comparing this expression with eqn (B.44), we obtain the generators of the Lorentz
group:

Jµν = −i (xµ ∂ν − xν ∂µ) + Sµν . (B.67)

These generators can be written as

Jµν = Lµν + Sµν , (B.68)

with the space-time part

Lµν = −i (xµ ∂ν − xν ∂µ) = − (xµ P ν − xν Pµ) , (B.69)

where Pµ = i∂µ (see eqn (B.86)), which is the same for all fields. Since Lµν

satisfy the commutation relations in eqn (B.45) and commute with Sµν , in general,
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Sµν must satisfy the commutation relations in eqn (B.45) of the Lorentz group
generators.

The space part of the angular momentum operator is

Lk = −1

2

∑
j,l

εkjl Ljl =
∑
j,l

εkjl xj P l =
(
�x× �P

)k

, (B.70)

implying that �L is the usual spatial angular momentum operator �L = �x × �P .
Denoting with Sk the spin part of the angular momentum operator,

Sk = −1

2

∑
j,l

εkjl Sjl , (B.71)

the total angular momentum operator �J can be written in general as the sum of its
spatial and spin parts:

�J = �L+ �S . (B.72)

B.3 The Poincaré group and its representations

The Poincaré group (also known as the inhomogeneous Lorentz group) is the Lorentz
group augmented with space-time translations. A Poincaré transformation is a
coordinate transformation

xµ → x′µ = Λµ
ν x

ν + aµ , (B.73)

with four arbitrary real constants aµ representing space-time translations.
A general representation of the Poincaré group is constituted by objects Ψ which

transform as
Ψ → Ψ′ = D(Λ, a)Ψ , (B.74)

with operators D(Λ, a) which satisfy the multiplication rule of the Poincaré group:

D(Λ2, a2)D(Λ1, a1) = D(Λ2Λ1,Λ2a1 + a2) . (B.75)

For an infinitesimal Poincaré transformation

Λµ
ν = δµ

ν + ε ωµ
ν , aµ = ε bµ , (B.76)

with infinitesimal ε, the operator D(1 + εω, εb) can be written as

D(1 + εω, εb) = 1 +
i

2
ε ωµν J

µν − i ε bµ P
µ , (B.77)

where Jµν = −Jνµ are the six generators of the Lorentz group and Pµ are the four
generators of space-time translations.

The condition in eqn (B.75) leads to the following Lie algebra of the Poincaré
group generators:

[Jµν , Jρσ] = i (Jµρ gνσ − Jνρ gµσ − Jµσ gνρ + Jνσ gµρ) , (B.78)
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[Pµ, Jρσ] = i (P ρ gµσ − P σ gµρ) , (B.79)

[Pµ, P ρ] = 0 . (B.80)

Furthermore, the angular momentum operators in eqn (B.49) and boost opera-
tors in eqn (B.50) satisfy the following commutation relations with the energy and
momentum operators:

[Jk, P j] = i εkjl P l , (B.81)

[Jk, P 0] = 0 , (B.82)

[Kk, P j ] = i P 0 δkj , (B.83)

[Kk, P 0] = i P k . (B.84)

Analogously to eqn (B.64), the transformation of a field ψ(x) under a Poincaré
transformation in eqn (B.73) is given by

ψ(x) → ψ′(x′) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1(x′ − a)) = D(Λ)ψ(x′) . (B.85)

In this case, the generators Jµν of the Lorentz group are given by eqn (B.67) and
the generators Pµ of space-time translations are given by

Pµ = i ∂µ . (B.86)

Covariance of physical laws under Poincaré transformations imply that all quan-
tities defined in Minkowski space-time must belong to a representation of the
Poincaré group. By definition, the states that describe elementary particles belong
to irreducible representations of the Poincaré group. These representations can be
classified by the eigenvalues of the Casimir operators, which are the functions of the
generators that commute with all the generators. This property implies that the
eigenvalues of the Casimir operators remain invariant under group transformations.

There are two Casimir operators of the Poincaré group. The first one is

P 2 = Pµ P
µ . (B.87)

The corresponding eigenvalues
p2 = m2 (B.88)

are the squared masses of particles. In the real world we observe only time-like
or light-like four-momenta, i.e. particles with positive or zero mass. Furthermore,
the temporal components p0 of the four-momenta of physical particles, which
correspond to energy and whose sign is a Lorentz invariant, are always positive.

The second Casimir operator of the Poincaré group is

W 2 = WµW
µ , (B.89)

where Wµ is the Pauli–Lubanski four-vector

Wµ =
1

2
εµνρσ J

νρ P σ , (B.90)
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such that
[Wµ, P ρ] = 0 . (B.91)

In three-vector notation, taking into account that �L · �P = 0, we have

W 0 = �J · �P = �S · �P , �W = �J P 0 − �K × �P . (B.92)

Hence, W 0 depends only on �P and the spin operator �S.
We can evaluate the Lorentz-invariant W 2 in the rest frame of a particle with

mass m, where
W 0 = 0 , �W = m �S , (B.93)

which lead to
W 2 = −m2 �S2 . (B.94)

Since from the nonrelativistic quantum theory of angular momentum we know that
the eigenvalue of �S2 is s(s+ 1), where s is the spin of the particle (half-integer or
integer), we see that the eigenvalue of the relativistic invariant W 2,

w2 = −m2 s (s+ 1) , (B.95)

gives the spin of the particle.
A complete set of commuting observables is composed of P 2, the three compo-

nents of �P , W 2 and one of the four components of Wµ. The eigenvalues of P 2 and
W 2 or, equivalently, the mass m and the spin s, distinguish (possibly together with
other quantum numbers) different particles. Given a particle with mass m and spin

s, the eigenvalues of �P and one of the four components of Wµ distinguish different
states of the same particle. It is convenient to use the helicity operator ĥ defined
by

ĥ =
W 0

s |�P |
=
�S · �P
s |�P |

, (B.96)

which is proportional to W 0. Therefore the states of a particle with mass m and
spin s can be distinguished by the eigenvalues of �P and ĥ.



APPENDIX C

LAGRANGIAN THEORY

C.1 Variational principle and field equations

Let us consider a set of n real fields ψr(x), with r = 1, . . . , n (for example a set
of n real scalar fields, or the electromagnetic field Aµ(x) with four components,
µ = 0, 1, 2, 3) and a real Lagrangian113

L (x) = L (ψr(x), ∂µψr(x)) . (C.1)

The Lagrangian formalism is more suitable for the study of relativistic field theo-
ries than the Hamiltonian formalism, because the Lagrangian is a Lorentz scalar,
whereas the Hamiltonian represents the energy of the fields and transforms as the
time component of the energy–momentum four-vector.

Let us define the action as

I(Ω) ≡
∫

Ω

d4xL (ψr(x), ∂µψr(x)) , (C.2)

where Ω is an arbitrary space-time region. According to the variational principle,
the fields must be such that the action is stationary,

δvI(Ω) = 0 , (C.3)

for infinitesimal variations of the fields that vanish on the hypersurface S
surrounding the space-time region Ω. These are variations of the type

ψr(x) → ψr(x) + δvψr(x) , (C.4)

with
δvψr(x)

∣∣
S

= 0 . (C.5)

The variation of the action under the transformation in eqns (C.4) and (C.5) is

δvI(Ω) =

∫
Ω

d4x
∑

r

[
∂L

∂ψr
δvψr +

∂L

∂(∂µψr)
δv(∂µψr)︸ ︷︷ ︸
∂µ(δvψr)

]

113 Strictly speaking, L (x) is a Lagrangian density, which is a function of time and
space. The corresponding Lagrangian is L(t) =

R
d3xL (x), which is a function of time

only. However, in quantum field theory, the Lagrangian density is the main quantity of
interest and in this book we omit, for simplicity, the word density.
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=

∫
Ω

d4x
∑

r

[
∂L

∂ψr
δvψr + ∂µ

(
∂L

∂(∂µψr)
δvψr

)
− ∂µ

(
∂L

∂(∂µψr)

)
δvψr

]
.

(C.6)

By using the Gauss theorem and the constraint in eqn (C.5), one obtains∫
Ω

d4x∂µ

(
∂L

∂(∂µψr)
δvψr

)
=

∫
S

dSµ
∂L

∂(∂µψr)
δvψr = 0 , (C.7)

where dSµ(x) is the surface element (see eqn (2.292)). Then, the variational
principle in eqn (C.3) leads to

0 = δvI(Ω) =

∫
Ω

d4x
∑

r

[
∂L

∂ψr
− ∂µ

∂L

∂(∂µψr)

]
δvψr . (C.8)

Since the variations δvψr(x) are arbitrary and independent for different r, the fields
must satisfy the Euler–Lagrange equations

∂µ
∂L

∂(∂µψr)
− ∂L

∂ψr
= 0 (r = 1, . . . , n) . (C.9)

It is clear that the scalar character of the Lagrangian is crucial in order to guarantee
the Lorentz covariance of the field equations in eqn (C.9).

C.2 Canonical quantization

In quantum field theory, the canonical quantization of fields is implemented by
imposing on the fields ψr and their canonically conjugated momenta

πr =
∂L

∂(∂0ψr)
(C.10)

the equal-time relations

[ψr(t,�x , πs(t,�y]± = i δrs δ
3(�x−�y) , (C.11)

[ψr(t,�x , ψs(t,�y]± = [πr(t,�x , πs(t,�y]± = 0 , (C.12)

where the plus and minus subscripts denote, respectively, anticommutators for
fermion fields and commutators for boson fields.

C.3 Noether’s theorem

Noether’s theorem establishes a connection between symmetries under contin-
uous transformations and conservation laws. Let us consider an infinitesimal
transformation of the n fields ψr,

ψr(x) → ψr(x) + ε δψr(x) , (C.13)

where ε is infinitesimal and the variation δψr(x) is not subject to any constraint, but
the fields are required to satisfy the field equations in eqn (C.9). The transformation
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in eqn (C.13) is a symmetry if the field equations in eqn (C.9) remain invariant, i.e. if
the action in eqn (C.2) is invariant up to a surface term (the constraint in eqn (C.5)
implies that a surface term does not contribute to the field equations). Therefore,
the transformation in eqn (C.13) is a symmetry if the Lagrangian remains invariant
up to a four-divergence:

L (x) → L (x) + ε ∂µIµ(x) ⇐⇒ δL (x) = ε ∂µIµ(x) , (C.14)

for any Iµ(x). From eqn (C.6) with δvψr replaced by εδψr, by using the field
equations in eqn (C.9), one can see that the variation of the Lagrangian under the
transformation in eqn (C.13) is

δL = ε ∂µ

(∑
r

∂L

∂(∂µψr)
δψr

)
. (C.15)

Thus, the transformation in eqn (C.13) is a symmetry if

∂µ

(∑
r

∂L

∂(∂µψr)
δψr

)
= ∂µIµ ⇐⇒ ∂µ

(∑
r

∂L

∂(∂µψr)
δψr − Iµ

)
= 0 .

(C.16)
This is the conservation equation

∂µ j
µ = 0 , (C.17)

for the current

jµ =
∑

r

∂L

∂(∂µψr)
δψr − Iµ . (C.18)

The conservation equation (C.17) implies the existence of a charge

Q =

∫
d3x j0(x) =

∫
d3x

(∑
r

∂L

∂(∂0ψr)
δψr − I0

)
, (C.19)

which is conserved in time:
∂Q

∂t
= 0 . (C.20)

Since all the quantities in the definition of Q in eqn (C.19) are real, in quantum
field theory the conserved charge is an Hermitian operator (Q† = Q). Hence, it is a
measurable quantity and its constancy in time allows the use of its eigenvalues for
the classification of states.

The canonical quantization relations in eqns (C.11) and (C.12) imply that
the charge Q is the generator of the symmetry transformation in eqn (C.13) if∫

d3y
[
I0(t,�y) , ψr(t,�x)

]
= 0. In this case, one can derive the commutation relations

[Q , ψr(x)] = ±i δψr(x) , (C.21)

where the upper and lower signs apply, respectively, to fermion and boson fields.
The infinitesimal symmetry transformation in eqn (C.13) is generated by

e∓iεQ ψr(x) e
±iεQ = ψr(x) ∓ i ε [Q , ψr(x)] = ψr(x) + ε δψr(x) . (C.22)
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C.4 Space-time translations

Using Noether’s theorem, one can show that the symmetry under infinitesimal
space-time translations

xµ → x′µ = xµ + ε δxµ (C.23)

implies the conservation of the energy–momentum four-vector. Since, the variations
of the fields ψr(x) and the Lagrangian L (x) are given by

δψr(x) = −ε δxµ ∂µψr(x) , δL (x) = −ε δxµ ∂µL (x) , (C.24)

in this case, we have
Iµ = −δxµ

L (x) . (C.25)

Thus, eqn (C.16) leads to

∂µ

(∑
r

∂L

∂(∂µψr)
δxν ∂νψr − δxµ

L

)
= 0 . (C.26)

Since the variation δxµ is arbitrary, there are four conservation laws:

∂µT µν = 0 (ν = 0, 1, 2, 3) , with T µν =
∑

r

∂L

∂(∂µψr)
∂νψr − gµν

L .

(C.27)
Here T µν is the energy–momentum tensor, whose columns are the four conserved
currents T µ0, T µ1, T µ2, T µ3. Hence, there are four constant quantities (∂0 Pν = 0),
which form the energy–momentum four-vector :

Pν =

∫
d3xT 0ν(x) =

∫
d3x

(∑
r

∂L

∂(∂0ψr)
∂νψr − g0ν

L

)
(ν = 0, 1, 2, 3) .

(C.28)
If
∫

d3y
[
L 0(t,�y) , ψr(t,�x)

]
= 0, eqn (C.21) implies that Pν are the generators of

space-time translations of quantized fields through the commutator

[Pν , ψr(x)] = ∓i ∂νψr(x) , (C.29)

where the upper and lower signs apply, respectively, to fermion and boson fields.
Under a finite space-time translation

xµ → x′µ = xµ + δxµ , (C.30)

the fields ψr(x) transform according to

ψr(x) → e∓iδx ·P ψr(x) e
±iδx ·P = ψr(x − δx) . (C.31)

Choosing δx = x, we obtain the general space-time behavior of the fields with
respect to their value in the origin:

ψr(x) = e±ix ·P ψr(0) e∓ix ·P . (C.32)

Obviously, any product of the fields behaves in the same way.
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C.5 Lorentz transformations

Under an infinitesimal Lorentz transformation in eqn (B.22) we have

δxµ = ε ωµ
ν x

ν . (C.33)

From eqns (B.65) and (B.67), the variation of the fields is

δψ(x) =
i

2
ε ωµν J

µν ψ(x) , (C.34)

where ψ(x) is the column matrix of the field components in eqn (B.61). Since the
variation of the Lagrangian is given by

δL (x) = −δxµ ∂µL (x) = −ε ωµ
ν x

ν ∂µL (x) = ∂µ (−ε ωµ
ν x

ν
L (x)) , (C.35)

we have, in this case,
Iµ = −ε ωµ

ν x
ν
L (x) . (C.36)

Taking into account the antisymmetry of ωαβ , eqn (C.16) leads to

1

2
ε ωαβ ∂µ

[
i

∂L

∂(∂µψ)
Jαβ ψ(x) +

(
gµα xβ − gµβ xα

)
L (x)

]
= 0 . (C.37)

Since the six independent components of ωαβ are arbitrary, there are six conserva-
tion laws,

∂µ J µαβ = 0 , with J µαβ(x) = i
∂L

∂(∂µψ)
Jαβ ψ(x) +

(
gµα xβ − gµβ xα

)
L (x) ,

(C.38)
one for each of the six independent components of J µαβ for fixed µ. Indeed, J µαβ

is antisymmetric in the indices α and β. From eqns (B.67) and (C.27), J µαβ can
be written as

J µαβ(x) = xα T µβ(x) − xβ T µα(x) + i
∂L

∂(∂µψ)
Sαβ ψ(x) . (C.39)

There are six conserved quantities (∂0 Jαβ = 0) given by the six independent
components of the antisymmetric angular momentum tensor

Jαβ =

∫
d3xJ 0αβ(x) =

∫
d3x

(
xα T 0β(x) − xβ T 0α(x) + i

∂L

∂(∂0ψ)
Sαβ ψ(x)

)
.

(C.40)

C.6 Complex fields

If the fields ψr are complex (non-Hermitian in the case of quantized fields), each
field has two degrees of freedom that can be represented by the real and imaginary
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parts or ψr and ψ∗r (ψ†r in the case of quantized fields). In this case, the expression
in eqn (C.18) for the conserved current must be modified to

jµ =
∑

r

(
∂L

∂(∂µψr)
δψr + δψ∗r

∂L

∂(∂µψ∗r )

)
− Iµ . (C.41)

The equations following eqn (C.18) must be modified in a similar way, by adding
the contribution obtained from the variation of ψ∗r . In particular, we have

Q =

∫
d3x

[∑
r

(
∂L

∂(∂0ψr)
δψr + δψ∗r

∂L

∂(∂0ψ∗r )

)
− I0

]
, (C.42)

T µν =
∑

r

(
∂L

∂(∂µψr)
(∂νψr) + (∂νψ∗r )

∂L

∂(∂µψ∗r )

)
− gµν

L , (C.43)

Pµ =

∫
d3x

[∑
r

(
∂L

∂(∂0ψr)
(∂µψr) + (∂µψ∗r )

∂L

∂(∂0ψ∗r )

)
− g0µ

L

]
, (C.44)

J µαβ = xα T µβ − xβ T µα + i

(
∂L

∂(∂µψ)
Sαβ ψ − ψ† Sαβ† ∂L

∂(∂µψ†)

)
, (C.45)

Jαβ =

∫
d3x

[
xα T 0β − xβ T 0α + i

(
∂L

∂(∂0ψ)
Sαβ ψ − ψ† Sαβ† ∂L

∂(∂0ψ†)

)]
.

(C.46)

C.7 Global gauge symmetry

According to Noether’s theorem, charge conservation is a consequence of invariance
of the Lagrangian (δL = 0) under phase transformations of complex fields,

ψr(x) → eiθ ψr(x) (r = 1, . . . , n) , (C.47)

where θ is an arbitrary parameter. The most well-known conserved charges are the
electric charge and the baryon and lepton numbers.

The transformations in eqn (C.47) are called global gauge transformations, where
the adjective global indicates that the parameter θ does not depend on space-time.
Since the variations of ψr(x) and ψ∗r (x) for an infinitesimal δθ are

δψr = i ψr δθ , δψ∗r = −i ψ∗r δθ (r = 1, . . . , n) , (C.48)

and ∂µIµ = 0 (because δL = 0), the conserved current (∂µj
µ = 0) is

jµ = i
∑

r

(
∂L

∂(∂µψr)
ψr − ψ∗r

∂L

∂(∂µψ∗r )

)
, (C.49)

and the conserved charge (∂0Q = 0) is

Q =

∫
d3x j0(x) = i

∫
d3x

∑
r

(
∂L

∂(∂0ψr)
ψr − ψ∗r

∂L

∂(∂0ψ∗r )

)
. (C.50)
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The global gauge transformation in eqn (C.47) involves a common variation of
the phases of all the n fields ψr(x). Such a transformation belongs to the abelian
group U(1) of continuous phase transformations. Let us now consider a nonabelian
Lie group of continuous transformations G of order N (for example SU(N)114),
whose transformations depend on N real parameters θa (a = 1, . . . , N).

In general, the transformations belonging to a nonabelian group G mix the
n complex fields ψr(x). We assume that a set of fields ψr(x) is a n-dimensional
irreducible representation of the group G. Writing the n fields ψr in the matrix
form

Ψ ≡

⎛⎜⎝ψ1

...
ψn

⎞⎟⎠ , (C.51)

their variation under an infinitesimal transformation parameterized by δθa (a =
1, . . . , N) is given by

δΨ = i La Ψ δθa , δΨ† = −iΨ†La δθa , (C.52)

with an implicit summation of the index a from 1 to N . Here La (a = 1, . . . , N)
are the n×n Hermitian matrices which form the n-dimensional representation of
the generators of the group and satisfy the commutation relations

[La , Lb] = i

N∑
c=1

fabc Lc (a, b = 1, . . . , N) , (C.53)

where the real numbers fabc are the structure constants of the group115. Since the
infinitesimal parameters δθa are arbitrary, Noether’s theorem implies the existence
of a conserved current (∂µj

µ
a = 0) for each generator of the group:

jµ
a = i

(
∂L

∂(∂µΨ)
La Ψ − Ψ† La

∂L

∂(∂µΨ†)

)
(a = 1, . . . , N) . (C.54)

The corresponding N conserved charges (∂0Qa = 0) are

Qa =

∫
d3x j0a(x) = i

∫
d3x

(
∂L

∂(∂0Ψ)
La Ψ − Ψ† La

∂L

∂(∂0Ψ†)

)
(a = 1, . . . , N) .

(C.55)
For quantized fields, these conserved charges generate the group transformations in
eqn (C.52) through

[Qa , Ψ(x)] = ∓La Ψ(x) , (C.56)

where the upper and lower signs apply, respectively, to fermion and boson fields.
Indeed, using the canonical quantization relations in eqns (C.11) and (C.12) one

114 U(N) is the group of unitary transformations of dimension N and can be decom-
posed into the direct product U(N) = SU(N)×U(1) where SU(N) is the group of unitary
unimodular transformations of dimension N .
115 For example, the pion triplet π+, π0, π− forms an irreducible representation of the
isospin group SU(2)I, whose structure constants are fabc = εabc. The three-dimensional
representation of the generators is (La)jk = −iεajk.
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can derive the commutation relations in eqn (C.53) for the conserved charges:

[Qa , Qb] = i fabc Qc . (C.57)

Thus, the conserved charges form a representation of the generators of the symmetry
group.



APPENDIX D

GAUGE THEORIES

In this appendix we present the salient features of gauge theories (section D.1).
These are theories based on a local gauge invariance of the Lagrangian. It was
known for a long time that the Maxwell equations and quantum electrodynamics
(QED) are locally gauge invariant. However, the idea of a generalization of the local
gauge principle to nonabelian groups and its application to the creation of new field
theories were discovered only in 1954 by Yang and Mills [1080]. The Standard Model
of electroweak interactions, discussed in chapter 3, is a gauge theory, as well as the
theory of quantum chromodynamics (QCD), which is sketched in section D.2.

D.1 General formulation of gauge theories

Let us consider a Lie group G of order N . The N generators Ta (a = 1, . . . , N)
satisfy the commutation relations (Lie algebra)[

Ta, Tb

]
= ifabcTc (a, b = 1, . . . , N) , (D.1)

where the real numbers fabc are the structure constants of the group. The generators
define the infinitesimal elements of the group, i.e. those which are infinitesimally
close to the identity:

g(ε) = 1 + i ε ·T , (D.2)

where T ≡ (T1, . . . , TN ) and ε ≡ (ε1, . . . , εN ) is a set of N real infinitesimal param-
eters. The finite elements of the group, g(θ) with θ ≡ (θ1, . . . , θN ), are obtained by
integration of the infinitesimal elements.

In a field theory, a n-dimensional unitary representation of G is formed by

(a) A set of n fields ψr (r = 1, . . . , n), which can be written in matrix form as in
eqn (C.51). They will be called matter fields, since they usually describe spin
1/2 fermions or scalar Higgs bosons.

(b) A set L = (L1, L2, . . . , LN) of N Hermitian n×n matrices which form an n-
dimensional representation of the generators, i.e. that satisfy the commutation
relations in eqn (C.53). The matrices La (a = 1, . . . , N) are independent and
are conveniently chosen to satisfy the orthonormality condition

Tr(LaLb) =
1

2
δab . (D.3)
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For each element of the group, there is a mapping g(θ) �→ U(θ), where U(θ) is
the unitary n×n matrix

U(θ) = eiθ ·L ≡ exp

(
i

N∑
a=1

θa La

)
, (D.4)

which generates the transformation of the matter fields:

Ψ(x) → Ψ′(x) = U(θ)Ψ(x) . (D.5)

If the n-dimensional matrix representation of the generators is known, the values
of the structure constants can be determined through

fabc = −2 iTr([La, Lb]Lc) , (D.6)

which is a consequence of eqns (C.53) and (D.3).
We have already considered the symmetry of the Lagrangian under global gauge

transformations in section C.7, where we have seen that Noether’s theorem implies
the conservation of the currents in eqn (C.54), one for each generator of the group.
Let us now consider local gauge transformations, i.e. transformations of the type
in eqn (D.5) with parameters θa (a = 1, . . . , N) which depend on the space-time
coordinates x: θa = θa(x).

Since global gauge transformations are a subset of the corresponding local gauge
transformations, we consider a Lagrangian of the type in eqn (C.1) which is invari-
ant under global gauge transformations of the type in eqn (D.5). However, this
Lagrangian cannot be invariant under the corresponding local gauge transforma-
tions, because the field derivative ∂µΨ(x) does not transform as Ψ(x) and its
transformation is inhomogeneous:

∂µΨ(x) → ∂µΨ′(x) = ∂µ

[
U(θ(x))Ψ(x)

]
= U(θ(x))

[
∂µΨ(x)

]
+
[
∂µU(θ(x))

]
Ψ(x) .

(D.7)
For example, if the matter fields ψr describe spin 1/2 fermions, the kinetic term in
the Dirac Lagrangian (see eqn (2.1)) transforms as

Ψ(x) /
↔
∂Ψ(x) → Ψ′(x) /

↔
∂Ψ′(x) = Ψ(x) /

↔
∂Ψ(x) + Ψ(x)

[
U †(θ(x)) /

↔
∂U(θ(x))

]
Ψ(x) .

(D.8)
The Lagrangian can be made invariant under local gauge transformations by

replacing the ordinary derivative ∂µ with a covariant derivative Dµ such that the
transformation of DµΨ is homogeneous and equal to that of Ψ:

DµΨ → D′µΨ′ = U(θ)DµΨ . (D.9)

Note that in a local gauge transformation there is a transformation Dµ → D′µ of
the covariant derivative. Since Ψ(x) = U−1(θ)Ψ′, the transformation of Dµ which
satisfies eqn (D.9) is

Dµ → D′µ = U(θ)Dµ U
−1(θ) . (D.10)

This transformation can be achieved by defining the covariant derivative as

Dµ ≡ ∂µ + i g Aµ ·L , (D.11)

where g is a real constant and Aµ(x) ≡ (Aµ
1 (x), . . . , Aµ

N (x)) is a set of N real
vectorial gauge fields. Their transformation under a local gauge transformation is
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defined in order to fulfill eqn (D.10): with the definition in eqn (D.11), the condition
in eqn (D.10) becomes

∂µ + i g A′µ ·L = U(θ)
[
∂µ + i g Aµ ·L

]
U−1(θ)

= U(θ)
{
U−1(θ) ∂µ +

[
∂µU

−1(θ)
]}

+ i g U(θ)Aµ ·LU−1(θ)

= ∂µ + U(θ)
[
∂µU

−1(θ)
]
+ i g U(θ)Aµ ·LU−1(θ) . (D.12)

Thus, the transformation of Aµ ·L is given by

Aµ ·L→ A′µ ·L = U(θ)

(
Aµ ·L− i

g
∂µ

)
U−1(θ) . (D.13)

The explicit transformation of the gauge fields Aµ
a can be found by considering the

infinitesimal transformation

U(ε(x)) = 1 + i ε(x) ·L . (D.14)

We obtain

δAµ ·L = i
[
ε ·L , Aµ ·L

]
− 1

g
∂µε ·L , (D.15)

which can be written as

N∑
a=1

δAµ
a La = −

N∑
a,b,c=1

fabc εaA
µ
b Lc −

1

g

N∑
a=1

∂µεa La . (D.16)

Using the orthonormality relations in eqn (D.3), one can finally find that the
variation of Aµ

a is given by

δAµ
a =

N∑
b,c=1

fabcA
µ
b εc −

1

g
∂µεa (a = 1, . . . , N) . (D.17)

This expression is often written as

δAµ = Aµ × ε− 1

g
∂µε , (D.18)

with116

(Aµ × ε)a ≡
N∑

b,c=1

fabcA
µ
b εc . (D.19)

The expression in eqn (D.17) shows that the transformation of the gauge fields is
independent of the representation L of the group generators. One should also note

116 If the group is SU(2), we have N = 3 and fabc = εabc. In this case, the notation in
eqn (D.19) coincides with the usual notation for the vectorial product of two three-vectors.
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that the variation in eqn (D.17) of the gauge fields Aµ
a is a generalization to the

nonabelian case of the well-known variation of the electromagnetic field,

δAµ = −1

e
∂µθ (D.20)

under the local U(1)Q symmetry. The additional term
∑

b,c fabcA
µ
b εc in eqn (D.17)

is characteristic of nonabelian groups.
The substitution in the Lagrangian of the ordinary derivative ∂µ with the covari-

ant derivative Dµ implies the introduction of terms which couple the gauge fields
Aµ

a to the matter fields ψr. For example, if the fields ψr describe fermions with spin
1/2, from the kinetic term of the Dirac Lagrangian we obtain

iΨ /DΨ = iΨ/∂Ψ − gΨ /A ·LΨ . (D.21)

Therefore, a local gauge symmetry of the Lagrangian implies:

(A) The existence of a set of vectorial gauge fields.
(B) The existence of interactions of the gauge fields with the matter fields with

strength given by the coupling constant g.

It now still remains to determine the Lagrangian kinetic term for the gauge fields
Aµ

a . For this purpose, we search for an appropriate generalization to the nonabelian
case of the electromagnetic tensor

Fµν = ∂µAν − ∂ν Aµ , (D.22)

and of the electromagnetic kinetic term

L(γ) = −1

4
Fµν Fµν . (D.23)

The generalization of the kinetic term to the nonabelian case is straightforward:

L(A) = −1

4
Aµν ·Aµν = −1

2
Tr
[
(Aµν ·L)

(
Aµν ·L

) ]
, (D.24)

with the set of tensors Aµν ≡ (Aµν
1 , . . . , Aµν

N ). On the other hand, a naive gener-
alization of eqn (D.22) to Aµν

a = ∂µ Aν
a − ∂ν Aµ

a fails, because the corresponding
kinetic term is not invariant under the gauge transformation in eqn (D.13). In order
to find the correct expression of Aµν let us consider the commutator [Dµ, Dν ]:

[Dµ, Dν ] = [∂µ + i g Aµ ·L , ∂ν + i g Aν ·L]

= [∂µ, ∂ν ]︸ ︷︷ ︸
0

+i g [∂µ , Aν ·L]︸ ︷︷ ︸
∂µAν ·L

+i g [Aµ ·L , ∂ν ]︸ ︷︷ ︸
−∂νAµ ·L

−g2 [Aµ ·L , Aν ·L]

= i g
(
∂µAν ·L− ∂νAµ ·L+ i g [Aµ ·L , Aν ·L]

)
= i g

(
∂µAν − ∂νAµ − g Aµ ×Aν

)
·L . (D.25)
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We see that in the commutator the derivatives which do not act on the gauge fields
disappear. Moreover, from the transformation rule of the covariant derivative in
eqn (D.10), the transformation of [Dµ, Dν ] is given by

[Dµ, Dν ] → [D′µ, D′ν ] = U(θ) [Dµ, Dν ]U−1(θ) . (D.26)

Therefore, Tr
{

[Dµ, Dν ] [Dµ, Dν ]
}

is invariant under local gauge transformations

and the correct expression for Aµν ·L in eqn (D.24) is

Aµν ·L = − i

g
[Dµ, Dν ] = (∂µAν − ∂νAµ − g Aµ ×Aν) ·L , (D.27)

leading to

Aµν
a = ∂µAν

a − ∂νAµ
a − g

N∑
b,c=1

fabcA
µ
b A

ν
c (a = 1, . . . , N) . (D.28)

Note that the generalization to the nonabelian case of the electromagnetic tensor
in eqn (D.22) requires the addition of a new term which is quadratic in the gauge
fields. Therefore, the Lagrangian in eqn (D.24) contains not only the kinetic term
of the gauge fields, but also self-interaction terms of the gauge fields. In fact, we
have explicitly

L(A) = − 1

4

(
∂µAν − ∂νAµ

)
·
(
∂µAν − ∂νAµ

)
+

1

2
g (∂µAν

a − ∂νAµ
a) fabcAbµ Acν

− 1

4
g2fabc fadeA

µ
b A

ν
c AdµAeν . (D.29)

The first line is the kinetic term, the second line corresponds to trilinear interaction
vertices and the third line represents quadrilinear interaction vertices. This means
that a nonabelian gauge theory is quite different from an abelian one, in which
the gauge fields are not self-interacting (the photon has no electric charge): in the
nonabelian case the gauge fields can carry a charge and interact among themselves.

The coupling constant g plays a fundamental role, since it determines the
strength of the self-interaction of the gauge fields, as well as the strength of their
interactions with the matter fields. A very important characteristic of nonabelian
gauge theories is that the matter fields which belong to multiplets of the same type
have the same charge g. In fact, the interaction of the matter fields with the gauge
fields is determined by the expression in eqn (D.11) of the covariant derivative and
the matrix representation of the generators for each type of multiplet (singlets,
doublets, triplets, etc.) is uniquely determined by the commutation relations in
eqn (C.53). For example, the commutation relations in eqn (C.53) do not allow a
rescaling of the matrices La. On the other hand, in an abelian gauge theory the
generators are represented by scalars which can have arbitrary values in different
representations.
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The two cases are exemplified by the two symmetries SU(2)L and U(1)Y of the
SU(2)L × U(1)Y electroweak group in the SM discussed in section 3.1. The matrix
representation of the generators Ia of the SU(2)L group in the doublet and singlet
representations are fixed uniquely according to eqns (3.8) and (3.17), respectively.
Therefore, the action of the generators Ia on all left-handed doublets (right-handed
singlets) is the same. On the other hand, the action generator of the U(1)Y group
can assume different values for different multiplets of the same type, as one can see
from eqns (3.9) and (3.18).

Let us finally remark that a mass term for the gauge fields,

1

2
m2Aµ ·Aµ (D.30)

is forbidden by the local symmetry. Therefore, if the symmetry is unbroken, the
gauge fields are massless. In the SM, the gauge bosons W and Z acquire mass
through a spontaneous symmetry breaking generated by the Higgs mechanism (see
section 3.4).

D.2 Quantum chromodynamics

Quantum chromodynamics (QCD) is the gauge theory of strong interactions, based
on the symmetry group SU(3)C of order N = 8, where the subscript C indicates
a new degree of freedom called color. It is assumed that each quark field q(x)
(q = u, d, c, s, t, b) has three color degrees of freedom:

q(x) =

⎛⎝q1(x)q2(x)
q3(x)

⎞⎠ . (D.31)

The transformation of the quark fields under a local SU(3)C gauge transformation
is given by

q(x) → q′(x) = U(θ(x)) q(x) , (D.32)

with

U(θ(x)) = exp

(
i

8∑
a=1

θa(x)La

)
, (D.33)

where La = λa/2 are the eight generators of SU(3)C in the three-dimensional
representation. λa are the eight 3 × 3 Hermitian traceless Gell-Mann matrices

λ1 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , λ2 =

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠ , λ3 =

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠ ,

λ4 =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠ , λ5 =

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠ ,
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λ6 =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠ , λ7 =

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠ , λ8 =
1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠ .

(D.34)

The generators La = λa/2 satisfy the orthonormality relations in eqn (D.3). The
structure constants fabc of the group can be found through eqn (D.6):

fabc = − i

4
Tr([λa, λb]λc) . (D.35)

The QCD gauge fields are the eight vectorial gluon fields Gµ
a (a = 1, . . . , 8),

whose variation under a local gauge transformation is of the type in eqn (D.17):

δGµ
a =

8∑
b,c=1

fabcG
µ
b εc −

1

gs
∂µεa (a = 1, . . . , 8) . (D.36)

where gs is the QCD coupling constant.
The QCD Lagrangian is

LQCD =
∑

q

q
(
i /D −mq

)
q − 1

4
Gµν ·Gµν , (D.37)

where Dµ is the covariant derivative

Dµ = ∂µ + i gsGµ ·L , (D.38)

and Gµν ≡ (Gµν
1 , . . . , Gµν

8 ) is the set of eight gluonic tensors

Gµν
a = ∂µGν

a − ∂νGµ
a − gs fabcG

µ
b G

ν
c (a = 1, . . . , 8) . (D.39)

The gluons carry color charges and self-interact with trilinear and quadrilinear
couplings generated by Gµν ·Gµν in analogy with eqn (D.29). Since the SU(3)C is
unbroken, the gluons are massless.

There are some similarities between QCD and QED, since both theories are
based on unbroken local gauge symmetries, with massless gauge bosons. How-
ever, the nonabelian character of the color symmetry implies that gluons are
self-interacting and the QCD phenomenology is much richer and more difficult to
study than the QED phenomenology. Moreover, since the QCD coupling constant
gs is not small, the theory cannot be solved in a perturbative way in the low-energy
domain. At high energies, however, the renormalized coupling constant becomes
small (for example, αs(mZ) = 0.1187± 0.0020 [400], with αs ≡ g2

s/4π), allowing a
perturbative treatment (see, for example, [821, 721]).



APPENDIX E

FEYNMAN RULES OF THE STANDARD ELECTROWEAK
MODEL

The Feynman rules allow one to calculate the transition amplitude A of a given pro-
cess. In the following, we summarize the Feynman rules of the Standard Electroweak
Model in the unitary gauge, for the calculation of tree diagrams. This is sufficient for
the topics discussed in the book. The calculation of higher order diagrams with loops
is much more complicated (see, for example, Refs. [25, 634, 314, 917, 720, 721]). In
section E.4 we give general formulas suitable for the calculation of the cross-section
or decay rate of a process from its amplitude.

The Feynman rules for the calculation of the tree-level amplitude A of a given
process are as follows:

1. Draw all connected tree diagrams which contribute to the process under consid-
eration by using the external lines in section E.1, the internal lines in section E.2
and the vertices in section E.2.

2. For each external line, write down the corresponding quantity in section E.1.
3. For each internal line, write down the corresponding propagator in section E.2.
4. For each vertex, write down the corresponding quantity in section E.3.
5. Enforce energy–momentum conservation in each vertex.
6. Assign a relative factor −1 to diagrams which differ only by an interchange of

two external lines (the overall sign is irrelevant).

E.1 External lines

p is the particle momentum, r is the spin index for fermions and α is the spin index
for spin-one bosons.

Incoming fermion f:
f(p, r)

=⇒ u
(r)
f (p) (E.1)

Outgoing fermion f:
f(p, r)

=⇒ u
(r)
f (p) (E.2)

Incoming antifermion f̄ :
f̄(p, r)

=⇒ v
(r)
f (p) (E.3)
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Outgoing antifermion f̄ :
f̄(p, r)

=⇒ v
(r)
f (p) (E.4)

Incoming photon:
A(p, α)

=⇒ ε(α)(p) (E.5)

Outgoing photon:
A(p, α)

=⇒ ε(α)∗(p) (E.6)

Incoming Z:
Z(p, α)

=⇒ ε(α)(p) (E.7)

Outgoing Z:
Z(p, α)

=⇒ ε(α)∗(p) (E.8)

Incoming W+:
W+(p, α)

=⇒ ε(α)(p) (E.9)

Outgoing W+:
W+(p, α)

=⇒ ε(α)∗(p) (E.10)

Incoming W−:
W−(p, α)

=⇒ ε(α)∗(p) (E.11)

Outgoing W−:
W−(p, α)

=⇒ ε(α)(p) (E.12)

Incoming or outgoing Higgs:
H(p)

=⇒ 1 (E.13)

E.2 Internal lines

Fermion propagator:
f(p)

=⇒ G(f)(p) = i
/p+m

p2 −m2
f + iε

(E.14)

Photon propagator:
A(p)

µ ν =⇒ G(A)
µν (p) = i

−gµν

p2 + iε
(E.15)
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W propagator:
W (p)

µ ν =⇒ G(W )
µν (p) = i

−gµν +
pµpν

m2
W

p2 −m2
W + iε

(E.16)

Z propagator:
Z(p)

µ ν =⇒ G(Z)
µν (p) = i

−gµν +
pµpν

m2
Z

p2 −m2
Z + iε

(E.17)

Higgs propagator:
H(p)

=⇒ G(H)
µν (p) =

i

p2 −m2
H + iε

(E.18)

E.3 Vertices

The coefficient qf is the charge of the fermion f in units of the elementary charge
e: qν = 0, qe = qµ = qτ = −1, qu = qc = qt = 2/3, qd = qs = qb = −1/3. The

coefficients gf
V and gf

A are given in Table 3.6 (page 78). From eqn (3.42) we have
g sinϑW = e.

EM vertices:

f f

Aµ

=⇒ − i e qf γµ (E.19)

NC vertices:

f f

Zµ

=⇒ − i
g

2 cosϑW
γµ

(
gf

V − gf
Aγ

5
)

(E.20)

CC lepton

vertices:

�−α να

Wµ

=⇒ − i
g

2
√

2
γµ

(
1 − γ5

)
(E.21)

CC quark

vertices:

qD
β qU

α

Wµ

=⇒ − i
g

2
√

2
γµ

(
1 − γ5

)
Vαβ (E.22)
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CC quark

vertices:

qU
α

qD
β

Wµ

=⇒ − i
g

2
√

2
γµ

(
1 − γ5

)
V ∗αβ (E.23)

Trilinear

W -γ vertex:

W+
µ (p1) W−ν (p2)

Aλ(p3)

=⇒
ie [(p1 − p2)λ gµν

+ (p2 − p3)µ gνλ

+ (p3 − p1)ν gλµ]

(E.24)

Trilinear

W -Z vertex:

W+
µ (p1) W−ν (p2)

Zλ(p3)

=⇒
ig cosϑW[(p1 − p2)λ gµν

+ (p2 − p3)µ gνλ

+ (p3 − p1)ν gλµ]

(E.25)

Quadrilinear

W -γ vertex:

W+
µ W−ν

Aα Aβ

=⇒ −ie2 [2gµνgαβ

−gµαgνβ − gµβgνα]
(E.26)

Quadrilinear

W -Z vertex:

W+
µ W−ν

Zα Zβ

=⇒ −ig2 cos2 ϑW [2gµνgαβ

−gµαgνβ − gµβgνα]
(E.27)

Quadrilinear

W -Z-A vertex:

W+
µ W−ν

Zα Aβ

=⇒ −ieg cosϑW [2gµνgαβ

−gµαgνβ − gµβgνα]
(E.28)

Quadrilinear

W vertex:

W+
µ W+

ν

W−α W−β

=⇒ ig2 [2gµνgαβ

−gµαgνβ − gµβgνα]
(E.29)

Trilinear

fermion–H

vertex:

f f

H

=⇒ − i
gmf

2mW
gµν (E.30)
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Trilinear

W -H vertex:

W+
µ W−ν

H

=⇒ igmWgµν (E.31)

Trilinear

Z-H vertex:

Zµ Zν

H

=⇒ i
gmZ

cosϑW
gµν (E.32)

Trilinear

Higgs vertex:

H H

H

=⇒ − i
3gm2

H

2mW
gµν (E.33)

Quadrilinear

W -H vertex:

W+
µ W+

ν

H H

=⇒ i
g2

2
gµν (E.34)

Quadrilinear

Z-H vertex:

Zµ Zν

H H

=⇒ i
g2

cosϑW
gµν (E.35)

Quadrilinear

Higgs vertex:

H H

H H

=⇒ i
3g2m2

H

4m2
W

(E.36)

E.4 Cross-sections and decay rates

The differential cross-section of a process with two particles a, b in the initial state
and Nf particles in the final state is given by

dσ = S
∑
spin

(2π)4δ4(Pi − Pf) |A|2
4
√

(pa · pb)2 −m2
am

2
b

Nf∏
f=1

d3pf

(2π)3 2Ef
, (E.37)

where pa, pb are the four-momenta of the two initial particles, ma, mb are their
masses, pf = (Ef,�pf) is the four-momentum of the fth final particle, Pi = pa +pb and
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Pf =
∑Nf

f=1 pf are, respectively, the total four-momenta of the initial and final states,
A is the total amplitude of the process (the sum of the amplitudes of the diagrams
contributing to the process), and the symbol

∑
spin indicates an average over the

unobserved spin states of the initial particles and a sum over the unobserved spin
states of the final particles. S is a statistical factor given by the product of a factor
1/n! for each set of n identical particles.

The cross-section of a process of the type

a+ b→ c+ d , (E.38)

with unpolarized particles, depends on the four-momenta of the particles only
through the three Lorentz-invariant Mandelstam variables

s = (pa + pb)
2

= (pc + pd)
2

= (pa + pb) · (pc + pd) , (E.39)

t = (pa − pc)
2

= (pd − pb)
2

= (pa − pc) · (pd − pb) , (E.40)

u = (pa − pd)
2 = (pc − pb)

2 = (pa − pd) · (pc − pb) , (E.41)

where we used the energy–momentum conservation

pa + pb = pc + pd . (E.42)

Only two Mandelstam variables are independent, since117

s+ t+ u = m2
a +m2

b +m2
c +m2

d . (E.43)

The decay width of a particle with mass m in a final state with Nf particles is
given by

dΓ = S
∑
spin

(2π)4δ4(p− Pf) |A|2
2m

Nf∏
f=1

d3pf

(2π)3 2Ef
, (E.44)

where p is the four-momentum of the initial fermion.

117 This relation can be straightforwardly obtained by summing all the expressions for
the three Mandelstam variables in eqns (E.39)–(E.41)).
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