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26 Fréjus 255

27 BUST 257



28 Upward through-going muons 259

VI NEUTRINO TELESCOPES 263

29 Detectors for high-energy neutrino astronomy 264

30 Again Cherenkov... 269

31 DUMAND 273

32 Baikal neutrino telescope 276

33 AMANDA 288

34 KM3 projects (IceCube, NEMO, NESTOR,...) 301

VII FUTURE UNDERGROUND 302

35 List of relevant experimental projects 303

36 Project MEMPHYS as an example 304



PREFACEPREFACEPREFACE



1 Neutrinos on Earth

Energy range or average energy Source Local flux

(eV) (1/ cm 2 s)

1.7 × 10 4 Big Bang (relic) 1013

10 3 107 Sun 5 ×1010

10 3 107 Terrestrial radioactivity 7.5 ×106

10 3 107 Man-made nuclear reactors 7.5 ×106

10 9 1012 Man-made accelerators <106

>108 Cosmic rays (atmospheric) <106

>1012 Astrophysical objects (e.g. AGN) <106

>1015 UHECR+ rel (cosmogenic) 10 -12

Neutrino fluxes on Earth (tentative)

−

−

−

−

γ



Figure 1: Tentative representation of neutrino and antineutrino fluxes on Earth.
[From L. M. Krauss, S. L. Glashow, and D. N. Schramm, “Antineutrino astronomy and geophysics,” Nature 310 (1984)

191–198 (left) and A. M. Bakich, “Aspects of neutrino astronomy,” Space Sci. Rev. 49 (1989) 259–310 (right).]



Examples of astrophysical sources of high-energy neutrinos

Candidate point sources
� Young supernova remnants

[due to CR acceleration by shock waves from
SN explosions]

� Accreting neutron stars and black holes
� Binary (multiple) systems

[pulsar + giant, pulsar + star filling its Roche
lobe, white dwarf + (super)giant, etc.]

� The Galactic center
[within the model of a supermassive accreting
black hole]

� Active Galactic Nuclei (AGNs)
[Seyfert galaxies, N galaxies, quasars, Lacertae
(BLLac objects), blazars (radio-loud AGNs);
particle acceleration in extragalactic jets from
radio-quiet and radio-loud AGNs]

� Gamma-Ray Bursts (GRBs)
[example: γ’s and ν’s arise from decay of pions
produced in shock front collisions]

� Hidden or latent sources
[young SN shell, cocooned massive black hole

(MBH) in AGN, Thorne–Żytkow star (the bi-
nary with a neutron star submerged into a red
supergiant core), AGN with standing shock in
the vicinity of a MBH, etc.]

Diffuse neutrino backgrounds
� Galactic neutrinos

[including ν’s from CR interactions with the
spherical halo of baryonic dark matter]

� Quasi-diffuse background from AGN’s
� Neutrinos from intergalactic space

[the most important are UHE ν’s from the CR
spectrum tail (GZK cutoff)]

� Pregalactic neutrinos and neutrinos from the
bright phase of galaxy evolution

Speculative sources of the highest-
energy neutrinos and science fiction

� Topological defects
[ultra-heavy particle emission and acceleration
by saturated superconducting cosmic strings,
cusp radiation from ordinary cosmic strings,
vortons, textures, global monopoles, etc.]

� Mini-black-hole evaporation
� Decay of super-heavy exotic particles [such

as long-lived Big Bang relics or the Planck
mass objects (planckeons ∼ fridmons ∼ max-
imons ∼ cosmions)]

�
�
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Figure 2: Left: Tentative representation of the cross sections for neutrino interactions
with nuclei, nucleons and electrons. Right: Measured slopes of the muon neutrino and
antineutrino total cross sections; three main contributions and their sums are shown.



Figure 3: Neutrino is a keystone of modern physics and astrophysics.



Figure 4: Neutrinos compose a part of invisible (nonluminous) matter in the universe.



2 Bruno Pontecorvo

Bruno M. Pontecorvo (Pisa, August 22,
1913 – Dubna, September 24, 1993)
was a great physicist who had enormous
impact on the development of neutrino
physics. In particular he was the pio-
neer of neutrino oscillations. He came
to this idea in 1957, soon after the two-
component neutrino theory was proposed
by Landau, Lee and Yang and Salam and
confirmed by Goldhaber et al.
It was very nontrivial to propose neutrino
oscillations in 1957, at the time when only
one type of neutrino was known. Oscil-
lations which B. Pontecorvo considered
were νL � νL i.e. oscillations between
active and sterile neutrinos.a

aB. Pontecorvo proposed the existence of ster-
ile neutrinos as well as the term “sterile neutrino”
itself (1967) so popular nowadays.

[From the JINR’s official site about Bruno Pontecorvo,

URL: <http://pontecorvo.jinr.ru/>.]



Chlorine-Argon idea (Canada). Swinging neutrinos.

Both cartoons were drawn by Mikhail Bilenky for the celebration of Bruno Pontecorvo’s
75th Anniversary held at Dubna (August 1988).
[Borrowed from S. M. Bilenky, “Bruno Pontecorvo: Mister Neutrino,” a report at the 3rd International Workshop

“Neutrino Oscillations in Venice,” Venice, February 7-10, 2006 (physics/0603039).]
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3 Neutrino masses and mixing in the Standard Model

3.1 Interaction Lagrangians and currents

The Standard Model (SM) Lagrangians for charged and neutral current neutrino
interactions are assumed to be

LCC
I (x) = − g

2
√

2
jCC
α (x)Wα(x) + H.c. and LNC

I (x) = − g

2 cos θW
jNC
α (x)Zα(x).

Here g is the SU(2) (electro-weak) gauge coupling constant

g2 = 4
√

2M2
WGF , g sin θW = |e|

and θW is the weak mixing (Weinberg) angle (sin2 θW(MZ) = 0.23120).
The leptonic charged current and neutrino neutral current are given by the expressions:

jCC
α (x) = 2

∑
�=e,μ,τ,...

ν�,L(x)γα�L(x) and jNC
α (x) =

∑
�=e,μ,τ,...

ν�,L(x)γαν�,L(x).

The currents may include (yet unknown) heavy neutrinos and corresponding charged
leptons. The left- and right-handed fermion fields are defined as usually:

ν�,L/R(x) =
(

1± γ5

2

)
ν�(x) and �L/R(x) =

(
1± γ5

2

)
�(x).



Note that the kinetic term of the Lagrangian includes both L and R handed neutrinos
and moreover, it can include other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γαν(x)] ≡ i

2
ν(x)
←→
∂ ν(x)

=
i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
νe(x)
νμ(x)
ντ (x)
.
.
.

⎞⎟⎟⎟⎟⎟⎟⎠, νL/R(x) =

⎛⎜⎜⎜⎜⎜⎜⎝

νe,L/R(x)
νμ,L/R(x)
ντ,L/R(x)

.

.

.

⎞⎟⎟⎟⎟⎟⎟⎠ =
1± γ5

2

⎛⎜⎜⎜⎜⎜⎜⎝
νe(x)
νμ(x)
ντ (x)
.
.
.

⎞⎟⎟⎟⎟⎟⎟⎠.

Neutrino chirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respect to the
global gauge transformations ν�(x)→ eiΛ�ν�(x), �(x)→ eiΛ��(x) with Λ� = const.
This leads to conservation of the individual lepton flavor numbers L� (electron, muon,
tauon,...). It is not the case for massive neutrinos.

There are two types of possible neutrino mass terms: Dirac and Majorana.



3.2 Dirac neutrinos

The Dirac mass term has the form

LD(x) = −νR(x)MDνL(x) + H.c.,

where MD is a N ×N complex nondiagonal matrix. In general, N ≥ 3 that is the
column νL may include the heavy active neutrino fields as well as sterile neutrino fields
which do not enter into the standard charged and neutral currents.

An arbitrary complex matrix can be diagonalized by means of an appropriate biunitary
transformation. One has

MD = ṼmV†, m = ||mkl|| = ||mkδkl||,
where V and Ṽ are unitary matrices and mk ≥ 0. Therefore

LD(x) = −ν′
R(x)mν′

L(x) + H.c. = −ν′(x)mν ′(x) = −
N∑
k=1

mkνk(x)νk(x),

ν ′
L(x) = V†νL(x), ν ′

R(x) = Ṽ†νR(x), ν ′(x) = (ν1, ν2, . . . , νN )T .

It is easy to prove that the kinetic term in the neutrino Lagrangian is transformed to

L0 =
i

2
ν ′(x)

←→
∂ ν ′(x) =

i

2

∑
k

νk(x)
←→
∂ νk(x).



Hence, one can conclude that νk(x) is the field of a Dirac neutrino with the mass mk

and the flavor LH neutrino fields ν�,L(x) present in the standard weak lepton currents
are linear combinations of the LH components of the fields of neutrinos with definite
masses:

νL = Vν′
L or ν�,L =

∑
k

V�kνk,L.

The matrix V is sometimes referred to as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino (vacuum) mixing matrix.a

It can be proved that the Lagrangian of the theory with the Dirac mass term is
invariant with respect to the global gauge transformation

νk(x)→ eiΛνk(x), �(x)→ eiΛ�(x), Λ = const.

This means that the lepton charge

L =
∑

�=e,μ,τ,...

L�

common to all charged leptons and all neutrinos νk is conserved. However

the individual lepton flavor numbers L� are no longer conserved.

aOf course it is not the same as the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. It
seems however that the PMNS and CKM matrices are, in a sense, complementary (see below).



3.2.1 Parametrization of mixing matrix for Dirac neutrinos

It is well known that a complex n× n unitary matrix depends on n2 real parameters.

The classical result by Murnaghama states that the matrices from the unitary group
U(n) are products of a diagonal phase matrix

Γ = diag
(
eiα1 , eiα2 , . . . , eiαn

)
,

containing n phases αk, and n(n− 1)/2 matrices whose main building blocks have the
form (

cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=
(

1 0
0 e+iφ

)(
cos θ sin θ
− sin θ cos θ

)
︸ ︷︷ ︸

Euler rotation

(
1 0
0 e−iφ

)
.

Therefore any n× n unitary matrix can be parametrized in terms of

n(n− 1)/2 “angles” (taking values within [0, π/2])

and
n(n+ 1)/2 “phases” (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matrices is of this type.

aF. D. Murnagham, “The unitary and rotation groups,” Washington, DC: Sparta Books (1962).



One can reduce the number of the phases further by taking into account that the
Lagrangian with the Dirac mass term is invariant with respect to the transformation

� �→ eia��, νk �→ eib�νk, V�k �→ ei(bk−a�)V�k,

and to the global gauge transformation

� �→ eiΛ�, νk �→ eiΛνk.

Therefore 2N − 1 phases are unphysical and the number of physical (Dirac) phases is

nD =
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2
2

=
(N − 1)(N − 2)

2
(N ≥ 2);

nD(2) = 0, nD(3) = 1, nD(4) = 3, . . .

The nonzero phases lead to the CP and T violation in the neutrino sector.



Three-neutrino case

In the most interesting (today!) case of three lepton generations one defines the
orthogonal rotation matrices in the ij-planes which depend upon the mixing angles θij :

O12 =

⎛⎝ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠
︸ ︷︷ ︸

Solar matrix

, O13 =

⎛⎝ c13 0 s13
0 1 0
−s13 0 c13

⎞⎠
︸ ︷︷ ︸
Bona vacantia (as yet)

, O23 =

⎛⎝1 0 0
0 c23 s23
0 −s23 c23

⎞⎠
︸ ︷︷ ︸

Atmospheric matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dirac phase factor:

Γ D = diag
(
1, 1, eiδ

)
.

The parameter δ is commonly referred to as the Dirac CP-violation phase.

Finally, by taking into account the Murnagham theorem, the PMNS mixing matrix for
the Dirac neutrinos can be parametrized asa

V(D) = O23Γ DO13Γ
†
DO12

=

⎛⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞⎠ .

aThis is the Chau–Keung presentation advocated by the PDG for both CKM and PMNS matrices.



Since the Dirac mass term violates conservation of the individual lepton numbers
Le, Lμ and Lτ , it allows many lepton family number violating processes, like

μ± → e± + γ, μ± → e± + e+ + e−,

K+ → π+ + μ± + e∓, K− → π− + μ± + e∓,

μ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ μ− + (A,Z), . . .

However the neutrinoless double beta decaya (A,Z)→ (A,Z + 2) + 2e− and the
processes like K+ → π− + μ+ + e+, K− → π+ + μ− + e−, etc. are forbidden as a
consequence of the total lepton charge conservation.

Table 1: Current limits on the simplest lepton family number violating μ and τ decays.
[From S. Eidelman et al. (Particle Data Group), “Review of particle physics,” Phys. Lett. B 592 (2004) 1–1109.].

Decay Modes Fraction C.L. Decay Modes Fraction C.L.

μ− → νeνμ < 1.2% 90% τ− → e−γ < 2.7× 10−6 90%
μ− → e−γ < 1.2× 10−11 90% τ− → μ−γ < 1.1× 10−6 90%
μ− → e−e+e− < 1.0× 10−12 90% τ− → e−π0 < 3.7× 10−6 90%
μ− → 2γ < 7.2× 10−11 90% τ− → μ−π0 < 4.0× 10−6 90%

aHereafter abbreviated as (ββ)0ν .



3.2.2 Neutrinoless muon decay in SM

The Lμ and Le violating muon decay μ− → e−γ
is allowed if V ∗

μkVek �= 0 for k = 1, 2 or 3. The
corresponding Feynman diagrams include W loops
and thus the decay width is strongly suppressed by
the neutrino to W boson mass ratios:

R =
Γ (μ− → e−γ)

Γ (μ− → e−νμνe)
=

3α
32π

∣∣∣∣∣∑
k

V ∗
μkVek

m2
k

m2
W

∣∣∣∣∣
2

.

Sincemk/mW = 1.24× 10−11 (mk/1 eV), the ra-
tio can be estimated as

R ≈ 5.2× 10−48

∣∣∣∣∣∑
k

V ∗
μkVek

( mk

1 eV

)2
∣∣∣∣∣
2

,

while the current experimental upper limit is (at
least!) 36 orders of magnitude larger (see Table 1):

R(exp) < 1.2× 10−11 at 90% C.L. (NO GO!)

Some nonstandard models are more optimistic.

W W

γ

μ eν
k

Vμk V
ek

∗

Wγ

μ eν
k

Vμk V
ek

∗

W γ

μ eν
k

Vμk V
ek

∗



3.2.3 Nuclear beta decay

The method of measurement of the (anti)neutrino mass through the investigation of the
high-energy part of the β-spectrum was proposed by Perrin (1933) and Fermi (1934).

The first experiments on the measurement of the neutrino mass with this method have been

done by Curran, Angus and Cockcroft (1948) and Hanna and Pontecorvo (1949).

The energy spectrum of electrons in the decay (A,Z)→ (A,Z + 1) + e− + νe isa

dΓ

dT
=
∑
k

|Vek|2 dΓk
dT

, (1)

dΓk
dT

=
(GF cos θC)2

2π3
ppk (T +me) (Q− T ) |M|2 F (T )θ (Q− T −mk). (2)

Here GF is the Fermi constant, θC is the Cabibbo angle, me, p and T are the mass,
magnitude of the momentum and kinetic energy of the electron, respectively,

pk =
√
E2
k −m2

k =
√

(Q− T )2 −m2
k

is the magnitude of the neutrino momentum, Q is the energy released in the decay
(the endpoint of the β spectrum in case of zero neutrino mass),M is the nuclear
matrix element, and F (T ) is the Fermi function, which describes the Coulomb
interaction of the final particles. The step function in Eq. (2) ensures that a neutrino

aThe recoil of the final nucleus and radiative corrections (luckily small) are neglected.



state νk is only produced if its total energy is larger than its mass: Ek = Q− T ≥ mk.

As it is seen from Eq. (1), the largest distortion of the β-spectrum due to neutrino
masses can be observed in the region

Q− T ∼ mk. (3)

However, for max (mk) � 1 eV only a very small part (about 10−13) of the decays give
contribution to the region (3). This is the reason why in the analysis of the results of
the measurement of the β-spectrum a relatively large part of the spectrum is used.b

Taking this into account and applying unitarity of the mixing matrix, we can write∑
k

|Vek|2 pk≈
∑
k

|Vek|2 (Q− T )
[
1− m2

k

2(Q− T )2

]

= (Q− T )

[
1− 1

2(Q− T )2
∑
k

|Vek|2m2
k

]
≈
√

(Q− T )2 −m2
β,

where the effective neutrino mass mβ is defined by

m2
β =

∑
k

|Vek|2m2
k

and it was assumed that max
(
m2
k

)� 4(Q− T )2.

bFor example, in the Mainz tritium experiment (see below) the last 70 eV of the spectrum is used.



Finally, the β-spectrum that is used for
fitting the data can be presented as

dΓ

dT
∝ p (T +me) |M|2 F (T )K2(T ),

where

K(T )∝
√

dΓ/dT

p (T +me) |M|2 F (T )

≈ (Q− T )

[
1− m2

β

(Q− T )2

]1/4

is the so-called Kurie plot.

Unfortunately, the real situation is much
more complicated.

Kurie plot for allowed processes is a sen-
sitive test of the effective neutrino mass
mβ while the first order forbidden processes
should have a distorted Kurie plot.

In an actual experiment, the measurable quantity is a sum of β spectra, leading each
with probability Pn = Pn(E0 − Vn −E) to a final state n of excitation energy Vn:

dΓ (T,Q)
dT

�−→
∑
n

Pn (E0 − Vn − E)
dΓ (T,E0 − Vn)

dT
.

Here E0 = Q− E and E is the recoil energy of the daughter nucleus.



Example: Tritium beta decay. a

An important issue is the decay of molecular

tritium T2 →
(
3HeT

)+ + e− + νe. Consid-
ering the most precise direct determination
of the mass difference

m(T)−m (3He
)

= (18590.1± 1.7) eV/c2

and taking into account the recoil and appa-
rative effects (these are taken for the Mainz
experiment) one derives an endpoint energy

of the molecular ion
(
3HeT

)+
ground state:

E0 = (18574.3± 1.7) eV.

The excitation spectrum is shown in the fig-
ure. The first group concerns rotational and
vibrational excitation of the molecule in its
electronic ground state; it comprises a frac-
tion of Pg = 57.4% of the total rate.

Excitation spectrum of the daughter

molecular ion
(
3HeT

)+
in β decay of

molecular tritium.

aFor more details, see C. Kraus et al., “Final results from phase II of the Mainz neutrino mass search
in tritium β decay,” Eur. Phys. J. C 40 (2005) 447–468 (hep-ex/0412056).
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Progress of the neutrino mass measurements
in tritium β decay, including the final Mainz
phase II upper limit (see below).
[The compilation is taken from V. M. Lobashev, “Direct

search for mass of neutrino,” in Proceedings of the 18th

International Conference on Physics in Collision (“PIC 98”),

Frascati, June 17–19, 1998, pp. 179–194.]

The history of the search for the neu-
trino mass in the tritium β decay counts
almost 55 years (see figure). In 1980,
the steady improvement of the upper
limit was suddenly speeded up by a re-
port of the ITEP group (Moscow) on
the observation of the nonzero neutrino
mass effect in the β-spectrum in the
valine molecule (C5H11NO2). The re-
ported result wasa

14 ≤ mβ ≤ 46 eV/c2 (99% C.L.)

This research stimulated more than 20
experimental proposals with an inten-
tion to check this clime. Alas!. . . in se-
veral years the experimental groups from
Zurich, Tokyo, Los Alamos, and then
Livermore refuted the ITEP result.

aV. A. Lyubimov et al., “An estimate of the
νe mass from the β-spectrum of tritium in the
valine molecule,” Phys. Lett. B 94 (1980) 266–
268 (327 citations in SPIRES!)



The top figure shows the data points
from the tail of the β-spectrum mea-
sured in the Los Alamos tritium experi-
ment compared with the expected val-
ues (the straight line) formβ = 30 eV.
The data wander from the line, ruling
out the possibility of a 30-eV neutrino.
The bottom figure shows the same
data points compared with the expec-
tation for mβ = 0. While the data
clearly favor a neutrino mass of zero,
the best fit is actually for a slightly
negative mβ . (Note that in the bot-
tom plot, the data points lie, on aver-
age, slightly above the line, so this is
not a perfect fit.) Both plots display
“residuals,” which indicate how many
standard deviations each data point is
from a particular hypothesis.
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[Borrowed from T. J. Bowles and R. G. H. Robertson (as told to D. Kestenbaum), “Tritium beta decay and the

search for neutrino mass,” Los Alamos Science, Nu. 25 (1997) 6-11.]
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The Troitsk group reported on a step like anomaly which appeared in their integral
spectra with an amplitude of about 6× 10−11 of the total decay rate and at variable
positions in the range from 5 to 15 eV below the endpoint.

1994 1995 1996 1997 1998
0

5

10

15

E
0
-E

s
te

p 
 (

e
V

)

Year
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Amplitude  =  4.3   0.55 eV
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+- +-
+-

The change in time of the positions of these steps seemed to be compatible with a half
year period. The phenomenology and origin of the Troitsk anomaly are barely known.



Published results of the squared neutrino
mass values m2

β obtained from tritium de-
cay since 1990 are shown in figure. The al-
ready finished experiments at Los Alamos,
Zürich, Tokyo, Beijing and Livermore used
magnetic spectrometers, the experiments
at Troitsk and Mainz are using electro-
static filters with magnetic adiabatic col-
limation. The progress in the observable
mβ of the final Mainz result as compared
to the most sensitive earlier experiments
using momentum analysing spectrometers
approaches 2 orders of magnitude.

The Mainz experiment does not con-
firm the Troitsk anomaly being however
compatible with the main Troitsk result
m2
β = (−2.3± 2.5stat ± 2.0syst) eV2/c4.

Year

The final Mainz Phase II limit:

  m  < 2.3 eV/c   (95% C.L.)2
β

2
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 (
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 /

c
  

)
2

4

β

Physical sector

..

[From C. Kraus et al., “Final results from phase II of

the Mainz neutrino mass search in tritium β decay,” Eur.

Phys. J. C 40 (2005) 447–468 (hep-ex/0412056).]

The negative m2
β sector is not necessarily unphysical and might also be fitted by a

model with tachyonic neutrinos. But this point would come up only in case of an
unambiguous experimental negative m2

β result.



3.3 Majorana neutrinos

The charge conjugated bispinor field ψc is defined by the transformation

ψ �−→ ψc = CψT , ψ �−→ ψc = −ψTC,
where C is the charge-conjugation matrix which satisfies the conditions

CγTαC
† = −γα, CγT5 C

† = γ5, C† = C−1 = C, CT = −C,
and thus coincides (up to a phase factor) with the inversion of the axes x0 and x2:

C = γ0γ2 =
(

0 σ2

σ2 0

)
Reminder:

The Pauli matrices:

σ0 ≡ 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The Dirac matrices:

γ0 = γ0 =

(
σ0 0
0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 = −

(
0 σ0

σ0 0

)
.



Clearly a charged fermion field ψ(x) is different from the charge conjugated field ψc(x).

But for a neutral fermion field ν(x) the equality νc(x) = ν(x) is not forbidden.

This is the Majorana conditiona (Majorana neutrino and antineutrino coincide).

In the chiral representation

ν =
(
φ
χ

)
, νc = CνT =

(−σ2χ
∗

+σ2φ
∗

)
.

According to the Majorana condition

φ = −σ2χ
∗ and χ = σ2φ

∗ =⇒ φ+ χ = σ2 (φ− χ)∗.

(The Majorana neutrino is two-component, i.e. needs only one chiral projection). Then

νL =
(

1 + γ5

2

)
ν =

(
φ− χ
χ− φ

)
and νR =

(
1− γ5

2

)
ν =

(
φ+ χ
φ+ χ

)
= νcL.

Therefore
ν = νL + νR = νL + νcL.

Now we can construct the Majorana mass term in the general N -neutrino case. It is

LM(x) = −1
2
νcL(x)MMνL(x) + H.c.,

aMore generally, νc(x) = eiφν(x) (φ = const).



where MM is a N ×N complex nondiagonal matrix and, in general, N ≥ 3.

It can be proved that the MM should be symmetric,

MT
M = MM.

If one assume for a simplification that its spectrum is nondegenerated, the mass matrix
can be diagonalized by means of the following transformation

MM = V∗mV†, m = ||mkl|| = ||mkδkl||,
where V is a unitary matrix and mk ≥ 0. Therefore

LM(x) = −1
2
[
(ν′

L)cmν ′
L + ν′

Lm(ν′
L)c
]

= −1
2

ν ′mν ′ = −1
2

N∑
k=1

mkνkνk,

ν ′
L = V†νL, (ν ′

L)c = C
(
ν′
L

)
T , ν ′ = ν ′

L + (ν ′
L)c.

The last equality means that the fields νk(x) are Majorana neutrino fields.

Considering that the kinetic term in the neutrino Lagrangian is transformed to

L0 =
i

4
ν ′(x)

←→
∂ ν ′(x) =

i

4

∑
k

νk(x)
←→
∂ νk(x),

one can conclude that νk(x) is the field with the definite mass mk.



The flavor LH neutrino fields ν�,L(x) present in the standard weak lepton currents are
linear combinations of the LH components of the fields of neutrinos with definite
masses:

νL = Vν′
L or ν�,L =

∑
k

V�kνk,L.

Of course neutrino mixing matrix V is not the same as in the case of Dirac neutrinos.

There is no global gauge transformations under which the Majorana mass term (in its
most general form) could be invariant. This implies that there are no conserved lepton
charges that could allow us to distinguish Majorana νs and νs. In other words,

the Majorana neutrinos are truly neutral fermions.

3.3.1 Parametrization of mixing matrix for Majorana neutrinos

Since the Majorana neutrinos are not rephasable, there may be a lot of extra phase
factors in the mixing matrix. The Lagrangian with the Majorana mass term is invariant
with respect to the transformation

� �→ eia��, V�k �→ e−ia�V�k



Therefore N phases are unphysical and the number of the physical phases now is

N(N + 1)
2

−N =
N(N − 1)

2
=

(N − 1)(N − 2)
2︸ ︷︷ ︸

Dirac phases

+ (N − 1)︸ ︷︷ ︸
Majorana phases

= nD + nM;

nM(2) = 1, nM(3) = 2, nM(4) = 3, . . .

In the case of three lepton generations one defines the diagonal matrix with the extra
phase factors: Γ M = diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are commonly referred to as

the Majorana CP-violation phases. Then the PMNS matrix can be parametrized as

V(M) = O23Γ DO13Γ
†
DO12Γ M = V(D)Γ M

=

⎛⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎠⎛⎝eiα1/2 0 0

0 eiα2/2 0
0 0 1

⎞⎠ ,

Neither L� nor L =
∑
� L� is conserved allowing a lot of new processes, for example,

τ− → e+(μ+)π−π−, τ− → e+(μ+)π−K−, π− → μ+νe, K+ → π−μ+e+, K+ → π0e+νe,

D+ → K−μ+μ+, B+ → K−e+μ+, Ξ− → pμ−μ−, Λ+
c → Σ−μ+μ+, etc.

No one was discovered yet but (may be!?) the (ββ)0ν decay. Thus we have to discuss
this issue with some details.



3.3.2 Neutrinoless double beta decay

The theory with Majorana neutrinos allows the de-
cay (A,Z)→ (A,Z + 2) + 2e− with ΔL = 2. The
decay rate for this process is expressed as follows:[
T 0ν

1/2

]−1

= G0ν
Z |mββ |2

∣∣M0ν
F − (gA/gV )2M0ν

GT

∣∣2,
where G0ν

Z is the two-body phase-space fac-
tor including coupling constant, M0ν

F/GT are the

Fermi/Gamow-Teller nuclear matrix elements. The
constants gV and gA are the vector and axial-vector
relative weak coupling constants, respectively. The
complex parameter mββ is the effective Majorana
electron neutrino mass given by

mββ =
∑
k

V 2
ekmk

= |Ve1|2m1 + |Ve2|2m2e
iφ2 + |Ve3|2m3e

iφ3 ,

eν

eν

e -

e
-

W
-

W
-

n

n

p

p

Σ
k

d

d

d

u

d

u

e

e

kν
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V
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d
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d
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u

d

u
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Here φ2 = α2 − α1 (pure Majorana phase) and φ3 = −(α2 + 2δ) (mixture of Dirac and
Majorana CP-violation phases).



The electron sum energy spectrum
of the (ββ)2ν mode as well as of
the exotic modes with one or two
majorons in final state,

(A,Z)→ (A,Z + 2) + 2e− + χ,

(A,Z)→ (A,Z + 2) + 2e− + 2χ,

is continuous because the available
energy release (Qββ) is shared be-
tween the electrons and other fi-
nal state particles. In contrast, the
two electrons from the (ββ)0ν de-
cay carry the full available energy,
and hence the electron sum en-
ergy spectrum has a sharp peak at
the Qββ value. This feature allows
one to distinguish the (ββ)0ν de-
cay signal from the background.

The electron sum energy spectra calculated for
the different β decay modes of cadmium-116.
[From Y. Zdesenko, “Colloquium: The future of double beta decay

research,” Rev. Mod. Phys. 74 (2003) 663–684.]

Majoron is a Nambu-Goldstone boson, – a hypothetical neutral pseudoscalar zero-mass particle which
couples to Majorana neutrinos and may be emitted in the neutrinoless β decay. It is a consequence of
the spontaneous breaking of the global B − L symmetry.



Table 2: Summary of the most recent ββ2ν experiments and calculations.
[From E. Fiorini, “Experimental prospects of neutrinoless double beta decay,” Phys. Scripta T121 (2005) 86–93].

T 2ν
1/2 (years)

Element Isotope Measured Calculated

Calcium 48
20Ca 4.2+2.1

−1.0 × 1019 6× 1018 − 5× 1020

Germanium 76
32Ge 1.42+0.09

−0.07 × 1021 7× 1019 − 6× 1022

Selenium 82
34Se (0.9± 0.1)× 1020 3× 1018 − 6× 1021

Zirconium 96
40Zr 2.1+0.8

−0.4 × 1019 3× 1017 − 6× 1020

Molybdenum 100
42Mo (8.0± 0.7)× 1018 1× 1017 − 2× 1022

Molybdenum 100
42Mo (0+∗) (6.8± 1.2)× 1020 5× 1019 − 2× 1021

Cadmium 116
48Cd 3.3+0.4

−0.3 × 1019 3× 1018 − 2× 1021

Tellurium 128
52Te (2.5± 0.4)× 1024 9× 1022 − 3× 1025

Tellurium 130
52Te (9.0± 1.5)× 1020 2× 1019 − 7× 1020

Neodymium 150
60Nd (7.0± 1.7)× 1018 6× 1016 − 4× 1020

Uranium 238
92U (2.0± 0.6)× 1021 1.2× 1019−?× 1021

The standard (ββ)2ν is observed for 10 isotopes with T 2ν
1/2 ∼ 1019−25 years (see table).



The figure summarizes the present
knowledge of the absolute Majo-
rana mass scale. Shown are the
99% CL regions allowed by the neu-
trino oscillation data in the plane of
mββ and mL – the mass of lightest
neutrino. The two bands marked
with Δm2

23 > 0 and Δm2
23 < 0

correspond to the normal mass
hierarchy (i.e. m1 � m2 � m3)
and inverted mass hierarchy (i.e.
m3 � m1 ≈ m2), respectively.
For a given mL the range of mββ

is determined by variations of the
Majorana phase and uncertainties
in the neutrino oscillation parame-
ters.
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The darker regions show how the mββ range would shrink if the present best-fit values
of the oscillation parameters were confirmed with negligible error.
[From A. Strumia and F. Vissani, “Implications of neutrino data circa 2005,” Nucl. Phys. B 726 (2005) 294–316

(hep-ph/0503246).]



The only evidence for the (ββ)0ν decay has been obtained by the Heidelberg-Moscow
(HM) (sub)collaboration in the Gran Sasso lab. The HM best value of the effective
neutrino mass is |mββ| = 0.4 eV. Allowing conservatively for an uncertainty of the
nuclear matrix element of ±50% the 3σ confidence range may widen to (0.1− 0.9) eV.
The bars in the figure denote
allowed ranges of |mββ | in
different neutrino mass sce-
narios, still allowed by neu-
trino oscillation experiments.
All models except the degen-
erate one are excluded by
the new (ββ)0ν decay result.
Also shown is the exclusion
line from WMAP, plotted for∑

kmk < 1.0 eV (which is
perhaps too strict). WMAP
does not rule out any of the
neutrino mass schemes.
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Further shown are the expected sensitivities for the future potential (ββ)0ν decay
experiments CUORE, MOON, EXO and GENIUS.

[From H. V. Klapdor-Kleingrothaus, “First evidence for neutrinoless double beta decay and world status of double

beta experiments,” hep-ph/0512263.]



Figure shows the HM-2000 and
HM-2003 results in compari-
son with the potential of the
most promising other (ββ)0ν
experiments as well as the ex-
pected potential of several fu-
ture projects. Given are limits
for |mββ|, except for the HM-
2003 experiment where the
measured value is given (con-
fidence range and best value).

[The histogram is built by combining the data from papers H. V. Klapdor-Kleingrothaus et al., “Latest results from

the Heidelberg-Moscow double beta decay experiment,” Eur. Phys. J. A 12 (2001) 147–154 (hep-ph/0103062) and

H. V. Klapdor-Kleingrothaus, “First evidence for neutrinoless double beta decay and world status of double beta

experiments,” in Proceedings of the 11th International Workshop on Neutrino Telescopes, Venice, Feb. 22–25, 2005,

edited by M. Baldo-Ceolin, pp. 215–237 (hep-ph/0512263). ]

New approaches and considerably enlarged experiments are required to fix the (ββ)0ν half life
with higher accuracy. This will, however, only marginally improve the precision of the deduced
effective neutrino mass |mββ | (or its upper limit), because of the uncertainties in the nuclear
matrix elements, which probably hardly can be reduced to less than 50%.



3.4 See-saw mechanism

3.4.1 Dirac-Majorana mass term for one generation

It is possible to consider mixed models in which both Majorana and Dirac mass terms
are present. For simplicity sake we’ll start with a toy model for one lepton generation.

Let us consider a theory containing two independent neutrino fields νL and νR:⎧⎪⎨⎪⎩
νL would generally represent any active neutrino (e.g., νL = νeL),

νR can represents a right handed field unrelated to any of these or

it can be charge conjugate of any of the active neutrinos (e.g., νR = (νμL)c).

We can write the following generic mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸
Dirac mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.c. (4)

� As we know, the Dirac mass term respects L while the Majorana mass term violates it.

� The parameter mD in Eq. (4) is in general complex but we’ll assume it to be real (but not
necessarily positive).

� The parameters mL, and mR in Eq. (4) can be chosen real and (by an appropriate
rephasing the fields νL and νR) non-negative, but the latter is not assumed.

� Obviously, neither νL nor νR is a mass eigenstate.



In order to obtain the mass basis we can apply the useful identitya

νLνR = (νR)c(νL)c

which allows us to rewrite Eq. (4) as follows

Lm = −1
2

(νL, (νR)c)
(
mL mD

mD mR

)(
(νL)c

νR

)
+ H.c. ≡ − 1

2
νLM (νL)c + H.c.

If (for simplicity) CP conservation is assumed the matrix M can be diagonalized
through the standard orthogonal transformation

V =
(

cos θ sin θ
− sin θ cos θ

)
with θ =

1
2

arctan
(

2mD

mR −mL

)
.

and we have

VTMV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1
2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.

aA particular case of a more general relation ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1, where ψ1,2 are Dirac spinors

and Γ represents a product of the Dirac γ matrices.



The eigenvalues are real if (as we assume) mD,L,R are real, but not necessarily positive.
Let us define ζk = signmk and rewrite the mass term in the new basis:

Lm = −1
2

[ζ1 |m1| ν1L (ν1L)c + ζ2 |m2| (ν2R)c ν2R] + H.c., (5)

The new fields ν1L and ν2R represent chiral components of two different neutrino states
with “masses” m1 and m2, respectively:(

νL
νcR

)
= V

(
ν1L
νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we define two 4-component fields

ν1 = ν1L + ζ1 (ν1L)c and ν2 = ν2R + ζ2 (ν2R)c.

Certainly, these fields are self-conjugate,

νck = ζkνk (k = 1, 2)

and therefore they describe Majorana neutrinos. In terms of these fields Eq. (6) is

Lm = −1
2

(|m1| ν1ν1 + |m2| ν2ν2). (6)

We can conclude therefore that νk(x) is the Majorana neutrino field with the definite
(physical) mass |mk|.



There are several special cases of the Dirac-Majorana mass matrix M which are of
considerable phenomenological importance, in particular,

(A): M =
(

0 m
m 0

)
=⇒ |m1,2| = m, θ =

π

4
(maximal mixing)

two Majorana fields are equivalent to one Dirac field;

(B): M =
(
mL m
m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4
(maximal mixing);

(C): M =
(

0 m
m M

)
or, more generally, |mL| � |mR|, mD > 0.

A generalization of case (A), |mL,R| � |mD|, leads to the so-called “Pseudo-Dirac
neutrinos” and to the νL (active) ↔ νR (sterile) oscillations with almost maximal
mixing (tan 2θ � 1).

3.4.2 The See-saw

The case (C) with m�M is the simplest example of the seesaw mechanism. It leads
to two masses, one very large m1 ≈M other m2 ≈ m2/M � m, suppressed compared
to entries in M. In particular, one can assume

m ∼ m� or mq (0.5 MeV to 200 GeV) and M ∼MGUT ∼ 1015−16 GeV.



Then, m2 can ranges from ∼ 10−14 eV to ∼ 0.04 eV. The mixing between the heavy
and light neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13 ≪ 1.



3.4.3 More neutral fermions

A generalization of the above scheme to N generations is almost straightforward but
technically cumbersome. Let’s consider it schematically for N = 3.

– If neutral fermions are added to the SM fields, then the flavour neutrinos can
acquire mass by mixing with them.

– The additional neutrinos can be

• SU(2)× U(1) singlets (e.g., right-handed neutrinos), or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• SU(2)× U(1) triplets (e.g., Wino in SUSY).

– Addition of three right-handed neutrinos NiR leads to the see-saw mechanism with
the following mass terms:

Lm = −
∑
ij

[
νiLM

D
ijNjR −

1
2

(NiR)cMR
ijNjR + H.c.

]
.

– The above equation gives the see-saw 6× 6 mass matrix

M =
(

0 mD

mT
D MR

)
.

Both mD and mR are 3× 3 matrices in the generation space.



When MR is nonsingular and its scale M is much larger than that in mR,a one get

mν ∼ −mDM−1
R mT

D.

All the neutrino masses are automatically suppressed due to the large scale M ∼MGUT

in MR. One gets the following mass hierarchy for a diagonal MR

m1 : m2 : m3 ∝ m2
D1 : m2

D2 : m2
D3

Here mDk are eigenvalues of mD. As long as these eigenvalues are hierarchical, the
Majorana neutrino masses also display the hierarchy.

aA large M is natural in, e.g., grand unified SO(10) theories which therefore provide a nice framework
to understand small neutrino masses.



4 Neutrino oscillations in vacuum

4.1 Macroscopic Feynman diagrams

Let us consider two reactions

π+n→ μ+μ−p︸ ︷︷ ︸
allowed in SM

and π+n→ μ+τ−p︸ ︷︷ ︸
forbidden in SM

.

The first one is allowed in the SM while the second
reaction is forbidden by conservation of the individual
lepton numbers Lμ,τ . However, our previous consider-
ation suggests that in a model extended by inclusion of
a Dirac or Majorana mass term these numbers are no
longer conserved and the second process becomes also
possible through the Feynman diagrams like one shown
in the figure. The diagram describes the process of a
pion decay with subsequent quasielastic neutrino scat-
tering off a neutron with production of a τ lepton. The
4-momenta of the particles are shown in parentheses.

x 1

x2

π  (p  )+
π

n (p  )n

τ  (p  )−

τ

µ  (p  )+
µ

p (p  )
p

ν  (k)i

The mass eigenstate neutrino νk is in a virtual state between the space-time points of
its production (x1 = (t1,x1)) and absorption (x2 = (t2,x2)).



The amplitude of the process under consideration,

M(x1, x2) = 〈out|in〉 = 〈μ+, τ−, p|π+, n〉,
is given by the sum of N diagrams with i = 1, 2, . . . , N (N = 3 from here on).

The diagrams are quite unusual considering that the points x1 and x2 are separated by a

macroscopic spatial interval |x1 − x2|. However, there are solid evidences that just the

processes of this kind were already detected in the underground experiments Kamiokande,

IMB, SOUDAN 2, Super-Kamiokande, and MACRO exploring atmospheric neutrinos crossing

the Earth (see Part I of these lectures). Moreover, these results are confirmed by two

accelerator experiments – K2K and (very recently) MINOS (FNAL, NuMI Beam).a

A careful consideration demonstrates that the situation is even more nontrivial.

Neglecting the matter effects, the general structure of the amplitude can be written as

M(x1, x2) =
∑
j

∫
d4y1d

4y2A2(x2 − y2)V ∗
τj Gj(y2 − y1)Vμj A1(y1 − x1),

where A1(y1 − x1) and A2(x2 − y2) are the matrices describing the vertices x1 and x2

(decay and interaction) and
aD. A. Petyt (for the MINOS Collaboration), “First MINOS results from the NuMI Beam,” report in

the University of Minnesota Joint Experimental/Theoretical Physics Seminar, Fermilab March 30,2006.



Gj(y2 − y1) = 〈0|T [νj(y1)νj(y2)] |0〉 = i

∫
d4q

(2π)4
q̂ −mj

q2 −m2
j + i0

eiq(y2−y1)

is the Green function describing the propagation of the virtual neutrino νj between the
space-time points y1 and y2 (T [· · · ] denotes the standard T -ordering operator).

The following simple but important statements can be proved:

� M(x1, x2) ≡ 0 if the neutrino mass spectrum is degenerate (m1 = m2 = m3).
This is an obvious consequence of the unitarity of the mixing matrix which in
particular provides

∑
j VμjV

∗
τj = 0.

� If the wave functions of any of the “colliding” particles (pion or neutron) are plane
waves that is

Φπ(x) = e−ipπx = e−i(Eπt−pπx) or Ψn(x) = e−ipnx = e−i(Ent−pnx),

the amplitude is suppressed by the factor∑
j

VμjV
∗
τj

(
mj

Eν

)2

= 10−20
∑
j

VμjV
∗
τj

(
mj

1 eV/c2

)2 (10 GeV

Eν

)2

,

where Eν ≡ k0 = Eπ −Eμ is the virtual neutrino energy (independent of mj).
This is a consequence of the energy-momentum conservation in each vertex.



A nontrivial (but not the most general) situation occurs when both wave functions
Φπ(x) and Ψn(x) are localized within neighborhoods of the points x1 and x2:

Φπ(x) = e−iEπtϕπ(x− x1) and Ψn(x) = e−iEntψn(x− x2).

According to the uncertainty principle this means that there is a spread in the momenta
of these particles. In this case, by applying the crucial Grimus-Stockinger theorema one
can prove that in the asymptotic limit L = |x1 − x2| → ∞, M(x1, x2)→M∞(L) and

M∞(L) =
M1M2

L

∑
j

VμjV
∗
τje

iqjL, where qj =
√
E2
ν −m2

j , Eν = Eπ −Eμ.

aSee W. Grimus and P. Stockinger, “Real oscillations of virtual neutrinos,” Phys. Rev. D 54 (1996)
3414–3419 (hep-ph/9603430).

The theorem states: Let Φ = Φ(q) be a 3 times continuously differentiable function such that Φ itself
and all its first and second derivatives decrease at least like |q|−2 for |q| → ∞, a a real number, and

J(L) ≡
∫
d3q

Φ(q)

a− |q|2 + i0
exp (−iqL).

Then in the asymptotic limit L = |L| → ∞ one obtains, for a > 0,

J(L) → −2π2

L
Φ
(−√

a l
)
exp

(
i
√
aL
)

+ O
(
L−3/2

)
, l ≡ L

L
,

whereas for a < 0 the integral J(L) decreases like L−2.



To calculate the factors M1 and M2

as functions of the momenta of the ini-
tial and final particles, respectively, one
have to “decipher” the vertices of our
macro-diagram by applying an interac-
tion model (like that shown in the fig-
ure on right). It is by no means a simple
or straightforward task. One can prove
however that after quadrating the am-
plitude we will arrive at something like

L−2 dΓ (π+ → μ+νμ)× P (νμ → ντ )× dσ(ντ + n→ p+ τ),

where dΓ is the differential width of standard pion decay, dσ is the differential cross
section for the quasielastic ντ n interaction, the factor L2 accounts for the geometrical
decrease of the neutrino flux, and

P (νμ → ντ ) ≡
∣∣∣∑
j

VμjV
∗
τje

iqjL ×√Sj∣∣∣2 (7)

where Sj is a suppression factor (see below). Equation (7) can be interpreted as

the probability of the transition of real muon neutrino to real tauon neutrino (both
having energy Eν = Eπ − Eμ) on the path L between the neutrino source and detector.



The obtained result is almost independent of the specific process. This allows us to
generalize it quite straightforwardly and write out the formula for the transition
probability between any neutrino pair:

P (να → νβ) =
∑
jk

VαjVβk (VαkVβj)
∗ exp [i(qj − qk)L]× Sjk. (8)

The suppression factor Sjk in Eq. (8) is given by

Sjk ≈ exp

⎡⎣−( L

Lcoh
jk

)2

−
(
Lloc

Losc
jk

)2
⎤⎦, (9)

where

Lcoh
jk =

Eν√
2σp

Losc
jk

are the coherence lengths defined through the uncertainty σp in the momentum of the
source (pion in our particular case) and the neutrino oscillation lengths,

Losc
jk =

2πEν
qj − qk ;

Lloc is the measure of fuzziness of the detector (neutron in our case).



According to Eq. (9), the factor Sjk suppresses the neutrino oscillations if

• L � Lcoh
jk (“blooming” of the neutrino wave packets) and/or

• Losc
jk � Lloc.

In other words, the oscillations are not suppressed when at least one of the oscillation
lengths is large enough.

Ultrarelativistic neutrinos

In the ultrarelativistic limit E2
ν � m2

k, which is valid for almost all interesting
circumstances (except for the relic neutrinos),a

qj =
√
E2
ν −m2

j ≈ Eν −
m2
j

2Eν
and, assuming in addition that the neutrino oscillation lengths are large enough, we can
write

P (να → νβ) = Pαβ(L) ≈
∑
jk

VαjVβk (VαkVβj)
∗ exp

(
2iπL
Ljk

)
, (10)

Losc
jk ≡ Ljk =

4πEν
Δm2

jk

and Δm2
jk = m2

k −m2
j . (11)

aNote that decay of any known particle produces ultrarelativistic neutrinos even if the particle is at
rest (with the uncertainty of σp).



Important notes

� In order to obtain M∞ we have performed the asymptotic limit L → ∞. From the proof
of the Grimus-Stockinger theorem it follows that “large L” means

L � 2 × 10−16 m × (1 GeV/Eν

)
,

where Eν is an average neutrino energy. For every thinkable neutrino experiment this is

very well fulfilled and corrections to M∞ are suppressed by 1/
√

Eν .

� The factor 1/L in the asymptotic amplitude corresponds to the geometrical decrease of
the neutrino “flux” by 1/L2 in the “cross section”.

� From the derivation one can conclude that neutrino oscillations between the neutrino with
masses mj and mk can only take place if

|qj − qk| � σ,

where σ is the minimum of the widths of the Fourier transformations of the involved wave
functions. In coordinate space this simply means that corresponding widths must be
smaller than the oscillation lengths defined by

Ljk =
4πEν

m2
j − m2

k

≡ 4πEν

Δm2
jk

≈ 2.48 m × Eν (MeV)

Δm2
jk (eV2)

.

� The nature of neutrinos (Dirac or Majorana) was not specified in our schematic
consideration. It can be shown however that the difference between MDirac

∞ and MMajorana
∞

is of the order of mj/Eν .



4.2 Quantum mechanical approach

The flavor neutrino eigenstates which can be written as a vector

|ν〉
f

= (|νe〉, |νμ〉, |ντ 〉, . . .)T ≡ (|να〉)T

are defined as the states which correspond to the charge leptons α = e, μ, τ . The
correspondence is established through the charged current interactions of active
neutrinos and charged leptons. In general, the flavor states have no definite masses.

The neutrino mass eigenstates

|ν〉
m

= (|ν1〉, |ν2〉, |ν3〉, . . .)T ≡ (|νk〉)T

are, by definition, the states with the definite masses mk, k = 1, 2, 3, . . ..
Since |να〉 and |νk〉 are not identical, they are related to each other through a unitary
transformation

|να〉 =
∑
k

V̂αk|νk〉 or |ν〉
f

= V̂|ν〉
m
,

where V̂ =‖ V̂αk ‖ is a unitary (in general, N×N) matrix. In order to find out the

correspondence between V̂ and the PMNS mixing matrix V we can normalize the “f”
and “m” states by the following conditions

〈0|ναL(x)|να′〉 = δαα′ and 〈0|νkL(x)|νk′〉 = δkk′ .



From these conditions we obtain∑
k

VαkV̂α′k = δαα′ and
∑
α

VαkV̂αk′ = δkk′ .

Therefore
V̂ ≡ V†

and
|ν〉

f
= V†|ν〉

m
⇐⇒ |ν〉

m
= V|ν〉

f
.

The time evolution of a single mass eigenstate |νk〉 with momentum pν is trivial,

i
d

dt
|νk(t)〉 = Ek|νk(t)〉 =⇒ |νk(t)〉 = e−iE2(t−t0)|νk(t0)〉,

where Ek =
√
p2
ν +m2

k is the total energy in the state |νk〉. Therefore, assuming that
all the components of the neutrino wave packet have the same momenta, one can write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉

m
, where H0 = diag (E1, E2, E3, . . .). (12)

(H0 is the vacuum Hamiltonian.) From Eqs. (61) and (12) we have

i
d

dt
|ν(t)〉

f
= V†H0V|ν(t)〉

f
. (13)



Solution to this equation is obvious:

|ν(t)〉
f

= V†e−iH0(t−t0)V |ν(t0)〉f
= V† diag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V |ν(t0)〉f . (14)

In the ultrarelativistic limit p2
ν � m2

k,

Ek =
√
p2
ν +m2

k ≈ pν +
m2
k

2pν
≈ Eν +

m2
k

2Eν
.

By applying this approximation and Eq. (14) one can derive the survival and transition
probabilities

P [να(t0)→ νβ(t)]≡ Pαβ(t− t0) = |〈νβ(t)|να(t0)〉|2

=
∣∣∣∑
k

VαkV
∗
βk exp [iEk(t− t0)]

∣∣∣2
=
∑
jk

VαjVβk (VαkVβj)
∗ exp [i(Ej −Ek)(t− t0)]

≈
∑
jk

VαjVβk (VαkVβj)
∗ exp

[
iΔm2

jk(t− t0)/2Eν
]
.



The next standard approximation is

vk = pν/Ek ≈ c = 1

from which it follows that

t− t0 ≈ L = source–detector distance.

This approximation is in fact contradictory since the corresponding corrections are also
of the order of mk/Eν . However, only with this approximation we arrive at the formulaa

Pαβ(L)≈
∑
jk

VαjVβk (VαkVβj)
∗ exp

(
iΔm2

jkL

2Eν

)

=
∑
jk

VαjVβk (VαkVβj)
∗ exp

(
2iπL
Ljk

)
, (15)

which marvelously and enigmatically fits the field-theoretical (“diagrammatic”) result
(10) written in the ultrarelativistic limit.

The range of applicability of the standard quantum-mechanical approach is very limited
but enough for the interpretation of essentially all modern experiments.

aAs above, Ljk = 4πEν/Δm2
jk are the neutrino oscillation lengths.



4.2.1 Simplest case: two flavor vacuum oscillations

Let us now consider the simplest 2-flavor case with i = 2, 3 and α = μ, τ (the most
favorable due to the SK and other underground experiments). The 2× 2 vacuum
mixing matrix can be parametrized (due to the unitarity) with a single parameter,
θ = θ23, the vacuum mixing angle,

V =
(

cos θ sin θ
− sin θ cos θ

)
, 0 ≤ θ ≤ π/2.

Equation (15) then becomes very simple:

Pαα′(L) =
1
2

sin2 2θ
[
1− cos

(
2πL
Lv

)]
,

Lv ≡ L23 =
4πEν
Δm2

23

≈ 2R⊕

(
Eν

10 GeV

)(
0.002 eV2

Δm2
23

)
where R⊕ is the mean radius of the Earth. Since 10 GeV is a typical energy for the
atmospheric neutrinos, the Earth is surprisingly very suitable for studying the
atmospheric neutrino oscillations in rather wide range of the parameter Δm2

23.



5 Neutrino oscillations in matter

5.1 Neutrino refraction

It has been noted by Wolfensteina that neutrino oscillations in a medium are affected by
interactions even if the thickness of the medium is negligible in comparison with the
neutrino mean free path.

Let us forget for the moment about the inelastic collisions and consider the simplest
case of a ultrarelativistic neutrino which moves in an external (effective) potential W
formed by the matter background. If the neutrino momentum in vacuum was p then its
energy was � p = |p|. When the neutrino enters into the medium, its energy becomes
E = p+W . Let us now introduce the index of refraction n = p/E which is a positive
value in the absence of inelastic collisions. Therefore

W = (1− n)E � (1− n)p. (16)

In the last step, we took into account that neutrino interaction with matter is very
weak, |W | � E, and thus E � p is a good approximation.

The natural generalization of Eq. (13) for the time evolution of neutrino flavor states in
matter then follows from this simple consideration and the quantum-mechanical
correspondence principle.

aL. Wolfenstein, Phys. Rev. D 17 (1978) 2369.



This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V† + W(t)

] |ν(t)〉
f
, (17)

where
W(t) = diag

(
1− nνe

, 1− nνμ
, 1− nντ

, . . .
)
p (18)

is the interaction Hamiltonian.

It will be useful for the following to introduce the time-evolution operator for the flavor
states defined by

|ν(t)〉
f

= S(t)|ν(0)〉
f
.

Taking into account that |ν(t)〉
f

must satisfy Eq. (17) for any initial condition

|ν(t = 0)〉
f

= |ν(0)〉
f
, the Wolfenstein equation can be immediately rewritten in terms

of the evolution operator:

iṠ(t) =
[
VH0V† + W(t)

]
S(t), S(0) = 1. (19)

This equation (or its equivalent (17)) cannot be solved analytically in the general case
of a medium with a varying (along the neutrino pass) density. But for a medium with a
slowly (adiabatically) varying density distribution the approximate solution can be
obtained by a diagonalization of the effective Hamiltonian. Below we will consider this
method for a rather general 2-flavor case but now let us illustrate (without derivation)
the simplest situation with a matter of constant density.



5.1.1 Matter of constant density

In the 2-flavor case, the transition probability is given by the formula very similar to
that for vacuum:

Pαα′(L) =
1
2

sin2 2θm

[
1− cos

(
2πL
Lm

)]
,

Lm = Lv

[
1− 2κ (Lv/L0) cos θ + (Lv/L0)

2
]−1/2

.

The Lm is called the oscillation length in matter and is defined through the following
quantities:

Lv ≡ L23 =
4πE
Δm2

, L0 =
√

2πA
GFNAZρ

≈ 2R⊕

(
A

2Z

)(
2.5 g/cm3

ρ

)
,

κ = sign
(
m2

3 −m2
2

)
, Δm2 =

∣∣m2
3 −m2

2

∣∣ .
The parameter θm is called the mixing angle in matter and is given by

sin 2θm = sin 2θ
(
Lm

Lv

)
, cos 2θm =

(
cos 2θ − κLv

L0

)(
Lm

Lv

)
.

The solution for antineutrinos is the same but with the replacement κ �→ −κ. The
closeness of the value of L0 to the Earth’s diameter is even more surprising than that
for Lv. The matter effects are important for atmospheric neutrinos.



5.2 Propagation of high-energy mixed neutrinos through matter

“The matter doesn’t matter”

Lincoln Wolfenstein, lecture given at 28th
SLAC Summer Institute on Particle Physics
“Neutrinos from the Lab, the Sun, and the
Cosmos”, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vacuum there is a phase change

exp
(−im2

i t/2pν
)
.

For two mixed flavors there is a resulting oscillation with length

Lvac =
4πEν
Δm2

≈ D⊕

(
Eν

10 GeV

)(
0.002 eV2

Δm2

)
.

In matter there is an additional phase change due to refraction associated with forward
scattering

exp [ipν(Ren− 1)t]

and the characteristic length (for a normal medium) is

Lref =
√

2A
GFNAZρ

≈ D⊕

(
A

2Z

)(
2.5 g/cm2

ρ

)
.



It is generally believed that the imaginary part of the index of refraction n which
describes the neutrino absorption due to inelastic interactions does not affect the
oscillation probabilities or at the least inelastic interactions can be someway decoupled
from oscillations.

The conventional arguments are

• Ren− 1 ∝ GF while Imn ∝ G2
F ;

• Only Δn may affect the oscillations and ΔImn is all the more negligible.

It will be shown that these arguments do not work for sufficiently high neutrino energies
and/or for thick media =⇒ in general absorption cannot be decoupled from refraction
and mixing.

By using another cant phrase of Wolfenstein, one can say that

“In some circumstances the matter could matter.”



5.2.1 Generalized MSW equation

Let fναA(0) be the amplitude for the να zero-angle scattering from particle A of the
matter background (A = e, p, n, . . .),
ρ(t) – the matter density (in g/cm3),
YA(t) – the number of particles A per amu in the point t of the medium,
N0 = 6.02214199× 1023 cm−3 – the reference particle number density (numerically
equal to the Avogadro’s number).

Then the index of refraction of να for small |n− 1| is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑
A

YA(t)fναA(0),

where pν is the neutrino momentum. Since the amplitude fναA(0) is in general a
complex number, the index of refraction is also complex. Its real part is responsible for
neutrino refraction while the imaginary part – for absorption. From the optical theorem
of quantum mechanics we have

Im [fναA(0)] =
pν
4π
σtot
ναA (pν).

This implies that

pν Im [nα(t)] =
1
2
N0ρ(t)

∑
A

YA(t)σtot
ναA (pν) =

1
2Λα (pν , t)

,



where Λα (pν , t) is the mean free path of να in the point t of the medium.

Note:

The dimension of Λα is cm,

Λα (pν , t) =
1

Σtot
α (pν , t)

=
λtot
a (pν , t)
ρ(t)

.

Since the neutrino momentum, pν , is an extrinsic variable in Eq. (20), we will
sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =
(
Sαα(t) Sαβ(t)
Sβα(t) Sββ(t)

)
of two mixed stable neutrino flavors να and νβ propagating through an absorbing
medium can be written as

i
d

dt
S(t) =

[
VH0VT + W(t)

]
S(t), (S(0) = 1) . (20)



Here

V=
(

cos θ sin θ
− sin θ cos θ

)
is the vacuum mixing matrix (0 ≤ θ ≤ π/2),

H0=
(
E1 0
0 E2

)
is the vacuum Hamiltonian for ν mass eigenstates,

Ei=
√
p2
ν +m2

i � pν +m2
i /2pν is the energy of the νi eigenstate,

W(t)= −pν
(
nα(t)− 1 0

0 nβ(t)− 1

)
is the interaction Hamiltonian.

5.2.2 Master equation

It is useful to transform MSW equation into the one with a traceless Hamiltonian. For
this purpose we define the matrix

S̃(t) = exp
{
i

2

∫ t

0

Tr [H0 + W(t′)] dt′
}

S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1. (21)



The effective Hamiltonian is defined by

H(t) =
(
q(t)−Δc Δs

Δs −q(t) + Δc

)
,

Δc = Δ cos 2θ, Δs = Δ sin 2θ, Δ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1
2
pν [nβ(t)− nα(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] �= Im [fναA(0)].

The neutrino oscillation probabilities are

P [να(0)→ να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣2, (22)

where

A(t) = exp
[
−
∫ t

0

dt′

Λ(t′)

]
,

1
Λ(t)

=
1
2

[
1

Λα(t)
+

1
Λβ(t)

]
.

Owing to the complex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no conventional relations
between Pαα′(t).



Since

qI(t) =
1
4

[
1

Λβ(t)
− 1
Λα(t)

]
,

the matrix H(t) becomes Hermitian when Λα = Λβ. If this is the case at any t, the ME
reduces to the standard MSW equation and inelastic scattering results in the common
exponential attenuation of the probabilities. probabilities. From here, we shall consider
the more general and more interesting case, when Λα �= Λβ.

5.2.3 Examples

να − νs
This is the extreme example. Since Λs =∞, we have Λ = 2Λα and qI = −1/4Λα. So
qI �= 0 at any energy. Even without solving the evolution equation, one can expect the
penetrability of active neutrinos to be essentially modified in this case because, roughly
speaking, they spend a certain part of life in the sterile state. In other words, sterile
neutrinos “tow” their active companions through the medium as a tugboat. On the
other hand, the active neutrinos “retard” the sterile ones, like a bulky barge retards its
tugboat. As a result, the sterile neutrinos undergo some absorption.



νe,μ − ντ
Essentially at all energies, σCC

νe,μN
> σCC

ντN
. This is because of large value of the τ

lepton mass, mτ , which leads to several consequences:

1. high neutrino energy threshold for τ production;

2. sharp shrinkage of the phase spaces for CC ντN reactions;

3. kinematic correction factors (∝ m2
τ ) to the nucleon structure functions (the

corresponding structures are negligible for e production and small for μ production).

The neutral current contributions are canceled out from qI . Thus, in the context of the
master equation, ντ can be treated as (almost) sterile within the energy range for
which σCC

νe,μN
� σCC

ντN
(see Figs. 6–7 below).

νe − να
A similar situation, while in quite a different and narrow energy range, holds in the case
of mixing of νe with some other flavor. This is a particular case for a normal C
asymmetric medium, because of the W boson resonance formed in the neighborhood of
Eres
ν = m2

W /2me ≈ 6.33 PeV through the reactions

νee
− →W− → hadrons and νee

− →W− → ν��
− (� = e, μ, τ).

Let’s remind that σtot
νee
≈ 250 σtot

νeN
just at the resonance peak (see Fig. 5 and Table 3

below).
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Figure 5: Total cross sections for (anti)neutrino interactions on electron targets. The
cross sections for (anti)neutrino CC and NC interactions on isoscalar nucleon are also
shown for a comparison.



Table 3: Integrated cross sections for neutrino-electron and neutrino-nucleon scattering
at Eν = m2

W /2me ≈ 6.331 PeV.

Reaction σ (cm2) Reaction σ (cm2)

νμe→ νμe 5.86× 10−36 νμN → μ− + anything 1.43× 10−33

νμe→ νμe 5.16× 10−36 νμN → νμ + anything 6.04× 10−34

νμe→ μνe 5.42× 10−35 νμN → μ+ + anything 1.41× 10−33

νee→ νee 3.10× 10−35 νμN → νμ + anything 5.98× 10−34

νee→ νee 5.215× 10−32

νee→ νμμ 5.214× 10−32

νee→ ντ τ 5.208× 10−32

νee→ hadrons 3.352× 10−31

νee→ anything 4.917× 10−31

Just at the resonance peak, σtot
νee
≈ 250σtot

νeN
.

Note:

The cross sections for electron targets listed in Table 3 were calculated using the
formulas given by Gandhi et al., a but some numerical values are different since the
input parameters were updated.

aR. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, “Ultrahigh-energy neutrino interactions,” As-
tropart. Phys. 5 (1996) 81–110 (hep-ph/9512364).



5.2.4 Total cross sections

According to Albright and Jarlskoga

dσCC
ν, ν

dxdy
=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q2) are the nucleon structure functions and Ai are the kinematic
factors i = 1, . . . , 5). These factors were calculated by many authorsb and the most
accurate formulas were given by Paschos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1− y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(
1− y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The contributions proportional to m2
� must vanish as Eν � m�. However they remain

surprisingly important even at very high energies.

aC. H. Albright and C. Jarlskog, Nucl. Phys. B84 (1975) 467. See also I. Ju, Phys. Rev. D8 (1973)
3103 and V. D. Barger et al., Phys. Rev. D16 (1977) 2141.

bSee previous footnote and also the more recent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya,
Eur. Phys. J. C 18 (2000) 405 (hep–ph/9905475); N. I. Starkov, J. Phys. G: Nucl. Part. Phys. 27 (2001)
L81; E. A. Paschos and J. Y. Yu, Phys. Rev. D65 (2002) 033002 (hep–ph/0107261).
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5.2.5 Indices of refraction

For Eν � min
(
m2
W,Z/2mA

)
and for an electroneutral nonpolarized cold medium, the

qR is energy independent. In the leading orders of the standard electroweak theory it is

qR =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2V0Ypρ for α = e and β = μ or τ,

− 1
2aτV0 (Yp + bτYn) ρ for α = μ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = μ or τ and β = s,

where

V0 =
√

2GFN0 � 7.63× 10−14 eV

(
L0 =

2π
V0
� 1.62× 104 km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ )− 1]

4π sin2 θW
� 2.44× 10−5, bτ =

ln(1/rτ )− 2/3
ln(1/rτ )− 1

� 1.05,

α is the fine-structure constant, θW is the weak-mixing angle and rτ = (mτ/mW )2.
Notes:

• For an isoscalar medium the |qR| is of the same order of magnitude for any pair
of flavors but νμ − ντ .
• For an isoscalar medium q

(νμ−ντ )
R /q

(νe−νμ)
R ≈ −5× 10−5.



• For certain regions of a neutron-rich medium the value of q
(νe−νs)
R may become

vanishingly small. In this case, the one-loop radiative corrections must be taken into
account.

• For very high energies the qR have to be corrected for the gauge boson
propagators and strong-interaction effects.

One can expect |qR| to be either an energy-independent or decreasing function for any
pair of mixed neutrino flavors. On the other hand, there are several cases of much
current interest when |qI | either increases with energy without bound (mixing between
active and sterile neutrino states) or has a broad or sharp maximum (as for νμ − ντ or
νe − νμ mixings, respectively).

Numerical estimations suggest that for every of these cases there is an energy range in
which qR and qI are comparable in magnitude. Since qR ∝ ρ and qI ∝ and are
dependent upon the composition of the medium (YA) there may exist some more
specific situations, when

|qR| ∼ |qI | ∼ |Δ|
or even

|qR| ∼ |Δc| and |qI | ∼ |Δs| .
If this is the case, the refraction, absorption and mixing become interestingly
superimposed.



5.2.6 Eigenproblem and mixing matrix in matter

Eigenvalues

The matrix H(t) has two complex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the characteristic equation

ε2 = (q − q+) (q − q−) ,

where q± = Δc ± iΔs = Δe±2iθ. The solution is

ε2R =
1
2
(
ε20 − q2I

)
+

1
2

√
(ε20 − q2I )2 + 4q2I (ε20 −Δ2

s),

εI =
qI (qR −Δc)

εR
(provided qR �= Δc) ,

with

ε0 =
√

Δ2 − 2ΔcqR + q2R ≥ |Δs|, sign (εR) def= sign(Δ) ≡ ζ.
(At that choice ε = Δ for vacuum and ε = ζε0 if qI = 0.)

In the vicinity of the MSW resonance, qR = qR(t�) = Δc

lim
qR→Δc±0

εR= Δs

√
max (1−Δ2

I/Δ2
s, 0),

lim
qR→Δc±0

εI= ±ζΔI

√
max (1−Δ2

s/Δ2
I , 0),



where ΔI = qI(t�). Therefore the resonance value of |εR| (which is inversely
proportional to the neutrino oscillation length in matter) is always smaller than the
conventional MSW value |Δs| and vanishes if Δ2

I < Δ2
s (εI remains finite in this case).

In neutrino transition through the region of resonance density ρ = ρ(t�), εI undergoes
discontinuous jump while εR remains continuous. The corresponding cuts in the q
plane are placed outside the circle |q| ≤ |Δ|. If Δ2

I > Δ2
s, the imaginary part of ε

vanishes while the real part remains finite.

A distinctive feature of the characteristic equation is the existence of two mutually
conjugate “super-resonance” points q± in which ε vanishes giving rise to the total
degeneracy of the levels of the system (impossible in the “standard MSW” solution).
Certainly, the behavior of the system in the vicinity of these points must be
dramatically different from the conventional pattern.

The “super-resonance” conditions are physically realizable for various
meaningful mixing scenarios.



Some useful relations

qR

qI

− |Δ  |s

   |Δ  |s

Δc

2θ

|Δ|
0

Figure 8: Zeros and cuts of ε in the
q plane for Δc > 0. The cuts are
placed outside the circle |q| ≤ |Δ|
parallel to axis qR = 0. The MSW
resonance point is (Δc, 0) and the
two “super-resonance” points are
(Δc,±Δs).

ε2R =
2q2I
(
ε20 −Δ2

s

)√
(ε20 − q2I )2 + 4q2I (ε20 −Δ2

s)− ε20 + q2I

,

εI =

√
(ε20 − q2I )2 + 4q2I (ε20 −Δ2

s)− ε20 + q2I

2qI (qR −Δc)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR −Δc) εR

ε2R + ε2I
,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR −Δc) εI

ε2R + ε2I
,

Re

[
q(t)−Δc

ε

]
=
(
qR −Δc

εR

)(
ε2R + q2I
ε2R + ε2I

)
,

Im

[
q(t)−Δc

ε

]
=
(
qI
εR

)(
ε2R − ε20 + Δ2

s

ε2R + ε2I

)
,

(qR −Δc)
2 = ε20 −Δ2

s.



Eigenstates

In order to simplify the solution to the eigenstate problem we’ll assume that the phase
trajectory q = q(t) does not cross the points q± at any t. In non-Hermitian quantum
dynamics one has to consider the two pairs of instantaneous eigenvectors |Ψ±〉 and
|Ψ±〉 which obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (23)

and (for q �= q±) form a complete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenvectors are defined up to a gauge transformation

|Ψ±〉 �→ eif± |Ψ±〉, |Ψ±〉 �→ e−if
∗
± |Ψ±〉,

with arbitrary complex functions f±(t) such that Im (f±) vanish as q = 0.a Thus it is
sufficient to find any particular solution of Eqs. (23). Taking into account that
H† = H∗, we may set |Ψ±〉 = |Ψ∗±〉 and hence the eigenvectors can be found from the
identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.
aFor our aims, the class of the gauge functions may be restricted without loss of generality by the

condition f±|q=0 = 0.



Setting |Ψ±〉 = (v±,±v∓)T we arrive at the equations

v2
± =

ε± (q −Δc)
2ε

, v+v− =
Δs

2ε
,

a particular solution of which can be written as

v+=

√∣∣∣∣ε+ q −Δc

2ε

∣∣∣∣ ei(ϕ−ψ)/2,

v−= ζ

√∣∣∣∣ε− q + Δc

2ε

∣∣∣∣ ei(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q −Δc) = − arg(ε− q + Δc) = arctan
(
qI
εR

)
,

ψ = arg(ε) = arctan
(
εI
εR

)
,

and we have fixed the remaining gauge ambiguity by a comparison with the vacuum
case.



Mixing angle in matter

It may be sometimes useful to define the complex mixing angle in matter
Θ = ΘR + iΘI by the relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
Δs

ε
, cos 2Θ =

Δc − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ)≡ ΘR =
1
2

arctan
[
(qI −Δs) εR − (qR −Δc) εI
(qR −Δc) εR + (qI −Δs) εI

]
,

Im(Θ)≡ ΘI =
1
4

ln

[
ε2R + ε2I

(qR −Δc)
2 + (qI −Δs)

2

]
.

cosΘ= cosΘR coshΘI − i sinΘR sinhΘI ,
sinΘ= sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the prescription for the sign of εR, one can verify that Θ = θ if q = 0
(vacuum case) and Θ = 0 if Δs = 0 (no mixing or m2

1 = m2
2). It is also clear that Θ

becomes the standard MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).



Mixing matrix in matter

In order to build up the solution to ME for the nondegenerated case one has to
diagonalize the Hamiltonian. Generally a non-Hermitian matrix cannot be diagonalized
by a single unitary transformation. But in our simple case this can be done by a
complex orthogonal matrix (extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =
(
v− v+
−v+ v−

)
=
(

cosΘ sinΘ
− sinΘ cosΘ

)
.

Properties of U:

UTHU = diag (−ε, ε),
UTU = 1,

U|q=0 = V.



From CE it follows that

∂ε/∂q = (q −Δc)/ε

and thus
∂v±
∂q

= ±Δ2
sv∓
2ε2

.

We therefore have

iUT U̇ = −Ω
(

0 −i
i 0

)
= −Ωσ

2
,

where

Ω =
q̇Δs

2ε2
=
i

4
d

dt
ln
(
q − q+
q − q−

)
.

Properties of Uf :

UT
f HUf = diag (−ε, ε),

UT
f Uf = 1,

Uf |q=0 = V,

iUT
f U̇f = −Ωe−ifσ

2
eif − ḟ .



5.2.7 Adiabatic solution

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)]Xf (t)UT
f (0). (24)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the complex dynamical
phase, defined by

ΦR(t) =
∫ t

0

εR(t′)dt′, ΦI(t) =
∫ t

0

εI(t′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)σ2e
−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It can be proved now that the right side of Eq. (24) is gauge-invariant i.e. it does not
depend on the unphysical complex phases f±(t). This crucial fact is closely related to
the absence of the Abelian topological phases in the system under consideration.



Finally, we can put f± = 0 in Eq. (24) and the result is

S̃(t) = U(t) exp [−iΦ(t)]X(t)UT (0), (25a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (25b)

These equations, being equivalent to the ME, have nevertheless a restricted range of
practical usage on account of poles and cuts as well as decaying and increasing
exponents in the “Hamiltonian” ΩF.

Adiabatic theorem

The adiabatic theorem of Hermitian quantum mechanics can almost straightforwardly
be extended to ME under the requirements:

(a) the potential q is a sufficiently smooth and slow function of t;

(b) the imaginary part of the dynamical phase is a bounded function i.e.
limt→∞ |ΦI(t)| is finite;

(c) the phase trajectory q = q(t) is placed far from the singularities for any t.

The first requirement breaks down for a condensed medium with a sharp boundary or
layered structure (like the Earth). If however the requirement (a) is valid inside each
layer (ti, ti+1), the problem reduces to Eqs. (25) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0),

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.



The requirement (b) alone is not too restrictive considering that for many astrophysical
objects (like stars, galactic nuclei, jets and so on) the density ρ exponentially disappears
to the periphery and, on the other hand, εI → 0 as ρ→ 0. In this instance, the
function ΦI(t) must be t independent for sufficiently large t. But, in the case of a steep
density profile, the requirements (a) and (b) may be inconsistent.

The important case of violation of the requirement (c) is the subject of a special study
which is beyond the scope of this study.

It is interesting to note in this connection that, in the Hermitian case, a general
adiabatic theorem has been proved without the traditional gap condition [J. E. Avron
and A. Elgart, Commun. Math. Phys. 203 (1999) 445].

The solution

Presume that all necessary conditions do hold for 0 ≤ t ≤ T . Then, in the adiabatic
limit, we can put Ω = 0 in Eq. (25b). Therefore X = 1 and Eq. (25a) yields

S̃αα(t)= v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t)= v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t)= v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t)= v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),



Taking into account Eq. (22) we obtain the survival and transition probabilities:

Pαα(t) = A(t)
{[
I+
+ (t)eΦI(t) + I−− (t)e−ΦI(t)

]2
− I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)
{[
I−+ (t)eΦI(t) − I+

− (t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]
}
,

Pβα(t) = A(t)
{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)
{[
I−− (t)eΦI(t) + I+

+ (t)e−ΦI(t)
]2
− I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(26)

where we have denoted for compactness

Iς
′
ς (t) = |vς(0)vς′(t)| (ς, ς ′ = ±),

ϕ±(t) =
ϕ(0)± ϕ(t)

2
,

I2(t) = 4I+
+ (t)I−− (t) = 4I−+ (t)I+

−(t) =
Δ2
s

|ε(0)ε(t)| .



Limiting cases

In the event that the conditions∣∣∣∣ 1
Λβ(t)

− 1
Λα(t)

∣∣∣∣� 4ε0(t) and t� min [Λα(t), Λβ(t)]

are satisfied for any t ∈ [0, T ], the formulas (26) reduce to the standard MSW adiabatic
solution

Pαα(t)= Pββ(t) =
1
2

[1 + J(t)]− I2
0 (t) sin2 [Φ0(t)],

Pαβ(t)= Pβα(t) =
1
2

[1− J(t)] + I2
0 (t) sin2 [Φ0(t)],

⎫⎪⎬⎪⎭ (MSW)

where

J(t) =
Δ2 −Δc [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

Δ2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t′)dt′.

Needless to say either of the above conditions or both may be violated for sufficiently
high neutrino energies and/or for thick media, resulting in radical differences between
the two solutions. These differences are of obvious interest to high-energy neutrino
astrophysics.



It is perhaps even more instructive to examine the distinctions between the general
adiabatic solution (26) and its “classical limit”

Pαα(t)= exp
[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t)= exp
[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Δs = 0)

which takes place either in the absence of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ Δs, the classical limit is the exact solution to the master equation
(for Δs = 0). Therefore it can be derived directly from Eq. (21). To make certain that
the adiabatic solution has correct classical limit, the following relations are useful:

lim
Δs→0

ε(t) = ζζR [q(t)−Δc]

and

lim
Δs→0

|v±( t)|2 =
1
2

(ζζR ± 1),

where
ζR = sign [qR(t)−Δc].



5.2.8 Matter of constant density and composition

In this simple case, the adiabatic approximation becomes exact and thus free from the
above-mentioned conceptual difficulties. For definiteness sake we assume Λα < Λβ
(and thus qI < 0) from here. The opposite case can be considered in a similar way.
Let’s denote

1
Λ±

=
1
2

(
1
Λα

+
1
Λβ

)
± ξ

2

(
1
Λα
− 1
Λβ

)
,

I2
± =

1
4

(
1 +

ε20 + q2I −Δ2
s

ε2R + ε2I

)
± ξ

2

(
ε2R + q2I
ε2R + ε2I

)
,

L =
π

|εR| and ξ =
∣∣∣∣qR −Δc

εR

∣∣∣∣.
As is easy to see,

I±± =

{
I± if sign (qR −Δc) = +ζ,
I∓ if sign (qR −Δc) = −ζ,

I−+ = I+
− =

√
I+I− =

I

2
=
∣∣∣∣Δs

2ε

∣∣∣∣ and sign(ϕ) = −ζ.



By applying these identities the neutrino oscillation probabilities can be written as

Pαα(t)=
(
I+e

−t/2Λ+ + I−e−t/2Λ−
)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t)=
(
I−e−t/2Λ+ + I+e

−t/2Λ−
)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t)= Pβα(t) =
1
4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The difference between the survival probabilities for να and νβ is

Pαα(t)− Pββ(t) = −ζRe

(
q −Δc

ε

)(
e−t/2Λ− − e−t/2Λ+

)
+I2e−t/Λ sinϕ sin

(
2πt
L

)
.



Case |q| � |Δs|
Let’s examine the case when Λ+ and Λ− are vastly different in magnitude. This will be
true when Λβ � Λα and the factor ξ is not too small. The second condition holds if qR
is away from the MSW resonance value Δc and the following dimensionless parameter

κ =
Δs

|q| ≈ 0.033× sin 2θ
(

Δm2

10−3 eV2

)(
100 GeV

Eν

)(
V0

|q|
)

is sufficiently small. In fact we assume |κ| � 1 and impose no specific restriction for the
ratio qR/qI . This spans several possibilities:

� small Δm2,

� small mixing angle,

� high energy,

� high matter density.

The last two possibilities are of special interest because the inequality |κ| � 1 may be
fulfilled for a wide range of the mixing parameters Δm2 and θ by changing Eν and/or
ρ. In other words, this condition is by no means artificial or too restrictive.

After elementary while a bit tedious calculations we obtain

ξ = 1− 1
2

κ
2 +O (κ3

)
, I2 = κ

2 +O (κ3
)
,

I+ = 1 +O (κ2
)
, I− =

1
4

κ
2 +O (κ3

)
;



Λ ≈ 2Λα,

Λ+≈
(

1 +
κ

2

4

)
Λα ≈ Λα,

Λ−≈
(

4
κ2

)
Λα � Λα.

Due to the wide spread among the length/time scales Λ±, Λ and L as well as among
the amplitudes I± and I, the regimes of neutrino oscillations are quite diverse for
different ranges of variable t.

With reference to Figs. 9–12, one can see a regular gradation from slow (at t � Λμ) to
very fast (at t � Λμ) neutrino oscillations followed by the asymptotic nonoscillatory
behavior:

Pμμ(t)� κ
4

16
e−t/Λ− ,

Pss(t)� e−t/Λ− ,

Pμs(t)= Psμ(t) � κ
2

4
e−t/Λ− .



Figure 9: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 250 GeV,
ρ = 1 g/cm3).



Figure 10: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 1000 GeV,
ρ = 0.2 g/cm3).



Figure 11: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 100 TeV,
ρ = 10−3 g/cm3).



Figure 12: Survival and transition probabilities for νμ ↔ νs oscillations (Eν = 100 TeV,
ρ = 3× 10−4 g/cm3).



Degenerate case

The consideration must be completed for the case of degeneracy. Due to the condition
qI < 0, the density and composition of the “degenerate environment” are fine-tuned in
such a way that

q = q−ζ = Δc − i |Δs|.
The simplest way is in coming back to the master equation. Indeed, in the limit of
q = q−ζ , the Hamiltonian reduces to

H = |Δs|
(−i ζ
ζ i

)
≡ |Δs|hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1− it |Δs|hζ
and thus

Pαα(t)= (1− |Δs| t)2 e−t/Λ,
Pββ(t)= (1 + |Δs| t)2 e−t/Λ,
Pαβ(t)= Pβα(t) = (Δst)

2
e−t/Λ.



Since 1/Λβ = 1/Λα − 4 |Δs|, the necessary condition for the total degeneration is

4Λα |Δs| ≤ 1

and thus

1/Λ = 1/Λα − 2 |Δs| ≥ 2 |Δs|.
The equality only occurs when νβ is sterile.

The degenerate solution must be compared with the standard MSW solution

Pαα(t) = Pss(t) =
1
2

[1 + cos (2Δst)],

Pαs(t) = Psα(t) =
1
2

[1− cos (2Δst)],

⎫⎪⎬⎪⎭ (MSW)

and with the classical penetration coefficient

exp (−t/Λα)

(with 1/Λα numerically equal to 4 |Δs|) relevant to the transport of unmixed active
neutrinos through the same environment.
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Figure 13: Survival and transition probabilities for να ↔ νs oscillations in the case of
degeneracy (q = q−ζ). The standard MSW probabilities (dotted and dash-dotted curves)
together with the penetration coefficient for unmixed να (dashed curve) are also shown.



5.2.9 Conclusions

We have considered, on the basis of the MSW evolution equation with complex indices
of refraction, the conjoint effects of neutrino mixing, refraction and absorption on
high-energy neutrino propagation through matter. The adiabatic solution with correct
asymptotics in the standard MSW and classical limits has been derived. In the general
case the adiabatic behavior is very different from the conventional limiting cases.

A noteworthy example is given by the active-to-sterile neutrino mixing. It has been
demonstrated that, under proper conditions, the survival probability of active neutrinos
propagating through a very thick medium of constant density may become many orders
of magnitude larger than it would be in the absence of mixing. The quantitative
characteristics of this phenomenon are highly responsive to changes in density and
composition of the medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysical sources of high-energy neutrinos, the
effect may open a new window for observational neutrino astrophysics.



Part II

SOLAR NEUTRINOSSOLAR NEUTRINOSSOLAR NEUTRINOS



6 The pp fusion step by step

The evidence is strong that the overall
fusion reaction is “burning” hydrogen to
make helium:

4 1H + 2 e− → 4He + 2 νe + 6 γ.

In this reaction, the final particles have
less internal energy than the starting
particles. Since energy is conserved, the
extra energy is released as
� energy of motion of the nuclei and

electrons in the solar gas,
� the production of lots of low energy

photons and, finally,
� the energy of the neutrinos, which

easily shoot out of the Sun.

That is the gas gets hotter and has lots of photons (and neutrinos). The energy release
in this reaction is ΔE = (4× 1.007825u− 4.002603u)× 931 MeV/u = 26.7 MeV each
time the reaction happens.



The fusion reaction as given above is a summary. Really it may only occur in several
steps since the temperature in the Sun is too low and, as a result,

an inelastic collision of two nuclei in the Sun is nearly impossible.

The two nuclei have to get within rp ∼ 10−13 cm for the strong interactions to hold
them together but they repel each other. For example, the potential energy for
Coulomb interaction of two protons is

UCoulomb =
e2

rp
≈ 2× 10−6 erg ≈ 1.2 MeV.

Since T� � 1.5× 107 K (the helioseismology confirms this!)

〈Ekin
p 〉 =

3
2
kT� � 2 keV.

Assuming Maxwellian distribution, the fraction of protons with Ekin
p > UCoulomb is

exp
(−Ekin

p /〈Ekin
p 〉
)
< e−600 ∼ 10−260.

Considering that the number of protons in the Sun is about 1057 we can conclude that

the classical probability of the fusion is ZERO.



Let’s estimate the quantum probability. The nucleus wave function can be written

ψ ∝ exp
(
i

∫
pdx

)
.

Ekin
p =

p2

2m
= E0 − U ; ⇒ p =

√
2m (E0 − U)

The repulsion energy of two nuclei with charges Z1e and Z2e is U = Z1Z2e
2/r and the

classical turning point (p = 0) is given by

r1 = Z1Z2e
2/E0.

In quantum theory
p = i

√
2m (U −E0) for r < r1

and thus the probability of the barrier penetration (tunnel effect) can be estimated as

ψ2(r) ∝ exp
[
−2
∫ r1

r

√
2m [U(r′)−E0] dr′

]
.

where r ∼ rp is the radius of nuclear interaction. It is assumed here that one of the
nuclei is in rest (m2 =∞). To take into account its finite mass one have to replace m
with the effective dynamic mass of the colliding particles:

m �−→M =
m1m2

m1 +m2
=

A1A2

A1 + A2
mp = Amp.



Considering that usually rp � r1, for rough estimation we can put r = 0. Than the
barrier penetration probability is given by

ψ2(r) ≈ ψ2(0) = e−φ,

where (� = c = 1 =⇒ e2/�c = α)

φ = 2r1
√

2ME0

∫ 1

0

√
1/x− 1 dx = πr1

√
2ME0 = πZ1Z2α

√
2M/E0.

In thermal equilibrium with the temperature T the number of particles with energy E0

is proportional to exp (−E0/kT ). Therefore the full probability is proportional to∫
e−χ(E0)dE0, where χ =

√
E1

E0
+
E0

kT
and E1 = 2π2Z2

1Z
2
2α

2M.

The integral can be evaluated by using the saddle-point technique considering that the
function χ has a sharp minimum (and thus e−χ has a sharp maximum, – Gamov’s
peak). The minimum is given by

dχ

dE0
= − 1

2E0

√
E1

E0
+

1
kT

= 0.



min

E

χ

χ

0E
min
0

The Gamov’s peak is given by

Emin
0 = E

1/3
1 (kT/2)2/3

� 0.122
(
AZ2

1Z
2
2T

2
9

)1/3
MeV,

χmin = 3
(
E1

4kT

)1/3

� 4.25
(
AZ2

1Z
2
2

T9

)1/3

,

where T9 = T/(109 K). Now one
can approximate χ(E0) by

χ(E0) � χmin + κ
(
1− E0/E

min
0

)2
,

κ = (3/8) (2E1/kT )1/3 .

Finally, the full probability is estimated by C(T ) exp [−χmin(T )]. In particular, for the
pp fusion in the center of the Sun (T9 � 0.015)

Emin
0 � 5.9 keV, χmin � 13.7, exp (−χmin) � 1.15× 10−6.



6.1 The pp I branch

1 1

2

e

Note: the secondary positron very

quickly encounters a free electron in

the Sun and both particles annihilate,

their mass energy appearing as two

511 KeV γs: e+e− → γγ.

The energy liberation in this reaction is
Q = 1.442 MeV, including ∼ 250 keV taking
away by neutrinos (Eν ≤ 420 keV). The num-
ber of deuterium nuclei generated in 1 cm3 per
1 sec is

d[D]
dt

= CD
n2
p

NAT
2/3
9

exp

(
− 3.38

T
1/3
9

)
,

CD ≈ 2.1× 10−15 cm−3s−1.

By introducing the weight concentrations for the
chemical elements

X(i) =
mHniAi

ρ
=
niAi
NAρ

,

we can write the reaction rate:

Ẋ(D) = C1ρ [X(H)]2 T−2/3
9 e−3.38/T

1/3
9

(C1 ≈ 2.1× 10−15 s−1).

The characteristic time is τ1 ≈ 1.3× 1010 yr at ρ = 100 g/cm3 and T = 1.3× 107 K.
The reaction is very rare. That’s why the Sun is still burning after ∼ 4.6× 109 years!



2 1

3

The energy liberation: Q = 5.493 MeV;
the reaction rate:

Ẋ(3He) = C2ρX(1H)X(2D)T−2/3
9 e−3.72/T

1/3
9 ,

C2 ≈ 3.98× 103 s−1 ≈ 2× 1018C1,

and τ2 ≈ 6 s.

3 3

4 11

The energy liberation: Q = 12.859 MeV;
the reaction rate:

Ẋ(4He) = C3ρ
[
X(3He)

]2
T

−2/3
9 e−12.28/T

1/3
9 ,

C3 ≈ 1.3× 1010 s−1 ≈ 6× 106C2,

and τ3 ≈ 106 yr.



Even at temperatures in the Sun’s core, 1.5× 107 K, the average lifetime of a proton
against pp fusion is about ∼ 1010 yr. It is an extremely slow reaction, and it is this time
scale that sets the stellar clock, so to speak, by determining how long the star will
remain a stable main sequence object.

In contrast, the deuteron created will only last about a few seconds before it hits into
another proton and fusion creates a 3He nucleus. Therefore it cannot accrue and its
stationary concentration is given by X(D) = (τ2/τ1)X(H) ≈ 10−17X(H). The 3He
nucleus will last about 250,000 years before it hits another 3He nucleus hard enough for
the two to stick together.

6.2 The pep fusion

The deuterium can also be produced in the reaction

1H +1 H + e− → 2D+νe (Eν = 1.44 MeV)

which has a characteristic time scale ∼ 1012 yr that is rather larger than the age of the
Universe at this time. So it is insignificant in the Sun as far as energy generation is
concerned. Nevertheless, the pep fusion accounts for about 0.25% of the deuterons
created in the pp chain.

Enough pep fusions happen to produce a detectable number of neutrinos, so the
reaction must be accounted for by those interested in the solar neutrino problem.



6.3 The pp II branch

The 3He does not always have to hit another 3He nucleus. It could hit a 4He forming
stable 7Be. But 7Be has an affinity for electron capture, and can absorb free electrons.
The electron turns one of the Be protons into a neutron, changing the 7Be into 7Li,
while tossing out a neutrino. The 7Li will then quickly fuse with a free proton, resulting
in unstable 8Be which immediately falls apart into two stable 4He nuclei.

3He+4He→ 7Be + γ +1.586 MeV (9.7× 105 yr)
7Be+e− → 7Li(+γ)+νe +862/384 keV (142 d)
7Li+1H→ 4He + 4He +17.347 MeV (9.5 min)

∼ 14 % of 3He goes out this
way avoiding the pp I chain,

∼ 99.89 % of 7Be goes the
7Li route.

∼ 90% of 7Li nuclei are in the ground state and thus Eν = 862 keV; the rest lithium is
created in an excited state and Eν = 384 keV.

Note: Fusion with 4He is less likely, because there is more 3He around deep inside the stellar

core. But in heavier stars, where the temperatures exceed about 2.4 × 107 K, the pp II chain

can rival the pp I chain for energy production inside the star. This is because at higher

temperatures the 3He gets used up faster, driving down its abundance compared to 4He.



6.4 The pp III branch

The 7Be has two ways to go – it can either absorb an electron, as in pp II (99.89%), or
absorb a proton, as in pp III (0.11%). Absorbing a proton raises the nucleus from
beryllium to boron, and the 7Be becomes 8B. But 8B is unstable and takes < 1 second,
fairly independent of temperature, to spit out a positron and a neutrino to become
beryllium again, only this time it’s 8Be. But 8Be falls apart in a hurry into two 4He
nuclei, and once again we have turned hydrogen into helium.

7Be+1H→ 8B + γ +135 keV (66 years)
8B→ 8Be + e++νe ≤ 14.06 MeV (0.9 sec)

8Be→ 4He + 4He +18.074 MeV (9.7× 10−17 sec)

∼ 0.11 % of 7Be goes
this route.

Of course, e+e− → γγ.

Note: In low mass stars the internal temperature is not high enough to finish the pp cycle.

They produce the first stage of pp fusion up to 3He, but are unable to force the last stage of
3He fusion, either with another 3He or an 4He. So they fuse hydrogen into 3He instead of 4He.

This fact is confirmed by the observation that low mass stars are often anomalously rich in 3He

compared to 4He.



6.5 The pp IV branch (hep reaction)

The low-energy cross section for the “hep reaction”

3He + 1H→ 4He + e+ + νe

is uncertain. While the probability of the pp IV branch is estimated to be about
3× 10−5%, the hep produces highest-energy solar neutrinos,

Eν ≤ 18.77 MeV,

which can at some level influence the electron energy spectrum produced by solar
neutrino interactions and measured in the high-threshold detectors like
Super-Kamiokande and SNO.



6.6 The full pp chain

The diagram shows the full pp chain responsible for production of about 98.4% of the
solar energy. The neutrinos export 3%, 4%, and 28% of the energy in pp I, pp II, pp III,
respectively. All four pp chains are active simultaneously in a H-burning star containing
significant 4He. The details depend on density, temperature and composition but in the
SUN the pp I dominates.



7 An excursus: the elemental abundance in the Sun

The matter that formed the Sun had already been cycled through one or more
generations of stars. We can see elements up to and beyond 56Fe in the heliosphere.



The current solar abundance curve is shown in the figure (the ordinate compares all
elements to Hydrogen) and the relative abundances of the elements (by mass and by
number) are shown in the table.

Comments:

1. The general trend is towards ever decreasing abundances as the atomic number
increases.

2. There is a distinct zig-zag (up-down) pattern to the whole curve. For example,

– between Carbon and Oxygen there is a decrease (the element is Nitrogen);

– between Neon and Magnesium the decrease element is Sodium;

– the largest drop is between Oxygen and Neon, the element that thus decreases
notably is Fluorine.

The reason for this fluctuating pattern is just this: elements with odd numbers of
nucleons are less stable, resulting in one unpaired (odd) proton or neutron – those
that pair these particles result in offsetting spins in opposite directions that
enhance stability.

3. There is a huge drop in abundance for the Lithium-Beryllium-Boron triplet. This
results from two factors:

– at the Big Bang, nuclear processes that could fuse the proper H or He isotopes
into Li and/or the other two were statistically very rare and hence inefficient, and

– some of the Li-Be-B that formed and survived may be destroyed in processes with
stars.



8 The CNO cycle

The presence of the “impurities” in the solar core opens the door to another fusion
reaction. The most important (after the pp) is the CNO bi-cycle, which is responsible
for as much as 1.6% of the Sun’s total output. The main CNO reactions (“cycle I”) are

12C+1H→ 13N + γ +1.944 MeV (1.3× 107 years)
13N→ 13C + e++νe +2.221 MeV (7 min)
13C+1H→ 14N + γ +7.550 MeV (2.7× 106 years)
14N+1H→ 15O + γ +7.293 MeV (3.2× 108 years)
15O→ 15N + e++νe +2.761 MeV (82 sec)
15N+1H→ 12C + 4He +4.965 MeV (1.1× 105 years)

• The cycle uses carbon, nitrogen, and oxygen as catalysts to suck up four protons and
build a 4He nucleus out of them. The relative abundances of C, N, and O do not change.

• The cycle does not start until the pp fusion has begun, and provides the energy necessary
to allow a low level of proton fusions onto the heavier nuclei.

• The cycle timescale is determined by the slowest reaction (14N + 1H) while the approach
to equilibrium is determined by the second slowest reaction (12C + 1H).



The second minor branch (“cycle II”) is a similar type of cycle, and it joins onto the
first. Starting with 14N, the process steps through two of the last-three reactions given
above until 15N is produced. It then proceeds as follows to convert 15N back into 14N,
with the production of 17F (fluorine-17) occurring in one of the steps:

15N+1H→ 16O + γ +12.126 MeV

16O+1H→ 17F + γ +0.601 MeV

17F→ 17O + e++νe +2.726 MeV

17O+1H→ 14N + 4He +1.193 MeV

The latter cycle is much less frequent, with the first reaction having a probability of
about 4× 10−4 relative to the last reaction of the cycle I.

The fractions of the nuclear energy loss from the core through neutrino emission in the
first and second branches of the CNO process are 6% and 4%, respectively.

Note: The CNO cycle lacks significance at the low temperatures in the Sun. For abundances

characteristic of the Sun, the CNO process becomes important for core temperatures of roughly

1.5 × 107 K (1.3 keV), and it provides virtually all of the conversion of hydrogen into helium in

the later stages of the solar lifetime when the temperature exceed 2.5 × 107 K (2.2 keV).
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The diagram of the full CNO bi-cycle responsible for production of about 1.5-1.6% of
the solar energy. The cycle I dominates.

Note: The CNO cycles III and IV are essential for the hydrogen burning in massive stars. The

full net includes 18F, 18O, and 19F.



9 Solar neutrino spectrum

Solar neutrino energy
spectrum at Earth cal-
culated in the Bahcall-
Serenelli solar model
“BS05(OP)”.
Also shown the un-
certainties of the neu-
trino flux calculation
(on the 1 σ level) and
the threshold neutrino
energies for the gal-
lium, chlorine and wa-
ter detectors.

[From J. N. Bahcall, A. M. Serenelli, and S. Basu, “New solar opacities, abundances, helioseismology, and neutrino

fluxes,” Astrophys. J. 621 (2005) L85–L88 (astro-ph/0412440).]



Comparison between the “Standard Solar Models” of Bahcall & Pinsonneult (1995)
[BP95] and of Dar & Shaviv (1996) [DS96].a

Parameter/Effect BSP98 DS96

M� 1.9899× 1033 g 1.9899× 1033 g
L� 3.844× 1033 erg s−1 3.844× 1033 erg s−1

R� 6.9599× 1010 cm 6.9599× 1010 cm
t� 4.566× 109 yr 4.57× 109 yr
Rotation Not Included Not Included
Magnetic Field Not Included Not Included
Mass Loss Not Included Not Included
Angular Momentum Loss Not Included Not Included
Premain Sequence Evolution Not Included Included
Initial Abundances :
4He Adjusted Adjusted
C,N,O,Ne Adjusted Adjusted
All Other Elements Adjusted Meteoritic

aFrom A. Dar and G. Shaviv, “The solar neutrino problem: An update,” Phys. Rept. 311 (1999)
115–141 (astro-ph/9808098).



Continued

Parameter/Effect BSP98 DS96

Photospheric Abundances :
4He Predicted Predicted
C,N,O,Ne Photospheric Photospheric
All Other Elements Meteoritic Predicted
Radiative Opacities OPAL 1996 OPAL 1996
Equation of State Straniero 1996? Dar− Shaviv 1996
Partial Ionization Effects Not Included Included
Diffusion of Elements :
H, 4He Included Included
Heavier Elements Approximated by Fe All Included
Partial Ionization Effects Not Included Included
Nuclear Reaction Rates :
S11(0) eV · b 4.00× 10−19 4.07× 10−19

S33(0) MeV · b 5.3 5.6
S34(0) keV · b 0.53 0.45
S17(0) eV · b 19 17
Screening Effects Included Included
Nuclear Equilibrium Imposed Not Assumed



Neutrino production

 versus solar radius

Figure shows where the different neutrino fluxes originate in the Sun according to SSM.
[From John Bahcall’s homepage, URL: <http://www.sns.ias.edu/˜jnb/>.]
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10 Current status
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Theory
Experiments

Uncertainties

Current (Oct. 2005) status of the standard solar model and solar neutrino problem.
[Borrowed from John Bahcall’s Home Page, URL: <http://www.sns.ias.edu/˜jnb/> (slightly modified).]



Table 4: Current status of the solar neutrino data (2005).

Experiment Measured flux Ratio Threshold Years of
(SNU / 1010 count/m2s) experiment/theory energy running

Homestake 2.56 ± 0.16 ± 0.16 0.33 ± 0.03 ± 0.05 814 keV 1970-1995

Kamiokande 2.80 ± 0.19 ± 0.33 0.54 ± 0.08+0.10
−0.07 7.5 MeV 1986-1995

SAGE 75 ± 7 ± 3 0.58 ± 0.06 ± 0.03 233 keV 1990-2006

GALLEX 78 ± 6 ± 5 0.60 ± 0.06 ± 0.04 233 keV 1991-1996

Super-K 2.35 ± 0.02 ± 0.08 0.465 ± 0.005+0.016
−0.015 5.5 (6.5) MeV from 1996

GNO 66 ± 10 ± 3 0.51 ± 0.08 ± 0.03 233 keV from 1998

SNO (CC) 1.68 ± 0.06+0.08
−0.09

SNO (ES) 2.35 ± 0.22 ± 0.15 6.75 MeV from 1999

SNO (NC) 4.94 ± 0.21+0.38
−0.34

◦ The values are given in SNU (defined as 10−36 capture per second per target atom) for the radiochemical
experiments and in units of 1010 counts/m2s for the water-Cherenkov experiments.

◦ The first and errors for the relative values correspond to experimental and theoretical errors, respectively, with
the statistical and systematic errors added quadratically. The models by Bahcall and Pinsonneault BP98 and
BP00 were used in the calculations.

[The data are borrowed from the Ultimate Neutrino Page maintained by Juha Peltoniemi and Juho Sarkamo, of Oulu
University, URL: <http://cupp.oulu.fi/neutrino/> (last modified 10.4.2005).]



11 Cl-Ar detector at Homestake

[From URL: <http://www.bnl.gov/

bnlweb/raydavis/research.htm>.]

The Homestake Neutrino Trap is a tank 20 feet
(6.1 m) in diameter and 48 feet (14.6 m) long filled
with 100,000 gallons (378,520 liters) of a common
cleaning fluid, tetrachloroethylene (C2Cl4). On the
average each molecule of C2Cl4 contains one atom
of the desired isotope, 37

17Cl. The other three chlo-
rine atoms 35

17Cl contain two less neutrons. When a
neutrino of the right energy reacts with an atom of
37
17Cl, it produces an atom of 37

18Ar and an electron
(B. Pontecorvo, 1946, L. V. Alvarez, 1949):

νe + 37
17Cl→ 37

18Ar + e− (Eth
ν ≈ 814 keV).

Then the radioactive argon decays back to chlorine:

37
18Ar→ 37

17Cl + e+ + νe (T1/2 ≈ 35 days).

The idea is to tell that the reaction happened by
seeing the positron.

The argon-37 is allowed to build up for several months, then is removed by purging the
tank with helium gas. The argon is adsorbed in a cold trap and assayed for radioactivity.



The chlorine-argon experiment has been run by Raymond Davis, Jr., Kenneth C.
Hoffman and Don S. Harmer of Brookhaven National Laboratory. The detector is
located nearly a mile underground, in a rock cavity at the 4,850 foot level (1.48 km)
below the surface in the Homestake Gold Mine in the town of Lead, South Dakota.

Suggested in 1964 by
John Bahcall and Ray-
mond Davis, the ex-
periment was begun on
1967 and continued to
measure the solar neu-
trino flux until the late
1990s, when the Home-
stake Mine ceased oper-
ating.

The first results of the
experiment showed that
the Sun’s output of neu-
trinos from the isotope
boron-8 was less than
expected.

[From J. N. Bahcall, “Neutrinos from the Sun,” Sci. Am. 221, No. 1 (1969) 28–37.]



Figure on the right shows the
argon extraction system which
is deep underground next to
the 100,000-gallon neutrino
trap. Helium is circulated
through the tank to sweep up
any atoms of 37Ar that have
been formed from 37Cl.
The efficiency of the extrac-
tion is determined by previ-
ously inserting in the tank a
small amount of 36Ar, a rare,
nonradioactive isotope of ar-
gon. The helium and ar-
gon pass through the appara-
tus at left, where the argon
condenses in a charcoal trap
cooled by liquid nitrogen.

This argon fraction is purified in the apparatus at the right. The purified sample is then
shipped to Brookhaven, where the content of 37Ar is determined in shielded counters.

[From J. N. Bahcall, “Neutrinos from the Sun,” Sci. Am. 221, No. 1 (1969) 28–37.]



Deep-mine location shields the solar-neutrino detector from the intense flux of
cosmic-ray (atmospheric) muons. Being very penetrating, the muons can knock protons
out of atomic nuclei well below the earth’s surface.
If a muon-induced proton entered the neutrino de-
tector, it could mimic the entry of a solar neutrino
by converting an atom of 37Cl into an atom of ra-
dioactive 37Ar.
Figure on the right shows the 37Ar production rate
in 3.8×105 liters of perchloroethylene as a function
of the depth below the surface. The corresponding
background effect is about 0.2 atoms per day in
105 gal. Other sources of the background are esti-
mated to be on the same level or less, in particular,
◦ fast neutrons from (α, n) reactions and sponta-
neous fission of U in the rock wall: 0.1–0.3;
◦ internal contamination (U, Th, Ca): � 0.1;
◦ atmospheric neutrino interactions: � 0.01.

[From R. Davis, Jr. and D. S. Harmer, “Solar neutrino detection

by the 37Cl − 37Ar method,” in Proc. of the Informal Conference on

Experimental Neutrino Physics (CERN, January 20–22, 1965), CERN

65-32, pp. 201–212.]



This figure is an overall pictorial history of the subject as it looked in 1970. The
experimental upper limit is indicated by the thin curve and the range of theoretical
values (after 1964) by the cross-hatched region. The units are captures per target atom
per second (10−36 captures/atom/s ≡ 1 SNU). A few of the major events are indicated
on the figure at the period corresponding to the time they occurred.
[From J. N. Bahcall and R. Davis, Jr., “An account of the development of the solar neutrino problem,” in Essays in

Nuclear Astrophysics, edited by C. A. Barnes et al. (Cambridge University Press, 1982), pp. 243–285.]



Figure on the right shows the observed
(Davis & coauthors) and predicted (Bah-
call & co-authors) neutrino capture rates
published within the period from 1964 to
1980. The earliest observational upper
limits of 4000 and 160 SNU (obtained
in 1955 and 1964, respectively) are not
shown since these would not fit conve-
niently in the plot [see previous slide].
The theoretical uncertainties are more
“experimental” than “theoretical” since
the basic theory has not changed since
1964. What have changed are the best
estimates for many different input pa-
rameters. The error bars shown for the
theoretical points represent the range of
capture rates that were obtained from
standard solar models when the various
nuclear and atomic parameters were al-
lowed to vary over the range convention-
ally regarded as acceptable at the time
the calculations were made.

[From J. N. Bahcall and R. Davis, Jr., “An account of

the development of the solar neutrino problem,” in Es-

says in Nuclear Astrophysics, edited by C. A. Barnes

et al. (Cambridge University Press, 1982), pp. 243–285.]



The final Homestake chlorine experiment one-FWHM (full width at half maximum)
results for 108 individual solar neutrino observations (no. 18 to 133). All known sources
of nonsolar 37Ar production are subtracted. The errors of individual measurements are
statistical errors only and are significantly non-Gaussian for near zero rates. The error
of the cumulative result is the combination of the statistical and systematic errors in
quadrature. [From B. T. Cleveland et al., “Measurement of the solar electron neutrino flux with the Homestake

chlorine detector,” Astrophys. J. 496 (1998) 505–526. (1119 citations in SPIRES!) ]



11.1 Solar Neutrino Puzzle, Number I’

The average solar neutrino induced 37Ar production rate in the Homestake detector is

0.478± 0.030stat ± 0.029syst day−1.

Since the detector contains 2.16× 1030 37Cl atoms, this gives a neutrino capture rate of

〈σΦνe
〉 = 2.56± 0.16stat ± 0.16syst SNU.

This measurement is to be compared with the SM predictions for the chlorine detector:

〈σΦνe
〉theor =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7.63 SNU (Sackman, Boothroyd & Fowler, 1990)

6.36 SNU (Turck-Chièze & Lopes, 1993)

(4.2± 1.2) SNU (Dar & Shaviv, 1994)

(9.3± 1.3) SNU (Bahcall & Pinsonneault, 1995)

(4.1± 1.2) SNU (Dar & Shaviv, 1996)

(7.7± 1.2) SNU (Bahcall, Basu & Pinsonneault, 1998)

(8.1± 1.2) SNU (Bahcall & Serenelli, 2005).

The observed flux is much lower than that predicted (except for the Dar and Shaviv
result). This discrepancy between observation and prediction has existed since the early
1970s when the observations of the Homestake detector were first reported.



11.2 Solar Neutrino Puzzle, Number II’

Homestake neutrino data with error bars and 5-point running-averaged values (solid
line) from runs No. 18 to No. 126. The 5-point running-average values (Q5) are used
to illustrate better the long-term behaviour considering that the original neutrino data
are very scattered. Other choices for the smoothing, for instance 3- or 7-point running
averages, do not alter qualitatively the results.
[This and next figures are borrowed from S. Massetti, M. Storini, and N. Iucci, “Correlative analyses for Homestake

neutrino data,” Nuovo Cim. 20 C (1997) 1021–1026.]



Scatter plot of solar flares counts vs. 5-point running averages of Homestake neutrino
values in the period 1977 to 1989 (a) and the above data sets plotted as a function of
time in the period 1970 to 1992 (b); the neutrino data in (b) are reported with an
inverted scale and both data sets are normalized in a way that minimum = 0 and
maximum = 1.



The plot shows the 5-point running averages of the Homestake data compared to
sunspot numbers; the sunspots are plotted on an inverted scale.
[R. Davis Jr., “A review of measurements of the solar neutrino flux and their variation,” Nucl. Phys. B (Proc. Suppl.)

48 (1996) 284–298. ]



Some of the conclusions of the authors are:

The Homestake data:

i) Exhibit a clear modulation of the neutrino signal, almost on the long term.

ii) Are badly correlated with geomagnetic indices, supporting the hypothesis that the
source of the modulation is on the Sun.

iii) Are correlated with cosmic-rays intensity only in the period 1970-1982, whereas
over the total period the correlation is near zero.

iv) Are better correlated with flare counts than with sunspot numbers. Note that flare
phenomena are intimately related to the toroidal component of the heliomagnetic
field. The best correlated period (1977-1989) corresponds to that characterized by
a reinforcement of the interplanetary magnetic-field intensity, suggesting again an
enhancement of the global heliomagnetic field.

More or less similar conclusions were found in the regression analyses reported by
many authors. These results suggest a pulsating character of the Homestake data
and their anticorrelation with the solar magnetic activity (sunspot or flare numbers).

A veritable host of new ideas was brought forth to resolve the solar neutrino
puzzles. Let’s consider a (very incomplete) list of these solutions.



11.3 Solutions

11.3.1 Astrophysics and/or Nuclear Physics

◦ Models with convective mixing of the solar core [Ezer & Cameron, 1968; Shaviv &
Salpeter, 1968; Bahcall, Bahcall & Ulrich, 1968 ]

◦ Models with turbulent diffusion of 3He [Schatzman 1969 ]

◦ An overabundance of 3He in the present Sun [Kocharov & Starbunov 1970 ]

◦ Models with the strong central magnetic field (the energy density of the Sun’s
central magnetic field |B|2/8π is a few percent of the gas pressure) [Abraham &
Iben 1971; Bahcall & Ulrich 1971; Bartenwerfer 1973; Parker 1974; Ulrich 1974 ]

◦ A secular instability such that the presently observed solar luminosity does not
equal the current energy-generation rate [Fowler 1968, 1972; Sheldon 1969 ]

◦ Models with low heavy elements (“low Z”) abundances in the solar interior
[Bahcall & Ulrich 1971; Schatzman 1981; Maeder 1990 ].

◦ An instability of the Sun that makes now a special time [Fowler 1972; Dilke &
Gough 1972 ]

◦ A low-energy resonance in the 3He + 3He→ 4He + 21H reaction [Fowler 1972;
Fetisov & Kopysov 1972 ]

◦ Helium core (the Sun is assumed to be in a later stage of stellar evolution, such
that hydrogen is burned-out and the core is made of helium) [Prentice 1973 ]



◦ Models with a rapidly rotating solar interior (the rotation is lowering the central
pressure and temperature) [Demarque, Mengel & Sweigert 1973; Roxburgh 1974;
Rood & Ulrich 1974 ]

◦ Rotation plus magnetic fields [Snell, Wheeler & Wilson 1976 ]

◦ A half-solar mass core of large heavy element abundance that survived the big bang
and subsequently accreted another half solar mass at the time of the formation of
the solar system [Hoyle 1975 ]

◦ A departure from the Maxwellian distribution [Clayton et al. 1975 ]

◦ A fractionation of the primordial hydrogen and helium [Wheeler & Cameron 1975 ]

◦ Models with hydrogen mixing into the core by turbulent diffusion [Schatzman 1981;
Maeder 1990 ]

◦ Mixing of 3He due to rapid filamental flow downward [Cummings & Haxton, 1996 ]

◦ Temporal and spatial variations in temperature [Dar & Shaviv, 1998 ]

◦ Collective plasma processes [Salpeter & Van Horne, 1969; . . . ; Tsytovich et al.
1995, Dar & Shaviv, 1998 ]

◦ A new solar model in which the Sun is formed by accretion of fresh SN debris on
the collapsed core of a supernova; neutron emission from the SN remnant at the
solar core; neutron decay major elements are Iron, nickel, oxygen, silicon [Manuel,
Miller & Katragada, 2003 ]



11.3.2 Nonstandard Neutrino Properties

◦ Vacuum neutrino oscillations [Gribov & Pontecorvo 1969 ]

◦ An appreciable (anomalous) magnetic moment for the neutrino [Cisneros 1971;
Okun, Voloshin & Vysotsky, 1986 ]

◦ Neutrino instability [Bahcall, Cabibbo & Yahil 1972 ]

◦ Goldstone neutrinos resulting from a spontaneous breakdown of supersymmetry
[Das 1984 ].

◦ Matter enhanced neutrino oscillations [Wolfenstein 1978; . . .; Mikheev & Smirnov,
1985 ] =⇒ � 10, 000 papers, 100s of alterations, 10s of innovations;

◦ Matter-induced neutrino decay ν → ν + Majoron [Berezhiani & Vysotsky 1987 ]

◦ Resonant neutrino spin–flavor precession in the solar magnetic field [Akhmedov
1987; Lim & Marciano 1988 ]

◦ Nonstandard (in particular, flavor-changing) neutrino interactions with matter
[Roulet, 1991; Guzzo, Masiero & Petcov 1991, Barger, Phillips & Whisnant 1991 ]

◦ A nonstandard (strong enough) νeγ interaction that would cause the neutrinos to
disappear before they leave the Sun or make them lose energy towards detection
thresholds [Dixmier, 1994 ]



11.3.3 Exotics and Science Fiction

◦ Quark catalysis [Libby & Thomas 1969; Salpeter 1970 ]

◦ Accretion onto a central black hole (the model assumes that the Sun’s energy did
not come from fusion, rather from release of energy from accretion onto a black
hole at the center of the Sun) [Clayton, Newman & Talbot 1975 ]

◦ Multiplicative mass creation [Maeder 1977 ]

◦ WIMPs as a source of solar energy [Faulkner & Gilliland 1985; Spergel & Press
1985; Press & Spergel 1985; Faulkner, Gough & Vahia 1986; Gilliland et al. 1986 ]

◦ Violation of equivalence principle [Gasperini, 1988, 1989; Halprin & Leung 1991 ]

◦ Daemona catalysis (it is assumed that daemons are capable of catalyzing
proton-fusion reactions, which may account for the observed solar neutrino
deficiency) [Drobyshevski 1996, 2002 ]

aDaemon = Dark Electric Matter Object, a hypothetical Planckian particle carrying a negative electric
charge of up to Z = 10.



12 Ga-Ge detector SAGE

These solar neutrino experiments are based on the reaction (originally proposed by
V. A. Kuzmin in 1965)

νe + 71
31Ga→ 71

32Ge + e− (Eth
ν ≈ 232.696± 0.15 keV)a.

Then the radioactive germanium decays back to gallium:

71
32Ge→ 71

31Ga + e+ + νe (T1/2 ≈ 11.4 days).

Backgrounds for the gallium experiments are caused by 71Ge production through
non-neutrino mechanisms

p+ 71
31Ga→ 71

32Ge + n (Eth
p ≈ 1.02 MeV).

Like in the chlorine experiment, the protons may be produced by cosmic muon
interactions, fast neutrons or residual radioactivity. Radon gas and its daughter
products are also a large cause of background; the radon half-life is about 3.8 days.

aThis is the weighted average of all the available measurements for the neutrino energy threshold of
this reaction computed (including estimates of systematic errors) by G. Audi and A. H. Wapstra.



In the SAGE (Soviet–American Gallium solar neutrino Experiment), the 71Ge atoms are
chemically extracted from a 50-metric ton target of gallium metal and concentrated in
a sample of germane gas (GeH4) mixed with xenon.

The the 71Ge atoms
are then individually
counted by observing
their decay back to
71Ga in a small pro-
portional counter.
The SAGE collabo-
ration regularly per-
forms solar neutrino
extractions, every four
weeks, reducing the
statistical error, and
explores further pos-
sibilities for reducing
the systematic uncer-
tainties.





To check the response of the SAGE
experiment to low-energy neutrinos,
a source of 51Cr was produced by ir-
radiating 512.7 g of 92.4%-enriched
50Cr in a high-flux fast neutron re-
actor.
This source, which mainly emits
monoenergetic 747-keV neutrinos,
was placed at the center of a
13.1 ton target of liquid gallium and
the cross section for the produc-
tion of 71Ge by the inverse beta de-
cay reaction 71Ga(νe, e−)71Ga was
measured to be

[From J. N. Abdurashitov et al., “Measurement of the response

of a gallium metal solar neutrino experiment to neutrinos from a
51Cr source,” Phys. Rev. C 59 (1999) 2246–2263.]

(5.55± 0.60stat ± 0.32stat)× 1045 cm2.

The ratio of this result to the theoretical cross section of Bahcall and of Haxton are

0.95± 0.12 (exp) +0.035
−0.027 (theor) and 0.87± 0.11 (exp)± 0.09 (theor),

respectively. This good agreement between prediction and observation implies that the
overall experimental efficiency is correctly determined and provides considerable
evidence for the reliability of the solar neutrino measurement.



The capture rate from all SAGE extractions versus time: the triangles are for the L and
K peaks and the circles are for the K peak alone; the vertical bars near each point
correspond to a statistical error of 68%. The average rates for the L, K, and L+K
peaks are also shown.
[This and next figures are borrowed from J. N. Abdurashitov et al., “Solar neutrino flux measurements by the

Soviet-American Gallium Experiment (SAGE) for half the 22-Year Solar Cycle,” Zh. Eksp. Teor. Fiz. 122 (2002)

211–226 [J. Exp. Theor. Phys. 95 (2002) 181–193] (astro–ph/0204245).]



Results of the measurements combined by years; open and filled symbols refer to K and
K + L peaks, respectively; the hatched region corresponds to the SAGE result of
70.8+5.3

−5.2 (stat) +3.7
−3.2 (syst) SNU. The data shown have a statistical error of 68%. The

neutrino capture rate was constant during the entire data acquisition period with a 83%
probability.



13 Ga-Ge detectors GALLEX and GNO



Figure on the left shows a scheme of
the GALLEX detector tank with the ab-
sorber system and the Chromium source
inserted inside the thimble.
The experimental procedure for
GALLEX is as follows: 30.3 tons of
gallium in form of a concentrated
GaCl3-HCl solution are exposed to solar
neutrinos. In GaCl3-HCl solution, the
neutrino induced 71Ge atoms (as well
as the inactive Ge carrier atoms added
to the solution at the beginning of a
run) form the volatile compound GeCl4,
which at the end of an exposure is
swept out of the solution by means of
a gas stream (nitrogen). The nitrogen
is then passed through a gas scrubber
where the GeCl4 is absorbed in water.

The GeCl4 is finally converted to GeH4, which together with xenon is introduced into a
proportional counter in order to determine the number of 71Ge atoms by observing their
radioactive decay. [From URL: <http://www.mpi-hd.mpg.de/nuastro/gallex/detector.htm>.]



GALLEX I, II, and III sin-
gle run overview.
Results for the 14 solar
neutrino runs of GALLEX
III (labels 40-53), shown
together with the earlier
results from GALLEX I
(labels 1-15) and from
GALLEX II (labels 16-
39).

The left hand scale is the measured 71Ge production rate; the right hand scale, the net
solar neutrino production rate (SNU) after subtraction of side reaction contributions.

Error bars are ±1σ, statistical only. The label “combined” applies to the mean global
value for the total of all 53 runs. The visibility is enhanced by a square box, but its
error is the small bar inside the box. Horizontal bars represent run duration; their
asymmetry reflects the “mean age” of the 71Ge produced.



Summary of the results of
GALLEX individual solar
runs closed points. The
left hand scale is the
measured 71Ge production
rate; the right hand scale,
the net solar neutrino pro-
duction rate SNU after
subtraction of side reac-
tion contributions.

Error bars are ±1σ statistical only. Open circles are the combined results for each of
the measuring periods, GALLEX I, II, III and IV. The label “combined” applies to the
mean global value for the total of all 65 runs. Horizontal bars represent run duration;
their asymmetry reflects the “mean age” of the 71Ge produced. The combined result
which comprises 65 solar runs, is 77.5± 6.2+4.3

−4.7 (1σ) SNU. The GALLEX experimental
program to register solar neutrinos has now been completed.

In April 1998, GALLEX was succeeded by a new project, the Gallium Neutrino
Observatory (GNO), with newly defined motives and goals.

[From W. Hampel et al. (GALLEX Collaboration), “GALLEX solar neutrino observations: Results for GALLEX IV,”

Phys. Lett. B 447 (1999) 127–133.]



Single run results for GNO and GALLEX during a full solar cycle. Plotted is the net
solar neutrino production rate in SNU after subtraction of side reaction contributions.
Error bars are ±1σ, statistical only. [From M. Altmann et al. (GNO Collaboration), “Complete results for

five years of GNO solar neutrino observations,” Phys. Lett. B 616 (2005) 174–190 (hep-ex/0504037) ]



14 H2O Cherenkov detectors (Kamiokande and
Super-Kamiokande)

Super-Kamiokande (SK), as well as its precursor Kamiokande (K), is an underground
ring-imaging water-Cherenkov neutrino detector located in the Kamioka mine, Japan
(137.32◦ E longitude, 36.43◦ N latitude).a

SK is a cylindrical tank (41.4 m in height, 39.3 m in diameter) filled with 50 kton of
ultra-pure water, and situated under about 1 km of rock (2700 m.w.e.). The rock
provides a shield against the cosmic-ray muons: the muon count rate in the detector is
reduced to 2.2. Hz.

The outer walls of the tank are constructed from 5 cm thick stainless steel sheets,
which are attached to the rock cavity and backed by concrete. About 2 m in from the
walls is a 1 m wide structure of stainless beams that provide the backbone for the
mounting PMTs. The structure divides the whole detector tank into an inner detector
(ID) and outer detector (OD).

The 11,146 inward-facing ID PMTs that are used in event detection are mounted on the
inside of the steel beam structure and are surrounded with black polyethylene sheets to
minimize light reflection within the ID region. They provide a photo-coverage of 40%.

aSee Part I of these lectures for the details relevant to the atmospheric neutrino studies with K and
SK detectors.



[This and next figures are borrowed from D. Turčan, “Solar neutrino at Super-Kamiokande solving the solar neutrino

puzzle via neutrino flavor oscillations,” Ph.D. Thesis, Faculty of the Graduate School, Maryland University, 2003.]



The entire ID region is a volume of 32.5 kt while the
region actually used in the analysis is 2 m inside the
PMT structure and represents a fiducial volume of
22.5 kt. There are at the least two reasons for ex-
cluding the 10 kt volume:
1) It is necessary to reduce the background from radioac-

tive decays of radon which is particularly prominent near

the PMTs and beams. The radon is still the main source

of background in the fiducial volume, but the 2 m reduc-

tion brings the background to a manageable level.

2) There is a need for multiple PMT hits: if an event

happens very near a PMT, all the light will be collected

by that same PMT, and there will not be sufficient infor-

mation for reconstructing that event. The PMTs used in

SK’s ID are 50 cm in diameter; they are largest PMTs in

the world, designed and constructed especially for the SK

experiment.

The OD, which surrounds the steel structure, has
1885 outward-facing 20 cm PMTs.

The top of the tank is a flat sheet that covers the entire are of the detector. It is under
a dome, which lined with a polyurethane material (“Mineguard”), to reduce the radon
emanation and erosion from the rock walls.



Cherenkov method of particle detection

In a transparent medium with an index of refraction n > 1 the light velocity is
vc = c/n < c. When a charged particle traverses the medium with velocity v > vc, the
Cherenkov light is emitted in a cone of half angle θC = arccos(c/nv) from the direction
of the particle’s track.

This may easily be understood
from the Huygens’ principle
(Fig. 14):

AB/v = AC/vc

⇓
cos θC = AC/AB = vc/v.

The refractive index of pure wa-
ter is about 4/3 for a wavelength
region 300 to 700 nm (where the
PMTs are sensitive). Therefore
the Cherenkov light is emitted
by ultrarelativistic particles under
about 42◦. Figure 14: Cherenkov cone construction using the

Huygens’ principle.



The number of photons produced along a flight path dx in a wave length bin dλ for a
particle carrying charge ze is

d2Nγ
dλdx

=
2παz2 sin2 θC

λ2
,

where α ≈ 1/137 is the fine structure constant. The number of Cherenkov photons
emitted per unit path length with wavelength between λ1 and λ2 is

dNγ
dx

= 2παz2

∫ λ2

λ1

[
d2Nγ
dλdx

]
dλ

λ2
≈ 2παz2 sin2 θC

(
1
λ1
− 1
λ2

)
(neglecting the dispersion of the medium). In particular, for the optical range
(400–700 nm)

dNγ
dx

=
491.3 z2 sin2 θC

1 cm
.

A single charged particle emits about 214 (380) photons per 1 cm of the path length in
water within the optical range (the PMT sensitive range).

For v ≈ c the Cherenkov light yield is independent of the energy of the charged particle.
This means the light output of a single particle does not allow its energy to be
measured.



The energies EC and momenta
pC of some particles with v =
vc in water (Cherenkov thresholds)
are shown in Table 5, assuming
n(H2O) = 1.33).

Table 5: Cherenkov thresholds in
total energy and momentum for wa-
ter.

Particle EC (MeV) pC (MeV/c)

e± 0.775 0.583
μ± 160.3 120.5
π± 211.7 159.2
p 1423 1070

Figure 15: Cherenkov ring.





Super-Kamiokande uses elastic
scattering of neutrinos from elec-
trons. Cherenkov radiation emitted
by the electron is detected by
phototubes. The image looks like a
diffuse ring on the detector walls.

A real event recorded in the Super-Kamiokande
detector on 1998-03-12 14:08:40. It is about
12.5 MeV and has an unusually nice, well-defined
ring. The color scale is time. This event was
found by Mark Vagins. [From I. Semeniuk, “Feature –

Astronomy and the New Neutrino,” Sky & Telescope, September

2004, pp. 42-48; see also Tomasz Barszczak, URL: <http://

www.ps.uci.edu/˜tomba/sk/tscan/pictures.html>.]



Angular distribution of solar neutrino event candidates in Super-Kamiokande-I.
The angular deviation between the solar and the reconstructed direction of events with
total energies ranging between 5 and 20 MeV is shown. From the strong forward peak
due to elastic scattering of solar 8B neutrinos with electrons 22, 400± 200stat neutrino
interactions were observed in 22,500 metric tons of water during 1496 live days.





The observed solar neutrino interaction rate is

0.465± 0.005+0.016
−0.015

of the rate expected by the standard solar model (SSM). Assuming only solar νe the
observed rate corresponds to a 8B flux of

Φ
(
8B
)

= (2.35± 0.02stat ± 0.08syst)× 106 cm−2s−1.

All uncertainties given for the time variation data are only statistical and based on an
asymmetric Gaussian approximation of the underlying likelihood functions obtained by
an unbinned maximum likelihood fit to the cos (θSun) distributions.

The top two panels show the Super-Kamiokande-I rate as a function of time. The
topmost panel uses bins of 10 days width, the middle panel displays 45 day bins. The
lower left panel combines the 10-day bins into 12 bins to show the yearly cycle assuming
asymmetric Gaussians for the probability density functions. The lower right panel shows
the yearly variation data in 8 bins obtained from a similar combination of the 45-day
data bins. The middle right panel is the yearly variation data in those same 8 bins, but
resulting directly from a maximum likelihood fit to the cos (θSun) distribution.



15 D2O detector SNO



Artist’s concept of the SNO detector (left) and a view of the SNO detector after
installation of the bottom PMT panels, but before cabling (photo by Ernest Orlando,
Lawrence Berkeley National Laboratory).
[From The Sudbury Neutrino Observatory webpage, <http://www.sno.phy.queensu.ca/sno/>.]
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16 Why are the atmospheric neutrinos important for
astroparticle physics?

The mechanism of muon and neu-
trino production in the atmosphere
is well understood. They come into
being from the decay of unstable
particles, generated in the collisions
of primary and secondary cosmic
rays with air nuclei.
However the chain of processes
which lead to lepton generation is
rather intricate seeing that the pri-
maries and secondaries (both stable
and unstable) can repeatedly inter-
act in the atmosphere with absorp-
tion, regeneration or overcharging,
and dissipation of energy through
electromagnetic interactions.
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Figure 16: Schematic view of atmospheric cas-
cade initiated by a primary CR particle.



� Geomagnetic effects. At low energies, the Earth’s magnetic field gives rise to the
spatial (longitudinal and latitudinal) and angular (zenithal and azimuthal)
asymmetries in the lepton fluxes. Complicated structure of the real geomagnetic
field, the Earth’s penumbra, and re-entrant albedo embarrass the analysis of the
geomagnetic effects.

� Solar activity. Quasi-periodical variations of solar activity modify the low-energy
part of the primary cosmic-ray spectrum and therefore affect the muon and
neutrino intensities (below some hundreds of MeV), making them time-dependent.

� 3D effects. At very low energies (Eμ,ν � 500 MeV), the 3-dimensionality of
nuclear reactions and decays is important.

� Meteorological effects. These are essential at all energies of interest.

� Muon polarization and depolarization effects. Muons whose decay is an
important source of neutrinos up to the multi-TeV energy range, change their
polarization due to energy loss and multiply scattering, affecting the neutrino
spectra.

� Branchy chains. With increasing energy, life-times of light mesons grow and the
production and decay chains become branchy: “anything produce everything”.
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Figure 17: The same as in Fig. 16 but with more details.



Consequently, an accurate calculation of the muon and neutrino fluxes presents a hard
multi-factor problem complicated by uncertainties in the primary cosmic-ray spectrum
and composition, inclusive and total inelastic cross sections for particle interactions and
by pure computational difficulties. But solution of this problem is a prime necessity for
the study of many fundamental issues of particle physics, astrophysics, and cosmology.

• Annoying background. The AN flux represents an unavoidable background for
some key low-energy experiments with underground detectors, e. g.:

� Search for proton decay and n→ n transitions in nuclei.

Figure 18: Proton decay limits.



� Most of experiments on high-energy neutrino astrophysics with present-day and
future large full-size underwater or underice neutrino telescopes.
Among the astrophysical experiments are

- detection of neutrinos from the (quasi)diffuse neutrino backgrounds, like
pregalactic neutrinos, neutrinos from the bright phase of galaxy evolution, from
active galactic nuclei (AGN), and other astrophysical sources,

- indirect detection of non-relativistic dark matter (presumably composed of
neutralinos) through neutrinos produced in the annihilation of the dark-matter
particles captured in the Earth and the Sun, or

- direct detection of relativistic WIMPs (weakly-interacting massive particles) of
astrophysical or cosmological origin.

These experiments will be an effect of the AN flux of energies from about 1 TeV
to some tens of PeV. However, in the absence of a generally recognized and tried
model for charm hadroproduction, the current estimates of the νμ and (most
notably) νe backgrounds have inadmissibly wide scatter even at multi-TeV
neutrino energies, which shoots up with energy. At Eν ∼ 100 TeV, different
estimates of the νμ and νe spectra vary within a few orders of magnitude.

• Neutrino oscillations and all that [the main issue of our lectures]. At the same
time, the AN flux is a natural instrument for studying neutrino oscillations,
neutrino decay and neutrino interactions with matter at energies beyond the reach
of accelerator experiments.



• HE neutrino interactions. Measurements of the cross sections for ν�N and ν�N
charged-current interactions at

√
s ∼ mW (Eν ∼ 3.4 TeV) provide an important

test of the Standard Model of electroweak interactions. With modern accelerators,
the interactions of neutrinos are studied at energies up to several hundreds of GeV
(besides the single very high energy HERA data point extracted from the ep→ νX
cross section), whereas deep underwater experiments with AN will enable to
enlarge the region of neutrino energies up to a few tens of TeV.

• Future “KM3” (cubic-kilometer-size) deep-underwater/ice neutrino telescopes will
be able to study the production of the standard vector qq resonances (ρ, D∗

s and
possibly tb) and the resonant W− production (Eres

ν = m2
W /(2me) � 6.3 PeV) in

νee
− annihilation as well as hypothetical nonstandard interactions of neutrinos like

interactions induced by off-diagonal neutral currents or the charged-current
processes with production of supersymmetric particles or with an exchange of light
leptoquarks and so forth.

Considerable attention has been focused on a possible nonperturbative behavior in
the electroweak sector of the Standard Model, at energies above a threshold√
ŝ0 � mW , responsible for multiple production of gauge and Highs bosons in νN

interactions with a sizeable cross section. The AN flux of the appropriate energies
(above ∼ 10 PeV) proves to be too small. Hopefully, neutrinos from AGN or
gamma-ray bursts (GRB) may provide a possibility for studying this phenomenon
with future large-scale neutrino telescopes.



In any event, – to correct for the neutrino background and to use the AN flux as the
subject of investigations or as a tool for particle physics, – there is a need to employ
accurate, detailed, and reliable calculations for the energy spectra, spatial and angular
distributions of AN over a wide range of neutrino energies (from ∼ 100 MeV up to the
multi-PeV energy range) as well as calculations of the transport of neutrinos through
the Earth with taking account for their absorption due to charged currents and
regeneration via neutral currents. The latter effects become essential for Eν � 1 TeV.

Admittedly, we are as yet far from that goal, despite of a considerable progress made in
the past years.



Figure 19: Water Cherenkov detectors. Figure 20: Tracking calorimeter detectors.

Figure 21: Liquid scintillator detectors.

Figures 19–21a show the park of under-
ground detectors (as it was on 1989)
capable to catch atmospheric neutrinos.
Only the Baksan telescope remains in op-
eration till now (2005).

aBorrowed from A. M. Bakich, “Aspects of
neutrino astronomy,” Space Sci. Rev. 49 (1989)
259–310.



17 Why are the atmospheric muons important for
astroparticle physics?

The flux of cosmic-ray muons in the atmosphere, underground, and underwater
provides a way of testing the inputs of nuclear cascade models, that is, parameters of
the primary cosmic rays (energy spectrum, chemical composition) and particle
interactions at high energies. In particular, measurements of the muon energy spectra,
angular distributions and the depth-intensity relation (DIR) have much potential for
yielding information about the mechanism of charm production in hadron-nucleus
collisions at energies beyond the reach of accelerator experiments. This information is a
subject of great current interest for particle physics and yet is a prime necessity in
high-energy and very high-energy neutrino astronomy.

The present state of the art of predicting the AN flux seems to be more satisfactory at
energies below a few TeV. However, the theory meets more rigid requirements on
accuracy of the calculations here: for an unambiguous treatment of the current data on
the AN induced events in the underground detectors, it would be good to calculate the
AN flux with a 10 % accuracy at least, whereas the uncertainties in the required input
data (primary spectrum, cross sections for light meson production, etc.) hinder to gain
these ends. Because of this, a vital question is a “normalization” (or adjustment) of the
calculated model-dependent atmospheric neutrino flux and the muon flux is perhaps the
only tool for such a normalization.



[Phys. Rev. 55 (1939) 105 (a letter to the ed-

itor).]

[Rev. Mod. Phys. 11 (1939) 122 (from the

foreword to the Proceedings of the Sympo-

sium on Cosmic Rays, held at the University

of Chicago, June 1939).]



The point is that atmospheric muons and neutrinos are generated in just the same
processes. Therefore the accuracy of the neutrino flux calculation can be improved by
forcing the poorly known input parameters of the cascade model (including the
parameters of the primary CR spectrum and composition) in order to fit the
experimental data on the muon energy spectra, angular distributions, charge ratio, and
depth-intensity relation.



18 Main sources of atmospheric lepton production

18.1 Conventional (“π,K”) leptons

Low-energy leptons (Eμ,ν < 10− 15 GeV) are produced mainly in the two-particle
leptonic decays of charged pions and kaons, πμ2 and Kμ2 (Table 6).

Table 6: Main sources of conventional atmospheric leptons. [The data are from K. Hagiwara

et al., Phys. Rev. D 66 (2002) 010001.]

Particle Exclusive decay mode Branching ratio

μ± e± + νe(νe) + νμ(νμ) � 100% a

π± μ± + νμ(νμ) � 100%

K± μ± + νμ(νμ) (63.43± 0.17)%
π0 + e± + νe(νe) (4.87± 0.06)%
π0 + μ± + νμ(νμ) (3.27± 0.06)%

K0
L π± + e∓ + νe(νe) (38.79± 0.27)% b,c

π± + μ∓ + νμ(νμ) (27.18± 0.25)% c

a Including the radiative mode e± + νe(νe) + νμ(νμ) + γ whose fraction is (1.4 ± 0.4)%

for Eγ > 10 MeV. The two modes cannot be clearly separated.

b Including most of the radiative mode π± + e∓ + νe(νe) + γ with low-momentum γ part.

c The value is for the sum of the particle/antiparticle states.



Muon decays is the basic source of νe and νe in this energy range and the muon
polarization is an essential factor affecting the neutrino flavor ratio
(νμ + νμ) / (νe + νe) as well as the neutrino to antineutrino ratios, νe/νe and νμ/νμ.

At higher energies, above 10–15 GeV, the semileptonic decays of charged and neutral
longlived kaons (Ke3 and Kμ3) become important (last four lines in Table 6) and hence
the differential cross sections for kaon production in NA, πA and KA interactions are
required for the calculations.

Table 7: Most important pionic decays which contribute to the atmospheric lepton pro-
duction. [The data are from K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.]

Particle Exclusive decay mode Branching ratio

K0
S π+ + π− (68.60± 0.27)%

K0
L π+ + π− + π0 (12.58± 0.19)%

K± π± + π0 (21.13± 0.14)%
π± + π± + π∓ (5.576± 0.031)%
π± + π0 + π0 (1.73± 0.04)%

Λ p+ π− (63.9± 0.5)%

With increasing energy, muon decays become ineffective for neutrino production and,
since the kaon production cross sections are small compared to the pion production
ones, the high-energy AN flux consists mainly of νμ and νμ. For instance, within the



energy range 1 to 100 TeV, the flavor ratio for the conventional AN flux is a
monotonically increasing function of energy varying from about 28 to 34 at ϑ = 0◦ and
from about 13 to 34 at ϑ = 90◦. However, the contribution from decay of charmed
particles results in a decrease of the AN flavor ratio (see below).

Contributions from the decay chains K,Λ→ π → μ→ ν are usually small while not
completely negligible. The most important pionic decays which contribute to the
atmospheric lepton production are listed in Table 7.

At very high energies there are a few more significant decay modes. These are listed in
Table 8.

Table 8: Decays which become significant at very high lepton energies. [The data are from

K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.]

Particle Exclusive decay mode Branching ratio

K0
S π± + e∓ + νe(νe) (7.2± 1.4)× 10−4 a

π± + μ∓ + νμ(νμ) –

Λ p+ e− + νe (8.32± 0.14)× 10−4

p+ μ− + νμ (1.57± 0.35)× 10−4

a The value is for the sum of the particle/antiparticle states.



18.2 Prompt leptons

The dominant contribution to the AN flux at very high energiesa is due to semileptonic

decays of charmed hadrons (mainly D±, D0, D
0

and Λ+
c ). The leptons from this

source are called prompt leptons.

There are numerous exclusive decay modes of charmed particles with a lepton pair and
one or more hadrons in the final state; the inclusive semileptonic decays of D, Ds, and
Λ+
c are shown in Table 9. The dashes indicate the absence of direct data but, owing to

the μ− e universality, one can expect that the branching ratios for electron and muon
inclusive modes are close to each other. Branching ratios for pure leptonic modes (with
�ν� in final state) are very small except the case of D±

s → τ± + ντ (ντ ). The latter
mode is however very important, being the main source of atmospheric tau leptons and
tau neutrinos.

Calculations of the prompt lepton fluxes (and even the energy ranges in which these
contributions dominate) are very model-dependent. As yet, these fluxes cannot be
unambiguously predicted for lack of a generally accepted model for charm production at
high energies.

aFor muons and muon (anti)neutrinos, at Eμ,ν > 10 − 100 TeV for vertical flux and at Eμ,ν >
100−1000 TeV for horizontal flux; for electron (anti)neutrinos at energies which are an order of magnitude
less (see below).



Table 9: The most important (semi)leptonic decays of
charmed hadrons. [The data are from K. Hagiwara et al., Phys. Rev.

D 66 (2002) 010001.]

Particle Decay mode Branching ratio

D± e± + νe(νe) + hadrons (17.2± 1.9)%
μ± + νμ(νμ) + hadrons –

D0 e+ + νe + hadrons (6.87± 0.28)%
μ+ + νμ + hadrons (6.5± 0.8)%

D±
s e± + νe(νe) + hadrons

(
8+6
−5

)
%

μ± + νμ(νμ) + hadrons –
τ± + ντ (ντ ) + hadrons –
τ± + ντ (ντ ) (6.4± 1.5)%

Λ+
c e+ + νe + hadrons (4.5± 1.7)%

μ+ + νμ + hadrons –

The salient and almost model-independent features
of the prompt neutrino flux are (a) it is practi-
cally isotropic within a wide energy range (namely, at
1 TeV � Eν � 3× 103 TeV, the maximal anisotropy is
about 3–4%) and

(b) the neutrino to an-
tineutrino ratios and the
flavor ratio are close to 1.
These features provide a
way to discriminate the
prompt neutrino contribu-
tion through the analy-
sis of the angular dis-
tribution and the rela-
tionship between “muon-
less” and “muonfull” neu-
trino events in a neu-
trino telescope. Moreover,
the anisotropy of the flux
of prompt muons for the
same energy range is also
very small (� 20%). This
fact can be a help in decid-
ing the problem.



19 Atmospheric neutrinos I: Low and intermediate
energies

Due to geomagnetic effects, the low-energy AN spectra and angular distributions are
quite different for different sites of the globe. Figure 23 displays the predictions of
CORT for ten underground neutrino laboratories listed in Table 10. Left panel shows
the νe, νe, νμ and νμ energy spectra averaged over all zenith and azimuth angles. The
ratios of the AN fluxes averaged over the lower and upper semispheres (“up-to-down”
ratios) are shown in right panel. As a result of geomagnetic effects, the spectra and
up-to-down ratios at energies below a few GeV are quite distinct for five groups of
underground labs: 1) SOUDAN + SNO + IMB, 2) HPW, NUSEX + Fréjus, 3) Gran
Sasso + Baksan, 4) Kamioka and 5) KGF.

Technical note:

The exact definition of the fluxes of upward- and downward-going neutrinos is given by
the following formulas:

F down
ν (E)=

∫ 1

0

〈Fν(E, ϑ)〉ϕ d cosϑ, (27a)

F up
ν (E)=

∫ 0

−1

〈Fν(E, ϑ)〉ϕ d cosϑ, (27b)



where

〈Fν(E, ϑ)〉ϕ=
1
2π

∫ 2π

0

Fν (E, ϑ,Rc (Θ,Φ, ϑ, ϕ)) dϕ, for 0 ≤ ϑ ≤ π

2
, (28a)

=
1
2π

∫ 2π

0

Fν (E, ϑ∗, Rc (Θ∗, Φ∗, ϑ∗, ϕ∗)) dϕ, for
π

2
≤ ϑ ≤ π, (28b)

p

K

K

*

ν

Figure 22: “Neutrinos – antipodes”

Fν (E, ϑ,Rc) is the neutrino differential energy
spectrum on the Earth surface with the oblique
geomagnetic cutoff rigidity Rc which is a function
of the geomagnetic latitude and longitude, Θ and
Φ, and zenith and azimuthal angles, ϑ and ϕ (all
are defined in the frame of the detector).
The starred variables in Eq. (28b) are the cor-
responding angles defined in the local frame K∗

associated with the neutrino entry point.
Clearly, the azimuthal dependence of the neu-
trino flux is only due to the geomagnetic effects.
Therefore, within the framework of the 1D cas-
cade theory, it is a function of three variables E,
ϑ and Rc.



It is a useful (and not too trivial) exercise in spherical geometry to prove that

sinΘ∗ = sin 2ϑ sinϕ cosΘ − cosϑ sinΘ, |Θ∗| < π/2,

sin (Φ∗ − Φ) = sin 2ϑ cosϕ/ cosΘ∗,

cos (Φ∗ − Φ) = − (sin 2ϑ sinϕ sinΘ + cos 2ϑ cosΘ) / cosΘ∗,

ϑ∗ = π − ϑ,
sinϕ∗ = (sin 2ϑ sinΘ + cos 2ϑ sinϕ cosΘ) / cosΘ∗,

cosϕ∗ = cosϕ cosΘ/ cosΘ∗.

For near horizontal directions (|ϑ− π/2| � 1) the above formulas yield

Θ∗ � Θ + (π − 2ϑ) sinΦ,

Φ∗ � Φ− (π − 2ϑ) cosΦ tanΘ,

ϕ∗ � ϕ+ (π − 2ϑ) cosΦ secΘ.

Finally, the 4π averaged flux is

〈Fν(E)〉4π =
∫ 1

−1

〈Fν(E, ϑ)〉ϕ d cosϑ =
1
2
[
F down
ν (E) + F up

ν (E)
]
.



Table 10: List of ten past and present underground laboratories. The last column shows
the symbols used in Fig. 23.
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Figure 23: 4π averaged fluxes (left panel) and up-to-down ratios (right panel) of the νe,
νe, νμ, and νμ fluxes for ten underground laboratories (see Table 10 for the notation).



Figure 24 depicts the zenith-angle distribu-
tions of νe, νe, νμ and νμ calculated with-
out taking account for geomagnetic effects.
Calculations with CORT are done using its
“standard” (KM+SS) model for hadronic in-
teractions and also the TARGET-1 model for
π/K meson production (including the super-
position model for collisions of nuclei) used
by Bartol group [“CORT+TARGET”]. The
distributions are averaged over azimuth an-
gle and over the eight energy bins indicated
near the curves. For comparison, the result
of the calculation by Battistoni et al. (2000)
based on the FLUKA 3D Monte Carlo simu-
lation package is also shown. It allows to
“highlight” the 3D effects which are very
dependent on neutrino energy and direction
of arrival. Note that the primary spectrum
model used in the calculation with FLUKA
is very close to the recent BESS98 data,
but it is not identical to the parametrization
adopted in CORT (“BESS+JACEE fit”).
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Figure 24: Zenithal distributions of
down-going ANs on geomagnetic poles.



Figure 25 shows the same as Fig. 24 but for Kamioka and Gran Sasso.

Figure 26 shows the azimuth-angle averaged zenithal distributions of νe, νe, νμ and νμ
calculated with FLUKA 3D for several values of neutrino energy and normalized to the
same distributions calculated with CORT. The geomagnetic effects are neglected in
both calculations.

Figures 24–26 clearly demonstrate that the 3D effects drastically change the angular
distributions of low-energy ANs at large zenith angles (near-horizontal directions).
However, above 500− 600 MeV they become almost negligible and practically
disappear at energies above ∼ 1 GeV.

Figure 27 shows the νe, νe, νμ and νμ energy spectra averaged over both zenith and
azimuth angles. The shaded areas are the results obtained with CORT using its
standard interaction model. The widths of the areas indicate the uncertainty due to
variations of the ξ parameter between 0.517 and 0.710. One sees that this uncertainty
is at most 6% and thus it is negligible. The dashed curves correspond to the
CORT+TARGET model while the circles show the results of the FLUKA 3D calculation.

Figures 28, 29 and 30 shows some results of early calculations of the AN flux at low
and high energies.
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Figure 25: The same as Fig. 24 but for Kamioka and Gran Sasso and for 0 ≤ ϑ ≤ 180◦.
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Figure 27: Scaled 4π averaged AN fluxes for Kamioka site.
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20 Atmospheric neutrinos II: High energies

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

10
5

10
3

10
4

10
5

a)

0 o

conventional νe + ν
⎯

e

prompt  νe + ν
⎯

e

from K
0

e3  decays

from K
±

e3  decays

from  μe3  decays

10
-2

10
-1

1

10

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

c)conventional νμ + ν
⎯

μ
prompt νμ + ν

⎯

μ
from Kμ2  decays

from πμ2  decays

from Kμ3  decays

from μe3  decays

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

10
5

b)

 90o

conventional νe + ν
⎯

e

prompt  νe + ν
⎯

e

from K
0

e3  decays

from K
±
e3  decays

from  μe3  decays

10
-2

10
-1

1

10

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

d)conventional νμ + ν
⎯

μ
prompt νμ + ν⎯μ
from Kμ2  decays

from πμ2  decays

from Kμ3  decays

from μe3  decays

Eν (GeV)
10

3
10

4
10

5

Eν (GeV)

0 o

 90o

RQPM

QGSM

pQCD RQPM

QGSM

pQCD

RQPM

QGSM

pQCD

RQPM

QGSM

pQCD

ν
-2
 s

-1
 s

r
-1
 G

e
V

2
  
  
  
 )

ν
ν

E
  
d
F

  
/d

E
  
  
( 

m
3

ν
-2
 s

-1
 s

r
-1
 G

e
V

2
  
  
  
 )

ν
ν

E
  
d
F

  
/d

E
  
  
( 

m
3

Figure 31: Separate contributions from some mechanisms of neutrino production into
the total AN fluxes at ϑ = 0◦ and ϑ = 90◦ for energies 1 to 100 TeV.
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Figures 35–38 aggregate the differential energy spectra of downward going atmospheric
neutrinos calculated within a wide energy range (from 50 MeV to about 20 EeV) for 11
zenith angles. Figures show the “conventional” neutrino contribution (originated from
decay of pions, kaons and muons) and the total AN spectra which include the
“prompt” neutrino contribution originated from semileptonic decays of charmed

hadrons (mainly D±, D0, D
0

mesons and Λ+
c hyperons).

The prompt neutrino contribution must dominate at very high energies. However the
charm hadroproduction cross sections are very model-dependent and cannot be
unambiguously predicted for lack of a generally accepted model. As a result the prompt
neutrino contribution and even the energies above which the prompt muon and electron
neutrinos become dominant are very uncertain as yet

The results are shown in Figs. 35–38 are obtained by using the two phenomenological
approaches to the charm production problem: the quark-gluon string model (QGSM)
and recombination quark-parton model (RQPM). The prompt muon fluxes predicted by
QGSM and RQPM are both consistent with the current deep underground data and may
be considered as the safe lower and upper limits for the prompt muon contributions.
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Figure 35: Energy spectra of downward going atmospheric νe for 11 zenith angles. Low-
energy range is for Kamioka site. At high energies, from smallest to largest fluxes, cos θ
varies from 0 to 1 with an increment of 0.1 for each group of curves.



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10
-1

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

⎯νe

Eν (GeV)

Conventional

Conventional + Prompt (QGSM)

Conventional + Prompt (RQPM)

E
  
 F

lu
x
  
(m

  
 s

  
 s

r 
  

G
eV

  
)

ν3
-2

2
-1

-1

Figure 36: Energy spectra of downward going atmospheric νe for 11 zenith angles. Low-
energy range is for Kamioka site. At high energies, from smallest to largest fluxes, cos θ
varies from 0 to 1 with an increment of 0.1 for each group of curves.
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Figure 37: Energy spectra of downward going atmospheric νμ for 11 zenith angles. Low-
energy range is for Kamioka site. At high energies, from smallest to largest fluxes, cos θ
varies from 0 to 1 with an increment of 0.1 for each group of curves.
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Figure 38: Energy spectra of downward going atmospheric νμ for 11 zenith angles. Low-
energy range is for Kamioka site. At high energies, from smallest to largest fluxes, cos θ
varies from 0 to 1 with an increment of 0.1 for each group of curves.
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21 Data of underground neutrino experiments
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Figure 39: Depths of several underground laboratories. Solid line is the calculated vertical
cosmic-ray muon intensity in the standard rock.



Table 11: Summary of atmospheric neutrino experiments that have observed fully con-
tained (FC), partially contained (PC), upward stopping muon (USμ) and upward through-
going muon (UTμ) events.a [From T. Kajita and Y. Totsuka, Rev. Mod. Phys. 73 (2001) 85.]

Status of Detection Type of Fiducial Total Number
Experiment experiment technique events mass (kt) exposure of events

BUST running liquid UTμ 10.55 yr 424
(Baksan) from 1978 scintillator

NUSEX finished gas counter, FC 0.13 0.74 kt · yr 50
(1982–1988) iron plate

Fréjus finished gas counter, FC 0.70 2.0 kt · yr 158
(1984–1988) iron plate PC 0.70 2.0 kt · yr 58

Kamiokande finished water FC 1.04-1.35 7.7-8.2 kt · yr 885
(1983–1995) Cherenkov PC 1.04 6.0 kt · yr 118

UTμ 6.7 yr 372

IMB finished water FC 3.30 7.7 kt · yr 935
(1982–1991) Cherenkov UTμ 3.6 yr 532

USμ 3.6 yr 85

Soudan 2 running gas counter, FC 0.77 3.9 kt · yr 371
from 1989 iron plate

MACRO finished liquid ID+US
(1991–2000) scintillator IU

+ gas counter UTμ 5.9 yrb 607

Super- running water FC 22.5 61 kt · yr 7940
Kamiokande from 1996 Cherenkov PC 22.5 61 kt · yr 563

UTμ 2.94 yr 1187
USμ 2.88 yr 265

a As of 1999. Some data in the last 3 columns have to be updated.
b Exposure with the full detector (6 supermodules) is 4.1 yr.
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Figure 40: Flavor Ratios.



22 Kamiokande and Super-Kamiokande

Both Kamiokande and Super-Kamiokande are imaging water Cherenkov detectors.
They detect Cherenkov light generated by charged particles, in particular, the particles
produced by incoming neutrinos in water.



Figure 41: Schematic view of the Kamiokande-II detector. The slantwise hatches mark
the surrounding rock. The inner detector contains 3000 tons of water of which 2140 tons
are fiducial volume (the area enclosed with dotted-dashed line). It is viewed by 948
20-inch-diameter PMT’s mounted on a 1-m grid on the inner surface. The outer (veto)
counter surrounds the inner detector and is viewed by 123 PMT’s.
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Figures 44–48 in the next few slides are borrowed from Tomasz Barszczak, University of
California.a

Fig. 44 shows two MC simulated events. In the left panel, a 481 MeV muon neutrino
produces a 394 MeV muon which later decays at rest into 52 MeV electron. The ring
fit to the muon is outlined. Fuzzy electron ring is seen in yellow-green in lower right
corner. This is perspective projection with 110 degrees opening angle, looking from a
corner of the Super-Kamiokande detector (not from the event vertex). Color
corresponds to time PMT was hit by Cherenkov photon from the ring. Color scale is
time from 830 to 1816 ns with 15.9 ns step. The time window was widened from
default to clearly show the muon decay electron in different color. In the charge
weighted time histogram to the right two peaks are clearly seen, one from the muon,
and second one from the delayed electron from the muon decay. Size of PMT
corresponds to amount of light seen by the PMT. PMTs are drawn as a flat squares
even though in reality they look more like huge flattened golden light bulbs.

In the right panel, a 1063 MeV neutrino strikes free proton at rest and produces
1032 MeV muon. Color scale is time from 987 to 1080 ns with 2.3 ns step. PMTs close
to the vertex were hit earlier than PMTs farther away. The same event but in
cylindrical projection is shown in Fig. 45. This is a 4π view (full solid angle, 360
degrees around). Un-hit PMTs are hidden but detector grid is shown. The observer is
positioned in the event vertex.

aSee URL <http://www.ps.uci.edu/˜tomba/sk/tscan/pictures.html>.



Figure 44: SK MC events. Left panel: 481 MeV muon neutrino produces 394 MeV muon
which later decays at rest into 52 MeV electron. Right panel: 1063 MeV neutrino strikes
free proton at rest and produces 1032 MeV muon.



Figure 45: The same event as in the right panel of Fig. 44 but in cylindrical 4π projection.
Neutrino strikes free proton at rest and produces 1032 MeV muon. PMTs close to the
vertex were hit earlier than PMTs farther away. Un-hit PMTs are hidden but detector
grid is shown. The observer is positioned in the event vertex.



Fig. 46 shows a 600 MeV
electron (MC). Electron
ring is much more fuzzy
than muon ring. Electron
produces shower of gammas,
electrons and positrons.
Gammas don’t produce
Cherenkov light. Electrons
and positrons do. In the
shower each of them flies
at a little bit different angle
and each of them makes its
own weak Cherenkov ring.
All those rings added to-
gether produce the observed
fuzzy ring. This difference
in sharpness of muon and
electron rings is used to
identify muons and electrons
in the Super-Kamiokande.
The color time scale spans
87 ns.

Figure 46: MC simulated 600 MeV electron event in
the Super-Kamiokande detector.



Figures 47 and 48 show
two real (not Monte Carlo)
events recorded in the Super-
Kamiokande-I detector.
A real multiple ring event is
shown in Fig. 47. This eventa

recorded on 24/09/1997,
12:02:48 was one of the close
candidates for proton decay
into e+ and π0 but it did not
pass analysis cuts.
The π0 would decay immedi-
ately into two gammas which
make overlapping fuzzy rings.
Positron and π0 would fly in
opposite directions.
Time color scale spans 80 ns.

aFound by Brett Michael Viren
(State University of New York at
Stony Brook).

Figure 47: Multiple ring event recorded in the Super-
Kamiokande detector on 24/09/1997, 12:02:48.



In Fig. 48, an upward-going
through-going muon event
recorded on 30/05/1996,
17:12:56 is shown.
The muon entered through
the flat circular part of the
detector near the bottom of
the picture where purple ear-
liest PMT hits can be seen. It
exited through the cylindrical
side wall in the middle of the
picture.
Time color scale spans
262 ns.

Figure 48: Through-going muon event recorded in the
Super-Kamiokande detector on 30/05/1996, 17:12:56.



To determine the identity of the fi-
nal state particles, a particle identi-
fication algorithm was applied which
exploited systematic differences in
the shape and the opening angle of
Cherenkov rings produced by elec-
trons and muons. Cherenkov rings
from electromagnetic cascades ex-
hibit a more diffuse light distribution
than those from muons (Figs. 49, 50).
The opening angle of the Cherenkov
cone, which depends on particle’s ve-
locity, was also used to separate e’s
and μ’s at low momenta.
The validity of the method was con-
firmed by a beam test experiment at
KEK. The misidentification probabil-
ities for single-ring e-like and μ-like
events were estimated to be 0.8%
and 0.7% respectively, using simu-
lated CC quasielastic neutrino events.

muon

electron

Figure 49: Super-Kamiokande I scan for elec-
tron and muon events.



Figure 50: Example event display of a single-ring e-like (left) and μ-like (right) events
in Super-Kamiokande I. Cherenkov rings from electromagnetic cascades exhibit a more
diffuse light distribution than those from muons.
[From Y. Ashie et al. (Super-Kamiokande Collaboration), Phys. Rev. D 71 (2005) 112005 (hep-ex/0501064).]
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Figure 53: The zenith angle distributions for fully-contained 1-ring, multi-ring, partially-
contained and upward events in SK I (1489 day exposure). The points show the data,
boxes – the non-oscillated MC events (the height of the boxes shows the statistical error)
and the histograms – the best-fit expectations for νμ ↔ ντ oscillations with θ = 45◦ and
Δm2 = 0.0021 eV2. The height of the boxes shows the statistical error of the MC.
[From Y. Ashie et al. (Super-Kamiokande Collaboration), Phys. Rev. D 71 (2005) 112005 (hep-ex/0501064).]
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The allowed neutrino oscillation param-
eters were estimated by using
� FC single-ring sub-GeV below

400 MeV/c,
� FC single-ring sub-GeV above

400 MeV/c,
� FC single-ring multi-GeV, PC

events,
� FC multi-ring events and
� upward-going muon events sepa-

rately.
The results are shown in Fig. 55. In this
plot, 90% confidence interval is defined
to be χ2 = χ2

min + 4.61, where χ2
min is

the minimum χ2 value including the un-
physical parameter region.
The allowed parameter regions sug-
gested by these six sub-samples are con-
sistent.
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Figure 55: 90 % confidence level allowed os-
cillation parameter regions for νμ ↔ ντ os-
cillations from six sub-samples of the SK I.
[From Y. Ashie et al. (Super-Kamiokande Collaboration),

Phys. Rev. D 71 (2005) 112005 (hep-ex/0501064).]



In addition, the same oscillation analyses were repeated using different flux models (but
with the same neutrino interaction Monte Carlo program) and different neutrino
interaction Monte Carlo program (but with the same flux model).

The 90 % C.L. allowed parameter
regions are compared in Fig. 56.
Left panel shows the 90% C.L.
allowed oscillation parameter re-
gions for νμ ↔ ντ oscillations,
based on the NEUT neutrino in-
teraction model, from different
flux models Right panel shows the
90% C.L. allowed regions based on
NUANCE and NEUT neutrino inter-
action models for FC+PC events
with the flux model of Honda-2004.
In this plot, Monte Carlo events
from NEUT were used for upward-
going muons.
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Figure 56: Allowed oscillation parameter regions
evaluated with different AN flux models (left and
interaction models (right). [From Y. Ashie et al. (Super-

Kamiokande Collaboration), hep-ex/0501064.]

The allowed regions from these analyses overlap well. However, the allowed region
obtained with the Bartol-2004 model allows for slightly higher Δm2.



Figure 57: K-II Zenith Angle Distributions (SK-II and SK-I results are consistent).
[From an unpublished report by Ed Kearns on “Neutrino’2004”.]



23 MACRO

The MACRO (Monopole, Astrophysics and Cosmic Ray Observatory) is a very large
rectangular modular detector (76.9× 12.3× 9.9 m3) situated in the hall B of the Gran
Sasso underground laboratory (see Figs. 58–60).

Figure 58: Gran Sasso laboratory underground.



Figure 59: The MACRO detector in the experimental hall B of the Gran Sasso Lab.



The detector consists of six supermodules of 12× 12× 5 m3 each. Each supermodule is
made of ten horizontal planes of limited streamer tubes interleaved with passive
materials, plus a central horizontal layer of special materials sensible to magnetic
monopoles and heavy nuclei.

Figure 60: Schematic view of the MACRO detector (dimensions are in mm).



The entire apparatus is surrounded with liquid scintillator counters for fast timing and
lateral planes of streamer tubes for tracking. The lower half of the detector is filled with
trays of crushed rock absorber alternating with streamer tube planes, while the upper
part is open.

The MACRO has a total acceptance for an isotropic flux of downward-going

muons of about 5000 m2 sr. Thanks to its capability in tracking, timing, and particle
stopping power determination, it permits the reconstruction of single and multiple
muon events and the identification of magnetic monopoles with redundancy in the
information.

The main aims of the experiment are

• study of the origin and the composition of high energy cosmic rays;

• detection of magnetic monopoles or, alternatively, the determination of a very
stringent limit on their flux;

• detection of neutrinos from stellar collapses;

• study of the atmospheric muon and neutrino physics.

The low energy νμ flux can be studied by the detection of neutrino interactions inside
the apparatus and by the detection of upward-going muons produced in the rock
surrounding it and stopping inside the detector. (Fig. 61, left panel).



Because of the MACRO geometry, muons in-
duced by neutrinos with the interaction vertex
inside the apparatus can be tagged with time-of-
flight measurement only for upgoing muons. The
internal down-going muons (IDμ) with vertex in
MACRO and upward going muons stopping in-
side the detector (USμ) can be identified through
topological constraints.
Right panel of Fig. 61 shows the Monte Carlo
simulated parent neutrino energy distributions for
the three event topologies detected by MACRO.
The distributions are normalized to one year of
data taking. The internal upgoing muon events
(IUμ) are produced by parent neutrinos with en-
ergy spectrum almost equal to that of the internal
down-going plus upward going stopping μ events.



E
le

c
tr

o
n

ic
s

UTμ IUμ

USμ IDμ

z

y

Absorber

Streamer

Scintillator

Track-Etch

(N
u
m

b
e
r 

o
f 
E

v
e
n
ts

)/
y
e
a
r

1

2

6

5

4

3

0

8

9

10

7

Neutrino Energy (GeV)

-1 0 1 2 3 4
10 10 10 10 10 10

ACROMat Gran sasso

UTμ

IDμ + USμ

IUμ

Figure 61: Left panel: sketch of different event topologies induced by neutrino interac-
tion in or around MACRO. IUμ = Internal Up-going μ; IDμ = Internal Down-going μ;
USμ = Upgoing Stopping μ; UTμ = Upward Through-going μ. The stars represent the
scintillator hits. The muon time-of-flight can be measured for the IUμ and UTμ events.
Right panel: MC simulated distributions of the parent neutrino energy for the three event
topologies. The distributions are normalized to one year of data taking. [From M. Ambrosio

et al. (MACRO Collaboration) Phys. Lett. B 478 (2000) 5 (hep-ex/0001044).]



Figures 62 and 63 show a few-year’s old AN results
of the MACRO experiment.
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Figures 64 and 65 in next slides [borrowed from M. Ambrosio

et al. (MACRO Collaboration), Eur. Phys. J. C 36 (2004) 323–339 and

G. Giacomelli and A. Margiotta (for the MACRO Collaboration), Yad.

Fiz. 67 (2004) 1165–1171 [Phys. Atom. Nucl. 67 (2004) 1139–1146]

(hep-ex/0407023)] show the most recent data.
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Figure 63: Some old results
from the MACRO experiment.



Figure 64: Comparison of with A and B analyses
of upward through-going muons in MACRO with
calculations.

Figure 64 shows a comparison
of the UT muon fluxes mea-
sured with MACRO by means
of the different analysis pro-
cedures, A (full sample, 902
events) and B (attico [from an
upper part of the detector] sam-
ple, 870 events). The experimen-
tal points are slightly shifted hor-
izontally to distinguish the two
analyses. Statistical and system-
atic errors are displayed. The
nonoscillated Bartol and FLUKA
fluxes, assuming Eμ > 1 GeV,
are shown (the theoretical error
is not displayed). The fit to the
new CR measurements is used for
the FLUKA flux.
[Borrowed from M. Ambrosio et al.

(MACRO Collaboration), “Measurements

of atmospheric muon neutrino oscillations,

global analysis of the data collected with

MACRO detector,” Eur. Phys. J. C 36

(2004) 323–339.]
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muons in MACRO with nonoscillated and oscillated (assuming maximal νμ − ντ mixing
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A. Margiotta (for the MACRO Collaboration), Yad. Fiz. 67 (2004) 1165–1171 [Phys. Atom. Nucl. 67 (2004) 1139–1146]

(hep-ex/0407023); see also M. Ambrosio et al. (MACRO Collaboration), Eur. Phys. J. C 36 (2004) 323–339.]



24 SOUDAN 2

The Soudan 2 detector is located in an underground laboratory in the Tower-Soudan
Iron Mine 1/2 mile (2,090 m.w.e.) beneath Soudan, Northern Minnesota, USA.

Figure 66: The SOUDAN2 iron calorimeter modules in the experimental hall.



The detector is a 960 ton gas ionization, time projection calorimeter surrounded by an
active shield of proportional tubes (Fig. 67). The calorimeter is comprised of 224
independent modules, each 1× 1.1× 2.7 m3 (shown in the right of Fig. 67).
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Figure 67: Schematic view of the SOUDAN2 detector and its module (zoomed).

The modules, each of which weighs about 5 tons are constructed inside gas-tight, steel
boxes. The boxes are filled with a mixture of 85% argon, 15% carbon dioxide gas. Most
of the mass in each module is located in 240 corrugated steel plates, which are layered



horizontally giving the inside of each module the appearance of a large honeycomb.
Each module contains a tightly packed honeycomb array of 15,120 drift tubes set in a
steel absorbing medium giving an average density of 1.6 gm/cc. The drift tube array
provides 3-dimensional hit reconstruction, with an r.m.s. accuracy of 1.12 cm in the
drift direction and 3.5 mm in the orthogonal plane, together with the power stopping
sampling.a The modules are close packed in an array 2 high by 8 across by 14 deep to
form a detector 5.4 m high, 8 m across and 15 m long.

The primary physics goals of the experiment:

• search for nucleon decay;

• study atmospheric neutrino physics, in particular to look for evidence of neutrino
oscillations;

• search for magnetic monopoles;

• search for neutrinos from Active Galactic Nuclei;

• search for astrophysical point sources of cosmic rays;

• study the chemical composition of primary cosmic rays.

The target exposure for the experiment of 5 Kton-years has been achieved. Beyond this
there is a possibility of incorporating the detector into the MINOS experiment which is
designed to search for and measure neutrino oscillations and neutrino mass using a

aFor a detailed description of the calorimeter see W. W. M. Allison et al., Nucl. Instrum. Meth. A 376
(1996) 36; W. W. M. Allison et al., Nucl. Instrum. Meth. A 381 (1996) 385.



controlled, accelerator produced neutrino beam. The neutrino beam will be generated
in the Fermilab neutrino beam line (near Chicago) and passed through the Earth to the
Soudan Mine 730 km away where the new MINOS experiment will be located. A search
for neutrino oscillations over this long baseline will cover the same region of oscillation
parameters as the atmospheric neutrino anomaly reported by the Super-Kamiokande,
MACRO and Soudan 2 experiments.

There are two energy detectors located on the Earth’s surface near the entrance to the
Soudan mine and operated in coincidence with the deep underground calorimeter to
provide air shower information.

One is a flat array of detectors called proportional tubes located in a house trailer
parked about 100 m east of the mine shaft. This array, 15 m long by 4 m wide,
measures the amount of energy left in the Earth’s atmosphere by a cosmic ray, while
the Soudan 2 detector measures characteristics of the muons associated with the same
cosmic ray. The correlation between surface and underground data yields information
about the properties of the original cosmic ray, as it entered the atmosphere.

A second kind of energy detector, located near the proportional tube array, is called an
atmospheric Cherenkov detector. It also measures cosmic ray energy deposition in the
atmosphere, but by a different technique. The Cherenkov detector is sensitive to very
faint light produced in the atmosphere as the cosmic ray propagates downward. This
light is so faint that the atmospheric Cherenkov detector is usable only on clear nights
when the moon is not visible. It also operates in conjunction with the Soudan 2
detector.



Figures 68 and 69 show a 10 year’s old (but still inter-
esting) AN results of the SOUDAN2 experiment.
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Figure 68: Energy distributions of SOUDAN2 events.

Figures 70–72 below [borrowed from M. C. Sanchez et al.

(Soudan 2 Collab.), Phys. Rev. D 68 (2003) 113004 (hep-ex/0307069) and

P. J. Litchfield (for the Soudan 2 Collab.), Nucl. Phys. B (Proc. Suppl.)

138 (2005) 402-404.] show the most recent data.
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Figure 69: Allowed and ex-
cluded regions of sin2 2θij
and Δm2 obtained from the
old SOUDAN2 data for two
scenarios of neutrino mixing.



Figure 70 shows the zenith-
angle and azimuth-angle dis-
tributions for high resolution
(HiRes) events in SOUDAN2
collected during the 7.36 kiloton-
year (5.90 fiducial kiloton-year)
exposure of the detector. The
points with error bars are the
data. The dashed histograms
are the sum of the predicted
nonoscillated neutrino distribu-
tion (with the Bartol 96 AN flux)
plus the fitted rock contribution.
The solid histograms are the pre-
diction of the best-fit parameters
of this analysis. The dotted his-
tograms are the contribution of
the rock background. Note the
depletion of μ-flavor events at all
but the highest value of cos θ.
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Figure 70: Angular distributions for high resolution
events in SOUDAN2.



Figure 71 shows the HiRes log10(L/E)
distribution e-flavor (top) and μ-flavor
(bottom) events in SOUDAN2. The
points with error bars are the data.
The dashed histograms are the predic-
tion of the nonoscillated Monte Carlo
plus the fitted qs-rock contribution. The
solid histograms are the same but with
the Monte Carlo (with the Bartol 96
AN flux) weighted by the best fit os-
cillation parameters from the analysis.
The dotted histograms are the contri-
bution of the rock background. A de-
pletion of μ-flavor events above values
of log10(L/E) of approximately 1.5 can
be seen. Below this value there is lit-
tle, if any, loss of events. This implies
an upper limit on the value of Δm2 of
about 0.025 eV2.
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Figure 71: The HiRes log10(L/E) distribu-
tion for e- and μ-flavor events in SOUDAN2.
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Figure 72: Confidence level contours
from the Feldman-Cousins analysis of
the SOUDAN2 events.

Figure 72 shows the confidence level con-
tours from the Feldman-Cousins analysis of
the SOUDAN2 events: 68% (short dashed
line), 90% (thick solid line) and 95% (long
dashed line). The dotted line is the 90% sen-
sitivity for the best-fit (sin2 2θ,Δm2) point.
The thin solid line is the contour defined by
a data likelihood rise, ΔL, of 2.3 (Fig. 73).

Figure 73: The data likelihood difference.



25 NUSEX
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Figure 74: A scketch of the detector used in the NUSEX experiment: (A) the vertical
iron plates; (B) the detector tubes plus the x-strips; (C) the y-strips; (D) the fuducial
volume. [From G. Battistoni et al., Nucl. Instrum. Meth. 219 (1984) 300–310.]
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Figure 75: Schematic view of the Fréjus underground Laboratory. [From C. Berger et al. (Fréjus

Collaboration), Nucl. Instrum. Meth. A 262 (1987) 463–495.]



27 BUST

The Baksan Underground Scintillation Telescope (BUST) located at the Baksan
Neutrino Observatory of the Institute for Nuclear Research, RAS consists of 4
horizontal layers of thick (0.30× 200× 200 m3) liquid scintillator separated by concrete
absorber (8 radiation lengths each). It has also 4 vertical scintillator planes surrounding
the horizontal ones.

Figure 76: Schematic sectional view of the BUST (left panel) and of one of its horizontal
scintillator planes (right panel).



The full detector dimensions are 16.7× 16.7× 11.2 m3 and the full volume is about
3000 m3. Each of three lower horizontal scintillator layers consists of 400 tanks of
70× 70× 30 cm3 size, viewed by 6 inch PMTs (FEU-49). The top layer consists of 576
detectors. It is located at a depth of about 850 hg/cm2 below Andyrchi mountain.

There are also ground installations which can operate in coincidence with the BUST:
ANDYRCHI for detecting extensive atmospheric showers (it is located over the BUST
and covers an area of about 5× 104m2) and a set of ground facilities KOVYOR
comprising Large Muon Detector, Scintillation Telescope and Neutron Monitor for
studying the hard component of cosmic rays and EAS.



28 Upward through-going muons
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Figure 77: Zenith-angle distributions of upward through-going muons measured in earlier
underground experiments and converted to a single energy threshold of 3 GeV.
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Figure 78: Zenith-angle distributions of upward
through-going muons observed in 5 experiments.

Figure 78 shows the zenith-
angle distributions of upward
through-going muons mea-
sured in Baksan, MACRO,
IMB I+II, Kamiokande II+III
and Super-Kamiokande I.
The scale of Kamiokande
is normalized to that of
Super-Kamiokande. The
histograms are calculated
with GRV94 PDF set for
Kamiokande (dashed) and
Super-Kamiokande (solid)
and with MSR(G) PDF set
for the other experiments.
The Bartol-96 muon flux and
muon energy loss according
to Lohmann et al. (“CERN
Yellow Report”) are used in
the calculations.



0.5

1.0

1.5

2.0

2.5

3.0

3.5
 M

uo
n 

F
lu

x 
 (

 1
0-1

3
cm

-2
s-1

sr
-1
)

Kamiokande II+III

< Eth>  = 2.8 GeV

Super-Kamiokande I

< Eth>  = 6.0 GeV

Upward Through-Going Muons 1998

            Expected

2.51        (stat)        (syst)+0.18
- 0.21 

+0.54
- 0.46

            Observed

1.19        (stat)        (syst)+0.10
- 0.10 

+0.07
+0.06 

            Expected

2.05        (stat)        (syst)+0.13
- 0.17 

+0.44
- 0.38 

            Observed

1.72        (stat)        (syst)+0.08
- 0.08 

+0.01
- 0.02 

Figure 79: Expected and observed total fluxes of up-
ward through-going muons for Kamiokande II+III and
Super-Kamiokande I. [From S. Hatakeyama, “Search for muon

neutrino oscillations in Kamiokande and Super-Kamiokande,” Ph.D. the-

sis (1998).]

Figure 79 shows the expected
and observed total fluxes of
upward through-going muons
for Kamiokande II+III and
Super-Kamiokande I (the data
collected before 1998). In-
side error bars of the expected
flux are the differences in the
models and the outside ones
are the same plus 20% uncer-
tainty of each model (which
comes from the uncertainty
in the atmospheric muon neu-
trino fluxes. The inside er-
rors of the observed fluxes are
combined statistical and sys-
tematic errors.
In fact the “theoretical” un-
certainty may be much larger
than 20% (see Table 12).



Table 12: Theoretical uncertainties in the absolute flux of upgoing muons.

Primary CR energy spectrum ∼ 20%

Primary CR charge/isotopic composition (n/p ratio) to 3%

Cross sections of pion production in NA interactions
and pion regeneration (π+/π− ratio) to 5%

Cross sections of CC induced νμN and νμN interactions ∼ 10%

Cross sections of NC induced νμN and νμN interactions
(responsible for neutrino regeneration in the Earth) ∼ 1%

Nuclear effects in νμ (νμ) interactions with matter to 2%

Composition and inhomogeneity of the detector surrounding
(affect the muon energy loss) to 2%

Muon range struggling in the surrounding rock to 1%

Other uncertainties and methodical simplifications a few %

Prompt neutrino contribution ?

Omitted backgrounds ?

Total uncertainty may be as large as 25–35%
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29 Detectors for high-energy neutrino astronomy

In 1960, Markova and Reinesb independently suggested to catch high-energy cosmic
neutrinos via their charged current interactions using the ocean as a detector medium
by observing the Cherenkov light of the produced muons and, simultaneously, as a
screen for the cosmic-ray and solar light backgrounds.c Up-going muons can be
identified in a background of down-going, cosmic ray muons which are more than 105

times more frequent for a depth of about 12 km. The Earth is therefore also serves as a
part of the detector, being the natural filter and “discriminator”. This makes neutrino
detection possible over the hemisphere of sky faced by the bottom of the detector.

It was thought that the ocean is a rather inexpensive target, the detector can be build
modular and enlarged when necessary. The detector can take the advantage of the
rising cross section for neutrino-nucleon interactions with energy. As the range of the

aM. A. Markov, in Proc. of 1960 Annual International Conf. on High Energy Physics at Rochester,
edited by E. C. G. Sudarshan, J. H. Tinlot and A. C. Melissinos (University of Rochester, NY, 1960),
p. 578. See also M. A. Markov and I. M. Zheleznykh, Nucl. Phys. 27 (1961) 385–394.

bF. Reines, Ann. Rev. Nucl. Sci. 10 (1960) 1. Greisen, in the same journal volume [K. Greisen, Ann.
Rev. Nucl. Sci. 10 (1960) 63] also mentioned the idea of neutrino astronomy as a “fanciful proposal”.

cProbably the idea of Reines was a natural consequence of the following note by F. Reines, C. L. Cowan
and H. W. Krusenot, “Conservation of the number of nucleons,” Phys. Rev. 109 (1958) 609–610 con-
cerning experimental search for nucleon decay:

Higher sensitivity could be obtained both by using larger counters and by going deep
underground or in the ocean to eliminate cosmic rays.



final state muon increases with energy, the effective detector volume is growing as well
with energy. Furthermore, it is expected that the energy spectra from many point
astrophysical sources fail off less step that from atmospheric neutrinos.

Thus the deep underwater detectors can be used as telescopes for high-energy neutrino
astronomy.

The optical requirements on the detector medium are severe. A large absorption length
is needed because it determines the required spacing of the optical sensors and, to a
significant extent, the cost of the detector. A long scattering length is needed to
preserve the geometry of the Cerenkov pattern. Nature has been kind and offered ice
and water as the natural Cerenkov media. Their optical properties are, in fact,
complementary. Water and ice have comparable attenuation lengths, with the roles of
scattering and absorption reversed. Optics seems, at present, to drive the evolution of
ice and water detectors in predictable directions: towards very large telescope area in
ice exploiting the long absorption length, and towards lower threshold and good muon
track reconstruction in water exploiting the long scattering length.

Figure 80d shows a map of present-day underwater/ice Cherenkov neutrino telescope
projects (see also Table 13 for a summary of their status).

dBy Francis Halzen <http://icecube.wisc.edu/˜halzen/>.



Figure 80: A map of underwater/ice Cherenkov neutrino telescope projects [by Francis Halzen

<http://icecube.wisc.edu/˜halzen/>].



Table 13: Past, present and future underwater/ice neutrino telescopes.

Lab/Location/Stage Year(s) Sensitive
area

(10  m  )3 2

*
Status
(fall, 2003)

DUMAND I, II
Pacific near Hawaii Big Island; at a depth of ~4.5 km

Historically first underwater project.

Closed down...**

BAIKAL NT
Lake Baikal, East Siberia; at a depth of about 1.1. km

NT-36

NT-72

NT-96

NT-144

NT-200

1993-95

1995-96

1996-97

1997-98

1998 

0.15-0.20 

0.4-3.0 

0.8-6.0 

1.0-8.0 

2.0-10.0 Operates

AMANDA
South Pole; at a depth of 0.8 to 2 km

AMANDA A

AMANDA A

AMANDA B4

AMANDA II

AMANDA KM3 or IceCube

1994 

1996 

1998 

2000 

2005 

Small

1.0 

5-6 

30-50 

1000 Under construction

NESTOR
Ionian Sea near Pylos, Peloponnesos, Greece;

at a depth of about 3.8 km

2004 ? st1   phase: 20 

KM   in prospect3
& test

ANTARES
Mediterranean near Toulon, France; at a depth from

2.4 to 2.7 km (the most appropriate site is identified)

2004 ? to 100-200 

NEMO
Capo Passero (Sicily), Italy; at a depth of about 3.4 km

?  to 3500 

Stepwise
deployment &
going into
operation

Stepwise
deployment &
going into
operation

Operates

R & D 

R & D

Under construction

KM   in prospect3

KM   in prospect3

}

}



Notes to ∗) The sensitive (effective) area is an increasing function of muon
Table 13: energy. For example, the estimated effective area of the

Baikal NT-200 is about 2300m2 and 8500m2 for 1-TeV and
100-TeV muons, respectively.

∗∗) Some 1-string prototypes of the DUMAND array were deployed
and several useful results were obtained.



30 Again Cherenkov...

The underwater/ice neutrino telescopes collect Cherenkov light from high-energy
muons, electromagnetic and hadronic showers generated by neutrinos in the detector
medium. This light can be recorded at distances up to about 100 m depending upon
the light absorption of water or ice. Light pulses from lasers, widely used in these arrays
for calibration, can be recorded over even larger distances. At such distances, the
difference between phase and group velocities of light in water or ice is essential.a

Let us discuss this difference in short.

A few facts from school physics

First of all we consider the simplest
monochromatic sine wave

A(r, t) = A0 cos(kr− ωt).
The speed at which the shape of this wave is
moving is given by the condition (see Fig. 81)

kΔr− ωΔt = 0, Δt→ 0. Figure 81: A sine wave.

aL. A. Kuzmichev, “On the velocity of light signals in deep underwater neutrino experiments,” Nucl.
Instrum. Meth. A 482 (2002) 304–306 (hep-ex/0005036). Baikal NT experience shows that vg rather
than vp must be used for time-calibration of the detector modules with an outside laser.



Consequently the speed

vp = ṙ = lim
Δt→0

Δr
Δt

= ∇kω

is called the phase velocity of the wave.

Let us now consider a signal consisting of two superimposed sine waves with slightly
different frequencies and wavelengths, i.e., a signal with the amplitude function

A(r, t) = A0 cos [(k−K) r− (ω − Ω)t] +A0 cos [(k + K) r− (ω + Ω)t]

Using a well-known trigonometric identity we can
express the overall signal as

A(r, t) = B(r, t) cos(kr− ωt),
where

B(r, t) = 2A0 cos (Kr− Ωt) . Figure 82: A modulated wave.

This can be somewhat loosely interpreted as a simple sinusoidal wave with the angular
velocity ω, the wave vector k and the modulated amplitude B(r, t) (see Fig. 82).

In other words, the amplitude of the wave is itself a wave and the phase velocity of this
modulation wave is vg = ∇KΩ. The propagation of information or energy in a wave
always occurs as a change in the wave.



An obvious example is changing the wave from being absent to being present, which
propagates at the speed of the leading edge of a wave train. More generally, some
modulation of the frequency and/or amplitude of a wave is required in order to convey
information, and it is this modulation that represents the signal content.
Hence the actual speed of content in the situation
described above is vg. This is the phase velocity of
the amplitude wave, but since each amplitude wave
contains a group of internal waves, vg is called the
group velocity.

Ergo, we have to use vg.

In the generic case the group velocity of an elec-
tromagnetic wave in a matter with the dispersion
relation ω = ω(k) is defined by

vg = ∇kω(k).

In a transparent optical medium the refractive in-
dex n = n(k) is defined as the ratio c/vp. Now,
since vp = ω/k, we have ω = ck/n. Therefore

vg =
∂ω

∂k
=
c

n
− ck

n2

dn

dk
= vp

(
1− k

n

dn

dk

)
.

Figure 83: Wavelength dependen-
cies of n (curve 1) and ng =
n − λ∂n/∂λ (data points and
curve 2) for distilled Baikal water.
[From B. K. Lubsandorzhiev et al., Nucl. In-

strum. Meth. A 502 (2003) 168–171 (astro-

ph/0211079).]
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31 DUMAND

The DUMAND (Deep Underwa-
ter Muon and Neutrino Detec-
tor) proposal aimed for a 250 ×
250 × 500 m3 array of 756 de-
tector modules to be located at
a depth of about 4.5–4.8 km in
the Pacific Ocean ∼ 30 km due
west from the Kona Coast of the
Island of Hawaii.
The expanded schematic dia-
gram in Fig. 85 shows the un-
derwater location of the detec-
tor, the full array of 36 strings
with optical sensors and a single
PMT module.

The enclosed target mass of the detector was planned to be of about 30 Mtons and its
effective area of about 105 m2. The angular resolution was estimated at 15 to
45 mrads, depending on the muon energy.



Figure 85: Proposed configuration of the DUMAND detector.



In the middle of 90s, the DU-
MAND Collaboration intended to
deploy a prototype 9-string array
(Fig. 86) in two phases: first 3
strings (the triad) as a demonstra-
tion, and the remaining 6 strings
(complete octagon, plus center
string) after about 1 year of test-
ing and operation. The effec-
tive detection area of the full 9-
string array was estimated as ∼
2× 104 m2.
The Island of Hawaii was selected
for the deployment due to excep-
tional water clarity, proximity of
an abyssal plain (4.8 km) with
appropriate seabed characteristics
to a suitable shore site (30 km
away), pre-existing laboratory in-
frastructure at the shore site (due
to an ocean thermal energy re-
search project).

104.6 m

230 m

9 strings, 24 PMTs each,

10 m vertical spacing,

40 m horizontal spacing

4800 m depth

30 km W of Keahole Point,

Hawaii

Phase I

(3 strings)

Phase II

(6 additional strings)

Responders

(sonar modules)

Cable to shore

(32 km, 12 optical

fibers, 5 mW power)

Junction box 

(includes power control & environmental electronics)

Figure 86: A sketch of the DUMAND-II under-
water neutrino detector. [From R. J. Wilkes, astro-

ph/9412019.]



32 Baikal neutrino telescope

The Lake Baikal neutrino experiment exploits the deep water of the great Siberian lake
as a detection medium for high-energy neutrinos via muons and electrons generated in
neutrino interactions.

Figure 87: Left panel: space image of wintry Baikal. Right panel: ice campus of the col-
laboration with Khamar-Daban mountain at skyline (March, 1987). [From http://nt200.da.ru/.]

The neutrino telescope NT-200, put into operation at April, 1998, is located in the



southern part of the lake (51.50◦ N, 104.20◦ E) at a distance of 3.6 km from the nearest
shore and at a depth of about 1.1 km. The distance to the opposite shore is more than
30 km. This asymmetry allows to study the asymmetry in the azimuth distribution of
muons arriving at large zenith angles.

The absorption length of water at the site is about 20 m for wavelengths between 470
and 500 nm, and seasonal variations are less than 20%. Light scattering is subjected
strongly to seasonal variations and to variations from year to year.

Figure 88a shows the layout of the Baikal NT-200 and the preceding array NT-96 (on
the right) which took data between April 1996 and March 1997.b The NT-200 consists
of 192 optical modules (OMs) at 8 strings arranged at an umbrella-like frame. Pairs of
OMs are switched in coincidence with a 15 ns time window and define a channel. The
array is time-calibrated by two nitrogen lasers. Of these, one (fiber laser) is mounted
just above the array. Its light is guided via optical fibers to each OM pair. The other
(water laser) is arranged 20 m below the array. Its light propagates directly through
water. The expansion on the left of the figure shows two pairs of optical modules
(“svjaska”) with the electronics module, which houses parts of the readout and control
electronics. Three underwater electrical cables connect the detector with the shore
station.

aDescription of the telescope and figures 88 and 90 are borrowed from Ch. Spiering et al. (Baikal
Collaboration), Prog. Part. Nucl. Phys. 40 (1998) 391 [astro-ph/9801044]; V. A. Balkanov et al. (Baikal
Collaboration), Yad. Fiz. 63 (2000) 1027 [Phys. Atom. Nucl. 63 (2000) 951] (astro-ph/0001151).

bVarious stages of the stepwise increasing detector are NT-36 (1993–1995), NT-72 (1995–1996),
NT-96 (1996–1997) and NT-144 (1997–1998).
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Overall view of the
NT-200 telescope is
shown in Fig. 89.
Here, 1, 2 and 3 are
cables to shore; 4, 5
and 6 are the string
stations for shore ca-
bles; 7 is the string
with the telescope;
8 is the hydrometric
string; 9–14 are the
ultrasonic emitters.
The insert at the left
bottom of the figure
shows two pairs of op-
tical modules (OM)
together with the elec-
tronic module control-
ling the OMs. Shown
are two pairs of OMs
directed face to face.
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Figure 89: Overall view of the NT-200 complex in Lake Baikal.
[From V. A. Balkanov et al., “In-situ measurements of optical parameters in Lake

Baikal with the help of a neutrino telescope,” Appl. Opt. 33 (1999) 6818–6825

(astro-ph/9903342).]



Fig. 90 displays three neutrino candidates separated during 18 days of the NT-96
exposition (the time period between April 16 and May 17, 1996).

(a) A “gold plated” 19-hit neutrino event. Hit channels are in color. The thick line
gives the reconstructed muon path, thin lines pointing to the channels mark the
path of the Cherenkov photons as given by the fit to the measured times. The
areas of the ellipses are proportional to the measured amplitudes. The fake
probability of this event was estimated to be smaller than 1%.

(b) An unambiguous 14-hit neutrino candidate.

(c) An ambiguous event reconstructed as a neutrino event (dashed line) but with a
second solution above the horizon (solid line). This event is assigned to the sample
of downward going muons.

The data set collected with NT-200 during 268 live days (till 1999) yields 84 upward
going muons. The MC simulation of upward muon tracks due to atmospheric neutrinos
gives 80.5 events. The skyplot of the upward muons is shown in Fig. 91. Fig. 92 shows
a comparison between the measured and simulation angular distributions.

Fig. 96 shows NT-200+ – an upgrade of the NT-200 by three sparsely instrumented
distant outer strings which will increase the fiducial volume for high-energy cascades to
a few dozen Mtons. Correspondingly, the NT-200+ sensitivity will be 4 times better
than that of NT-200, with a moderate 20% increase of optical modules only. A
prototype string of 140m length with 12 optical modules was deployed in March 2003,
and electronics, data acquisition and calibration systems for NT-200+ have been tested.



(a) (c)(b)

Figure 90: Three neutrino candidates recorded in NT-96 (see text for details).
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Figure 91: Skyplot (in equatorial coordinates) of 84 upward-going muon events recorded
in the Baikal NT-200 experiment. [From R.Wischnewski (for the Baikal Collaboration), contribution to the

28th ICRC, Tsukuda, Japan, July 31 – August 7, 2003 (astro-ph/0305302).]



Figure 92: Zenith angle distribution of
84 upward-going reconstructed events in
the Baikal NT-200 experiment and MC
simulated distribution of upward muon
tracks due to atmospheric neutrinos.
Eth = 15− 20 GeV in this experiment.

Figure 93: The same as in Fig. 92 but for
selected neutrino candidates. Eth = 10 GeV.

[From V. Aynutdinov et al., “The BAIKAL neutrino project: Status, results and perspectives,” Nucl. Phys. B (Proc.

Suppl.) 143 (2005) 335–342.]



Figure 94: Limits on the excess muon flux from the center of the Earth vs half-cone of
the search angle (left panel) and as a function of WIMP mass (right panel).
[From V. Aynutdinov et al., “The BAIKAL neutrino project: Status, results and perspectives,” Nucl. Phys. B (Proc.

Suppl.) 143 (2005) 335–342.]



Figure 95: Upper limits on the flux of fast monopoles (left panel) and neutrino fluxes
(right panel) obtained in different experiments. The neutrino fluxes expected from some
astrophysical sources are also shown in the right panel.
[From V. Aynutdinov et al., “The BAIKAL neutrino project: Status, results and perspectives,” Nucl. Phys. B (Proc.

Suppl.) 143 (2005) 335–342.]
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Figure 96: Future NT-200+ configuration. Three additional outer plus one possible
central strings will allow a much better vertex identification and hence a significantly
more precise measurement of cascade energy in a volume around the NT-200.
[From R.Wischnewski, 2003 (see caption to Fig. 91).]



Figure 97: Reconstructed vs simulated coordi-
nates of cascades in NT-200+ (rectangles) and
NT-200 (crosses).

Figure 98: Top view of a Giga-
ton Volume Detector in Lake Baikal
with sketch of one of its sub-arrays.



33 AMANDA

The AMANDA (Antarctic Muon And Neutrino Detector Array) detector is located at
the South Pole station, Antarctica. Figures 99 and 100 show the South Pole Station.

Figure 99: Construction of the South Pole Station as of February, 2002.
[From http://www.amanda.uci.edu/.]

The detector uses the 2.8 km thick ice sheet at the South Pole as a neutrino target,
Cherenkov medium and cosmic ray flux attenuator. The detector consists of vertical



strings of optical modules (OMs) – photomultiplier tubes sealed in glass pressure
vessels – frozen into the ice at depths of 1500–2000m below the surface.

Figure 100: The South Pole Station. The AMANDA-II telescope electronics are located
on the 2nd floor of MAPO, the blue building shown in this picture.
[From http://www.amanda.uci.edu/.]

Fine photos of the Amundsen-Scott South Pole Station are given in Figs. 101 and 102.a

aBorrowed from the Francis Halzen’s homepage <http://icecube.wisc.edu/˜halzen/>.



Figure 101: Amundsen-Scott South Pole Station.



Figure 102: One another vie of the South Pole Station.



Figure 103 shows the current configu-
ration of the AMANDA detector. The
shallow array, AMANDA-A, was de-
ployed at depths of 800 to 1000m
in 1993–1994 in an exploratory phase
of the project. Studies of the optical
properties of the ice carried out with
AMANDA-A showed a high concen-
tration of air bubbles at these depths,
leading to strong scattering of light
and making accurate track reconstruc-
tion impossible. Therefore, a deeper
array of 10 strings with 302 OMs was
deployed in the austral summers of
1995–1996 and 1996–1997 at depths
of 1500–2000 m. This detector is re-
ferred to as AMANDA-B10. It was
augmented by 3 additional strings in
1997–1998 and 6 in 1999–2000, form-
ing the AMANDA-II array. This de-
tector has been calibrated and in op-
eration since January 2000.
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Figure 103: Schematic view of the AMANDA-
II array at the South Pole. [From J. Ahrens et al.,

Phys. Rev. D 66 (2002) 012005 [astro-ph/0205109].]



Figure 104 is an artistic view of a neutrino induced
event in the AMANDA detector while Fig. 105 dis-
plays three real neutrino candidates. Let us describe
these in some details.

(a) Event display of an upgoing muon event. The
gray scale indicates the flow of time, with early
hits at the bottom and the latest hits at the top
of the array. The arrival times match the speed
of light. The sizes of the ellipses correspond to
the measured amplitudes.

(b) The upgoing muon event has a smooth distri-
bution of hits along the extended uniform track.
The track-like hit topology of this event can be
used to distinguish it from background events.

(c) A background event with a poor smoothness
value and a large deviation from a straight line.

Figure 104: Artistic view of a ν
induced event in the AMANDA
detector.

Two more neutrino candidates (both were recorded on May 11, 2000) are shown in
Fig. 106 borrowed from URL <http://amanda.physics.wisc.edu/>.a

aIn this site, there a lot of nice animated images relevant to the subject.



(a) (c)(b)

Figure 105: Three neutrino candidates recorded in AMANDA-B10 (see text).



Figure 106: Two more neutrino candidates in AMANDA, #910225 and #10604848 (both
were recorded on May 11, 2000). [From <http://amanda.physics.wisc.edu/>.]



Figure 107 shows the skyplot (equatorial coordinates) of all the candidate neutrino
events found in AMANDA-B10.The distribution of the events on the skyplot is
consistent with a random distribution. The combined skyplot of the AMANDA-B10 and
Baikal NT-200 candidate neutrino events is shown in Fig. 108.

The angular distribution for the 204 events is shown in Fig. 109 and compared to that
for the simulation of atmospheric neutrinos.a In the figure the Monte Carlo events are
normalized to the number of observed events to facilitate comparison of the shapes of
the distributions. The agreement in absolute number is consistent with the systematic
uncertainties in the absolute sensitivity and the flux of high-energy atmospheric
neutrinos. The shape of the distribution of data is statistically consistent with the
prediction from atmospheric neutrinos.

Preliminary results on the neutrino energy spectra are shown in Fig. 110. For the first
time, the spectrum was measured up to 100TeV. It is compared to the high-energy
data from the Fréjus experimentb and with the horizontal and vertical AN flux
parametrizations according to Volkova.c The error bars give the statistical error from
the unfolding procedure plus an overall systematic uncertainty. The reconstructed data
are in agreement with current calculations of the AN flux and shows an overlap with
the Fréjus results.

aFor more recent data see E. Andres et al., Nature 423 (2001) 415.
bK.Daum et al. (Fréjus Collaboration), Z. Phys. C 66 (1995) 417;
W.Rhode et al. (Fréjus Collaboration), Astropart. Phys. 4 (1996) 217.

cL. V. Volkova, Yad. Fiz. 31 (1980) 1510 [Sov. J. Nucl. Phys. 31 (1980) 784].
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Figure 107: Skyplot of upward-going events as seen with AMANDA-B10 in 1997 in
equatorial coordinates. The background of non-neutrino events is estimated to be less
than 10%. [From J. Ahrens et al. (2002); see caption to Fig. 103.]
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Figure 108: Merged skyplot of upward-going events recorded in both Baikal NT-200 and
AMANDA-B10 experiments. The data are the same as in Figs. 91 and 107.
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Figure 109: Zenith angle distribution of 204 upward-going reconstructed events in the
AMANDA-B10 experiment and MC simulated distribution of upward muon tracks due to
atmospheric neutrinos. The size of the hatched boxes indicates the statistical precision
of the atmospheric neutrino simulation. The Monte Carlo prediction is normalized to the
data. [From J. Ahrens et al. (2002); see caption to Fig. 103.]
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Figure 110: Reconstructed neutrino spectra in AMANDA-II. Left panel: on filter level
(solid: energy distribution of atmospheric neutrino expectation, boxes: unfolded energy
distribution of AN (MC), points: reconstructed data). Right panel: reconstructed fluxes
compared to Fréjus data. [From H. Geenen (for the AMANDA Collaboration), contribution to the 28th

ICRC, Tsukuda, Japan, July 31 – August 7, 2003 (see the AMANDA Berkeley Group homepage <http://area51.

berkeley.edu/>).]



34 KM3 projects (IceCube, NEMO, NESTOR,...)

Figure 111: Future KM3 neutrino telescope geometries. Left panel: schematic view of
a homogeneous detector with 8000 PMTs (not quite optimal to be built); middle panel:
the layout of a NESTOR-like detector with 8750 PMTs; right panel: the layout of a
NEMO-like detector with 4096 PMTs. These three designs have very different degrees of
homogeneity. One more difference may be due to various numbers of downward-looking
and upward-looking PMTs (down-down, up-down, etc.).
[From D. Zaborov, “Comparison of different KM3 designs using Antares tools,” in Proc. of the Workshop on Technical

Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea “’VLVνT’, Amsterdam, October 5-8,

2003, ed. by E. de Wolf (NIKHEF, Amsterdam, The Netherlands), pp. 104–108.]
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35 List of relevant experimental projects

• Experiments at LNGS [+ CERN ν beam(s)]:
� 0.2 kton iron/emulsion detector OPERA (Oscillation Project with Emulsion–tRacking

Apparatus),

� ICANOE = 5 kton solid target ICARUS (Imaging Cosmic And Rare Underground Signals)

+ 8 kton solid target NOE (Neutrino Oscillation Experiment),

� 34 kton magnetized tracking calorimeter MONOLITH (Massive Observatory for Neutrino

Oscillations or LImits on THeir existence);

• experiments with NuMI (Neutrinos at the Main Injector) beam line facility at FNAL:
� MINOS (Main Injector Neutrino Oscillation Search) with two magnetized iron detectors

[near (∼ 1 kton) + far (5.4 kton)], atmospheric ν analysis underway (!),

� MINERνA (Main INnjector ExpeRiment: ν-A),

� NOνA (NuMI Off-Axis νe Appearance experiment);

• 650 kton underground water Cherenkov detector UNO (Ultra underground Nucleon
detector and neutrino Observatory);

• Multi-megaton water Cherenkov detector TITAND (Totally Immersible Tank Assaying
Nucleon Decay) [former name TITANIC];

• and many others [(Mini)BooNE, FLARE and MiniLANNDD at FNAL, LANNDD at
WIPP, 3M at NUSEL, Super-ICARUS and Aqua-RICH at LNGS, T2K at J-PARC,
Hyper-Kamiokande, MEMPHYS at Fréjus, INO, SCIPIO,. . .



36 Project MEMPHYS as an example

The MEMPHYS (MEgaton Mass PHYSics) is a project for a Megaton scale water
Cherenkov detector in a large international underground laboratory in the Fréjus tunnel.a

aFor more details see J. E. Campagne, M. Maltoni, M. Mezzetto, and T. Schwetz, “Physics potential
of the CERN-MEMPHYS neutrino oscillation project,” hep-ph/0603172 and references therein.



A preliminary investigation shows the feasibility to excavate in the middle of the Fréjus
tunnel at a depth of 4800 m.w.e. up to five shafts of about 250, 000 m3 each to place 3
to 4 water Cherenkov modules and a liquid argon detector (of about 100 kt total mass).



Main results of the preliminary study are

1. the best site (rock quality) is found in
the middle of the mountain, at a depth
of 4800 m.w.e.;

2. of the two considered shapes : “tunnel”
and “shaft”, the “shaft (= well) shape”
is strongly preferred;

3. Cylindrical shafts are feasible up to a
diameter � = 65 m and a full height
h = 80 m (volume ≈ 250, 000 m3);

4. with “egg shape” or an “intermediate
shape” the volume of the shafts could
be still increased (to � = 70 m);

5. the estimated cost is
∼ 80× 106 Euros× Number of shafts.

Detector basic unit:

a cylinder (a la SK) 65 m diameter and 65 m
height⇒ 215 kt of water (∼ 4× SK) taking
out 4 m from outside for veto and fiducial cut
⇒ 146 kt fiducial target.



Mechanics and photoelectonics is under R&D to minimize the cost to quality ratio.



Physics goals and potential

� proton decay (for 5 Megaton× years):

– τ
(
p→ e+p0

) ≈ 1035 years,

– τ (p→ nKp+) ≈ 2× 1034 years,

– complementarity with liquid argon detector.

� Neutrino bursts from supernovae explosion (collapse studies and explosion alerts):

– ∼ 200, 000 events from a SN at 10 kpc,

– ∼ 30 events from Andromeda,

– ∼ 2 events at 3 Mpc.

� Relic Neutrinos from past supernovae explosions (for 5 Megaton× years):

– ∼ 100 events with pure water,

– 2000/4000 events with gadolinium loaded water.

� Solar and atmospheric neutrinos.

� Neutrino SPL super-beam (SB) and beta-beam (βB) from CERN.


