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A new e�ective method of calculating wave functions of discrete and continuous

spectra of a hydrogen atom in a strong magnetic �eld is developed based on the

adiabatic approach to parametric eigenvalue problems in spherical coordinates. The

two-dimensional spectral problem for the Schr�odinger equation at a �xed magnetic

quantum number and a parity is reduced to a spectral parametric problem for a one-

dimensional equation by the angular variable and a �nite set of ordinary second-order

di�erential equations by the radial variable with long derivatives in a form appro-

priated for a generalization of R�matrix calculations following from a variational

functional. The results are in good agreement with the photoionization calculations

by other authors and have a true threshold behavior.

PACS numbers: 31.15.Ja, 31.15.Pf, 34.50.-s, 34.50.Pi,

1. INTRODUCTION

Recent Monte-Carlo estimations of the in�uence of the strong magnetic �eld on the spon-
taneous recombination of the antihydrogen in the cold positron�antiproton plasma conditions
of the ATHENA [1, 2] and ALPHA [3] experiments (CERN) are shown that further quantum
mechanical analysis is needed [4]. We can pay attention for a new enhancement mechanism
of a laser-stimulated recombination of antihydrogen in cold antiproton-positron plasma in
a laboratory magnetic �eld via quasistationary states embedded in the continuum that is
reveled recently [5]. To realize such analysis in �rst stage the adiabatic representation known
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in mathematics as a Kantorovich method is developed for solving: the problem of low-lying
excited states of hydrogen atom in a magnetic �eld in spherical coordinates [6] and the
benchmark three-body scattering problem on a line [7].

Indeed, the adiabatic representation in cylindrical coordinates was applied recently to
revive the basic decay mechanisms of Rydberg states with the high magnetic quantum num-
bers in the magnetic traps [8]. It has been shown that the exhaust analysis of a complex
behavior of the electron dynamics with decreasing module of magnetic number is impossible
without taking the nonadiabatic coupling into consideration [9]. However, high�accuracy
calculations in cylindrical coordinates is a rather cumbersome problem except the cases of
the high magnetic numbers or dominating magnetic �eld [10]. So, using of the spherical co-
ordinates is preferable when Coulomb and magnetic �elds have comparable contributions in
an average potential energy [11] but leads to non-true threshold behavior of photoionization
cross section calculated by complex rotation variational method[12].

In this paper we develop the Kantorovich approach with a boundary condition of the third
type in a form appropriated for the generalized R�matrix calculations of atomic hydrogen
photoionization in a strong magnetic �eld using a uniform orthogonal parametric basis of
the angular oblate spheroidal functions [13] in spherical coordinates only instead of the
combined nonorthogonal basis of Landau and Sturmian functions in both cylindrical and
spherical coordinates [14, 15]. E�ciency of the elaborated approach which provides true
threshold behavior of photoionization cross-sections of a hydrogen atom from the ground
state to the di�erent continues spectrum states is demonstrated by present calculations.

The paper is organized as follows. The 2D�eigenvalue problem for Schr�odinger equation of
the hydrogen atom in an axially symmetric magnetic �eld, written in spherical coordinates, is
considered in section 2 together with the appropriate classi�cation of states. The reduction of
the 2D�eigenvalue problem to the 1D�eigenvalue problem for a set of closed radial equations
via four steps of the Kantorovich method is described brie�y in section 3. All the asymptotic
expressions needed to determine the solutions, and the reaction matrix, from the generalized
R�matrix method, are presented in section 4. The method is applied to the calculation of
ionization of the ground state to the di�erent continues spectrum states in section 5. In
conclusion, we point out at the perspectives for further applications of this approach.
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2. STATEMENT OF THE PROBLEM

The Schr�odinger equation for wave function Ψ̂(r, θ, ϕ) = Ψ(θ, r) exp(ımϕ)/
√

2π in the
spherical coordinates (r, θ, φ), of the hydrogen atom in an axially symmetric magnetic �eld
~B = (0, 0, B) can be written as the 2D�equation

(
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r2 sin θ
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∂
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+ U(r, θ)

)
Ψ(r, θ) = εΨ(r, θ), (1)

in the region Ω: 0 < r < ∞ and 0 < θ < π. The potential function U(r, θ) is given by

U(r, θ) = −2Z

r
+ V (r, θ), V (r, θ) =

m2

r2 sin2 θ
+ γm +

γ2r2

4
sin2 θ, (2)

where m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0
∼= 2.35 × 105T

is a dimensionless parameter which determines the �eld strength B, and the atomic units
(a.u.) ~ = me = e = 1 are used under the assumption of in�nite mass of the nucleus. In
these expressions ε = 2E is the doubled energy (in units of Rydbergs, 1Ry=(1/2) a.u.)
of the bound state |mσ > at �xed values of m and z-parity; σ = ±1; Ψ ≡ Ψmσ(r, θ) =

(Ψm(r, θ) + σΨm(r, π− θ))/
√

2 is the corresponding wave function. Here the sign of z-parity
σ = (−1)Nθ is de�ned by the (even or odd) number of nodes Nθ in the solution Ψ with
respect to the angular variable θ in the interval 0 < θ < π. The wave function satis�es the
following boundary conditions in each Hmσ subspace of the full Hilbert space:

lim
θ→0

sin θ
∂Ψ(r, θ)

∂θ
= 0, for m = 0, and Ψ(r, 0) = 0, for m 6= 0, (3)

∂Ψ

∂θ

(
r,

π

2

)
= 0, for σ = +1, and Ψ

(
r,

π

2

)
= 0, for σ = −1, (4)

lim
r→0

r2∂Ψ(r, θ)

∂r
= 0. (5)

The discrete spectrum wave function is obeyed the asymptotic boundary condition approx-
imated at large r = rmax by a boundary condition of the �rst type,

lim
r→∞

r2Ψ(r, θ) = 0 → Ψ(rmax, θ) = 0. (6)

Here the energy ε ≡ ε(rmax) play the role of eigenvalues of the boundary problem (1)�(6)
determined by a variational principle with additional normalization condition in a �nite
interval 0 ≤ r ≤ rmax,

Π(Ψ, ε) = 0, 2

∫ rmax

0

∫ π/2

0

r2 sin θ|Ψ(r, θ)|2dθdr = 1, (7)
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where Π(Ψ, ε) is the symmetric functional de�ned by

Π(Ψ, ε) = 2

rmax∫

0

π/2∫

0

sin θ

(
r2

∣∣∣∣
∂Ψ(r, θ)

∂r

∣∣∣∣
2

+

∣∣∣∣
∂Ψ(r, θ)

∂θ

∣∣∣∣
2

+ r2(U(r, θ)− ε)|Ψ(r, θ)|2
)

dθdr.

In the Fano�Lee R�matrix theory [16, 17] a continuum spectrum wave function Ψ(r, θ) is
obeyed the boundary condition of third type at �xed values of energy ε and radial variable
r = rmax

∂Ψ(r, θ)

∂r
− µ Ψ(r, θ) = 0. (8)

Here the parameters, µ ≡ µ(rmax, ε), determined by a variational principle, play the role
of eigenvalues of a logarithmic normal derivative matrix of the solution of the boundary
problem (1)�(5), (8)

Π(Ψ, ε) = 2µ r2
max

∫ π/2

0

sin θ|Ψ(rmax, θ)|2dθ. (9)

Standard theorems [18] ensure the existence of a function µ(rmax, ε) such that Eq. (8) is
satis�ed (at any �nite r = rmax < ∞) [19].

3. REDUCTION OF THE 2D PROBLEM BY THE KANTOROVICH METHOD

Consider a formal expansion of the partial wave function ΨEmσ
i (r, θ) of the (1)�(5) with

(6)/(8) corresponding to the eigenstate |mσi〉 using the �nite set of one�dimensional basis
functions {Φmσ

j (θ; r)}jmax

j=1

ΨEmσ
i (r, θ) =

jmax∑
j=1

Φmσ
j (θ; r)χ

(mσi)
j (E, r). (10)

In Eq. (10), the functions χ(i)(r) ≡ χ(mσi)(E, r), (χ(i)(r))T = (χ
(i)
1 (r), . . . , χ

(i)
jmax

(r))

are unknown, and the surface�functions Φ(θ; r) ≡ Φmσ(θ; r), (Φ(θ; r))T =

(Φ1(θ; r), . . . , Φjmax(θ; r)) form an orthonormal basis for each value of the radius r which
is treated here as a parameter.

In the Kantorovich approach the wave functions Φj(θ; r) and potential curves Ej(r) are
determined as the solutions of the following one�dimensional parametric eigenvalue problem:

(
− ∂

∂θ
sin θ

∂

∂θ
+ r2 sin θV (r, θ)

)
Φj(θ; r) = Ej(r) sin θΦj(θ; r), (11)
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with the boundary conditions

lim
θ→0

sin θ
∂Φj(θ; r)

∂θ
= 0, for m = 0, and Φj(0; r) = 0, for m 6= 0, (12)

∂Φj

∂θ

(π

2
; r

)
= 0, for σ = +1, and Φj

(π

2
; r

)
= 0, for σ = −1. (13)

Here the sign of z�parity, σ = (−1)Nθ , is de�ned by the (even or odd) number of nodes Nθ in
the solution Φ(θ; r) with respect to the angular variable θ in the interval 0 < θ < π. Since
the operator in the left�hand side of (11) is self�adjoint, its eigenfunctions are orthonormal

〈
Φi(θ; r)

∣∣∣∣Φj(θ; r)

〉

θ

= 2

∫ π/2

0

sin θΦi(θ; r)Φj(θ; r)dθ = δij, (14)

where δij is the Kroneker symbol.
Note that, the solutions of this problem with shifted eigenvalues, Ẽj(r, γ) = Ej(r, γ) −

γmr2, correspond to the solutions of the eigenvalue problem for oblate angular spheroidal
functions [13] with respect to a variable η = cos θ:

(
− ∂

∂η
(1− η2)

∂

∂η
+

m2

1− η2
+

(
γr2

2

)2

(1− η2)

)
Φj(η; r) = Ẽj(r)Φj(η; r). (15)

It means that for small r the asymptotics of the eigenvalues Ej(r), j = 1, 2, . . . at �xed
values m and σ is de�ned by the values of the orbital quantum number, l = s, p, d, f, . . .:
Ej(0) = l(l + 1), l = 0, 1, . . ., where j runs j = (l − |m|)/2 + 1 for even z�parity states,
σ = +1 = (−1)l−|m|, and j = (l − |m| + 1)/2 for odd z�parity states, σ = −1 = (−1)l−|m|.
Taking into account that the number of nodes Nθ of the eigenfunction Φ(θ; r) at �xed |m|
and σ = (−1)Nθ as a function of the parameter r is preserved, we get the one�to�one
correspondence between these sets, i.e., Nθ = l − |m|.

For large r the asymptotics of eigenvalues Ej(r), j = 1, 2, . . ., at �xed values of m and σ

is de�ned by the values of the transversal quantum number, Nρ:

lim
r→∞

r−2Ej(r, γ) = εth
mσj(γ) = γ(2Nρ + |m|+ m + 1), (16)

where Nρ = 0, 1, . . . , and j runs j = Nρ + 1. The values of the transversal quantum number
Nρ, i.e., the number of nodes of the eigenfunction Φ(θ; r) in the subinterval 0 < η < 1 or
−1 < η < 0, corresponding to the transversal variable ρ = r sin θ on semi�axis, are expressed
via the number of nodes Nθ of the solution Φ(θ; r): Nρ = 1/2·Nθ for the even z�parity states,
σ = +1 = (−1)Nθ , and Nρ = 1/2 · (Nθ − 1) for the odd z�parity states, σ = −1 = (−1)Nθ .
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Such a transversal classi�cation also reveals a violation of degeneracy of the states with
azimuthal quantum numbers, ±m, having the same module |m| that holds for the angular
oblate spheroidal functions, i.e.,

lim
r→∞

r−2Ẽj(r, γ) = γ(2Nρ + |m|+ 1). (17)

Taking into account the above�mentioned correspondence rules between the quantum num-
bers l−|m|, Nθ, Nρ and the number j at �xed values of m and σ, we use the uni�ed number,
j, without pointing out explicitly a concrete type of quantum numbers. These rules are
similar to the conventional correlation diagrams for potential curves of a hydrogen atom in
the uniform magnetic �eld or a helium atom.

After substituting the expansion (10) into variational problem (8), and using (11)�(14)
the solution of the above problem is transformed into the solution of an eigenvalue problem
for a system of jmax ordinary second�order di�erential equations for determining the energy
ε and the coe�cients (radial wave functions) χ(i)(r) of expansion (10)

(
−I

1

r2

d

dr
r2 d

dr
+

U(r)

r2
+ Q(r)

d

dr
+

1

r2

d r2Q(r)

dr

)
χ(i)(r) = εi Iχ

(i)(r), (18)

lim
r→0

r2
(
Drχ

(i)(r)
) ≡ lim

r→0
r2

(
dχ(i)(r)

dr
−Q(r)χ(i)(r)

)
= 0.

Here I, U(r) and Q(r) are matrices of dimension jmax × jmax whose elements are given by
the relations

Uij(r) =
Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij(r), Iij = δij, (19)

Hij(r) = 2

π/2∫

0

sin θ
∂Φi(θ; r)

∂r

∂Φj(θ; r)

∂r
dθ, Qij(r) = −2

π/2∫

0

sin θ Φi(θ; r)
∂Φj(θ; r)

∂r
dθ.

The above matrix elements were calculated by means of the author combined computer
algebra-numerical code MATRM implemented in both MAPLE 8 and FORTRAN [20].

The discrete spectrum solutions are obeyed the asymptotic boundary condition and or-
thonormal conditions

lim
r→∞

r2χ(i)(r) = 0 → χ(i)(rmax) = 0,

∫ rmax

0

r2(χ(i)(r))T χ(j)(r)dr = δij. (20)

For the continuum spectrum solution χ(i)(r) we can alternatively require that projections
of (8) onto all adiabatic functions hold

〈
Φj(θ; r)

∣∣∣∣
∂ΨEmσ

i (r, θ)

∂r
− µi Ψ

Emσ
i (r, θ)

〉

θ

= 0, r = rmax, (21)
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that leads to the third type boundary conditions at �xed values of energy ε > εth
mσ1(γ) and

radial variable r = rmax

(
R−Q(r)− µi

)
χ(i)(r) =

(
dχ(i)(r)

dr
(χ(i))−1(r)−Q(r)− µi

)
χ(i)(r) = 0. (22)

From here µi and χ(i)(rmax) are should be a set of the eigenvalues Λ = {δijµi}No
ij=1 corre-

sponded to a set of eigenvectors χ(r) ≡ {χ(i)(r)}No
i=1 of the following eigenvalue problem at

r = rmax

Drχ(r) ≡ dχ(r)

dr
−Q(r)χ(r) = χ(r)Λ, (23)

that reformulates by averaging of variational problem (9) to the following one:

Π(χ, ε)− r2
maxχ

T (rmax)χ(rmax)Λ = 0. (24)

Here No is the number of the open channels, i.e., the energy ε should be belong to interval
εth
mσNo

(γ) < ε < εth
mσNo+1(γ), and jmax > No.

After discretization, the Eq. (24) according to the following algebraic eigenvalue problem

Πχ̃ = r2
maxχ̃(rmax)Λ̃, r2

maxχ̃
T (rmax)χ̃(rmax) = I. (25)

The nonsymmetric R matrix is obtained by the total set of eigenvalues Λ̃ = {δijµ̃i}jmax

ij=1

and eigenvectors χ̃ ≡ {χ̃(i)}jmax

i=1 of the eigenvalue problem (25)

R = r2
maxχ̃(rmax) Λ̃χ̃T (rmax) + Q(rmax), (26)

that gives the relation between χ(r) and its derivative at r = rmax

dχ(r)

dr
= Rχ(r). (27)

One can see that Eqs. (25) and (26) provide a generalization of the conventional R�matrix
calculations with a symmetric R�matrix[24, 25], that originate from a conventional Galerkin
expansion for which Q(r) ≡ 0 and long derivatives are conventional ones Drχ(r) ≡ dχ(r)

dr
.

Note, that in the diagonal approximation i = j of the problem (18)�(20), the so�called
adiabatic approximation, the number of nodes Nr of the solution χ(r) with respect to the slow
radial variable r on semi�axis for small values of the parameter γ corresponds to the radial
quantum number Nr = N − l − 1 of a free hydrogen atom in the bound state characterized
by a conventional set of quantum numbers (N, l, m, λ = (−1)l) and the binding energy
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−εj(γ = 0) = −ε
(0)
j = Z/N2 (in Ry). Recalling that the number of nodes Nθ of the solution

Φ(θ; r) with respect to the fast angular variable, θ, at �xed |m| and σ = (−1)Nθ as a
function of the slow parameter, r is conserved, i.e., Nθ = l − |m|, we have the one�to�one
correspondence between the quantum numbers (N, l) of the free atom at γ = 0 and the
adiabatic ones {Nr, Nθ} of the perturbed atom at γ 6= 0.

For large values of the parameter γ the adiabatic radial number Nr corresponds to the
longitudinal quantum number N|z| of a hydrogen atom in the strong magnetic �eld at �xed
m and the sign of σ = ±1, i.e., the number of nodes of the solution χ(|z|) with respect to
the longitudinal variable z = r cos θ on semi�axis. It means that the solution χ(z) on an
axis is de�ned as follows: χmσ(z) = (χm(ρ, z)+σχm(ρ,−z))/

√
2, or reduced to the solution

χ(|z|) of a conventional eigenvalue problem on a semi�axis, using the Neumann and Dirichlet
boundary conditions at z = 0 for the even σ = +1 and odd σ = −1 solutions, respectively.

Taking into account the above correspondence rules with such an adiabatic set [N|z| Nρ]

and the asymptotics of eigenvalues Ej(r) at large r, we can express the binding energy E
via the eigenvalues ε of the problem (18)�(20) as follows: E = (εth

mσj(γ)− ε)/2 (in a.u.),
where εth

mσj(γ) is the true threshold shift (16) or the reduced one εth
mσ(γ) = γ(|m| + m + 1),

respectively.

4. ASYMPTOTICS OF SOLUTION

We write system of di�erential equations (18) at �xed values m, σ and energy ε = 2E in
the explicit form for χjio(r) ≡ χ

(io)
j (r), j = 1, . . . , jmax, io = 1, . . . , No

(
− 1

r2

d

dr
r2 d

dr
− 2Z

r
− ε +

Ej(r)

r2
+ Hjj(r)

)
χjio(r) (28)

=

jmax∑

j′=1,j′ 6=j

(
−Hjj′(r)−Qjj′(r)

d

dr
− 1

r2

d r2Qjj′(r)

dr

)
χj′io(r).

At large r asymptotics of matrix elements by inverse power of r (i.e., without exponential
terms) is of the form (for details, see [20])

r−2Ej(r) = E
(0)
j +

∑

k=1

r−2kE
(2k)
j , Hjj′(r) =

∑

k=1

r−2kH
(2k)
jj′ ,

Qjj′(r) =
∑

k=1

r−2k+1Q
(2k−1)
jj′ , r À max(nl, nr)γ/2. (29)
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Here

E
(0)
j = γ(2n + |m|+ m + 1),

E
(2)
j = −2n2 − 2n− 1− 2|m|n− |m|, (30)

H
(2)
jj′ = (2n2 + 2n + 2|m|n + |m|+ 1)δ|nl−nr|,0

−√n+1
√

n+|m|+1
√

n+2
√

n+|m|+2δ|nl−nr|,2,

Q
(1)
jj′ = (nr − nl)

√
n+1

√
n+|m|+1δ|nl−nr|,1,

In these formulas asymptotic quantum numbers nl, nr denote transversal quantum numbers
Nρ, N ′

ρ, that connected with the uni�ed numbers j, j′ by the above mentioned formulas
nl = j − 1, nr = j′ − 1 and n = min(nl, nr).

Note, E
(2)
j + H

(2)
jj = 0, i.e., at large r centrifugal terms are eliminated in Eq. (28). It

means that the leading terms of radial solutions, χjio(r), have asymptotic of the Coulomb
functions with zero angular momentum.

Let us consider asymptotic solution following paper [21]

χjio(r) = R(pio , r)φjio(r) +
dR(pio , r)

dr
ψjio(r), (31)

where R(pio , r) = ı F (pio , r)+G(pio , r); F (pio , r), G(pio , r) are the Coulomb regular, irregular
functions and satisfy the di�erential equation

d2R(pio , r)

dr2
+

2

r

dR(pio , r)

dr
+

(
p2

io +
2Z

r

)
R(pio , r) = 0. (32)

Then we can expand the functions φjio(r) and ψjio(r) in series with inverse powers of r

φjio(r) =
kmax∑

k=0

φ
(k)
jio

r−k, ψjio(r) =
kmax∑

k=0

ψ
(k)
jio

r−k. (33)

In result of substitution of expansions (33) to (31) and (28), using (32) and equating coef-
�cients of expansion for the same powers of r, we arrive to the set of recurrence relations
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with respect to unknown coe�cients φ
(k)
jio

and ψ
(k)
jio

:
(
p2

io − 2E + E
(0)
j

)
φ

(k)
jio
− 2p2

io(k − 1)ψ
(k−1)
jio

− (k − 2)(k − 3)φ
(k−2)
jio

− 2Z(2k − 3)ψ
(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio

=

jmax∑

j′=1,j′ 6=j

k∑

k′=1

[(
(2k − k′ − 3)Q

(k′−1)
jj′ −H

(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

ioQ
(k′)
jj′ + 4ZQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
, (34)

(p2
io − 2E + E

(0)
j )ψ

(k)
jio

+ 2(k − 1)φ
(k−1)
jio

− k(k − 1)ψ
(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

=

jmax∑

j′=1,j′ 6=j

k∑

k′=1

[(
(2k − k′ + 1)Q

(k′−1)
jj′ −H

(k′)
jj′

)
ψ

(k−k′)
j′io − 2Q

(k′)
jj′ φ

(k−k′)
j′io

]
. (35)

From �rst four equations of set (34)�(35) for φ
(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, ψ
(0)
j0io

, we have the leading
terms of eigenfunction, eigenvalue and characteristic parameter, i.e., initial data for solving
the recurrence sequence (34)�(35),

φ
(0)
j0io

= δj0io , ψ
(0)
j0io

= 0, p2
io = 2E − E

(0)
io

, (36)

that corresponds to the leading term of χjio(r) satis�ed of asymptotic expansion series (33)
at large r. Substituting these initial data to next equations of set (34)�(35), we have a
step-by-step procedure for determining of series coe�cients φ

(k)
jio

and ψ
(k)
jio

. Using explicit
asymptotic of matrix elements (29), we have explicit expression of these coe�cients φ

(k)
jio

and
ψ

(k)
jio

via values of number of a state (or channel) io = no +1 and number of current equation
j = 1, . . . , jmax. For example, at k = 0, 1 such elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=

√
no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m|+ 1

γ
,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=

√
no + 1

√
no + |m|+ 1

γ
.

Taking into account the region of convergence of matrix elements we �nd that the region
of convergence of expansion (31) as follows from asymptotics of matrix elements which not
depends on pio is rmax À nio/(2

√
γ) and r̂max À Ẑγ(2nio + 1)/pio .
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5. THE SCATTERING STATES AND PHOTOIONIZATION CROSS SECTIONS

Solution of the scattering problem,

χ(p)(r) = ıχ(ph)(r)(I− ıK) = χs(r) + χc(r)K, (37)

with No open channels for p2
io ≥ 0 at io = 1, . . . , No, is de�ned by means of the two indepen-

dent fundamental asymptotic solutions χs(r) = 2=(χ(r)), χc(r) = 2<(χ(r)) (corresponding
'regular', 'irregular' type) of Eqs. (28) and a reaction matrix K = ı(I + S)−1(I− S), where
S = (I + ıK)(I− ıK)−1 is the scattering matrix.

In this case, the regular and irregular functions verify the generalized Wronskian relation
at large r

Wr(Q(r); χc(r), χs(r)) =
2

π
Ioo. (38)

where Wr(•; χ∗(r), χ(r)) is a generalized Wronskian with a long derivative de�ned by

Wr(•; χ∗(r),χ(r)) = r2

[
(χ∗(r))T

(
dχ(r)

dr
− •χ(r)

)
−

(
dχ∗(r)

dr
− •χ∗(r)

)T

χ(r)

]
,(39)

that will be used to examine a desirable accuracy of the above expansion. Here Ioo is the
unit matrix of dimension No ×No.

Using the formula (27), we obtain the equation for the reaction matrix K via R matrix
at r = rmax

(
Rχc(r)− dχc(r)

dr

)
K =

(
dχs(r)

dr
−Rχs(r)

)
, (40)

and the Eq. (38) equivalent to

Wr(Q(rmax); χ
s(rmax), χ

c(rmax)) = Wr(R; χs(rmax), χ
c(rmax)). (41)

Note that, when some channels are closed, the left and right matrices of (40) are rectangle
matrices. Therefore, multiplying (40) on the left by the matrix (χc(ρ))T and we obtain the
following formula for the reaction matrix K

K = −X−1(rmax)Y(rmax), (42)

where

X(r) = (χc(r))T

(
dχc(r)

dr
−Rχc(r)

)
, Y(r) = (χc(r))T

(
dχs(r)

dr
−Rχs(r)

)
,
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are the square matrices of dimension No×No and X(rmax) is should be a symmetric matrix
from the condition Wr(R; χc(rmax), χ

c(rmax)) = 0.
Let the matrices S and K have eigenvalues exp(2ıδi) and tan δi, respectively. Then

SB = Bexp(2ıδ), and KB = Btan δ (43)

where exp(2ıδ), tan δ, are diagonal matrices and B can be taken to be real and normalized
to

BTB = Ioo. (44)

We denoted the eigenstate wave function of continuum ΨEmσ
i (r, θ) with energy 2E (of ejected

electron) above the �rst threshold εth
mσ1(γ) = εth

mσ(γ) = γ(|m|+ m + 1) by the following

ΨEmσ
i (r, θ) =

jmax∑
j=1

Φmσ
j (θ; r)χ̂

(mσ)
ji (E, r), (45)

where

χ̂(mσ)(E, r) = χ(ph)(r)B or χ̂(mσ)(E, r) = χ(p)(r)Bcos δ. (46)

In this case the eigenstate wave function ΨEmσ
i (r, θ) normalized to

〈
ΨEmσ

i (r, θ)

∣∣∣∣ΨE′m′σ′
i′ (r, θ)

〉
=

jmax∑
j=1

rmax∫

0

r2dr
(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ′)
ji′ (E ′, r)

= δ(E − E ′)δmm′δσσ′δii′ . (47)

In terms of the above de�nitions the photoionization cross section σd(ω) and σp(ω) (polarized
by along z axis and along XOY plane, respectively) are expressed as

σd(ω) = 4π2αω

No∑
i=1

∣∣∣∣D̂m′mσ
i,N|z|,Nρ

(E)

∣∣∣∣
2

a2
0, σp(ω) = 4π2αω

No∑
i=1

∣∣∣∣P̂m′mσ
i,N|z|,Nρ

(E)

∣∣∣∣
2

a2
0, (48)

where D̂mσ
i,N|z|,Nρ

(E) and P̂m′mσ
i,N|z|,Nρ

(E) are the matrix elements of the longitudinal and transver-
sal moment, respectively

D̂m′mσ
i,N|z|,Nρ

(E) = δ|m−m′|0

〈
ΨEm′−σ

i (r, θ)

∣∣∣∣r cos θ

∣∣∣∣Ψmσ
N|z|,Nρ

(r, θ)

〉

=
N∑

j=1

N∑

j′=1

∫ rmax

0

r2dr
(
χ̂

(m′−σ)
ji (E, r)

)∗
D

(m′mσ)
jj′ (r)χ

(mσ)
j′ (r), (49)

P̂m′mσ
i,N|z|,Nρ

(E) = δ|m−m′|1

〈
ΨEm′σ

i (r, θ)

∣∣∣∣
r sin θ√

2

∣∣∣∣Ψmσ
N|z|,Nρ

(r, θ)

〉

=
N∑

j=1

N∑

j′=1

∫ rmax

0

r2dr
(
χ̂

(m′σ)
ji (E, r)

)∗
P

(m′mσ)
jj′ (r)χ

(mσ)
j′ (r). (50)
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The longitudinal D(mσ)(r) and transversal P(mm′σ)(r) matrix elements are expressed as

D
(m′mσ)
jj′ (r) = δ|m−m′|0

〈
Φm′−σ

j (θ; r)

∣∣∣∣r cos θ

∣∣∣∣Φmσ
j′ (θ; r)

〉

θ

,

P
(m′mσ)
jj′ (r) = δ|m−m′|1

〈
Φm′σ

j (θ; r)

∣∣∣∣
r sin θ√

2

∣∣∣∣Φmσ
j′ (θ; r)

〉

θ

.

In the above expressions ω = E − E(N|z|, Nρ, σ,m) is the frequency of radiation,
E(N|z|, Nρ, σ,m) is the energy of the initial bound state Ψmσ

N|z|,Nρ
(r, η), E is the energy of

the �nal continuum state ΨEmσ
i (r, η), such that No is the number of the open channels, α is

the �ne�structure constant, a0 is the Bohr radius.
In our calculations we used the following physical constants: inverse centimeter�hartree

relationship cm−1 = 4.55633 × 10−6 a.u., Bohr radius a0 = 5.29177 × 10−11m and �ne�
structure constant α = 7.29735 × 10−3 [22]. Fig. 1 displays the calculated photoionization
cross-sections σd(ω) and σp(ω) from the ground state to the di�erent continues spectrum
states. On �g. 1a we use the energy interval from E = 0.05 a.u. to E = 0.25 a.u. for the
�nal state with σ = −1, m = 0. Number of the open channels are equal from 1 to 2. One
can see that behavior of the photoionization cross-section versus energy between �rst and
second thresholds is an agreement in a qualitative sense with behavior of a short-range elastic
scattering cross-section of the opposite charge particles with short-range potential[25]. On
�g. 1b we used the energy interval from E = 0.075 a.u. to E = 0.525 a.u. for the �nal state
with σ = +1, m = 1. The �nal state energy E is measured relative to the zero-�eld ionization
threshold. Number of the open channels are equal from 1 to 9. Calculated photoionization
cross section is in good agreement with [12] between the thresholds, but not near them.
Here we show one of the goal of the elaborated approach to provide the stable and economy
calculations of photoionization cross section having the true threshold behavior coincided
with [15].

6. CONCLUSIONS

A new e�ective method of calculating wave functions of a hydrogen atom in a strong mag-
netic �eld is developed based on the Kantorovich approach to parametric eigenvalue problems
in spherical coordinates. The two-dimensional spectral problem for the Schr�odinger equa-
tion at a �xed magnetic quantum number and a parity is reduced to a spectral parametric
problem for a one�dimensional equation by the angular variable and a �nite set of ordinary
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second�order di�erential equations by the radial variable. The results are in good agreement
with calculations by other authors. The developed approach yields a good tool for calcula-
tions of threshold phenomena in formation and ionization of (anti)hydrogen like atoms and
ions in magnetic traps. In further we will calculate also a manifold of the excited states
in a lair with the principle quantum number N = 3 of a hydrogen atom at the magnetic
�eld 2.35× 104 T and 6.1 T that may be interested from our viewpoint for a laser stimulated
recombination in a trap [23].

This work was partly supported by Grants of RFBR Nos. CRDF BRHE REC-006 SR-
006-X1/B75M06 Y3-P-06-08, and Grant of the President of the Bulgarian State Agency for
Atomic Energy (2004), by Grant I-1402/2004 of the Bulgarian Fund for Scienti�c Investiga-
tions.
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Figure 1. Photoionization cross-sections σd(ω) (a) and σp(ω) (b) from the ground state with γ = 0.1

for �nal state with σ = −1, m = 0 and γ = 0.05 for �nal state with σ = +1, m = 1, respectively.


