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What are Majorana particles? These are massive fermions that are their own antipar-

ticles. In this chapter we will concentrate on spin-1/2 Majorana particles, though fermions

of higher spin can also be of Majorana nature. Obviously, Majorana particles must be

genuinely neutral, i.e. they cannot possess any conserved charge-like quantum number that

would allow one to discriminate between the particle and its antiparticle. In particular, they

must be electrically neutral. Among the known spin-1/2 particles, only neutrinos can be of

Majorana nature. Another known quasi-stable neutral fermion, the neutron, has non-zero

magnetic moment which disqualifies it for being a Majorana particle: the antineutron exists,

and its magnetic moment is negative of that of the neutron1.

Neutrinos are exactly massless in the original version of the standard model of elec-

troweak interaction, and are massive Majorana particles in most its extensions. Although

massive Dirac neutrinos is also a possibility, most economical and natural models of neutrino

mass lead to Majorana neutrinos. Since only massive neutrinos can oscillate, the interest to

the possibility of neutrinos being Majorana particles rose significantly after the first hints

of neutrino oscillations obtained in the solar and atmospheric neutrino experiments. It has

greatly increased after the oscillations were firmly established in the experiments with solar,

atmospheric, accelerator and reactor neutrinos [1–3]. In addition to being the simplest and

most economical possibility, Majorana neutrinos bring in two important added bonuses:

they can explain the smallness of the neutrino mass in a very natural way through the

so-called seesaw mechanism, and can account for the observed baryon asymmetry of the

Universe through ‘baryogenesis via leptogenesis’. We shall discuss both in this chapter.

In the limit of vanishingly small mass the difference between Dirac and Majorana

fermions disappears. Therefore the observed smallness of the neutrino mass makes it very

difficult to discriminate between different types of massive neutrinos, and it is not currently

known if neutrinos are Majorana or Dirac particles. The most promising means of finding

this out is through the experiments on neutrinoless double beta decay. Such experiments

are currently being conducted in a number of laboratories.

In this chapter we review the properties of Majorana neutrinos and other Majorana

particles. We start with discussing Weyl, Dirac and Majorana fermions and comparing the

Dirac and Majorana mass terms. We then proceed to discuss C, P, CP and CPT properties

of Majorana particles in sec. 15.2. This is followed by a discussion of mixing and oscillations

of neutrinos in the Majorana and general Dirac + Majorana cases in sec. 15.3. In sec. 15.4

we discuss the seesaw mechanism of the neutrino mass generation, which is the leading

candidate for the explanation of the smallness of the neutrino mass. Next, we consider

electromagnetic properties of Majorana neutrinos in sec. 15.5. Section 15.6 contains a brief

1On could have also argued that neutron and antineutron are distinguished by their baryon number (+1

and −1, respectively), but conservation of baryon number is not an exact symmetry of Nature.

2



discussion of Majorana particles predicted by supersymmetric theories. In sec. 15.7 we

review theoretical foundations and the experimental status of the neutrinoless 2β-decay as

well as of other processes that could distinguish between Majorana and Dirac neutrinos. Our

next topic is baryogenesis via leptogenesis due to lepton number violating processes caused

by Majorana neutrinos (sec. 15.8). Finally, in sec. 15.9 we collect a few assorted remarks

on Majorana particles and in sec. 15.10 summarize the main points of our discussion.

15.1 Weyl, Dirac and Majorana fermions

Being dissatisfied with the interpretation of antifermions as holes in the Dirac sea, in his

famous paper [4] Majorana sought to cast the Dirac equation in a form that would be

completely symmetric with respect to particles and antiparticles. He succeeded to do that

by finding a new form of the Dirac equation, in which all coefficients were real. While

it led to only formal improvement for charged fermions, the Majorana form of the Dirac

equation opened up a very important new possibility for neutral ones – they can be their

own antiparticles. The Majorana particles are thus fermionic analogues of genuinely neutral

bosons, such as the π0-meson or the photon.

Recall that a free spin-1/2 fermion field in general satisfies the Dirac equation2

(iγµ∂µ −m)ψ(x) = 0 , (1)

where ∂µ ≡ ∂/∂xµ, ψ(x) is a 4-component spinor field, m is the mass of the fermion, and

γµ (µ = 0, 1, 2, 3) are 4× 4 matrices satisfying

{γµ, γν} = 2gµν · 1 , γ0γµ†γ0 = γµ , (2)

with gµν = diag(1,−1,−1,−1) and 1 being the flat space-time metric tensor and the 4× 4

unit matrix, respectively. Note that the Dirac equation (1) can be cast in the Schrödinger

form i(∂/∂t)ψ(x) = HDψ(x), where HD = −iγ0γ ·∇ + γ0m. The first equality in eq. (2)

follows from the requirement that the solutions of the Dirac equation obey the usual disper-

sion law of free relativistic particles E2 = p2 +m2, while the second equality follows from

hermiticity of the Dirac Hamiltonian HD. In addition to the matrices γµ, a very important

role is played by the matrix γ5 ≡ iγ0γ1γ2γ3 which satisfies

{γ5, γµ} = 0 , γ†5 = γ5 , γ25 = 1 . (3)

There are infinitely many unitarily equivalent representations of the Dirac matrices. In this

chapter, unless otherwise specified, we will use the so-called chiral (or Weyl) representation

γ0 =

(

0 1

1 0

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

−1 0

0 1

)

, (4)

2We use the natural units ~ = c = 1 and assume summation over repeated indices in this chapter.
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where 1 and 0 are the unit and zero 2 × 2 matrices, and σi (i = 1, 2, 3) are the standard

Pauli matrices.

The left-handed and right-handed chirality projector operators PL,R are defined as

PL =
1− γ5

2
, PR =

1 + γ5
2

. (5)

They have the following properties:

P 2
L = PL , P 2

R = PR , PLPR = PRPL = 0 , PL + PR = 1 . (6)

Any spin-1/2 fermion field ψ can be decomposed into the sum of its left-handed and right-

handed components according to

ψ = ψL + ψR , where ψL,R = PL,Rψ =
1∓ γ5

2
ψ . (7)

Note that the chiral fields ψL,R are eigenstates of γ5: γ5ψL,R = ∓ψL,R. The terms ‘left-

handed’ and ‘right-handed’ originate from the fact that for relativistic particles chirality

almost coincides with helicity defined as the projection of the spin of the particle on its

momentum. More precisely, in the relativistic limit, for positive-energy solutions of the

Dirac equation the left- and right-handed chirality fields approximately coincide with those

of negative and positive helicity, respectively. The helicity projection operators are

P± =
1

2

(

1± σp

|p|

)

. (8)

They satisfy relations similar to (6). For a free fermion, helicity is conserved but chirality

in general is not; it is only conserved in the limit m = 0, when it coincides with helicity.

However, for relativistic particles chirality is nearly conserved, and the description in terms

of chiral states is useful.

For our discussion we will need the particle - antiparticle conjugation operator Ĉ. Its

action on a fermion field ψ is defined as

Ĉ : ψ → ψc = Cψ̄T , (9)

where ψ̄ ≡ ψ†γ0 is the adjoint field and the matrix C satisfies

C−1γµC = −γµT , C−1γ5C = γT5 , C† = C−1 = −C∗ . (10)

Note that the second equality here follows from the first one and the definition of γ5. For

free particles, the Ĉ-conjugate field ψc(x) satisfies the same Dirac equation as ψ(x). Some

useful relations that follow from (9) and (10) are

(ψc)c = ψ , ψc = −ψTC−1 , ψkψ
c
i = ψiψ

c
k , ψkAψi = ψc

i (CATC−1)ψc
k , (11)
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where ψ, ψi, ψk are anticommuting 4-component fermion fields and A is an arbitrary 4× 4

matrix. Note that the third equality in (10) means that the matrix C is antisymmetric. In

the representation (4) as well as in a number of other representations of the Dirac matrices

one can choose e.g. C = iγ2γ0. In this case C is real, C−1 = −C, and ψc = ψTC. For future
use, we give here the expressions CATC−1 for several matrices A:

CγµTC−1 = −γµ , C(γµγ5)TC−1 = γµγ5 ,

C(σµν)TC−1 = −σµν , C(σµνγ5)
TC−1 = −σµνγ5 , (12)

where σµν ≡ i
2
[γµ, γν ].

Using the anticommutation properties of the Dirac γ-matrices it is easy to see that,

acting on a chiral field, Ĉ flips its chirality:

Ĉ : ψL → (ψL)
c = (ψc)R , ψR → (ψR)

c = (ψc)L , (13)

i.e. the antiparticle of a left-handed fermion is right-handed. This fact plays a very important

role in the theory of Majorana particles.

The particle - antiparticle conjugation operation Ĉ must not be confused with the charge

conjugation operation C which, by definition, flips all the charge-like quantum numbers

of a field (electric charge, baryon number B, lepton number L, etc.) but leaves all the

other quantum numbers (including chirality) intact. In particular, charge conjugation would

take a left-handed neutrino into a left-handed antineutrino that does not exist, which is a

consequence of maximal C-violation in weak interactions. At the same time, Ĉ-conjugation

converts a left-handed neutrino into a right-handed antineutrino which does exist and is the

antiparticle of the left-handed neutrino.

A little caveat should be added to the above. Strictly speaking, a particle and its antiparticle

are related by the CPT transformation, as only this combination of the charge conjugation C,

space parity P and time reversal T is exactly conserved in any ‘normal’ theory (i.e. local Poincaré

invariant Lagrangian quantum field theory with the usual relation between spin and statistics).

However, the CP conjugation does essentially the same job as far as (typically very small) effects

of CP-violation can be neglected. The Ĉ conjugation introduced in eq. (9) acts very similarly to

the CP conjugation as it flips all the non-zero charges of the fermion as well as its chirality, which

is odd under P transformation. We discuss these points in more detail in sec. 15.2. It should be

added that when we say that the charge conjugation C flips the baryon and lepton numbers of the

particles we assume that these numbers are well defined, i.e. that small effects of B and L violation

can be ignored.

Let us now return to the discussion of the Dirac equation. Adopting the Weyl represen-

tation of the Dirac γ-matrices (4) and writing the 4-component spinor field ψ(x) in terms

5



of the 2-component spinors φ(x) and ξ(x) as

ψ =

(

φ

ξ

)

, (14)

one can rewrite the Dirac equation (1) as a set of two coupled equations for φ and ξ:

(i∂0 − iσ ·∇)φ−mξ = 0 ,

(i∂0 + iσ ·∇)ξ −mφ = 0 . (15)

From the expression for γ5 in eq. (4) and eq. (14) one obtains

ψL =

(

φ

0

)

, ψR =

(

0

ξ

)

, (16)

i.e. the 2-component spinor fields φ and ξ determine, respectively, the left- and right-handed

components of the 4-component field ψ. Thus, the chiral fields are actually 2-component

rather than 4-component objects.

From eq. (15) it follows that in the limit m = 0 the equations for φ and ξ decouple,

i.e. the left-handed and right-handed components of ψ evolve independently. The resulting

equations are called the Weyl equations, and the corresponding chiral solutions describe

massless spin-1/2 particles called Weyl fermions. At the same time, as follows from (15), to

describe a massive fermion one needs both left-handed and right-handed chiral fields.

The latter statement can also be demonstrated as follows. The Dirac equation for a

free spin-1/2 particle can be obtained as the Euler-Lagrange equation applied to the Dirac

Lagrangian

L = ψ̄(iγµ∂µ −m)ψ . (17)

The mass term of this Lagrangian can be written as

− Lm = mψ̄ψ = m(ψL + ψR)(ψL + ψR) = m(ψLψR + ψRψL) , (18)

i.e. only the cross terms survive while the ψLψL and ψRψR terms vanish identically. Thus,

one needs both left-handed and right-handed chiral fields to construct the mass term of the

Lagrangian, and a massive fermion field must be a sum of them: ψ = ψL + ψR.
3

Now, there are essentially two possibilities. First, the right-handed component of a

massive field can be completely independent of the left-handed one; in this case we have a

3Note that the kinetic term of the Lagrangian (17) is decomposed as ψ̄iγµ∂µψ = ψ̄Liγ
µ∂µψL +

ψ̄Riγ
µ∂µψR. In other words, for each chiral component the kinetic term can be written separately and

therefore it does not require the existence of both components.
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Dirac field. The second, and the most important for us possibility, is based on the discussed

above fact that the particle-antiparticle conjugate of a left-handed field is right-handed.

Therefore the right-handed component of a massive spin-1/2 field can be just the Ĉ -

conjugate of its left-handed component: ψR = (ψL)
c = (ψc)R, or

ψ = ψL + (ψL)
c = ψL + (ψc)R . (19)

In this case we have a Majorana field; one can construct it with just one chiral field. From

(19) it immediately follows that the Ĉ - conjugate field coincides with the original one:

ψc = ψ . (20)

This means that particles associated with Majorana fields are genuinely neutral, i.e. they

are their own antiparticles. The condition in eq. (20) is called the Majorana condition.

In his paper [4] Majorana found a representation of the γ-matrices in which they were all pure

imaginary, so that the Dirac equation (1) did not contain any complex coefficients. As a result,

the equation admitted real solutions

ψ∗ = ψ , (21)

which describe genuinely neutral particles. Eq. (20) generalizes the Majorana condition (21) to

the case of an arbitrary representation of the γ-matrices (see e.g. [5] for a formal proof).

It is easy to see that the general self-conjugacy condition (20) indeed reduces to (21) in the Majorana

basis. In the Majorana representation the γ-matrices satisfying eq. (2) can be chosen as

γ0M =

(

0 σ2

σ2 0

)

, γ1M = i

(

σ3 0

0 σ3

)

, γ2M =

(

0 −σ2

σ2 0

)

, γ3M = −i
(

σ1 0

0 σ1

)

,

where the subscript M stands for the Majorana basis. All the γ-matrices are pure imaginary, as

required (note that this representation is not unique). The matrix γ5M is then

γ05M =

(

σ2 0

0 −σ2

)

.

Notice that γ0M is antisymmetric, whereas γiM (i = 1, 2, 3) are symmetric; the particle-antiparticle

conjugation matrix C satisfying eq. (10) can therefore be chosen as

CM = −γ0M = −
(

0 σ2

σ2 0

)

. (22)

From eq. (9) we then find

ψc
M = CMψ̄T

M = CMγ0TM ψ∗
M = −γ0Mγ0TM ψ∗

M = ψ∗
M , (23)

i.e. the condition that the particle is its own antiparticle ψc = ψ reduces in the Majorana basis to

the requirement that the field ψM be real.

As was discussed above, to construct a massive Dirac field one needs two independent 2-

component chiral fields, ψL and ψR; this gives four degrees of freedom. In contrast with this,
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a Majorana fermion has only two degrees of freedom, because its right-handed component

is constructed from the left-handed one. Thus, Majorana fermions are actually simpler and

more economical constructions than the Dirac ones.

While Majorana fields are essentially 2-component objects, it is often useful to write

them in the 4-component notation, especially when considering processes in which Majorana

particles participate along with Dirac ones. It is easy to see that in the chiral representation

of the Dirac matrices the Majorana field can be written in the 4-component form as

ψ =

(

φ

−iσ2φ∗

)

. (24)

Indeed, from C = iγ2γ0 and eq. (9) we have

ψc = iγ2ψ∗ =

(

0 iσ2

−iσ2 0

)(

φ∗

−iσ2φ

)

=

(

φ

−iσ2φ∗

)

= ψ . (25)

To understand better the difference between the Dirac and Majorana particles it is

instructive to look at the expansions of their quantum fields in terms of the plane-wave

modes. Recall that for a Dirac field the expansion has the form

ψ(x) =

∫

d3p

(2π)3
√

2Ep

∑

s

[

bs(p)us(p)e
−ipx + d†s(p)vs(p)e

ipx
]

, (26)

where s = ±1/2 is the projection of the particle’s spin on a fixed spatial direction, Ep =

p0 = +
√

p2 +m2, us(p) and vs(p) are the positive- and negative-energy solutions of the

Dirac equation in the momentum space, and bs(p) and d
†
s(p) are the annihilation operator

for the particle and the creation operator for the antiparticle, respectively. The field ψ

thus annihilates the particle and creates its antiparticle, whereas the hermitian conjugate

field annihilates the antiparticle and creates the particle. Because for Majorana fermions

particle and antiparticle coincide, for them one has to identify bs(p) and ds(p), i.e. the

Fourier expansion of Majorana fields takes the form4

ψ(x) =

∫

d3p

(2π)3
√

2Ep

∑

s

[

bs(p)us(p)e
−ipx + b†s(p)vs(p)e

ipx
]

. (27)

It is possible (and convenient) to choose the phases of the spinors us(p) and vs(p) in such

a way that

vs(p) = CūTs (p) , us(p) = Cv̄Ts (p) . (28)

4Expansions (26) and (27) are sometimes defined with a phase factor λ in front of the creation operators.

This factor, however, enters physical observables only together with other phase factors, discussed in sec.

15.2, i.e. it is not separately observable. We therefore choose λ = 1 throughout this chapter.
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From these relations it immediately follows that the field (27) satisfies the Majorana self-

conjugacy condition (20). The plane-wave decomposition of the Majorana fields (27) is

reminiscent of the familiar Fourier expansion of the photon field Aµ(x), which also contains

the creation and annihilation operators of only one kind, aλ(p) and a†λ(p), because the

photon is its own antiparticle.

The action of the charge conjugation operation C amounts to interchanging the particle

with its antiparticle without changing its momentum or spin polarization state. For a Dirac

fermion field (26) it can therefore be represented as

Cbs(p)C
−1 = ds(p) , Cd†s(p)C

−1 = b†s(p) . (29)

With the help of eq. (28) one can readily make sure that applying to (26) the particle-

antiparticle conjugation defined in eq. (9) yields exactly the same result as the C conjugation

(29). How about the Majorana fields? For them ds(p) = bs(p), so that the operation in

eq. (29) is just the trivial identity transformation which has no effect on the fields. The Ĉ

operation also leaves the Majorana fields unchanged – we have actually defined them through

this condition, eq. (20). Thus, we conclude that for free massive fermion fields, both of Dirac

and Majorana nature, the C and Ĉ conjugations are equivalent. As we already pointed out,

the two operations are not equivalent when acting on chiral fields.

Consider now the equations of motion for the left-handed and right-handed components

of a Majorana field. Eq. (24) tells us that in the 4-component notation (14) the lower

2-spinor is given by ξ = −iσ2φ∗. Substituting this into (15) we find [6]

(∂0 − σ ·∇)φ+mσ2φ∗ = 0 , (30)

(∂0 + σ ·∇)σ2φ∗ −mφ = 0 . (31)

It is easy to see that the second of these equations is equivalent to the first one. Indeed,

taking the complex conjugate of (31), multiplying on the left by σ2 and using the relation

σ2
σ

∗σ2 = −σ we obtain eq. (30). Next, let us exclude φ∗ from eqs. (30) and (31). By acting

on (30) with (∂0 +σ ·∇) and making use of (31) we find that φ satisfies the Klein-Gordon

equation

(∂2 +m2)φ = 0 . (32)

This means that free Majorana particles obey the standard dispersion relation E2 = p2+m2.

Thus, kinematically Dirac and Majorana fermions are indistinguishable. They can, however,

in principle be told apart through their interactions, as we discuss below.

Let us now turn to the Lagrangian of a free Majorana field. From eqs. (18) and (19) we

find that the mass term in the Lagrangian is

Lm = −m
2

[

(ψL)cψL + ψL(ψL)
c
]

=
m

2

[

ψT
LC−1ψL + ψLC−1ψL

T
]

=
m

2

[

ψT
LC−1ψL + h.c.

]

,

(33)
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where we have used the second equality in eq. (11), and the factor 1/2 was introduced

because Lm is quadratic in ψL. Thus, the Majorana Lagrangian can be written as

L = ψL iγ
µ∂µψL +

m

2

[

ψT
LC−1ψL + h.c.

]

. (34)

Note that it is expressed solely in terms of ψL. In particular, there is no kinetic term for

the field ψR because the left-handed and right-handed components of the Majorana field

are not independent. The Lagrangian in (34) can be cast in a more familiar form if we use

the notation ψ = ψL + (ψL)
c. Then, up to a total derivative term that does not contribute

to the action, the Lagrangian (34) can be rewritten as5

L =
1

2
ψ̄iγµ∂µψ − m

2
ψ̄ψ . (35)

It is not difficult to write down the Majorana Lagrangian in the 2-component notation. From

ψL = (φ, 0)T and (34) we have

L = φ†i(∂0 − σ ·∇)φ− 1

2
(φT iσ2φ+ h.c.) . (36)

By comparing the mass term in this expression with (33) one can see that in the 2-component

formalism the role of the particle-antiparticle conjugation matrix C is played by iσ2.

From eq. (33) a very important difference between the Dirac and Majorana mass terms

follows. The Dirac mass terms ψ̄ψ are invariant with respect to the U(1) transformations

ψ → eiαψ , ψ̄ → ψ̄e−iα , (37)

i.e. they conserve the charges associated with the corresponding transformations (electric

charge, lepton or baryon number, etc.). At the same time, the Majorana mass terms have

the structure ψLψL +h.c. and therefore they break all U(1)-charges by two units. Since the

electric charge is exactly conserved, this in particular means that no charged particle can

have Majorana mass.

Another important point is that the Majorana mass term in eqs. (33) and (34) do not

vanish even though the matrix C−1 is antisymmetric (because so is C). This follows from

the fact that the fermionic quantum fields anticommute, and so the interchange of the two

ψL in ψT
LC−1ψL yields an extra minus sign. Similar argument applies to the Majorana mass

term in the 2-component formalism in eq. (36) (note that the matrix σ2 is antisymmetric).

Thus, the Majorana mass is of essentially quantum nature.6

5Indeed, ψ̄iγµ∂µψ = ψL iγ
µ∂µψL+(ψL)c iγ

µ∂µ(ψL)
c, and using eqs. (9) and (10) one can rewrite the last

term as (ψL)c iγ
µ∂µ(ψL)

c = −∂µ[ψ̄L iγ
µψL] + ψ̄L iγ

µ∂µψL. Thus, we have ψ̄L iγ
µ∂µψL = (1/2)ψ̄ iγµ∂µψ +

total derivative term.
6Note, however, that formally one can also write the Majorana mass term at the classical level if one

assumes that ψ(x) is an anticommuting classical field, i.e. a field that takes as values Grassmann numbers.
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In the massless limit the difference between Dirac and Majorana particles disappears as

both actually become Weyl particles. In particular, vanishing Majorana mass means that

the free Lagrangian now conserves a U(1) charge corresponding to the transformations (37).

Let us now briefly review the Feynman rules for Majorana particles [7–12]. Unlike for

a Dirac fermion, whose quantum field ψ annihilates the particle and creates its antiparticle

while ψ† annihilates the antiparticle and creates the particle, in the Majorana case the

same field χ creates and annihilates the corresponding Majorana fermion. This leads to the

existence of Wick contractions that are different from the standard ones. As a result, in

addition to the usual Feynman propagator

SF (x− x′) ≡ 〈0|Tχ(x)χ̄(x′)|0〉 =
∫

d4p

(2π)4
i(/p +m)

p2 −m2 + iε
e−ip(x−x′) (38)

which coincides with the propagator of the Dirac fermion, there exist new types of propa-

gators [7, 8],

〈0|Tχ(x)χT (x′)|0〉 = −SF (x− x′)C and 〈0|T χ̄T (x)χ̄(x′)|0〉 = C−1SF (x− x′) , (39)

where /p ≡ γµpµ and we have used the second equality in (11) and the Majorana condition

χc = χ. Recall that Dirac fermions carry a conserved additive charge which is generically

called the fermion number. The flow of this number is usually indicated on Feynman

diagrams by arrows on the fermion lines which correspond to the standard propagator (38).

If a diagram contains a chain of fermion lines, the fermion number flow is continuous through

this chain. As Majorana particles do not carry any conserved additive quantum number,

there is no continuous flow of fermion number through Feynman diagrams in the Majorana

case. This is reflected in the existence of the fermion number violating propagators (39),

which can be graphically represented as lines with two arrows pointing in opposite directions

(outwards for the first propagator in (39) and inwards for the second one). In addition,

each term of the interaction Lagrangian that contains Majorana fields gives rise to several

vertices, depending on the direction of the arrows on the incoming and outgoing lines of

Majorana particles. Some of these vertices also contain the particle-antiparticle conjugation

matrix C [7, 8]. Special care should be taken to get the correct relative signs between

different diagrams contributing coherently to the same amplitude. The rules are completed

by requiring that diagrams with Majorana fermion loops have an extra factor 1/2 due to

the permutation symmetry of the Majorana particles.

The resulting Majorana Feynman rules are rather complicated. They can, however,

be simplified by noting that the matrices C (or C−1) that are present in some vertices are

always either canceled by the corresponding matrices in the propagators in eq. (39) or

eliminated through the proper attribution of the spinors to the external fermionic legs of
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the diagram with the help of eq. (28). This leads to much simpler Majorana Feynman rules,

with propagators and vertices not containing explicitly the matrix C [9–11]. In this case

the Feynman rules include just the usual propagator (38) for Majorana fermions, and the

number of vertices corresponding to each term of the interaction Lagrangian is at most two.

The Majorana fermion propagators are depicted by lines with no arrows. Instead of the

fermion number flow (which is not conserved) the notion of a fermion flow is introduced.

To each diagram a certain (but arbitrary) direction of the fermion flow is attributed, which

is used simply as a bookkeeping device; the analytic expressions for the amplitudes are

independent of the chosen direction of this flow.

Finally, in appendix B of ref. [12] a very simple set of Majorana Feynman rules is

suggested, based on the elimination of the adjoint Majorana fields χ̄ from the kinetic as well

as the interaction terms of the Lagrangian through the relation χ̄ = χc = −χTC−1.

For more detailed discussions of Majorana Feynman rules we refer the reader to refs. [7–

12].

15.2 C, P, CP and CPT properties of Majorana fermions

Since Majorana fermions are their own antiparticles, they are expected to have special

properties with respect to C, CP and CPT transformations.

Consider first the charge conjugation C.7 As was discussed above, for massive spinor

fields this operation coincides with the particle-antiparticle conjugation Ĉ defined in eq. (9).

The latter, however, without loss of generality can be modified by introducing an arbitrary

phase factor η∗C on the right-hand side. That is, instead of eq. (9) we can define

ψc ≡ η∗C Cψ̄T = η∗Ciγ
2ψ∗ . (40)

Indeed, this will not affect the evolution equation satisfied by ψc(x) as well as the relation

(ψc)c = ψ. The charge conjugation transformation C (29) can be modified accordingly, so

that the equivalence between the C and Ĉ conjugations is maintained:

Cbs(p)C
−1 = η∗Cds(p) , Cd†s(p)C

−1 = η∗Cb
†
s(p) . (41)

Eqs. (40) and (41) apply to arbitrary spin-1/2 fermions; let us now discuss Majorana

fields. Because for them Cψ̄T = ψ, the new definition of Ĉ-conjugation (40) implies that

the Majorana condition (20) now takes the form

ψc(x) = η∗Cψ(x) . (42)

7Here we mostly follow ref. [13], though some of our phase conventions are different.
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Since for Majorana fields one has to identify ds(p) = bs(p), eq. (41) becomes

Cbs(p)C
−1 = η∗Cbs(p) , Cb†s(p)C

−1 = η∗Cb
†
s(p) . (43)

Hermitian conjugation of the first of these two equalities yields Cb†s(p)C
−1 = ηCb

†
s(p). The

consistency of this relation and the second one in eq. (43) requires that ηC be real, i.e.

ηC = ±1. Next, let us apply the second relation in (43) to the vacuum state. Assuming the

vacuum to be even under the charge conjugation, we find

C|p, s〉 = ηC|p, s〉 , (44)

where |p, s〉 is the 1-particle Majorana state with momentum p and spin projection s.

The Majorana condition (42) and eq. (44) imply that the Majorana state is an eigenstate

of charge conjugation C, and ηC is its charge parity. It should be stressed, however, that this

is, strictly speaking, only valid when C is exactly conserved. The above description certainly

applies to free Majorana fermions, since the corresponding action is charge conjugation

invariant.8 However, the charge parity ηC, apart from being real, is completely arbitrary

and therefore unphysical in this case. A physical (i.e. interacting) Majorana particle is an

eigenstate of C only when all its interactions are C-invariant.9 The C-parity of a Majorana

particle is then constrained by the C-transformation properties of the other fields that

enter its interaction Lagrangian. If C is only an approximate symmetry of the theory, the

Majorana particle will be an approximate eigenstate of C, to the same extent to which

charge conjugation invariance is satisfied.

The situation is completely different for neutrinos, which are the prime candidates for

being Majorana particles. The point is that their charged-current weak interactions are

maximally C-violating. Indeed, these interactions are left-handed (i.e. of the V − A form),

whereas charge conjugation would transform them into the right-handed (V +A) interactions

which do not exist in the standard model based on the gauge group SU(2)L × U(1). Thus,

for Majorana neutrinos C-parity does not bear any physical sense.

However, CP is a good approximate symmetry of the leptonic sector of the standard

model. Indeed, it is is an exact symmetry of the gauge interactions, and in the minimally

extended (to include non-zero neutrino mass) standard model it can only be violated by the

neutrino mass generating sector. The corresponding CP-violation effects are very difficult

to observe – in particular, they have not been unambiguously observed by the time of

8This can be most easily seen if we rewrite the kinetic term of the Lagrangian Lk = ψ̄iγµ∂µψ as

Lk = (1/2)[ψ̄iγµ∂µψ − ∂µψ̄ · iγµψ]+total derivative term and apply the Ĉ-conjugation (which for massive

fermion fields is equivalent to charge conjugation C) to the full Lagrangian of free Majorana particles.
9 An example of such a Majorana fermion is the photino – the supersymmetric partner of the photon

[8, 14, 15, 73].
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publication of this book. Therefore, in many situations CP violation in the leptonic sector

can be ignored. In other words, in some regards Majorana neutrinos can be considered as

CP-eigenstates with certain CP-parities. This, however, is not in general true when possible

CP-violating effects play a major role. We discuss these effects in secs. 15.3, 15.7 and 15.8.

The properties of Majorana particles with respect to CP (assuming that it is a good

symmetry) and CPT can be studied similarly to their properties under C transformation [13].

The results are summarized in Table 1.

In deriving the properties of Majorana neutrinos under the discrete symmetries one can make use

of the following properties of the spinors us(p) and vs(p):

γ0us(p) = us(−p), γ0vs(p) = −vs(−p),

u∗s(p) = (−1)s+1/2γ1γ3u−s(−p), v∗s (p) = (−1)s+1/2γ1γ3v−s(−p), (45)

where the sign factors in the second line correspond to the phase convention γ5us(p) =

(−1)s−1/2v−s(p). This choice of the phases is consistent with that in eq. (28). It should also

be kept in mind that, while C and P are unitary operators, T is antiunitary, and so is CPT.

Symmetry Effect on ψ(t,x) Effect on |p, s〉 Restriction
operation

C η∗Ciγ
2ψ∗(t,x) ηC|p, s〉 ηC = ±1

CP η∗CPiγ
0γ2ψ∗(t,−x) ηCP| − p, s〉 ηCP = ±i

CPT −η∗CPTγ5ψ
∗(−t,−x) ηsCPT|p,−s〉 ηCPT = ±i

Table 1: Effects of C, CP and CPT operations on a Majorana field ψ(t,x) and on the

corresponding one-particle Majorana state |p, s〉. Here ηsCPT ≡ (−1)s−1/2ηCPT.

15.3 Mixing and oscillations of Majorana neutrinos

In sec. 15.1 we considered the mass term of a lone Majorana particle, eq. (33). This expres-

sion is readily generalized to the case when there are n Majorana fermions which in general

can mix with each other:

Lm = −1

2

[

(ψL)cmψL + ψLm
† (ψL)

c
]

=
1

2

[

ψT
LC−1mψL + h.c.

]

. (46)

Here ψ = (ψ1, ..., ψn)
T and m is an n × n matrix. Using the anticommutation property of

the fermion fields and CT = −C, it is easy to show that the matrix m must be symmetric:

mT = m. Eq. (46) applies to any set of Majorana particles; in the rest of this section we

shall specifically consider Majorana neutrinos and their oscillations.
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15.3.1 Neutrinos with a Majorana mass term

Consider first the case of n standard lepton generations, consisting each of an SU(2)L-

doublet of left-handed neutrino and charged lepton fields lα = (ναL, eαL)
T and an SU(2)L-

singlet right-handed charged lepton field eαR (α = e, µ, τ, ...) [16,17]. In the standard model

extended to include the mass generation mechanism for Majorana neutrinos, the terms of

the Lagrangian that are relevant to neutrino oscillations include the charged-current (CC)

weak interaction term and the mass terms of the charged leptons and neutrinos:

Lw+m = − g√
2
(ē′Lγ

µ ν ′L)Wµ − ē′Lm
′
l e

′
R +

1

2
ν ′TL C−1m′ ν ′L + h.c. (47)

Here g is the CC gauge coupling constant, Wµ is the W−-boson field, and all leptons are

assembled in vectors in the generation space: ν ′L = (νeL, νµL, ντL, ...)
T and similarly for

e′L and e′R. Since the CC weak interaction Lagrangian in eq. (47) is diagonal in the chosen

basis, the latter is called the weak-eigenstate basis. The matrices m′
l and m

′ are, however, in

general not diagonal in this basis. For n leptonic generations, the mass matrix of the charged

leptonsm′
l is a general complex n×n matrix, whereas the Majorana mass matrix of neutrinos

m′ is a complex symmetric n×n matrix. Recall now that an arbitrary square matrix A can

be diagonalized by a bi-unitary transformation according to Adiag = V †
1AV2, where Adiag

is a diagonal matrix with non-negative diagonal elements. Similarly, a symmetric square

matrix B is diagonalized by a transformation with a single unitary matrix: Bdiag = UTBU ,

where all the diagonal elements of Bdiag are non-negative. We therefore perform the basis

transformations of the lepton fields according to

e′L = VL eL , e′R = VR eR , ν ′L = UL νL , (48)

with VL, VR and UL being unitary matrices chosen such that they diagonalize the charged-

lepton and neutrino mass matrices:

V †
Lm

′
lVR = ml , UT

Lm
′UL = m (ml, m − diagonal mass matrices) . (49)

Note that the kinetic Lagrangians of neutrinos and of the left- and right-handed charged

leptons are invariant under these transformations. In the new (unprimed) basis eq. (47)

takes the form

Lw+m = − g√
2

∑

α,i

ēαLγ
µ Uαi νiLWµ −

∑

α

mlαēαLeαR +
1

2

∑

i

miν
T
iL C−1νiL + h.c. (50)

Here mlα (a = e, µ, τ, ...) and mi (i = 1, 2, 3, ..) are the diagonal elements of the mass

matrices ml and m respectively, i.e. they are the masses of the charged leptons and of the

mass-eigenstate neutrinos. The matrix

U ≡ V †
LUL (51)
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is the leptonic mixing matrix, also called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [18, 19]. The flavour-eigenstate neutrino fields are defined as

ναL =
n
∑

i=1

UαiνiL . (52)

In terms of these fields the CC-interaction part of the Lagrangian (50) takes the form

Lw = − g√
2

∑

α ēαLγ
µ ναLWµ+h.c., i.e. the flavour eigenstates νe, νµ, ντ ,... are the neutrinos

emitted or absorbed together with the charged leptons e, µ, τ ,... respectively.

Let us introduce the 4-component neutrino fields

χi = νiL + (νiL)
c , i = 1, ..., n . (53)

Using the relations νTiL C−1νiL = −(νiL)c νiL, (νTiL C−1νiL)
† = −νiL(νiL)c which follow from

eq. (11), one can rewrite the neutrino mass term in eq. (50) as

Lνm = −1

2

n
∑

i=1

miχ̄iχi . (54)

Eqs. (52) and (53) mean that the neutrino flavour eigenstates ναL are linear superpositions

of the left-handed components of the n mass eigenstates χi. From eq. (53) it follows that

χc
i = χi, i.e. the massive neutrino fields are Majorana fields in the case we consider.

The Lagrangian (47) (or equivalently (50)) implies that massive neutrinos are in general

mixed and leads to the phenomenon of neutrino flavour oscillations [18,19]. The oscillation

probability, i.e. the probability that a relativistic neutrino produced as a flavour eigenstate

να will be in a flavour eigenstate νβ after having propagated a distance L in vacuum, is [20,21]

P (να → νβ;L) =
∣

∣

∣

∑

i

Uβi e
−i

∆m2
ij

2p
L U∗

αi

∣

∣

∣

2

, (55)

where p is the modulus of the mean momentum of the neutrino state, ∆m2
ij = m2

i −m2
j and

for the index j one can take any fixed value between 1 and n. Eq. (55) can be equivalently

written as

P (να → νβ;L) =
∑

i,j

Re(UαjU
∗
βjU

∗
αiUβi) cos

(∆m2
ij

2p
L
)

+
∑

i,j

Im(UαjU
∗
βjU

∗
αiUβi) sin

(∆m2
ij

2p
L
)

.

(56)

Let us now discuss the general properties of the leptonic mixing matrix U . Being an

n × n unitary matrix, it depends on n2 independent parameters, of which n(n − 1)/2 are

mixing angles and n(n + 1)/2 are complex phases. Not all of these phases are physical,
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though. As follows from eq. (50), one can always remove n phases from U by rephasing the

left-handed fields of charged leptons according to eαL → eiϕαeαL, which allows one to fix

the phases of one column of the matrix U . If one also rephases the right-handed charged

lepton fields in the same way, i.e. eαR → eiϕαeαR, the phase change of the fields eαL in the

mass term of the charged leptons in (50) will be compensated, and therefore eq. (50) will

remain unchanged. It is easy to see that the kinetic terms of the Lagrangian of eL and eR
are also invariant under the field rephasing. Thus, the leptonic Lagrangian is invariant with

respect to the above rephasing of the charged lepton fields, which means that n out of the

n(n+ 1)/2 phases in U are unphysical.

How about rephasing the neutrino fields? Consider first the case when neutrinos are

Dirac particles (which means that we should add n right-handed neutrino fields to our

model). Then their mass term is similar to that of the charged leptons. In that case it

is possible to similarly rephase the left-handed and right-handed neutrino fields without

modifying their mass term, which could be used to fix the phases of the elements of one line

of the matrix U . However, the number of the phases that can be removed from U in this

way is n− 1 rather than n, because the phase of one element which is at the intersection of

the selected line of U and the column whose phases have already been fixed by the rephasing

of the charged lepton fields can no longer be modified. Thus, the total number of physical

phases characterizing the leptonic matrix U in the case of Dirac neutrinos is

ND
ph =

n(n + 1)

2
− n− (n− 1) =

(n− 1)(n− 2)

2
. (57)

Note that the quantities UαjU
∗
βjU

∗
αiUβi that enter the expression (56) for the oscillation

probabilities are invariant with respect to the rephasing of the charged-lepton and neutrino

fields.

Let us now return to Majorana neutrinos. In this case the neutrino fields cannot be

rephased since the Majorana mass term is of the type νLνL + h.c. rather than ν̄LνR + h.c.,

and therefore it is not rephasing-invariant. As a result, the total number of physical phases

characterizing the leptonic matrix U in the case of the Majorana neutrinos is

NM
ph =

n(n+ 1)

2
− n =

n(n− 1)

2
. (58)

The extra n − 1 physical phases that are present in the Majorana neutrino case can be

collected in a diagonal matrix of phases which is factored out of U as a right-hand side

multiplier. Indeed, from eq. (50) it is seen that such a factorization isolates in a diagonal

factor the phases that could have been absorbed into the rephasing of the νL fields if the

neutrinos were Dirac particles. Thus, one can write

U = Ũ · diag(1, eiϕ1, eiϕ2, . . . , eiϕn−1) ≡ ŨK . (59)
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Here the matrix Ũ contains only (n− 1)(n− 2)/2 phases that are relevant also in the Dirac

neutrino case, whereas the factorK contains the extra ‘Majorana-type’ phases. The position

of the unit element in K is irrelevant, as the overall phase of the matrix U is unobservable.

From eqs. (57) and (58) it follows that in the Dirac neutrino case the mixing matrix U

contains physical complex phases only for n ≥ 3 generations, whereas in the Majorana case

the physical phases are in general there for n ≥ 2.

The reason why we paid so much attention to the phases of the leptonic mixing matrix

U is that they lead to CP-violating effects in the leptonic sector. CP-conjugation trans-

forms left-handed neutrinos into their antiparticles – right-handed antineutrinos. Since

CP-conjugation of a fermionic field includes complex conjugation (see Table 1), the oscilla-

tion probability P (ν̄a → ν̄b;L) is described by the right-hand side of eq. (55) with the matrix

U substituted by U∗. Complex conjugation means that the signs of all the phases charac-

terizing U must be flipped; for this reason these phases are called CP-violating phases. In

particular, if U bears non-removable complex phases beyond those contained in the matrix

K, neutrino oscillations violate CP-invariance, i.e.

∆PCP
αβ (L) ≡ P (να → νβ ;L)− P (ν̄α → ν̄β;L) 6= 0 . (60)

The quantity ∆PCP
αβ (L) coincides (up to the factor of two) with the CP-odd part of the

να → νβ oscillation probability, which is given by the second term on the right-hand side of

eq. (56), whereas the first term in (56) corresponds to the CP-even part of the probability.

Can one find out whether neutrinos are Dirac or Majorana particles by studying neutrino

oscillations? Unfortunately, this is not possible. It turns out that for Dirac neutrinos the

oscillation probabilities are given by exactly the same formulas, eqs. (55) or (56), as those

for Majorana neutrinos. Moreover, the extra Majorana-type phases that enter the leptonic

mixing matrix U in the Majorana neutrino case are not observable in neutrino oscillations.

Indeed, the matrix K in eq. (59) and the matrix exp[−i(∆m2
ij/2p)L] for fixed j that enters

eq. (55) are both diagonal and therefore commute, so that K drops out of the expression

for the oscillation probability (55). A similar argument applies to neutrino oscillations in

matter. The Majorana-type phases, however, enter some other physical observables and so

are in general observable quantities. We discuss these observables in secs. 15.7 and 15.8.

For future reference, we give here the leptonic mixing matrix U for the case of three

leptonic generations with Majorana neutrinos in the so-called standard parameterization:

U =





c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23
s12s23 − c12s13c23e

iδCP −c12s23 − s12s13c23e
iδCP c13c23









1 0 0

0 eiϕ1 0

0 0 eiϕ2



 .

(61)
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Here cij ≡ cos θij , sij ≡ sin θij , where θij are the mixing angles, δCP is the Dirac-type

CP-violating phase and ϕ1,2 are the Majorana-type CP-violating phases.

15.3.2 General case of Dirac + Majorana mass term

Consider now the case in which, in addition to n standard leptonic generations with left-

handed neutrino fields ναL being parts of SU(2)L leptonic doublets, there exist k right-

handed neutrino fields νσR that are electroweak singlets, i.e. singlets with respect to both

weak isospin group SU(2)L and hypercharge U(1) [22–27]. Such neutrinos don’t have elec-

troweak gauge interactions (though may have, e.g., Yukawa interactions with leptonic and

Higgs doublets) and therefore are often called ‘sterile neutrinos’. In contrast to this, the

usual SU(2)L-doublet neutrinos νL are called ‘active neutrinos’.

Since νR are electroweak singlets, they do not contribute to the so-called chiral gauge anomalies

and so their number is not fixed by the requirement of the anomaly cancellation. In particular,

their number need not coincide with the number of the leptonic generations n, i.e. in general

k 6= n. Let us stress that these extra neutrinos are sterile not because they are right-handed –

their Ĉ-conjugates are left-handed and yet also sterile – but because they are electroweak singlets.

In the considered case the most general neutrino mass term contains the Majorana masses

mL and mR for the left-handed and right-handed neutrino fields respectively, as well as the

Dirac mass mD that couples the νL’s with the νR’s:

Lm =
1

2
ν ′TL C−1mL ν

′
L − ν ′RmD ν

′
L +

1

2
ν ′TR C−1m∗

R ν
′
R + h.c. (62)

Here we have assembled the n left-handed and k right-handed neutrino fields into the vectors

ν ′L and ν ′R. The quantities mL and mR are complex symmetric n × n and k × k matrices

respectively, mD is a complex k × n matrix, and we have introduced the right-handed

Majorana mass matrix through its complex conjugate to simplify the further notation.

Introducing the vector of n+ k left-handed fields

nL =

(

ν ′L
(ν ′R)

c

)

=

(

ν ′L
ν ′cL

)

, (63)

we can rewrite eq. (62) as

Lm =
1

2
nT
L C−1MnL + h.c. , (64)

where the matrix M has the form

M =

(

mL mT
D

mD mR

)

. (65)

19



In deriving eq. (64) we have used the relations

(ψT
R C−1m∗ ψR)

† = (ψc
L)

T C−1mψc
L , ψRmψL = −(ψc

L)
T C−1mψL = −ψT

L C−1mT ψc
L ,

(66)

which follow from eqs. (28) and (10). The matrix M is complex symmetric, so it can be

diagonalized with a single unitary matrix. We therefore write

naL =
n+k
∑

i=1

UaiχiL , UTMU = Md , (67)

where Md is a diagonal (m+n)× (m+n) matrix with non-negative diagonal elements Mdi.

In terms of the fields χiL the neutrino mass term (64) reads

Lm =
1

2

n+k
∑

i=1

Mdi χ
T
iL C−1χiL + h.c. . (68)

Introducing the 4-component massive neutrino fields χi as

χi = χiL + (χiL)
c , i = 1, . . . , n+ k , (69)

we can rewrite the neutrino mass term in the mass eigenstate basis (68) in the standard

form:

Lm = −1

2

n+k
∑

i=1

miχ̄iχi . (70)

In eq. (67) the index a can take n + k values; we will denote collectively the first n of

them with α or β and the last k with σ or ρ. Eq. (67) yields

ναL =
n+k
∑

i=1

UαiχiL , (νσR)
c =

n+k
∑

i=1

UσiχiL . (71)

This means that left-handed active neutrinos and left-handed sterile antineutrinos are linear

combinations of the left-handed components of all n + k mass-eigenstate fields χi.

From eq. (69) it follows that χc
i = χi, i.e. the neutrino mass eigenstates are Majorana

fermions in the case we currently consider, just as in the pure Majorana mass term case

discussed in the previous subsection. This is a general feature of fermion mass models: if

the fermions possess Majorana mass terms, then, independently of whether or not the Dirac
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mass terms are also present, the mass eigenstates are always Majorana particles.

This is actually easy to understand by counting the number of the field degrees of freedom. In

the Majorana mass case studied in sec. 15.3.1 one has n two-component neutrino fields, and the

neutrino mass matrix has in general n distinct eigenvalues. Each massive neutrino field then has

two degrees of freedom, i.e. it should be a Majorana field. In the pure Dirac case there are 2n

two-component fields (n left-handed and n right-handed), and the mass matrix has n eigenvalues.

This means that each mass eigenstate has four degrees of freedom, i.e. is a Dirac field. In the

Dirac + Majorana mass case there are n+k 2-component fields, n left-handed and k right-handed.

The matrix M has n + k in general distinct eigenvalues, which means that each neutrino mass

eigenstate is characterized by two degrees of freedom, i.e. is a Majorana field.

If some of the mass eigenvalues coincide, the corresponding 2-component Majorana fields can

merge into 4-component Dirac ones. We will consider this phenomenon in the next subsection.

Let us now discuss neutrino oscillations in the Dirac + Majorana (D+M) mass scheme

that we are now considering. Unlike in the pure Dirac or pure Majorana mass cases, in

the D+M scheme two new types of neutrino oscillations become possible: active - sterile

and sterile - sterile oscillations. The oscillations between the active neutrino species are

described by the same expression as in eq. (55) but with the matrix U replaced by U and

the summation over i extending from 1 to n + k. The probability of oscillations between

the active and sterile neutrinos is

P (ναL → νcσL;L) =

∣

∣

∣

∣

∣

n+k
∑

i=1

Uσi e
−i

∆m2
ij

2p
L U∗

αi

∣

∣

∣

∣

∣

2

. (72)

If a mechanism by which sterile neutrinos can be produced and detected exists,10 one can

in principle observe sterile - sterile neutrino oscillations, whose probability is

P (νcσL → νcρL;L) =

∣

∣

∣

∣

∣

n+k
∑

i=1

Uρi e
−i

∆m2
ij

2p
L U∗

σi

∣

∣

∣

∣

∣

2

. (73)

Eq. (73) describes the oscillations between the left-handed sterile neutrino states νcLσ =

(νRσ)
c and νcLρ = (νRρ)

c; the oscillations between the corresponding right-handed states νRσ

and νRρ can be obtained from eq. (73) by replacing U ↔ U∗.

If the sterile neutrinos are completely undetectable, one can only observe active - active

and active - sterile oscillations, the latter manifesting themselves through disappearance of

the active neutrinos.

10Recall that even though sterile neutrinos don’t have gauge interactions in the standard model, they

may possess other interactions, such as the Yukawa ones, or extra gauge interactions in the extensions of

the standard model (e.g., SU(2)R gauge interactions in left-right symmetric models).
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15.3.3 Dirac and pseudo-Dirac neutrino limits in the D+M case

As we have pointed out above, if Majorana mass terms are present in a fermion mass model,

the mass-eigenstate fermions are always Majorana particles, even when the Dirac mass terms

are present as well. One can expect, however, that in the limit when the Majorana mass

terms are much smaller than the Dirac ones, the properties of the mass eigenstates would

become close to those of Dirac fermions. To see how this happens, it is instructive to

consider the simple one-generation neutrino case with Majorana and Dirac mass terms.

The quantities mL, mR and mD are then just numbers, and M is a 2 × 2 matrix. For

simplicity we shall assume all the mass parameters to be real. This, in particular, means

that CP is conserved in the neutrino mass sector, i.e. the free mass eigenstates are also

eigenstates of CP. The matrix M can be diagonalized by the transformation OTMO = Md

where O is a real orthogonal 2× 2 matrix and Md = diag(m1, m2). We introduce the fields

χL through nL = OχL, or

nL =

(

νL
νcL

)

=

(

cos θ sin θ

− sin θ cos θ

)(

χ1L

χ2L

)

. (74)

Here χ1L and χ2L are the left-handed components of the neutrino mass eigenstates. The

mixing angle θ is given by

tan 2θ =
2mD

mR −mL
, (75)

and the neutrino mass eigenvalues are

m1,2 =
mR +mL

2
∓

√

(

mR −mL

2

)2

+m2
D . (76)

They are real but can be of either sign. The neutrino mass term can now be rewritten as

Lm =
1

2
nT
L C−1MnL + h.c. =

1

2
χT
L C−1Md χL + h.c.

=
1

2
(m1 χ

T
1L C−1χ1L +m2 χ

T
2L C−1χ2L) + h.c. =

1

2
( |m1|χ1χ1 + |m2|χ2χ2 ) . (77)

Here we have defined

χ1 = χ1L + η1(χ1L)
c , χ2 = χ2L + η2(χ2L)

c . (78)

with ηi = 1 or −1 for mi > 0 or < 0 respectively. It follows immediately from eq. (78) that

the mass-eigenstates fields χ1 and χ2 describe Majorana neutrinos. The relative signs of the
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mass eigenvalues (η1 and η2) determine the relative CP parities of χ1 and χ2; the physical

masses |m1| and |m2| are positive, as they should be.

Instead of using a real orthogonal matrix O to diagonalize M one could employ a unitary matrix

U = OK with K being a diagonal matrix of phases, as in eq. (59). Choosing for the positive mass

eigenvalues of M the diagonal elements of K to be 1 and for the negative ones ±i, one can write

UTMU = Md, where Md now does not have any negative diagonal elements. Correspondingly,

eq. (74) should be replaced with nL = UχL. In this way it is no longer necessary to introduce the

factors η1,2, i.e. instead of eq. (78) we have

χ1 = χ1L + (χ1L)
c, χ2 = χ2L + (χ2L)

c. (79)

That the neutrino mass eigenstates corresponding to opposite signs of the mass parameters m1

and m2 defined in eq. (76) have opposite CP-parities is now a consequence of the fact that the

matrix U has one complex column. Indeed, let m1 defined in (76) be negative and m2 positive.

Then from nL = UχL = OKχL and eq. (79) we have

χ1 = ∓i{c[νL − (νL)
c] + s[νR − (νR)

c]}, χ2 = s[νL + (νL)
c] + c[νR + (νR)

c]. (80)

Making use of the definition of the CP conjugation given in sec. 15.2 and taking into account that

it is described by a linear operator, one can readily make sure that the CP-parities of χ1 and χ2

are opposite.

It is instructive to consider some limiting cases. In the limit of no Majorana masses

(mL = mR = 0), pure Dirac case has to be recovered. Let us see how this limit can be

obtained from the general D+M formalism. For mL = mR = 0 the mass matrix (65) takes

the form

M =

(

0 m

m 0

)

. (81)

This matrix corresponds to a conserved lepton number LνL − Lνc
L
= LνL + LνR which can

be identified with the total lepton number L. Thus, the lepton number is conserved in this

limiting case, as expected. Let us now check that the usual Dirac mass term is recovered.

The matrix M in (81) is diagonalized by the rotation (74) with θ = 45◦, and its eigen-

values are −m and m. This means that we have two Majorana neutrinos that have the

same mass, opposite CP parities and are maximally mixed. Let us demonstrate that this is

equivalent to having one Dirac neutrino of mass m. We have η2 = −η1 = 1; from eqs. (74)

and (78) it then follows χ1 + χ2 =
√
2(νL + νR), χ1 − χ2 = −

√
2(νcL + νcR) = −(χ1 + χ2)

c.

This gives

1

2
m (χ1χ1 + χ2χ2) =

1

4
m [(χ1 + χ2)(χ1 + χ2) + [(χ1 − χ2)(χ1 − χ2)] = m ν̄DνD , (82)

where

νD ≡ νL + νR . (83)
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The counting of the degrees of freedom also shows that we must have a Dirac neutrino

in this case – there are four degrees of freedom and just one physical mass. Thus, two

maximally mixed degenerate Majorana neutrinos of opposite CP parities merge to form a

Dirac neutrino. In sec. 15.7 we shall discuss neutrinoless double beta (0νββ) decay and

show that this process can only take place if neutrinos are Majorana particles. We shall

demonstrate there that in the limit when two degenerate in mass Majorana neutrinos merge

into a Dirac neutrino, their contributions to the amplitude of the 0νββ decay exactly cancel,

as they should.

If the Majorana mass parameters mL and mR do not vanish but are small compared to

mD, the resulting pair of Majorana neutrinos will be quasi-degenerate with almost maximal

mixing and opposite CP parities. The physical neutrino masses in this case are |m1,2| ≃
mD ∓ (mL +mR)/2 ≃ mD. Such a pair in many respects behaves as a Dirac neutrino and

therefore sometimes is called a ‘pseudo-Dirac’ (or a ‘quasi-Dirac’) neutrino. In particular, its

contribution to the 0νββ decay amplitude is proportional to the mass difference |m2|−|m1| ≃
(mL +mR) which is much smaller than the mass of each component of the pair.

15.4 The seesaw mechanism of the neutrino mass generation

The seesaw mechanism [28] provides a very simple and attractive explanation of the small-

ness of neutrino mass by relating it with the existence of a very large mass scale. In the

simplest and most popular version of this mechanism, the requisite large mass scale is given

by the masses of heavy electroweak-singlet Majorana neutrinos. Although the seesaw mech-

anism is most natural in the framework of the grand unified theories (such as SO(10)) or

left-right symmetric models [29], it also operates in the standard model extended to include

the right-handed sterile neutrinos νR. Indeed, as soon as the νR’s are introduced, one can

add to the Lagrangian of the model the Majorana mass term (1/2)νTR C−1mRνR+h.c., which

is allowed because νR are electroweak singlets. The Yukawa couplings of the right-handed

neutrinos with the lepton doublets and the Higgs boson are also allowed, and after the

spontaneous breaking of the electroweak symmetry they give rise to the Dirac mass term

connecting the active and sterile neutrinos, similar to those that are present for the quarks

and charged leptons. The resulting neutrino mass scheme is just the D+M one discussed in

secs. 15.3.2 and 15.3.3, see eqs. (62) - (65). Notice that in the standard model there is no

Majorana mass term for left-handed neutrinos, i.e. mL = 0; however, mL is different from

zero in some extensions of the standard model, so we shall keep it for generality.

Because the right-handed neutrinos νR are electroweak singlets, the scale of their Ma-

jorana mass term need not be related to the electroweak scale. In particular, mR can be

very large, possibly even at the Planck scale MPl ≃ 1.2× 1019 GeV, grand unification scale
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or at some intermediate scale MI ∼ 1010 − 1012 GeV which may be relevant for the physics

of parity breaking. The seesaw suppression of the masses of active neutrinos is realized just

in this case of a very large mR. We therefore consider the limit in which the characteristic

scales of the Dirac and Majorana neutrino masses satisfy

mL, mD ≪ mR . (84)

Let us first discuss the one-generation case studied in sec. 15.3.3. The diagonalization of the

mass matrix is then performed by the simple rotation (74). A straightforward calculation

gives for the rotation angle θ and eigenvalues of the mass matrix M

θ ≃ mD

mR

≪ 1 , m1 ≃ mL − m2
D

mR

, m2 ≃ mR , (85)

while the mass eigenstates are given by

χ1 ≃ νL + η1(νL)
c , χ2 ≃ (νR)

c + η2νR . (86)

Thus, we have a very light Majorana mass eigenstate χ1 predominantly composed of the

active neutrino νL and its Ĉ-conjugate (νL)
c, and a heavy eigenstate χ2, mainly composed

of the sterile νR and (νR)
c. The admixture of the sterile neutrino state νR in χ1 and that

of the usual active neutrinos νL in χ2 are of the order of mD/mR ≪ 1. As follows from

eq. (85), for mL . m2
D/mR it is the sterile neutrino being heavy that makes the usual active

one light (which explains the name ‘the seesaw mechanism’).

Consider now the case of n standard generations of left-handed leptons and k sterile

neutrinos νR. This is actually the case discussed in sec. 15.3.2, but now we want to specifi-

cally consider the limit of very high νR mass scale. Let us first decouple the light and heavy

neutrino degrees of freedom. To this end, we block-diagonalize the matrix M in eqs. (64),

(65) according to

nL = V χ′
L , V TM V = V T

(

mL mT
D

mD MR

)

V =

(

m̃L 0

0 M̃R

)

, (87)

where V is a unitary (n + k) × (n + k) matrix, m̃L and M̃R are symmetric n × n and

k × k matrices, respectively, and we have changed the notation mR → MR. Note that the

fields χ′ that block-diagonalize M are not the fields of mass-eigenstate neutrinos, since the

matrices m̃L and M̃R are not in general diagonal. They can be diagonalized by further

unitary transformations. Correspondingly, V is not the leptonic mixing matrix.

We shall be looking for the matrix V in the form [30]

V =

(

√

1− ρρ† ρ

−ρ†
√

1− ρ†ρ

)

, (88)
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where ρ is an n × k matrix. Note that V is unitary by construction. Treating ρ as pertur-

bation and performing block-diagonalization of M approximately, we find

ρ∗ ≃ mT
DM

−1
R , M̃R ≃MR , (89)

m̃L ≃ mL −mT
DM

−1
R mD , (90)

These relations generalize those of eq. (85) to the case of n active and k sterile neutrinos.

The diagonalization of the effective mass matrix m̃L then yields n light Majorana neutrino

fields which are predominantly composed of the fields of the usual (active) neutrinos νL
and their Ĉ-conjugates (νL)

c, with very small (∼ mD/MR) admixture of sterile neutrinos

νR; the diagonalization of M̃R produces k heavy Majorana neutrino fields which are mainly

composed of νR and (νR)
c. This, in particular, means that the oscillations between the

active and sterile neutrinos are suppressed in this case.

It is important that the active neutrinos get Majorana masses m̃L even if they have no

‘direct’ masses, i.e. mL = 0, as it is the case in the standard model. The masses of the active

neutrinos are then of the order of m2
D/MR. Generation of the effective Majorana mass of

light neutrinos is diagrammatically illustrated in fig. 1.

〈H〉

νL mD νR
×
MR νR

〈H〉

mD νL

Figure 1: Seesaw mechanism of m̃L generation. The vacuum expectation values of the Higgs field

are denoted by 〈H〉.

What happens if MR has one or more zero eigenvalues? Obviously, in this case M−1

R does not

exist, and the usual seesaw approximation fails. However, it can be readily modified to produce

meaningful results. One can just go to the νR basis where MR is diagonal and include the lines

and columns of MR that contain zero eigenvalues into a redefined matrix mL. This situation is

called the ‘singular seesaw’, and it generally leads to the existence of pseudo-Dirac light neutrinos.

What can one say about the expected mass scale of the right-handed neutrinosMR? Let

us take the mass of the heaviest among the light neutrinos to bemν ∼ 5×10−2 eV, as required

by the data of the atmospheric and accelerator neutrino oscillation experiments under the

assumption of the hierarchical neutrino masses. Then, assuming that the largest eigenvalue

of the Dirac neutrino mass matrix is of the order of the electroweak scale, mD ∼ 200 GeV,

and that mL . m2
D/MR, from eq. (90) we find MR ∼ 1015 GeV. Interestingly, this is very

close to the expected grand unification scale mGUT ∼ 1016 GeV. Thus, neutrino oscillations
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together with the seesaw mechanism of neutrino mass generation may be giving us an

indication in favour of grand unification of weak, electromagnetic and strong interactions.

The version of the seesaw mechanism discussed here, with heavy sterile neutrinos re-

sponsible for the small light neutrino masses, is sometimes called type I seesaw. There also

exist other versions – those with heavy SU(2)L-triplet Higgs scalars (type II seesaw), heavy

triplet fermions (type III seesaw), as well as other realizations of the seesaw mechanism, see

ref. [31] for a review. In all these cases neutrinos of definite mass are generically Majorana

particles.

15.5 Electromagnetic properties of Majorana neutrinos

As neutrinos are electrically neutral, they have no direct coupling to the photon and their

electromagnetic interactions arise entirely through loop effects (see ref. [32] for a review). It

is interesting to compare the electromagnetic properties of Majorana neutrinos with those of

Dirac neutrinos, which we discuss first. The matrix elements of the electromagnetic current

jµ(x) between the 1-particle on-shell states of a Dirac neutrino (or any other Dirac fermion)

can be written as

〈p′, s′|jµ(x)|p, s〉 = eiqx 〈p′, s′|jµ(0)|p, s〉 = eiqx ūs′(p
′)Λµ(q)us(p) , (91)

where q ≡ p′ − p, us(p) and us′(p
′) are the free-particle plane wave spinors, and

Λµ(q) = FQ(q
2)γµ + FM(q2)iσµνqν + FE(q

2)σµνγ5qν + FA(q
2)(q2gµν − qµqν)γνγ5 . (92)

Here FQ(q
2) and FM(q2) are the electric charge and magnetic dipole form factors, while

FE(q
2) and FA(q

2) are the electric dipole form factor and anapole form factor, respectively.

Unlike the magnetic and electric dipole moments, the anapole moment, first proposed in [33], has

no simple classical multipolar analogue. It can be modeled by a torus-shaped solenoid and therefore

is sometimes called the toroidal moment. For a discussion of the properties of the anapole moment

and its experimental manifestations see [34, 35] and references therein.

The form of Λµ(q) in (92) follows from the requirements of Lorentz covariance and electro-

magnetic current conservation.11 For interactions with real photons the anapole form factor

does not contribute. The hermiticity of the Hamiltonian of the electromagnetic interaction

Hint = jµ(x)Aµ(x) implies that all the four form factors in eq. (92) are real. The vector-

current form factors FQ(q
2) and FM(q2) are parity conserving, while the axial-vector ones

FE(q
2) and FA(q

2) violate parity. In addition, FE(q
2) violates CP invariance. As electroweak

11There are alternative (but equivalent) forms of Λµ(q). We prefer the one in (92) because each term in

it separately conserves the electromagnetic current. The same applies to eq. (98) below.
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interactions that induce the effective neutrino electromagnetic current do violate parity (and

possibly also CP), in general the form factors FA(q
2) and FE(q

2) need not vanish.

The charge form factor taken at zero squared 4-momentum transfer yields the electric

charge of the Dirac particle, FQ(0) = Q, whereas FM(0), FE(0) and FA(0) give, respectively,

its anomalous magnetic moment g − 2, electric dipole moment and anapole moment. The

term FQ(q
2)γµ in eq. (92) describes in the static limit (q2 → 0) not only the electric charge

interaction of the Dirac fermion, but also its normal magnetic moment. This can be seen

from the Gordon identity

ūs′(p
′)γµus(p) = ūs′(p

′)

[

pµ + p′µ

2m
+
iσµνqν
2m

]

us(p) . (93)

The first term in the square brackets here corresponds to the convective part of the current,

while the second one describes its spin part, i.e. the normal magnetic moment. The total

magnetic moment of the particle is the sum of the normal and the anomalous ones.

Because neutrinos have no electric charge (i.e. for them FQ(0) = 0), they do not have

normal magnetic moments either. Note that electric neutrality does not mean that the

entire charge form factor FQ(q
2) vanishes. At small q2 one can write

FQ(q
2) = FQ(0) + F ′

Q(0)q
2 + · · · ≡ FQ(0) +

1

6
〈r〉2q2 + . . . . (94)

The quantity 〈r2〉 characterizes the charge distribution within the particle and is called its

charge radius. It is in general different from zero even for neutral particles. Non-triviality

of their charge distributions is related to the fact that interactions that ‘dress’ the particles

produce clouds of virtual particles of opposite charges and in general different configurations.

Let us now discuss the electromagnetic properties of Majorana neutrinos [13, 36–41].

For a Majorana particle all the electromagnetic form factors but one vanish identically, and

the matrix element of the electromagnetic current takes the form

〈p′|jµ(0)|p〉 = ū(p′)[FA(q
2)(q2gµν − qµqν)γνγ5 ]u(p) . (95)

That is, while the electromagnetic properties of a Dirac fermion are in general described

by four form factors, for a Majorana particle only the anapole form factor survives. The

simplest way to see this is to note that each term in eq. (92) can be viewed as emerging

from the matrix element of the corresponding effective operator ψ̄Γµψ, where ψ is the free

field operator and Γµ = (γµ, σµνqν , σ
µνγ5qν , γ

µγ5), between the free one-particle states. For

Majorana neutrinos from eqs. (11) and (12) we find

ψ̄kγ
µψi = −ψ̄iγ

µψk , ψ̄kγ
µγ5ψi = ψ̄iγ

µγ5ψk , (96)
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ψ̄kσ
µνψi = −ψ̄iσ

µνψk , ψ̄kσ
µνγ5ψi = −ψ̄iσ

µνγ5ψk , (97)

where we have used the Majorana condition (20). In the case when the fields ψi and ψk

correspond to the same particle, i.e. k = i, from eqs. (96) and (97) it follows that the

only non-zero operator is the axial-vector one, ψ̄iγ
µγ5ψi, whereas all the other operators

vanish identically. Electromagnetic current conservation then implies that the axial-vector

operator can enter the matrix element (91) only through the anapole interaction. This result

has a simple interpretation. The charge radius and magnetic and electric dipole moments

have opposite signs for neutrinos and antineutrinos and thus could be used to distinguish

between them. Therefore, they must vanish if neutrinos are Majorana fermions. At the

same time, the anapole moment does not change its sign under the particle-antiparticle

conjugation [33, 34], and so is allowed. Note that the vanishing of the charge, magnetic

dipole and electric dipole form factors of Majorana neutrinos has a deep reason – it is

related to CPT invariance.

Expressions (91) and (92) describe the matrix elements of the electromagnetic current

jµ(x) between the 1-particle states of an individual neutrino. They are actually a special

case of more general matrix elements of jµ(x) between the states of neutrinos of different

mass. These matrix elements have a form similar to eq. (91), except that the quantity

Λµ(q) and the form factors are now matrices in the space of neutrino mass eigenstates. The

requirements of Lorentz invariance and electromagnetic current conservation yield

Λµ(q)ki = [F1(q
2)ki − γ5FA(q

2)ki](q
2gµν − qµqν)γν + [FM(q2)ki − iγ5FE(q

2)ki] iσ
µνqν . (98)

Eq. (92) corresponds to the diagonal elements of (98), with FQ(q
2) = FQ(q

2)i ≡ F1(q
2)iiq

2

(note that for i = k the expression ūks′(p
′)γµqµuis(p) vanishes identically since the spinors

satisfy the Dirac equation). The off-diagonal matrix elements of the form factors in (98) are

called the transition form factors. They describe transitions νi → νk caused by interaction

of neutrinos with real or virtual photons or external electromagnetic fields. We will briefly

discuss some of these processes towards the end of this section. Let us also note that, unlike

for the diagonal elements of the form-factors, hermiticity of the electromagnetic interaction

Hamiltonian Hint does not by itself mean that the transition form factors are real. However,

hermiticity of Hint combined with the assumption of CP invariance would require the form

factors to be relatively real, i.e. for given i, k all Fa(q
2)ki (a = 1, A,M,E) would be allowed to

differ from their respective complex conjugates only by the same phase factor.

The expression for Λµ(q)ki has the same form (98) for Dirac and Majorana neutrinos,

though in the Majorana case the form factors must satisfy some additional constraints. We

have found that for Majorana neutrinos the diagonal matrix elements of the electromagnetic

current contain only one non-zero form factor, FA(q
2)ii. This is an immediate consequence

of eqs. (96) and (97). However, for transition form factors the constraints are less severe.
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Eqs. (96) and (97) then simply imply that the form factors F1(q
2)ki, FM(q2)ki and FE(q

2)ki
are antisymmetric with respect to the interchange of the indices i and k, whereas FA(q

2)ki
is symmetric. Actually, this is a consequence of CPT invariance; one can readily check this

by making use of the transformation properties of Majorana states under CPT given in

Table I and taking into account that the CPT transformation is anti-unitary and that the

electromagnetic current jµ(0) is CPT-odd.12

Another important point is that non-vanishing transition electric dipole form factor

FE(q
2)ki would not necessarily signify leptonic CP violation. It is only in the case when

both the transition magnetic dipole and electric dipole form factors FM(q2)ki and FE(q
2)ki

are simultaneously different from zero that one would have to conclude that CP is violated.

In fact, if CP is conserved in the leptonic sector, the form factors F1(q
2)ki and FM(q2)ki

vanish when νi and νk have the same CP-parity (either i or − i), whereas FA(q
2)ki and

FE(q
2)ki vanish when νi and νk have opposite CP-parities [41]. This can be readily shown

using the transformation properties of Majorana states under CP given in Table I. If CP

is violated, neutrinos do not possess definite CP-parities, and the simultaneous existence of

non-zero FM(q2)ki and FE(q
2)ki (or F1(q

2)ki and FA(q
2)ki) with k 6= i is allowed.

We have mentioned in sec. 15.1 that in the limit of vanishing neutrino mass Dirac and

Majorana neutrinos become indistinguishable (as both actually become Weyl neutrinos). It

is therefore interesting to see how the electromagnetic properties of Dirac and Majorana

neutrinos converge in the massless limit. Let us first note that the vector and axial-vector

operators ψ̄iγ
µψk and ψ̄iγ

µγ5ψk are chirality-preserving, while ψ̄iσ
µνψk and ψ̄iσ

µνγ5ψk are

chirality-flipping:

ψ̄iσ
µνψk = ψ̄iLσ

µνψkR + ψ̄iRσ
µνψkL , (99)

and similarly for ψ̄iσ
µνγ5ψk. No left-right transitions can be induced by loop effects in the

massless neutrino limit, and so the dipole form factors FM(q2) and FE(q
2) must vanish in

this limit identically.

This result is quite general and is easy to understand. If there is a loop diagram giving a con-

tribution to the chirality-flipping neutrino magnetic or electric dipole form factors, then the same

diagram with the external photon line removed will give a contribution to the neutrino mass term,

which is also chirality-flipping. Thus, for massless neutrinos their magnetic and electric dipole form

factors must vanish identically. (It is possible to devise symmetries that allow neutrino magnetic

moments but forbid neutrino masses [42], but such symmetries must be broken in the real world).

Thus, we are left with only vector and axial-vector operators. Next, we notice that for mass-

12In general, the symmetry or antisymmetry relations Fa(q
2)ik = ±Fa(q

2)ki should include an extra phase

factor ηki related to the CPT-parities of the Majorana neutrinos νi and νk. These CPT-parities, however,

are not physically observable (unlike the CP-parities in the case when CP is conserved), and so one can set

ηki = 1 without loss of generality.
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less neutrinos ū(p′)γµqµu(p) = ū(p′)γµγ5qµu(p) = 0. The quantity Λµ(q)ki can therefore be

written as

Λµ(q)ki = F1(q
2)kiq

2 γµ + FA(q
2)kiq

2 γµγ5 . (100)

The two terms here contain the neutrino charge form factor and the anapole form factor. For

Majorana neutrinos, the former is antisymmetric and the latter is symmetric with respect to

the indices i and k, while no such constraints exist in the Dirac case. As massless neutrinos

are chiral and γ5uL,R = ∓uL,R, the two terms in (100) are actually indistinguishable and

merge into one, which is neither symmetric nor antisymmetric. Thus, the restrictions on

the neutrino electromagnetic interactions that are specific to the Majorana case disappear

in the limit mν → 0.

The same conclusion can also be achieved in a different way [39]. As follows from the

Majorana condition (20) (or equivalently from eq. (27)), for each loop diagram contributing

to the electromagnetic vertex of a Dirac neutrino, in the Majorana case there is an additional

diagram with all particles replaced by their Ĉ-conjugates.13 If the original diagram is caused

by left-handed currents, then the Ĉ-conjugate one is due to the right-handed interactions of

the antiparticles (see eq. (13)). The additional diagrams contribute to the electromagnetic

vertices of massive Majorana neutrinos because Majorana fields contain both the left-handed

and right-handed parts, the latter being Ĉ-conjugates of the former. Decoupling of the left-

handed and right-handed neutrino states in the massless limit means that the contribution

of these additional diagrams to the amplitude of a given electromagnetic transition becomes

negligible as mν → 0. Vanishing contributions of the diagrams that are specific to the

Majorana case means that the electromagnetic properties of Majorana neutrinos converge

to those of Dirac neutrinos when mν → 0.

In sec. 15.3 we pointed out that a pair of mass-degenerate Majorana neutrinos with

maximal mixing and opposite CP-parities merges into a Dirac neutrino. The electromagnetic

properties of such a pair should then be the same as those of a Dirac neutrino. This is indeed

the case; in particular, the transition magnetic moment of such a Majorana pair becomes

the usual magnetic moment of the Dirac neutrino. We refer the reader to ref. [38] for details.

From the above discussion it follows that the electromagnetic properties of massive

Dirac and Majorana neutrinos are very different. Can this be used to find out whether

neutrinos are Dirac or Majorana particles? To answer this question, we should first examine

how the neutrino electromagnetic properties can manifest themselves. First, through the

the photon exchange diagrams, they can contribute to the cross sections of νf scattering,

where f is a charged lepton or a quark. In principle, such contributions can probe the

13There will also be extra diagrams in the Majorana case if the sector of the model responsible for the

Majorana mass generation contains charged particles. However, in the limit of vanishing neutrino mass

which we consider now such diagrams can be we neglected.
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neutrino magnetic and electric dipole moments, as well as the charge radius and anapole

moment. Unfortunately, up to now experiment and observations (most notably, experiments

on ν̄ee scattering with reactor antineutrinos as well as astrophysical data) have failed to

discover neutrino electromagnetic properties and only produced upper limit on them [32].

This is actually not surprising, as in the standard model and its simplest extensions the

neutrino electromagnetic interactions are expected to be extremely weak. As an example,

the standard-model prediction for the neutrino charge radius is 〈r2〉 ∼ 10−33 cm2, whereas

adding right-handed neutrinos to the model, for the diagonal magnetic moments of Dirac

neutrinos one finds [43]

µi ≈
3eGF

8
√
2π2

mi ≈ 3.2× 10−19
(mi

eV

)

µB , (101)

where e is the absolute value of the electron charge, GF is the Fermi constant, mi is the

mass of the ith neutrino mass eigenstate and µB = e/2me is the electron Bohr magneton.

Similar expressions can be obtained for transition magnetic moments [37,40]. In addition, as

we discussed above, the smallness of neutrino mass makes it very difficult to tell Majorana

neutrinos from Dirac ones through their electromagnetic properties. In particular, it is

difficult to distinguish experimentally the neutrino charge radius (which is non-zero only

for Dirac neutrinos) from the anapole moment, which is the only non-vanishing diagonal

electromagnetic moment of Majorana neutrinos.14

As we discussed above, Dirac neutrinos can in general have both diagonal and transi-

tion dipole moments, whereas for Majorana neutrinos only transition dipole moments are

allowed. For neutrinos of both types transition magnetic and electric dipole moments will

cause radiative decays of heavier neutrinos into lighter ones, νi → νk + γ. Although the

rates of the radiative decay of Dirac and Majorana neutrinos are in general different, be-

cause of large uncertainties in the involved neutrino parameters it is impossible to establish

the nature of neutrinos by measuring their radiative decay widths. However, the circular

polarizations of the produced photons are very different in the Dirac and Majorana cases,

and this is completely independent of the neutrino unknowns [40]. In addition, for polarized

parent neutrinos, the angular distributions of the emitted photons are different for neutri-

nos of the two types [40, 44]. Thus, at least in principle, one could distinguish between the

Dirac and Majorana neutrinos by measuring the polarization or angular distribution of the

photons produced in radiative neutrino decay.

Unfortunately, it is rather unlikely that neutrino radiative decays will ever be observed,

as they are doubly suppressed by the smallness of the neutrino magnetic moments (which

implies small transition amplitude) and of neutrino mass (which means very small phase

14It should also be noted that there are some difficulties in defining the neutrino charge radius in a

gauge-invariant and process-independent way, see discussion in sec. 3.3 of [32].
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space volume of the decay). There is, however, some chance to observe radiative neutrino

transitions if relatively heavy sterile neutrinos exist.

Neutrino diagonal and transition dipole moments can in principle manifest themselves

differently – through neutrino spin precession in strong electromagnetic fields. Such a process

can be caused by the interaction of neutrino magnetic [43] or electric [45] dipole moments

with external fields. Transition dipole moments can give rise to spin-flavour precession, in

which neutrino spin and flavour are flipped simultaneously [36, 46]. This process can be

resonantly enhanced when neutrinos propagate in matter [47, 48].

Let us compare spin and spin-flavour precessions of Dirac and Majorana neutrinos. It

is convenient to introduce the matrix of neutrino electromagnetic moments [46]

µ̃ = µ+ iǫ , (102)

where µ and ǫ are the hermitian matrices of neutrino magnetic dipole and electric dipole mo-

ments, respectively. In the flavour eigenstate basis the dipole moment couplings of neutrinos

to an external electromagnetic field are described by the effective operators

1

2

[

ν̄β σ
µν(µ− iǫγ5)βανα

]

Fµν + h.c. =
µ̃βα

2
νβR σ

µνναLFµν + h.c. (Dirac); (103)

1

2

[

ν̄β σ
µν(µ− iǫγ5)βανα

]

Fµν + h.c. =
µ̃βα

2
(νβL)c σ

µνναLFµν + h.c. (Majorana), (104)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor. Note that there is no extra

factor 1/2 in eq. (104) because in the Majorana case the matrix µ̃ is antisymmetric.

It is instructive to look at the right-hand sides of eqs. (103) and (104), which reveal the

nature of the involved neutrinos. Eq. (103) means that in a transverse15 external magnetic

field e.g. a left-handed (active) electron neutrino νeL can be converted into a right-handed

sterile neutrino of the same or different flavour. At the same time, in the Majorana case only

flavour-off-diagonal transitions are allowed. For instance, for α = e and β = µ the interaction

in eq. (104) describes the transformation of an active left-handed electron neutrino νeL
to the active right-handed muon neutrino state ν̄µR = (νµL)

c which is usually called the

muon antineutrino. From this discussion it is clear that neutrino spin and/or spin-flavour

precession lead to physically very different final states for Dirac and Majorana neutrinos

and therefore could in principle be used to discriminate between them.

Although the neutrino dipole moments are expected to be very small, the neutrino spin

precession and spin-flavour precession can still occur with sizeable probabilities in extremely

strong magnetic fields which may be present in astrophysical objects. In particular, in the

15Magnetic and electric dipole interactions of relativistic neutrinos with longitudinal (i.e. collinear with

the neutrino momentum) magnetic fields are strongly suppressed [36, 43].
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Majorana neutrino case strong magnetic fields present in supernovae during the explosion

stage may cause the resonantly enhanced conversion νe → ν̄µ. The resulting muon antineu-

trinos will then experience the usual flavour transitions on their way from the supernova

to the Earth, converting them to electron antineutrinos. As a result, the overall neutrino

transmutation chain νe → ν̄µ → ν̄e will transform electron neutrinos into electron antineutri-

nos. Such a conversion of supernova νe’s would have a very clear signature in the terrestrial

detectors [49, 50], provided that the supernova event occurs in our galaxy and that the

transition magnetic moments of Majorana neutrinos µ & 10−14µB.
16 While such relatively

large values of µ are not easily achieved, they are predicted in some models and are not

excluded by the current data and observations. At the same time, the νe → ν̄e conversion

(which is a ∆L = 2 process) cannot occur if neutrinos are Dirac particles. Thus, future

supernova neutrino experiments may shed some light onto the Dirac vs Majorana nature

of neutrinos. Yet, the most practical means of disentangling these two neutrino types is

probably neutrinoless double β-decay, which will be discussed in sec. 15.7.

15.6 Majorana particles in SUSY

In supersymmetric (SUSY) theories each boson has a supersymmetric partner which is a

fermion and each fermion has a bosonic superpartner. Such theories predict the existence of a

plentitude of Majorana fermions, which are supersymmetric partners of neutral bosons [8,14,

15]. These include the photino, as well as the gluino, zino and neutral higgsinos (the SUSY

partners of the photon, gluon, Z0-boson and of the neutral Higgs scalars, respectively). More

precisely, since these particles can mix, what actually makes the Majorana fermions are the

so-called neutralinos – the linear superpositions of the above-mentioned particles that have

definite masses.17 In addition, if the spontaneous breaking of global supersymmetry occurs,

there should exist the goldstino – a massless neutral Goldstone fermion. In supergravity the

goldstino is absorbed, through a supersymmetric analogue of the Higgs mechanism, into the

gravitino, which is a massive spin-3/2 Majorana fermion (the SUSY partner of the graviton).

In SUSY versions of the models where the so-called strong CP problem is solved through the

existence of a light neutral pseudoscalar particle – the axion – there is yet another Majorana

fermion, the axino.

In SUSY models with conserved R-parity the lightest supersymmetric particle is stable.

If it is neutral, it can be the so-called WIMP (weakly interacting massive particle) and play a

role of the dark matter particle, i.e. account for the missing matter of the Universe [51–53].

16Here we are assuming that at the resonance of spin-flavour conversion the supernova transverse magnetic

field B⊥r can be as large as ∼ 109 G [49]. The νe → ν̄e conversion efficiency depends on the product µB⊥r.
17We assume here that these Majorana particles are non-degenerate in mass. Otherwise two Majorana

fermions can merge into a Dirac one, as discussed in sec. 15.3.3.
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The lightest supersymmetric particle is then the lightest neutralino, the gravitino or the

axino.18 Thus the dark matter problem, which is one of the most important problems of

modern cosmology, may have its solution through the existence of a Majorana fermion.

15.7 Experimental searches for Majorana neutrinos and other Ma-

jorana particles

15.7.1 Neutrinoless 2β decay and related processes

As was mentioned above, the most practical way of discriminating between Dirac and Ma-

jorana neutrinos seems to be by looking for neutrinoless double beta decay (see refs. [55–58]

for reviews). The usual double beta decay is the process in which a nucleus A(Z,N) decays

into an isobar with the electric charge differing by two units:

A(Z,N) → A(Z ± 2, N ∓ 2) + 2e∓ + 2ν̄e(2νe) . (105)

In such decays two neutrons of the nucleus are simultaneously converted into two protons,

or vice versa. At the fundamental (quark) level, these are transitions of two d quarks into

two u quarks or vice versa (see fig. 2a). Double beta decay is the process of the second

order in weak interaction, and the corresponding decay rates are very low: typical lifetimes

of the nuclei with respect to the 2β decay are T & 1019 years. The processes (105) are

called 2νββ decays. Two-neutrino double beta decays with the emission of two electrons

(2β−) were experimentally observed for a number of isotopes with the half-lives in the range

∼ 1019− 1024 years [58]; there are few candidate nuclei for 2β+ decay, and the experimental

observation of this process is difficult because of the very small energy release (Q values).

If neutrinos are Majorana particles, the lepton number is not conserved, and the neutrino

emitted in one of the elementary beta decay processes forming the 2β decay can be absorbed

in another (fig. 2b), leading to the neutrinoless double beta (0νββ) decay [59]:

A(Z,N) → A(Z ± 2, N ∓ 2) + 2e∓ . (106)

Such processes would have a very clear experimental signature: since the recoil energy of a

daughter nucleus is negligibly small, the sum of the energies of the two electrons or positrons

in the final state should be equal to the total energy release, i.e. should be represented by

a discrete energy line. Therefore 0νββ decays could serve as a sensitive probe of the lepton

number violation and Majorana nature of neutrinos. In some extensions of the standard

model exotic modes of 0νββ decay are possible, e.g. decays with a Majoron emission [55,57].

18The role of a dark matter particle can also be played by a non-SUSY sterile Majorana neutrino, see

[52–54] and references therein.
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In this case the sum of the energies of two electrons or positrons is not a discrete line, but

the 2β energy spectra (as well as the single β-particle spectra) are expected to be different

from those in the case of 2νββ decay.
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Figure 2: Some Feynman diagrams for the amplitudes of 2β decay.

Neutrinoless 2β decays break not only the lepton number; since the absorbed νe or

ν̄e has a ‘wrong’ chirality, 0νββ decays also break chirality conservation. Therefore, if

0νββ decay is mediated by the standard weak interactions and exchange of light neutrinos,

the amplitude of the process must be proportional to the neutrino mass. More precisely, as

follows from fig. 2b, it is proportional to the ee-entry of the neutrino Majorana mass matrix,

whose modulus is usually called 〈mββ〉:

A(0νββ) ∝
∣

∣

∣

∑

i

U2
eimi

∣

∣

∣
≡ 〈mββ〉 . (107)

Notice that this expression contains U2
ei rather than |Uei|2. If CP is conserved in the leptonic

sector, the mixing matrix Uai can always be made real; however in this case the mass

parameters mi in (107) (the eigenvalues of the neutrino mass matrix) can be of either sign,

their relative signs being related to the relative CP parities of neutrinos. This means that

in general significant cancellations between various contributions to the sum in (107) are

possible. As we discussed in sec. 15.3.3, a pair of Majorana neutrinos with equal physical

masses |mi|, opposite CP parities and maximal mixing is equivalent to a Dirac neutrino. It is

easy to see that such a pair does not contribute to the amplitude in (107) – the contributions

of the two components of the pair cancel exactly. Analogously, the contribution of a pseudo-

Dirac neutrino to (107) would be strongly suppressed. Partial cancellations of contributions

of different neutrino mass eigenstates to 〈mββ〉 are also possible, of course, when CP is

violated, i.e. when the leptonic mixing matrix is complex (with the convention that all

neutrino masses are non-negative). In the case of just three usual light neutrino species
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eqs. (107) and (61) yield

〈mββ〉 =
∣

∣c213c
2
12m1 + c213s

2
12e

2iϕ1m2 + s213e
2i(ϕ2−δCP )m3

∣

∣. (108)

By now, the neutrino oscillation experiments measured rather accurately the leptonic mixing

angles θ12, θ23, θ13 and the neutrino mass squared differences ∆m2
21 and |∆m2

31|. Global

analyses of the data [60–62] yield

∆m2
21 ≃ 7.5× 10−5 eV2 , |∆m2

31| ≃ 2.4× 10−3 eV2 , (109)

θ12 ≃ 33◦, θ23 ≃ 40◦ or 50◦, θ13 ≃ 9◦. (110)

At the same time, at present there is essentially no information on the CP-violating phases

and the neutrino mass ordering (the sign of ∆m2
31), while for the absolute scale of the

neutrino masses only upper limits exist: direct neutrino mass measurements in nuclear β-

decay experiments and cosmology yield mi . O(1) eV. With these data, it follows from

eq. (108) that sizeable cancellations between the contributions of the different neutrino

mass eigenstates to 〈mββ〉 are possible only in the case of the so-called normal neutrino

mass hierarchy, m1, m2 ≪ m3.

If, in addition to the usual three light neutrino species, there exist heavy neutrinos Ni,

the active flavour-eigenstate neutrinos are linear superpositions of the left-handed compo-

nents of both light and heavy neutrino mass eigenstates (see eq. (52)). Since the chirality-

flipping part of the fermion propagator m/(p2−m2) ≃ −1/m for m2 ≫ p2, the contribution

of the diagram 2b with exchanges of heavy Majorana neutrinos to the amplitude of 0νββ

decay is proportional to

〈m−1
N 〉 ≡

∣

∣

∣

n
∑

i=4

U2
eim

−1
i

∣

∣

∣
. (111)

Thus, one should distinguish effects of light and heavy Majorana neutrino exchanges. The

latter requires the existence of extra neutrino species and can be considered as one of non-

standard mechanisms of 0νββ decay. The effect of Majorana neutrino exchanges on lepton

number violating processes is expected to be maximal when the mass of the exchanged

neutrino is of the order of the characteristic energy of the process. This applies not only to

0νββ decay but to all ∆L = 2 processes, including those considered in sec. 15.7.2 below.

In extensions of the standard model, such as the left-right symmetric, SUSY or grand

unification models, additional mechanisms of 0νββ decay are possible, in which the process

is mediated by right-handed currents, SUSY particles or leptoquarks (see, e.g., [57]). One of

the diagrams contributing to the amplitude of 0νββ decay in left-right symmetric theories

is shown in fig. 2c. It may appear that no Majorana mass mL of νL is necessary in such

models, i.e. 0νββ decay can occur even if mL = 0 and the neutrinos are Dirac particles, or
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even if they are massless. This is, however, incorrect: in all models in which 0νββ decay

occurs, the Majorana masses of νL must be different from zero. An elegant ‘black box’ proof

of this statement was presented in [63]. In fig. 3 the black box represents an unspecified

mechanism by which two d-quarks can be converted to two u-quarks and two electrons, with

no accompanying neutrinos. Next, we make use of the crossing symmetry to transform the

initial-state d-quarks to the final-state d̄-quarks, join the ud̄ lines to produce W -bosons and

then attach the other ends of the W -boson lines to the electron lines to produce neutrinos.

This yields the diagram corresponding to the effective operator ν̄eL(νeL)
c describing the

ν̄eR → νeL transition, i.e. the Majorana mass term for νe. Thus, no matter what mechanism

νe

W

e−

d u u

e−

d

νe

W

Figure 3: The black box argument for Majorana neutrino mass [63].

causes 0νββ decay, observation of this process would constitute an unambiguous proof that

neutrinos are Majorana particles.

If neutrinos are of Majorana nature, then in addition to the usual 0νββ decay (105),

some related processes should occur, such as e.g. eB + A(Z,N) → A(Z − 2, N + 2) + e+

(neutrinoless electron capture) or 2eB+A(Z,N) → A(Z−2, N+2)∗ → A(Z−2, N+2)+X

(neutrinoless double electron capture) [64]. Here eB stands for a bound atomic electron and

A(Z − 2, N + 2)∗ denotes the excited state of the A(Z − 2, N + 2) atom with two holes

in the atomic 1S orbit, which then de-excites with the emission of atomic X-rays, Auger

electrons, etc.. These processes are always energetically allowed if the usual 2β+ decay of

A(Z,N) is allowed, and in some cases may also be allowed even if A(Z,N) is stable. The

neutrinoless double electron capture may be resonantly enhanced provided that the total

energy release is very close to the excitation energy of the A(Z − 2, N + 2)∗ atomic state.

The search for isotopes with suitable atomic mass differences and excitation energies of the

daughter atoms is currently under way [65].

Other processes related to 0νββ decay have been discussed, such as muon conversion on

nuclei, µ−+A(Z,N) → A(Z−2, N+2)+e+ or µ−+A(Z,N) → A(Z−2, N+2)+µ+. Just like

the 0νββ decay, such conversion processes break the total lepton number L = Le +Lµ +Lτ

by two units (note, however, that the (µ−, e+) conversion conserves Le − Lµ). If these

processes are mediated by exchanges of light or heavy Majorana neutrinos, their expected

rates are too small to render them observable in a foreseeable future [66, 67]. Thus, the
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muon conversion processes may be of interest only if they are dominated by non-standard

mechanisms.

It is customary to discuss the available data of 0νββ decay experiments as well as

expected sensitivities of the ongoing and future experiments in terms of the limits on the

half-lives of the parent nuclei T 0ν
1/2 and interpret them in terms of the effective mass parameter

〈mββ〉 defined in (107). It should, however, be remembered that such an interpretation

makes sense only when the standard diagram of fig. 2a with exchange of light Majorana

neutrinos is the sole (or the dominant) contribution to the amplitude of the process, in

which case T 0ν
1/2 ∝ 1/〈mββ〉2. Otherwise, there is no or little connection between these

two quantities, and the masses of light neutrinos cannot be directly probed in experiments

on 0νββ decay.19 If 0νββ decay is dominated by non-standard mechanisms, experiments

can only give upper limit on the parameter 〈mββ〉 and therefore on the Majorana masses

of the neutrino mass eigenstates. However, as was stressed above, even if the Majorana

neutrino mass gives negligible contribution to 0νββ decay, an observation of this process

would be an unambiguous proof of the Majorana nature of neutrinos. Experimentally, one

can in principle distinguish between different mechanisms of 0νββ decay by studying the

properties of the decay products, e.g. angular correlations of the two produced β-particles,

or by looking for processes related to 0νββ decay (see e.g. discussion in sec. 6 of ref. [57]).

Neutrinoless double beta decay has been actively searched for but up to now it has not

been experimentally discovered.20 The available data allow to put upper bounds on the

effective Majorana neutrino mass 〈mββ〉. The best current limits come from the EXO-200

experiment on 0νββ decay of 136Xe [69] and GERDA experiment with 76Ge [70] (90% C.L.):

〈mββ〉 < 0.14− 0.38 eV (EXO-200) ; 〈mββ〉 < 0.2− 0.4 eV (GERDA) , (112)

where the ranges are due to the uncertainties in the values of the nuclear matrix elements.

The most promising current and forthcoming experiments are expected to be sensitive to the

values 〈mββ〉 & 0.03 – 0.1 eV [58]; as follows from (109) and (110), they will be able to explore

the Majorana neutrino mass only if neutrinos are quasi-degenerate in mass (m1 ∼ m2 ∼ m3)

19 Similar argument applies to the contributions of heavy Majorana neutrino exchanges to 0νββ decay

rates, which depend on the quantity 〈m−1

N 〉 defined in eq. (111), and the possibility to probe the masses of

heavy neutrinos.
20There is one positive claim of observation of 0νββ decay of 76Ge by part of the Heidelberg-Moscow

Collaboration [68]. However, this result has been subject to criticism (see e.g. [58] and references therein)

and is now strongly disfavoured (at 99% C.L.) by non-observation of 0νββ decay by GERDA [70].
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or have the inverted mass hierarchy (m3 ≪ m1, m2).

How does it work? As an example, assume that from independent experiments (e.g. neutrino

oscillations plus cosmology) we know that neutrino masses obey the inverted hierarchy, i.e.

m3 ≪ m1,m2. From eq. (108) it then follows that the quantity 〈mββ〉 cannot be smaller than

〈mββ〉min ≈ c213 cos 2θ12
√

|∆m2
31|(∼ 0.02 eV). If from a 0νββ experiment an upper limit on 〈mββ〉

is inferred which is smaller than 〈mββ〉min, this would rule out Majorana nature of neutrinos,

barring destructive interference with some non-standard 0νββ decay mechanisms.

If the neutrino masses obey the normal mass hierarchy, probing the Majorana neutrino mass

through 0νββ decay will be problematic and will in any case require multiton-scale detectors

and very low backgrounds. It would be extremely difficult to uncover Majorana vs Dirac

nature of neutrinos in this case, unless an efficient non-standard mechanism of 0νββ decay

is at play.

15.7.2 Other lepton number violating processes

The Majorana nature of neutrinos can be revealed not only through neutrinoless double

β-decay, but also through other lepton number violating processes. One of such processes

– neutrino spin-flavour precession in strong external magnetic fields – was discussed in sec.

15.5. Here we shall briefly discuss two of the other types of ∆L = 2 processes, rare particle

decays and like-sign dilepton production at accelerators.

If neutrinos are Majorana particles, they should mediate rare ∆L = 2 particle decays,

such as K+ → π−e+e+, K+ → π−µ+µ+, and similar decays of charged B and D mesons.

The typical Feynman diagrams for such processes are essentially the same as the one in

fig. 2b, except that some other quarks may be involved. However, the number of the

parent particles in the case of rare meson decays is suppressed by a huge factor of order of

the Avogadro number NA as compared to those in 2β-decay experiments. Therefore, rare

meson decays cannot compete with neutrinoless 2β-decay in unraveling the neutrino nature

when the exchanged Majorana neutrinos are very light or very heavy. Still, rare decays can

provide tighter limits on the Majorana neutrino masses in the region of the order of the

energy release of the corresponding process (for rare kaon decays, a few hundred MeV).

In accelerator-based experiments the Majorana nature of neutrinos can be tested in

the processes with like-sign dilepton production as well as in related reactions. The basic

∆L = 2 processes are in this case W±W± ↔ ℓ±1 ℓ
±
2 , where ℓ1,2 = e, µ or τ . A typical reaction

that can be studied at hadron colliders (first discussed in [71] in the context of right-handed

currents) is pp → ℓ±1 ℓ
±
2X . Majorana neutrinos contribute to the amplitude of this process

through the diagrams of fig. 4 and similar diagrams with other quarks in the final state.

Here the left diagram is similar to diagram 2b that gives the standard contribution to
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Figure 4: Representative Majorana neutrino exchange diagrams contributing to like-sign

dilepton production. Left: W -boson fusion with t-channel N exchange. Right: s-channel

W -exchange diagram with production and subsequent decay of N .

the amplitude of 0νββ decay, whereas the right diagram corresponds to production and

subsequent decay of a virtual or real Majorana neutrino N . If real Majorana neutrinos are

kinematically accessible, the dilepton production process can be resonantly enhanced.

Lepton number violating rare decays and like-sign dilepton production processes have

been actively looked for experimentally at accelerators, but no signals have been found so

far. This allowed one to put important constraints on the properties of Majorana neutrinos.

For a detailed and comprehensive discussion of these (and other) ∆L = 2 processes as well

as of the effects of Majorana neutrinos on electroweak precision observables we refer the

reader to ref. [72] (see also [57] and references therein).

There have also been extensive searches for the SUSY Majorana particles both at ac-

celerators and in dark matter detectors. For recent discussions of these experiments see

e.g. [73–75]. Unfortunately, up to now no unambiguous evidence for such particles has been

obtained.

15.8 Baryogenesis through leptogenesis and Majorana neutrinos

In addition to providing a simple and natural way of explaining the observed smallness of

the neutrino mass, the seesaw mechanism of the neutrino mass generation brings with it a

free bonus: It furnishes a very simple and attractive mechanism of producing the observed

baryon asymmetry of the Universe (BAU). The term baryon asymmetry simply reflects

the fact that the observed Universe is made predominantly of matter rather than of equal

amount of matter and antimatter (there are very stringent constraints on the antimatter

abundance in the Universe [76]). The ratio of the net baryon number to photon number in
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the Universe is now measured very accurately [77]:

η ≡ NB −NB̄

Nγ
= (6.04± 0.08)× 10−10 , (113)

where NB, NB̄ and Nγ are the number densities of baryons, antibaryons and photons at

the present epoch. The observed BAU could not have resulted from an initial state of the

Universe with B 6= 0, as any such pre-existing asymmetry would have been diluted to an

absolutely negligible level during the stage of the accelerated expansion of the Universe

predicted by the cosmic inflation [78] (which is the standard paradigm now). Thus, the

BAU should have been generated dynamically in the post-inflationary epoch.

Under what conditions such a dynamical generation of the BAU can occur? These

conditions were actually formulated by Sakharov in 1967 [79]: (i) baryon number violation;

(ii) C- and CP-violation; (iii) deviation from thermal equilibrium. The first two conditions

are necessary for the baryon asymmetry to be produced in the first place; the last condition

ensures that the BAU produced in some processes is not destroyed by the inverse processes.

As an illustration, consider a process X → Y + b, where X denotes an initial state with zero

baryon number, Y stands for a set of final-state particles with vanishing net baryon number and b

represents the produced excess baryons. Then, if condition (i) is not met, the process X → Y + b

just does not take place. If either C or CP is conserved, the processes X → Y + b and X̄ → Ȳ + b̄

occur at the same rate, and no net baryon number is produced (provided that the initial state of

the system contained equal numbers of X and X̄ or that X = X̄). If the system is in thermal

equilibrium, the processes X → Y + b and Y + b→ X occur at the same rate (which is also true, of

course, for X̄ → Ȳ + b̄ and Ȳ + b̄ → X̄), and the baryon asymmetry produced in direct processes

is washed out by the inverse ones.

All these conditions are actually satisfied in the standard model of particle physics, though

the amount of CP violation in this model is insufficient and, most importantly, the deviation

from thermal equilibrium is far too small to account for the measured value of the BAU

(113) [80]. The Sakharov’s conditions are fulfilled and the successful generation of the BAU

is possible in many extensions of the standard model, such as grand unification theories and

SUSY models [80, 81]. Here we concentrate on the so-called baryogenesis via leptogenesis

[82], which is built-in in the seesaw mechanism of the neutrino mass generation and does not

require any new physics besides the existence of heavy Majorana neutrinos. We just outline

the mechanism here; for details and ramifications we refer the reader to a comprehensive

review [83].

To produce the phenomenologically acceptable mass spectrum of the usual light neu-

trinos, the seesaw mechanism should include at least two heavy electroweak-singlet (i.e.

sterile) Majorana neutrinos Ni. The same number of Ni’s turns out to be sufficient for

the generation of the BAU. The mechanism works as follows. First, a lepton number L0

42



is produced through the out-of-equilibrium L- and (B − L)-violating decays of the Ni’s.

The produced lepton number is then reprocessed into the baryon number by the so-called

sphaleron processes (hence the name baryogenesis through leptogenesis).

Let us consider this in more detail. The singlet neutrinos Ni are actually not completely

sterile: they cannot have gauge interactions in the standard model, but can have the usual

Yukawa couplings h∗αiℓ̄αNiRH + h.c.21 with the lepton doublets ℓα = (ναL, eαL)
T and the

Higgs field H = (H0, H−)T , which are allowed by the electroweak gauge symmetry. The

Yukawa couplings result in decays of Ni into the usual leptons and the Higgs particles. Since

the Ni’s are Majorana particles, their decay proceeds in a lepton number violating way, i.e.

they can decay both via Ni → ℓαH̄ and through the CP-conjugate channel Ni → ℓ̄αH . If the

Yukawa couplings hαi are complex, CP is not conserved in the leptonic sector, and the rates

of the above decay modes are in general different: Γ(Ni → ℓαH̄) 6= Γ(Ni → ℓ̄αH). This leads

to the production of a non-zero net lepton number. Note that CP-violation manifests itself

through the interference between the tree-level and 1-loop Feynman diagrams describing the

Ni decay; at the tree level the decay rates are proportional to |hαi|2, and the complexity of

the Yukawa constants does not reveal itself. The parameter that describes the generation

of the lepton asymmetry in the decay of Ni is

ǫi =
∑

α

Γ(Ni → ℓαH̄)− Γ(Ni → ℓ̄αH)

Γ(Ni → ℓαH̄) + Γ(Ni → ℓ̄αH)
=

1

8π(h†h)ii

∑

j 6=i

Im[(h†h)2ij ] g(xj) , (114)

where xj ≡M2
j /M

2
i and g(x) is model dependent. In the standard model

g(x) =
√
x

[

2− x

1− x
− (1 + x) ln

(

1 + x

x

)]

. (115)

In (114) we for simplicity summed over the flavours of final-state leptons (note that flavour

effects may actually be important, see the discussion in sec. 9 of [83]). Eq. (114) is valid

only when the mass differences of the heavy singlet Majorana neutrinos are large compared

with their decay widths, |Mj −Mi| ≫ Γi + Γj ; the opposite case, which leads to resonant

leptogenesis [84], requires a special consideration.

The deviation from thermal equilibrium is provided by the expansion of the Universe,

the rate of which is given by the Hubble parameter

H(T ) = 1.66
√
g∗ T

2/MPl . (116)

Here T is the temperature of the Universe, MPl = 1.2×1019 GeV is the Planck mass and g∗
is the number of relativistic degrees of freedom in the thermal bath (in the standard model

21Following the tradition, for the right-handed components of the singlet neutrinos Ni we use here the

notation NiR rather than νiR that was used in secs. 15.3 and 15.4.
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g∗ = 106.75). If the processes that create and destroy some particles are fast compared

with the Hubble expansion rate H(T ), they equilibrate particle distributions, otherwise the

thermal equilibrium is not achieved. For the singlet neutrino Ni the condition of deviation

from thermal equilibrium requires that at the time of the Ni decay (T ∼Mi) the decay rate

Γi =
(h†h)ii

8π
Mi be smaller than the Hubble rate: (h†h)ii

8π
Mi . 1.66

√
g∗

T 2

MPl
|T∼Mi

. Thus, the

lightest singlet neutrino Ni is typically the last one to go out of equilibrium in the course

of the expansion and cooling of the Universe. Therefore the lepton asymmetry produced

in decays of heavier Majorana neutrinos is washed out by the processes involving N1, and

the net lepton asymmetry of the Universe is produced in the decays of N1.
22 The out-of-

equilibrium condition for these decays can be rewritten as

m̃1 ≡
(h†h)11v

2

M1

. 8π · 1.66√g∗
v2

MPl

≃ 1.1× 10−3 eV , (117)

where v = 174 GeV is the Higgs VEV. In the opposite case the produced lepton asymmetry

is strongly washed out. It is interesting to note that, since the Dirac-type neutrino mass

matrix mD = hTv, the left-hand side of (117) is roughly of the same order of magnitude

as the masses of the light active neutrinos predicted by the seesaw mechanism,23 whereas

the right-hand side is close to the light neutrino mass scale that follows from the oscillation

experiments assuming that neutrino masses are hierarchical. Typically, one expects the

left-hand side of (117) to slightly exceed its right-hand side, leading to a moderate washout

of the lepton asymmetry.

How can the produced lepton number be converted into the baryon one? In the standard

model the baryon and lepton numbers are conserved at the tree level but are violated at

1-loop level by the so-called chiral anomalies. The anomalies of the baryon and lepton

number currents are the same, and so B−L is exactly conserved, but the sum B+L is not.

Although the (B + L)-violating processes are strongly suppressed at zero temperature, the

situation at high temperatures is different [85]. The standard model predicts the existence

of topologically non-trivial configurations of the gauge and Higgs fields (called sphalerons)

which violate B + L with the rate Γsph that exceeds the Hubble rate for 100 GeV . T .

1012 GeV. In this temperature interval the sphaleron processes can efficiently wash out B+L

and thus reprocess the lepton asymmetry into the baryon one. In a somewhat simplified

way, the reprocessing mechanism can be described as follows.

Assume that at a time t = 0 a net lepton number L0 is produced, while the initial

baryon number B0 = 0. Noting that B and L can be represented as linear combinations of

22Under certain circumstances decays of heavier singlet neutrinos can also be important, see sec. 10.2

of [83] and references therein.
23 If the matrix h were real, for hierarchical masses of Ni the left-hand side of (117) would have been

approximately equal to the trace of the mass matrix of light neutrinos, i.e. to the sum of the light neutrino

mass eigenvalues.
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B − L and B + L and that B + L is exponentially suppressed with time by the sphaleron

processes, for the values of L and B at a time t ≥ 0 we have

L(t) = −1

2
(B − L)0 +

1

2
(B + L)0e

−Γspht ,

B(t) =
1

2
(B − L)0 +

1

2
(B + L)0e

−Γspht . (118)

Thus, at the times t ≫ Γ−1
sph we have L ≃ L0/2, B ≃ −L0/2, i.e. we end up with

non-zero baryon number. A realistic calculation, which takes into account that only left-

handed quarks and leptons are coupled to the W -boson field, yields (in the standard model)

B = −(29/78)L0 rather than −L0/2. In addition, one should carefully take into account

the processes that wash out the lepton asymmetry, such as inverse N1 decays and 2 → 2

scattering processes. This is usually done by solving a system of Boltzmann equations or

quantum kinetic equations. As a result, one finds that for hierarchical masses of heavy

singlet neutrinos the observed value of the BAU can be generated provided that the mass

of the lightest among the heavy Majorana neutrinos N1 satisfies M1 & 108 GeV. For quasi-

degenerate in mass heavy neutrinos the viable baryon asymmetry can be achieved, through

the resonant leptogenesis, even for Mi as small as ∼ 1 TeV [84].

In the discussed baryogenesis mechanism all three Sakharov’s conditions are satisfied.

The baryon number violation is provided by the combination of L (and B − L) violation

in decays of heavy Majorana neutrinos and B + L violation by the sphaleron processes.

C-violation follows from the chiral nature of the Yukawa couplings, while CP-violation

is a consequence of the complexity of the corresponding coupling constants. Finally, the

condition of deviation from thermal equilibrium is met because in certain ranges of the

parameters the rates of decay and inverse decay of the heavy Majorana neutrinos (as well as

the rates of other L-violating processes) do not exceed significantly the Hubble expansion

rate.

What we discussed above was baryogenesis via leptogenesis in type I seesaw. Similar

mechanisms work in the case of type II and type III seesaw [83]. There also exists an

alternative leptogenesis mechanism [86, 87], in which the lepton asymmetry is generated in

CP-violating oscillations of the heavy Majorana neutrinos Ni rather than in their decays.

The produced asymmetry is then communicated from the Ni’s to the usual leptons through

their Yukawa couplings, and the reprocessing of the lepton number to the baryon number

proceeds through the sphaleron processes in the usual way.

In all the discussed versions of baryogenesis through leptogenesis the Majorana nature

of the singlet neutrinos plays a crucial role. There also exist leptogenesis scenarios with

Dirac neutrinos (see sec. 10.4 of [83] and references therein), but they are based on more

complicated and less economical models.
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15.9 Miscellaneous

Here we collect a few assorted remarks on Majorana particles.

It is usually said that in e.g. nuclear β− decay an electron antineutrino ν̄e is emitted,

while positron production in β+ decay is accompanied by the emission of an electron neutrino

νe, and we know that these are distinct particles. Does that mean that we have already

established that neutrinos are Dirac particles and νe 6= (νe)
c? Not really. The point is that

the charged-current weak interactions are chiral, so that only left-handed particles and their

right-handed Ĉ-conjugates can be emitted or absorbed. In the Dirac case, this means that

only the left-handed component of the Dirac field νe = νeL+νeR (as well as the right-handed

component (νeL)
c ≡ ν̄e of (νe)

c = (νeL)
c + (νeR)

c) take part in the interactions, while νe and

(νe)
c are indeed different particles. In the Majorana case we have νe = νeL + (νeL)

c, and

both chiral components of the field participate in weak interactions. What we call νe and ν̄e
are in this case merely the left-handed and right-handed components of the same Majorana

field of the electron neutrino. They are to a very good accuracy distinct because neutrinos

we deal with are always highly relativistic, and the transitions between their left-handed

and right-handed components are suppressed by the factor (mν/E)
2 ≪ 1. Thus, the role of

the lepton number, which is conserved in the Dirac case, is played for relativistic Majorana

neutrinos by chirality, which is nearly conserved. This illustrates once again the point we

have already made more than once – the smallness of the neutrino mass makes it very

difficult to discriminate between Dirac and Majorana neutrinos.

Can one still tell these two neutrino types apart by studying neutrino propagation under

extreme conditions, such as e.g. very high densities and/or strong magnetic fields which are

expected to be present in stellar environments? This question was studied in [88], and the

answer unfortunately turns out to be essentially negative.

It is a well known but not yet completely understood fact that electric charge is quan-

tized. Possible explanations include the existence of the magnetic monopole and grand

unification of particles and forces. It turns out, however, that electric charge quantization

can be understood even outside these frameworks if neutrinos are Majorana particles [89].

In the minimal standard model with no right-handed (singlet) neutrinos νR, charge quan-

tization is a consequence of the hypercharge assignment of the particles that follows from

the requirement of the anomaly cancellation. The cancellation of anomalies, in turn, is

necessary for internal consistency of the theory. However, the minimal standard model is

not realistic in the sense that neutrinos are massless in it. It therefore in any case has to

be amended by a neutrino mass generating mechanism. If one adds right-handed singlet

neutrinos to the standard model, there are essentially two possibilities. First, one imposes a

lepton number conservation which allows only Dirac mass terms for neutrinos. In this case
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the anomaly cancellation condition no longer leads to electric charge quantization. If no lep-

ton number conservation is imposed, massive neutrinos turn out to be Majorana particles.

In this case anomaly cancellation always results in electric charge quantization [89]. The

authors of [89] have also studied a wide class of non-grand-unified extensions of the standard

model which allow massive neutrinos, and found that in virtually all cases the Majorana

nature of neutrinos led to electric charge quantization, whereas for Dirac neutrinos no such

quantization occurred. Thus, the observed quantization of electric charge in Nature may

have its explanation through the existence of Majorana neutrinos.

It is conceivable that our (3+1)-dimensional world is actually embedded in a space-time

of higher dimensionality; in particular, higher-dimensional space-times appear in Kaluza-

Klein, supergravity and superstring models. From the point of view of applications to

condensed-matter physics, it may also be interesting to consider space-times of lower di-

mensionality. Can Majorana particles live in such unconventional space-times? The answer

is yes, but not in all of them. For d-dimensional space-times with d − 1 space-like and one

time-like dimensions, massive Majorana fermions can exist only if d = 2, 3 and 4 mod 8 (see

e.g. sec. 2 of [90] and references therein). Massless self-conjugate fermions can live in the

space-times of the same dimensionality, and in addition in d = 8 and 9 mod 8 dimensions.24

These results can also be extended to the case of n > 1 time-like dimensions.

15.10 Summary and conclusions

The possibility of existence of fermions which are their own antiparticles is certainly the most

famous and arguably the most important result obtained by Ettore Majorana. Extensions

of the standard model typically predict neutrinos to be massive Majorana particles. There

are some experimental hints in favour of possible existence of extra neutrino species (on

top of the already known νe, νµ and ντ ); if exist, they are very likely Majorana particles.

The Majorana nature of neutrinos would imply lepton number violation – a very interesting

phenomenon which is now being intensely searched for experimentally.

Possible existence of heavy electroweak-singlet Majorana neutrinos provides us, through

the seesaw mechanism, with a natural and elegant explanation of the smallness of the masses

of the usual neutrinos. Heavy (or relatively heavy) Majorana neutrinos furnish very simple

and attractive mechanisms for generating the observed baryon asymmetry of the Universe.

Majorana particles are abundant in SUSY models. Majorana fermions can play a role of the

dark matter particles and thus provide a solution of one of the most important problems

24Note that massless spin-1/2 fermions admit more freedom in the definition of the the particle-antiparticle

conjugation operation: the matrix C that enters eq. (9) may be defined either through the usual relation

C−1γµC = −γµT or through C−1γµC = +γµT .
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of modern cosmology. Majorana neutrinos may hold a clue to the understanding of electric

charge quantization observed in Nature.

If Majorana particles exist, they should have special properties with respect to C-, CP-

and CPT-transformations and possess very peculiar electromagnetic properties. By studying

them we may be able to learn a great deal about the fundamental properties of particles

and their interactions.

Particle-like excitations of Majorana nature have been found in condensed-matter sys-

tems (see chapter 14 of this book). However, very active direct and indirect searches for

Majorana neutrinos and other fundamental Majorana particles in many laboratories in the

world have up to now brought no fruit. This should not discourage us too much – just re-

member that it took us over 40 years to discover neutrino oscillations after their possibility

had first been proposed! After all, the idea of Majorana fermions is so elegant and attractive

that Nature just could not have missed the opportunity to create them.
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