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Part I



1 Bruno Pontecorvo

Bruno M. Pontecorvo (Pisa, August 22,

1913 – Dubna, September 24, 1993)
was a great physicist who had enormous
impact on the development of neutrino
physics. In particular he was the pio-
neer of neutrino oscillations. He came
to this idea in 1957, soon after the two-
component neutrino theory was proposed
by Landau, Lee and Yang and Salam and
confirmed by Goldhaber et al.

It was very nontrivial to propose neutrino
oscillations in 1957, at the time when only
one type of neutrino was known. Oscil-
lations which B. Pontecorvo considered
were νL ⇄ νL i.e. oscillations between
active and sterile neutrinos.a

aB. Pontecorvo proposed the existence of ster-
ile neutrinos as well as the term “sterile neutrino”
itself (1967) so popular nowadays.

[From the JINR’s official site about Bruno Pontecorvo,

URL: <http://pontecorvo.jinr.ru/> .]



Chlorine-Argon idea (Canada). Swinging neutrinos.

Both cartoons were drawn by Mikhail Bilenky for the celebration of Bruno Pontecorvo’s
75th Anniversary held at Dubna (August 1988).
[Borrowed from S. M. Bilenky, “Bruno Pontecorvo: Mister Neutrino,” a report at the 3rd International Workshop

“Neutrino Oscillations in Venice,” Venice, February 7-10, 2006 (physics/0603039).]



2 Neutrino masses and mixing in the Standard Model

2.1 Interaction Lagrangians and currents

The Standard Model (SM) Lagrangians for charged and neutral current neutrino
interactions are assumed to be

LCC
I (x) = − g

2
√

2
jCC
α (x)Wα(x) + H.c. and LNC

I (x) = − g

2 cos θW
jNC
α (x)Zα(x).

Here g is the SU(2) (electro-weak) gauge coupling constant

g2 = 4
√

2M2
WGF , g sin θW = |e|

and θW is the weak mixing (Weinberg) angle (sin2 θW(MZ) = 0.23120).

The leptonic charged current and neutrino neutral current are given by the expressions:

jCC
α (x) = 2

∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNC
α (x) =

∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

The currents may include (yet unknown) heavy neutrinos and corresponding charged
leptons. The left- and right-handed fermion fields are defined as usually:

νℓ,L/R(x) =

(
1± γ5

2

)
νℓ(x) and ℓL/R(x) =

(
1± γ5

2

)
ℓ(x).



Note that the kinetic term of the Lagrangian includes both L and R handed neutrinos
and moreover, it can include other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γαν(x)] ≡

i

2
ν(x)
←→
∂ ν(x)

=
i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)
νµ(x)
ντ (x)
.
.
.



, νL/R(x) =




νe,L/R(x)
νµ,L/R(x)
ντ,L/R(x)

.

.

.




=
1± γ5

2




νe(x)
νµ(x)
ντ (x)
.
.
.



.

Neutrino chirality:

γ5νL = −νL, γ5νR = +νR,

There are two types of possible neutrino mass terms: Dirac and Majorana.



2.2 Dirac neutrinos

The Dirac mass term has the form

LD(x) = −νR(x)MDνL(x) + H.c.,

where MD is a N ×N complex nondiagonal matrix. In general, N ≥ 3 that is the
column νL may include the heavy active neutrino fields as well as sterile neutrino fields
which do not enter into the standard charged and neutral currents.

An arbitrary complex matrix can be diagonalized by means of an appropriate biunitary

transformation. One has

MD = ṼmV†, m = ||mkl|| = ||mkδkl||,
where V and Ṽ are unitary matrices and mk ≥ 0. Therefore

LD(x) = −ν′
R(x)mν

′
L(x) + H.c. = −ν′(x)mν

′(x) = −
N∑

k=1

mkνk(x)νk(x),

ν
′
L(x) = V†

νL(x), ν
′
R(x) = Ṽ†

νR(x), ν
′(x) = (ν1, ν2, . . . , νN )

T
.

It is easy to prove that the kinetic term in the neutrino Lagrangian is transformed to

L0 =
i

2
ν ′(x)

←→
∂ ν

′(x) =
i

2

∑

k

νk(x)
←→
∂ νk(x).



Hence, one can conclude that νk(x) is the field of a Dirac neutrino with the mass mk

and the flavor LH neutrino fields νℓ,L(x) present in the standard weak lepton currents
are linear combinations of the LH components of the fields of neutrinos with definite
masses:

νL = Vν
′
L or νℓ,L =

∑

k

Vℓkνk,L.

The matrix V is sometimes referred to as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino (vacuum) mixing matrix.a

It can be proved that the Lagrangian of the theory with the Dirac mass term is
invariant with respect to the global gauge transformation

νk(x)→ eiΛνk(x), ℓ(x)→ eiΛℓ(x), Λ = const.

This means that the lepton charge

L =
∑

ℓ=e,µ,τ,...

Lℓ

common to all charged leptons and all neutrinos νk is conserved. However the individual
lepton flavor numbers Lℓ numbers (electron, muon, tauon,...) are no longer conserved.

aOf course it is not the same as the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. It
seems however that the PMNS and CKM matrices are, in a sense, complementary (see below).



2.2.1 Parametrization of mixing matrix for Dirac neutrinos

It is well known that a complex n× n unitary matrix depends on n2 real parameters.

The classical result by Murnaghama states that the matrices from the unitary group
U(n) are products of a diagonal phase matrix

Γ = diag
(
eiα1 , eiα2 , . . . , eiαn

)
,

containing n phases αk, and n(n− 1)/2 matrices whose main building blocks have the
form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0
0 e+iφ

)(
cos θ sin θ
− sin θ cos θ

)

︸ ︷︷ ︸
Euler rotation

(
1 0
0 e−iφ

)
.

Therefore any n× n unitary matrix can be parametrized in terms of

n(n− 1)/2 “angles” (taking values within [0, π/2])

and
n(n+ 1)/2 “phases” (taking values within [0, 2π)).

The usual parametrization of both the (CKM) and (PMNS) matrices is of this type.

aF. D. Murnagham, “The unitary and rotation groups,” Washington, DC: Sparta Books (1962).



One can reduce the number of the phases further by taking into account that the
Lagrangian with the Dirac mass term is invariant with respect to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibℓνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk.

Therefore 2N − 1 phases are unphysical and the number of physical (Dirac) phases is

nD =
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

nD(2) = 0, nD(3) = 1, nD(4) = 3, . . .

The nonzero phases lead to the CP and T violation in the neutrino sector.



Three-neutrino case

In the most interesting (today!) case of three lepton generations one defines the
orthogonal rotation matrices in the ij-planes which depend upon the mixing angles θij :

O12 =



c12 s12 0
−s12 c12 0

0 0 1




︸ ︷︷ ︸
Solar matrix

, O13 =



c13 0 s13
0 1 0
−s13 0 c13




︸ ︷︷ ︸
Bona vacantia (as yet)

, O23 =




1 0 0
0 c23 s23
0 −s23 c23




︸ ︷︷ ︸
Atmospheric matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dirac phase factor:

Γ D = diag
(
1, 1, eiδ

)
.

The parameter δ is commonly referred to as the Dirac CP-violation phase.

Finally, by taking into account the Murnagham theorem, the PMNS mixing matrix for
the Dirac neutrinos can be parametrized asa

V(D) = O23Γ DO13Γ
†
DO12

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 .

aThis is the Chau–Keung presentation advocated by the PDG for both CKM and PMNS matrices.



Since the Dirac mass term violates conservation of the individual lepton numbers
Le, Lµ and Lτ , it allows many lepton family number violating processes, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

Table 1: Current limits on the simplest lepton family number violating µ and τ decays.
[From S. Eidelman et al. (Particle Data Group), “Review of particle physics,” Phys. Lett. B 592 (2004) 1–1109.].

Decay Modes Fraction C.L. Decay Modes Fraction C.L.

µ− → νeνµ < 1.2% 90% τ− → e−γ < 2.7× 10−6 90%
µ− → e−γ < 1.2× 10−11 90% τ− → µ−γ < 1.1× 10−6 90%
µ− → e−e+e− < 1.0× 10−12 90% τ− → e−π0 < 3.7× 10−6 90%
µ− → 2γ < 7.2× 10−11 90% τ− → µ−π0 < 4.0× 10−6 90%

However the neutrinoless double beta decaya (A,Z)→ (A,Z + 2) + 2e− and the
processes like K+ → π− + µ+ + e+, K− → π+ + µ− + e−, etc. are forbidden as a
consequence of the total lepton charge conservation.

aHereafter abbreviated as (ββ)0ν .



2.2.2 Neutrinoless muon decay

The Lµ and Le muon decay µ− → e−γ is allowed
if V ∗

µkVek 6= 0 for k = 1, 2 or 3. The corresponding
Feynman diagrams include W loops and thus the
decay width is strongly suppressed by the neutrino
to W boson mass ratios:

R =
Γ (µ− → e−γ)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗
µkVek

mk

mW

∣∣∣∣∣

2

.

Sincemk/mW = 1.24× 10−11 (mk/1 eV), the ra-
tio can be estimated as

R ≈ 3.37× 10−26

∣∣∣∣∣
∑

k

V ∗
µkVek

( mk

1 eV

)∣∣∣∣∣

2

,

while the current experimental upper limit is (at
least!) 15 orders of magnitude larger:

R(exp) < 1.2× 10−11 at 90% C.L.

(see Table 1) =⇒ NO GO...

W W

γ

µ eν kVµk Vek
∗

Wγ

µ eν kVµk Vek
∗

W γ

µ eν kVµk Vek
∗



2.2.3 Nuclear beta decay

The method of measurement of the (anti)neutrino mass through the investigation of the
high-energy part of the β-spectrum was proposed by Perrin (1933) and Fermi (1934).

The first experiments on the measurement of the neutrino mass with this method have been

done by Curran, Angus and Cockcroft (1948) and Hanna and Pontecorvo (1949).

The energy spectrum of electrons in the decay (A,Z)→ (A,Z + 1) + e− + νe isa

dΓ

dT
=
∑

k

|Vek|2
dΓk
dT

, (1)

dΓk
dT

=
(GF cos θC)

2

2π3
ppk (T +me) (Q− T ) |M|2 F (T )θ (Q− T −mk). (2)

Here GF is the Fermi constant, θC is the Cabibbo angle, me, p and T are the mass,
magnitude of the momentum and kinetic energy of the electron, respectively,

pk =
√
E2
k −m2

k =
√

(Q− T )2 −m2
k

is the magnitude of the neutrino momentum, Q is the energy released in the decay
(the endpoint of the β spectrum in case of zero neutrino mass),M is the nuclear
matrix element, and F (T ) is the Fermi function, which describes the Coulomb
interaction of the final particles. The step function in Eq. (2) ensures that a neutrino

aThe recoil of the final nucleus and radiative corrections (luckily small) are neglected.



state νk is only produced if its total energy is larger than its mass: Ek = Q− T ≥ mk.

As it is seen from Eq. (1), the largest distortion of the β-spectrum due to neutrino
masses can be observed in the region

Q− T ∼ mk. (3)

However, for max (mk) ≃ 1 eV only a very small part (about 10−13) of the decays give
contribution to the region (3). This is the reason why in the analysis of the results of
the measurement of the β-spectrum a relatively large part of the spectrum is used.b

Taking this into account and applying unitarity of the mixing matrix, we can write

∑

k

|Vek|2 pk≈
∑

k

|Vek|2 (Q− T )

[
1− m2

k

2(Q− T )2

]

= (Q− T )

[
1− 1

2(Q− T )2

∑

k

|Vek|2m2
k

]
≈
√

(Q− T )2 −m2
β,

where the effective neutrino mass mβ is defined by

m2
β =

∑

k

|Vek|2m2
k

and it was assumed that max
(
m2
k

)
≪ 4(Q− T )2.

bFor example, in the Mainz tritium experiment (see below) the last 70 eV of the spectrum is used.



Finally, the β-spectrum that is used for
fitting the data can be presented as

dΓ

dT
∝ p (T +me) |M|2 F (T )K2(T ),

where

K(T )∝
√

dΓ/dT

p (T +me) |M|2 F (T )

≈ (Q− T )

[
1−

m2
β

(Q− T )2

]1/4

is the so-called Kurie plot.

Unfortunately, the real situation is much
more complicated.

Kurie plot for allowed processes is a sen-
sitive test of the effective neutrino mass
mβ while the first order forbidden processes
should have a distorted Kurie plot.

In an actual experiment, the measurable quantity is a sum of β spectra, leading each
with probability Pn = Pn(E0 − Vn −E) to a final state n of excitation energy Vn:

dΓ (T,Q)

dT
7−→

∑

n

Pn (E0 − Vn − E)
dΓ (T,E0 − Vn)

dT
.

Here E0 = Q− E and E is the recoil energy of the daughter nucleus.



Example: Tritium beta decay. a

An important issue is the decay of molecular

tritium T2 →
(
3HeT

)+
+ e− + νe. Consid-

ering the most precise direct determination
of the mass difference

m(T)−m
(
3He

)
= (18590.1± 1.7) eV/c2

and taking into account the recoil and appa-
rative effects (these are taken for the Mainz
experiment) one derives an endpoint energy

of the molecular ion
(
3HeT

)+
ground state:

E0 = (18574.3± 1.7) eV.

The excitation spectrum is shown in the fig-
ure. The first group concerns rotational and
vibrational excitation of the molecule in its
electronic ground state; it comprises a frac-
tion of Pg = 57.4% of the total rate.

x 10

(  He T)3 +
Elastic group
 <V  >  = 1.73 eVg

gap

First excited state
 <V  >  = 24 eV1

Excitation spectrum of the daughter

molecular ion
(
3HeT

)+
in β decay of

molecular tritium.

aFor more details, see C. Kraus et al., “Final results from phase II of the Mainz neutrino mass search
in tritium β decay,” Eur. Phys. J. C 40 (2005) 447–468 (hep-ex/0412056).
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V/
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Year

Curran, Angus & Cockroft
Hanna & Pontecorvo

Langer & Moffat
Hamilton & Gross

Bergkvist
ITEP (1)
ITEP (2)

Zurich
INS (Tokyo)
Los Alamos
Mainz

Troitsk
Troitsk

Mainz

Progress of the neutrino mass measurements
in tritium β decay, including the final Mainz
phase II upper limit (see below).
[The compilation is taken from V. M. Lobashev, “Direct

search for mass of neutrino,” in Proceedings of the 18th

International Conference on Physics in Collision (“PIC 98”),

Frascati, June 17–19, 1998, pp. 179–194.]

The history of the search for the neu-
trino mass in the tritium β decay counts
almost 55 years (see figure). In 1980,
the steady improvement of the upper
limit was suddenly speeded up by a re-
port of the ITEP group (Moscow) on
the observation of the nonzero neutrino
mass effect in the β-spectrum in the
valine molecule (C5H11NO2). The re-
ported result wasa

14 ≤ mβ ≤ 46 eV/c2 (99% C.L.)

This research stimulated more than 20
experimental proposals with an inten-
tion to check this clime. Alas!. . . in se-
veral years the experimental groups from
Zurich, Tokyo, Los Alamos, and then
Livermore refuted the ITEP result.

aV. A. Lyubimov et al., “An estimate of the
νe mass from the β-spectrum of tritium in the
valine molecule,” Phys. Lett. B 94 (1980) 266–
268 (327 citations in SPIRES!)



The top figure shows the data points
from the tail of the β-spectrum mea-
sured in the Los Alamos tritium experi-
ment compared with the expected val-
ues (the straight line) formβ = 30 eV.
The data wander from the line, ruling
out the possibility of a 30-eV neutrino.
The bottom figure shows the same
data points compared with the expec-
tation for mβ = 0. While the data
clearly favor a neutrino mass of zero,
the best fit is actually for a slightly
negative mβ . (Note that in the bot-
tom plot, the data points lie, on aver-
age, slightly above the line, so this is
not a perfect fit.) Both plots display
“residuals,” which indicate how many
standard deviations each data point is
from a particular hypothesis.
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[Borrowed from T. J. Bowles and R. G. H. Robertson (as told to D. Kestenbaum), “Tritium beta decay and the
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The Troitsk group reported on a step like anomaly which appeared in their integral
spectra with an amplitude of about 6× 10−11 of the total decay rate and at variable
positions in the range from 5 to 15 eV below the endpoint.
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The change in time of the positions of these steps seemed to be compatible with a half
year period. The phenomenology and origin of the Troitsk anomaly are barely known.



Published results of the squared neutrino
mass values m2

β obtained from tritium de-
cay since 1990 are shown in figure. The al-
ready finished experiments at Los Alamos,
Zürich, Tokyo, Beijing and Livermore used
magnetic spectrometers, the experiments
at Troitsk and Mainz are using electro-
static filters with magnetic adiabatic col-
limation. The progress in the observable
mβ of the final Mainz result as compared
to the most sensitive earlier experiments
using momentum analysing spectrometers
approaches 2 orders of magnitude.

The Mainz experiment does not con-
firm the Troitsk anomaly being however
compatible with the main Troitsk result
m2
β = (−2.3± 2.5stat ± 2.0syst) eV2/c4.

Year

The final Mainz Phase II limit:
  m  < 2.3 eV/c   (95% C.L.)2
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  )
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..

[From C. Kraus et al., “Final results from phase II of

the Mainz neutrino mass search in tritium β decay,” Eur.

Phys. J. C 40 (2005) 447–468 (hep-ex/0412056).]

The negative m2
β sector is not necessarily unphysical and might also be fitted by a

model with tachyonic neutrinos. But this point would come up only in case of an
unambiguous experimental negative m2

β result.



2.3 Majorana neutrinos

The charge conjugated bispinor field ψc is defined by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,
where C is the charge-conjugation matrix which satisfies the conditions

CγTαC
† = −γα, CγT5 C

† = γ5, C† = C−1 = C, CT = −C,
and thus coincides (up to a phase factor) with the inversion of the axes x0 and x2:

C = γ0γ2 =

(
0 σ2

σ2 0

)

Reminder:

The Pauli matrices:

σ0 ≡ 1 =

�

1 0
0 1

�

, σ1 =

�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�

.

The Dirac matrices:

γ0 = γ0 =

�

σ0 0
0 −σ0

�
, γk = −γk =

�
0 σk

−σk 0

�
, k = 1, 2, 3, γ5 = γ5 = −

�

0 σ0

σ0 0

�

.



Clearly a charged fermion field ψ(x) is different from the charge conjugated field ψc(x).

But for a neutral fermion field ν(x) the equality νc(x) = ν(x) is not forbidden.

This is the Majorana conditiona (Majorana neutrino and antineutrino coincide).

In the chiral representation

ν =

(
φ
χ

)
, νc = CνT =

(
−σ2χ

∗

+σ2φ
∗

)
.

According to the Majorana condition

φ = −σ2χ
∗ and χ = σ2φ

∗ =⇒ φ+ χ = σ2 (φ− χ)
∗
.

(The Majorana neutrino is two-component, i.e. needs only one chiral projection). Then

νL =

(
1 + γ5

2

)
ν =

(
φ− χ
χ− φ

)
and νR =

(
1− γ5

2

)
ν =

(
φ+ χ
φ+ χ

)
= νcL.

Therefore
ν = νL + νR = νL + νcL.

Now we can construct the Majorana mass term in the general N -neutrino case. It is

LM(x) = −1

2
ν
c
L(x)MMνL(x) + H.c.,

aMore generally, νc(x) = eiφν(x) (φ = const).



where MM is a N ×N complex nondiagonal matrix and, in general, N ≥ 3.

It can be proved that the MM should be symmetric,

MT
M = MM.

If one assume for a simplification that its spectrum is nondegenerate, the mass matrix
can be diagonalized by means of the following transformation

MM = V∗mV†, m = ||mkl|| = ||mkδkl||,
where V is a unitary matrix and mk ≥ 0. Therefore

LM(x) = −1

2

[
(ν′

L)cmν
′
L + ν′

Lm(ν′
L)c
]

= −1

2
ν ′mν

′ = −1

2

N∑

k=1

mkνkνk,

ν
′
L = V†

νL, (ν ′
L)c = C

(
ν′
L

)
T , ν

′ = ν
′
L + (ν ′

L)c.

The last equality means that the fields νk(x) are Majorana neutrino fields.

Considering that the kinetic term in the neutrino Lagrangian is transformed to

L0 =
i

4
ν ′(x)

←→
∂ ν

′(x) =
i

4

∑

k

νk(x)
←→
∂ νk(x),

one can conclude that νk(x) is the field with the definite mass mk.



The flavor LH neutrino fields νℓ,L(x) present in the standard weak lepton currents are
linear combinations of the LH components of the fields of neutrinos with definite
masses:

νL = Vν
′
L or νℓ,L =

∑

k

Vℓkνk,L.

Of course neutrino mixing matrix V is not the same as in the case of Dirac neutrinos.

There is no global gauge transformations under which the Majorana mass term (in its
most general form) could be invariant. This implies that there are no conserved lepton
charges that could allow us to distinguish Majorana νs and νs. In other words,

the Majorana neutrinos are truly neutral fermions.

2.3.1 Parametrization of mixing matrix for Majorana neutrinos

Since the Majorana neutrinos are not rephasable, there may be a lot of extra phase
factors in the mixing matrix. The Lagrangian with the Majorana mass term is invariant
with respect to the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk



Therefore N phases are unphysical and the number of the physical phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2︸ ︷︷ ︸
Dirac phases

+ (N − 1)︸ ︷︷ ︸
Majorana phases

= nD + nM;

nM(2) = 1, nM(3) = 2, nM(4) = 3, . . .

In the case of three lepton generations one defines the diagonal matrix with the extra
phase factors: Γ M = diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are commonly referred to as

the Majorana CP-violation phases. Then the PMNS matrix can be parametrized as

V(M) = O23Γ DO13Γ
†
DO12Γ M = V(D)Γ M

=

0� c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

1A0�eiα1/2 0 0

0 eiα2/2 0
0 0 1

1A ,

Neither Lℓ nor L =
∑
ℓ Lℓ is conserved allowing a lot of new processes, for example,

τ− → e+(µ+)π−π−, τ− → e+(µ+)π−K−, π− → µ+νe, K+ → π−µ+e+, K+ → π0e+νe,

D+ → K−µ+µ+, B+ → K−e+µ+, Ξ− → pµ−µ−, Λ+
c → Σ−µ+µ+, etc.

No one was discovered yet but (may be!?) the (ββ)0ν decay. Thus we have to discuss
this issue with some details.



2.3.2 Neutrinoless double beta decay

The theory with Majorana neutrinos allows the de-
cay (A,Z)→ (A,Z + 2) + 2e− with ∆L = 2. The
decay rate for this process is expressed as follows:

[
T 0ν

1/2

]−1

= G0ν
Z |mββ |2

∣∣M0ν
F − (gA/gV )2M0ν

GT

∣∣2,

where G0ν
Z is the two-body phase-space fac-

tor including coupling constant, M0ν
F/GT are the

Fermi/Gamow-Teller nuclear matrix elements. The
constants gV and gA are the vector and axial-vector
relative weak coupling constants, respectively. The
complex parameter mββ is the effective Majorana

electron neutrino mass given by

mββ =
∑

k

V 2
ekmk

= |Ve1|2m1 + |Ve2|2m2e
iφ2 + |Ve3|2m3e

iφ3 ,

eν

eν

e -

e -

W -
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n

n
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p
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d

d

d

u

d
u

e

e
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d

d
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u

d
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d
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Here φ2 = α2 − α1 (pure Majorana phase) and φ3 = −(α2 + 2δ) (mixture of Dirac and
Majorana CP-violation phases).



The electron sum energy spectrum
of the (ββ)2ν mode as well as of
the exotic modes with one or two
majorons in final state,

(A,Z)→ (A,Z + 2) + 2e− + χ,

(A,Z)→ (A,Z + 2) + 2e− + 2χ,

is continuous because the available
energy release (Qββ) is shared be-
tween the electrons and other fi-
nal state particles. In contrast, the
two electrons from the (ββ)0ν de-
cay carry the full available energy,
and hence the electron sum en-
ergy spectrum has a sharp peak at
the Qββ value. This feature allows
one to distinguish the (ββ)0ν de-
cay signal from the background.

The electron sum energy spectra calculated for
the different β decay modes of cadmium-116.
[From Y. Zdesenko, “Colloquium: The future of double beta decay

research,” Rev. Mod. Phys. 74 (2003) 663–684.]

Majoron is a Nambu-Goldstone boson, – a hypothetical neutral pseudoscalar zero-mass particle which
couples to Majorana neutrinos and may be emitted in the neutrinoless β decay. It is a consequence of
the spontaneous breaking of the global B − L symmetry.



Table 2: Summary of the most recent ββ2ν experiments and calculations.
[From E. Fiorini, “Experimental prospects of neutrinoless double beta decay,” Phys. Scripta T121 (2005) 86–93].

T 2ν
1/2 (years)

Element Isotope Measured Calculated

Calcium 48
20Ca 4.2+2.1

−1.0 × 1019 6× 1018 − 5× 1020

Germanium 76
32Ge 1.42+0.09

−0.07 × 1021 7× 1019 − 6× 1022

Selenium 82
34Se (0.9± 0.1)× 1020 3× 1018 − 6× 1021

Zirconium 96
40Zr 2.1+0.8

−0.4 × 1019 3× 1017 − 6× 1020

Molybdenum 100
42Mo (8.0± 0.7)× 1018 1× 1017 − 2× 1022

Molybdenum 100
42Mo (0+∗) (6.8± 1.2)× 1020 5× 1019 − 2× 1021

Cadmium 116
48Cd 3.3+0.4

−0.3 × 1019 3× 1018 − 2× 1021

Tellurium 128
52Te (2.5± 0.4)× 1024 9× 1022 − 3× 1025

Tellurium 130
52Te (9.0± 1.5)× 1020 2× 1019 − 7× 1020

Neodymium 150
60Nd (7.0± 1.7)× 1018 6× 1016 − 4× 1020

Uranium 238
92U (2.0± 0.6)× 1021 1.2× 1019−?× 1021

The standard (ββ)2ν is observed for 10 isotopes with T 2ν
1/2 ∼ 1019−25 years (see table).



The figure summarizes the present
knowledge of the absolute Majo-
rana mass scale. Shown are the
99% CL regions allowed by the neu-
trino oscillation data in the plane of
mββ and mL – the mass of lightest
neutrino. The two bands marked
with ∆m2

23 > 0 and ∆m2
23 < 0

correspond to the normal mass

hierarchy (i.e. m1 ≪ m2 ≪ m3)
and inverted mass hierarchy (i.e.
m3 ≪ m1 ≈ m2), respectively.
For a given mL the range of mββ

is determined by variations of the
Majorana phase and uncertainties
in the neutrino oscillation parame-
ters.
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The darker regions show how the mββ range would shrink if the present best-fit values
of the oscillation parameters were confirmed with negligible error.
[From A. Strumia and F. Vissani, “Implications of neutrino data circa 2005,” Nucl. Phys. B 726 (2005) 294–316

(hep-ph/0503246).]



The only evidence for the (ββ)0ν decay has been obtained by the Heidelberg-Moscow
(HM) (sub)collaboration in the Gran Sasso lab. The HM best value of the effective
neutrino mass is |mββ| = 0.4 eV. Allowing conservatively for an uncertainty of the
nuclear matrix element of ±50% the 3σ confidence range may widen to (0.1− 0.9) eV.
The bars in the figure denote
allowed ranges of |mββ | in
different neutrino mass sce-
narios, still allowed by neu-
trino oscillation experiments.
All models except the degen-

erate one are excluded by
the new (ββ)0ν decay result.
Also shown is the exclusion
line from WMAP, plotted for∑

kmk < 1.0 eV (which is
perhaps too strict). WMAP
does not rule out any of the
neutrino mass schemes.
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| m   | = 0.4 eV
ββ

Further shown are the expected sensitivities for the future potential (ββ)0ν decay
experiments CUORE, MOON, EXO and GENIUS.

[From H. V. Klapdor-Kleingrothaus, “First evidence for neutrinoless double beta decay and world status of double

beta experiments,” hep-ph/0512263.]



Figure shows the HM-2000 and
HM-2003 results in compari-
son with the potential of the
most promising other (ββ)0ν
experiments as well as the ex-
pected potential of several fu-
ture projects. Given are limits
for |mββ|, except for the HM-
2003 experiment where the
measured value is given (con-
fidence range and best value).

[The histogram is built by combining the data from papers H. V. Klapdor-Kleingrothaus et al., “Latest results from

the Heidelberg-Moscow double beta decay experiment,” Eur. Phys. J. A 12 (2001) 147–154 (hep-ph/0103062) and

H. V. Klapdor-Kleingrothaus, “First evidence for neutrinoless double beta decay and world status of double beta

experiments,” in Proceedings of the 11th International Workshop on Neutrino Telescopes, Venice, Feb. 22–25, 2005,

edited by M. Baldo-Ceolin, pp. 215–237 (hep-ph/0512263). ]

New approaches and considerably enlarged experiments are required to fix the (ββ)0ν half life
with higher accuracy. This will, however, only marginally improve the precision of the deduced
effective neutrino mass |mββ | (or its upper limit), because of the uncertainties in the nuclear
matrix elements, which probably hardly can be reduced to less than 50%.



2.4 See-saw mechanism

2.4.1 Dirac-Majorana mass term for one generation

It is possible to consider mixed models in which both Majorana and Dirac mass terms
are present. For simplicity sake we’ll start with a toy model for one lepton generation.

Let us consider a theory containing two independent neutrino fields νL and νR:




νL would generally represent any active neutrino (e.g., νL = νeL),

νR can represents a right handed field unrelated to any of these or

it can be charge conjugate of any of the active neutrinos (e.g., νR = (νµL)c).

We can write the following generic mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸
Dirac mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.c. (4)

⋆ As we know, the Dirac mass term respects L while the Majorana mass term violates it.

⋆ The parameter mD in Eq. (4) is in general complex but we’ll assume it to be real (but not
necessarily positive).

⋆ The parameters mL, and mR in Eq. (4) can be chosen real and (by an appropriate
rephasing the fields νL and νR) non-negative, but the latter is not assumed.

⋆ Obviously, neither νL nor νR is a mass eigenstate.



In order to obtain the mass basis we can apply the useful identitya

νLνR = (νR)c(νL)c

which allows us to rewrite Eq. (4) as follows

Lm = −1

2
(νL, (νR)c)

(
mL mD

mD mR

)(
(νL)c

νR

)
+ H.c. ≡ −1

2
νLM (νL)

c
+ H.c.

If (for simplicity) CP conservation is assumed the matrix M can be diagonalized
through the standard orthogonal transformation

V =

(
cos θ sin θ
− sin θ cos θ

)
with θ =

1

2
arctan

(
2mD

mR −mL

)
.

and we have

VTMV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.

aA particular case of a more general relation ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1
, where ψ1,2 are Dirac spinors

and Γ represents a product of the Dirac γ matrices.



The eigenvalues are real if (as we assume) mD,L,R are real, but not necessarily positive.
Let us define ζk = signmk and rewrite the mass term in the new basis:

Lm = −1

2
[ζ1 |m1| ν1L (ν1L)

c
+ ζ2 |m2| (ν2R)

c
ν2R] + H.c., (5)

The new fields ν1L and ν2R represent chiral components of two different neutrino states
with “masses” m1 and m2, respectively:

(
νL
νcR

)
= V

(
ν1L
νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we define two 4-component fields

ν1 = ν1L + ζ1 (ν1L)
c

and ν2 = ν2R + ζ2 (ν2R)
c
.

Certainly, these fields are self-conjugate,

νck = ζkνk (k = 1, 2)

and therefore they describe Majorana neutrinos. In terms of these fields Eq. (6) is

Lm = −1

2
(|m1| ν1ν1 + |m2| ν2ν2). (6)

We can conclude therefore that νk(x) is the Majorana neutrino field with the definite
(physical) mass |mk|.



There are several special cases of the Dirac-Majorana mass matrix M which are of
considerable phenomenological importance, in particular,

(A): M =

(
0 m
m 0

)
=⇒ |m1,2| = m, θ =

π

4
(maximal mixing)

two Majorana fields are equivalent to one Dirac field;

(B): M =

(
mL m
m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4
(maximal mixing);

(C): M =

(
0 m
m M

)
or, more generally, |mL| ≪ |mR|, mD > 0.

A generalization of case (A), |mL,R| ≪ |mD|, leads to the so-called “Pseudo-Dirac
neutrinos” and to the νL (active) ↔ νR (sterile) oscillations with almost maximal
mixing (tan 2θ ≫ 1).

2.4.2 The See-saw

The case (C) with m≪M is the simplest example of the seesaw mechanism. It leads
to two masses, one very large m1 ≈M other m2 ≈ m2/M ≪ m, suppressed compared
to entries in M. In particular, one can assume

m ∼ mℓ or mq (0.5 MeV to 200 GeV) and M ∼MGUT ∼ 1015−16 GeV.



Then, m2 can ranges from ∼ 10−14 eV to ∼ 0.04 eV. The mixing between the heavy
and light neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13 ≪ 1.



2.4.3 More neutral fermions

A generalization of the above scheme to N generations is almost straightforward but
technically cumbersome. Let’s consider it schematically for N = 3.

– If neutral fermions are added to the SM fields, then the flavour neutrinos can
acquire mass by mixing with them.

– The additional neutrinos can be

• SU(2)× U(1) singlets (e.g., right-handed neutrinos), or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• SU(2)× U(1) triplets (e.g., Wino in SUSY).

– Addition of three right-handed neutrinos NiR leads to the see-saw mechanism with
the following mass terms:

Lm = −
∑

ij

[
νiLM

D
ijNjR −

1

2
(NiR)

c
MR
ijNjR + H.c.

]
.

– The above equation gives the see-saw 6× 6 mass matrix

M =

(
0 mD

mT
D MR

)
.

Both mD and mR are 3× 3 matrices in the generation space.



When MR is nonsingular and its scale M is much larger than that in mR,a one get

mν ∼ −mDM−1
R mT

D.

All the neutrino masses are automatically suppressed due to the large scale M ∼MGUT

in MR. One gets the following mass hierarchy for a diagonal MR

m1 : m2 : m3 ∝ m2
D1 : m2

D2 : m2
D3

Here mDk are eigenvalues of mD. As long as these eigenvalues are hierarchical, the
Majorana neutrino masses also display the hierarchy.

aA large M is natural in, e.g., grand unified SO(10) theories which therefore provide a nice framework
to understand small neutrino masses.



3 Neutrino oscillations in vacuum

3.1 Macroscopic Feynman diagrams

Let us consider two reactions

π+n→ µ+µ−p︸ ︷︷ ︸
allowed in SM

and π+n→ µ+τ−p︸ ︷︷ ︸
forbidden in SM

.

The first one is allowed in the SM while the second
reaction is forbidden by conservation of the individual
lepton numbers Lµ,τ . However, our previous considera-
tion suggests that in a model extended by inclusion of a
Dirac or Majorana mass term these numbers are are no
longer conserved and the second process becomes also
possible through the Feynman diagrams like one shown
in the figure. The diagram describes the process of a
pion decay with subsequent quasielastic neutrino scat-
tering off a neutron with production of a τ lepton. The
4-momenta of the particles are shown in parentheses.

The mass eigenstate neutrino νk is in a virtual state between the space-time points of
its production (x1 = (t1,x1)) and absorption (x2 = (t2,x2)).



The amplitude of the process under consideration,

M(x1, x2) = 〈out|in〉 = 〈µ+, τ−, p|π+, n〉,
is given by the sum of N diagrams with i = 1, 2, . . . , N (N = 3 from here on).

The diagrams are quite unusual considering that the points x1 and x2 are separated by a

macroscopic spatial interval |x1 − x2|. However, there are solid evidences that just the

processes of this kind were already detected in the underground experiments Kamiokande,

IMB, SOUDAN 2, Super-Kamiokande, and MACRO exploring atmospheric neutrinos crossing

the Earth (see Part I of these lectures). Moreover, these results are confirmed by two

accelerator experiments – K2K and (very recently) MINOS (FNAL, NuMI Beam).a

A careful consideration demonstrates that the situation is even more nontrivial.

Neglecting the matter effects, the general structure of the amplitude can be written as

M(x1, x2) =
∑

j

∫
d4y1d

4y2A2(x2 − y2)V ∗
τj Gj(y2 − y1)Vµj A1(y1 − x1),

where A1(y1 − x1) and A2(x2 − y2) are the matrices describing the vertices x1 and x2

(decay and interaction) and
aD. A. Petyt (for the MINOS Collaboration), “First MINOS results from the NuMI Beam,” report in

the University of Minnesota Joint Experimental/Theoretical Physics Seminar, Fermilab March 30,2006.



Gj(y2 − y1) = 〈0|T [νj(y1)νj(y2)] |0〉 = i

∫
d4q

(2π)4
q̂ −mj

q2 −m2
j + i0

eiq(y2−y1)

is the Green function describing the propagation of the virtual neutrino νj between the
space-time points y1 and y2 (T [· · · ] denotes the standard T -ordering operator).

The following simple but important statements can be proved:

⋆ M(x1, x2) ≡ 0 if the neutrino mass spectrum is degenerate (m1 = m2 = m3).
This is an obvious consequence of the unitarity of the mixing matrix which in
particular provides

∑
j VµjV

∗
τj = 0.

⋆ If the wave functions of any of the “colliding” particles (pion or neutron) are plane
waves that is

Φπ(x) = e−ipπx = e−i(Eπt−pπx) or Ψn(x) = e−ipnx = e−i(Ent−pnx),

the amplitude is suppressed by the factor

∑

j

VµjV
∗
τj

(
mj

Eν

)2

= 10−20
∑

j

VµjV
∗
τj

(
mj

1 eV/c2

)2 (
10 GeV

Eν

)2

,

where Eν ≡ k0 = Eπ −Eµ is the virtual neutrino energy (independent of mj).
This is a consequence of the energy-momentum conservation in each vertex.



A nontrivial (but not the most general) situation occures when both wave functions
Φπ(x) and Ψn(x) are localized within neighborhoods of the points x1 and x2:

Φπ(x) = e−iEπtϕπ(x− x1) and Ψn(x) = e−iEntψn(x− x2).

According to the uncertainty principle this means that there is a spread in the momenta
of these particles. In this case, by applying the crucial Grimus-Stockinger theorema one
can prove that in the asymptotic limit L = |x1 − x2| → ∞, M(x1, x2)→M∞(L) and

M∞(L) =
M1M2

L

∑

j

VµjV
∗
τje

iqjL, where qj =
√
E2
ν −m2

j , Eν = Eπ −Eµ.

aSee W. Grimus and P. Stockinger, “Real oscillations of virtual neutrinos,” Phys. Rev. D 54 (1996)
3414–3419 (hep-ph/9603430).

The theorem states: Let Φ = Φ(q) be a 3 times continuously differentiable function such that Φ itself
and all its first and second derivatives decrease at least like |q|−2 for |q| → ∞, a a real number, and

J(L) ≡

Z
d3q

Φ(q)

a− |q|2 + i0
exp (−iqL).

Then in the asymptotic limit L = |L| → ∞ one obtains, for a > 0,

J(L) → −2π2

L
Φ

�
−
√
a l

�
exp

�
i
√
aL

�
+ O

�
L−3/2

�

, l ≡ L

L
,

whereas for a < 0 the integral J(L) decreases like L−2.



To calculate the factors M1 and M2

as functions of the momenta of the ini-
tial and final particles, respectively, one
have to “decipher” the vertices of our
macro-diagram by applying an interac-
tion model (like that shown in the fig-
ure on right). It is by no means a simple

or straightforward task. One can prove
however that after quadrating the am-
plitude we will arrive at something like

L−2 dΓ (π+ → µ+νµ)× P (νµ → ντ )× dσ(ντ + n→ p+ τ),

where dΓ is the differential width of standard pion decay, dσ is the differential cross
section for the quasielastic ντ n interaction and

P (νµ → ντ ) ≡
∣∣∣
∑

j

VµjV
∗
τje

iqjL
∣∣∣
2

The latter can be interpreted as the probability of the transition of real muon neutrino
to real tauon neutrino (both having energy Eν = Eπ −Eµ) on the path L between the
neutrino source (decay) and the detector.

The factor L2 accounts for the geometrical decrease of the neutrino flux.



This obtained result is almost independent of the specific process. This allows us to
generalize it quite straightforwardly and write out the formula for the transition
probability between any neutrino pair:

P (να → νβ) =
∣∣∣
∑

j

VαjV
∗
βje

iqjL
∣∣∣
2

=
∑

jk

VαjVβk (VαkVβj)
∗

exp [i(qj − qk)L]. (7)



Important notes

⋆ In order to obtain M∞ we have performed the asymptotic limit L → ∞. From the proof
of the Grimus-Stockinger theorem it follows that “L large” means

L ≫ 2 × 10−16 m ×

�

1 GeV/Eν

�

,

where Eν is an average neutrino energy. For every thinkable neutrino experiment this is

very well fulfilled and corrections to M∞ are suppressed by 1/

p
Eν .

⋆ The factor 1/L in the asymptotic amplitude corresponds to the geometrical decrease of
the neutrino “flux” by 1/L2 in the “cross section”.

⋆ From the derivation one can conclude that neutrino oscillations between the neutrino with
masses mj and mk can only take place if

|qj − qk| . σ,

where σ is the minimum of the widths of the Fourier transformations of the involved wave
functions. In coordinate space this simply means that corresponding widths must be
smaller than the oscillation lengths defined by

Ljk =
4πEν

m2
j − m2

k

≡
4πEν

∆m2
jk

≈ 2.48 m ×
Eν (MeV)

∆m2
jk (eV2)

.

⋆ The nature of neutrinos (Dirac or Majorana) was not specified in our schematic
consideration. It can be shown however that the difference between MDirac

∞ and MMajorana
∞

is of the order of mj/Eν .



3.2 Quantum mechanical approach

The flavor neutrino eigenstates which can be written as a vector

|ν〉
f

= (|νe〉, |νµ〉, |ντ 〉, . . .)T ≡ (|να〉)T

are defined as the states which correspond to the charge leptons α = e, µ, τ . The
correspondence is established through the charged current interactions of active
neutrinos and charged leptons. In general, the flavor states have no definite masses.

The neutrino mass eigenstates

|ν〉
m

= (|ν1〉, |ν2〉, |ν3〉, . . .)T ≡ (|νk〉)T

are, by definition, the states with the definite masses mk, k = 1, 2, 3, . . ..

Since |να〉 and |νk〉 are not identical, they are related to each other through a unitary
transformation

|να〉 =
∑

k

V̂αk|νk〉 or |ν〉
f

= V̂|ν〉
m
,

where V̂ =‖ V̂αk ‖ is a unitary (in general, N×N) matrix. In order to find out the

correspondence between V̂ and the PMNS mixing matrix V we can normalize the “f”
and “m” states by the following conditions

〈0|ναL(x)|να′〉 = δαα′ and 〈0|νkL(x)|νk′〉 = δkk′ .



From these coditions we obtain
∑

k

VαkV̂α′k = δαα′ and
∑

α

VαkV̂αk′ = δkk′ .

Therefore
V̂ ≡ V†

and
|ν〉

f
= V†|ν〉

m
⇐⇒ |ν〉

m
= V|ν〉

m
.

The time evolution of a single mass eigenstate |νk〉 with momentum pν is trivial,

i
d

dt
|νk(t)〉 = Ek|νk(t)〉 =⇒ |νk(t)〉 = e−iE2(t−t0)|νk(t0)〉,

where Ek =
√
p2
ν +m2

k is the total energy in the state |νk〉. Therefore, assuming that
all the components of the neutrino wave packet have the same momenta, one can write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉

m
, where H0 = diag (E1, E2, E3, . . .). (8)

(H0 is the vacuum Hamiltonian.) From Eqs. (53) and (8) we have

i
d

dt
|ν(t)〉

f
= V†H0V|ν(t)〉

f
. (9)



Solution to this equation is obvious:

|ν(t)〉
f

= V†e−iH0(t−t0)V |ν(t0)〉f
= V† diag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V |ν(t0)〉f . (10)

In the ultrarelativistic limit p2
ν ≫ m2

k, which is valid for almost all interesting
circumstances (except for the relic neutrinos),

Ek =
√
p2
ν +m2

k ≈ pν +
m2
k

2pν
≈ Eν +

m2
k

2Eν
.

By applying this approximation and Eq. (10) one can derive the survival and transition
probabilities

P [να(t0)→ νβ(t)]≡ Pαβ(t− t0) = |〈νβ(t)|να(t0)〉|2

=
∣∣∣
∑

k

VαkV
∗
βk exp [iEk(t− t0)]

∣∣∣
2

=
∑

jk

VαjVβk (VαkVβj)
∗

exp [i(Ej −Ek)(t− t0)]

≈
∑

jk

VαjVβk (VαkVβj)
∗

exp
[
i∆m2

jk(t− t0)/2Eν
]
.



The next standard approximation is

vk = pν/Ek ≈ c = 1

from which it follows that

t− t0 ≈ L = source–detector distance.

This approximation is in fact contradictory since the corresponding corrections are also

of the order of m
/
kEν . However, only with this approximation we arrive at the formulaa

Pαβ(L) ≈
∑

jk

VαjVβk (VαkVβj)
∗

exp
(
i∆m2

jkL/2Eν
)

=
∑

jk

VαjVβk (VαkVβj)
∗

exp [2iπL/Ljk], (11)

which marvellously and enigmatically fits the field-theoretical (“diagrammatic”) result
(7) (written in the ultrarelativistic limit).

The range of applicability of the standard quantum-mechanical approach is very limited.

aAs above, Ljk = 4πEν/∆m2
jk are the oscillation lengths.



3.2.1 Simplest case: two flavor vacuum oscillations

Let us now consider the simplest 2-flavor case with i = 2, 3 and α = µ, τ (the most
favorable due to the SK and other underground experiments). The 2× 2 vacuum
mixing matrix can be parametrized (due to the unitarity) with a single parameter,
θ = θ23, the vacuum mixing angle,

V =

(
cos θ sin θ
− sin θ cos θ

)
, 0 ≤ θ ≤ π/2.

Equation (11) then becomes very simple:

Pαα′(L) =
1

2
sin2 2θ

[
1− cos

(
2πL

Lv

)]
,

Lv ≡ L23 =
4πEν
∆m2

23

≈ 2R⊕

(
Eν

10 GeV

)(
0.002 eV2

∆m2
23

)

where R⊕ is the mean radius of the Earth. Since 10 GeV is a typical energy for the
atmospheric neutrinos, the Earth is surprisingly very suitable for studying the
atmospheric neutrino oscillations in rather wide range of the parameter ∆m2

23.



4 Neutrino oscillations in matter

4.1 Neutrino refraction in matter

It has been noted by Wolfensteina that neutrino oscillations in a medium are affected by
interactions even if the thickness of the medium is negligible in comparison with the
neutrino mean free path.

Let us forget for the moment about the inelastic collisions and consider the simplest
case of a ultrarelativistic neutrino which moves in an external (effective) potential W
formed by the matter background. If the neutrino momentum in vacuum was p then its
energy was ≃ p = |p|. When the neutrino enters into the medium, its energy becomes
E = p+W . Let us now introduce the index of refraction n = p/E which is a positive
value in the absence of inelastic collisions. Therefore

W = (1− n)E ≃ (1− n)p. (12)

In the last step, we took into account that neutrino interaction with matter is very
weak, |W | ≪ E, and thus E ≃ p is a good approximation.

The natural generalization of Eq. (9) for the time evolution of neutrino flavor states in
matter then follows from this simple consideration and the quantum-mechanical
correspondence principle.

aL. Wolfenstein, Phys. Rev. D 17 (1978) 2369.



This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V

† + W(t)
]
|ν(t)〉

f
, (13)

where
W(t) = diag

(
1− nνe

, 1− nνµ
, 1− nντ

, . . .
)

(14)

is the interaction Hamiltonian.

It will be useful for the following to introduce the time-evolution operator for the flavor
states defined by

|ν(t)〉
f

= S(t)|ν(0)〉
f
.

Taking into account that |ν(t)〉
f

must satisfy Eq. (13) for any initial condition

|ν(t = 0)〉
f

= |ν(0)〉
f
, the Wolfenstein equation can be immediately rewritten in terms

of the evolution operator:

iṠ(t) =
[
VH0V

† + W(t)
]
S(t), S(0) = 1. (15)

This equation (or its equivalent (13)) cannot be solved analytically in the general case
of a medium with a varying (along the neutrino pass) density. But for a medium with a
slowly (adiabatically) varying density distribution the approximate solution can be
obtained by a diagonalization of the effective Hamiltonian. Below we will consider this
method for a rather general 2-flavor case but now let us illustrate (without derivation)
the simplest situation with a matter of constant density.



4.1.1 Matter of constant density

In the 2-flavor case, the transition probability is given by the formula very similar to
that for vacuum:

Pαα′(L) =
1

2
sin2 2θm

[
1− cos

(
2πL

Lm

)]
,

Lm = Lv

[
1− 2κ (Lv/L0) cos θ + (Lv/L0)

2
]−1/2

.

The Lm is called the oscillation length in matter and is defined through the following
quantities:

Lv ≡ L23 =
4πE

∆m2
, L0 =

√
2πA

GFNAZρ
≈ 2R⊕

(
A

2Z

)(
2.5 g/cm

3

ρ

)
,

κ = sign
(
m2

3 −m2
2

)
, ∆m2 =

∣∣m2
3 −m2

2

∣∣ .
The parameter θm is called the mixing angle in matter and is given by

sin 2θm = sin 2θ

(
Lm

Lv

)
, cos 2θm =

(
cos 2θ − κLv

L0

)(
Lm

Lv

)
.

The solution for antineutrinos is the same but with the replacement κ 7→ −κ. The
closeness of the value of L0 to the Earth’s diameter is even more surprising than that
for Lv. The matter effects are important for atmospheric neutrinos.



“The matter doesn’t matter”

Lincoln Wolfenstein, lecture given at 28th
SLAC Summer Institute on Particle Physics
“Neutrinos from the Lab, the Sun, and the
Cosmos”, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vacuum there is a phase change

exp
(
−im2

i t/2pν
)
.

For two mixed flavors there is a resulting oscillation with length

Lvac =
4πEν
∆m2

≈ D⊕

(
Eν

10 GeV

)(
0.002 eV2

∆m2

)
.

In matter there is an additional phase change due to refraction associated with forward
scattering

exp [ipν(Ren− 1)t]

and the characteristic length (for a normal medium) is

Lref =

√
2A

GFNAZρ
≈ D⊕

(
A

2Z

)(
2.5 g/cm

2

ρ

)
.

It is generally believed that the imaginary part of the index of refraction n which
describes the neutrino absorption due to inelastic interactions does not affect the



oscillation probabilities or at the least inelastic interactions can be someway decoupled

from oscillations.

The conventional arguments are

✦ Ren− 1 ∝ GF while Imn ∝ G2
F

✦ Only ∆n may affect the oscillations and ∆Imn is all the more negligible.

It will be shown that these arguments do not work for sufficiently high neutrino energies
and/or for thick media =⇒ in general absorption cannot be decoupled from refraction
and mixing.

By using another cant phrase of Wolfenstein, one can say that

“In some circumstances the matter could matter.”



4.2 Propagation of high-energy mixed neutrinos through matter

4.2.1 Generalized MSW equation

Let fναA(0) be the amplitude for the να zero-angle scattering from particle A of the
matter background (A = e, p, n, . . .),
ρ(t) – the matter density (in g/cm3),
YA(t) – the number of particles A per amu in the point t of the medium,
N0 = 6.02214199× 1023 cm−3 – the reference particle number density (numerically
equal to the Avogadro’s number).

Then the index of refraction of να for small |n− 1| is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑

A

YA(t)fναA(0),

where pν is the neutrino momentum. Since the amplitude fναA(0) is in general a
complex number, the index of refraction is also complex. Its real part is responsible for
neutrino refraction while the imaginary part – for absorption. From the optical theorem
of quantum mechanics we have

Im [fναA(0)] =
pν
4π
σtot
ναA (pν) .



This implies that

pν Im [nα(t)] =
1

2
N0ρ(t)

∑

A

YA(t)σtot
ναA (pν) =

1

2Λα (pν , t)
,

where Λα (pν , t) is the mean free path of να in the point t of the medium.

Note:

The dimension of Λα is cm,

Λα (pν , t) =
1

Σtot
α (pν , t)

=
λtot
a (pν , t)

ρ(t)
.

Since the neutrino momentum, pν , is an extrinsic variable in Eq. (16), we will
sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =

(
Sαα(t) Sαβ(t)
Sβα(t) Sββ(t)

)

of two mixed stable neutrino flavors να and νβ propagating through an absorbing
medium can be written as

i
d

dt
S(t) =

[
VH0V

T + W(t)
]
S(t), (S(0) = 1) . (16)



Here

V =

(
cos θ sin θ
− sin θ cos θ

)
is the vacuum mixing matrix (0 ≤ θ ≤ π/2),

H0 =

(
E1 0
0 E2

)
is the vacuum Hamiltonian for ν mass eigenstates,

Ei =
√
p2
ν +m2

i ≃ pν +m2
i /2pν is the energy of the νi eigenstate,

W(t) = −pν
(
nα(t)− 1 0

0 nβ(t)− 1

)
is the interaction Hamiltonian.

4.2.2 Master equation

It is useful to transform MSW equation into the one with a traceless Hamiltonian. For
this purpose we define the matrix

S̃(t) = exp

{
i

2

∫ t

0

Tr [H0 + W(t′)] dt′
}

S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1 (17)



Here

H(t) =

(
q(t)−∆c ∆s

∆s −q(t) + ∆c

)
,

∆c = ∆ cos 2θ, ∆s = ∆ sin 2θ, ∆ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1

2
pν [nβ(t)− nα(t)] .

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] 6= Im [fναA(0)] .

The neutrino oscillation probabilities are

P [να(0)→ να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣
2

, (18)

where

A(t) = exp

[
−
∫ t

0

dt′

Λ(t′)

]
,

1

Λ(t)
=

1

2

[
1

Λα(t)
+

1

Λβ(t)

]
.

Owing to the complex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no conventional relations
between Pαα′(t).



Since

qI(t) =
1

4

[
1

Λβ(t)
− 1

Λα(t)

]
,

the matrix H(t) becomes Hermitian when Λα = Λβ. If this is the case at any t, the ME
reduces to the standard MSW equation and inelastic scattering results in the common
exponential attenuation of the probabilities. probabilities. From here, we shall consider
the more general and more interesting case, when Λα 6= Λβ.

Examples

να − νs This is the extreme example. Since Λs =∞, we have Λ = 2Λα and

qI = −1/4Λα. So qI 6= 0 at any energy. Even without solving the evolution equation,
one can expect the penetrability of active neutrinos to be essentially modified in this
case because, roughly speaking, they spend a certain part of life in the sterile state. In
other words, sterile neutrinos “tow” their active companions through the medium as a
tugboat. On the other hand, the active neutrinos “retard” the sterile ones, like a bulky
barge retards its tugboat. As a result, the sterile neutrinos undergo some absorption.

νe,µ − ντ Essentially at all energies, σCC
νe,µN

> σCC
ντN

. This is because of large value of

the τ lepton mass, mτ , which leads to several consequences:

✦ high neutrino energy threshold for τ production;

✦ sharp shrinkage of the phase spaces for CC ντN reactions;



✦ kinematic correction factors (∝ m2
τ ) to the nucleon structure functions (the

corresponding structures are negligible for e production and small for µ production).

The neutral current contributions are canceled out from qI . Thus, in the context of the
master equation, ντ can be treated as (almost) sterile within the energy range for
which σCC

νe,µN
≫ σCC

ντN
(see Figs. 2–4 below).

νe − να A similar situation, while in quite a different and narrow energy range, holds

in the case of mixing of νe with some other flavor. This is a particular case for a normal
C asymmetric medium, because of the W boson resonance formed in the neighborhood
of Eres

ν = m2
W /2me ≈ 6.33 PeV through the reactions

νee
− →W− → hadrons and νee

− →W− → νℓℓ
− (ℓ = e, µ, τ).

Let’s remind that σtot
νee
≈ 250 σtot

νeN
just at the resonance peak (see Fig. 1 and Table 3

below).
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Figure 1: Total cross sections for (anti)neutrino interactions on electron targets. The
cross sections for (anti)neutrino CC and NC interactions on isoscalar nucleon are also
shown for a comparison.



Table 3: Integrated cross sections for neutrino-electron and neutrino-nucleon scattering
at Eν = m2

W /2me ≈ 6.331PeV.

Reaction σ (cm2) Reaction σ (cm2)

νµe→ νµe 5.86× 10−36 νµN → µ− + anything 1.43× 10−33

νµe→ νµe 5.16× 10−36 νµN → νµ + anything 6.04× 10−34

νµe→ µνe 5.42× 10−35 νµN → µ+ + anything 1.41× 10−33

νee→ νee 3.10× 10−35 νµN → νµ + anything 5.98× 10−34

νee→ νee 5.215× 10−32

νee→ νµµ 5.214× 10−32

νee→ ντ τ 5.208× 10−32

νee→ hadrons 3.352× 10−31

νee→ anything 4.917× 10−31

Just at the resonance peak, σtot
νee
≈ 250σtot

νeN
.

Note:

The cross sections for electron targets listed in Table 3 were calculated using the
formulas given by Gandhi et al., a but some numerical values are different since the
inpit parameters were updated.

aR. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, “Ultrahigh-energy neutrino interactions,” As-
tropart. Phys. 5 (1996) 81–110 (hep-ph/9512364).



4.2.3 Total cross sections

According to Albright and Jarlskoga

dσCC
ν, ν

dxdy
=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q
2) are the nucleon structure functions and Ai are the kinematic

factors i = 1, . . . , 5). These factors were calculated by many authorsb and the most
accurate formulas were given by Paschos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1− y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(
1− y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The contributions proportional to m2
l must vanish as Eν ≫ ml. However they remain

surprisingly important even at very high energies.

aC. H. Albright and C. Jarlskog, Nucl. Phys. B84 (1975) 467. See also I. Ju, Phys. Rev. D8 (1973)
3103 and V. D. Barger et al., Phys. Rev. D16 (1977) 2141.

bSee previous footnote and also the more recent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya,
Eur. Phys. J. C 18 (2000) 405 (hep–ph/9905475); N. I. Starkov, J. Phys. G: Nucl. Part. Phys. 27 (2001)
L81; E. A. Paschos and J. Y. Yu, Phys. Rev. D65 (2002) 033002 (hep–ph/0107261).
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Figure 2: Total inelastic νn cross sections evaluated with the MRST 2002 NNLO
PDF model modified according to Bodek–Yang prescription (solid lines) and unmodi-
fied (dashed lines).
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Figure 3: Differences between the total neutrino cross sections for proton and neutron
targets evaluated with the MRST 2002 NNLO PDF model.
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4.2.4 Indices of refraction

For Eν ≪ min
(
m2
W,Z/2mA

)
and for an electroneutral nonpolarized cold medium, the

qR is energy independent. In the leading orders of the standard electroweak theory it is

qR =





1
2V0Ypρ for α = e and β = µ or τ ,

− 1
2aτV0 (Yp + bτYn) ρ for α = µ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = µ or τ and β = s,

where

V0 =
√

2GFN0 ≃ 7.63× 10−14 eV

(
L0 =

2π

V0
≃ 1.62× 104 km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ )− 1]

4π sin2 θW
≃ 2.44× 10−5, bτ =

ln(1/rτ )− 2/3

ln(1/rτ )− 1
≃ 1.05,

α is the fine-structure constant, θW is the weak-mixing angle and rτ = (mτ/mW )2.

Notes:

✦ For an isoscalar medium the |qR| is of the same order of magnitude for any pair of
flavors but νµ − ντ .

✦ For an isoscalar medium q
(νµ−ντ )
R /q

(νe−νµ)
R ≈ −5× 10−5.



✦ For certain regions of a neutron-rich medium the value of q
(νe−νs)
R may become

vanishingly small. In this case, the one-loop radiative corrections must be taken
into account.

✦ For very high energies the qR have to be corrected for the gauge boson propagators
and strong-interaction effects.

One can expect |qR| to be either an energy-independent or decreasing function for any
pair of mixed neutrino flavors. On the other hand, there are several cases of much
current interest when |qI | either increases with energy without bound (mixing between
active and sterile neutrino states) or has a broad or sharp maximum (as for νµ − ντ or
νe − νµ mixings, respectively).

Numerical estimations suggest that for every of these cases there is an energy range in
which qR and qI are comparable in magnitude. Since qR ∝ ρ and qI ∝ and are
dependent upon the composition of the medium (YA) there may exist some more
specific situations, when

|qR| ∼ |qI | ∼ |∆|
or even

|qR| ∼ |∆c| and |qI | ∼ |∆s| .
If this is the case, the refraction, absorption and mixing become interestingly
superimposed.



4.2.5 Eigenproblem and mixing matrix in matter

Eigenvalues

The matrix H(t) has two complex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the characteristic equation

ε2 = (q − q+) (q − q−) ,

where q± = ∆c ± i∆s = ∆e±2iθ. The solution is

ε2R =
1

2

(
ε20 − q2I

)
+

1

2

√
(ε20 − q2I )

2
+ 4q2I (ε20 −∆2

s),

εI =
qI (qR −∆c)

εR
(provided qR 6= ∆c) ,

with

ε0 =
√

∆2 − 2∆cqR + q2R ≥ |∆s| , sign (εR)
def
= sign(∆) ≡ ζ.

(At that choice ε = ∆ for vacuum and ε = ζε0 if qI = 0.)

In the vicinity of the MSW resonance, qR = qR(t⋆) = ∆c

lim
qR→∆c±0

εR = ∆s

√
max (1−∆2

I/∆
2
s, 0),

lim
qR→∆c±0

εI = ±ζ∆I

√
max (1−∆2

s/∆
2
I , 0),



where ∆I = qI(t⋆). Therefore the resonance value of |εR| (which is inversely
proportional to the neutrino oscillation length in matter) is always smaller than the
conventional MSW value |∆s| and vanishes if ∆2

I < ∆2
s (εI remains finite in this case).

In neutrino transition through the region of resonance density ρ = ρ(t⋆), εI undergoes
discontinuous jump while εR remains continuous. The corresponding cuts in the q
plane are placed outside the circle |q| ≤ |∆|. If ∆2

I > ∆2
s, the imaginary part of ε

vanishes while the real part remains finite.

A distinctive feature of the characteristic equation is the existence of two mutually
conjugate “super-resonance” points q± in which ε vanishes giving rise to the total
degeneracy of the levels of the system (impossible in the “standard MSW” solution).
Certainly, the behavior of the system in the vicinity of these points must be
dramatically different from the conventional pattern.

The “super-resonance” conditions are physically realizable for various
meaningful mixing scenarios.



Some useful relations

qR

qI

− |∆  |s

   |∆  |s

∆c

2θ

|∆|
0

Figure 5: Zeros and cuts of ε in the
q plane for ∆c > 0. The cuts are
placed outside the circle |q| ≤ |∆|
parallel to axis qR = 0. The MSW
resonance point is (∆c, 0) and the
two “super-resonance” points are
(∆c,±∆s).

ε2R =
2q2I

(
ε20 −∆2

s

)
√

(ε20 − q2I )
2

+ 4q2I (ε20 −∆2
s)− ε20 + q2I

,

εI =

√
(ε20 − q2I )

2
+ 4q2I (ε20 −∆2

s)− ε20 + q2I

2qI (qR −∆c)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR −∆c) εR

ε2R + ε2I
,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR −∆c) εI

ε2R + ε2I
,

Re

[
q(t)−∆c

ε

]
=

(
qR −∆c

εR

)(
ε2R + q2I
ε2R + ε2I

)
,

Im

[
q(t)−∆c

ε

]
=

(
qI
εR

)(
ε2R − ε20 + ∆2

s

ε2R + ε2I

)
,

(qR −∆c)
2

= ε20 −∆2
s.



Eigenstates

In order to simplify the solution to the eigenstate problem we’ll assume that the phase
trajectory q = q(t) does not cross the points q± at any t. In non-Hermitian quantum
dynamics one has to consider the two pairs of instantaneous eigenvectors |Ψ±〉 and
|Ψ±〉 which obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (19)

and (for q 6= q±) form a complete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenvectors are defined up to a gauge transformation

|Ψ±〉 7→ eif± |Ψ±〉, |Ψ±〉 7→ e−if
∗
± |Ψ±〉,

with arbitrary complex functions f±(t) such that Im (f±) vanish as q = 0.a Thus it is
sufficient to find any particular solution of Eqs. (19). Taking into account that
H† = H∗, we may set |Ψ±〉 = |Ψ∗

±〉 and hence the eigenvectors can be found from the
identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.
aFor our aims, the class of the gauge functions may be restricted without loss of generality by the

condition f±|q=0
= 0.



Setting |Ψ±〉 = (v±,±v∓)
T

we arrive at the equations

v2
± =

ε± (q −∆c)

2ε
, v+v− =

∆s

2ε
,

a particular solution of which can be written as

v+ =

√∣∣∣∣
ε+ q −∆c

2ε

∣∣∣∣ e
i(ϕ−ψ)/2,

v− = ζ

√∣∣∣∣
ε− q + ∆c

2ε

∣∣∣∣ e
i(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q −∆c) = − arg(ε− q + ∆c) = arctan

(
qI
εR

)
,

ψ = arg(ε) = arctan

(
εI
εR

)
,

and we have fixed the remaining gauge ambiguity by a comparison with the vacuum
case.



Mixing angle in matter

It may be sometimes useful to define the complex mixing angle in matter
Θ = ΘR + iΘI by the relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
∆s

ε
, cos 2Θ =

∆c − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ) ≡ ΘR =
1

2
arctan

[
(qI −∆s) εR − (qR −∆c) εI
(qR −∆c) εR + (qI −∆s) εI

]
,

Im(Θ) ≡ ΘI =
1

4
ln

[
ε2R + ε2I

(qR −∆c)
2

+ (qI −∆s)
2

]
.

cosΘ = cosΘR coshΘI − i sinΘR sinhΘI ,

sinΘ = sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the prescription for the sign of εR, one can verify that Θ = θ if q = 0
(vacuum case) and Θ = 0 if ∆s = 0 (no mixing or m2

1 = m2
2). It is also clear that Θ

becomes the standard MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).



Mixing matrix in matter

In order to build up the solution to ME for the nondegenerated case one has to
diagonalize the Hamiltonian. Generally a non-Hermitian matrix cannot be diagonalized
by a single unitary transformation. But in our simple case this can be done by a
complex orthogonal matrix (extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =

(
v− v+
−v+ v−

)
=

(
cosΘ sinΘ
− sinΘ cosΘ

)
.

Properties of U:

UTHU = diag (−ε, ε) , UTU = 1, U|q=0 = V.

From CE it follows that

∂ε/∂q = (q −∆c)/ε

and thus
∂v±
∂q

= ±∆2
sv∓
2ε2

.



We therefore have

iUT U̇ = −Ω

(
0 −i
i 0

)
= −Ωσ

2
,

where

Ω =
q̇∆s

2ε2
=
i

4

d

dt
ln

(
q − q+
q − q−

)
.

Properties of Uf :

UT
f HUf = diag (−ε, ε) , UT

f Uf = 1, Uf |q=0 = V,

iUT
f U̇f = −Ωe−ifσ

2
eif − ḟ .



4.2.6 Adiabatic solution

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)]Xf (t)U
T
f (0). (20)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the complex dynamical
phase, defined by

ΦR(t) =

∫ t

0

εR(t′)dt′, ΦI(t) =

∫ t

0

εI(t
′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)
σ2e

−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It can be proved now that the right side of Eq. (20) is gauge-invariant i.e. it does not
depend on the unphysical complex phases f±(t). This crucial fact is closely related to
the absence of the Abelian topological phases in the system under consideration.



Finally, we can put f± = 0 in Eq. (20) and the result is

S̃(t) = U(t) exp [−iΦ(t)]X(t)UT (0), (21a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (21b)

These equations, being equivalent to the ME, have nevertheless a restricted range of
practical usage on account of poles and cuts as well as decaying and increasing
exponents in the “Hamiltonian” ΩF.

Adiabatic theorem

The adiabatic theorem of Hermitian quantum mechanics can almost straightforwardly
be extended to ME under the requirements:

(a) the potential q is a sufficiently smooth and slow function of t;

(b) the imaginary part of the dynamical phase is a bounded function i.e.
limt→∞ |ΦI(t)| is finite;

(c) the phase trajectory q = q(t) is placed far from the singularities for any t.

The first requirement breaks down for a condensed medium with a sharp boundary or
layered structure (like the Earth). If however the requirement (a) is valid inside each
layer (ti, ti+1), the problem reduces to Eqs. (21) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0) ,

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.



The requirement (b) alone is not too restrictive considering that for many astrophysical
objects (like stars, galactic nuclei, jets and so on) the density ρ exponentially disappears
to the periphery and, on the other hand, εI → 0 as ρ→ 0. In this instance, the
function ΦI(t) must be t independent for sufficiently large t. But, in the case of a steep
density profile, the requirements (a) and (b) may be inconsistent.

The important case of violation of the requirement (c) is the subject of a special study
which is beyond the scope of this study.

It is interesting to note in this connection that, in the Hermitian case, a general
adiabatic theorem has been proved without the traditional gap condition [J. E. Avron
and A. Elgart, Commun. Math. Phys. 203 (1999) 445].

The solution

Presume that all necessary conditions do hold for 0 ≤ t ≤ T . Then, in the adiabatic
limit, we can put Ω = 0 in Eq. (21b). Therefore X = 1 and Eq. (21a) yields

S̃αα(t) = v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t) = v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t) = v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t) = v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),



Taking into account Eq. (18) we obtain the survival and transition probabilities:

Pαα(t) = A(t)

{[
I+
+ (t)eΦI(t) + I−− (t)e−ΦI(t)

]2
− I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)

{[
I−+ (t)eΦI(t) − I+

−(t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]

}
,

Pβα(t) = A(t)

{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)

{[
I−− (t)eΦI(t) + I+

+ (t)e−ΦI(t)
]2
− I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(22)

where we have denoted for compactness

Iς
′

ς (t) = |vς(0)vς′(t)| (ς, ς ′ = ±),

ϕ±(t) =
ϕ(0)± ϕ(t)

2
,

I2(t) = 4I+
+ (t)I−− (t) = 4I−+ (t)I+

−(t) =
∆2
s

|ε(0)ε(t)| .



Limiting cases

In the event that the conditions
∣∣∣∣

1

Λβ(t)
− 1

Λα(t)

∣∣∣∣≪ 4ε0(t) and t≪ min [Λα(t), Λβ(t)]

are satisfied for any t ∈ [0, T ], the formulas (22) reduce to the standard MSW adiabatic
solution

Pαα(t) = Pββ(t) =
1

2
[1 + J(t)]− I2

0 (t) sin2 [Φ0(t)] ,

Pαβ(t) = Pβα(t) =
1

2
[1− J(t)] + I2

0 (t) sin2 [Φ0(t)] ,





(MSW)

where

J(t) =
∆2 −∆c [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

∆2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t
′)dt′.

Needless to say either of the above conditions or both may be violated for sufficiently
high neutrino energies and/or for thick media, resulting in radical differences between
the two solutions. These differences are of obvious interest to high-energy neutrino
astrophysics.



It is perhaps even more instructive to examine the distinctions between the general
adiabatic solution (22) and its “classical limit”

Pαα(t) = exp

[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t) = exp

[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,





(∆s = 0)

which takes place either in the absence of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ ∆s, the classical limit is the exact solution to the master equation
(for ∆s = 0). Therefore it can be derived directly from Eq. (17). To make certain that
the adiabatic solution has correct classical limit, the following relations are useful:

lim
∆s→0

ε(t) = ζζR [q(t)−∆c] and lim
∆s→0

|v±( t)|2 =
1

2
(ζζR ± 1) ,

where ζR = sign [qR(t)−∆c].



4.2.7 Matter of constant density and composition

In this simple case, the adiabatic approximation becomes exact and thus free from the
above-mentioned conceptual difficulties. For definiteness sake we assume Λα < Λβ
(and thus qI < 0) from here. The opposite case can be considered in a similar way.
Let’s denote

1

Λ±

=
1

2

(
1

Λα
+

1

Λβ

)
± ξ

2

(
1

Λα
− 1

Λβ

)
,

I2
± =

1

4

(
1 +

ε20 + q2I −∆2
s

ε2R + ε2I

)
± ξ

2

(
ε2R + q2I
ε2R + ε2I

)
,

L =
π

|εR|
and ξ =

∣∣∣∣
qR −∆c

εR

∣∣∣∣ .

As is easy to see,

I±± =

{
I± if sign (qR −∆c) = +ζ,

I∓ if sign (qR −∆c) = −ζ,

I−+ = I+
− =

√
I+I− =

I

2
=

∣∣∣∣
∆s

2ε

∣∣∣∣ and sign(ϕ) = −ζ.



By applying these identities the neutrino oscillation probabilities can be written as

Pαα(t) =
(
I+e

−t/2Λ+ + I−e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t) =
(
I−e

−t/2Λ+ + I+e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t) = Pβα(t) =
1

4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The difference between the survival probabilities for να and νβ is

Pαα(t)− Pββ(t) = −ζRe

(
q −∆c

ε

)(
e−t/2Λ− − e−t/2Λ+

)

+I2e−t/Λ sinϕ sin

(
2πt

L

)
.



Case |q| & |∆s|
Let’s examine the case when Λ+ and Λ− are vastly different in magnitude. This will be
true when Λβ ≫ Λα and the factor ξ is not too small. The second condition holds if qR
is away from the MSW resonance value ∆c and the following dimensionless parameter

κ =
∆s

|q| ≈ 0.033× sin 2θ

(
∆m2

10−3 eV2

)(
100 GeV

Eν

)(
V0

|q|

)

is sufficiently small. In fact we assume |κ| . 1 and impose no specific restriction for the
ratio qR/qI . This spans several possibilities:

⋆ small ∆m2,

⋆ small mixing angle,

⋆ high energy,

⋆ high matter density.

The last two possibilities are of special interest because the inequality |κ| . 1 may be
fulfilled for a wide range of the mixing parameters ∆m2 and θ by changing Eν and/or
ρ. In other words, this condition is by no means artificial or too restrictive.

After elementary while a bit tedious calculations we obtain

ξ = 1− 1

2
κ

2 +O
(
κ

3
)
, I2 = κ

2 +O
(
κ

3
)
,

I+ = 1 +O
(
κ

2
)
, I− =

1

4
κ

2 +O
(
κ

3
)
;



Λ ≈ 2Λα,

Λ+ ≈
(

1 +
κ

2

4

)
Λα ≈ Λα,

Λ− ≈
(

4

κ2

)
Λα ≫ Λα.

Due to the wide spread among the length/time scales Λ±, Λ and L as well as among
the amplitudes I± and I, the regimes of neutrino oscillations are quite diverse for
different ranges of variable t.

With reference to Figs. 6–9, one can see a regular gradation from slow (at t . Λµ) to
very fast (at t & Λµ) neutrino oscillations followed by the asymptotic nonoscillatory
behavior:

Pµµ(t) ≃
κ

4

16
e−t/Λ− ,

Pss(t) ≃ e−t/Λ− ,

Pµs(t) = Psµ(t) ≃
κ

2

4
e−t/Λ− .



Figure 6: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 250 GeV,
ρ = 1 g/cm3).



Figure 7: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 1000 GeV,
ρ = 0.2 g/cm3).



Figure 8: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 100 TeV,
ρ = 10−3 g/cm3).



Figure 9: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 100 TeV,
ρ = 3× 10−4 g/cm3).



Degenerate case

The consideration must be completed for the case of degeneracy. Due to the condition
qI < 0, the density and composition of the “degenerate environment” are fine-tuned in
such a way that q = q−ζ = ∆c − i |∆s|. The simplest way is in coming back to the
master equation. Indeed, in the limit of q = q−ζ , the Hamiltonian reduces to

H = |∆s|
(
−i ζ
ζ i

)
≡ |∆s|hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1− it |∆s|hζ
and thus

Pαα(t) = (1− |∆s| t)2 e−t/Λ,
Pββ(t) = (1 + |∆s| t)2 e−t/Λ,
Pαβ(t) = Pβα(t) = (∆st)

2
e−t/Λ.

Since 1/Λβ = 1/Λα − 4 |∆s|, the necessary condition for the total degeneration is
4Λα |∆s| ≤ 1 and thus 1/Λ = 1/Λα − 2 |∆s| ≥ 2 |∆s|. The equality only occurs when
νβ is sterile.



The degenerate solution must be compared with the standard MSW solution

Pαα(t) = Pss(t) =
1

2
[1 + cos (2∆st)] ,

Pαs(t) = Psα(t) =
1

2
[1− cos (2∆st)] ,





(MSW)

and with the classical penetration coefficient

exp (−t/Λα)

(with 1/Λα numerically equal to 4 |∆s|) relevant to the transport of unmixed active
neutrinos through the same environment.
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Figure 10: Survival and transition probabilities for να ↔ νs oscillations in the case of
degeneracy (q = q−ζ). The standard MSW probabilities (dotted and dash-dotted curves)
together with the penetration coefficient for unmixed να (dashed curve) are also shown.



4.2.8 Conclusions

We have considered, on the basis of the MSW evolution equation with

complex indices of refraction, the conjoint effects of neutrino mixing,

refraction and absorption on high-energy neutrino propagation through

matter. The adiabatic solution with correct asymptotics in the standard

MSW and classical limits has been derived. In the general case the

adiabatic behavior is very different from the conventional limiting cases.

A noteworthy example is given by the active-to-sterile neutrino mixing. It

has been demonstrated that, under proper conditions, the survival

probability of active neutrinos propagating through a very thick medium of

constant density may become many orders of magnitude larger than it

would be in the absence of mixing. The quantitative characteristics of this

phenomenon are highly responsive to changes in density and composition

of the medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysical sources of high-energy
neutrinos, the effect may open a new window for observational neutrino
astrophysics.



Part II



5 The pp fusion step by step

The evidence is strong that the overall
fusion reaction is “burning” hydrogen to
make helium:

4 1H + 2 e− → 4He + 2 νe + 6 γ.

In this reaction, the final particles have
less internal energy than the starting
particles. Since energy is conserved, the
extra energy is released as
⋆ energy of motion of the nuclei and

electrons in the solar gas,
⋆ the production of lots of low energy

photons and, finally,
⋆ the energy of the neutrinos, which

easily shoot out of the Sun.

That is the gas gets hotter and has lots of photons (and neutrinos). The energy release
in this reaction is ∆E = (4× 1.007825u− 4.002603u)× 931 MeV/u = 26.7 MeV each
time the reaction happens.



The fusion reaction as given above is a summary. Really it may only occur in several
steps since the temperature in the Sun is too low and, as a result,

an inelastic collision of two nuclei in the Sun is nearly impossible.

The two nuclei have to get within rp ∼ 10−13 cm for the strong interactions to hold
them together but they repel each other. For example, the potential energy for
Coulomb interaction of two protons is

UCoulomb =
e2

rp
≈ 2× 10−6 erg ≈ 1.2 MeV.

Since T⊙ . 1.5× 107 K (the helioseismology confirms this!)

〈Ekin
p 〉 =

3

2
kT⊙ . 2 keV.

Assuming Maxwellian distribution, the fraction of protons with Ekin
p > UCoulomb is

exp
(
−Ekin

p /〈Ekin
p 〉
)
< e−600 ∼ 10−260.

Considering that the number of protons in the Sun is about 1057 we can conclude that

the classical probability of the fusion is ZERO.



Let’s estimate the quantum probability. The nucleus wave function can be written

ψ ∝ exp

(
i

∫
pdx

)
.

Ekin
p =

p2

2m
= E0 − U ; ⇒ p =

√
2m (E0 − U)

The repulsion energy of two nuclei with charges Z1e and Z2e is U = Z1Z2e
2/r and the

classical turning point (p = 0) is given by

r1 = Z1Z2e
2/E0.

In quantum theory

p = i
√

2m (U −E0) for r < r1

and thus the probability of the barrier penetration (tunnel effect) can be estimated as

ψ2(r) ∝ exp

[
−2

∫ r1

r

√
2m [U(r′)−E0] dr

′

]
.

where r ∼ rp is the radius of nuclear interaction. It is assumed here that one of the
nuclei is in rest (m2 =∞). To take into account its finite mass one have to replace m
with the effective dynamic mass of the colliding particles:

m 7−→M =
m1m2

m1 +m2
=

A1A2

A1 + A2
mp = Amp.



Considering that usually rp ≪ r1, for rough estimation we can put r = 0. Than the
barrier penetration probability is given by

ψ2(r) ≈ ψ2(0) = e−φ,

where (~ = c = 1 =⇒ e2/~c = α)

φ = 2r1
√

2ME0

∫ 1

0

√
1/x− 1 dx = πr1

√
2ME0 = πZ1Z2α

√
2M/E0.

In thermal equilibrium with the temperature T the number of particles with energy E0

is proportional to exp (−E0/kT ). Therefore the full probability is proportional to

∫
e−χ(E0)dE0, where χ =

√
E1

E0
+
E0

kT
and E1 = 2π2Z2

1Z
2
2α

2M.

The integral can be evaluated by using the saddle-point technique considering that the
function χ has a sharp minimum (and thus e−χ has a sharp maximum, – Gamov’s

peak). The minimum is given by

dχ

dE0
= − 1

2E0

√
E1

E0
+

1

kT
= 0.



min

E

χ

χ

0Emin
0

The Gamov’s peak is given by

Emin
0 = E

1/3
1 (kT/2)

2/3

≃ 0.122
(
AZ2

1Z
2
2T

2
9

)1/3
MeV,

χmin = 3

(
E1

4kT

)1/3

≃ 4.25

(
AZ2

1Z
2
2

T9

)1/3

,

where T9 = T/(109 K). Now one
can approximate χ(E0) by

χ(E0) ≃ χmin + κ
(
1− E0/E

min
0

)2
,

κ = (3/8) (2E1/kT )
1/3

.

Finally, the full probability is estimated by C(T ) exp [−χmin(T )]. In particular, for the
pp fusion in the center of the Sun (T9 ≃ 0.015)

Emin
0 ≃ 5.9 keV, χmin ≃ 13.7, exp (−χmin) ≃ 1.15× 10−6.



5.1 The pp I branch

Note: the secondary positron very

quickly encounters a free electron in

the Sun and both particles annihilate,

their mass energy appearing as two

511 KeV γs: e+e− → γγ.

The energy liberation in this reaction is
Q = 1.442 MeV, including ∼ 250 keV taking
away by neutrinos (Eν ≤ 420 keV). The num-
ber of deuterium nuclei generated in 1 cm3 per
1 sec is

d[D]

dt
= CD

n2
p

NAT
2/3
9

exp

(
− 3.38

T
1/3
9

)
,

CD ≈ 2.1× 10−15 cm−3s−1.

By introducing the weight concentrations for the
chemical elements

X(i) =
mHniAi

ρ
=
niAi
NAρ

,

we can write the reaction rate:

Ẋ(D) = C1ρ [X(H)]
2
T

−2/3
9 e−3.38/T

1/3

9

(C1 ≈ 2.1× 10−15 s−1).

The characteristic time is τ1 ≈ 1.3× 1010 yr at ρ = 100 g/cm
3

and T = 1.3× 107 K.
The reaction is very rare. That’s why the Sun is still burning after ∼ 4.6× 109 years!



The energy liberation: Q = 5.493 MeV;
the reaction rate:

Ẋ(3He) = C2ρX(1H)X(2D)T
−2/3
9 e−3.72/T

1/3

9 ,

C2 ≈ 3.98× 103 s−1 ≈ 2× 1018C1,

and τ2 ≈ 6 s.

The energy liberation: Q = 12.859 MeV;
the reaction rate:

Ẋ(4He) = C3ρ
[
X(3He)

]2
T

−2/3
9 e−12.28/T

1/3

9 ,

C3 ≈ 1.3× 1010 s−1 ≈ 6× 106C2,

and τ3 ≈ 106 yr.



Even at temperatures in the Sun’s core, 1.5× 107 K, the average lifetime of a proton
against pp fusion is about ∼ 1010 yr. It is an extremely slow reaction, and it is this time
scale that sets the stellar clock, so to speak, by determining how long the star will
remain a stable main sequence object.

In contrast, the deutron created will only last about a few seconds before it hits into
another proton and fusion creates a 3He nucleus. Therefore it cannot accrue and its
stationary concentration is given by X(D) = (τ2/τ1)X(H) ≈ 10−17X(H). The 3He
nucleus will last about 250,000 years before it hits another 3He nucleus hard enough for
the two to stick together.

5.2 The pep fusion

The deuterium can also be produced in the reaction

1H +1 H + e− → 2D+νe (Eν = 1.44 MeV)

which has a characteristic time scale ∼ 1012 yr that is rather larger than the age of the
Universe at this time. So it is insignificant in the Sun as far as energy generation is
concerned. Nevertheless, the pep fusion accounts for about 0.25% of the deutrons
created in the pp chain.

Enough pep fusions happen to produce a detectable number of neutrinos, so the
reaction must be accounted for by those interested in the solar neutrino problem.



5.3 The pp II branch

The 3He does not always have to hit another 3He nucleus. It could hit a 4He forming
stable 7Be. But 7Be has an affinity for electron capture, and can absorb free electrons.
The electron turns one of the Be protons into a neutron, changing the 7Be into 7Li,
while tossing out a neutrino. The 7Li will then quickly fuse with a free proton, resulting
in unstable 8Be which immediately falls apart into two stable 4He nuclei.

3He+4He→ 7Be + γ +1.586 MeV (9.7× 105 yr)

7Be+e− → 7Li(+γ)+νe +862/384 keV (142 d)

7Li+1H→ 4He + 4He +17.347 MeV (9.5 min)

∼ 14 % of 3He goes out this
way avoiding the pp I chain,

∼ 99.89 % of 7Be goes the
7Li route.

∼ 90% of 7Li nuclei are in the ground state and thus Eν = 862 keV; the rest lithium is
created in an excited state and Eν = 384 keV.

Note: Fusion with 4He is less likely, because there is more 3He around deep inside the stellar

core. But in heavier stars, where the temperatures exceed about 2.4 × 107 K, the pp II chain

can rival the pp I chain for energy production inside the star. This is because at higher

temperatures the 3He gets used up faster, driving down its abundance compared to 4He.



5.4 The pp III branch

The 7Be has two ways to go – it can either absorb an electron, as in pp II (99.89%), or
absorb a proton, as in pp III (0.11%). Absorbing a proton raises the nucleus from
beryllium to boron, and the 7Be becomes 8B. But 8B is unstable and takes < 1 second,
fairly independent of temperature, to spit out a positron and a neutrino to become
beryllium again, only this time it’s 8Be. But 8Be falls apart in a hurry into two 4He
nuclei, and once again we have turned hydrogen into helium.

7Be+1H→ 8B + γ +135 keV (66 years)

8B→ 8Be + e++νe ≤ 14.06 MeV (0.9 sec)

8Be→ 4He + 4He +18.074 MeV (9.7× 10−17 sec)

∼ 0.11 % of 7Be goes
this route.

Of course, e+e− → γγ.

Note: In low mass stars the internal temperature is not high enough to finish the pp cycle.

They produce the first stage of pp fusion up to 3He, but are unable to force the last stage of
3He fusion, either with another 3He or an 4He. So they fuse hydrogen into 3He instead of 4He.

This fact is confirmed by the observation that low mass stars are often anomalously rich in 3He

compared to 4He.



5.5 The pp IV branch (hep reaction)

The low-energy cross section for the “hep reaction”

3He + 1H→ 4He + e+ + νe

is uncertain. While the probability of the pp IV branch is estimated to be about
3× 10−5%, the hep produces highest-energy solar neutrinos,

Eν ≤ 18.77 MeV,

which can at some level influence the electron energy spectrum produced by solar
neutrino interactions and measured in the high-threshold detectors like
Super-Kamiokande and SNO.



5.6 The full pp chain

The diagram shows the full pp chain responsible for production of about 98.4% of the
solar energy. The neutrinos export 3%, 4%, and 28% of the energy in pp I, pp II, pp III,
respectively. All four pp chains are active simultaneously in a H-burning star containing
significant 4He. The details depend on density, temperature and composition but in the
SUN the pp I dominates.



6 An excursus: the elemental abundance in the Sun

The matter that formed the Sun had already been cycled through one or more
generations of stars. We can see elements up to and beyond 56Fe in the heliosphere.



The current solar abundance curve is shown in the figure (the ordinate compares all
elements to Hydrogen) and the relative abundances of the elements (by mass and by
number) are shown in the table.

Comments:

1. The general trend is towards ever decreasing abundances as the atomic number
increases.

2. There is a distinct zig-zag (up-down) pattern to the whole curve. For example,

- between Carbon and Oxygen there is a decrease (the element is Nitrogen);

- between Neon and Magnesium the decrease element is Sodium;

- the largest drop is between Oxygen and Neon, the element that thus decreases
notably is Fluorine.

The reason for this fluctuating pattern is just this: elements with odd numbers of
nucleons are less stable, resulting in one unpaired (odd) proton or neutron – those
that pair these particles result in offsetting spins in opposite directions that
enhance stability.

3. There is a huge drop in abundance for the Lithium-Beryllium-Boron triplet. This
results from two factors:

- at the Big Bang, nuclear processes that could fuse the proper H or He isotopes
into Li and/or the other two were statistically very rare and hence inefficient, and

- some of the Li-Be-B that formed and survived may be destroyed in processes with
stars.



7 The CNO cycle

The presence of the “impurities” in the solar core opens the door to another fusion
reaction. The most important (after the pp) is the CNO bi-cycle, which is responsible
for as much as 1.6% of the Sun’s total output. The main CNO reactions (“cycle I”) are

12C+1H→ 13N + γ +1.944 MeV (1.3× 107 years)

13N→ 13C + e++νe +2.221 MeV (7 min)

13C+1H→ 14N + γ +7.550 MeV (2.7× 106 years)

14N+1H→ 15O + γ +7.293 MeV (3.2× 108 years)

15O→ 15N + e++νe +2.761 MeV (82 sec)

15N+1H→ 12C + 4He +4.965 MeV (1.1× 105 years)

• The cycle uses carbon, nitrogen, and oxygen as catalysts to suck up four protons and
build a 4He nucleus out of them. The relative abundances of C, N, and O do not change.

• The cycle does not start until the pp fusion has begun, and provides the energy necessary
to allow a low level of proton fusions onto the heavier nuclei.

• The cycle timescale is determined by the slowest reaction (14N + 1H) while the approach
to equilibrium is determined by the second slowest reaction (12C + 1H).



The second minor branch (“cycle II”) is a similar type of cycle, and it joins onto the
first. Starting with 14N, the process steps through two of the last-three reactions given
above until 15N is produced. It then proceeds as follows to convert 15N back into 14N,
with the production of 17F (fluorine-17) occurring in one of the steps:

15N+1H→ 16O + γ +12.126 MeV

16O+1H→ 17F + γ +0.601 MeV

17F→ 17O + e++νe +2.726 MeV

17O+1H→ 14N + 4He +1.193 MeV

The latter cycle is much less frequent, with the first reaction having a probability of
about 4× 10−4 relative to the last reaction of the cycle I.

The fractions of the nuclear energy loss from the core through neutrino emission in the
first and second branches of the CNO process are 6% and 4%, respectively.

Note: The CNO cycle lacks significance at the low temperatures in the Sun. For abundances

characteristic of the Sun, the CNO process becomes important for core temperatures of roughly

1.5 × 107 K (1.3 keV), and it provides virtually all of the conversion of hydrogen into helium in

the later stages of the solar lifetime when the temperature exceed 2.5 × 107 K (2.2 keV).



The diagram of the full CNO bi-cycle responsible for production of about 1.5-1.6% of
the solar energy. The cycle I dominates.

Note: The CNO cycles III and IV are essential for the hydrogen burning in massive stars. The

full net includes 18F, 18O, and 19F.



8 Solar neutrino spectrum

Solar neutrino energy
spectrum at Earth cal-
culated in the Bahcall-
Serenelli solar model
“BS05(OP)”.
Also shown the ucer-
tainties of the neu-
trino flux calculation
(on the 1 σ level) and
the threshold neutrino
energies for the gal-
lium, chlorine and wa-
ter detectors.

[From J. N. Bahcall, A. M. Serenelli, and S. Basu, “New solar opacities, abundances, helioseismology, and neutrino

fluxes,” Astrophys. J. 621 (2005) L85-L88 (astro-ph/0412440).]



Comparison between the “Standard Solar Models” of Bahcall & Pinsonneult (1995)
[BP95] and of Dar & Shaviv (1996) [DS96].a

Parameter/Effect BSP98 DS96

M⊙ 1.9899× 1033 g 1.9899× 1033 g
L⊙ 3.844× 1033 erg s−1 3.844× 1033 erg s−1

R⊙ 6.9599× 1010 cm 6.9599× 1010 cm
t⊙ 4.566× 109 yr 4.57× 109 yr
Rotation Not Included Not Included
Magnetic Field Not Included Not Included
Mass Loss Not Included Not Included
Angular Momentum Loss Not Included Not Included
Premain Sequence Evolution Not Included Included

Initial Abundances :
4He Adjusted Adjusted
C,N,O,Ne Adjusted Adjusted
All Other Elements Adjusted Meteoritic

aFrom A. Dar and G. Shaviv, “The solar neutrino problem: An update,” Phys. Rept. 311 (1999)
115–141 (astro-ph/9808098).



Continued

Parameter/Effect BSP98 DS96

Photospheric Abundances :
4He Predicted Predicted
C,N,O,Ne Photospheric Photospheric
All Other Elements Meteoritic Predicted

Radiative Opacities OPAL 1996 OPAL 1996
Equation of State Straniero 1996? Dar− Shaviv 1996
Partial Ionization Effects Not Included Included

Diffusion of Elements :

H, 4He Included Included
Heavier Elements Approximated by Fe All Included
Partial Ionization Effects Not Included Included

Nuclear Reaction Rates :

S11(0) eV · b 4.00× 10−19 4.07× 10−19

S33(0) MeV · b 5.3 5.6
S34(0) keV · b 0.53 0.45
S17(0) eV · b 19 17
Screening Effects Included Included
Nuclear Equilibrium Imposed Not Assumed



Figure shows where the different neutrino fluxes originate in the Sun according to SSM.
[From John Bahcall’s homepage, URL: <http://www.sns.ias.edu/ ˜ jnb/> .]



Part III



9 Current status
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Current (Oct. 2005) status of the standard solar model and solar neutrino problem.
[Borrowed from John Bahcall’s Home Page, URL: <http://www.sns.ias.edu/ ˜ jnb/> (slightly modified).]



Table 4: Current status of the solar neutrino data (2005).

Experiment Measured flux Ratio Threshold Years of
(SNU / 1010 count/m2s) experiment/theory energy running

Homestake 2.56 ± 0.16 ± 0.16 0.33 ± 0.03 ± 0.05 814 keV 1970-1995

Kamiokande 2.80 ± 0.19 ± 0.33 0.54 ± 0.08+0.10
−0.07 7.5 MeV 1986-1995

SAGE 75 ± 7 ± 3 0.58 ± 0.06 ± 0.03 233 keV 1990-2006

GALLEX 78 ± 6 ± 5 0.60 ± 0.06 ± 0.04 233 keV 1991-1996

Super-K 2.35 ± 0.02 ± 0.08 0.465 ± 0.005+0.016
−0.015 5.5 (6.5) MeV from 1996

GNO 66 ± 10 ± 3 0.51 ± 0.08 ± 0.03 233 keV from 1998

SNO (CC) 1.68 ± 0.06+0.08
−0.09

SNO (ES) 2.35 ± 0.22 ± 0.15 6.75 MeV from 1999

SNO (NC) 4.94 ± 0.21+0.38
−0.34

◦ The values are given in SNU (defined as 10−36 capture per second per target atom) for the radiochemical
experiments and in units of 1010 counts/m2s for the water-Cherenkov experiments.

◦ The first and errors for the relative values correspond to experimental and theoretical errors, respectively, with
the statistical and systematic errors added quadratically. The models by Bahcall and Pinsonneault BP98 and
BP00 were used in the calculations.

[The data are borrowed from the Ultimate Neutrino Page maintained by Juha Peltoniemi and Juho Sarkamo, of Oulu
University, URL: <http://cupp.oulu.fi/neutrino/> (last modified 10.4.2005).]



10 Cl-Ar detector at Homestake

[From URL: <http://www.bnl.gov/

bnlweb/raydavis/research.htm> .]

The Homestake Neutrino Trap is a tank 20 feet
(6.1 m) in diameter and 48 feet (14.6 m) long filled
with 100,000 gallons (378,520 liters) of a common
cleaning fluid, tetrachloroethylene (C2Cl4). On the
average each molecule of C2Cl4 contains one atom
of the desired isotope, 37

17Cl. The other three chlo-
rine atoms 35

17Cl contain two less neutrons. When a
neutrino of the right energy reacts with an atom of
37
17Cl, it produces an atom of 37

18Ar and an electron
(B. Pontecorvo, 1946, L. V. Alvarez, 1949):

νe + 37
17Cl→ 37

18Ar + e− (Eth
ν ≈ 814 keV).

Then the radioactive argon decays back to chlorine:

37
18Ar→ 37

17Cl + e+ + νe (T1/2 ≈ 35 days).

The idea is to tell that the reaction happened by
seeing the positron.

The argon-37 is allowed to build up for several months, then is removed by purging the
tank with helium gas. The argon is adsorbed in a cold trap and assayed for radioactivity.



The chlorine-argon experiment has been run by Raymond Davis, Jr., Kenneth C.
Hoffman and Don S. Harmer of Brookhaven National Laboratory. The detector is
located nearly a mile underground, in a rock cavity at the 4,850 foot level (1.48 km)
below the surface in the Homestake Gold Mine in the town of Lead, South Dakota.

Suggested in 1964 by
John Bahcall and Ray-
mond Davis, the ex-
periment was begun on
1967 and continued to
measure the solar neu-
trino flux until the late
1990s, when the Home-
stake Mine ceased oper-
ating.

The first results of the
experiment showed that
the Sun’s output of neu-
trinos from the isotope
boron-8 was less than
expected.

[From J. N. Bahcall, “Neutrinos from the Sun,” Sci. Am. 221, No. 1 (1969) 28-37.]



Figure on the right shows the
argon extraction system which
is deep underground next to
the 100,000-gallon neutrino
trap. Helium is circulated
through the tank to sweep up
any atoms of 37Ar that have
been formed from 37Cl.
The efficiency of the extrac-
tion is determined by previ-
ously inserting in the tank a
small amount of 36Ar, a rare,
nonradioactive isotope of ar-
gon. The helium and ar-
gon pass through the appara-
tus at left, where the argon
condenses in a charcoal trap
cooled by liquid nitrogen.

This argon fraction is purified in the apparatus at the right. The purified sample is then
shipped to Brookhaven, where the content of 37Ar is determined in shielded counters.

[From J. N. Bahcall, “Neutrinos from the Sun,” Sci. Am. 221, No. 1 (1969) 28-37.]



Deep-mine location shields the solar-neutrino detector from the intense flux of
cosmic-ray (atmospheric) muons. Being very penetrating, the muons can knock protons
out of atomic nuclei well below the earth’s surface.
If a muon-induced proton entered the neutrino de-
tector, it could mimic the entry of a solar neutrino
by converting an atom of 37Cl into an atom of ra-
dioactive 37Ar.
Figure on the right shows the 37Ar production rate
in 3.8×105 liters of perchloroethylene as a function
of the depth below the surface. The corresponding
background effect is about 0.2 atoms per day in
105 gal. Other sources of the background are esti-
mated to be on the same level or less, in particular,
◦ fast neutrons from (α, n) reactions and sponta-
neous fission of U in the rock wall: 0.1–0.3;
◦ internal contamination (U, Th, Ca): . 0.1;
◦ atmospheric neutrino interactions: . 0.01.

[From R. Davis, Jr. and D. S. Harmer, “Solar neutrino detection

by the 37Cl − 37Ar method,” in Proc. of the Informal Conference on

Experimental Neutrino Physics (CERN, January 20–22, 1965), CERN

65-32, pp. 201–212.]



This figure is an overall pictorial history of the subject as it looked in 1970. The
experimental upper limit is indicated by the thin curve and the range of theoretical
values (after 1964) by the cross-hatched region. The units are captures per target atom
per second (10−36 captures/atom/s ≡ 1 SNU). A few of the major events are indicated
on the figure at the period corresponding to the time they occurred.
[From J. N. Bahcall and R. Davis, Jr., “An account of the development of the solar neutrino problem,” in Essays in

Nuclear Astrophysics, edited by C. A. Barnes et al. (Cambridge University Press, 1982), pp. 243–285.]



Figure on the right shows the observed
(Davis & coauthors) and predicted (Bah-
call & co-authors) neutrino capture rates
published within the period from 1964 to
1980. The earliest observational upper
limits of 4000 and 160 SNU (obtained
in 1955 and 1964, respectively) are not
shown since these would not fit conve-
niently in the plot [see previous slide].
The theoretical uncertainties are more
“experimental” than “theoretical” since
the basic theory has not changed since
1964. What have changed are the best
estimates for many different input para-
meters. The error bars shown for the
theoretical points represent the range of
capture rates that were obtained from
standard solar models when the various
nuclear and atomic parameters were al-
lowed to vary over the range convention-
ally regarded as acceptable at the time
the calculations were made.

[From J. N. Bahcall and R. Davis, Jr., “An account of

the development of the solar neutrino problem,” in Es-

says in Nuclear Astrophysics, edited by C. A. Barnes

et al. (Cambridge University Press, 1982), pp. 243–285.]



The final Homestake chlorine experiment one-FWHM (full width at half maximum)
results for 108 individual solar neutrino observations (no. 18 to 133). All known sources
of nonsolar 37Ar production are subtracted. The errors of individual measurements are
statistical errors only and are significantly non-Gaussian for near zero rates. The error
of the cumulative result is the combination of the statistical and systematic errors in
quadrature. [From B. T. Cleveland et al., “Measurement of the solar electron neutrino flux with the Homestake

chlorine detector,” Astrophys. J. 496 (1998) 505–526. (1119 citations in SPIRES!) ]



10.1 Solar Neutrino Puzzle, Number I’

The average solar neutrino induced 37Ar production rate in the Homestake detector is

0.478± 0.030stat ± 0.029syst day−1.

Since the detector contains 2.16× 1030 37Cl atoms, this gives a neutrino capture rate of

〈σΦνe
〉 = 2.56± 0.16stat ± 0.16syst SNU.

This measurement is to be compared with the SM predictions for the chlorine detector:

〈σΦνe
〉theor =






7.63 SNU (Sackman, Boothroyd & Fowler, 1990)

6.36 SNU (Turck-Chièze & Lopes, 1993)

(4.2± 1.2) SNU (Dar & Shaviv, 1994)

(9.3± 1.3) SNU (Bahcall & Pinsonneault, 1995)

(4.1± 1.2) SNU (Dar & Shaviv, 1996)

(7.7± 1.2) SNU (Bahcall, Basu & Pinsonneault, 1998)

(8.1± 1.2) SNU (Bahcall & Serenelli, 2005).

The observed flux is much lower than that predicted (except for the Dar and Shaviv
result). This discrepancy between observation and prediction has existed since the early
1970s when the observations of the Homestake detector were first reported.



10.2 Solar Neutrino Puzzle, Number II’

Homestake neutrino data with error bars and 5-point running-averaged values (solid
line) from runs No. 18 to No. 126. The 5-point running-average values (Q5) are used
to illustrate better the long-term behaviour considering that the original neutrino data
are very scattered. Other choices for the smoothing, for instance 3- or 7-point running
averages, do not alter qualitatively the results.
[This and next figures are borrowed from S. Massetti, M. Storini, and N. Iucci, “Correlative analyses for Homestake

neutrino data,” Nuovo Cim. 20C (1997) 1021–1026.]



Scatter plot of solar flares counts vs. 5-point running averages of Homestake neutrino
values in the period 1977 to 1989 (a) and the above data sets plotted as a function of
time in the period 1970 to 1992 (b); the neutrino data in (b) are reported with an
inverted scale and both data sets are normalized in a way that minimum = 0 and
maximum = 1.



The plot shows the 5-point running averages of the Homestake data compared to
sunspot numbers; the sunspots are plotted on an inverted scale.
[R. Davis Jr., “A review of measurements of the solar neutrino flux and their variation,” Nucl. Phys. B (Proc. Suppl.)

48 (1996) 284–298. ]



Some of the conclusions of the authors are:

The Homestake data:

i) Exhibit a clear modulation of the neutrino signal, almost on the long term.

ii) Are badly correlated with geomagnetic indices, supporting the hypothesis that the
source of the modulation is on the Sun.

iii) Are correlated with cosmic-rays intensity only in the period 1970-1982, whereas
over the total period the correlation is near zero.

iv) Are better correlated with flare counts than with sunspot numbers. Note that flare
phenomena are intimately related to the toroidal component of the heliomagnetic
field. The best correlated period (1977-1989) corresponds to that characterized by
a reinforcement of the interplanetary magnetic-field intensity, suggesting again an
enhancement of the global heliomagnetic field.

More or less similar conclusions were found in the regression analyses reported by
many authors. These results suggest a pulsating character of the Homestake data
and their anticorrelation with the solar magnetic activity (sunspot or flare numbers).

A veritable host of new ideas was brought forth to resolve the solar neutrino
puzzles. Let’s consider a (very incomplete) list of these solutions.



10.3 Solutions

10.3.1 Astrophysics and/or Nuclear Physics

◦ Models with convective mixing of the solar core [Ezer & Cameron, 1968; Shaviv &

Salpeter, 1968; Bahcall, Bahcall & Ulrich, 1968 ]

◦ Models with turbulent diffusion of 3He [Schatzman 1969 ]

◦ An overabundance of 3He in the present Sun [Kocharov & Starbunov 1970 ]

◦ Models with the strong central magnetic field (the energy density of the Sun’s
central magnetic field |B|2/8π is a few percent of the gas pressure) [Abraham &

Iben 1971; Bahcall & Ulrich 1971; Bartenwerfer 1973; Parker 1974; Ulrich 1974 ]

◦ A secular instability such that the presently observed solar luminosity does not
equal the current energy-generation rate [Fowler 1968, 1972; Sheldon 1969 ]

◦ Models with low heavy elements (“low Z”) abundances in the solar interior
[Bahcall & Ulrich 1971; Schatzman 1981; Maeder 1990 ].

◦ An instability of the Sun that makes now a special time [Fowler 1972; Dilke &

Gough 1972 ]

◦ A low-energy resonance in the 3He + 3He→ 4He + 21H reaction [Fowler 1972;

Fetisov & Kopysov 1972 ]

◦ Helium core (the Sun is assumed to be in a later stage of stellar evolution, such
that hydrogen is burned-out and the core is made of helium) [Prentice 1973 ]



◦ Models with a rapidly rotating solar interior (the rotation is lowering the central
pressure and temperature) [Demarque, Mengel & Sweigert 1973; Roxburgh 1974;

Rood & Ulrich 1974 ]

◦ Rotation plus magnetic fields [Snell, Wheeler & Wilson 1976 ]

◦ A half-solar mass core of large heavy element abundance that survived the big bang
and subsequently accreted another half solar mass at the time of the formation of
the solar system [Hoyle 1975 ]

◦ A departure from the Maxwellian distribution [Clayton et al. 1975 ]

◦ A fractionation of the primordial hydrogen and helium [Wheeler & Cameron 1975 ]

◦ Models with hydrogen mixing into the core by turbulent diffusion [Schatzman 1981;

Maeder 1990 ]

◦ Mixing of 3He due to rapid filamental flow downward [Cummings & Haxton, 1996 ]

◦ Temporal and spatial variations in temperature [Dar & Shaviv, 1998 ]

◦ Collective plasma processes [Salpeter & Van Horne, 1969; . . . ; Tsytovich et al.
1995, Dar & Shaviv, 1998 ]

◦ A new solar model in which the Sun is formed by accretion of fresh SN debris on
the collapsed core of a supernova; neutron emission from the SN remnant at the
solar core; neutron decay major elements are Iron, nickel, oxygen, silicon [Manuel,

Miller & Katragada, 2003 ]



10.3.2 Nonstandard Neutrino Properties

◦ Vacuum neutrino oscillations [Gribov & Pontecorvo 1969 ]

◦ An appreciable (anomalous) magnetic moment for the neutrino [Cisneros 1971;

Okun, Voloshin & Vysotsky, 1986 ]

◦ Neutrino instability [Bahcall, Cabibbo & Yahil 1972 ]

◦ Goldstone neutrinos resulting from a spontaneous breakdown of supersymmetry
[Das 1984 ].

◦ Matter enhanced neutrino oscillations [Wolfenstein 1978; . . .; Mikheev & Smirnov,

1985 ] =⇒ & 10, 000 papers, 100s of alterations, 10s of innovations;

◦ Matter-induced neutrino decay ν → ν + Majoron [Berezhiani & Vysotsky 1987 ]

◦ Resonant neutrino spin–flavor precession in the solar magnetic field [Akhmedov

1987; Lim & Marciano 1988 ]

◦ Nonstandard (in particular, flavor-changing) neutrino interactions with matter
[Roulet, 1991; Guzzo, Masiero & Petcov 1991, Barger, Phillips & Whisnant 1991 ]

◦ A nonstandard (strong enough) νeγ interaction that would cause the neutrinos to
disappear before they leave the Sun or make them lose energy towards detection
thresholds [Dixmier, 1994 ]



10.3.3 Exotics and Science Fiction

◦ Quark catalysis [Libby & Thomas 1969; Salpeter 1970 ]

◦ Accretion onto a central black hole (the model assumes that the Sun’s energy did
not come from fusion, rather from release of energy from accretion onto a black
hole at the center of the Sun) [Clayton, Newman & Talbot 1975 ]

◦ Multiplicative mass creation [Maeder 1977 ]

◦ WIMPs as a source of solar energy [Faulkner & Gilliland 1985; Spergel & Press

1985; Press & Spergel 1985; Faulkner, Gough & Vahia 1986; Gilliland et al. 1986 ]

◦ Violation of equivalence principle [Gasperini, 1988, 1989; Halprin & Leung 1991 ]

◦ Daemona catalysis (it is assumed that daemons are capable of catalyzing
proton-fusion reactions, which may account for the observed solar neutrino
deficiency) [Drobyshevski 1996, 2002 ]

aDaemon = Dark Electric Matter Object, a hypothetical Planckian particle carrying a negative electric
charge of up to Z = 10.



11 Ga-Ge detectors (SAGE, GALLEX, GNO)

These solar neutrino experiments are based on the reaction (originally proposed by
V. A. Kuzmin in 1965)

νe + 71
31Ga→ 71

32Ge + e− (Eth
ν ≈ 232.696± 0.15 keV)a.

Then the radioactive germanium decays back to gallium:

71
32Ge→ 71

31Ga + e+ + νe (T1/2 ≈ 11.4 days).

Backgrounds for the gallium experiments are caused by 71Ge production through
non-neutrino mechanisms

p+ 71
31Ga→ 71

32Ge + n (Eth
p ≈ 1.02 MeV).

Like in the chlorine experiment, the protons may be produced by cosmic muon
interactions, fast neutrons or residual radioactivity. Radon gas and its daughter
products are also a large cause of background; the radon half-life is about 3.8 days.

aThis is the weighted average of all the available measurements for the neutrino energy threshold of
this reaction computed (including estimates of systematic errors) by G. Audi and A. H. Wapstra.



In the SAGE (Soviet–American Gallium solar neutrino Experiment), the 71Ge atoms are
chemically extracted from a 50-metric ton target of gallium metal and concentrated in
a sample of germane gas (GeH4) mixed with xenon.

The the 71Ge atoms
are then individually
counted by observing
their decay back to
71Ga in a small pro-
portional counter.
The SAGE collabo-
ration regularly per-
forms solar neutrino
extractions, every four
weeks, reducing the
statistical error, and
explores further pos-
sibilities for reducing
the systematic uncer-
tainties.





To check the response of the SAGE
experiment to low-energy neutrinos,
a source of 51Cr was produced by ir-
radiating 512.7 g of 92.4%-enriched
50Cr in a high-flux fast neutron re-
actor.
This source, which mainly emits
monoenergetic 747-keV neutrinos,
was placed at the center of a
13.1 ton target of liquid gallium and
the cross section for the produc-
tion of 71Ge by the inverse beta de-
cay reaction 71Ga(νe, e

−)71Ga was
measured to be

[From J. N. Abdurashitov et al., “Measurement of the response

of a gallium metal solar neutrino experiment to neutrinos from a
51Cr source,” Phys. Rev. C 59 (1999) 2246–2263.]

(5.55± 0.60stat ± 0.32stat)× 1045 cm2.

The ratio of this result to the theoretical cross section of Bahcall and of Haxton are

0.95± 0.12 (exp) +0.035
−0.027 (theor) and 0.87± 0.11 (exp)± 0.09 (theor),

respectively. This good agreement between prediction and observation implies that the
overall experimental efficiency is correctly determined and provides considerable
evidence for the reliability of the solar neutrino measurement.



The capture rate from all SAGE extractions versus time: the triangles are for the L and
K peaks and the circles are for the K peak alone; the vertical bars near each point
correspond to a statistical error of 68%. The average rates for the L, K, and L+K
peaks are also shown.
[This and next figures are borrowed from J. N. Abdurashitov et al., “Solar neutrino flux measurements by the

Soviet-American Gallium Experiment (SAGE) for half the 22-Year Solar Cycle,” Zh. Eksp. Teor. Fiz. 122 (2002)

211–226 [J. Exp. Theor. Phys. 95 (2002) 181–193] (astro–ph/0204245).]



Results of the measurements combined by years; open and filled symbols refer to K and
K + L peaks, respectively; the hatched region corresponds to the SAGE result of
70.8+5.3

−5.2 (stat) +3.7
−3.2 (syst) SNU. The data shown have a statistical error of 68%. The

neutrino capture rate was constant during the entire data acquisition period with a 83%
probability.





Figure on the left shows a scheme of
the GALLEX detector tank with the ab-
sorber system and the Chromium source
inserted inside the thimble.
The experimental procedure for
GALLEX is as follows: 30.3 tons of
gallium in form of a concentrated
GaCl3-HCl solution are exposed to solar
neutrinos. In GaCl3-HCl solution, the
neutrino induced 71Ge atoms (as well
as the inactive Ge carrier atoms added
to the solution at the beginning of a
run) form the volatile compound GeCl4,
which at the end of an exposure is
swept out of the solution by means of
a gas stream (nitrogen). The nitrogen
is then passed through a gas scrubber
where the GeCl4 is absorbed in water.

The GeCl4 is finally converted to GeH4, which together with xenon is introduced into a
proportional counter in order to determine the number of 71Ge atoms by observing their
radioactive decay. [From URL: <http://www.mpi-hd.mpg.de/nuastro/gallex/detector.h tm> .]



GALLEX I, II, and III sin-
gle run overview.
Results for the 14 solar
neutrino runs of GALLEX
III (labels 40-53), shown
together with the earlier
results from GALLEX I
(labels 1-15) and from
GALLEX II (labels 16-
39).

The left hand scale is the measured 71Ge production rate; the right hand scale, the net
solar neutrino production rate (SNU) after subtraction of side reaction contributions.

Error bars are ±1σ, statistical only. The label “combined” applies to the mean global
value for the total of all 53 runs. The visibility is enhanced by a square box, but its
error is the small bar inside the box. Horizontal bars represent run duration; their
asymmetry reflects the “mean age” of the 71Ge produced.



Summary of the results of
GALLEX individual solar
runs closed points. The
left hand scale is the
measured 71Ge production
rate; the right hand scale,
the net solar neutrino pro-
duction rate SNU after
subtraction of side reac-
tion contributions.

Error bars are ±1σ statistical only. Open circles are the combined results for each of
the measuring periods, GALLEX I, II, III and IV. The label “combined” applies to the
mean global value for the total of all 65 runs. Horizontal bars represent run duration;
their asymmetry reflects the “mean age” of the 71Ge produced. The combined result
which comprises 65 solar runs, is 77.5± 6.2+4.3

−4.7 (1σ) SNU. The GALLEX experimental
program to register solar neutrinos has now been completed.

In April 1998, GALLEX was succeeded by a new project, the Gallium Neutrino
Observatory (GNO), with newly defined motives and goals.

[From W. Hampel et al. (GALLEX Collaboration), “GALLEX solar neutrino observations: Results for GALLEX IV,”

Phys. Lett. B 447 (1999) 127–133.]



12 H2O detectors (Kamiokande and Super-
Kamiokande)

Super-Kamiokande (SK), as well as its precursor Kamiokande (K), is an underground
ring-imaging water-Cherenkov neutrino detector located in the Kamioka mine, Japan
(137.32◦ E longitude, 36.43◦ N latitude).a

SK is a cylindrical tank (41.4 m in height, 39.3 m in diameter) filled with 50 kton of
ultra-pure water, and situated under about 1 km of rock (2700 m.w.e.). The rock
provides a shield against the cosmic-ray muons: the muon count rate in the detector is
reduced to 2.2. Hz.

The outer walls of the tank are constructed from 5 cm thick stainless steel sheets,
which are attached to the rock cavity and backed by concrete. About 2 m in from the
wals is a 1 m wide structure of stainless beams that provide the backbone for the
mounting PMTs. The structure divides the whole detector tank into an inner detector
(ID) and outer detector (OD).

The 11,146 inward-facing ID PMTs that are used in event detection are mounted on the
inside of the steel beam structure and are surrounded with black polyethylene sheets to
minimize light reflection within the ID region. They provide a photo-coverage of 40%.

aSee Part I of these lectures for the details relevant to the atmospheric neutrino studies with K and
SK detectors.



[This and next figures are borrowed from D. Turčan, “Solar neutrino at Super-Kamiokande solving the solar neutrino

puzzle via neutrino flavor oscillations,” Ph.D. Thesis, Faculty of the Graduate School, Maryland University, 2003.]



The enire ID region is a volume of 32.5 kt while the
region actually used in the analysis is 2 m inside the
PMT structure and represents a fiducial volume of
22.5 kt. There are at the least two reasons for ex-
cluding the 10 kt volume:
1) It is necessary to reduce the background from radioac-

tive decays of radon which is particularly prominent near

the PMTs and beams. The radon is still the main source

of background in the fiducial volume, but the 2 m reduc-

tion brings the background to a manageable level.

2) There is a need for multiple PMT hits: if an event

happens very near a PMT, all the light will be collected

by that same PMT, and there will not be sufficient infor-

mation for reconstructing that event. The PMTs used in

SK’s ID are 50 cm in diameter; they are largest PMTs in

the world, designed and constructed especially for the SK

experiment.

The OD, which surrounds the steel structure, has
1885 outward-facing 20 cm PMTs.

The top of the tank is a flat sheet that covers the entire are of the detector. It is under
a dome, which lined with a polyurethane material (“Mineguard”), to reduce the radon
emanation and erosion from the rock walls.





Super-Kamiokande uses elastic
scattering of neutrinos from elec-
trons. Cherenkov radiation emitted
by the electron is detected by
phototubes. The image looks like a
diffuse ring on the detector walls.

A real event recorded in the Super-Kamiokande
detector on 1998-03-12 14:08:40. It is about
12.5 MeV and has an unusually nice, well-defined
ring. The color scale is time. This event was
found by Mark Vagins. [From I. Semeniuk, “Feature –

Astronomy and the New Neutrino,” Sky & Telescope, September

2004, pp. 42-48; see also Tomasz Barszczak, URL: <http://

www.ps.uci.edu/ ˜ tomba/sk/tscan/pictures.html> .]



Angular distribution of solar neutrino event candidates in Super-Kamiokande-I.
The angular deviation between the solar and the reconstructed direction of events with
total energies ranging between 5 and 20 MeV is shown. From the strong forward peak
due to elastic scattering of solar 8B neutrinos with electrons 22, 400± 200stat neutrino
interactions were observed in 22,500 metric tons of water during 1496 live days.





The observed solar neutrino interaction rate is

0.465± 0.005+0.016
−0.015

of the rate expected by the standard solar model (SSM). Assuming only solar νe the
observed rate corresponds to a 8B flux of

Φ
(
8B
)

= (2.35± 0.02stat ± 0.08syst)× 106 cm−2s−1.

All uncertainties given for the time variation data are only statistical and based on an
asymmetric Gaussian approximation of the underlying likelihood functions obtained by
an unbinned maximum likelihood fit to the cos (θSun) distributions.

The top two panels show the Super-Kamiokande-I rate as a function of time. The
topmost panel uses bins of 10 days width, the middle panel displays 45 day bins. The
lower left panel combines the 10-day bins into 12 bins to show the yearly cycle assuming
asymmetric Gaussians for the probability density functions. The lower right panel shows
the yearly variation data in 8 bins obtained from a similar combination of the 45-day
data bins. The middle right panel is the yearly variation data in those same 8 bins, but
resulting directly from a maximum likelihood fit to the cos (θSun) distribution.



13 D2O detector SNO



Artist’s concept of the SNO detector (left) and a view of the SNO detector after
installation of the bottom PMT panels, but before cabling (photo by Ernest Orlando,
Lawrence Berkeley National Laboratory).
[From The Sudbury Neutrino Observatory webpage, <http://www.sno.phy.queensu.ca/sno/> .]



Part IV



14 Terrestrial neutrinos

[From L.M. Krauss, S. L. Glashow, and D. N. Schramm, “Antineutrino astronomy and geophysics,” Nature 310 (1984)

191–198 (left) and A. M.Bakich, “Aspects of neutrino astronomy,” Space Sci. Rev. 49 (1989) 259–310 (right).]



Panel on the left shows the angular dependence of the geo-antineutrino intensity for the
continental crust reference model and its variations after taking into account the 1.8
MeV energy threshold of the detection reaction νe + p→ e+ + n and the neutrino
energy spectra (Fermi functions). Panel on the right shows the same but for the
oceanic (or “Hawaii”) crust reference model nd its variations.
[From K. A. Hochmuth et al., “Probing the Earth’s interior with the low energy neutrino astronomy detector,”

hep-ph/0509136.]



15 Past and current (Bugey, Gösgen, Krasnoyarsk,
Palo Verde, Savannah River Site, Braidwood, ...)



16 CHOOZ, Double-CHOOZ, Triple-CHOOZ



17 KamLAND



18 What next? (Angra, DaYa-Bay, KASKA,
TEXONO,...)



Part V



19 Detectors for high-energy neutrino astronomy

In 1960, Markova and Reinesb independently suggested to catch high-energy cosmic
neutrinos via their charged current interactions using the ocean as a detector medium
by observing the Cherenkov light of the produced muons and, simultaneously, as a
screen for the cosmic-ray and solar light backgrounds.c Up-going muons can be
identified in a background of down-going, cosmic ray muons which are more than 105

times more frequent for a depth of about 12 km. The Earth is therefore also serves as a
part of the detector, being the natural filter and “descriminator”. This makes neutrino
detection possible over the hemisphere of sky faced by the bottom of the detector.

It was thought that the ocean is a rather inexpensive target, the detector can be build
modular and enlarged when necessary. The detector can take the advantage of the
rising cross section for neutrino-nucleon interactions with energy. As the range of the

aM. A. Markov, in Proc. of 1960 Annual International Conf. on High Energy Physics at Rochester,
edited by E. C. G. Sudarshan, J. H. Tinlot and A. C. Melissinos (University of Rochester, NY, 1960),
p. 578. See also M. A. Markov and I. M. Zheleznykh, Nucl. Phys. 27 (1961) 385–394.

bF. Reines, Ann. Rev. Nucl. Sci. 10 (1960) 1. Greisen, in the same journal volume [K. Greisen, Ann.
Rev. Nucl. Sci. 10 (1960) 63] also mentioned the idea of neutrino astronomy as a “fanciful proposal”.

cProbably the idea of Reines was a natural consequence of the following note by F. Reines, C. L. Cowan
and H. W. Krusenot, “Conservation of the number of nucleons,” Phys. Rev. 109 (1958) 609–610 co-
cerning experimetal search for nucleon decay:

Higher sensitivity could be obtained both by using larger counters and by going deep

underground or in the ocean to elluminate cosmic rays.



final state muon increases with energy, the effective detector volume is growing as well
with energy. Furthermore, it is expected that the energy spectra from many point
astrophysical sources fail off less step that that from atmospheric neutrinos.

Thus the deep underwater detectors can be used as telescopes for high-energy neutrino
astronomy.

The optical requirements on the detector medium are severe. A large absorption length
is needed because it determines the required spacing of the optical sensors and, to a
significant extent, the cost of the detector. A long scattering length is needed to
preserve the geometry of the Cerenkov pattern. Nature has been kind and offered ice
and water as the natural Cerenkov media. Their optical properties are, in fact,
complementary. Water and ice have comparable attenuation lengths, with the roles of
scattering and absorption reversed. Optics seems, at present, to drive the evolution of
ice and water detectors in predictable directions: towards very large telescope area in
ice exploiting the long absorption length, and towards lower threshold and good muon
track reconstruction in water exploiting the long scattering length.

Figure 11d shows a map of present-day underwater/ice Cherenkov neutrino telescope
projects (see also Table 5 for a summary of their status).

dBy Francis Halzen <http://icecube.wisc.edu/ ˜ halzen/> .



Figure 11: A map of underwater/ice Cherenkov neutrino telescope projects [by Francis Halzen

<http://icecube.wisc.edu/ ˜ halzen/> ].



Table 5: Past, present and future underwater/ice neutrino telescopes.

Lab/Location/Stage Year(s) Sensitive
area

(10  m  )3 2
*

Status
(fall, 2003)

DUMAND I, II
Pacific near Hawaii Big Island; at a depth of ~4.5 km

Historically first underwater project.
Closed down...**

BAIKAL NT
Lake Baikal, East Siberia; at a depth of about 1.1. km

NT-36
NT-72
NT-96
NT-144
NT-200

1993-95
1995-96
1996-97
1997-98

1998 

0.15-0.20 
0.4-3.0 
0.8-6.0 
1.0-8.0 

2.0-10.0 Operates

AMANDA
South Pole; at a depth of 0.8 to 2 km

AMANDA A
AMANDA A
AMANDA B4
AMANDA II
AMANDA KM3 or IceCube

1994 
1996 
1998 
2000 
2005 

Small
1.0 
5-6 

30-50 
1000 Under construction

NESTOR
Ionian Sea near Pylos, Peloponnesos, Greece;
at a depth of about 3.8 km

2004 ? st1   phase: 20 

KM   in prospect3
& test

ANTARES
Mediterranean near Toulon, France; at a depth from
2.4 to 2.7 km (the most appropriate site is identified)

2004 ? to 100-200 

NEMO
Capo Passero (Sicily), Italy; at a depth of about 3.4 km

?  to 3500 

Stepwise
deployment &
going into
operation

Stepwise
deployment &
going into
operation
Operates

R & D 

R & D

Under construction

KM   in prospect3

KM   in prospect3

}

}



Notes to ∗) The sensitive (effective) area is an increasing function of muon
Table 5: energy. For example, the estimated effective area of the

Baikal NT-200 is about 2300m2 and 8500m2 for 1-TeV and
100-TeV muons, respectively.

∗∗) Some 1-string prototypes of the DUMAND array were deployed
and several useful results were obtained.

20 DUMAND

The DUMAND (Deep Underwater Muon and Neutrino Detector) proposal aimed for a
250× 250× 500 m3 array of 756 detector modules to be located at a depth of 4.5. km
in the Pacific Ocean near Hawaii Island. The expanded schematic diagram in Fig. 12
shows the underwater location of the detector, the full array of 36 strings with optical
sensores and a single PMT module. Theenclosed target mass of the detector is
30 Mtons and its effective area is about 105 m2. The angular resolution was estimated
at 15 to 45 mrads, depending on the muon energy.



Figure 12: Proposed configuration of the DUMAND detector.



In the middle of 90s, the DU-
MAND Collaboration intended to
deploy a prototype 9-string array
(Fig. 13) in two phases: first 3
strings (the triad) as a demonstra-
tion, and the remaining 6 strings
(complete octagon, plus center
string) after about 1 year of test-
ing and operation. The effec-
tive detection area of the full 9-
string array was estimated as ∼
2× 104 m2.
The Island of Hawaii was selected
for the deployment due to excep-
tional water clarity, proximity of
an abyssal plain (4.8 km) with
appropriate seabed characteristics
to a suitable shore site (30 km
away), pre-existing laboratory in-
frastructure at the shore site (due
to an ocean thermal energy re-
search project).

104.6 m

230 m

9 strings, 24 PMTs each,
10 m vertical spacing,
40 m horizontal spacing

4800 m depth
30 km W of Keahole Point,
Hawaii

Phase I
(3 strings)
Phase II
(6 additional strings)

Responders
(sonar modules)

Cable to shore
(32 km, 12 optical
fibers, 5 mW power)

Junction box 
(includes power control & environmental electronics)

Figure 13: A sketch of the DUMAND-II under-
water neutrino detector. [From R. J. Wilkes, astro-

ph/9412019.]



21 Baikal neutrino telescope

The Lake Baikal neutrino experiment exploits the deep water of the great Siberian lake
as a detection medium for high-energy neutrinos via muons and electrons generated in
neutrino interactions.

Figure 14: Left panel: space image of wintry Baikal. Right panel: ice campus of the col-
laboration with Khamar-Daban mountain at skyline (March, 1987). [From http://nt200.da.ru/.]

The neutrino telescope NT-200, put into operation at April, 1998, is located in the



southern part of the lake (51.50◦ N, 104.20◦ E) at a distance of 3.6 km from the nearest
shore and at a depth of about 1.1 km. The distance to the opposite shore is more than
30 km. This asymmetry allows to study the asymmetry in the azimuth distribution of
muons arriving at large zenith angles.

The absorption length of water at the site is about 20 m for wavelengths between 470
and 500 nm, and seasonal variations are less than 20%. Light scattering is subjected
strongly to seasonal variations and to variations from year to year.

Figure 15a shows the layout of the Baikal NT-200 and the preceding array NT-96 (on
the right) which took data between April 1996 and March 1997.b The NT-200 consists
of 192 optical modules (OMs) at 8 strings arranged at an umbrella-like frame. Pairs of
OMs are switched in coincidence with a 15 ns time window and define a channel. The
array is time-calibrated by two nitrogen lasers. Of these, one (fiber laser) is mounted
just above the array. Its light is guided via optical fibers to each OM pair. The other
(water laser) is arranged 20 m below the array. Its light propagates directly through
water. The expansion on the left of the figure shows two pairs of optical modules
(“svjaska”) with the electronics module, which houses parts of the readout and control
electronics. Three underwater electrical cables connect the detector with the shore
station.

aDescription of the telescope and figures 15 and 17 are borrowed from Ch. Spiering et al. (Baikal
Collaboration), Prog. Part. Nucl. Phys. 40 (1998) 391 [astro-ph/9801044]; V. A. Balkanov et al. (Baikal
Collaboration), Yad. Fiz. 63 (2000) 1027 [Phys. Atom. Nucl. 63 (2000) 951] (astro-ph/0001151).

bVarious stages of the stepwise increasing detector are NT-36 (1993–1995), NT-72 (1995–1996),
NT-96 (1996–1997) and NT-144 (1997–1998).
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Figure 15: NT-200 and NT-96 schematic view (see text for description and references).



Overal view of the
NT-200 telescope is
shown in Fig. 16.
Here, 1, 2 and 3 are
cables to shore; 4, 5
and 6 are the string
stations for shore ca-
bles; 7 is the string
with the telecsope;
8 is the hydrometric
string; 9–14 are the
ultrasonic emitters.
The insert at the left
bottom of the figure
shows two pairs of op-
tical modules (OM)
together with the elec-
tronic module control-
ling the OMs. Shown
are two pairs of OMs
directed face to face.
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Figure 16: Overal view of the NT-200 complex in Lake Baikal.
[From V. A. Balkanov et al., “In-situ measurements of optical parameters in Lake

Baikal with the help of a neutrino telescope,” Appl. Opt. 33 (1999) 6818–6825

(astro-ph/9903342).]



Fig. 17 displays three neutrino candidates separated during 18 days of the NT-96
exposition (the time period between April 16 and May 17, 1996).

(a) A “gold plated” 19-hit neutrino event. Hit channels are in color. The thick line
gives the reconstructed muon path, thin lines pointing to the channels mark the
path of the Cherenkov photons as given by the fit to the measured times. The
areas of the elipses are proportional to the measured amplitudes. The fake
probability of this event was estimated to be smaller than 1%.

(b) An unambiguous 14-hit neutrino candidate.

(c) An ambiguous event reconstructed as a neutrino event (dashed line) but with a
second solution above the horizon (solid line). This event is assigned to the sample
of downward going muons.

The data set collected with NT-200 during 268 live days (till 1999) yields 84 upward
going muons. The MC simulation of upward muon tracks due to atmospheric neutrinos
gives 80.5 events. The skyplot of the upward muons is shown in Fig. 18. Fig. 19 shows
a comparison between the measured and simulation angular distributions.

Fig. 23 shows NT-200+ – an upgrade of the NT-200 by three sparsely instrumented
distant outer strings which will increase the fiducial volume for high-energy cascades to
a few dozen Mtons. Correspondingly, the NT-200+ sensitivity will be 4 times better
than that of NT-200, with a moderate 20% increase of optical modules only. A
prototype string of 140m length with 12 optical modules was deployed in March 2003,
and electronics, data acquisition and calibration systems for NT-200+ have been tested.



(a) (c)(b)

Figure 17: Three neutrino candidates recorded in NT-96 (see text for details).
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Figure 18: Skyplot (in equatorial coordinates) of 84 upward-going muon events recorded
in the Baikal NT-200 experiment. [From R.Wischnewski (for the Baikal Collaboration), contribution to the

28th ICRC, Tsukuda, Japan, July 31 – August 7, 2003 (astro-ph/0305302).]



Figure 19: Zenith angle distribution of 84 upward-going reconstructed events in the
Baikal NT-200 experiment and MC simulated distribution of upward muon tracks due to
atmospheric neutrinos. Eth = 15− 20 GeV in this experiment. [From V. Aynutdinov et al., “The

BAIKAL neutrino project: Status, results and perspectives,” Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]



Figure 20: The same as in Fig. 19 but for selected neutrino candidates. Eth = 10 GeV.
[From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]



Figure 21: Limits on the excess muon flux from the center of the Earth vs half-cone of
the search angle (left) and as a function of WIMP mass (right).
[From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]



Figure 22: Upper limits on the flux of fast monopoles (left) and neutrino fluxes (right)
obtained in different experiments. The neutrino fluxes expected from some astrophysical
sources are also shown in th right panel.
[From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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Figure 23: Future NT-200+ configuration. Three additional outer (plus one possible cen-
tral) strings will allow a much better vertex identification and hence a significantly more
precise measurement of cascade energy in a volume around NT-200. [From R.Wischnewski,

2003 (see caption to Fig. 18).]



Figure 24: Reconstructed vs simulated coordinates of cascades in NT-200+ (rectangles)
and NT-200 (crosses). [From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]



Figure 25: Top view of a Gigaton Volume Detector (GVD) in Lake Baikal with sketch of
one of its sub-arrays. [From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]



22 AMANDA

The AMANDA (Antarctic Muon And Neutrino Detector Array) detector is located at
the South Pole station, Antarctica. Figures 26 and 27 show the South Pole Station.

Figure 26: Construction of the new South Pole Station as of February, 2002. [From

http://www.amanda.uci.edu/.]

The detector uses the 2.8 km thick ice sheet at the South Pole as a neutrino target,
Cherenkov medium and cosmic ray flux attenuator. The detector consists of vertical



strings of optical modules (OMs) – photomultiplier tubes sealed in glass pressure
vessels – frozen into the ice at depths of 1500–2000m below the surface.

Figure 27: The South Pole Station. The AMANDA-II telescope electronics are lo-
cated on the 2nd floor of MAPO, the blue building shown in this picture. [From

http://www.amanda.uci.edu/.]

Fine photos of the Amundsen-Scott South Pole Station are given in Figs. 28 and 29.a

aBorrowed from the Francis Halzen’s homepage <http://icecube.wisc.edu/ ˜ halzen/> .



Figure 28: Amundsen-Scott South Pole Station.



Figure 29: One another vie of the South Pole Station.



Figure 30 shows the current configu-
ration of the AMANDA detector. The
shallow array, AMANDA-A, was de-
ployed at depths of 800 to 1000m
in 1993–1994 in an exploratory phase
of the project. Studies of the optical
properties of the ice carried out with
AMANDA-A showed a high concen-
tration of air bubbles at these depths,
leading to strong scattering of light
and making accurate track reconstruc-
tion impossible. Therefore, a deeper
array of 10 strings with 302 OMs was
deployed in the austral summers of
1995–1996 and 1996–1997 at depths
of 1500–2000 m. This detector is re-
ferred to as AMANDA-B10. It was
augmented by 3 additional strings in
1997–1998 and 6 in 1999–2000, form-
ing the AMANDA-II array. This de-
tector has been calibrated and in op-
eration since January 2000.
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Figure 30: Schematic view of the AMANDA-II
array at the South Pole. [From J. Ahrens et al., Phys.

Rev. D 66 (2002) 012005 [astro-ph/0205109].]



Figure 31 is an artistic view of a neutrino induced
event in the AMANDA detector while Fig. 32 displays
three real neutrino candidates. Let us describe these
with some details.

(a) Event display of an upgoing muon event. The
gray scale indicates the flow of time, with early
hits at the bottom and the latest hits at the top
of the array. The arrival times match the speed
of light. The sizes of the ellipses correspond to
the measured amplitudes.

(b) The upgoing muon event has a smooth distrib-
ution of hits along the extended uniform track.
The track-like hit topology of this event can be
used to distinguish it from background events.

(c) A background event with a poor smoothness
value and a large deviation from a straight line.

Figure 31: Artistic view of a ν
induced event in the AMANDA
detector.

Two more neutrino candidates (both were recorded on May 11, 2000) are shown in
Fig. 33 borrowed from URL <http://amanda.physics.wisc.edu/> .a

aIn this site, there a lot of nice animated images relevant to the subject.



(a) (c)(b)

Figure 32: Three neutrino candidates recorded in AMANDA-B10 (see text).



Figure 33: Two more neutrino candidates in AMANDA, #910225 and #10604848 (both
were recorded on May 11, 2000). [From <http://amanda.physics.wisc.edu/> .]



Figure 34 shows the skyplot (equatorial coordinates) of all the candidate neutrino
events found in AMANDA-B10.The distribution of the events on the skyplot is
consistent with a random distribution. The combined skyplot of the AMANDA-B10 and
Baikal NT-200 candidate neutrino events is shown in Fig. 35.

The angular distribution for the 204 events is shown in Fig. 36 and compared to that
for the simulation of atmospheric neutrinos.a In the figure the Monte Carlo events are
normalized to the number of observed events to facilitate comparison of the shapes of
the distributions. The agreement in absolute number is consistent with the systematic
uncertainties in the absolute sensitivity and the flux of high-energy atmospheric
neutrinos. The shape of the distribution of data is statistically consistent with the
prediction from atmospheric neutrinos.

Preliminary results on the neutrino energy spectra are shown in Fig. 37. For the first
time, the spectrum was measured up to 100TeV. It is compared to the high-energy
data from the Fréjus experimentb and with the horizontal and vertical AN flux
parametrizations according to Volkova.c The error bars give the statistical error from
the unfolding procedure plus an overall systematic uncertainty. The reconstructed data
are in agreement with current calculations of the AN flux and shows an overlap with
the Fréjus results.

aFor more recent data see E. Andres et al., Nature 423 (2001) 415.
bK.Daum et al. (Fréjus Collaboration), Z. Phys. C 66 (1995) 417;
W.Rhode et al. (Fréjus Collaboration), Astropart. Phys. 4 (1996) 217.

cL. V. Volkova, Yad. Fiz. 31 (1980) 1510 [Sov. J. Nucl. Phys. 31 (1980) 784].
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Figure 34: Skyplot of upward-going events as seen with AMANDA-B10 in 1997 in equa-
torial coordinates. The background of non-neutrino events is estimated to be less than
10%. [From J. Ahrens et al. (2002); see caption to Fig. 30.]
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Figure 35: Merged skyplot of upward-going events recorded in both Baikal NT-200 and
AMANDA-B10 experiments. The data are the same as in Figs. 18 and 34.
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Figure 36: Zenith angle distribution of 204 upward-going reconstructed events in the
AMANDA-B10 experiment and MC simulated distribution of upward muon tracks due to
atmospheric neutrinos. The size of the hatched boxes indicates the statistical precision
of the atmospheric neutrino simulation. The Monte Carlo prediction is normalized to the
data. [From J. Ahrens et al. (2002); see caption to Fig. 30.]
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Figure 37: Reconstructed neutrino spectra in AMANDA-II. Left panel: on filter level
(solid: energy distribution of atmospheric neutrino expectation, boxes: unfolded energy
distribution of AN (MC), points: reconstructed data). Right panel: reconstructed fluxes
compared to Fréjus data. [From H. Geenen (for the AMANDA Collaboration), contribution to the 28th

ICRC, Tsukuda, Japan, July 31 – August 7, 2003 (see the AMANDA Berkeley Group homepage <http://area51.

berkeley.edu/> ).]



23 KM3 projects (IceCube, NEMO, NESTOR,...)

Figure 38: Future KM3 neutrino telescope geometries. Left panel: schematic view of a
homogeneous detector with 8000 PMTs (not quite optimal to be built); middle panel:
the layout of a NESTOR-like detector with 8750 PMTs; right panel: the layout of a
NEMO-like detector with 4096 PMTs. These three designs have very different degrees of
homogeneity. One more difference may be due to various numbers of downward-looking
and upward-looking PMTs (down-down, up-down, etc.).
[From D. Zaborov, “Comparison of different KM3 designs using Antares tools,” in Proc. of the Workshop on Technical

Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea “’VLVνT’, Amsterdam, October 5-8,

2003, ed. by E. de Wolf (NIKHEF, Amsterdam, The Netherlands), pp. 104–108.]



Part VI



24 List of relevant experimental projects

• Experiments at LNGS [+ CERN ν beam(s)]:
⋆ 0.2 kton iron/emulsion detector OPERA (Oscillation Project with Emulsion–tRacking

Apparatus),

⋆ ICANOE = 5 kton solid target ICARUS (Imaging Cosmic And Rare Underground Signals)

+ 8 kton solid target NOE (Neutrino Oscillation Experiment),

⋆ 34 kton magnetized tracking calorimeter MONOLITH (Massive Observatory for Neutrino

Oscillations or LImits on THeir existence);

• experiments with NuMI (Neutrinos at the Main Injector) beam line facility at FNAL:
⋆ MINOS (Main Injector Neutrino Oscillation Search) with two magnetized iron detectors

[near (∼ 1 kton) + far (5.4 kton)], atmospheric ν analysis underway (!),

⋆ MINERνA (Main INnjector ExpeRiment: ν-A),

⋆ NOνA (NuMI Off-Axis νe Appearance experiment);

• 650 kton underground water Cherenkov detector UNO (Ultra underground Nucleon
detector and neutrino Observatory);

• Multi-megaton water Cherenkov detector TITAND (Totally Immersible Tank Assaying
Nucleon Decay) [former name TITANIC];

• and many others [(Mini)BooNE, FLARE and MiniLANNDD at FNAL, LANNDD at
WIPP, 3M at NUSEL, Super-ICARUS and Aqua-RICH at LNGS, T2K at J-PARC,
Hyper-Kamiokande, MEMPHYS at Fréjus, INO, SCIPIO,. . .



25 Hyper-Kamiokande



26 MEMPHYS

The MEMPHYS (MEgaton Mass PHYSics) is a project for a Megaton scale water
Cherenkov detector in a large international underground laboratory in the Fréjus tunnel.a

aFor more details see J. E. Campagne, M. Maltoni, M. Mezzetto, and T. Schwetz, “Physics potential
of the CERN-MEMPHYS neutrino oscillation project,” hep-ph/0603172 and references therein.



A preliminary investigation shows the feasibility to excavate in the middle of the Fréjus
tunnel at a depth of 4800 m.w.e. up to five shafts of about 250, 000 m3 each to place 3
to 4 water Cherenkov modules and a liquid argon detector (of about 100 kt total mass).



Main results of the preliminary study are

1. the best site (rock quality) is found in
the middle of the mountain, at a depth
of 4800 m.w.e.;

2. of the two considered shapes : “tunnel”
and “shaft”, the “shaft (= well) shape”
is strongly preferred;

3. Cylindrical shafts are feasible up to a
diameter ⊘ = 65 m and a full height
h = 80 m (volume ≈ 250, 000 m3);

4. with “egg shap” or an “intermediate
shape” the volume of the shafts could
be still increased (to ⊘ = 70 m);

5. the estimated cost is
∼ 80× 106 Euros× Number of shafts.

Detector basic unit:

a cylinder (a la SK) 65 m diameter and 65 m
height⇒ 215 kt of water (∼ 4× SK) taking
out 4 m from outside for veto and fiducial cut
⇒ 146 kt fiducial target.



Mechanics and photoelectonics is under R&D to minimize the cost to quality ratio.



Physics goals and potential

⋆ proton decay (for 5 Megaton× years):

– τ
(
p→ e+p0

)
≈ 1035 years,

– τ (p→ nKp+) ≈ 2× 1034 years,

– complementarity with liquid argon detector.

⋆ Neutrino bursts from supernovae explosion (collapse studies and explosion alerts):

– ∼ 200, 000 events from a SN at 10 kpc,

– ∼ 30 events from Andromeda,

– ∼ 2 events at 3 Mpc.

⋆ Relic Neutrinos from past supernovae explosions (for 5 Megaton× years):

– ∼ 100 events with pure water,

– 2000/4000 events with gadolinium loaded water.

⋆ Solar and atmospheric neutrinos.

⋆ Neutrino SPL super-beam (SB) and beta-beam (βB) from CERN.



27 MONOLITH



28 ...............................



29 ...............................



30 ...............................


