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Astrophysical sources of high-energy neutrinos

Candidate point sources
� Young supernova remnants

[due to CR acceleration by shock waves from
SN explosions]

� Accreting neutron stars and black holes
� Binary (multiple) systems

[pulsar + giant, pulsar + star filling its Roche
lobe, white dwarf + (super)giant, etc.]

� The Galactic center
[within the model of a supermassive accreting
black hole]

� Active Galactic Nuclei (AGNs)
[Seyfert galaxies, N galaxies, quasars, Lacertae
(BLLac objects), blazars (radio-loud AGNs);
particle acceleration in extragalactic jets from
radio-quiet and radio-loud AGNs]

� Gamma-Ray Bursts (GRBs)
[example: γ’s and ν’s arise from decay of pions
produced in shock front collisions]

� Hidden or latent sources
[young SN shell, cocooned massive black hole

(MBH) in AGN, Thorne–Żytkow star (the bi-
nary with a neutron star submerged into a red
supergiant core), AGN with standing shock in
the vicinity of a MBH, etc.]

Diffuse neutrino backgrounds
� Galactic neutrinos

[including ν’s from CR interactions with the
spherical halo of baryonic dark matter]

� Quasi-diffuse background from AGN’s
� Neutrinos from intergalactic space

[the most important are UHE ν’s from the CR
spectrum tail (GZK cutoff)]

� Pregalactic neutrinos and neutrinos from the
bright phase of galaxy evolution

Speculative sources of the highest-
energy neutrinos and science fiction

� Topological defects
[ultra-heavy particle emission and acceleration
by saturated superconducting cosmic strings,
cusp radiation from ordinary cosmic strings,
vortons, textures, global monopoles, etc.]

� Mini-black-hole evaporation
� Decay of super-heavy exotic particles [such

as long-lived Big Bang relics or the Planck
mass objects (planckeons ∼ fridmons ∼ max-
imons ∼ cosmions)]

� and many many others. . .

VN HE ν propagation in matter November, 13 2003



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10-1 1 10 102 103 104 105 106 107 108 109 10 10

eν

E ν (GeV)

Conventional
Conventional + Prompt (QGSM)
Conventional + Prompt (RQPM)

E
   

Fl
ux

  (
m

   
s 

  s
r  

 G
eV

  )
ν3

-2
2

-1
-1

ϑ

cos ϑ = 0, 0.1, ... , 0.9, 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10-1 1 10 102 103 104 105 106 107 108 109 10 10

⎯νe

E ν (GeV)

Conventional
Conventional + Prompt (QGSM)
Conventional + Prompt (RQPM)

E
   

Fl
ux

  (
m

   
s 

  s
r  

 G
eV

  )
ν3

-2
2

-1
-1

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10-1 1 10 102 103 104 105 106 107 108 109 10 10

νμ

E ν (GeV)

Conventional
Conventional + Prompt (QGSM)
Conventional + Prompt (RQPM)

E
   

Fl
ux

  (
m

   
s 

  s
r  

 G
eV

  )
ν3

-2
2

-1
-1

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10-1 1 10 102 103 104 105 106 107 108 109 10 10

⎯

10

νμ

E ν (GeV)

Conventional
Conventional + Prompt (QGSM)
Conventional + Prompt (RQPM)

E
   

Fl
ux

  (
m

   
s 

  s
r  

 G
eV

  )
ν3

-2
2

-1
-1

Figure 1: Energy spectra of downward-going atmospheric (anti)neutrinos for 11 zenith angles with
cos θ varied from 0 to 1 with an increment of 0.1. The range below several GeVs is for Kamioka site.
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Explanation to Fig. 2 (next slide)

Shaded regions

� Cerulean band: terrestrial atmosphere in the horizontal (upper boundary) and vertical (lower
boundary) directions including prompt neutrinos from charm production [Thunman et al. (1996)];

� Yellow band: Galactic disk towards the center (upper boundary) and the poles (lower boundary)
from [Thunman et al. (1996)];

� Gray area: unresolved extragalactic sources from which gamma rays and cosmic-ray nucleons
escape freely (curved upper boundary) and from which only gamma rays escape (straight upper
boundary) [Mannheim et al. (1999)], cosmic-ray storage in galaxy clusters (lower boundary)
[Colafrancesco & Blasi (1998)].

Numbered lines

1 – Nellen et al. (1993) model for pp interactions in the core of AGN;

2 – Stecker & Salamon (1996) model for pγ interactions in the core of AGN (from which nucleons
can not freely escape);

3 – Mannheim et al. (1999) maximum model for pγ interactions in extragalactic sources;

4 – Mannheim (1995) model A for pγ interactions in blazar jets producing UHECRs through
neutron escape;

5 – pγ interactions due to UHE cosmic rays escaping from radio galaxies and traveling through the
2.7 K background according to the model of Rachen & Biermann (1993,1996);

6 – pp interactions in host galaxies of blazar jets as assumed in the model of Mannheim (1995);

7 – GRB model by Waxman & Bahcall (1997);

8 – decaying XY gauge bosons of mass 1016 GeV created at topological defects as in the models
of Sigl (1998) and Birkel & Sarkar (1998).
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Figure 2: Summary of expected νμ + νμ intensities for diffuse emission from various sources. The
experimental data (triangles) are from Frejús proton decay detector (limit on any excess above the
atmospheric background) and Fly’s Eye fluorescence air shower detector (limits on upward events).
[From J. G. Learned and K. Mannheim, Ann. Rev. Nucl. Part. Sci. 50 (2000) 679, Fig. 8.]
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Explanation to Fig. 3 (next slide)

Numbered lines

1 – Nellen et al. (1993) model for the core emission from 3C273 due to pp interactions (or similarly
Mrk501 during its outburst in 1997 if it emits half of its TeV gamma ray flux in neutrinos);

2 – Stecker & Salamon (1996) model for the core emission from 3C273 due to pγ interactions;

3 – Mannheim (1993) model for the relativistic jet of 3C273 including pp and pγ interactions;

4 – Coma cluster according to the model of Colafrancesco & Blasi (1998);

5 – Crab nebula, Model I due to Bednarek & Protheroe (1997);

6 – cosmic-ray induced neutrinos from the sun according to Ingelman & Thunman (1996);

7 – supernova remnant IC444 according to the model of Gaisser et al. (1998);

8 – supernova remnant γ Cygni according to Gaisser et al. (1998);

9 – CasA according to the model of Atoyan et al. (2000) (adopting Lν = Lγ and Eν = 0.5Eγ).
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Figure 3: Summary of expected νμ + νμ from candidate cosmic-ray accelerators (“point sources”).
[From J. G. Learned and K. Mannheim, Ann. Rev. Nucl. Part. Sci. 50 (2000) 679, Fig. 10.]
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Figure 4: The third-brightest star of Cygnus, called γ Cygni or Sadr (the bright star near the center of
the photo), surrounded by a huge complex of emission nebulosity.
[From Gallery of Astrophotography & CCD Images, URL: <http://www.astro.univie.ac.at/~exgalak/koprolin/

Photo/>.]
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Figure 5: Antineutrino fluxes from Cygnus. The
integrated AN flux is shown for an angular bin
of 1◦ × 1◦. The excluded region is according to
J. Ahrens et al., Phys. Rev. Lett. 92 (2004) 071102
(astro-ph/0309585). [The data are borrowed from

L. A. Anchordoqui et al., Phys. Lett. B 593 (2004) 42–47

(astro-ph/0311002). The Cygnus X-3 image by the Chandra

X-ray Observatory is taken from URL <http://www.mfsc.

nasa.gov/>.]

According to L. A. Anchordoqui et al.,
the Cygnus region (Cygnus X-3 or
Cygnus-OB2 cluster) may be a source
of HE free neutrons created via nuclei
photo-disintegration on background
photon fields. The neutron β decay
provides detectable ν flux:

n→ p+ e− + νe,[
Losc
� ∼ 0.01

(
Eν
PeV

)
ps, θ� � 32.5◦

]
νe

vacuum� 0.6 νe + 0.2 νμ + 0.2 ντ .

Figure 5 shows the integrated νμ and
νμ + νe + ντ fluxes predicted to arrive at
Earth from the direction of the Cygnus.
The expected rates of νμ and νμ+νe+ντ
induced showers to be detected in the
IceCube (the planned angular resolution
is about 0.7◦) together with the expected
background for the same angular bin are
plotted on the bottom-left.
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Using the Sun as a standard candle for the calibration of neutrino detectors is hampered
by the rather low expected event rate which is ∼ 17 per year in a cubic-kilometer NT
above 100 GeV. If the rate were higher than predicted, this could indicate neutralino
annihilation in the solar interior. Thus, in spite of the low CR induced flux, it is
desirable to obtain statistics of solar HE ν’s down to this conservative flux.

π

cosmic rays EarthSun

ντνμ 1 AU

ν

Figure 6: Cosmic rays hitting the Sun produce νμ’s which propagate further to Earth. At an energy of
10 TeV the length for νμ ↔ ντ oscillations is (according to the SK AN result) about 1 AU.
[From J. G. Learned and K. Mannheim, Ann. Rev. Nucl. Part. Sci. 50 (2000) 679, Fig. 7.]

Particular interest lies in a likely νμ ↔ ντ oscillations for which the computed rate is
4–6 τ ’s above 100 GeV per year in a 1 km3 detector [Hettlage et al. (2000)]. It is of
the same order of magnitude as the expected τ rate in the CERN–NGS experiment).
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Detectors for high-energy neutrino astronomy

Figure 7: A map of underwater/ice Cherenkov neutrino telescope projects.
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Table 1: Present status of underwater/ice Cherenkov neutrino telescope projects.

Lab/Location/Stage Year(s) Sensitive
area

(10  m  )3 2
*

Status
(fall, 2003)

DUMAND I, II
Pacific near Hawaii Big Island; at a depth of ~4.5 km

Historically first underwater project.
Closed down...**

BAIKAL NT
Lake Baikal, East Siberia; at a depth of about 1.1. km

NT-36
NT-72
NT-96
NT-144
NT-200

1993-95
1995-96
1996-97
1997-98

1998 

0.15-0.20 
0.4-3.0 
0.8-6.0 
1.0-8.0 

2.0-10.0 Operates

AMANDA
South Pole; at a depth of 0.8 to 2 km

AMANDA A
AMANDA A
AMANDA B4
AMANDA II
AMANDA KM3 or IceCube

1994 
1996 
1998 
2000 
2005 

Small
1.0 
5-6 

30-50 
1000 Under construction

NESTOR
Ionian Sea near Pylos, Peloponnesos, Greece;
at a depth of about 3.8 km

2004 ? st1   phase: 20 

KM   in prospect3
& test

ANTARES
Mediterranean near Toulon, France; at a depth from
2.4 to 2.7 km (the most appropriate site is identified)

2004 ? to 100-200 

NEMO
Capo Passero (Sicily), Italy; at a depth of about 3.4 km

?  to 3500 

Stepwise
deployment &
going into
operation

Stepwise
deployment &
going into
operation
Operates

R & D 

R & D

Under construction

KM   in prospect3

KM   in prospect3

}

}

∗ The sensitive area (SA) enlarges with muon energy, e.g. the estimated SA of the Baikal NT-200 is ∼ 2300 m2 (∼ 8500 m2) for 1-TeV (100-TeV) μ’s.
∗∗ Some 1-string prototypes of the DUMAND array were and several useful results were obtained.
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Figure 8: Zenith angle distributions of upward-going reconstructed events.
Left panel: 84 Baikal NT-200 events and simulated distribution of upward muon tracks due to at-
mospheric neutrinos (80.5 predicted events).
Right panel: 204 AMANDA-B10 and Monte Carlo simulated distribution of upward muon tracks due to
atmospheric neutrinos. The size of the hatched boxes indicates the statistical precision of the AN flux
simulation. The MC prediction is normalized to the data.
[From R. Wischnewski (for the Baikal Coll.), contribution to the 28th ICRC, Tsukuda, Japan, July 31 – August 7, 2003

(astro–ph/0305302); J. Ahrens et al. (AMANDA Coll.), Phys. Rev. D 66 (2002) 012005 (astro–ph/0205109).]
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Figure 9: Recorded events and reconstructed muon neutrino energy spectrum in AMANDA-II.
Left panel: on filter level, energy distribution of atmospheric neutrino expectation (solid), unfolded
energy distribution of AN from Monte Carlo (boxes), reconstracted data (points).
Right panel: reconstructed neutrino flux compared to Fréjus data and the AN flux expectation.
[From H. Geenen (for the AMANDA Coll.), contribution to the 28th ICRC, Tsukuda, Japan, July 31 – August 7, 2003

(see also the AMANDA Berkeley Group URL <http://area51.berkeley.edu/>).]
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Classical transport through dense media

p π νμ νμ

hadronshadrons μ

CC induced regeneration
νμ ντ τ

hadronshadrons

ντ

p π νμ νμ

hadronshadrons μ

D

Figure 10: Primitive schemes for neutrino production, absorption and regeneration in matter.
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Why is dense medium somewhat simpler than rarefied?

In dense enough matter, the main regeneration mechanism is the NC induced energy
loss with no change of flavor:

ν� +N → ν� +X, ν� +N → ν� +X (� = e, μ, τ).

The NC scattering off electrons is usually unimportant with the only exception (for a
normal C asymmetric matter) for ν which can effectively regenerate (in very narrow
energy range) through the reaction

νee
− → νee

−.

This is a particular case because of the W boson resonance formed in the neighborhood
of E res

ν = m2
W /2me ≈ 6.33PeV.

Under certain conditions, neutrinos may transform, changing energy and/or flavor via
processes like

νee
− → ν��

− or ν�e
− → νe�

−.

an owing to production and decay of unstable hadrons.a

aIn exotic media (as in hot galactic haloes filled with massive neutrinos) neutrinos can chane flavor
through the reaction chains like

νμντ → μ−τ+, τ+ → ντ X, etc.
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Figure 11: Total cross sections for neutrino interactions on electron targets. At low energies, from
largest to smallest cross section, the processes are (i) νee → hadrons, (ii) νμe → μνe, (iii) νee → νee,
(iv) νee → νμμ, (v) νee → νee, (vi) νμe → νμe, (vii) νμe → νμe.
[From R.Gandhi et al., Astropart. Phys. 5 (1996) 81 (hep–ph/9512364).]
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Table 2: Integrated cross sections for neutrino–electron and neutrino–nucleon scattering at Eν =
m2

W /2me ≈ 6.33PeV. [From R.Gandhi et al., Astropart. Phys. 5 (1996) 81 (hep–ph/9512364).]

Reaction σ (cm2) Reaction σ (cm2)

νμe→ νμe 5.86× 10−36 νμN → μ− + anything 1.43× 10−33

νμe→ νμe 5.16× 10−36 νμN → νμ + anything 6.04× 10−34

νμe→ μνe 5.42× 10−35 νμN → μ+ + anything 1.41× 10−33

νee→ νee 3.10× 10−35 νμN → νμ + anything 5.98× 10−34

νee→ νee 5.38× 10−32

νee→ νμμ 5.38× 10−32

νee→ ντ τ 5.38× 10−32

νee→ hadrons 3.41× 10−31

νee→ anything 5.02× 10−31

Just at the resonance peak, σtot
νee
≈ 250σtot

νeN
.
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Regeneration in hadronic cascades

This mechanism can play a role if the column depth of the medium exceeds the
neutrino interaction length,

h � λin
ν (E),

while the average density (〈ρ〉) is low enough (like in the Thorne–Żytkow objects):

〈ρ〉 � ρ0
k

[
λin
k (Ek)

45 g/cm2

] [
1 PeV

Ek

]
.

Here λin
k (Ek) is the inelastic scattering length for a hadron k of energy Ek = ξkE at

production (45 g/cm2 is the typical value for a hydrogen-helium matter background),
ξk is the average fraction of the incident neutrino energy E carried by the hadron,

ρ0
k ≈

{
(0.8− 6.0)× 10−8 g/cm3 for k = π±,K0

L,K
±,

1.4× 10−2 g/cm3 for k = D±, D0, D0,Λ±
c .

Generally, this mechanism is not-too-effective because ξk 	 1. However

• it becomes important for flat ν spectra, like ones expected from topological defects;

• regeneration due to neutrinoproduction and decay of charmed particles may be of
some effect for HE neutrinos propagating through the solar interior.
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Muon neutrino regeneration through CC induced chains

The charged-current induced chains

νμN → μ−X, μ− → νμνee
− and νμN → μ+X, μ+ → νμνee

+

are much more effective if only

〈ρ〉 � 6.4× 10−7

[
2.5× 10−6 cm2g−1

bμ(Eμ)

] [
1 PeV

Eμ

]
g

cm3
, (1)

where bμ is the muon fractional energy loss due to radiative and photonuclear
interactions, a slowly varying function of muon energy Eμ = ξμE and ξμ ∼ 1.
Elementary considerations suggest that

under condition (1), even very thick layers of matter
never become opaque to muon neutrinos and antineutrinos.

Note:

The form of distributions of density and composition of the medium also affects the
neutrino yields from decay of hadrons and muons. As a result, the regeneration effect
may be very different for neutrino beams penetrating the same nonuniform medium in
different directions.
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Tau neutrino regeneration through CC induced chains

HE and UHE ντ and ντ effectively regenerate (losing energy) even in rather dense
media, through the charged-current reaction chain

ντN → τX, τ → ντX.

Indeed, the corresponding “critical” density can be roughly estimated as

2× 104

[
10−8 cm2g−1

bτ (Eτ )

] [
1 PeV

Eτ

]
g

cm3
(Eτ = ξτE ∼ E).

The Earth is therefore effectively transparent for ντ and ντ at energies up to 1-10 EeV.

This fact is very profitable for future experiments with underwater NTs (e.g., detecting
ντ events from astrophysical neutrino oscillations at energies � 1 PeV) and especially
for UHE neutrino experiments based on the “Space-Airwatch” method.

Indeed, extraterrestrial ντ s will produce detectable upgoing showers from the whole
lower semisphere, whereas showers produced by UHE νes and νμs can be detected from
outer space only within a narrow solid angle around the horizontal directions.

Mathematically, inclusion of the processes that change the neutrino flavor and of neutrino

energy loss through creation and decay of short-lived particles leads to a system of TE that

explicitly include the density distribution along the neutrino beam path.
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Figure 12: Schematic ν initiated air showers.

Figure 13: Upward and horizontal τ showers.

Figure 12 [from S. Bottai and S. Giurgola, Astropart.

Phys. 18 (2003) 539 (astro-ph/0205325)]:

τ ’s created in CC ντ interactions inside
the Earth could emerge from the Earth
surface and eventually decay in the at-
mosphere. These events could be detected
by EAS detectors as upwardgoing showers.

Figure 13 [from D. Fargion, astro-ph/0307485]:

Upward and horizontal τ air showers
originate from UHE ντ ’s skimming
the Earth. The open fan-like jets are
due to geomagnetic bending at high quota
(20− 30 km for upward and 23− 40 km
for horizontal showers). The shower
may be pointing to an orbiting satellite
detector (e.g. EUSO). The shower tail
may be spread by the geomagnetic field into a thin beam observable by the detector as
a small blazing oval (few dot-pixels) aligned orthogonal to the local geomagnetic field.
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Transport equations

The generic 3D nonstationary TE for the case of chemically homogeneous matter with
no external fields can be written as[
v−1∂t + Ω∇+ Σi(p, r)

]
Fi(p, r, t) =

∑
j

∫
dΓ0Σs

ij(p0,p, r)Fj(p0, r, t) + Si(p, r, t).

Here i is the multiindex which marks the particle type and helicity and thus Fi(p, r, t)
is the flux of particles with the definite helicity ; dΓ0 = dE0dΩ0; the attenuation
function Σi(p, r) includes contributions from both absorption and decay,

Σi(p, r) = Σtot
i (E, r) +

mi

pτi
= Σtot

i (E, r) +
√

1− v2

vτi
,

while possible contributions from decay of particles of other types are included into the
source function Si(p, r, t) [defined in the whole phase space Rr ⊗ Rp for 0 ≤ t < t1].
The kinematic restrictions are supposed to be included into the differential macroscopic
cross section Σs

i(p0,p, r) which is in fact an element of the polarization density matrix
for corresponding process.

Note that for essentially relativistic energies, when one can neglect the bonding
strengths, Fermi momenta, etc., the condition |p0| ≥ |p| is fulfilled.
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Z factor method for homogeneous TE with a smooth initial spectrum

Let us consider the simplest example, the single 1D TE[
∂

∂h
+

1
λ(E)

]
F (E, h) =

1
λ(E)

∫ 1

0

dx

x2
W (x,E)F

(
E

x
, h

)
. (2)

with the boundary condition F (E, h = 0) = F0(E), where λ(E), W (x,E) are now any
functions and F0(E) is a sufficiently smooth and nonvanishing function for any finite
value of energy E. Now we define

F (E, h) = F0(E) exp
[
− h

Λ(E, h)

]
, (3a)

Λ(E, h) =
λ(E)

1− Z(E, h)
. (3b)

The effective attenuation length, Λ(E, h) and the Z factor contain full information
about the particle’s kinetics. From Eqs. (2) and (3) it immediately follows that

0 < Z(E, h) < 1.

Substituting (2) into the TE (2), we find that the Z factor obeys the equation
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(
∂

∂h
+

1
h

)
Z(E, h) =

1
h

∫ 1

0

η(x,E)W (x,E) exp
[

h

Λ(E, h)
− h

Λ(E/x, h)

]
dx, (4)

where

η(x,E) =
F0(E/x)
x2F0(E)

. (5)

The initial spectra of astrophysical interest decrease much faster than E2. Thus

0 < η(x,E) < 1 and η(0, E) = 0.

In particular, for a purely power-law boundary spectrum, F0(E) ∝ E−(γ+1), we have

η(x,E) = xγ−1.

Integrating Eq. (2) by parts, we find that the Z factor obeys the integral equation

Z(E, h) =
1
h

∫ h

0

dh′
∫ 1

0

η(x,E)W (x,E) exp [−h′D(x,E, h′)] dx, (6)

where

D(x,E, h) =
1− Z(E/x, h)

λ(E/x)
− 1− Z(E, h)

λ(E)
.

Although this equation is nonlinear, it is much more convenient to solve it by an
iterative process than the original TE (2). The rate at which the iterative process
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converges depends on the choice of the zero-order approximation. The simplest choice is

Z(0)(E, h) = 0

in which case

D(0)(x,E, h) ≡ D(x,E) =
1

λ(E/x)
− 1
λ(E)

(7)

is independent of h and, in the first approximation, we have

Z(1)(E, h) =
∫ 1

0

η(x,E)W (x,E)
{

1− exp [−hD(x,E)]
hD(x,E)

}
dx. (8)

Small depths. Considering that, in the integrand on the right-hand side of Eq. (8), the
small-x region is cut off by the η(x,E), we can formally expand the braced expression
in powers of h. This yields

Z(1)(E, h) =
∫ 1

0

η(x,E)W (x,E)
[
1− 1

2
hD(x,E) + . . .

]
dx. (9)

The leading term of the expansion in Eq. (9) is

Z(E, 0) =
∫ 1

0

η(x,E)W (x,E)dx
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Large depths. Taking into account the known growth of σin
pA(E) with energy and using

Eqs. (7) and (9), we can easily show that

lim
h→∞

Z(0)(E, h) = 0.

Under quite general assumptions, it can also be proven that

lim
h→∞

Z(E, h) = 0.

Therefore, the effective attenuation length Λ(E, h) coincides with the interaction
length, λ(E) at sufficiently large depths. We will not present here the proof of this
statement because it is of purely academic interest for the several reasons (disregard of
3D effects, of energy losses, and of the contribution of nucleons from mesonnucleus
interactions).

What only counts is that, with increasing depth, Z decreases, which means that the
relative contribution of regeneration processes is reduced. As a consequence, the energy
spectrum becomes steeper with increasing depth.

Thus, even the first-approximation expression (8) for the Z factor has a correct
asymptotic behavior both at small and at large values of h.
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The Earth’s interior

ϑ

ϑ

α

R R
A

B

dM = h(A,B)dS

Figure 14: Definition of variables to derive
the column depth, h = h(α, ϑ), for the Earth.

Let us neglect the nonsphericity of
the Earth. The column depth of the Earth
in direction ϑ between the neutrino entrant
point A and the current point B, defined
parametrically by the angle α, is given by

h =

������
�����

h⊕ (α, ϑ) , for 0 ≤ α ≤ π

2
− ϑ,

2h⊕

�π

2
− ϑ, ϑ

�

− h⊕ (α, ϑ) ,

for
π

2
− ϑ < α ≤ π − 2ϑ,

where

h⊕ (α, ϑ) =

� R⊕

R(α,ϑ)

ρ(R)dR�

1 − sin2 ϑ

	

R⊕
R


2
,

R(α, ϑ) =
R⊕ sin ϑ

sin(α + ϑ)
,

ρ(R) is the radial density distribution and R⊕ = 6378.14 km is the (mean) radius of the Earth.
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The column depth of the Earth along the whole chord (α = π − 2ϑ) is given by

hϑ = 2h⊕

�π

2
− ϑ, ϑ

�

= 2

� R⊕

R⊕ sin ϑ

ρ(R)

�

1 − sin2 ϑ

	

R⊕
R


2

�−1/2

dR.

Figure 15: The Earth’s interior.
[From D. L. Anderson, Proc. Natl. Acad.

Sci. USA 99 (2002) 13966.]

“Almost everything known or inferred about
the inner core, from seismology or indirect
inference, is controversial.” (Don Anderson)

The volumetric relation of the various regions of the
core to the whole Earth is shown: outer core (pale blue)
occupies 15%, the inner core (pink) occupies less than
1%, and the innermost inner core (red) constitutes only
0.01% of the Earth’s volume. The Earth’s core lies
beneath 3,000-km thick, heterogeneous mantle
(anomalies with higher than average seismic speed
are shown in blue and those with lower than average
speed are shown in red), making investigations of core

properties challenging.
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For the radial density distribution inthe Earth, it is now conventional to use the
so-called “Preliminary Reference Earth Model” (PREM).a In this model, the Earth is

Table 3: Coefficients of the polynomials for the PREM.

n Rn+1 an0 an1 an2 an3

(km)

0 1221.5 13.0885 -8.8381
1 3480.0 12.5815 -1.2638 -3.6426 -5.5281
2 5701.0 7.9565 -6.4761 5.5283 -3.0807
3 5771.0 5.3197 -1.4836
4 5971.0 11.2494 -8.0298
5 6151.0 7.1089 -3.8045
6 6346.6 2.6910 0.6924
7 6356.0 2.9000 ← crust (must be replaced
8 6368.0 2.6000 with the local values)
9 6371.0 1.0200 ← ocean (ditto)

divided into 10 concentric
layers and the density
distribution, ρ = ρ(R), in
each layer is approximated
by a cubical polynomial:

ρ(R) =
3∑

k=0

ank (R/R⊕)k ,

Rn ≤ R < Rn+1,

n = 0, 1, . . . , 9

(R0 = 0, R10 = R⊕).

The nonzero coefficients
ank [in g/cm3] are listed
in Table 3. Graphical re-
presentation of the model
is shown in Fig. 16.

aA.M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Inter. 25 (1981) 297; see also
A. M. Dziewonski, “Earth structure, global”, in Encyclopedia of solid Earth geophysics, Edited by D.E.
James (Van Nostrand Reinhold, New York. 1989), p. 331.
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Figure 16: Radial density distribution in the
Earth according to PREM.

In particular, according to PREM, the
depth of Earth along the diameter is

h⊕ = 2h⊕ (π/2, 0) � 1.095× 1010 g/cm2.

→
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Figure 17: The column depth of the Earth (that
is the depth along the total chord with the target
distance of R⊕ sin ϑ from the center of the Earth)
vs zenith angle ϑ, evaluated with the PREM.
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Chemical composition of the Earth

Measurements of the propagation of seismological waves in the Earths interior and
studies of the properties of minerals under high pressure, have been combined to
determine the chemical composition of the Earths interior.

Table 4: Masses (×1027 g) of the six most abundant elements in the whole Earth’s core as
estimated by Herndon [J. M.Herndon, Phys. Earth Planet. Inter. 105 (1998) 1 and references therein.]

Element 1980, 1982 1993

Magnesium (Mg) 0.0475 0.0389
Silicon (Si) 0.0326 0.0376
Calcium (Ca) 0.0184 0.0178
Sulfur (S) 0.284 0.285
Iron (Fe) 1.45 1.46
Nickel (Ni) 0.0831 0.0871

⇓

The core is nearly iron.

VN HE ν propagation in matter November, 13 2003



Isotopic composition of the Earth
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Figure 18: Estimated number densities of
quarks and electrons vs distance from the cen-
ter of the Earth.
[From J. Kameda, Ph. D Thesis, University of Tokyo,

September, 2002.]

The mean charge-to-mass ratio, 〈Z/A〉,
has been estimated by Bahcall and Krastev
[J. N. Bahcall and P. I. Krastev, Phys. Rev. C 56 (1997) 2839.
The estimations are based on the experimental data from
Y. Zhao and D. L. Anderson, Phys. Earth Planet. Inter. 85

(1994) 273.]

Summary:

• 〈Z/A〉 = 0.468 for the core
(83% Fe, 9% Ni and 8% light elements
with Z/A = 0.5),

• 〈Z/A〉 = 0.497 for the mantle
(41.2% SiO2, 52.7% MgO and 6.1% FeO).

This result is shown in Fig. 18 in terms of
the number densities of u and d quarks and
electrons.

⇓
The composition is almost isoscalar.
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Numerical results for muon neutrinos

Figure 19 shows the energy dependence of the Z factors, Zνμ(E, h) and Zνμ
(E, h) for

various depths, calculated with the following model for the initial neutrino spectrum:

F 0
ν (E) = K

(
E0

E

)γ+1 (
1 +

E

E0

)−α
φ

(
E

Ecut

)
, (10)

where K, γ, α, E0, and Ecut are parameters and φ(x) is a function equal to 0 at t ≥ 1
and 1 at x	 1. Varying the parameters in Eq. (10), one can approximate many models
for the neutrino fluxes expected from the known astrophysical sources. Technically, the
function φ(t) serves to avoid an extrapolation of the cross sections to the extremely-high
energy region for which our knowledge of the parton density functions becomes
doubtful. For realistic values of the parameters γ, α, and E0, the explicit form of φ(t)
is of no importance for as long as one is interested in the energy range E 	 Ecut. Here
it is adopted φ(x) = 1/ [1 + tan (πx/2)] (x < 1) and Ecut = 3× 1010 GeV.

The calculations were made in the fourth order of the iteration procedure. For all the
spectra under discussion, for 10 GeV ≤ E ≤ 1010 GeV and 0 ≤ h ≤ h⊕, the maximum

difference between Z
(1)
ν (E, h) and Z

(2)
ν (E, h) is about 4%; the value

∣∣∣Z(3)
ν /Z

(2)
ν − 1

∣∣∣ is

less than 2× 10−3, and
∣∣∣Z(4)
ν /Z

(3)
ν − 1

∣∣∣ is less than the precision of the numerical

integration and interpolation (about 10−5) adopted in the calculations.
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Figure 19: Z factors, Zνμ (E, h) and Zνμ (E, h) vs energy calculated with four different sets of γ’s

and α’s (everywhere E0 = 1 PeV) for depths h = h⊕/k [k = 1, 2, 3, 5, 10, 20, 50 from bottom to top]
and h = 0 (the largest Z factors).

VN HE ν propagation in matter November, 13 2003



nadir angle (in degrees)
0 10 20 30 40 50 60 70 80 90

F ν
/F ν

0

10 -5

10 -4

10 -3

10 -2

10 -1

1

νμ νμ

Log(E)  (E in GeV)

10 -5

10 -4

10 -3

10 -2

10 -1

1

2 3 4 5 6 7 8

F ν
/F ν

0

Figure 20: Penetration coefficients, P = Fν/F 0
ν = exp [−h/Λν(E, h)], in the Earth for for muon

neutrinos with the quasi-power-law initial spectrum (γ = 0.7).
Left panel: P as a function of nadir angle (= π − ϑ) for E = 10k GeV [k = 3, 4, . . . , 7 from top to
bottom]. The kinks are due to the layered structure of the Earth.
Right panel: P as a function of E at fixed nadir angles [0◦, 10◦, . . . , 90◦ from bottom to top].
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Some highlights

• As is clear from Fig. 19, the shape of the Z factors is very dependent from the
initial neutrino spectrum. This is a positive fact for neutrino astronomy, since it
gives, at least in principle, the possibility to reconstruct the initial neutrino
spectrum from the measured energy spectrum and angular distribution of neutrino
induced muon events in a neutrino telescope.

• At comparatively low energies (except for unrealistically hard spectra like the one
used in Fig. 19.a), the Z factors for antineutrinos exceed those for neutrinos.
Considering the inequality

λin
νμ

(E) > λin
νμ

(E),

one can conclude that

Λνμ
(E, h) > Λνμ(E, h)

for any depth. In the multi-PeV energy range and above, the Z factors (and
effective attenuation lengths) are identical for νμ and νμ. The difference between
the shapes of Zνμ

(E, h) and Zνμ
(E, h) is almost depth-independent and becomes

more important for steep initial spectra.

This behavior may be understood from an analysis of the shapes of the total cross
sections and regeneration functions for νμ and νμ.
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• At any fixed energy, the Z factors monotonically decrease with increasing depth
and the inequality Zν(E, h) < Z0

ν(E) takes place for any h > 0. This effect leads
to a significant decrease of the neutrino event rates in comparison with those
estimated in the approximation

Zν ≈ Z0
ν ;

the latter only works at low energies, when the shadow effect is by itself small (that
is when the medium is almost transparent for neutrinos). Although these
conclusions were derived from particular models for the initial neutrino spectrum,
cross sections, and medium, they are actually highly general and
model-independent.

Moreover, similar effects take place in many problems of high-energy particle
transport (nuclear cascade in the atmosphere, muon propagation through dense
media, etc.).

• After tests with many models for the initial spectrum, we can conclude that the
convergence of the algorithm is very good and that even the first approximation,

Z
(1)
ν (E, h), has an accuracy quite sufficient for the majority of applications of the

theory.
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Atmospheric neutrino attenuation in the Earth

Figures 21–24 show different characteristics of the muon atmospheric (anti)neutrino
propagation through the Earth calculated in the first approximation of the Z factor
method. They seem to be selfexplanatory.

νμ

ν⎯μ

10 10 10 10 10 10 10 10 10
1 2 3 4 6 7 8 95

Energy (GeV)

0.08

0.24
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0.16

0.18
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0.22

0.26

Z
(1

)

Figure 21: Z factors for atmospheric νμ (solid curves) and νμ (dashed curves) vs energy, calculated
in the 1st approximation in for cos ϑ = −0.1, −0.2, . . . ,−1.0 (the sequence corresponds to the curves
from top to bottom).
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Figure 22: Interaction and attenuation lengths for atmospheric upwardgoing νμ and νμ in the Earth.
The total depth of the Earth along its diameter is also shown for comparison.
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Figure 23: Penetration coefficients for atmospheric νμ (solid curves) and νμ (dashed curves) vs cos ϑ

for energies Eν = 10k GeV with k = 3, 4, . . . , 10 from top to bottom.
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Figure 24: Penetration coefficients for atmospheric νμ (solid curves) and νμ (dashed curves) vs energy
for cos ϑ = −0.1, −0.2, . . . ,−1.0. (from top to bottom).
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High-energy neutrino oscillations in matter

Neutrino refraction

It has been noted by Wolfensteina that neutrino oscillations in a medium are affected by
interactions even if the thickness of the medium is negligible in comparison with the
neutrino mean free path.

Let us forget for the moment about the inelastic collisions and consider the simplest
case of a ultrarelativistic neutrino which moves in an external (effective) potential W
formed by the matter background. If the neutrino momentum in vacuum was p then its
energy was � p = |p|. When the neutrino enters into the medium, its energy becomes
E = p+W . Let us now introduce the index of refraction n = p/E which is a positive
value in the absence of inelastic collisions. Therefore

W = (1− n)E � (1− n)p. (11)

In the last step, we took into account that neutrino interaction with matter is very
weak, |W | 	 E, and thus E � p is a good approximation.

The time evolution equation for the neutrino flavor states in matter follows from a
simple consideration and the quantum-mechanical correspondence principle.

aL. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
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This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V† + W(t)

] |ν(t)〉
f
, (12)

where
W(t) = diag

(
1− nνe

, 1− nνμ
, 1− nντ

, . . .
)
p (13)

is the interaction Hamiltonian.

It will be useful for the following to introduce the time-evolution operator for the flavor
states defined by

|ν(t)〉
f
= S(t)|ν(0)〉

f
.

Taking into account that |ν(t)〉
f
must satisfy Eq. (12) for any initial condition

|ν(t = 0)〉
f
= |ν(0)〉

f
, the Wolfenstein equation can be immediately rewritten in terms

of the evolution operator:

iṠ(t) =
[
VH0V† + W(t)

]
S(t), S(0) = 1. (14)

This equation (or its equivalent (12)) cannot be solved analytically in the general case
of a medium with a varying (along the neutrino pass) density. But for a medium with a
slowly (adiabatically) varying density distribution the approximate solution can be
obtained by a diagonalization of the effective Hamiltonian. Below we will consider this
method for a rather general 2-flavor case but now let us illustrate (without derivation)
the simplest situation with a matter of constant density.
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Matter of constant density

In the 2-flavor case, the transition probability is given by the formula very similar to
that for vacuum:

Pαα′(L) =
1
2

sin2 2θm

[
1− cos

(
2πL
Lm

)]
,

Lm = Lv

[
1− 2κ (Lv/L0) cos θ + (Lv/L0)

2
]−1/2

.

The Lm is called the oscillation length in matter and is defined through the following
quantities:

Lv ≡ L23 =
4πE
Δm2

, L0 =
√

2πA
GFNAZρ

≈ 2R⊕

(
A

2Z

)(
2.5 g/cm3

ρ

)
,

κ = sign
(
m2

3 −m2
2

)
, Δm2 =

∣∣m2
3 −m2

2

∣∣ .
The parameter θm is called the mixing angle in matter and is given by

sin 2θm = sin 2θ
(
Lm

Lv

)
, cos 2θm =

(
cos 2θ − κLv

L0

)(
Lm

Lv

)
.

The solution for antineutrinos is the same but with the replacement κ �→ −κ. The
closeness of the value of L0 to the Earth’s diameter is even more surprising than that
for Lv. The matter effects are important for atmospheric neutrinos.
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Propagation of high-energy mixed neutrinos through matter

“The matter doesn’t matter”

Lincoln Wolfenstein, lecture given at 28th
SLAC Summer Institute on Particle Physics
“Neutrinos from the Lab, the Sun, and the
Cosmos”, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vacuum there is a phase change

exp
(−im2

i t/2pν
)
.

For two mixed flavors there is a resulting oscillation with length

Lvac =
4πEν
Δm2

≈ D⊕

(
Eν

10 GeV

)(
0.002 eV2

Δm2

)
.

In matter there is an additional phase change due to refraction associated with forward
scattering

exp [ipν(Ren− 1)t]

and the characteristic length (for a normal medium) is

Lref =
√

2A
GFNAZρ

≈ D⊕

(
A

2Z

)(
2.5 g/cm2

ρ

)
.
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It is generally believed that the imaginary part of the index of refraction n which
describes the neutrino absorption due to inelastic interactions does not affect the
oscillation probabilities or at the least inelastic interactions can be someway decoupled
from oscillations.

The conventional arguments are

• Ren− 1 ∝ GF while Imn ∝ G2
F ;

• Only Δn may affect the oscillations and ΔImn is all the more negligible.

It will be shown that these arguments do not work for sufficiently high neutrino energies
and/or for thick media =⇒ in general absorption cannot be decoupled from refraction
and mixing.

By using another cant phrase of Wolfenstein, one can say that

“In some circumstances the matter could matter.”
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Generalized MSW equation

Let fναA(0) be the amplitude for the να zero-angle scattering from particle A of the
matter background (A = e, p, n, . . .),
ρ(t) – the matter density (in g/cm3),
YA(t) – the number of particles A per amu in the point t of the medium,
N0 = 6.02214199× 1023 cm−3 – the reference particle number density (numerically
equal to the Avogadro’s number).

Then the index of refraction of να for small |n− 1| is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑
A

YA(t)fναA(0),

where pν is the neutrino momentum. Since the amplitude fναA(0) is in general a
complex number, the index of refraction is also complex. Its real part is responsible for
neutrino refraction while the imaginary part – for absorption. From the optical theorem
of quantum mechanics we have

Im [fναA(0)] =
pν
4π
σtot
ναA (pν).

This implies that

pν Im [nα(t)] =
1
2
N0ρ(t)

∑
A

YA(t)σtot
ναA (pν) =

1
2Λα (pν , t)

,
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where Λα (pν , t) is the mean free path of να in the point t of the medium.

Note:

The dimension of Λα is cm,

Λα (pν , t) =
1

Σtot
α (pν , t)

=
λtot
a (pν , t)
ρ(t)

.

Since the neutrino momentum, pν , is an extrinsic variable in Eq. (15), we will
sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =
(
Sαα(t) Sαβ(t)
Sβα(t) Sββ(t)

)
of two mixed stable neutrino flavors να and νβ propagating through an absorbing
medium can be written as

i
d

dt
S(t) =

[
VH0VT + W(t)

]
S(t), (S(0) = 1) . (15)
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Here

V=
(

cos θ sin θ
− sin θ cos θ

)
is the vacuum mixing matrix (0 ≤ θ ≤ π/2),

H0=
(
E1 0
0 E2

)
is the vacuum Hamiltonian for ν mass eigenstates,

Ei=
√
p2
ν +m2

i � pν +m2
i /2pν is the energy of the νi eigenstate,

W(t)= −pν
(
nα(t)− 1 0

0 nβ(t)− 1

)
is the interaction Hamiltonian.

Master equation

It is useful to transform MSW equation into the one with a traceless Hamiltonian. For
this purpose we define the matrix

S̃(t) = exp
{
i

2

∫ t

0

Tr [H0 + W(t′)] dt′
}

S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1. (16)
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The effective Hamiltonian is defined by

H(t) =
(
q(t)−Δc Δs

Δs −q(t) + Δc

)
,

Δc = Δ cos 2θ, Δs = Δ sin 2θ, Δ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1
2
pν [nβ(t)− nα(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] �= Im [fναA(0)].

The neutrino oscillation probabilities are

P [να(0)→ να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣2, (17)

where

A(t) = exp
[
−
∫ t

0

dt′

Λ(t′)

]
,

1
Λ(t)

=
1
2

[
1

Λα(t)
+

1
Λβ(t)

]
.

Owing to the complex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no conventional relations
between Pαα′(t).

VN HE ν propagation in matter November, 13 2003



Since

qI(t) =
1
4

[
1

Λβ(t)
− 1
Λα(t)

]
,

the matrix H(t) becomes Hermitian when Λα = Λβ. If this is the case at any t, the ME
reduces to the standard MSW equation and inelastic scattering results in the common
exponential attenuation of the probabilities. probabilities. From here, we shall consider
the more general and more interesting case, when Λα �= Λβ.

Examples

να − νs
This is the extreme example. Since Λs =∞, we have Λ = 2Λα and qI = −1/4Λα. So
qI �= 0 at any energy. Even without solving the evolution equation, one can expect the
penetrability of active neutrinos to be essentially modified in this case because, roughly
speaking, they spend a certain part of life in the sterile state. In other words, sterile
neutrinos “tow” their active companions through the medium as a tugboat. On the
other hand, the active neutrinos “retard” the sterile ones, like a bulky barge retards its
tugboat. As a result, the sterile neutrinos undergo some absorption.
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νe,μ − ντ
Essentially at all energies, σCC

νe,μN
> σCC

ντN
. This is because of large value of the τ

lepton mass, mτ , which leads to several consequences:

1. high neutrino energy threshold for τ production;

2. sharp shrinkage of the phase spaces for CC ντN reactions;

3. kinematic correction factors (∝ m2
τ ) to the nucleon structure functions (the

corresponding structures are negligible for e production and small for μ production).

The neutral current contributions are canceled out from qI . Thus, in the context of the
master equation, ντ can be treated as (almost) sterile within the energy range for
which σCC

νe,μN
� σCC

ντN
(see Figs. 26–27 below).

νe − να
A similar situation, while in quite a different and narrow energy range, holds in the case
of mixing of νe with some other flavor. This is a particular case for a normal C
asymmetric medium, because of the W boson resonance formed in the neighborhood of
Eres
ν = m2

W /2me ≈ 6.33 PeV through the reactions

νee
− →W− → hadrons and νee

− →W− → ν��
− (� = e, μ, τ).

Let’s remind that σtot
νee
≈ 250 σtot

νeN
just at the resonance peak (see Fig. 25 and Table 5

below).
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Figure 25: Total cross sections for (anti)neutrino interactions on electron targets. The
cross sections for (anti)neutrino CC and NC interactions on isoscalar nucleon are also
shown for a comparison.
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Table 5: Integrated cross sections for neutrino-electron and neutrino-nucleon scattering
at Eν = m2

W /2me ≈ 6.331 PeV.

Reaction σ (cm2) Reaction σ (cm2)

νμe→ νμe 5.86× 10−36 νμN → μ− + anything 1.43× 10−33

νμe→ νμe 5.16× 10−36 νμN → νμ + anything 6.04× 10−34

νμe→ μνe 5.42× 10−35 νμN → μ+ + anything 1.41× 10−33

νee→ νee 3.10× 10−35 νμN → νμ + anything 5.98× 10−34

νee→ νee 5.215× 10−32

νee→ νμμ 5.214× 10−32

νee→ ντ τ 5.208× 10−32

νee→ hadrons 3.352× 10−31

νee→ anything 4.917× 10−31

Just at the resonance peak, σtot
νee
≈ 250σtot

νeN
.

Note:

The cross sections for electron targets listed in Table 5 were calculated using the
formulas given by Gandhi et al., a but some numerical values are different since the
input parameters were updated.

aR. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, “Ultrahigh-energy neutrino interactions,” As-
tropart. Phys. 5 (1996) 81–110 (hep-ph/9512364).
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Total cross sections

According to Albright and Jarlskoga

dσCC
ν, ν

dxdy
=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q2) are the nucleon structure functions and Ai are the kinematic
factors i = 1, . . . , 5). These factors were calculated by many authorsb and the most
accurate formulas were given by Paschos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1− y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(
1− y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The contributions proportional to m2
� must vanish as Eν � m�. However they remain

surprisingly important even at very high energies.

aC. H. Albright and C. Jarlskog, Nucl. Phys. B84 (1975) 467. See also I. Ju, Phys. Rev. D8 (1973)
3103 and V. D. Barger et al., Phys. Rev. D16 (1977) 2141.

bSee previous footnote and also the more recent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya,
Eur. Phys. J. C 18 (2000) 405 (hep–ph/9905475); N. I. Starkov, J. Phys. G: Nucl. Part. Phys. 27 (2001)
L81; E. A. Paschos and J. Y. Yu, Phys. Rev. D65 (2002) 033002 (hep–ph/0107261).
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Figure 26: Total inelastic νn cross sections evaluated with the MRST 2002 NNLO
PDF model modified according to Bodek–Yang prescription (solid lines) and unmodified
(dashed lines).
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Indices of refraction

For Eν 	 min
(
m2
W,Z/2mA

)
and for an electroneutral nonpolarized cold medium, the

qR is energy independent. In the leading orders of the standard electroweak theory it is

qR =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2V0Ypρ for α = e and β = μ or τ,

− 1
2aτV0 (Yp + bτYn) ρ for α = μ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = μ or τ and β = s,

where

V0 =
√

2GFN0 � 7.63× 10−14 eV

(
L0 =

2π
V0
� 1.62× 104 km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ )− 1]

4π sin2 θW
� 2.44× 10−5, bτ =

ln(1/rτ )− 2/3
ln(1/rτ )− 1

� 1.05,

α is the fine-structure constant, θW is the weak-mixing angle and rτ = (mτ/mW )2.
Notes:

• For an isoscalar medium the |qR| is of the same order of magnitude for any pair
of flavors but νμ − ντ .
• For an isoscalar medium q

(νμ−ντ )
R /q

(νe−νμ)
R ≈ −5× 10−5.
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• For certain regions of a neutron-rich medium the value of q
(νe−νs)
R may become

vanishingly small. In this case, the one-loop radiative corrections must be taken into
account.

• For very high energies the qR have to be corrected for the gauge boson
propagators and strong-interaction effects.

One can expect |qR| to be either an energy-independent or decreasing function for any
pair of mixed neutrino flavors. On the other hand, there are several cases of much
current interest when |qI | either increases with energy without bound (mixing between
active and sterile neutrino states) or has a broad or sharp maximum (as for νμ − ντ or
νe − νμ mixings, respectively).

Numerical estimations suggest that for every of these cases there is an energy range in
which qR and qI are comparable in magnitude. Since qR ∝ ρ and qI ∝ and are
dependent upon the composition of the medium (YA) there may exist some more
specific situations, when

|qR| ∼ |qI | ∼ |Δ|
or even

|qR| ∼ |Δc| and |qI | ∼ |Δs| .
If this is the case, the refraction, absorption and mixing become interestingly
superimposed.
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Eigenproblem and mixing matrix in matter

Eigenvalues

The matrix H(t) has two complex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the characteristic equation

ε2 = (q − q+) (q − q−) ,

where q± = Δc ± iΔs = Δe±2iθ. The solution is

ε2R =
1
2
(
ε20 − q2I

)
+

1
2

√
(ε20 − q2I )2 + 4q2I (ε20 −Δ2

s),

εI =
qI (qR −Δc)

εR
(provided qR �= Δc) ,

with

ε0 =
√

Δ2 − 2ΔcqR + q2R ≥ |Δs|, sign (εR) def= sign(Δ) ≡ ζ.
(At that choice ε = Δ for vacuum and ε = ζε0 if qI = 0.)

In the vicinity of the MSW resonance, qR = qR(t	) = Δc

lim
qR→Δc±0

εR= Δs

√
max (1−Δ2

I/Δ2
s, 0),

lim
qR→Δc±0

εI= ±ζΔI

√
max (1−Δ2

s/Δ2
I , 0),
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where ΔI = qI(t	). Therefore the resonance value of |εR| (which is inversely
proportional to the neutrino oscillation length in matter) is always smaller than the
conventional MSW value |Δs| and vanishes if Δ2

I < Δ2
s (εI remains finite in this case).

In neutrino transition through the region of resonance density ρ = ρ(t	), εI undergoes
discontinuous jump while εR remains continuous. The corresponding cuts in the q
plane are placed outside the circle |q| ≤ |Δ|. If Δ2

I > Δ2
s, the imaginary part of ε

vanishes while the real part remains finite.

A distinctive feature of the characteristic equation is the existence of two mutually
conjugate “super-resonance” points q± in which ε vanishes giving rise to the total
degeneracy of the levels of the system (impossible in the “standard MSW” solution).
Certainly, the behavior of the system in the vicinity of these points must be
dramatically different from the conventional pattern.

The “super-resonance” conditions are physically realizable for various
meaningful mixing scenarios.
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Eigenstates

In order to simplify the solution to the eigenstate problem we’ll assume that the phase
trajectory q = q(t) does not cross the points q± at any t. In non-Hermitian quantum
dynamics one has to consider the two pairs of instantaneous eigenvectors |Ψ±〉 and
|Ψ±〉 which obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (18)

and (for q �= q±) form a complete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenvectors are defined up to a gauge transformation

|Ψ±〉 �→ eif± |Ψ±〉, |Ψ±〉 �→ e−if
∗
± |Ψ±〉,

with arbitrary complex functions f±(t) such that Im (f±) vanish as q = 0.a Thus it is
sufficient to find any particular solution of Eqs. (18). Taking into account that
H† = H∗, we may set |Ψ±〉 = |Ψ∗±〉 and hence the eigenvectors can be found from the
identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.
aFor our aims, the class of the gauge functions may be restricted without loss of generality by the

condition f±|q=0 = 0.
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Setting |Ψ±〉 = (v±,±v∓)T we arrive at the equations

v2
± =

ε± (q −Δc)
2ε

, v+v− =
Δs

2ε
,

a particular solution of which can be written as

v+=

√∣∣∣∣ε+ q −Δc

2ε

∣∣∣∣ ei(ϕ−ψ)/2,

v−= ζ

√∣∣∣∣ε− q + Δc

2ε

∣∣∣∣ ei(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q −Δc) = − arg(ε− q + Δc) = arctan
(
qI
εR

)
,

ψ = arg(ε) = arctan
(
εI
εR

)
,

and we have fixed the remaining gauge ambiguity by a comparison with the vacuum
case.
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Mixing angle in matter

It may be sometimes useful to define the complex mixing angle in matter
Θ = ΘR + iΘI by the relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
Δs

ε
, cos 2Θ =

Δc − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ)≡ ΘR =
1
2

arctan
[
(qI −Δs) εR − (qR −Δc) εI
(qR −Δc) εR + (qI −Δs) εI

]
,

Im(Θ)≡ ΘI =
1
4

ln

[
ε2R + ε2I

(qR −Δc)
2 + (qI −Δs)

2

]
.

cosΘ= cosΘR coshΘI − i sinΘR sinhΘI ,
sinΘ= sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the prescription for the sign of εR, one can verify that Θ = θ if q = 0
(vacuum case) and Θ = 0 if Δs = 0 (no mixing or m2

1 = m2
2). It is also clear that Θ

becomes the standard MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).
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Mixing matrix in matter

In order to build up the solution to ME for the nondegenerated case one has to
diagonalize the Hamiltonian. Generally a non-Hermitian matrix cannot be diagonalized
by a single unitary transformation. But in our simple case this can be done by a
complex orthogonal matrix (extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =
(
v− v+
−v+ v−

)
=
(

cosΘ sinΘ
− sinΘ cosΘ

)
.

Properties of U:

UTHU = diag (−ε, ε),
UTU = 1,

U|q=0 = V.
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From CE it follows that

∂ε/∂q = (q −Δc)/ε

and thus
∂v±
∂q

= ±Δ2
sv∓
2ε2

.

We therefore have

iUT U̇ = −Ω
(

0 −i
i 0

)
= −Ωσ

2
,

where

Ω =
q̇Δs

2ε2
=
i

4
d

dt
ln
(
q − q+
q − q−

)
.

Properties of Uf :

UT
f HUf = diag (−ε, ε),

UT
f Uf = 1,

Uf |q=0 = V,

iUT
f U̇f = −Ωe−ifσ

2
eif − ḟ .
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Adiabatic solution

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)]Xf (t)UT
f (0). (19)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the complex dynamical
phase, defined by

ΦR(t) =
∫ t

0

εR(t′)dt′, ΦI(t) =
∫ t

0

εI(t′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)σ2e
−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It can be proved now that the right side of Eq. (19) is gauge-invariant i.e. it does not
depend on the unphysical complex phases f±(t). This crucial fact is closely related to
the absence of the Abelian topological phases in the system under consideration.
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Finally, we can put f± = 0 in Eq. (19) and the result is

S̃(t) = U(t) exp [−iΦ(t)]X(t)UT (0), (20a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (20b)

These equations, being equivalent to the ME, have nevertheless a restricted range of
practical usage on account of poles and cuts as well as decaying and increasing
exponents in the “Hamiltonian” ΩF.

Adiabatic theorem

The adiabatic theorem of Hermitian quantum mechanics can almost straightforwardly
be extended to ME under the requirements:

(a) the potential q is a sufficiently smooth and slow function of t;

(b) the imaginary part of the dynamical phase is a bounded function i.e.
limt→∞ |ΦI(t)| is finite;

(c) the phase trajectory q = q(t) is placed far from the singularities for any t.

The first requirement breaks down for a condensed medium with a sharp boundary or
layered structure (like the Earth). If however the requirement (a) is valid inside each
layer (ti, ti+1), the problem reduces to Eqs. (20) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0),

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.
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The requirement (b) alone is not too restrictive considering that for many astrophysical
objects (like stars, galactic nuclei, jets and so on) the density ρ exponentially disappears
to the periphery and, on the other hand, εI → 0 as ρ→ 0. In this instance, the
function ΦI(t) must be t independent for sufficiently large t. But, in the case of a steep
density profile, the requirements (a) and (b) may be inconsistent.

The important case of violation of the requirement (c) is the subject of a special study
which is beyond the scope of this study.

It is interesting to note in this connection that, in the Hermitian case, a general
adiabatic theorem has been proved without the traditional gap condition [J. E. Avron
and A. Elgart, Commun. Math. Phys. 203 (1999) 445].

The solution

Presume that all necessary conditions do hold for 0 ≤ t ≤ T . Then, in the adiabatic
limit, we can put Ω = 0 in Eq. (20b). Therefore X = 1 and Eq. (20a) yields

S̃αα(t)= v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t)= v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t)= v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t)= v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),
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Taking into account Eq. (17) we obtain the survival and transition probabilities:

Pαα(t) = A(t)
{[
I+
+ (t)eΦI(t) + I−− (t)e−ΦI(t)

]2
− I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)
{[
I−+ (t)eΦI(t) − I+

− (t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]
}
,

Pβα(t) = A(t)
{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)
{[
I−− (t)eΦI(t) + I+

+ (t)e−ΦI(t)
]2
− I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(21)

where we have denoted for compactness

Iς
′
ς (t) = |vς(0)vς′(t)| (ς, ς ′ = ±),

ϕ±(t) =
ϕ(0)± ϕ(t)

2
,

I2(t) = 4I+
+ (t)I−− (t) = 4I−+ (t)I+

−(t) =
Δ2
s

|ε(0)ε(t)| .
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Limiting cases

In the event that the conditions∣∣∣∣ 1
Λβ(t)

− 1
Λα(t)

∣∣∣∣	 4ε0(t) and t	 min [Λα(t), Λβ(t)]

are satisfied for any t ∈ [0, T ], the formulas (21) reduce to the standard MSW adiabatic
solution

Pαα(t)= Pββ(t) =
1
2

[1 + J(t)]− I2
0 (t) sin2 [Φ0(t)],

Pαβ(t)= Pβα(t) =
1
2

[1− J(t)] + I2
0 (t) sin2 [Φ0(t)],

⎫⎪⎬⎪⎭ (MSW)

where

J(t) =
Δ2 −Δc [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

Δ2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t′)dt′.

Needless to say either of the above conditions or both may be violated for sufficiently
high neutrino energies and/or for thick media, resulting in radical differences between
the two solutions. These differences are of obvious interest to high-energy neutrino
astrophysics.
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It is perhaps even more instructive to examine the distinctions between the general
adiabatic solution (21) and its “classical limit”

Pαα(t)= exp
[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t)= exp
[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Δs = 0)

which takes place either in the absence of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ Δs, the classical limit is the exact solution to the master equation
(for Δs = 0). Therefore it can be derived directly from Eq. (16). To make certain that
the adiabatic solution has correct classical limit, the following relations are useful:

lim
Δs→0

ε(t) = ζζR [q(t)−Δc] and lim
Δs→0

|v±( t)|2 =
1
2

(ζζR ± 1),

where ζR = sign [qR(t)−Δc].
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Matter of constant density and composition

In this simple case, the adiabatic approximation becomes exact and thus free from the
above-mentioned conceptual difficulties. For definiteness sake we assume Λα < Λβ
(and thus qI < 0) from here. The opposite case can be considered in a similar way.
Let’s denote

1
Λ±

=
1
2

(
1
Λα

+
1
Λβ

)
± ξ

2

(
1
Λα
− 1
Λβ

)
,

I2
± =

1
4

(
1 +

ε20 + q2I −Δ2
s

ε2R + ε2I

)
± ξ

2

(
ε2R + q2I
ε2R + ε2I

)
,

L =
π

|εR| and ξ =
∣∣∣∣qR −Δc

εR

∣∣∣∣.
As is easy to see,

I±± =

{
I± if sign (qR −Δc) = +ζ,
I∓ if sign (qR −Δc) = −ζ,

I−+ = I+
− =

√
I+I− =

I

2
=
∣∣∣∣Δs

2ε

∣∣∣∣ and sign(ϕ) = −ζ.
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By applying these identities the neutrino oscillation probabilities can be written as

Pαα(t)=
(
I+e

−t/2Λ+ + I−e−t/2Λ−
)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t)=
(
I−e−t/2Λ+ + I+e

−t/2Λ−
)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t)= Pβα(t) =
1
4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The difference between the survival probabilities for να and νβ is

Pαα(t)− Pββ(t) = −ζRe

(
q −Δc

ε

)(
e−t/2Λ− − e−t/2Λ+

)
+I2e−t/Λ sinϕ sin

(
2πt
L

)
.
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Case |q| � |Δs|
Let’s examine the case when Λ+ and Λ− are vastly different in magnitude. This will be
true when Λβ � Λα and the factor ξ is not too small. The second condition holds if qR
is away from the MSW resonance value Δc and the following dimensionless parameter

κ =
Δs

|q| ≈ 0.033× sin 2θ
(

Δm2

10−3 eV2

)(
100 GeV

Eν

)(
V0

|q|
)

is sufficiently small. In fact we assume |κ| � 1 and impose no specific restriction for the
ratio qR/qI . This spans several possibilities:

� small Δm2,

� small mixing angle,

� high energy,

� high matter density.

The last two possibilities are of special interest because the inequality |κ| � 1 may be
fulfilled for a wide range of the mixing parameters Δm2 and θ by changing Eν and/or
ρ. In other words, this condition is by no means artificial or too restrictive.

After elementary while a bit tedious calculations we obtain

ξ = 1− 1
2

κ
2 +O (κ3

)
, I2 = κ

2 +O (κ3
)
,

I+ = 1 +O (κ2
)
, I− =

1
4

κ
2 +O (κ3

)
;
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Λ ≈ 2Λα,

Λ+≈
(

1 +
κ

2

4

)
Λα ≈ Λα,

Λ−≈
(

4
κ2

)
Λα � Λα.

Due to the wide spread among the length/time scales Λ±, Λ and L as well as among
the amplitudes I± and I, the regimes of neutrino oscillations are quite diverse for
different ranges of variable t.

With reference to Figs. 28–31, one can see a regular gradation from slow (at t � Λμ) to
very fast (at t � Λμ) neutrino oscillations followed by the asymptotic nonoscillatory
behavior:

Pμμ(t)� κ
4

16
e−t/Λ− ,

Pss(t)� e−t/Λ− ,

Pμs(t)= Psμ(t) � κ
2

4
e−t/Λ− .
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Figure 28: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 250 GeV,
ρ = 1 g/cm3).
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Figure 29: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 1000 GeV,
ρ = 0.2 g/cm3).
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Figure 30: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 100 TeV,
ρ = 10−3 g/cm3).
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Figure 31: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 100 TeV,
ρ = 3× 10−4 g/cm3).
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Degenerate case

The consideration must be completed for the case of degeneracy. Due to the condition
qI < 0, the density and composition of the “degenerate environment” are fine-tuned in
such a way that

q = q−ζ = Δc − i |Δs|.
The simplest way is in coming back to the master equation. Indeed, in the limit of
q = q−ζ , the Hamiltonian reduces to

H = |Δs|
(−i ζ
ζ i

)
≡ |Δs|hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1− it |Δs|hζ
and thus

Pαα(t)= (1− |Δs| t)2 e−t/Λ,
Pββ(t)= (1 + |Δs| t)2 e−t/Λ,
Pαβ(t)= Pβα(t) = (Δst)

2
e−t/Λ.
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Since 1/Λβ = 1/Λα − 4 |Δs|, the necessary condition for the total degeneration is
4Λα |Δs| ≤ 1 and thus

1/Λ = 1/Λα − 2 |Δs| ≥ 2 |Δs|.
The equality only occurs when νβ is sterile.

The degenerate solution must be compared with the standard MSW solution

Pαα(t) = Pss(t) =
1
2

[1 + cos (2Δst)],

Pαs(t) = Psα(t) =
1
2

[1− cos (2Δst)],

⎫⎪⎬⎪⎭ (MSW)

and with the classical penetration coefficient

exp (−t/Λα)

(with 1/Λα numerically equal to 4 |Δs|) relevant to the transport of unmixed active
neutrinos through the same environment.
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Figure 32: Survival and transition probabilities for να ↔ νs oscillations in the case of
degeneracy (q = q−ζ). The standard MSW probabilities (dotted and dash-dotted curves)
together with the penetration coefficient for unmixed να (dashed curve) are also shown.
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Conclusions

We have considered, on the basis of the MSW evolution equation with complex indices
of refraction, the conjoint effects of neutrino mixing, refraction and absorption on
high-energy neutrino propagation through matter. The adiabatic solution with correct
asymptotics in the standard MSW and classical limits has been derived. In the general
case the adiabatic behavior is very different from the conventional limiting cases.

A noteworthy example is given by the active-to-sterile neutrino mixing. It has been
demonstrated that, under proper conditions, the survival probability of active neutrinos
propagating through a very thick medium of constant density may become many orders
of magnitude larger than it would be in the absence of mixing. The quantitative
characteristics of this phenomenon are highly responsive to changes in density and
composition of the medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysical sources of high-energy neutrinos, the
effect may open a new window for observational neutrino astrophysics.

VN HE ν propagation in matter November, 13 2003


