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A new effective method of calculating wave functions of discrete and continuous
spectra of a hydrogen atom in a strong magnetic field is developed based on the
adiabatic approach to parametric eigenvalue problems in spherical coordinates. The
two-dimensional spectral problem for the Schrédinger equation at a fixed magnetic
quantum number and a parity is reduced to a spectral parametric problem for a one-
dimensional equation by the angular variable and a finite set of ordinary second-order
differential equations by the radial variable with long derivatives in a form appro-
priated for a generalization of R—matrix calculations following from a variational
functional. The results are in good agreement with the photoionization calculations

by other authors and have a true threshold behavior.

PACS numbers: 31.15.Ja, 31.15.Pf, 34.50.-s, 34.50.P1i,

1. INTRODUCTION

Recent Monte-Carlo estimations of the influence of the strong magnetic field on the spon-
taneous recombination of the antihydrogen in the cold positron—antiproton plasma conditions
of the ATHENA [1, 2] and ALPHA [3] experiments (CERN) are shown that further quantum
mechanical analysis is needed [4]. We can pay attention for a new enhancement mechanism
of a laser-stimulated recombination of antihydrogen in cold antiproton-positron plasma in
a laboratory magnetic field via quasistationary states embedded in the continuum that is

reveled recently [5]. To realize such analysis in first stage the adiabatic representation known



in mathematics as a Kantorovich method is developed for solving: the problem of low-lying
excited states of hydrogen atom in a magnetic field in spherical coordinates [6] and the
benchmark three-body scattering problem on a line [7].

Indeed, the adiabatic representation in cylindrical coordinates was applied recently to
revive the basic decay mechanisms of Rydberg states with the high magnetic quantum num-
bers in the magnetic traps [8]. It has been shown that the exhaust analysis of a complex
behavior of the electron dynamics with decreasing module of magnetic number is impossible
without taking the nonadiabatic coupling into consideration [9]. However, high—accuracy
calculations in cylindrical coordinates is a rather cumbersome problem except the cases of
the high magnetic numbers or dominating magnetic field [10]. So, using of the spherical co-
ordinates is preferable when Coulomb and magnetic fields have comparable contributions in
an average potential energy [11] but leads to non-true threshold behavior of photoionization
cross section calculated by complex rotation variational method[12].

In this paper we develop the Kantorovich approach with a boundary condition of the third
type in a form appropriated for the generalized R-matrix calculations of atomic hydrogen
photoionization in a strong magnetic field using a uniform orthogonal parametric basis of
the angular oblate spheroidal functions [13] in spherical coordinates only instead of the
combined nonorthogonal basis of Landau and Sturmian functions in both cylindrical and
spherical coordinates |14, 15|. Efficiency of the elaborated approach which provides true
threshold behavior of photoionization cross-sections of a hydrogen atom from the ground
state to the different continues spectrum states is demonstrated by present calculations.

The paper is organized as follows. The 2D—eigenvalue problem for Schrédinger equation of
the hydrogen atom in an axially symmetric magnetic field, written in spherical coordinates, is
considered in section 2 together with the appropriate classification of states. The reduction of
the 2D—eigenvalue problem to the 1D—eigenvalue problem for a set of closed radial equations
via four steps of the Kantorovich method is described briefly in section 3. All the asymptotic
expressions needed to determine the solutions, and the reaction matrix, from the generalized
R-matrix method, are presented in section 4. The method is applied to the calculation of
ionization of the ground state to the different continues spectrum states in section 5. In

conclusion, we point out at the perspectives for further applications of this approach.



2. STATEMENT OF THE PROBLEM

The Schridinger equation for wave function W(r,6,p) = U(6,r) exp(ume)/v/27 in the

spherical coordinates (7,6, ¢), of the hydrogen atom in an axially symmetric magnetic field

—

B = (0,0, B) can be written as the 2D—equation
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(—ﬁar E — m@ SIHQ%+U(T70)) \IJ(T,H) = E\I[(T70)7 (1)

in the region 2: 0 < r < oo and 0 < § < 7. The potential function U(r, ) is given by

27 m? v2r?

U(r,0) = -+ V(r,0), V(r,0) = +ym + sin? 0, (2)

r2sin? 0
where m = 0,%1,... is the magnetic quantum number, v = B/By, By = 2.35 x 10°T
is a dimensionless parameter which determines the field strength B, and the atomic units
(a.w.) h = m, = e = 1 are used under the assumption of infinite mass of the nucleus. In
these expressions ¢ = 2E is the doubled energy (in units of Rydbergs, 1Ry=(1/2) a.u.)
of the bound state |mo > at fixed values of m and z-parity; ¢ = +1; ¥ = ¥, (r,0) =
(U (r,0) 4+ 0, (r,m — 0))/v/2 is the corresponding wave function. Here the sign of z-parity
o = (—=1)™ is defined by the (even or odd) number of nodes Ny in the solution ¥ with
respect to the angular variable  in the interval 0 < 8 < m. The wave function satisfies the

following boundary conditions in each H,,, subspace of the full Hilbert space:

U(r, 0
éin% sin 9% =0, for m =0, and ¥(r,0) =0, for m # 0, (3)
ov T T
0 (r, 5) =0, forc =+1, and ¥ (r, 5) =0, for o = —1, (4)
: ov(r,0)
1 22—,
lim 2= = 0 9

The discrete spectrum wave function is obeyed the asymptotic boundary condition approx-

imated at large » = r,. by a boundary condition of the first type,

lim 72U (r,0) =0 —  U(rpa,d) =0. (6)

T—00

Here the energy € = €(rmax) play the role of eigenvalues of the boundary problem (1)—(6)
determined by a variational principle with additional normalization condition in a finite

interval 0 < 7 < ryax,

Tmax /2
II(V,e) =0, 2/ / r?sin 0| (r, 0)|*dodr = 1, (7)
0 0



where IT(¥, €) is the symmetric functional defined by

ov(r,0)
r

TmaxW/Q
II(V,¢e) =2 / /Sin9<r2

0 0

2 . oW (r,0)
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+72(U(r,0) — €)|¥(r, 9)|2) dfdr.

In the Fano-Lee R-matrix theory [16, 17| a continuum spectrum wave function W(r,0) is
obeyed the boundary condition of third type at fixed values of energy e and radial variable
T = Tmax

R 8)

Here the parameters, 1 = ((rmax, €), determined by a variational principle, play the role

of eigenvalues of a logarithmic normal derivative matrix of the solution of the boundary

problem (1)-(5), (8)

max

/2
(T, €) = 272 /O 60 0] T (o, 0) 20, (9)

Standard theorems [18] ensure the existence of a function fi(rmax,€) such that Eq. (8) is

satisfied (at any finite r = rp,x < 0o0) [19].

3. REDUCTION OF THE 2D PROBLEM BY THE KANTOROVICH METHOD

Consider a formal expansion of the partial wave function W™ (r, 0) of the (1)-(5) with
(6)/(8) corresponding to the eigenstate |moi) using the finite set of one—dimensional basis
functions {®77(0;7) 27"

jmax

Em(r,0) =Y 07 (0;r)x\" (B, ). (10)

J
J=1

In Eq. (10), the functions x@(r) = x™)(E,r), (xO)NT = (@r),... aXEQaX(T))
are unknown, and the surface—functions ®(6;7) = ®™(0;r), (®(0;r)T =
(©1(6;7),...,9,...(0;7)) form an orthonormal basis for each value of the radius r which
is treated here as a parameter.

In the Kantorovich approach the wave functions ®;(0;7) and potential curves E;(r) are
determined as the solutions of the following one-dimensional parametric eigenvalue problem:

(_% sin 9% + r?sin OV (r, 9>> ©;(0;7) = E;(r) sin60;(6;7), (11)



with the boundary conditions

0;(0;r)

lim sin —2 =0, for m =0, and ®;(0;7) =0, for m # 0, (12)
.
% <g;r> =0, for o = +1, and 9, (g;r> =0, foro = —1. (13)

Here the sign of z—parity, 0 = (—1)™¢, is defined by the (even or odd) number of nodes Ny in
the solution ®(6#;r) with respect to the angular variable 6 in the interval 0 < 6 < 7. Since

the operator in the left—-hand side of (11) is self-adjoint, its eigenfunctions are orthonormal

<<I>i(9; )| D;(6; r)>9 =2 /07r/2 sin 6P, (0; ) P;(0;r)dd = 6,5, (14)

where 9;; is the Kroneker symbol.
Note that, the solutions of this problem with shifted eigenvalues, Ej(r, v) = Ei(r,y) —
ymr?, correspond to the solutions of the eigenvalue problem for oblate angular spheroidal

functions [13| with respect to a variable n = cos 6:

2 2\ 2
<_8%(1 - 772)8% +7 Tnz + <%) (1- 772)> ®;(n;r) = Eji(r)®;(n; 7). (15)
It means that for small r the asymptotics of the eigenvalues E;(r), 7 = 1,2,... at fixed
values m and o is defined by the values of the orbital quantum number, | = s,p,d, f, .. .:
E;(0) =1(l+1),1=0,1,..., where j runs j = (I — |m|)/2 + 1 for even z—parity states,
o=+1= (=17 and j = (I — |m| + 1)/2 for odd zparity states, o0 = —1 = (—1)=",
Taking into account that the number of nodes Ny of the eigenfunction ®(6;r) at fixed |m|
and 0 = (—=1)™ as a function of the parameter r is preserved, we get the one—to—one
correspondence between these sets, i.e., Ny =1 — |m)|.

For large r the asymptotics of eigenvalues E;(r), j = 1,2, ..., at fixed values of m and o

is defined by the values of the transversal quantum number, N,:

rli_)rglo r2E;(r,y) = ef:fgj(v) = 72N, + |m|+m +1), (16)
where N, =0,1,..., and j runs j = N, + 1. The values of the transversal quantum number

N,, i.e., the number of nodes of the eigenfunction ®(#;r) in the subinterval 0 < n < 1 or
—1 < n < 0, corresponding to the transversal variable p = r sin # on semi-axis, are expressed
via the number of nodes Ny of the solution ®(#;7): N, = 1/2- Ny for the even z—parity states,
o=+1=(-1)" and N, =1/2-(Ny — 1) for the odd zparity states, 0 = —1 = (—1)"°.



Such a transversal classification also reveals a violation of degeneracy of the states with
azimuthal quantum numbers, £m, having the same module |m| that holds for the angular

oblate spheroidal functions, i.e.,

lim r=2E;(r,v) = v(2N, + |m| + 1). (17)

r—00
Taking into account the above—mentioned correspondence rules between the quantum num-
bers | —|m|, Ny, N, and the number j at fixed values of m and o, we use the unified number,
J, without pointing out explicitly a concrete type of quantum numbers. These rules are
similar to the conventional correlation diagrams for potential curves of a hydrogen atom in
the uniform magnetic field or a helium atom.

After substituting the expansion (10) into variational problem (8), and using (11)—(14)
the solution of the above problem is transformed into the solution of an eigenvalue problem
for a system of jya.x ordinary second-order differential equations for determining the energy

¢ and the coefficients (radial wave functions) x”(r) of expansion (10)

1d ,d U d 1dr’Q ; i
(‘Iﬁ ST Qg+ _d—()> XV (r) = aIx (), (18)
. dy® .
limr* (D,x”(r)) = limr? (XT(” - Q(T)X“’(ﬂ) = 0.

Here I, U(r) and Q(r) are matrices of dimension jyax X jmax Whose elements are given by

the relations

FE; E;
Uij(T‘) = Mém — 2Z7”5ij + 7"2Hij<7”), Iz = 6ij7 (19)
T 0i(85r) 08,(0:1) T (0:1)
B . ,09(0;7) 0P;(0;r B ) 09057
H;;(r) —2/51110 o 5 do, Qq(r)= —2/sm9<l>l(9,r) . de.
0 0

The above matrix elements were calculated by means of the author combined computer
algebra-numerical code MATRM implemented in both MAPLE 8 and FORTRAN |[20].
The discrete spectrum solutions are obeyed the asymptotic boundary condition and or-

thonormal conditions

r—00

lim ?xD(r) =0 —  x@(rma) =0, / r2(xW (r) XY (r)dr = 6;5. (20)
0

For the continuum spectrum solution x(r) we can alternatively require that projections

of (8) onto all adiabatic functions hold

WEm (1, 6
<(I)j(9;7“) ‘ 0 i ar(ﬂ ) — \I/fmo('f’, 9)> — 07 T = Tmax, (21)
%



that leads to the third type boundary conditions at fixed values of energy ¢ > €, (y) and

mol

radial variable r = rpax

| @) |
(R0 =) x00) = (X520 0 - Qe - i) X0 =0 e

From here p; and x®(rp.y) are should be a set of the eigenvalues A = {(5ijui}g":1 corre-

sponded to a set of eigenvectors x(r) = {x¥(r)}X, of the following eigenvalue problem at

T = T'max

dx(r)

D,x(r) = =

= Q(r)x(r) = x(r)A, (23)

that reformulates by averaging of variational problem (9) to the following one:

II(X, €) = TmaxX (Tmae) X (Fmax) A = 0. (24)

Here N, is the number of the open channels, i.e., the energy e should be belong to interval

Eth (7) <e< EZI;UNO—FI(,Y)? and jmax > No-

mo N,
After discretization, the Eq. (24) according to the following algebraic eigenvalue problem

ITx = T?naxi(rma)c)—&a TrQnaxf(T(TmaX)f((TmaX) =L (25)

Jmax

The nonsymmetric R matrix is obtained by the total set of eigenvalues A= Ty s

Jmax

and eigenvectors X = {X”}™* of the eigenvalue problem (25)

R =2, X(rmax) AX! (Fmax) + Q(Fmax), (26)

that gives the relation between x/(r) and its derivative at r = 7rpax

dx(r)
dr

= Rx(r). (27)

One can see that Eqgs. (25) and (26) provide a generalization of the conventional R—-matrix
calculations with a symmetric R-matrix[24, 25|, that originate from a conventional Galerkin
expansion for which Q(r) = 0 and long derivatives are conventional ones D, x(r) = d%—y).
Note, that in the diagonal approximation i = j of the problem (18)-(20), the so—called
adiabatic approximation, the number of nodes N, of the solution x(r) with respect to the slow
radial variable r on semi—axis for small values of the parameter v corresponds to the radial

quantum number N, = N — [ — 1 of a free hydrogen atom in the bound state characterized

by a conventional set of quantum numbers (N, [, m, A = (—1)!) and the binding energy



—€i(y=0)= _E§o) = Z/N? (in Ry). Recalling that the number of nodes Ny of the solution
®(0;r) with respect to the fast angular variable, 6, at fixed |m| and ¢ = (=1) as a
function of the slow parameter, r is conserved, i.e., Ny = | — |m|, we have the one—to—one
correspondence between the quantum numbers (N, 1) of the free atom at v = 0 and the
adiabatic ones {N,, Ny} of the perturbed atom at v # 0.

For large values of the parameter v the adiabatic radial number N, corresponds to the
longitudinal quantum number V|| of a hydrogen atom in the strong magnetic field at fixed
m and the sign of ¢ = £1, i.e., the number of nodes of the solution x(|z|) with respect to
the longitudinal variable z = 7 cos® on semi-axis. It means that the solution x(z) on an
axis is defined as follows: X, (2) = (X,,(p, 2) + oX,,(p, —2))/V/2, or reduced to the solution
X (|z]) of a conventional eigenvalue problem on a semi—axis, using the Neumann and Dirichlet
boundary conditions at z = 0 for the even o = 41 and odd o = —1 solutions, respectively.

Taking into account the above correspondence rules with such an adiabatic set [N}.; N,
and the asymptotics of eigenvalues Ej(r) at large r, we can express the binding energy &
via the eigenvalues € of the problem (18)-(20) as follows: & = (el ;(v) —€)/2 (in a.u.),
where €/ ;(7) is the true threshold shift (16) or the reduced one €, () = v(|m| +m + 1),

respectively.

4. ASYMPTOTICS OF SOLUTION

We write system of differential equations (18) at fixed values m, o and energy ¢ = 2F in

the explicit form for yj;, (r) = Xg.i”)(r), i=1,... Jmax, t%o=1,..., N,

1d 2 d 27 Ej(?”)
o2 22 H.: y
< 2dr dr ’ €+ 2 + Hjj(r) ) Xjio(r) (28)
Jmax
d 1dr*Q;y(r)
= (‘Hjj'(T)—ij'(T)%—ﬁ—df >Xj’io(7‘)-
=1

At large r asymptotics of matrix elements by inverse power of r (i.e., without exponential

terms) is of the form (for details, see [20])

B (r) = B Y o ERY Hyp(r) = e H Y
k=1

Ji’ o
k=1

Qjj(r) = ZT_QICHQS-?ZC_D, r > max(ng, n,)y/2. (29)
k=1



Here

= v(2n+ |m| +m + 1),
= —2n* —2n —1—2|m|n — |m|, (30)

H?) = (2n% + 2n 4 2/m|n + [m| + 10—, 10

—Vn+1y/n+|m|+1vVn+2v/n+m|+28, n.| 2,
Qg? = (n, —n)vVn+1y/n+|m|+16,n, 1,

In these formulas asymptotic quantum numbers n;, n,. denote transversal quantum numbers
N, N/;, that connected with the unified numbers j, j° by the above mentioned formulas
n=j—1,n.=j7 —1and n=min(n;,n,).

Note, EJ(.Z) + Hﬁ) = 0, i.e., at large r centrifugal terms are eliminated in Eq. (28). It
means that the leading terms of radial solutions, x;;, (), have asymptotic of the Coulomb
functions with zero angular momentum.

Let us consider asymptotic solution following paper [21]

dR(p;,,r
X0 1) = Rl 7)o, () + T8y ) (31)
where R(p;,,r) =1 F(pi,,r)+G(pi,,7); F(pi,,7), G(pi,, ) are the Coulomb regular, irregular

functions and satisfy the differential equation

d*R(p;,,7)  2dR(p;,,r 27
c(lr2 ) + = (dr ) + (p?o + T) R(p;,,7) =0. (32)

Then we can expand the functions ¢j;, (r) and ¢, (r) in series with inverse powers of r

kmax kmax
k) — k) —
G, (r) = D S TE g () =3 i h (33)
k=0 k=0

In result of substitution of expansions (33) to (31) and (28), using (32) and equating coef-

ficients of expansion for the same powers of r, we arrive to the set of recurrence relations
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with respect to unknown coefficients ¢§]2 and ¢J(’fj

Jt

(12, = 2B+ EP) 0lf) — 202 (k= Vit = (k= 2)(k = 3)lf ™ — 22(2k — 3)yll

]max
(k") (K) k K’ (K'=1) (&) 1 (k—K')
3 () = 3 S [(k- ks - ) o
k=1 J'=1j'#j k'=1
2 (&) (K'=1)\  (k—k')
—i—(?piDij/ +42Q%, )z/zj,io } (34)
k
k k—1) k—2 K k—k')
(02, — 28 + Byl + 20k = 1)l — k(k - 0o + 30 (BX + 1Y) gl
k'=1
Jmax
- ¥ Z [( 2k — K+ 1)Q " — HY) il ) — 2ol k ﬂ . (35)
J'=15'#j k'=1

From first four equations of set (34)—(35) for QSZO,@, jgzo, wwo, §.§§O, we have the leading
terms of eigenfunction, eigenvalue and characteristic parameter, i.e., initial data for solving

the recurrence sequence (34)—(35),

3O = S b0 — o, Pl =2E — EZ.((?)’ (36)

Joo Jo%o

that corresponds to the leading term of x;;, (r) satisfied of asymptotic expansion series (33)
at large r. Substituting these initial data to next equations of set (34)-(35), we have a
step-by-step procedure for determining of series coefficients gb;];j and wj(fj Using explicit
asymptotic of matrix elements (29), we have explicit expression of these coefficients qﬁyfj and
wj(fo) via values of number of a state (or channel) i, = n, + 1 and number of current equation

J=1,..., Jmax- For example, at £ = 0,1 such elements take the form

o) =1, 3% =o,

to%o

1 1
¢§0)_1¢0 =0, 2ﬁz(o)—lio =

Vo1 + ]

2no+ \m| + 1

¢§1Z) =0, o =

tolo

¢(1) _o, w(l) Vo + \/ no + |m| +1

to+1i0 o+lio

Taking into account the region of convergence of matrix elements we find that the region
of convergence of expansion (31) as follows from asymptotics of matrix elements which not

depends on p;, i Tmas > 14,/ (2¢/7) and Frep > ZA”y(Znia +1)/pi,
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5. THE SCATTERING STATES AND PHOTOIONIZATION CROSS SECTIONS

Solution of the scattering problem,
xP(r) = oxPV () (I - 1K) = x*(r) + x°(r) K, (37)

with N, open channels for pfo >0ati,=1,...,N,, is defined by means of the two indepen-
dent fundamental asymptotic solutions x*(r) = 2 (x(r)), x°(r) = 2 R(x(r)) (corresponding
regular’, “irregular’ type) of Egs. (28) and a reaction matrix K = +(I+ S)™'(I — S), where
S=(I+:K)(I—:K) ! is the scattering matrix.

In this case, the regular and irregular functions verify the generalized Wronskian relation

at large r

WE(QU)i X (1) X (1) = ST (39)

where Wr(e; x*(r), x(r)) is a generalized Wronskian with a long derivative defined by

Wr(o: X (). x(0) = [<x*<r>>T (= axi)) - (- oxc0) x(r>}39)

that will be used to examine a desirable accuracy of the above expansion. Here I,, is the
unit matrix of dimension N, X N,,.
Using the formula (27), we obtain the equation for the reaction matrix K via R matrix

at 7 = Tmax

(Rt = )1 = (R (40

and the Eq. (38) equivalent to

Wr(Q(rmax); X (Tmax) s X (Fmax)) = WE(R; X (Fmax), X (Pmax))- (41)

Note that, when some channels are closed, the left and right matrices of (40) are rectangle
matrices. Therefore, multiplying (40) on the left by the matrix (x°(p))” and we obtain the

following formula for the reaction matrix K

K= _X_I(Tmax)Y<TmaX)’ (42)
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are the square matrices of dimension N, X N, and X(ryax) is should be a symmetric matrix
from the condition Wr(R; x°("max), X°("max)) = 0.

Let the matrices S and K have eigenvalues exp(2:9;) and tan d;, respectively. Then
SB = Bexp(2:9), and KB =Btané (43)

where exp(2¢4), tan 4, are diagonal matrices and B can be taken to be real and normalized

to
B'B=1,. (44)

We denoted the eigenstate wave function of continuum W™ (r 0) with energy 2F (of ejected

electron) above the first threshold € ,(v) = €_(v) = v(|m| +m + 1) by the following

mol
j]]lax
YEm (1. g) Zcpm" nX (B, ), (45)
where
"N E, 1) =x" (B or X" (E,r)=x"(r)Bcosd. (46)

In this case the eigenstate wave function W£™(r, §) normalized to

]max Tm
\IJE/ m’ / > Z / 2d,r Xg';na') E’ ’]”)) ng o )(El7 T)

= 8(E — E')6 s Ooer0i. (47)

<\1/Em<’(r 0)

In terms of the above definitions the photoionization cross section 0%(w) and o?(w) (polarized

by along z axis and along XOY plane, respectively) are expressed as

2 2

ol(w) = ij\//TZGNp(E) ag, (48)

No
ay, oP(w) = 4w Z
i=1

o
A
Dy, (E)
=1

where ZADZL]%M’ ~,(E) and le]\',ﬁ”Np(E ) are the matrix elements of the longitudinal and transver-

sal moment, respectively

DIy, (E) = 5|m_m,|0<\ygm/a(r7 0)|r cos 0| UR7 (1, 9)>
N N i i} /
e Bl B e N R )
j=15'=170

rsind

V2
N N Pmax ) . /
=S [ (R En) o) (50)

VR, 0))
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The longitudinal D™)(r) and transversal P (r) matrix elements are expressed as

DJ(;? "(r) = 5|m—m’0<@?1/_0(9; r)|r cos

<1>§'f“’(9;7“)> ,

0

m'mo m'o rsin 6 mo
Pj(j, )(7") = 6|mm/|1<(I>j (0;71) W‘q)j/ (0;7“)>9.
In the above expressions w = FE — FE(N},, N, 0,m) is the frequency of radiation,

E(N.,N,,0,m) is the energy of the initial bound state \Ij%;,NP(T? n), E is the energy of
the final continuum state WE™(r n), such that N, is the number of the open channels, « is
the fine—structure constant, aq is the Bohr radius.

In our calculations we used the following physical constants: inverse centimeter—hartree
relationship em™' = 4.55633 x 107%a.u., Bohr radius ap = 5.29177 x 10~*'m and fine-
structure constant o = 7.29735 x 1073 [22]. Fig. 1 displays the calculated photoionization
cross-sections 0%(w) and o”(w) from the ground state to the different continues spectrum
states. On fig. la we use the energy interval from £ = 0.05a.u. to £ = 0.25a.u. for the
final state with ¢ = —1, m = 0. Number of the open channels are equal from 1 to 2. One
can see that behavior of the photoionization cross-section versus energy between first and
second thresholds is an agreement in a qualitative sense with behavior of a short-range elastic
scattering cross-section of the opposite charge particles with short-range potential[25]. On
fig. 1b we used the energy interval from £ = 0.075a.u. to E = 0.525 a.u. for the final state
with 0 = 41, m = 1. The final state energy E is measured relative to the zero-field ionization
threshold. Number of the open channels are equal from 1 to 9. Calculated photoionization
cross section is in good agreement with [12| between the thresholds, but not near them.
Here we show one of the goal of the elaborated approach to provide the stable and economy
calculations of photoionization cross section having the true threshold behavior coincided

with [15].

6. CONCLUSIONS

A new effective method of calculating wave functions of a hydrogen atom in a strong mag-
netic field is developed based on the Kantorovich approach to parametric eigenvalue problems
in spherical coordinates. The two-dimensional spectral problem for the Schrédinger equa-
tion at a fixed magnetic quantum number and a parity is reduced to a spectral parametric

problem for a one—dimensional equation by the angular variable and a finite set of ordinary
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second—order differential equations by the radial variable. The results are in good agreement,
with calculations by other authors. The developed approach yields a good tool for calcula-
tions of threshold phenomena in formation and ionization of (anti)hydrogen like atoms and
ions in magnetic traps. In further we will calculate also a manifold of the excited states
in a lair with the principle quantum number N = 3 of a hydrogen atom at the magnetic
field 2.35 x 10* T and 6.1 T that may be interested from our viewpoint for a laser stimulated
recombination in a trap [23].
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Figure 1. Photoionization cross-sections 0%(w) (a) and o?(w) (b) from the ground state with v = 0.1

for final state with 0 = —1, m = 0 and v = 0.05 for final state with ¢ = +1, m = 1, respectively.
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