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Abstract
In this topical review we argue that neutrino mass and mixing data moti-
vates extending the Standard Model (SM) to include a non-Abelian discrete
flavour symmetry in order to accurately predict the large leptonic mixing
angles and  violation. We begin with an overview of the SM puzzles,
followed by a description of some classic lepton mixing patterns. Lepton
mixing may be regarded as a deviation from tri-bimaximal mixing, with
charged lepton corrections leading to solar mixing sum rules, or tri-maximal
lepton mixing leading to atmospheric mixing rules. We survey neutrino
mass models, using a roadmap based on the open questions in neutrino
physics. We then focus on the seesaw mechanism with right-handed neu-
trinos, where sequential dominance (SD) can account for large lepton
mixing angles and  violation, with precise predictions emerging from
constrained SD (CSD). We define the flavour problem and discuss progress
towards a theory of favour using GUTs and discrete family symmetry. We
classify models as direct, semidirect or indirect, according to the relation
between the Klein symmetry of the mass matrices and the discrete family
symmetry, in all cases focussing on spontaneous  violation. Finally we
give two examples of realistic and highly predictive indirect models with
CSD, namely an A to Z of flavour with Pati–Salam and a fairly complete
A4×SU(5) SUSY GUT of flavour, where both models have interesting
implications for leptogenesis.
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1. Introduction

The Nobel Prize in Physics for 2015 has just been awarded to Takaaki Kajita (Super-
Kamiokande Collaboration, University of Tokyo, Japan) and to Arthur B McDonald (Sud-
bury Neutrino Observatory Collaboration, SNO, Canada) ‘for the discovery of neutrino
oscillations, which shows that neutrinos have mass’ and ‘for their key contributions to the
experiments which demonstrated that neutrinos change identities. This metamorphosis
requires that neutrinos have mass. The discovery has changed our understanding of the
innermost workings of matter and can prove crucial to our view of the Universe.’ In 1998
Takaaki Kajita presented to the world the discovery that neutrinos produced in the atmosphere
switch between two identities on their way to Earth. Arthur McDonald subsequently led the
Canadian collaboration which demonstrated that neutrinos from the Sun do not disappear on
their way to Earth, but change identity by the time of arrival to the SNO detector. Since then
there have been many developments in neutrino physics. This topical review will focus on the
most recent developments since 2012.

The year 2012 was important in physics for two quite different reasons: the discovery of
the Higgs boson and the measurement of the neutrino reactor angle. While the Higgs boson
discovery supports the electroweak symmetry breaking sector of the standard model (SM), the
reactor angle marks the completion of the  conserving part of the leptonic mixing matrix.
While the Higgs discovery made a big splash in network TV headlines across the world, the
reactor angle measurement only made a small plop in physics blogs and scientific journals,
even though a year earlier neutrinos had been globally reported to travel faster than light
(sic). However truth is stranger than fiction, since although neutrinos are not superluminal,
their mass and mixing requires physics beyond the SM, making them ‘ghostly beacons of new
physics’ [1]. By contrast, the Higgs discovery serves only to confirm the SM, with its
properties being exactly as predicted to increasing levels of accuracy.

While all physicists agree that the measured reactor angle opens up the prospect of
measuring  violation in neutrino experiments in the foreseeable future, the theoretical
significance of the reactor angle discovery splits the community. Consider the early history of
neutrino model building, from 1998 onwards, summarized in the reviews [2–5]. Following
the large atmospheric and solar mixing discoveries in 2002, many of the models in [3]
involved sequential dominance (SD) [6, 7], which predicts a normal neutrino mass hierarchy
m m m1 2 3  and a large reactor angle θ13m2/m3. Models incorporating SD were
constructed with SU(3) family symmetry providing an explanation of maximal atmospheric
mixing via vacuum alignment [8]. There then followed the age of tri-bimaximal (TB) mixing
with an explosion of models involving a zero reactor angle, enforced by discrete family
symmetry [9], as reviewed in [10, 11]. A polar opposite approach called Anarchy was also put
forward early on [12], the idea being that lepton mixing is determined randomly as if God
plays dice with the neutrino mass matrix. According to Anarchy the reactor angle is on the
same footing as the atmospheric and solar angles, and hence was generally expected to be
large. Following the measurement of a large reactor angle in 2012, many people have jumped
to the conclusion that Anarchy is preferred to discrete family symmetry. However, unlike that
other dice-throwing theory (quantum mechanics), Anarchy is intrinsically untestable. Instead
one is led to rather sterile arguments about whether Anarchy is statistically better than models
with family symmetry [13]. By contrast discrete family symmetry models are highly testable,
indeed many of them were excluded by the measurement of the reactor angle. Moreover, the
model builders have been hard at work, showing how discrete family symmetry models could
be modified to account for the observed reactor angle, as discussed in recent reviews [14, 15].
Before concluding that model builders are serial revisionists, it is worth remembering that SD
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predicted a large reactor angle θ13m2/m3, a decade before it was measured [7], although
understanding why this bound is saturated requires further input. This topical review, then,
summarizes the model building developments since 2012, including the latest progress in
spontaneous  violation and versions of CSD which explain why θ13∼m2/m3, as well as
grand unified theories (GUTs) with discrete flavour symmetry which incorporate these ideas.

We have mentioned that the discovery of neutrino mass and mixing in 1998, unlike the
Higgs boson discovery, requires new physics beyond the SM. To understand why, it is
enough to realize that the origin of neutrino mass remains unknown. Although many types of
new physics beyond the SM allow neutrino mass, since no BSM physics has been found,
many people favour adding just right-handed (RH) neutrinos and nothing else. If we do this
then immediately we face the questions of how many RH neutrinos and what are their
Majorana masses, which may range from zero to the Planck scale? Alternatively, we may just
add effective operators with some cut-off mass scales (proposed by Weinberg) but if we do
this we soon learn that some of these operators must be associated with a mass scale below
the Planck scale, and probably also below the scale of grand unification, so the SM must
break down at some scale. It is clear then that the origin of neutrino mass requires the first
(and so far only) new physics beyond the SM of particle physics. What is the nature of the
new physics? Although the origin of tiny neutrino mass is unknown, it could imply some sort
of seesaw mechanism at a high mass scale, or maybe new particles associated with loop
models of neutrino mass, or perhaps R-parity violating supersymmetry (SUSY)—maybe even
extra dimensions? Any example of such new physics would have implications for the uni-
fication of matter, forces and flavour GUTs, and the extra seven parameters (or nine para-
meters if neutrinos are Majorana) associated with neutrino mass and mixing makes the flavour
problem of the SM less ignorable since any version of an extended SM must now have around
30 parameters in total, surely too many for a satisfactory theory of particle physics? The
presence of such a large number of parameters associated with flavour, as well as the phe-
nomenon of large lepton mixing, very unlike that witnessed in the quark sector, has stimu-
lated attempts to address the flavour problem based on family symmetry. Since atmospheric
and solar mixing continues to display the TB form, indicative of two and three-fold per-
mutation symmetries, this continues to motivate the use of discrete non-Abelian family
symmetry. An important point to realize is that discrete non-Abelian family symmetry does
not imply zero reactor angle, as we discuss at length in this review.

In the realm of Cosmology, neutrinos could be responsible for our very existence, since
leptogenesis is now the leading candidate for the origin of matter–antimatter asymmetry [16]
(the SM gives too small a value for such asymmetry). Neutrino mass tends to wash out galaxy
structures, since eV neutrinos represent a hot dark matter component. On the other hand warm
dark matter, for example from keV sterile neutrinos, could be responsible for all the dark
matter in the Universe [17]. More speculatively, neutrinos could play a role in inflating the
Universe from Planck scale size to its present size via sneutrino inflation [18]. And it remains
an intriguing possibility that neutrino mass is somehow related to dark energy since the scales
happen to be the same order of magnitude (see e.g. [19] and references therein).

Turning to neutrino phenomenology, the observed pattern of neutrino masses and lepton
mixing is quite remarkable. Neutrinos have tiny masses (for all three neutrinos, much less
than the electron mass) which are not very hierarchical. Such masses break the separate lepton
numbers Le , Lμ , Lτ, but may or may not preserve the total lepton number L L L Le= + +m t
(depending on whether neutrinos are Dirac or Majorana). Neutrinos certainly mix a lot (unlike
the quarks). As mentioned already, neutrino mass implies at least seven new parameters as
compared to the minimal SM: three neutrino masses, three lepton mixing angles, one 
violating phase. If the three neutrino masses are Majorana in nature, there are two further 
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violating phases. As discussed above, the origin of neutrino mass is unknown. For example,
heavy RH neutrino exchange could be responsible for the Weinberg operators. Such heavy
RH Majorana masses play a crucial role in generating the matter–antimatter asymmetry via
leptogenesis [16], mentioned above. Alternatively, the origin of neutrino mass (and matter–
antimatter asymmetry) could be something completely different.

The ground breaking neutrino oscillation milestones may be summarized as (for original
experimental references see e.g. [20]):

• 1998 Atmospheric νμ disappear, implying large θ23 (SuperKamiokande).
• 2002 Solar νe disappear, implying large θ12 (SuperKamiokande, following the classic
Homestake and Gallium experiments).

• 2002 Solar νe converted to νμ and ντ (Sudbury Neutrino Observatory).
• 2004 Reactor en seen to disappear and reappear (KamLAND).
• 2004 Accelerator νμ first seen to disappear (K2K).
• 2006 Accelerator νμ disappearance studied in detail (MINOS).
• 2010 Accelerator νμ converted to an observed ντ (OPERA).
• 2011 Accelerator νμ converted to νe giving a hint for θ13 (T2K, MINOS).
• 2012 Reactor en disappear, θ13 accurately measured (Daya Bay, RENO).

The fast pace of neutrino physics is well illustrated by the reactor angle which was
unmeasured before 2012 but is now measured to incredible accuracy: θ13≈8.4°±0.2° (see
[21] and references therein). The other angles are determined from global fits [22–24] to be:
θ12≈34°±1° and θ23≈45°±3°, and first hints of the  -violating (CPV) phase
δ∼−π/2 have been reported, however with a large error ±π/3. The meaning of the angles
is given in figure 1. Two possible mass squared orderings are possible as explained in
figure 2. The above quoted angles are extracted from the global fits which are displayed in
figure 3 for the normal ordering (NO) case.

Despite the great pace of progress in neutrino physics, there are still several unanswered
experimental questions, as follows:

• Is the atmospheric neutrino angle θ23 in the first or second octant?
• Do neutrino mass squared eigenvalues have a NO or inverted ordering (IO)?
• What is the value of the lightest neutrino mass?
• Are neutrinos Dirac or Majorana?
• Is  violated in the leptonic sector and if so by how much?

Figure 1. Neutrino mixing angles (assuming zero  violation) may be represented as
Euler angles relating the charged lepton mass basis states (νe, νμ, ντ) to the mass
eigenstate basis states , , .1 2 3( )n n n
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What is the  violating phase δ? Is the current hint δ∼−π/2 going to hold up? It is
common but incorrect to refer to the mass squared ordering question as the ‘neutrino mass
hierarchy’. However the ‘ordering’ question is separate from whether neutrinos are hier-
archical in nature or approximately degenerate, which is to do with the lightest neutrino mass.
Many neutrino experiments are underway or in the planning stages to address these questions
such as T2K, NOνA, Daya Bay, JUNO, RENO, KATRIN, LBNE/DUNE and many neu-
trinoless double beta decay experiments running and planned [25].

The layout of the remainder of this topical review is as follows. In section 2 we give an
overview of the SM puzzles, followed in section 3 by a description of some classic lepton
mixing patterns. Lepton mixing may be regarded as a deviation of TB mixing, as discussed in
section 4, with charged lepton corrections leading to solar mixing sum rules, while tri-
maximal lepton mixing leads to atmospheric mixing rules. Motivated by the open questions in
neutrino physics, in section 5 we discuss a roadmap of the origin of neutrino mass, focussing

Figure 2. The probability that a particular neutrino mass state νi with mass mi contains a
particular charged lepton mass basis state , ,e( )n n nm t is represented by colours. The left
and right panels of the figure are referred to as normal or inverted mass squared
ordering, respectively, referred to as NO or IO. The value of the lightest neutrino mass
is presently unknown.

Figure 3. Global fits [22–24] to the lepton mixing angles for the case of normal
neutrino mass squared ordering. The green dots are the best fit points, the red (blue)
areas indicate the one (three) sigma ranges. The dashed lines indicate tri-bimaximal-
Cabibbo (TBC) mixing [26], namely the values: s 1 312

2 = , s 1 223
2 = s 2.13

2
C
2q= The

Fogli et al fits do not include the latest Daya Bay results, whereas the other two do.
This is a modified version of a figure provided privately by Stefano Morisi.
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on the seesaw mechanism with RH neutrinos, leading to SD, whose constrained form can lead
to predictions for mixing angles. In section 6 we survey the flavour problem and its possible
resolution based on symmetry, using both GUTs and family symmetry, then classify flavour
models as direct, semidirect or indirect, according to the relation between the Klein symmetry
of the mass matrices and the underlying discrete family symmetry, focussing on the possi-
bility of spontaneous  violation. In section 7 we give two examples of realistic and highly
predictive indirect models, namely an A to Z of flavour with Pati–Salam (PS) and a fairly
complete A4×SU(5) SUSY GUT of flavour, where both models incorporate constrained
sequential dominance (CSD) and have interesting implications for leptogenesis. In section 8
we speculate about the possible F-theory origin of SUSY GUTs with discrete family sym-
metry. Section 9 concludes this topical review.

2. The SM puzzles

Even though the SM is essentially complete, following the Higgs boson discovery, we are far
from satisfied since it offers no solutions to the cosmological puzzles of matter–antimatter
asymetry, dark matter and dark energy. It therefore cannot be the final answer. In addition it
leaves three unresolved puzzles in its wake:

The origin of mass—the origin of the Higgs vacuum expectation value (VEV), its sta-
bility under radiative corrections, and the solution to the hierarchy problem (most urgent
problem of LHC).

The quest for unification—the question of whether the three known forces of the SM may
be related into a GUT, and whether such a theory could also include a unification with
gravity.

The problem of flavour—the problem of the undetermined fermion masses and mixing
angles (including neutrino masses and lepton mixing angles) together with the  violating
phases, in conjunction with the observed smallness of flavour changing neutral currents and
very small strong  violation. In particular the unknown origin of the extremely small
neutrino masses for all three families may offer a clue as to what lies beyond the SM.

The differences between quark and lepton mixing may also offer clues concerning the
flavour problem. Certainly the flavour problem has now become much richer, following the
discovery of neutrino mass and mixing, so we shall discuss more about this in section 6. We
now digress slightly to discuss an alternative point of view that frequently is voiced. Namely,
all that is required for neutrino masses is to add two or three RH neutrinos with zero Majorana
mass due to a conserved B− L, and Yukawa couplings for all neutrino families of about
10−11 and that no new physics beyond this is required. However this conservative point of
view involves a new mystery, namely why the third family Yukawa couplings are of order
unity for the top quark, and not very small for the bottom quark and τ lepton, but are of order
10−11 for the third family of neutrinos. The seesaw mechanism [27], i.e. large third family
neutrino Yukawa couplings, with physical neutrino masses suppressed by heavy RH
Majorana masses with B− L broken at a high scale, provides an elegant solution to this
mystery, and opens the door to leptogenesis. However, the seesaw mechanism by itself does
not account for the observed large lepton mixing, so we need to go further.

It has been one of the long standing goals of theories of particle physics beyond the SM
to predict quark and lepton masses and mixings. With the discovery of neutrino mass and
mixing, this quest has received a massive impetus. Indeed, perhaps the greatest advance in
particle physics over the past decade has been the discovery of neutrino mass and mixing
involving large mixing. The largeness of the lepton mixing angles contrasts with the

J. Phys. G: Nucl. Part. Phys. 42 (2015) 123001 Topical Review

6



smallness of the quark mixing angles, and this observation, together with the smallness of
neutrino masses, provides new and tantalizing clues in the search for the origin of quark and
lepton flavour. For example, it is intriguing that the smallest lepton mixing may be related to
the largest quark mixing, U 2e3 Cq» where θC is the Cabibbo angle, although this
relation is in tension with the latest Daya Bay results. The quest to understand the origin of the
three families of quarks and leptons and their pattern of masses and mixing parameters is
called the flavour puzzle, and motivates the introduction of family symmetry. In particular, as
we shall see, lepton mixing provides a motivation for discrete family symmetry, which will
form the central part of this review. As we shall also see, such theories demand a high
precision knowledge of the lepton mixing angles, beyond that currently achieved.

The PDG [28] advocates CKM and the PMNS mixing matrices being parameterized by:

c c s c s

s c c s s c c s s s c s

s s c s c c s s s c c c

e

e e

e e

, 1
12 13 12 13 13

i

12 23 12 13 23
i

12 23 12 13 23
i

13 23

12 23 12 13 23
i

12 23 12 13 23
i

13 23

( )
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟- - -

- - -

d

d d

d d

-

where δ≡δCP is the  violating phase in each sector (quark and lepton) and s13=sin θ13,
etc with (very) different angles for quarks and leptons. In the quark sector the mixing angles
are all small, with

s s s, , , 212 23
2

12
3 ( )l l l= ~ ~

where λ=0.226±0.001 is the Wolfenstein parameter [28]. The  violating phase in the
quark sector is roughly1 2 2( )d p~ . The large lepton mixing, discussed in further in the
next section, must arise in conjunction with the mechanism responsible for the smallness of
neutrino mass, which however is unknown. In the case of Majorana neutrinos, the PMNS
matrix also involves the phase matrix [28]: diag 1, e , ei i21

2
31
2( )

a a
which post-multiplies the

above matrix. It is a puzzle why the quark mixing angles are so small while the lepton mixing
angles are so large.

3. Patterns of lepton mixing

The origin of neutrino mass is unknown, as discussed above, meaning that there is not a
unique electroweak description, as for the quarks. There are basically two possibilities, either
neutrinos are Dirac or Majorana. Here we shall exclusively focus on the Majorana case.
Majorana neutrino masses must be generated in such a way that, below the electroweak
breaking scale, we should obtain the leptonic Lagrangian

v Y e e m
1

2
h.c.. 3d ij

e i j
ij e

i
e
cjlepton

L R L L
e ( ) n n= - - +n

The resulting matrices are diagonalized by unitary transformations

U Y U

y

y

y

U m U
m

m
m

0 0

0 0

0 0

,
0 0

0 0
0 0

. 4e
e

e

e
T

1

2

3

e
e

eL R L L
( )†

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= =m

t

n
n

n

1 Interestingly, in the original KM parametrization, the  violating phase is roughly maximal δ∼π/2, as is the
angle α∼π/2 in the standard unitarity triangle representing the orthogonality of the first and third columns of the
CKM matrix [28].
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The couplings to W− are given by e W ,g i
e
i

2 L Lg n- m
m
- hence the charged currents in terms of

mass states are

g
e U W

2
h.c., 5lepton

CC
L L L PMNS

1L

2L

3L
( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ m t g

n
n
n

= - +m
m
-

where we identify the PMNS matrix as

U U U . 6ePMNS eL L
( )†= n

Now only three of the six phases can be removed since each of the three charged lepton mass
terms such as m e e ,e L R etc, is left unchanged by a phase rotation e eeL

i
Le f and

e ee ,R
i

Re f etc, where the three phases fe, etc, are chosen to leave three physical
(irremovable) phases in UPMNS. There is no such phase freedom in the Majorana mass terms

mi i i
c1

2 L Ln n- where mi are real and positive.
We already discussed the PDG parametrization of the PMNS matrix UPMNS in

equation (1). We now discuss three simple ansatze for UPMNS which have been proposed.
Although each of them involves a zero reactor angle and is hence excluded, they will serve to
motivate approaches which involve a non-zero reactor angle.

3.1. Bimaximal (BM) mixing

An early suggested pattern of lepton mixing is known as BM mixing with s 013
2 = and

s s 1 212
2

23
2= = which could originate from the discrete group S4 (see later). It has a maximal

solar mixing angle [29], and is given by a matrix of the form

U

0

. 7BM

1

2

1

2

1
2

1
2

1

2

1
2

1
2

1

2

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= -

-

3.2. TB mixing

A second pattern of lepton mixing which came to dominate the model building community
until the measurement of the reactor angle is the TB mixing matrix [30]. This has been
associated with models based on the flavour symmetries A4 and S4 (see later). Like BM
mixing it predicts s 013

2 = and s 1 223
2 = but differs in that it predicts a solar mixing angle

given by s 1 3 ,12 = i.e. θ12≈35.3°. The mixing matrix is given explicitly by

U

0

. 8TB

2
3

1

3

1

6

1

3

1

2

1

6

1

3

1

2

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= -

-

3.3. Golden ratio (GR) mixing

Another pattern of lepton mixing which was viable until the reactor angle measurement
associates the GR 1 5

2
j = + with the solar mixing angle. The original GR mixing pattern is

related to the flavour symmetry A5 [31]. As above, it predicts s 013
2 = and s 1 223

2 = but
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differs by having a solar mixing angle given by t 1 ,12 j=n i.e. 31.7 ,12q » n resulting in the
mixing matrix

U

0

. 9GR

2

1

2

1

4 2 4 2

1

2

1

4 2 4 2

1

2

( )

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟
= -

-

j
j j

j
j

j

j
j

j

+ +

+ +

+ +

4. Deviations from TB mixing

4.1. Deviation parameters

After the measurement of the reactor angle, TB mixing is excluded. However, TB mixing still
remains a reasonable approximation to lepton mixing for the solar and atmospheric angles. It
therefore makes sense to expand the angles about their TB values [32, 33]:

ssin
1

3
1 , 1012 ( ) ( )q = +

asin
1

2
1 , 1123 ( ) ( )q = +

r
sin

2
, 1213 ( )q =

where s, a, and r are the (s)olar, (a)tmospheric and (r)eactor deviation parameters such that
TB mixing [30] is recovered for s=a=r=0. For example, TBC mixing [26] corresponds
to s=a=0 and r=θC, where θC is the Cabibbo angle, which is consistent with data at
three sigma as shown in figure 3.

4.2. Tri-maximal mixing and atmospheric sum rules

Tri-maximal mixing is a variation which preserves either the first or the second column of the
TB mixing mixing matrix in equation (8), leading to two versions called TM1 or TM2

U U, . 13TM1

2

3

1

6

1

6

TM2

1

3

1

3

1

3

( )

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

- -

- - -

- -

=

- -

- -

- - -

The dashes indicate that the other elements are undetermined. However these are fixed
once the reactor angle is specified (it is a free parameter here). These imply the relations

U U UTM1:
2

3
and

1

6
; 14e1 1 1 ( )= = =m t

U U UTM2:
1

3
. 15e2 2 2 ( )= = =m t
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The atmospheric mixing sum rule

a r a r s a rcos , , with , , 162 2 2 2( ) ( ) ( ) l d= + =

was first derived in [32] by expanding the PMNS matrix to first order in r, s, a. It also follows
from a first order expansion of equations (14) and (15), where λ=1 for TM1 and λ=−1/2
for TM2. The study of correlations of this type, and their application to the discrimination
between underlying models, has been shown to be a realistic aim for a next-generation
superbeam experiment [34], see for example figure 4.

4.3. Charged lepton corrections and solar sum rules

Now suppose that neutrino mixing UTB
n obeys TB exactly so that the PMNS matrix according

to equation (6) is given by U U Ue
PMNS TB= n where UTB

n is equated to equation (8) while Ue

encodes some unknown charged lepton corrections which must be small since UPMNS is not
far from TB mixing. The solar mixing sum rule [35–37] then follows from the assumption
that 0.e e

23 13q q= = If the charged lepton mixing matrix involves a Cabibbo-like mixing, then
the PMNS matrix is given by

U
c s

s c

e 0

e 0
0 0 1

0 e

.

17

e e

e e

s

c
PMNS

12 12
i

12
i

12

2
3

1

3

1

6

1

3

1

2

1

6

1

3

1

2

2
i

2

1

6

1

3

1

2

e

e

e e

e
12

12

12 12

12 ( )
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= - -

-

=

-

d

d

d
-

- 

 

Comparing to the PMNS parametrization in equation (1) we identify

U s
s

2
, 18e

e

3 13
12 ( )= =

U s s s c c e
1

6
, 191 23 12 13 23 12

i ( )= - =t
d

U c s s s c e
1

3
, 202 12 23 12 13 23

i ( )= - - =t
d

U c c
1

2
. 213 13 23 ( )= =t

The first equation predicts a reactor angle θ13≈9.2° if θe≈θC≈13°. The second and
fourth equations allow to eliminate θ23 to give a new relation between the PMNS parameters,
θ12, θ13 and δ called a solar sum rule, which may be expanded to first order to give the
approximate relations

35.26 cos or cos
35.26

2212 13
12

13
( )q q d d

q
q

»  + »
- 

where 35.26 sin ,1 1

3
 = - which can be recast as [32],

s r a rcos , . 232 2( ) ( )d= +

Recently it has been realized that, keeping 0,e
13q = but allowing 0,e

23q ¹ the following exact
result can be obtained by generalizing equation (17) to allow both , 0e e

12 23q q ¹ [38]:
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U

U

s s c s c

c s s s c

e

e

1

2
, 24

1

2

12 23 12 13 23
i

12 23 12 13 23
i

( )=
-

- -
=

t

t

d

d

for the previous case 0e e
23 13q q= = this result follows trivially by taking the ratio of the two

equations (19) and (20). Therefore this result applies to that case also. However it turns out
that e

23q cancels in this ratio which is therefore a more general sum rule (though not
completely general since it still assumes 0e

13q = ). After some algebra, equation (24) leads to
an exact prediction for cos δ in terms of the other physical lepton angles

t s s c t t s t

s
cos

sin 2
, 25

23 12
2

13
2

12
2

23
1
3 23 13

2
23

12 13

( )
( )d

q
=

+ - +

as displayed in figure 5.
When expanded to first order, equation (25) reduces to the leading order sum rule in

equation (22). This is not too surprising since the previous sum rule case also satisfies
equation (24). The leading order sum rule in equation (22) offers a simple way to understand

Figure 4. Expectation for the determination of the TM1 atmospheric mixing sum rule
a≈rcos δ at one, three and five sigma for a low energy neutrino factory with a
magnetized iron detector (for more details see [34]).

Figure 5. Solar sum rules prediction for cos δ using the exact result in equation (25) for
TB neutrino mixing (for more details see [38]).
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the results in figure 5. For example from figure 5 it seems that TB neutrino mixing predicts
cos δ≈0 if θ12≈35.26°, which is obvious from2 equation (22). This can also be understood
from equation (25) where we see that for s 1 312

2 = the leading terms t s23 12
2 and t1

3 23 in the

numerator cancel, leaving s tcos 2 2 0.0513 23( )d = » which is consistent with the
numerical estimates of the error given above for a range of θ12.

Solar sum rules can also be obtained for different types of neutrino mixing such as UBM
n

(which is almost excluded) and UGR
n (which gives similar results to the case UTB

n considered
here). The general formula given in [38] is

t s s c t s t s t

s
cos

sin 2
, 26

23 12
2

13
2

12
2

23 12
2

23 13
2

23

12 13

( )
( )d

q
=

+ - +n

where s ,12
2 1

3

1

2
=n forUTB,BM

n and so on. The prospects for studying solar sum rules at JUNO
and LBNF is discussed in [38]. A slightly more lengthy but equivalent formula to
equation (25) had been previously derived [39] by an alternative method involving an
auxiliary phase f without using the elegant result equation (24),

t

s
s c scos

sin 2
cos 2 1 cot . 2723

12 13
12 12

2
12

2 2
23 13

2( )( ) ( )⎡⎣ ⎤⎦d
q

q q= + - -n n

We prefer the simpler form in equation (26) which involves 12qn in only one place since it
exhibits the cancellation between the terms t s23 12

2 and s t12
2

23
n when s s12

2
12

2= n responsible for
the prediction cos δ≈0 in this case We also advocate the much simpler derivation of
equation (26) given in [38].

Finally we give a word of caution that when comparing leading order sum rules to the
exact results the ratio cos cosexact LO( ) ( )d d used in [40] will lead to misleading results when
(cos δ)LO≈0. In general it is safer to compare them using the experimentally relevant
quantity cos cos cosexact LO( ) ( ) ( )d d dD = - defined in [38]. For example we find Δ

(cosδ)0.1 for TB neutrino mixing corrected by charged lepton mixing. It will take
experiment a long time to reach this level of precision, so for present purposes the linear
approximation in equation (22) is adequate for TB neutrino mixing.

5. Neutrino mass models

5.1. The open questions from neutrino physics

Despite the great progress coming from neutrino oscillation experiments there are still some
outstanding questions. Are the lepton mixing angles consistent with TBC mixing? If not then
is the atmospheric angle in the first or second octant? What is the leptonic  violating phase
δ? Is the current hint δ∼−π/2 going to hold up? Maybe there is no  violation in the
lepton sector? Are neutrino mass squared ordered normally or inverted3? What is the lightest
neutrino mass? Are neutrino masses Majorana or Dirac in nature? Many neutrino experiments
are underway or in the planning stages to address these questions such as T2K, NOνA, Daya
Bay, JUNO, RENO, KATRIN, DUNE and many neutrinoless double beta decay experiments
running and planned [25].

2 Note that cos δ∼0 is consistent with the current hint δ∼−π/2.
3 It is common but incorrect to refer to this question as the ‘neutrino mass hierarchy’ since the ‘ordering’ question is
separate from whether neutrinos are hierarchical in nature or approximately degenerate, which is to do with the
lightest neutrino mass.
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5.2. Road map of neutrino mass models

Everyone can invent her or his personal roadmap of neutrino mass models, one example
being that shown in figure 6. The blue boxes contain experimental questions and the red
boxes possible theoretical consequences. In this subsection we shall briefly describe the
possible theoretical options for producing neutrino mass.

It is worthwhile to first recall why the observation of non-zero neutrino mass and mixing
is evidence for new physics beyond the SM. The most intuitive way to understand why
neutrino mass is forbidden in the SM, is to understand that the SM predicts that neutrinos
always have a ‘left-handed’ spin—rather like rifle bullets which spin counter clockwise to the
direction of travel. In fact this property was first experimentally measured in 1958, two years
after the neutrino was discovered, by Maurice Goldhaber, Lee Grodzins and Andrew Sunyar.
More accurately, the ‘handedness’ of a particle describes the direction of its spin vector along
the direction of motion, and the neutrino being ‘left-handed’ means that its spin vector always
points in the opposite direction to its momentum vector. The fact that the neutrino is left-
handed, written as νL, implies that it must be massless. If the neutrino has mass then,
according to special relativity, it can never travel at the speed of light. In principle, a fast
moving observer could therefore overtake the spinning massive neutrino and would see it
moving in the opposite direction. To the observer, the massive neutrino would therefore
appear RH. Since the SM predicts that neutrinos must be strictly left-handed, it follows that
neutrinos are massless in the SM. It also follows that the discovery of neutrino mass implies
new physics beyond the SM, with profound implications for particle physics and cosmology.

Neutrinos are massless in the SM for three independent reasons:

• There are no RH neutrinos νR.
• There are only Higgs doublets (and no Higgs triplets) of SU(2)L.
• There are only renormalizable terms.

In the SM, the three massless neutrinos νe, νμ, ντ are distinguished by separate lepton
numbers Le, Lμ, Lτ. Neutrinos and antineutrinos are distinguished by total conserved lepton
number L L L L .e= + +m t To generate neutrino mass we must relax one or more of the
above three conditions. For example, by adding RH neutrinos the Higgs mechanism of the
SM can give neutrinos the same type of mass as the Dirac electron mass or other charged
lepton and quark masses, which would generally break the separate lepton numbers Le, Lμ, Lτ,
but preserve the total lepton number L. However it is also possible for neutrinos to have a new
type of mass of a type first proposed by Majorana, which would also break L. There exists a
special case where total lepton number L is broken, but the combination L L Le - -m t is

Figure 6. Roadmap of neutrino mass models.
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conserved; such a symmetry would give rise to a neutrino mass matrix with an inverted mass
spectrum.

From the theoretical perspective, the main unanswered question is the origin of neutrino
mass, and in particular the smallness of neutrino mass. The simplest possibility is that
neutrinos have Dirac mass just like the electron mass in the SM, namely due to a term like
y LH ,D Rn where L is a lepton doublet containing νL, H is a Higgs doublet and νR is a RH
neutrino. The observed smallness of neutrino masses implies that the Dirac Yukawa coupling
yD must be of order 10−12 to achieve a Dirac neutrino mass of about 0.1eV. Advocates of
Dirac masses point out that the electron mass already requires a Yukawa coupling ye of about
10−6, so we are used to such small Yukawa couplings. In this case, all that is required is to
add RH neutrinos νR to the SM and we are done. Well, almost. It still needs to be explained
why the νR have zero Majorana mass, after all they are gauge singlets and so nothing prevents
them acquiring (large) Majorana mass terms MRRνRνR where MRR could be as large as the
Planck scale. Moreover, Majorana masses offer a unique (and testable) way to generate
neutrino masses (since neutrinos do not carry electric charge) even without RH neutrinos. The
simplest way to generate Majorana mass is via yMΔLL where Δ is a Higgs triplet and yM is a
Yukawa coupling associated with Majorana mass. Alternatively, at the effective level,
Majorana neutrino mass can result from some additional dimension five operators which
couple two lepton doublets L to two Higgs doublets H first proposed by Weinberg [41],

HL HL
1

2
, 28T ( )k-

where κ has dimension mass .1( )- This is a non-renormalizable operator, so it violates one of
the tenets of the SM. In order to account for a neutrino mass of order 0.1 eV requires
κ∼10−14 GeV−1. This suggests a new high energy mass scale M in physics, a small
dimensionless coupling associated with κ, or both.

There are basically five different proposals for the origin of neutrino mass:

• The seesaw mechanisms [27, 42, 43], including low scale seesaw mechanisms [44]
(Weinberg operator typically from large Majorana mass M=MR for RH neutrinos νR).

• R-parity violating SUSY [45] (Weinberg operator from TeV scale Majorana mass for
neutralinos χ).

• TeV scale loop mechanisms [46–48] (Majorana mass from extra Higgs doublets and
singlets at the TeV scale).

• Extra dimensions [49] (Dirac mass with small yD due to RH neutrinos νR in the bulk).
• String theory [50, 51] (new mechanisms for generating large Majorana mass for RH
neutrinos νR from Planck or string scale physics).

These different mechanisms are reviewed in [52]. Returning to the roadmap in figure 6,
we see these mechanisms for neutrino mass represented by the red boxes, being related to the
experimental question in the blue boxes.

Since no new physics has yet emerged from the LHC, we are led to consider the seesaw
mechanism with RH neutrinos. However even in this case both the number of species and the
mass spectrum of RH (or sterile) neutrinos is completely unknown [53]. As shown in figure 7
the mass spectrum can cover the whole range with different physical consequences as indi-
cated. It is one of the goals of neutrino physics to determine this spectrum. In this topical
review we shall focus on the classic seesaw mechanism [27] with very heavy RH neutrinos,
with masses above the TeV scale, which may be incorporated into a theory of flavour,
possibly related to string theory.

J. Phys. G: Nucl. Part. Phys. 42 (2015) 123001 Topical Review

14



5.3. Seesaw mechanism with two RH neutrinos and SD

In this subsection we consider the high scale (classic) seesaw neutrino model involving just
two RH neutrinos R

soln and R
atmn with Yukawa couplings [6],4

H v aL bL cL H v dL eL fL h.c., 29u u e u u eR
sol

R
atm( ) ( )( ) ( ) ( )n n+ + + + + +m t m t

where Hu is a Higgs doublet and vu its VEV. The heavy RH Majorana masses are

M M h.c.. 30
c c

sol R
sol

R
sol

atm R
atm

R
atm( ) ( ) ( )n n n n+ +

In the basis, with rows , ,eL L L( )n n nm t and columns , ,R
atm

R
soln n the resulting Dirac mass matrix

is

m
d a
e b
f c

m m m d e f m a b c, , . 31T TD
atm
D

sol
D

atm
D

sol
D( ) ( ) ( ) ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= º º º

The (diagonal) RH neutrino heavy Majorana mass matrix MR with rows , T
R
atm

R
sol( )n n and

columns ,R
atm

R
sol( )n n is

M
M

M
0

0
. 32R

atm

sol
( )

⎛
⎝⎜

⎞
⎠⎟=

Figure 7. Possible mass spectrum of right-handed (or sterile) neutrinos corresponding
to the physical implications as shown.

4 We follow the notation of the third paper in [6], which was the first paper to discuss a phenomenologically viable
model with two RH neutrinos (see also [7]). Subsequently two RH neutrino models with two texture zeros were
proposed in [54], however such two texture zero models are now phenomenologically excluded [55] for the case of a
normal neutrino mass hierarchy considered here, while the one texture zero case d=0 (see the second paper in [7])
remains viable.
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The seesaw formula is [27],

m m M m , 33TD
R

1 D( ) ( )= -n -

where m ν is the the light effective left-handed Majorana neutrino mass matrix (i.e. the
physical neutrino mass matrix), mD is the Dirac mass matrix in LR convention and MR is the
(heavy) Majorana mass matrix. Using the seesaw formula dropping the overall minus sign
which is physically irrelevant, the light effective left-handed Majorana neutrino mass matrix
m ν (i.e. the physical neutrino mass matrix) is, by multiplying the matrices

m m M m . 34T

a

M

d

M

ab

M

de

M

ac

M

df

M
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M

de

M

b

M

e

M
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M

ef

M
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M

df

M
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M

ef

M

c

M

f

M

D
R

1 D

2

sol

2

atm sol atm sol atm

sol atm

2

sol

2

atm sol atm

sol atm sol atm

2
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2

atm

( ) ( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= =

+ + +

+ + +

+ + +

n -

The SD [6] assumptions are that d e f, and

e f

M

a b c

M

, , ,
. 35

2

atm

2

sol

( ) ( ) ( )

By explicit calculation, one can check that mdet 0.=n Since the determinant of a Hermitian
matrix is the product of mass eigenvalues

m m m m mdet ,1
2

2
2

3
2( )† =n n

one may deduce that one of the mass eigenvalues of the complex symmetric matrix above is
zero, which under the SD assumption is the lightest one m1=0 with m m3 2 since the
model approximates to a single RH neutrino model [6]. Hence we see that SD implies a
normal neutrino mass hierarchy. Including the solar RH neutrino as a perturbation, it can be
shown that, for d=0, together with the assumption of a dominant atmospheric RH neutrino
in equation (35), leads to the approximate results for the solar and atmospheric angles [6],

e

f

a

b c
tan , tan

2
. 3623 12 ( )q q~ ~

-

Under the above SD assumption, each of the RH neutrinos contributes uniquely to a particular
physical neutrino mass. The SD framework above with d=0 leads to the relations in
equation (36) together with the reactor angle bound [7],

m m . 3713 2 3 ( )q

This result shows that SD allows for large values of the reactor angle, consistent with the
measured value. Indeed the measured reactor angle, observed a decade after this theoretical
bound was derived, approximately saturates the upper limit. In order to understand why this is
so, we must go beyond the SD assumptions stated so far, and enter the realms of CSD.

5.4. CSD: the minimal predictive seesaw model

Let us return to equation (31) and set d=0 and e=f, with b=a and c=−a [35]. The
motivation is that from equation (36) one then approximately expects the good phenomen-
ological relations t23∼1 and t 1 2 ,12 ~ although the value of the reactor angle bounded
by equation (37) remains to be seen. With the above assumption, equation (34) becomes
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By explicit calculation one then finds that the neutrino mass matrix is exactly diagonalized by
the TB mixing matrix in equation (8),

U m U

0 0 0

0 0

0 0

. 39T
a

M

e

M

TB TB

3

2

2

sol

2

atm

( )

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
=n

If the charged lepton mass matrix is diagonal, the interpretation is that these constrained
couplings d=0, e=f with b=a and c=−a lead to TB mixing, with the lightest neutrino
mass m1=0, the second lightest neutrino identified as the solar neutrino with mass m a

M2
3 2

sol
=

and the heaviest neutrino identified as the atmospheric neutrino with mass m .a

M3
2 2

atm
= While

TB mixing accurately gives the good relations t23=1 and t 1 2 ,12 = unfortunately it also
gives θ13=0. This is known as CSD [35].

We can generalize the original idea of CSD to other examples of Dirac mass matrix with
(in the notation of equation (31)) d=0 and e=f as before, but now with b = na and
c n a2 ,( )= - for any positive integer n, which we refer to as CSD(n). The original CSD in
equation (38) with b=a and c=−a is identified as the special case CSD(n= 1). The
motivation for CSD(n) is that for any n equation (36) implies t23∼1 and t 1 2 ,12 ~
although these results are strongly dependent on the relative phase between the first and
second column of the Dirac mass matrix. CSD(n) then corresponds to the following pattern of
couplings in the Dirac mass matrix in equation (31):

• CSD(1): m e e0, , ,T
atm
D( ) ( )= m a a a, ,T

sol
D( ) ( )= - [35].

• CSD(2): m e e0, , ,T
atm
D( ) ( )= m a a, 2 , 0T

sol
D( ) ( )= [56].

• CSD(3): m e e0, , ,T
atm
D( ) ( )= m a a a, 3 ,T

sol
D( ) ( )= [57].

• CSD(4): m e e0, , ,T
atm
D( ) ( )= m a a a, 4 , 2T

sol
D( ) ( )= [57–59].

• CSD(n): m e e0, , ,T
atm
D( ) ( )= m a na n a, , 2T

sol
D( ) ( ( ) )= - [60].

For the general case of CSD(n) the Dirac mass matrix is then

m Y v
a

e na
e n a

0

2
. 40u

D

( )
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= =

-
n

The constrained couplings will be justified later with the help of discrete family symmetry.
For now we simply assume these couplings motivated by the desire to obtain an
approximately maximal atmospheric angle tan θ23∼e/f∼1 and trimaximal solar angle

a b ctan 2 1 2 .12 ( )q ~ - ~ Since experiment indicates that the bound θ13m2/m3 is
almost saturated, these schemes require certain phase choices a earg( ) in order to achieve the
desired reactor angle, leading to predictions for the  -violating phase δCP, discussed below.

In a CSD(n) framework [60], the low energy effective Majorana neutrino mass matrix in
equation (34) in the two RH neutrino case may be written as
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n h

where η is the only physically important phase, which depends on the relative phase between
the first and second column of the Dirac mass matrix, a earg .( ) By comparing equations (38)
and (41) for n=1 we identify ma

e

M

2

atm
= and m ,b

a

M

2

sol
= which hold for any value of n. This

can be thought of as the minimal (two RH neutrino) predictive seesaw model since, for a
given n, only three parameters ma, mb, η describe the entire neutrino sector (three neutrino
masses and the PMNS matrix). CSD(n) with two RH neutrinos always predicts the lightest
physical neutrino mass to be zero, m1=0. It also immediately predicts TM1 mixing since

m
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1
1

0
0
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⎝
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⎠
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In other words the column vector (2, −1, 1)T is an eigenvector of m n( )
n with a zero eigenvalue,

i.e. it is the first column of the PMNS mixing matrix, corresponding to m1=0, which means
TM1 mixing in equation (13).

For a given choice of the positive integer n, there are three real input parameters ma, mb

and η from which two light physical neutrino masses m2, m3, three lepton mixing angles, the
 -violating phase δCP and two Majorana phases are derived; a total of nine physical
parameters (including the prediction m1=0) from three input parameters, i.e. six predictions
for each value of n. As the Majorana phases are not known and δCP is only tentatively
constrained by experiment, this leaves five presently measured observables, namely the two
neutrino mass squared differences and the three lepton mixing angles, from only three input
parameters. Essentially the input parameters ma and mb are fixed by the two physical neutrino
mass squared differences, which implies that the entire PMNS mixing matrix is determined by
only a single parameter, namely the phase η. The resulting best fit predictions for CSD(n) [60]
are shown in figure 8 as a function of n. As can be seen, CSD(2) gives a reactor angle which is
too small5, while CSD(n�5) gives a reactor angle which is too large. CSD(3) and CSD(4)
allow a reactor angle in the desired Goldilocks (experimentally preferred) region θ13∼8.5°.
This value occurs for special choices of phase η∼2π/3 for CSD(3) and η∼4π/5 for CSD
(4) where positive values of these phases yield negative values of δCP∼−90° for CSD(3)
and δCP∼−120° for CSD(4), with the mixing angles being independent of the sign of the
phase.

5.5. Seesaw mechanism with three RH neutrinos and SD

It is straightforward to extend the previous ideas of SD to the case of three RH neutrinos [6].
The starting assumption is that of the SM supplemented by three RH neutrinos with masses in
the classic seesaw range TeV to MGUT in figure 7. Then the light neutrino mass matrix
emerges from the seesaw formula in equation (33). The basic idea of SD was given in the
framework of the two-right handed neutrino model above, but can now be extended to a third,
almost decoupled, RH neutrino, as follows.

Extending the preceding example of two RH neutrinos, it is possible to implement the
seesaw mechanism with three RH neutrinos using the SD mechanism [6]. The SD assumption
can be made precise as follows. In the basis, MR=diag(Matm, Msol, Mdec) where the Dirac

5 This is an example of the general result that two RH neutrino models with two texture zeros and a normal hierarchy
are phenomenologically excluded [55].
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mass matrix is constructed by extending equation (31) to the three columns
m m m m, , ,D

atm
D

sol
D

dec
D( )= where m d e f, , ,T

atm
D ( )= m a b c, , ,T

sol
D ( )= etc, the SD assumption

in equation (35) generalizes to:

m m

M

m m

M

m m

M
. 43

atm
D

atm
D

atm

sol
D

sol
D

sol

dec
D

dec
D

dec

( ) ( ) ( )
( )

† † †

 

Equation (43) immediately predicts a normal neutrino mass hierarchy:

m m m 443 2 1 ( ) 

which is the main consequence of SD. The lightest physical neutrino mass m1 is much smaller
than the others since the corresponding RH neutrino R

decn being approximately decoupled from
the seesaw mechanism. The heaviest physical neutrino has mass m3 much larger than m2 since
the atmospheric RH neutrino makes the dominant contribution to the seesaw mechanism. The
model approximates to the two RH neutrino case (as considered previously) where m1=0.
The SM with three such RH neutrinos is depicted in figure 9.

Figure 8. Best-fit PMNS mixing angles and  -violating phase with respect to n, for
the two right-handed neutrino CSD(n) model. We emphasize that CPd is a genuine
prediction here since have not used the one sigma hint from experiment as an input
constraint. CSD(3) and CSD(4) both yield predictions for mixing angles within the
preferred range with differing predictions for the atmospheric angle θ23≈45° and
θ23≈38°, respectively. Interestingly CSD(3) and CSD(4) lead to predictions for
δCP∼−90° and δCP∼−120° with η∼2π/3 and η∼4π/5 being the best fit values
of the input phase.
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6. Towards a theory of flavour

The flavour problem may be defined as the following collection of puzzles left unanswered by
the SM:

• Why are there three families of quarks and leptons?
• Why are all charged fermion masses so hierarchical with down-type quark masses being
of the same order as charged lepton masses, and up-type quark masses are much more
hierarchical?

• Why are at least two neutrino masses not very hierarchical?
• What is the origin of the neutrino mass?
• Why are neutrino masses so tiny compared to charged fermion masses?
• What is the origin of fermion mixing (both CKM and PMNS matrices)?
• Why are CKM mixing angles smaller than PMNS mixing angles apart from the Cabibbo
angle which is of the same order as the reactor angle?

• What is the origin of  violation in the quark (and lepton) sectors?

These questions motivate the search for a theory of flavour beyond the SM. In this
section we explore possible directions towards a theory of flavour based on the ideas of
symmetry, in particular unification together with family symmetry.

6.1. Grand unified theories

One of the exciting things about the discovery of neutrino masses and mixing angles is that
this provides additional information about the flavour problem—the problem of under-
standing the origin of three families of quarks and leptons and their masses and mixing
angles. In the framework of the seesaw mechanism, new physics beyond the SM is required to
violate lepton number and generate RH neutrino masses which may be as large as the GUT
scale. This is also exciting since it implies that the origin of neutrino masses is also related to
some GUT symmetry group GGUT, which unifies the fermions within each family. Some
possible candidate unified gauge groups are shown in figure 10.

Let us take GGUT=SU(5) as an example [61]. Each family of quarks (with colour r, b,
g) and leptons fits nicely into SU(5) representations of left-handed (L) fermions, F 5= and

Figure 9. The standard model with three right-handed neutrinos defined as
, ,R

atm
R
sol

R
dec( )n n n which in sequential dominance are mainly responsible for the m3,

m2, m1 physical neutrino masses, respectively.
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where c denotes  conjugated fermions. The SU(5) representations F 5= and T=10
decompose into multiplets of the SM gauge group SU SU U3 2 1 YC L( ) ( ) ( )´ ´ as F=(d c,
L), corresponding to

5 3, 1, 1 3 1, 2, 1 2 , 46( ) ( ) ( )= Å -

and T=(u c, Q, e c), corresponding to

10 3, 1, 2 3 3, 2, 1 6 1, 1, 1 . 47( ) ( ) ( ) ( )= - Å Å

Thus a complete quark and lepton SM family (Q, u c, d c, L, e c) is accommodated in the F 5=
and T=10 representations, with RH neutrinos, whose  conjugates are denoted as ν c,
being singlets of SU(5), ν c=1. The Higgs doublets Hu and Hd which break electroweak
symmetry in a two Higgs doublet model are contained in the SU(5) multiplets H5 and H .5

The Yukawa couplings for one family of quarks and leptons are given by

y H T T y H F y H T F , 48u i jk lm
ijklm

i
i c

d
i

ij
j

5 5 5 ( ) n+ +n

where ò ijklm is the totally antisymmetric tensor of SU(5) with i, j, j, k, l=1, K, 5, which
decompose into the SM Yukawa couplings

y H Qu y H L y H Qd H e L . 49u u
c

u
c

d d
c

d
c( ) ( )n+ + +n

Notice that the Yukawa couplings for down quarks and charged leptons are equal at the GUT
scale. Generalizing this relation to all three families we find the SU(5) prediction for Yukawa
matrices

Y Y , 50d e
T ( )=

which is successful for the third family, but fails badly for the first and second families.
Georgi and Jarlskog [62] suggested to include a higher Higgs representation H45 which is
responsible for the 2-2 entry of the down and charged lepton Yukawa matrices. Dropping SU
(5) indices for clarity

Figure 10. Some possible candidate unified gauge groups.
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Y H T F , 51d 22 45 2 2( ) ( )

decomposes into the second family SM Yukawa couplings

Y H Q d H e L3 , 52d d
c

d
c

22 2 2 2 2( ) ( ) ( )-

where the factor of −3 is an SU(5) Clebsch–Gordan coefficient6. Assuming a hierarchical
Yukawa matrix with a zero Yukawa element (texture) in the 1-1 position, results in the GUT
scale Yukawa relations

y y y
y

y y,
3

, 3 , 53b s d e ( )= = =t
m

which, after renormalization group running effects are taken into account, are consistent with
the low energy masses. The precise viability of these relations has been widely discussed in
the light of recent progress in lattice theory which enable more precise values of quark masses
to be determined, especially the strange quark mass (see, e.g., [63]). In SUSY theories with
low values of the ratio of Higgs VEVs, the relation for the third generation yb=yτ at the
GUT scale remains viable, but a viable GUT scale ratio of yμ/ys is more accurately achieved
within SUSY SU(5) GUTs using a Clebsch factor of 9/2, as proposed in [64], which is 50%
higher than the Georgi–Jarlskog prediction of 3. For other Clebsch relations see [65].

6.2. Discrete family symmetry

As already remarked, it is a remarkable fact that the smallest leptonic mixing angle, the
reactor angle, is of a similar magnitude to the largest quark mixing angle, the Cabibbo angle,
indeed they may even be equal to each other up to a factor of 2 . Such relationships may be a
hint of a connection between leptonic mixing and quark mixing, where such a connection
might be achieved using GUTs [66, 67]. For example, the Georgi–Jarlskog relations dis-
cussed above already lead to the left-handed charged lepton mixing angle having a simple
relation with the RH down-type quark mixing angle 3e d

12 12
L Rq q» where the approximation

assumes hierarchical Yukawa matrices, with the 1-1 elements being approximately zero. If the
upper 2×2 Yukawa matrices are symmetric (as motivated by the successful Gatto–Sartori–
Tonin (GST) relation [68] which relates the 12 mixing d

12
L,Rq to the down and strange mass by

m md
d s12

L,Rq » ) then we may drop the L, R subscripts and this relation simply becomes
3.e d

12 12q q= In large classes of models, the quark mixing originates predominantly from the
down-type quark sector, in which case this relation becomes 3.e

12 Cq q= If one starts from
TB mixing in the neutrino sector, resulting from some discrete family symmetry, then, using
the results in section 4.3 such a charged lepton correction results in a reactor angle in the
lepton sector of 3 2 .13 C ( )q q» This is a factor of 3 too small to account for the observed
reactor angle, but it illustrates how the reactor angle could possibly be related to the Cabibbo
angle using GUTs. Indeed it has been suggested that perhaps the charged lepton mixing angle
is exactly equal to the Cabibbo angle in some GUT model, leading to 213 Cq q» [26, 69].
However it is non-trivial to reconcile such large charged lepton mixing with the successful
relationships between charged lepton and down-type quark masses, and it seems more likely
that charged lepton mixing is not entirely responsible for the reactor angle.

The above discussion provides an additional motivation for combining GUTs with dis-
crete family symmetry in order to account for the reactor angle. Putting these two ideas
together we are suggestively led to a framework of new physics beyond the SM based on
commuting GUT and family symmetry groups

6 In this setup, Hd is the light linear combination of the electroweak doublets contained in H5 and H .45
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G G . 54GUT FAM ( )´

The spectrum of quark and lepton masses may also provide some motivation for con-
sidering a family symmetry as well as a grand unified symmetry, acting in different directions,
as illustrated in figure 11. The (scaled) heights of the towers representing the fermion masses,
show vast hierarchies which are completely mysterious in the SM. Some popular family
symmetries which admit triplet representations are shown in figure 12. The mathematics of
these and other groups has recently been reviewed in [11, 14, 15] to which we refer the
interested reader for more details.

Here we just mention the family symmetry A4 as it is the smallest non-Abelian finite
group with an irreducible triplet representation. A4 is the symmetry group of the tetrahedron.
There are 12 independent transformations of the tetrahedron and hence 12 group elements as
follows:

• Four rotations by 120 ° clockwise (seen from a vertex) which are T-type.
• Four rotations by 120 ° anti-clockwise(seen from a vertex) which are T-type.
• Three rotations by 180 ° which are S-type.
• One unit operator  .

The generators of the A4 group, can be written as S and T with S T ST .2 3 3( ) = = = All
12 group elements can be formed by multiplying together these two generators in all pos-
sible ways.

A4 has four irreducible representations, three singlets 1, 1′ and 1″ and one triplet. The
products of singlets are:

Figure 11. Quark and lepton masses lego plot (true heights need to be scaled by the
factors shown) indicating the directions that GUT and family symmetries are acting.

Figure 12. Some popular family symmetries and their relationships.
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Later we shall sometimes work in the real basis of the triplet representation [70],

S T
1 0 0
0 1 0
0 0 1

,
0 1 0
0 0 1
1 0 0
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⎝
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⎝
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⎠
⎟⎟= -

-
=

which generate 12 real 3×3 matrix group elements after multiplying these two matrices
together in all possible ways [70]. In this basis one has the following Clebsch rules for the
multiplication of two triplets, 3 3 1 1 1 3 3 ,1 2´ = + ¢ +  + + with

ab a b a b a b

ab a b a b a b

ab a b a b a b

ab a b a b a b
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

where a=(a1, a2, a3) and b=(b1, b2, b3) are the two triplets and 1.3w =

6.3. Klein symmetry

The starting point for family symmetry models is to consider the Klein symmetry of the
neutrino mass matrix. First consider the phase symmetry of the diagonal charged lepton mass
matrix Me,

T M M T M M , 58e e e e( ) ( )† † †=

where T=diag(1, ω , ω2) and7ω=e2πi/n. For example for n=3 clearly T generates the
group Z .T

3 In any case, the Klein symmetry of the neutrino mass matrix, in this basis, is given
by

m S m S m U m U, , 59T T ( )= =n n n n

where [71]

S U Udiag 1, 1, 1 , 60T
PMNS PMNS( ) ( )*= + - -

U U Udiag 1, 1, 1 , 61T
PMNS PMNS( ) ( )*= - + -

SU U Udiag 1, 1, 1 62T
PMNS PMNS( ) ( )*= - - +

and

S U SU1, , , 63{ } ( ) =

is called the Klein symmetry Z Z .S U
2 2´

6.4. Direct models

The idea of direct models is that the three generators S, T, U introduced above are embedded
into a discrete family symmetry G which is broken by new Higgs fields called ‘flavons’ of
two types: f l whose VEVs preserve T and f ν whose VEVs preserve S, U. These flavons are
segregated such that f l only appears in the charged lepton sector and f ν only appears in the

7 Note that this is not the same basis as equation (56) since T is diagonal in this basis (but still traceless since
1 02w w+ + = ).
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neutrino sector as depicted in figure 13, thereby enforcing the symmetries of the mass
matrices. Note that the full Klein symmetry Z ZS U

2 2´ of the neutrino mass matrix is enforced
by symmetry in the direct approach.

Following the measurement of the reactor angle, it has emerged that the only viable direct
models are those based on Δ (6N2) [72–74]. Unfortunately large N is required in order to
achieve the desired reactor angle. Moreover such models generally predict the  phase
δ=0, π resulting in the atmospheric sum rule [73],

45 2 . 6423 13 ( )q q=  

which follows since the PMNS matrix has the TM2 form shown in equation (13).

6.5. Spontaneous  violation

The inclusion of discrete family symmetry and GUTs into a theory of flavour offers the
possibility of having spontaneously broken  symmetry. The idea is that the high energy
theory respects  but it becomes spontaneously broken along with the discrete family
symmetry and GUT symmetry. As with all types of spontaneous symmetry breaking, this
offers the possibility of understanding the origin of  violation, and relating  violation in
the quark and lepton sectors. For example, it is possible that the  violating phases in the
quark and lepton sectors may be predicted within this kind of approach.

The direct approach can be generalized to the case of a conserved  (see [75] and
references therein) which is spontaneously broken as shown in figure 14. This approach has
been studied for Δ (6N2) in [76]. However since we already know that δ=0, π in this case it
only fixes the Majorana phases.

The generalized  approach has also been used in the semi-direct approach (defined
below) where the phase δ is undetermined without  . Here the results are more interesting
since for the smaller groups like A4 and S4 one generally predicts a discrete choice including
δ=±π/2 [77]. However for larger groups in the series Δ(6N2) and Δ(3N2), broken in a
semi-direct way, the discrete predictions for δ proliferate [78]. Motivated by the the good
experimental prospects for measuring leptonic  violation, there has been considerable
theoretical interest in  symmetry in different approaches to family symmetry models [79].

Figure 13. The direct approach to models of lepton mixing.
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Recently an invariant approach  symmetry in family symmetry models has been
discussed [80]. It is worthwhile to first recap how the invariant approach works for any theory
where the Lagrangian is specified. Following [81], to study  symmetry in any model one
divides a given Lagrangian as follows rem  = + where  is the part that auto-
matically conserves  (like the kinetic terms and gauge interactions) while rem includes the
 violating non-gauge interactions such as the Yukawa couplings. Then one considers the
most general  transformation that leaves  invariant and check if invariance under 
restricts rem —only if this is the case can  violate  .

In the presence of a family symmetry G, one may check if a given vacuum leads to
spontaneous  violation, as follows. Consider a Lagrangian invariant under G and  ,
containing a series of scalars which under  transform as U .i ij j

1( ) ( ) * f f=- In order
for the vacuum to be  invariant, the following relation has to be satisfied:

U0 0 0 0i ij j
*f f= [82]. The presence of G usually allows for many choices for U. If

(and only if) no choice of U exists which satisfies the previous condition, will the vacuum
violate  , leading to spontaneous  violation. In order to prove that no choice of U exists
one can construct  -odd invariants.

As a brief review of how to derive  -odd invariants, consider the Lagrangian of the
leptonic part of the SM extended by Majorana neutrino masses. After electroweak breaking at
low energies, the most general mass terms are as in equation (3) which we rewrite in matrix
form as

e m e m h.c., 65l
clepton

L R
1
2 L L ( ) n n= - - +n

due to the SU(2)L structure, the most general  transformation which leaves the leptonic
gauge interactions invariant are (ignoring spin)

L x UL x e x Ve x, , 66P PR R( ) ( ) ( ) ( ) ( )* * 

where L=(νL, eL ) are the left-handed neutrino and charged lepton fields in a weak basis,
and xP are the parity (three-space) inverted coordinates.

Figure 14. The direct approach including  . The idea is that the original high energy
theory conserves  but  is spontaneously broken in the low energy theory.
Nevertheless one may define separate  symmetries which are preserved in the
charged lepton and neutrino sectors, which survive along with preserved subgroups of
the original family symmetry in each of these sectors.
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In order for lepton to be  invariant under equation (66), the terms shown in the
equation (65) go into their respective h.c. terms and vice versa:

U m U m U m V m, . 67l l ( )† †* * *= =n n

From equation (67) one can infer how to build combinations of the mass matrices that will
result in equations where U and V cancel entirely. The condition for  to be conserved is
[81]:

I H H H H H HTr , Tr 0, 68l l l1
3 3( ) ( )[ ] [ ] ( )º = - =n n n

where H m m †ºn n n and H m m .l l l
†º This equation is a necessary and sufficient condition for

Dirac  invariance, since it follows from the existence of  transformations in
equation (67). If the mass matrices are chosen such that I1=0 then Dirac type  is
conserved while if I 01 ¹ then Dirac type  is violated8.

As pointed out in [80], once a Lagrangian is specified, which is invariant under a family
symmetry G and some  transformation, then the consistency relations [75, 77] are auto-
matically satisfied. In order to prove this it is sufficient to consider some generic Lagrangian
invariant under a family symmetry transformation, involving some mass term m (Dirac or
Majorana), then define H=mm†. Under some G transformation, ρ(g), the mass term remains
unchanged implying:

g H g H. 69( ) ( ) ( )†r r =

Invariance of the Lagrangian under  transformation U requires the mass term to swap with
its h.c., hence:

U HU H . 70( )† *=

Taking the complex conjugate of equation (69) we find

g H g H U HU, 71( )( ) ( ) ( )† †* * * *r r = =

using equation (70) for the last equality. Using equation (70) again:

g U HU g U HU. 72( )( ) ( ) ( )† † †* *r r =

Hence by using once more equation (69) for a g′, we find

U g U HU g U H g H g . 73( ) ( )( )( ) ( ) ( )† † † †* *r r r r= = ¢ ¢

Comparing both sides of equation (73) we see

U g U g 74( )( ) ( )†*r r= ¢

which is just the consistency relation [75, 77]. In other words, if we consider equations (69)
and (70) we do not need to consider the consistency condition separately since it always
follows.

The above considerations about whether  is conserved or violated apply separately
both to the original theory (defined by some high energy Lagrangian, above the scale of
symmetry breaking) and to the spontaneously broken theory (defined by some low energy
effective Lagrangian, below the scale of symmetry breaking). We are mainly interested in
theories which respect  at high energy, but where  is spontaneously broken, since these

8 This is called Dirac type  violation since it occurs both when neutrinos are Dirac and Majorana, where the latter
case is assumed above. There are two further necessary and sufficient conditions for low energy leptonic 
invariance which are peculiar to the Majorana sector [83].
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allow for the possibility of being able to predict the amount of  violation (e.g. the physical
 violating phases in some basis).

6.6. Semi-direct models

Taking a less constrained approach to model building one may suppose that we start from
only smaller discrete family groups such as S4, which leads to either TB or BM mixing at
leading order, or A5 which leads to GR mixing at leading order as shown in figure 15. Then
we suppose that at higher order, one or more of the generators S, T, U is broken, which is
necessary in this approach since the resulting BM, TB and GR mixing patterns discussed in
equations (7)–(9) are excluded. There are two interesting possibilities depicted in figure 15 as
follows:

(1) If the T generator protecting the charged lepton mass matrix is broken, then we can
expect charged lepton corrections leading to the solar sum rules discussed in section 4.3.

(2) If the U generator is broken then this leads to either TM1 or TM2 mixing depending on
whether SU or S is preserved, leading to atmospheric sum rules as discussed in
section 4.2.

The semi-direct approach was first used in [84, 85] for A4 where there is no U generator
to start with and also S4 which is broken to A4 at higher order [85]. It was subsequently
generalized to von Dyck groups in [86]. In all cases the reactor angle is not predicted but
described by a free parameter. This is a retreat from the original goal of predicting lepton
mixing angles using symmetry.

6.7. Indirect models

The final logical possibility is that the family symmetry is completely broken in both the
neutrino and charged lepton sectors as shown in figure 16 for the example of the smallest

Figure 15. The semi-direct approach to models of lepton mixing.
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family symmetry group that admits triplet representations, namely A4. In this approach, we
allow the flavons f l and f ν to have not only symmetry preserving vacuum alignments, but
also new alignments which are orthogonal to them and break the symmetry. In the following,
f l refers to fe,μ,τ which only enter the charged lepton sector and are responsible for a
diagonal charged lepton mass matrix, while f ν refers to ,atmf ,solf and decf which only enter
the neutrino sector and are responsible for a Dirac mass matrix of the CSD(n) form.

The advantages of the indirect approach over the previous approaches are:

(1) It can involve a small family symmetry group such as A4 (unlike the direct approach
which involves large family symmetry groups).

(2) It is highly predictive since it can yield CSD(n) where the entire PMNS matrix is
predicted in terms of one input parameter (unlike the semi-direct approach which only
predicts sum rules).

The basic starting point is to consider some small family symmetry such as A4 which
admits triplet representations. The family symmetry is broken by triplet flavons fi whose
vacuum alignment will control the structure of the Yukawa couplings. To illustrate how this
works, we sketch a model, where the relevant operators responsible for the Yukawa structure
in the neutrino sector are

H L H L H L
1 1 1

, 75u
c

u
c

u
c

atm atm sol sol dec dec( ) ( ) ( )· · · ( )f n f n f n
L

+
L

+
L

where L is the SU(2) lepton doublet, assumed to transform as a triplet under the family
symmetry, while , ,c c c

atm sol decn n n are  conjugates of the RH neutrinos and Hu is the
electroweak scale up-type Higgs field, the latter being family symmetry singlets but
distinguished by some additional quantum numbers. In the charged-lepton sector, we consider
the operators

H L e H L H L
1 1 1

, 76d e
c

d
c

d
c( )( ) ( )· · · ( )f f m f t

L
+

L
+

Lm t

Figure 16. The indirect approach to models of lepton mixing. The notation is such that
f l refers to fe,μ,τ and f ν refers to ,atmf ,solf and .decf
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where e , ,c c cm t are the  conjugated RH electron, muon and tau respectively. The RH
neutrino Majorana superpotential is typically chosen to give a diagonal mass matrix

M M M Mdiag , , . 77R atm sol dec( ) ( )=

Details of the origin of these operators (e.g. in terms of Majoron fields), the relative values of
M M M, ,atm sol dec as well as the inclusion of any off-diagonal terms in MR will all depend on
the additional specifications of the model beyond our sketchy model here (we shall consider
real models shortly in the next section 7).

The idea is that CSD(n) discussed in section 5.4 emerges from flavon vacuum alignments
in the effective operators involving three flavon fields ,atmf ,solf and decf which are triplets
under the flavour symmetry and acquire VEVs that break the family symmetry completely in
both the neutrino and charged lepton sectors. The subscripts are chosen by noting that atmf
correlates with the atmospheric neutrino mass m3, solf with the solar neutrino mass m2, and

decf with the lightest neutrino mass m1, which in CSD is light enough that the associated third
RH neutrino can, to good approximation, be thought of as decoupled from the theory [6].
CSD(n) corresponds to the choice of vacuum alignments

v v
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where n is a positive integer, and the only phases allowed are in the overall proportionality
constants. Such vacuum alignments arise from symmetry preserving alignments together with
orthogonality conditions [57, 58], as discussed below.

The starting point for understanding the alignments in equation (78) are the symmetry
preserving vacuum alignments of A4, namely:
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which each preserve some subgroup of A4 in a basis where the 12 group elements in the triplet
representation are real as in equation (56) [70] (i.e. each alignment in equation (79) is an
eigenvector of at least one non-trivial group element with eigenvalue +1.) The first alignment in
equation (78), which completely breaks the A4 symmetry, arises from the orthogonality conditions
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involving two symmetry preserving alignments selected from equation (79). The following
symmetry breaking alignment may be obtained which is orthogonal to the alignment in
equation (80) and one of the symmetry preserving alignments
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The CSD(n) alignment in equation (78) is orthogonal to the above alignment in equation (81),
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where the orthogonality in equation (82) is maintained for any value of n (not necessarily
integer). To pin down the value of n and show that it is a particular integer requires a further
orthogonality condition.

For example, for n=3, the desired alignment is obtained from the two orthogonality
conditions
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where the first condition above is a particular case of equation (82) and the second condition
involves a new alignment, obtained from two of the symmetry preserving alignments in
equation (79),
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Using equation (75), the vacuum alignments in equation (78) make up the columns of the
Dirac neutrino Yukawa matrix Y , , ,atm sol dec(⟨ ⟩ ⟨ ⟩ ⟨ ⟩)f f fµn giving a Dirac mass matrix

m Y v
a

e na
e n a c

0 0
0

2
, 85u

D

( )
( )
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-
n

which is an extension of equation (40) to include a third (decoupled) RH neutrino, where
m m m m, ,D

atm
D

sol
D

dec
D( )= and the coefficients e, a, and c are generally complex. The charged-

lepton Yukawa matrix is chosen to be diagonal (up to model-dependent corrections, assumed
small), corresponding to the existence of three flavons fe, fμ and fτ in the charged-lepton
sector which acquire VEVs with alignments [57, 58]
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Given this choice, it is clear that Ye is diagonal, henceUeL
is the identity matrix up to diagonal

phase rotations, and that U U ,PMNS L

†= n i.e. simply the matrix that diagonalizes the neutrino
mass matrix, up to charged lepton phase rotations.

7. Realistic theories of flavour

In this section we briefly review two realistic indirect models involving the family symmetry
A4. The first model involves the PS gauge group with CSD(4), while the second model
involves SU(5) GUT with CSD(3). We also discuss leptogenesis in these two models.

7.1. A to Z of flavour with PS

As an example of an ‘indirect’ model, an ‘A to Z of flavour with PS’ based on the PS gauge
group has been proposed [87] as sketched in figure 17. The PS symmetry leads to Y Y ,u = n

where the columns of the Yukawa matrices are determined as in equation (75) with the flavon
alignments as in equation (78) for the case n=4. The first column is proportional to the
alignment (0, e, e) the second column proportional to the CSD(4) orthogonal alignment, (a,
4a, 2a) and the third column is proportional to the alignment (0, 0, c), where e a c 
gives the hierarchy m m m .u c t  This structure predicts a Cabibbo angle θC≈1/4 in the
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diagonal Yd∼Ye basis enforced by the first three alignments in equation (79). It also predicts
a normal neutrino mass hierarchy with 9 ,13q »  θ23≈45° and δ≈260° [87].

The model is based on the PS gauge group, with A4×Z5 (A to Z) family symmetry

SU SU SU A Z4 2 2 . 87C L R 4 5( ) ( ) ( ) ( )´ ´ ´ ´

The quarks and leptons are unified in the PS representations as follows

F
u u u
d d d e
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where the SM multiplets Q L u d e, , , , ,i i i
c

i
c

i
c

i
cn resulting from PS breaking are also shown and

the subscript i (=1, 2, 3) denotes the family index. The left-handed quarks and leptons form
an A4 triplet F, while the three ( conjugated) RH fields Fc

i are A4 singlets, distinguished by
Z5 charges α, α

3, 1, for i=1, 2, 3, respectively. Clearly the PS model cannot be embedded
into an SO(10) GUT since different components of the 16-dimensional representation of SO
(10) would have to transform differently under A4×Z5, which is impossible. On the other
hand, the PS gauge group and A4 could emerge directly from string theory.

The PS gauge group is broken at the GUT scale to the SM

SU SU SU SU SU U4 2 2 3 2 1 , 89YC L R C L( ) ( ) ( ) ( ) ( ) ( ) ( )´ ´  ´ ´

by PS Higgs, Hc and H ,c
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These acquire VEVs in the ‘RH neutrino’ directions, with equal VEVs close to the GUT scale
2×1016 GeV,

H H 2 10 GeV, 91c
H
c c

H
c 16¯ ( )n n= = = ~ ´

so as to maintain SUSY gauge coupling unification.

Figure 17. A to Z of flavour with Pati–Salam, where A≡A4 and Z≡Z5. The left-
handed families form a triplet of A4 and are doublets of SU(2)L. The right-handed
families are distinguished by Z5 and are doublets of SU(2)R. The SU(4)C unifies the
quarks and leptons with leptons as the fourth colour, depicted here as white.
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Our starting point is to assume that the high energy theory, above the PS breaking scale,
conserves  symmetry. Under a  transformation, the A4 singlet fields ξ, Σu, Σd transform
into their complex conjugates

, , , 92u u d d ( )* * *x x S  S S  S

where the complex conjugate fields transform in the complex conjugate representations under
A4×Z5. For example if ξ∼α4, under Z5, then ξ*∼α. Similarly if Σu∼1′, Σd∼1″, under
A4, then 1 ,u*S ~  1 .d*S ~ ¢ On the other hand, in a particular basis, for A4 triplets f∼(f1,
f2, f3), a consistent definition of  symmetry requires the second and third triplet
components to swap under  ,

, , . 931 3 2( ) ( )* * *f f f f

With the above definition of  , all coupling constants g and explicit masses m are real due to
CP conservation and the only source of phases can be the VEVs of fields which break
A4×Z5. In the model of interest, all the physically interesting  phases will arise from Z5
breaking.

Let us now consider the A4 triplet fields f which also carry Z5 charges. In the full model
there are four such triplet fields, or ‘flavons’, denoted as ,u

1f ,u
2f ,d

1f .d
2f The idea is that i

uf are
responsible for up-type quark flavour, while i

df are responsible for down-type quark flavour.
The structure of the Yukawa matrices depends on the so-called CSD(4) vacuum align-

ments of these flavons, with the overall phases quantized due to Z5,
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We note here that the vacuum alignments in equation (95) and the first alignment in
equation (94) are fairly ‘standard’ alignments that are encountered in TB mixing models,
while the second alignment in equation (94) is obtained using orthogonality arguments, as
discussed in section 6.7. In particular we are using the vacuum alignments in equation (78) for
the case n=4, where we identify atmf and solf with u

1f and .u
2f We also use the alignments in

equation (86) where we identify fe and fμ with d
1f and .d

2f
The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark

and neutrino Yukawa couplings and hd which lead to down-type quark and charged lepton
Yukawa couplings. In addition a Higgs bidoublet h3, which is also an A4 triplet, is used to
give the third family Yukawa couplings.

After the PS and A4 breaking, most of these Higgs bi-doublets will get high scale masses
and will not appear in the low energy spectrum. In fact only two light Higgs doublets will
survive down to the TeV scale, namely Hu and Hd. The basic idea is that the light Higgs
doublet Hu with hypercharge Y=+1/2, which couples to up-type quarks and neutrinos, is a
linear combination of components of the Higgs bi-doublets of the kind hu and h3, while the
light Higgs doublet Hd with hypercharge Y=−1/2, which couples to down-type quarks and
charged leptons, is a linear combination of components of Higgs bi-doublets of the kind hd
and h3,
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h h H h h H, , , . 96u u d d3 3 ( ) 

The renormalizable Yukawa operators, which respect PS and A4 symmetries, have the
following form, leading to the third family Yukawa couplings shown, using equations (88),
(96),

F h F Q H u Q H d L H L H e. , 97c
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c
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d

c
3 3 3 3 3 3 3 3 3 3 ( )n + + +

where we have used equations (88), (96). The non-renormalizable operators, which respect PS
and A4 symmetries, have the following form
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where i=1 gives the first column of each Yukawa matrix, while i=2 gives the second
column and we have used equations (88), (96). Thus the third family masses are naturally
larger since they correspond to renormalizable operators, while the hierarchy between first
and second families arises from a hierarchy of flavon VEVs. The lepton operators in
equations (98), (99) may be compared to the operators in equations (75), (76).

Inserting the vacuum alignments in equations (94) and (95) into equations (98) and (99),
together with the renormalizable third family couplings in equation (97), gives the Yukawa
matrices of the form

Y v Y v
a

e a
e a c

Y Y

y

y

y

0 0
4 0
2

,

0 0

0 0

0 0

. 100u
u u

d e

d

s

b

0

0

0

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
= = ~ ~n

The PS unification predicts the equality of Yukawa matrices Yu=Y ν and Yd∼Ye, while the
A4 vacuum alignment predicts the structure of each Yukawa matrix, essentially identifying the
first two columns with the vacuum alignments in equations (94) and (95). With a diagonal RH
Majorana mass matrix, Y ν leads to a successful prediction of the PMNS mixing parameters.
Also the Cabibbo angle is given by θC≈1/4 [59]. Thus equation (100) is a good starting
point for a theory of quark and lepton masses and mixing, although the other quark mixing
angles and the quark  phase are approximately zero. However the above discussion ignores
the effect of Clebsch factors which will alter the relationship between elements of Yd and Ye,
which also include off-diagonal elements responsible for small quark mixing angles in the full
model discussed in [87].

In realistic unified models involving an SO(10)-inspired pattern of Dirac and heavy RH
neutrino masses, assuming the type I seesaw, the lightest RH neutrino N1 is too light to yield
successful thermal leptogenesis, barring highly fine-tuned solutions, while the second hea-
viest RH neutrino N2 is typically in the correct mass range. In [88] we discussed N2 domi-
nated leptogenesis in the A to Z model, where N1 is identified with ,c c

1 atmn n= while N2 is
identified with c c

2 soln n= and N3 is identified with ,c c
3 decn n= as depicted in figure 17. In the A

to Z model the neutrino Dirac mass matrix is equal to the up-type quark mass matrix and has
the particular constrained structure in equation (100). We showed that flavour coupling effects
in the Boltzmann equations are crucial to the success of such N2 dominated leptogenesis in
this model, by helping to ensure that the flavour asymmetries produced at the N2 scale survive
N1 washout. The numerical results, supported by analytical insight, showed that in order to
achieve successful N2 leptogenesis, consistent with neutrino phenomenology, requires a
‘flavour swap scenario’ whereby the asymmetry generated in the tauon flavour emerges as a
surviving asymmetry dominantly in the muon flavour. However successful leptogenesis
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requires a less hierarchical pattern of RH neutrino masses than naively expected, at the
expense of some mild fine-tuning involving significant off-diagonal elements of the heavy
RH Majorana mass matrix. This leads to large deviations from the CSD(4) predictions,
including a NO neutrino spectrum with an atmospheric neutrino mixing angle well into the
second octant and a Dirac phase δCP≈20°, a set of predictions that will be tested soon in
neutrino oscillation experiments, as discussed in [88].

7.2. Towards a complete A4×SU(5) SUSY GUT

In this section we describe a fairly complete A4×SU(5) SUSY GUT model which imple-
ments CSD(3) with two RH neutrinos [89]. This model has the following virtues:

• It is fully renormalizable at the GUT scale, with an explicit SU(5) breaking sector and a
spontaneously broken  symmetry.

• The MSSM is reproduced with R-parity emerging from a discrete .R
4

• Doublet-triplet splitting is achieved through the missing partner mechanism [90].
• A μ term is generated at the correct scale.
• Proton decay is sufficiently suppressed.
• It solves the strong  problem through the Nelson–Barr mechanism [91, 92].
• It explains the hierarchies in the quark sector, and successfully fits all of the quark masses,
mixing angles and the  phase, using only 1( ) parameters.

• It justifies the CSD(3) alignment which accurately predicts the leptonic mixing angles, as
well as a normal neutrino mass hierarchy.

• It involves two RH neutrinos with the lighter one dominantly responsible for the
atmospheric neutrino mass.

• There is only one physical phase in the model, called η, which is responsible for 
violation in both leptogenesis and neutrino oscillations.

• A 9 flavour symmetry fixes the phase η to be one of ninth roots of unity [93].

Apart from A4×SU(5) the model also involves the discrete symmetries .R
9 6 4  ´ ´

It is renormalizable at the GUT scale, but many effects, including most fermion masses, come
from non-renormalizable terms that arise when heavy messenger fields are integrated out.
Unwanted or potentially dangerous terms are forbidden by the symmetries and the prescribed
messenger sector, including any terms that would generate proton decay or strong  vio-
lation. Such terms may arise from Planck scale suppressed terms, but prove to be sufficiently
small. Due to the completeness of the model, the field content is too big to be listed here, but
the superfields relevant for quarks, leptons and Higgs, including flavons, are shown in table 1.

The SM fermions are contained within superfields F and Ti. The MSSM Higgs doublet
Hu originates from a combination of H5 and H45, and Hd from a combination of H5̄ and H .45¯

Having the Higgs doublets inside these different representations generates the correct rela-
tions between down-type quarks and charged leptons. Doublet-triplet splitting is achieved by
the missing partner mechanism [90].

The field ξ which gains a VEV v M0.06 GUT~x generates a hierarchical fermion mass
structure in the up-type quark sector through terms like v T T v M ,u i j

i j6( )x
- - where vu is the

VEV of Hu. It also partially contributes to the mass hierarchy for down-type quarks and
charged leptons and provides the mass scales for the RH neutrinos as discussed later. It
further produces a highly suppressed μ term v M M .8

GUT( )~ x The resulting symmetric
Yukawa matrix for up-type quarks is
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where M 0.1.x̃ x= ~ The up-type Yukawa matrix Yu is highly nondiagonal while the
down-type and charged lepton Yukawa matrices Yd∼Ye, derived from terms like FfTH, are
nearly diagonal
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where ve,μ,τ are charged lepton flavon VEVs as in equation (86), while v 24L and vH24
are the

respective VEVs of heavy Higgs Λ24 and H24, and we include the subscripts LR to emphasize
the role of the off-diagonal term to left-handed mixing from Yd. The off-diagonal term in Ye

also provides a tiny contribution to left-handed charged lepton mixing m me
e12q ~ m which

may safely be neglected. It also introduces  violation to the CKM matrix via the phase of
.x
The relevant terms in the superpotential giving neutrino masses are

W y H F N y H F N y
M

N N y N N , 103c c c c c c
1 5

atm

2
atm 2 5

sol

2
sol 3
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atm atm 4 sol sol ( )
f
q

f
q

x
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G

where the yi are dimensionless couplings, expected to be 1 .( ) The alignment of the flavon
vacuum is fixed by the form of the superpotential, with fatm and fsol gaining VEVs according
to CSD(3) in equation (78):

Table 1. Superfields containing SM fermions, the Higgses and relevant flavons.

Field Representation

A4 SU(5) 9 6 R
4

F 3 5̄ 0 0 1
T1 1 10 5 0 1
T2 1 10 7 0 1
T3 1 10 0 0 1
N c

atm 1 1 7 3 1
N c

sol 1 1 8 3 1
Γ 1 1 0 3 1
H5 1 5 0 0 0
H5̄ 1 5̄ 2 0 0
H45 1 45 4 0 2
H45 1 45 5 0 0
ξ 1 1 2 0 0

2q 1 1 1 4 0
fatm 3 1 3 1 0
fsol 3 1 2 1 0
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This results in a low energy effective Majorana mass matrix of the form in equation (41)
for n=3, namely
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where η is the only physically important phase, which depends on the relative phase between
the first and second column of the Dirac mass matrix in the flavour basis. The phase η is
responsible for  violation in both leptogenesis and neutrino oscillations. We identify
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The Abelian flavour symmetry 9 fixes the phase η to be one of the ninth roots of unity,
through a variant of the mechanism used in [93]. The particular choice η=2π/3 can give the
neutrino mixing angles with great accuracy. Furthermore, this phase corresponds to
δCP≈−π/2, consistent with hints from experimental data.

The relevant best fit parameters from our model are given in table 2, along with the
model predictions for the leptonic mixing angles and neutrino masses, for tan β=5 .

Using the above estimates, in [94] we estimated the baryon asymmetry of the Universe
(BAU) for this model resulting from N1 leptogenesis:

Y
M

2.5 10 sin
10 GeV

. 107B
11 1

10
( )

⎡
⎣⎢

⎤
⎦⎥h» ´ -

Using η=2π/3 and the observed value of YB fixes the lightest RH neutrino mass:

M 3.9 10 GeV. 1081
10 ( )» ´

Note that the phase η controls the BAU via leptogenesis in equation (107). The phase η also
controls the entire PMNS matrix, including all the lepton mixing angles as well as all low
energy  violation. The single phase η is the therefore the source of all  violation in this
model, including both  violation in neutrino oscillations and in leptogenesis, providing a
direct link between these two phenomena in this model. We not only have a correlation
between the sign of the BAU and the sign of low energy leptonic  violation, but we
actually know the value of the leptogenesis phase: it is η=2π/3 which leads to the observed
excess of matter over antimatter for M1≈4.1010 GeV together with an observable neutrino
oscillation phase 2.CPd p» -

Table 2. Best fit parameters and predictions for an A4×SU(5) SUSY GUT with CSD
(3) and a fixed phase η=2π/3, as described in [89]. The spectrum is NO with lightest
neutrino mass m1=0 and hence the remaining Majorana phase (predicted but not
indicated) will be practically impossible to measure.

n ma mb η θ12 θ13 θ23 δCP m2 m3

(meV) (meV) (rad) (°) (°) (°) (°) (meV) (meV)

3 26.57 2.684 2
3
p 34.3 8.67 45.8 −86.7 8.59 49.8
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8. F-theory origin of SUSY GUTs with discrete family symmetry

F-theory models have attracted considerable interest over the recent years [95]. For example,
SUSY GUTs based on SU(5) have been shown to emerge naturally from F-theory. However,
in the F-theory context, the SU(5) GUT group is only one part of a larger symmetry. The other
parts manifest themselves at low energies as Abelian and/or non-Abelian discrete symme-
tries, which can be identified as family symmetries, leading to significant constraints in the
effective superpotential (for a review see e.g. [96]).

In [97] non-Abelian fluxes were conjectured to give rise to non-Abelian discrete family
symmetries in the low energy effective theory. The origin of such a symmetry is the non-
Abelian SU 5( )̂ which accompanies SU(5)GUT at the E8 point of enhancement. Whether a
non-Abelian symmetry survives in the low energy theory will depend on the geometry of the
compactified space and the fluxes present. The usual assumption is that the SU 5( )̂ is first
broken to a product of U 1( )̂ groups which are then further broken by the action of discrete
symmetries associated with the monodromy group. Instead it was conjectured in [97] that
non-Abelian fluxes can break SU 5( )̂ first to a non-Abelian discrete group S4 then to a smaller
group such as A4, D4 and so on which act as a family symmetry group in the low energy
effective theory [98]. This could provide the origin of the A4×SU(5) SUSY GUT model
discussed in section 7.2.

9. Conclusion

In conclusion, although the reactor angle has been accurately measured, which rules out
simple patterns of lepton mixing such as BM, TB and GR, it is still possible to have simple
patterns of lepton mixing with the first or second column of the TB matrix preserved, namely
TM1 or TM2, with atmospheric sum rules. It is also possible to maintain BM, TB and GR
mixing for neutrinos with the reactor angle is due to charged lepton corrections, leading to
solar sum rules.

Although adding RH neutrinos is a very simple and minimal thing to do, the number of
RH (sterile) neutrinos is undetermined by anomaly cancellation, and their mass spectrum is
completely unknown. The classic seesaw mechanism would correspond to having three RH
neutrinos with masses in the range TeV-MGUT.

SD continues to provide an elegant and natural way to understand neutrino mixing
angles, with the dominant RH neutrino couplings providing the atmospheric mixing angle, the
sub-dominant solar RH neutrino couplings providing the solar mixing angle and the
decoupled RH neutrino couplings being irrelevant. The main predictions of SD are a normal
neutrino mass hierarchy and the bound on the reactor angle θ13m2/m3, which indicated the
potential largeness of the reactor angle a decade before it was measured. Spurred on by the
success of SD, recent versions of CSD have been proposed which explain why the reactor
angle bound is saturated. A particular class of such models called CSD(n) give a successful
description of the PMNS matrix in terms of a small number of input parameters with good fits
of lepton mixing angles for n = 3, 4.

Turning to theories of flavour, a very promising approach is the combination of GUT and
family symmetry. The large lepton mixing angles suggest some sort of discrete family
symmetry at work, although not in the most simple direct way imagined before the reactor
angle was measured. In particular the direct symmetry approach in which the symmetries of
the mass matrices are directly embedded into the family symmetry, drives us to family
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symmetry groups in the Δ(6N2) series with large N values necessary in order to explain the
reactor angle.

One possibility is that only part of the symmetries of the mass matrices can be found in
the family symmetry group, which is called the semi-direct approach. This allows smaller
family groups such as S4, A4, A5 whose generators S, T, U may only partly survive. For
example if T is broken but the Klein symmetry S, U survives in the neutrino sector this would
correspond to BM, TB or GR neutrino mixing but with charged lepton corrections, leading to
solar sum rules. If T is preserved but U is broken then this corresponds to TM1 or TM2
mixing with atmospheric sum rules.

An attractive alternative is the indirect approach where a small family symmetry such as
A4 is completely broken. In this case new vacuum alignments are possible which can be used
to give interesting Yukawa couplings corresponding to different types of CSD(n), leading to
highly predictive models. We have given two examples of such models, namely an A to Z of
flavour with PS gauge group and a rather complete A4×SU(5) SUSY GUT of flavour, which
could originate from F-theory. The A to Z model allows N2 leptogenesis at the expense of
large deviations from the CSD(4) predictions, but still remains very predictive, with NO
neutrino masses, an atmospheric angle in the second octant and a Dirac phase δCP∼20°,
predictions that will be tested soon by neutrino oscillation experiments.

The A4×SU(5) SUSY GUT is consistent with N1 leptogenesis arising from the minimal
(two-right handed neutrino) predictive seesaw model, and accurately reproduces the CSD(3)
predictions with η=2π/3 being the only source of  violation for low energy neutrino
physics as well as in the early Universe. This model therefore provides a direct link between
matter–antimatter asymmetry and  violation in neutrino oscillation experiments. The
neutrino masses and PMNS matrix (nine observables) are fixed in this model by three input
parameters leading to the predictions in table 2. For example the model predicts a NO
spectrum with maximal atmospheric angle θ23∼π/4 and leptonic  violation δCP∼−π/2
in agreement with current experimental hints. Experiment will soon decide if this model is on
the right track.

In conclusion, the discovery of neutrino mass and mixing continues to offer tantalizing
clues that may help to unravel the mystery of fermion flavour, mass, mixing and  violation.
The SM is clearly unable to answer such questions, or provide an explanation of the origin of
neutrino mass, dark matter or matter–antimatter asymmetry. The history of physics suggests
that the answer to these questions will involve symmetry. The largeness of atmospheric and
solar mixing, which resemble TB mixing, motivates the use of non-Abelian discrete family
symmetries, where such approaches must and can allow Cabibbo sized reactor mixing as we
have discussed. The combination of GUTs and discrete family symmetry, together with
spontaneous  violation, continues to provide promising and testable candidate theories of
flavour capable of answering the intriguing puzzles left in the wake of the SM. We have seen
that such theories may provide a link between matter–antimatter asymmetry and  violation
in neutrino oscillation experiments, accompanied by a set of precise predictions which are
readily testable by neutrino oscillation experiments.
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