The International Student School SELECTED TOPICS IN NUCLEAR THEORY Dubna, July 27, 2004

HYPERNUCLEI: YESTERDAY, TODAY and TOMORROW

Lubomír Majling,
Nuclear Physics Institute, Academy of Sciences, Řež / Prague, Czech Republic

PLAN

Hypernuclei INTRODUCTION

Yesterday (1953-1975)
DISCOVERY: Random Hyperfragments
EKC Pauli Principle
Today (1975-2000)
PRODUCTION: Systematic studies
BNL BB STRONG Interaction

KEK $\tau(A)$

Tomorrow (2000-2010)
DEDICATED experiments :
HYPERBALL $\quad \gamma$ spectroscopy
finuda HN with Neutron Halo
nuclotron NM WEAK Decay

J-PARC, PANDA $\quad \Lambda \Lambda$ Hypernuclei

BARYONS $\mathrm{SU}(3)_{f} \cdots$ MULTIPLETS

NOMENCLATURE

Hypernucleus is specified by
N - the number of neutrons
Z - the number of protons
Y - the number of hyperons

$$
\begin{array}{rl}
\mathrm{N}+\mathrm{Z}+\mathrm{Y}=\mathrm{B} & \mathrm{X}: \text { element }- \text { total CHARGE } \\
\text { (not number of protons !) }
\end{array}
$$

$$
{ }_{\mathrm{Y}}^{\mathrm{B}} \mathbf{X}
$$

number \& type of hyperons $=\mathrm{Y}$

EXAMPLES

$$
\begin{array}{ll}
{ }^{10} \mathrm{Be} & 4 \mathrm{p} \\
& 1 \Lambda \\
& 5 \mathrm{n} \\
& \\
& 1 \mathrm{p}+1 \Sigma^{+}+2 \mathrm{n} \\
{ }_{\Lambda}^{4} \mathrm{He} & 2 \mathrm{p}+1 \Sigma^{0}+1 \mathrm{n} \\
& 3 \mathrm{p}+1 \Sigma^{-}+0 \mathrm{n} \\
& \\
& 2 \mathrm{p} \\
{ }^{4}{ }^{6} \mathrm{He} & 2 \Lambda \\
& 2 \mathrm{n}
\end{array}
$$

HYPERNUCLEI

Hypernuclei were discovered by M. Danysz and J. Pniewski Bull. Acad. Polon. Sci. 3, 42 (1952); Phil. Mag. 44, 348 (1953) in a baloon-flown emulsion stack where salient picture

TWIN stars :
strong production of primary hypernucleus and

The first observation of the decay of a hypernucleus.
weak decay of hyperfragment connected with a path corresponding to lifetime $\approx 10^{-10} \mathrm{sec}$ were easily recognized.

The original discovery suggesting that Λ - hyperons can exist not only as free particles but also bound within nuclei was due to Danysz and Pniewski.
An excited hydrogen atom, to use the simplest example, consists of a proton and electron in a state of higher energy than in the normal atom. The analogy might then suggest that the excited nucleon consists of a proton and an associated π^{-}- that the Λ is a composite particle.
Such a view could not have been finally excluded while our knowledge was confined to the decay of free Λ-particle.
These considerations suggest that

the Λ-particle is an excited state nucleon

in a different sense from that suggested by familiar analogies.
We are entering a new field where basically new concepts remain to be established.
C. N. Powell: Excited Nucleons

Nature, 173 (1954) 469

The hypothesis was made that the nuclear fragment contained a bound Λ in a nucleus like an ordinary nucleon.

It is an essential fact in the chain of reasoning which makes of hyperon just a new species of baryons, and hence leads to SU_{3}, quarks etc.
Ch. Peyrou: The role of cosmic rays in the development of particle physics Colloque International sur l'Historie de la Physique des Particules, Paris, 1982

From
A. Wròblewski: Hypernuclei (and strange particles) - how it all began ?

XXVIII Mazurian Lakes School of Physics, Poland, September 2003
Acta Physica Polonica B 35 (2004) 901 - 927

Production and Decay of Hypernucleus

FORMATION

primary
${ }_{A_{i}} \mathrm{Z}_{\mathrm{i}} \quad\left(K^{-}, \pi^{-}\right){ }_{\Sigma}^{A_{i}} \mathrm{Z}^{*} \quad$ strangeness exchange $\quad K^{-}+N \rightarrow \Sigma+\pi$
${ }^{A_{i}} \mathrm{Z}_{\mathrm{i}} \quad\left(K^{-}, \pi^{-}\right){ }_{\Lambda}^{A_{i}} Z_{i}^{*} \quad$ strangeness exchange $\quad K^{-}+n \rightarrow \Lambda+\pi^{-}$
${ }^{A_{i}} \mathrm{Z}_{\mathrm{i}} \quad\left(\pi^{+}, K^{+}\right){ }_{\Lambda}^{A_{i}} \mathrm{Z}_{\mathrm{i}}^{*} \quad$ associative reaction $\quad \pi^{+}+n \rightarrow \Lambda+K^{+}$
${ }_{A} Z_{\mathrm{i}} \quad\left(p, p^{\prime} K^{+}\right){ }_{\Lambda}^{A_{i}} Z_{\mathrm{f}}^{*} \quad$ associative reaction $\quad p+p \rightarrow p^{\prime}+\Lambda+K^{+}$ secondary
Σ conversion ${ }_{\Sigma}^{A_{i}} Z^{*} \rightarrow N+{ }_{\Lambda}^{A_{f}} Z_{f}^{*}$
B-emission ${ }_{\Lambda}^{A_{i}} Z_{\mathrm{i}}^{*} \rightarrow B+{ }_{\Lambda}^{A_{s}} \mathrm{Z}_{\mathrm{f}}^{*}$

> DECAY
> gamma
> ${ }_{\Lambda}^{A_{f}} Z_{f}^{*} \rightarrow \gamma_{f}+{ }_{\Lambda}^{A_{f}} Z_{f}$
> weak
> $\Lambda+N \rightarrow n+N$
> $\Lambda \rightarrow p+\pi^{-}$

$$
\begin{aligned}
& \sum^{A_{j}} Z_{j}+\pi_{w}^{-}
\end{aligned}
$$

Fig. 2.3. The momentum q_{r} transferred to the hyperon Y as a function of the projectile momentum $p_{\text {proj }}=p_{a}$ in the reaction $a N \rightarrow Y b$ at $\theta_{b, L}=0^{\circ}$.

Excitation energy levels of heavy Λ-hypernuclei and their decay modes. The low excitation region could be explored with gamma-ray spectroscopy in very high precision, while for the higher excitation region missing-mass spectroscopy such as the (π^{+}, K^{+}) spectroscopy would be a good tool.

Fig. 4. The dependence of the ${ }_{A}^{7} \mathrm{Li},{ }_{A}^{13} \mathrm{C}$, and ${ }_{A}^{16} \mathrm{O}$ level energies, on the parameters Δ, S_{A}, S_{N}, and T. The arrows in the upper part of each figure show the direction of increase of the one of the parameters (at fixed values of the remaining three parameters) and indicate the interval of the values of a varied parameter with step h within the following intervals:
$0.5 \geqq \Delta \geqq 0.1(h=0.1), 0.02 \geqq S_{\Lambda} \geqq-0.06(h=0.02)$,
$0.1 \geqq S_{N} \geqq-0.3(h=0.1), 0.06 \geqq T \geqq-0.02(h=0.02)$.
For ${ }_{A}^{7} \mathrm{Li}$, the parameters S_{N} and T were varied within intervals $-0.05 \geqq S_{N} \geqq-0.65(h=0.15), 0.08 \geqq T \geqq 0(h=0.02)$

KEK E369

An excitation energy spectrum of ${ }_{\Lambda}^{89} \mathrm{Y}$ obtained in E369.

There are several realistic models for the free YN interactions, based on boson exchanges.

Well-known are YN potentials of the Jülich group constructed along the same guidelines as in the Bonn NN potential B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500 (1989) 483
A. G. Reuber, K. Holinde, J. Speth, Czech. J. Phys. 42 (1992) 1115

The Nijmegen group for many years has developed several one-boson exchange potential models: NSC89, NSC97a-f, ESC00 Th. A. Rijken, Nucl. Phys. A 691 (2001) 322c
They use $\mathrm{SU}(3)$ constrains on the coupling constants to fit about $4300 \mathrm{pp}+\mathrm{np}$ data (cross sections and spin correlations) together with 35 scattering $\Lambda \mathrm{N}$ and $\Sigma \mathrm{N}$ data.

Very important result was obtained by Miyagawa and Glöckle K. Miyagawa, H. Kamada, W. Glöckle, V. Stocks, Phys. Rev. C 51 (1995) 2905 Faddeev :quations were solved for coupled $\Lambda N N-\Sigma N N$ system. For the $\mathbf{Y} N$ system, various interactions were used, and only NSC89 and NSC97f bind the ${ }_{\Lambda}^{3} \mathrm{H}$ at correct binding energy. The Jülich \tilde{A} interaction cannot generate a bound state. These results do not depend on the choice of NN potentials.

The $\Lambda-\Sigma$ conversion was found to be arucial for binding ener ${ }_{8, ~}{ }^{r}$.

	SC89	SC97d	SC97e	SC9f	Experiment
$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{3} \mathrm{H}\right)$	0.37	0.01	0.10	0.18	0.13 ± 0.05
P_{Σ}	0.65	0.06	0.15	0.23	
$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}\right)$	2.55	1.67	2.06	2.16	2.04 ± 0.04
P_{Σ}	3.73	1.27	1.49	1.88	
$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}^{*}\right)$	un-	1.20	0.92	0.63	1.00 ± 0.04
P_{Σ}	bound	1.37	0.98	1.09	
$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}\right)$	2.47	1.62	2.02	2.11	2.39 ± 0.03
P_{Σ}	3.59	1.24	1.45	1.83	
$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}^{*}\right)$	un-	1.17	0.90	0.62	1.24 ± 0.04
P_{Σ}	bound	1.35	0.96	1.08	
$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{5} \mathrm{He}\right)$	0.35	3.17	2.75	2.10	3.12 ± 0.02
P_{Σ}	1.33	2.09	1.55	1.87	

H. Nemura, Y. Akaishi and Y. Suzuki, PRL 89 (2002) 142504

HYPERNUCLEAR WEAK DECAY

The properties of the free Λ hyperon are well known:
it decays nearly 100% via a nonleptonic mode $\Lambda \rightarrow N+\pi$:

$$
\begin{aligned}
\tau_{\text {free }} & =1 / \Gamma_{\Lambda}=2.63 \cdot 10^{-10} \mathrm{~S} \\
\Gamma^{\pi^{-}} / \Gamma_{\Lambda} & =0.639, \quad \Gamma^{\pi^{0}} / \Gamma_{\Lambda}=0.358,
\end{aligned}
$$

in agreement with other hyperon decays Particle Data Properties.
The energy release in the pionic decay produces a nucleon having a momentum of only some $100 \mathrm{MeV} / \mathrm{c} \quad\left(\mathrm{T}_{N} \approx 5 \mathrm{MeV}\right)$.
Thus, the pionic decay modes are severely inhibited by Pauli blocking.
The dominant mechanism of a hypernuclear decay is a far more complex $\quad \Lambda+N \rightarrow \mathrm{n}+\mathrm{N}$ process.
The 176 MeV energy release corresponds $\mathrm{p}_{N} \approx 400 \mathrm{MeV} / \mathrm{c}$.
The total decay width of a hypernucleus, $\Gamma_{\text {tot }}$, is defined in terms of its mesonic and nonmesonic decay modes

$$
\begin{array}{ll}
\Gamma_{\text {tot }}= & \Gamma_{\text {mesonic }} \\
\Gamma_{\text {tot }}=\Gamma^{\pi^{-}}+\Gamma^{\pi^{0}}+\left(\Gamma^{\pi^{+}}\right) & +\Gamma_{\text {nonmesonic }} \\
\Gamma^{p}+\Gamma^{n}+\left(\Gamma^{\text {mb }}\right),
\end{array}
$$

where Γ^{mb} as well as $\Gamma^{\pi^{+}}$are the possible many-body decay modes.
The main observables, which can be measured experimentally and should be confronted with theoretical calculations, include

- the hypernuclear lifetime τ;
- the partial widths $\Gamma^{\pi^{-}}, \Gamma^{\pi^{0}}, \Gamma^{\mathrm{p}}$ and $\Gamma^{\mathrm{n}} ;$
- the ratio of parity-violating to parity-conserving decay, (proton asymmetry in a polarized hypernuclear decay).

Λ DECAY MODES

$\mathrm{p} \pi^{-}$	0.639	± 0.005	101 MeV
$\mathrm{n} \pi^{0}$	0.358	± 0.005	104 MeV
$\mathrm{n} \gamma$	0.00175	± 0.00015	162 MeV
$\mathrm{p} \pi^{-} \gamma$	0.00084	± 0.00014	101 MeV
p e			
$\mathrm{p} \mu^{-} \bar{\nu}_{e}$	0.000832 ± 0.000034	163 MeV	
μ_{μ}	0.000157	± 0.000035	131 MeV

Particle Data Group (K. Hagivara et al.,) Phys. Rev. D 66010001 1 61.
L. Majling, HYP2000, Torino

Charged electroweak currents

	lepton currents			hadron currents								
	$e \nu_{e}$	$\mu \nu_{\mu}$	$\tau \nu_{\tau}$	ud	us	ub	cd	CS	cb	td	ts	tb
$\left(e \nu_{e}\right)$ $\left(\mu \nu_{\mu}\right)$ $\left(\tau \nu_{\tau}\right)$ (ud) (us)	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$			
		\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$			
				$\sqrt{ }$	$\sqrt{ }$							
				$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$			
leptonic processes						semi leptonic processes						
$\begin{aligned} & \left(e \nu_{e}\right) \\ & \left(e \nu_{e}\right) \end{aligned}$	$\begin{aligned} & \left.e \nu_{e}\right) \\ & \left.\mu \nu_{\mu}\right) \end{aligned}$	ν_{e}	$\mu \rightarrow e \nu_{e} \nu_{\mu}$		ν_{μ}	$\begin{aligned} & \left(e \nu_{e}\right) \\ & \left(e \nu_{e}\right) \end{aligned}$	$\begin{aligned} & \text { (du } \\ & \text { (us } \end{aligned}$	u)	$n \rightarrow p e \nu_{e}$			
non leptonic processes												
(ud)	ud)	P viol				(ud) (cs)			$\mathrm{D} \rightarrow \mathrm{K} \pi \pi$			
(ud)		$\Lambda \rightarrow N \pi$				(ud) (cb)			$B \rightarrow$		D $\pi \pi$	

The mass dependence of hypernuclei lifetime

HYPERNUCLEAR WEAK DECAY

At present, there are four hypernuclei for which the complete set of partial rates has been measured. The survey of the results for the Γ^{n} / Γ^{p} ratio is displayed in Figure.
We see that

$$
0.5 \leq\left(\Gamma^{\mathrm{n}} / \Gamma^{\mathrm{p}}\right)^{e x p} \leq 2
$$

and

$$
\left(\Gamma^{\mathrm{n}} / \Gamma^{\mathrm{p}}\right)^{t h} \ll\left(\Gamma^{\mathrm{n}} / \Gamma^{\mathrm{p}}\right)^{e x p} .
$$

The main problem concerning the weak decay of Λ-hypernuclei is the disagreement between the theoretical and experimental values for the ratio $\Gamma^{\mathrm{n}} / \Gamma^{\mathrm{p}}$.

In order to solve the Γ^{n} / Γ^{p} puzzle, many attempts have been made up to now, but without success. Among these we recall

- the introduction of mesons heavier than the pion in the $\Lambda N \rightarrow N N$ transition potential
J. F. Dubach, Nucl. Phys. A 450 ('86) 71c;
J. F. Dubach et al., Ann. Phys. 249 ('96) 146.
A. Parreño, A. Ramos and C. Bennhold, Phys. Rev. C 56 ('97) 339.
- the role of the two-nucleon stimulated decay
W. Alberico et al., Phys. Lett. B 256 ('91) 134.
A. Ramos et al., Phys. Rev. C 50 ('94) 2314.
W. Alberico et al., Phys. Rev. C 61 ('00).
- the description of the short-range baryon-baryon interaction in terms of quark degrees of freedom
D. P. Heddle and L. S. Kisslinger, Phys. Rev. C 33 ('86) 608.
K. Sasaki, T. Inoue and M. Oka, Nucl. Phys. A669 ('00) 331; A678 ('00) 455.

One has to point out that present experiments cannot identify the final state of the residual (A-2) nucleus in the case of nonmesonic decays

$$
{ }_{\Lambda}^{A} \mathrm{Z} \rightarrow{ }^{A-2} \mathrm{Z}+\mathrm{n}+\mathrm{n} \quad \text { and } \quad{ }_{\Lambda}^{A} \mathrm{Z} \rightarrow{ }^{A-2}(\mathrm{Z}-1)+\mathrm{n}+\mathrm{p},
$$

and an average over many nuclear final states has to be performed.
Now, we focus your attention on one peculiar case which makes it possible to detect some of such final states.
"ALPHA DECAYS" of ${ }_{\Lambda}^{10} \mathrm{Be}$ and ${ }_{\Lambda}^{10} \mathrm{~B}$ HYPERNUCLEI
We propose to use the unique feature of the ${ }^{9}$ Be nucleus, namely that after removing a neutron from its ground state several groups of α-particles appear from different excited states of a residual nucleus ${ }^{8} \mathrm{Be}$

Figure 1: Left panel: pattern of the ${ }^{8} \mathrm{Be}$ spectra produced in the ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d}) \mathrm{Be}^{*}$ reaction. Right panel: " $\alpha \alpha^{\prime \prime}$-decay of ${ }_{\Lambda}^{10} \mathrm{Be}$ and ${ }_{\Lambda}^{10} \mathrm{~B}$ hypernuclei and notation of $\Gamma_{\alpha \alpha i}^{\tau}$.

Due to their specific cluster structure - alpha alpha NA - it may be possible to measure in the ${ }_{\Lambda}^{10} \mathrm{Be}$ and ${ }_{\Lambda}^{10} \mathrm{~B}$ hypernuclei the partial decay widths $\Gamma_{\alpha \alpha i}^{\tau}$ corresponding to states of the residual nucleus ${ }^{8} \mathrm{Be}$ decaying through the $\alpha \alpha$-channel.

In such a way we can determine
not only a partial rate (including neutron ones),
but also an exactly ONE-nucleon stimulated process $\Lambda N \rightarrow n N$.
The study of $\Gamma_{\alpha \alpha i}^{\tau}$ offers a unique possibility to determine ALL NEEDED matrix elements of the weak interaction $\Lambda N \rightarrow n N$.

Experiment is approved for NUCLOTRON accelerator at Dubna.

PARTIAL DECAY WIDTHS of the ${ }_{\Lambda}^{10} \mathrm{Be}$ and ${ }_{\Lambda}^{10} \mathrm{~B}$

A one meson exchange model to describe the $\Lambda N \rightarrow N N$ transition including pseudoscalar (π, η, K) and vector (ρ, ω, K^{*}) meson exchanges was developed in J. F. Dubach, NP A 450 ('86) and AP 249 ('96).
Following these lines, a full One Meson Exchange potential was constructed to study the nonmesonic decay of finite mass hypernuclei
A. Parreño, A. Ramos, C. Bennhold, Phys. Rev. C56 ('97).

Hadronic weak matrix elements $\left\langle B^{\prime} M\right| H_{\text {weak }}|B\rangle$ were implanted into the nucleus with usual many-body shell model wave functions.

A convenient compact expression for the potential is given by

$$
V_{\text {weak }}(r)=\sum_{i} \sum_{\alpha} V_{\alpha}^{(i)}(r) O_{\alpha} I_{\alpha}^{(i)}
$$

where the index i runs over mesons exchanged ($\pi, \rho, K, K^{*}, \eta, \omega$), and index α runs over spin operators O_{α} (central, tensor, PV); the isospin operator $I_{\alpha}^{(i)}$ depends on meson type.
The nonmesonic decay rate $\Gamma_{n m}$ can be written as

$$
\Gamma_{n m}=\sum_{\tau} \Gamma^{(\tau)}=\sum_{\tau=\mathrm{n}, \mathrm{p}} \sum_{i} \Gamma_{i}^{(\tau)}
$$

where the partial width Γ_{i}^{τ} is

$$
\left.\Gamma_{i}^{(\tau)}=\left|\left\langle\Psi^{A-2}(\{i\}) \otimes \psi^{N N}(J T)\right| V_{\text {weak }}\right|\left[\Psi^{A-1}(\{c\}) \otimes \psi^{A}\left(\frac{1}{2}\right)\right]^{\mathcal{J}}\right\rangle\left.\right|^{2}
$$

Shorthand notation $\{i\} \equiv E_{i}, J_{i}, T_{i}, \tau_{i}$ (see Fig. 3) and $\{c\} \equiv E_{c}, J_{c}, T_{c}, \tau_{c}$ is used.

Recently the values of $\Gamma^{\tau}\left({ }_{\Lambda}^{4} \mathrm{H}\right)$ and $\Gamma^{\tau}\left({ }_{\Lambda}^{4} \mathrm{He}\right)$ were calculated with several models of weak interactions between hyperons and nucleons

Two Pion Exchange Hybrid Quark
One Meson Exchange

Itonaga, Ueda, Motoba: PR C65 (2002), Sasaki, Inoue, Oka: NP A707 (2002),
Krmotić, Tadić, nucl-th/0212040.

Now it is possible now to extract ratios of $R_{T S}$ from theoretical $\Gamma^{\tau}\left({ }_{\Lambda}^{4} \mathrm{H}\right)$ and $\Gamma^{\tau}\left({ }_{\Lambda}^{4} \mathrm{He}\right)$ values.

We use results A. Parreño, A. Ramos, C. Bennhold, Phys. Rev. C56 ('97).:
The interaction matrix elements for $\mathrm{L}=1$ are very small, so we neglect them for a moment and write extremely simple expression for $\tilde{\Gamma}_{i}^{\tau}$

$$
\begin{equation*}
\tilde{\Gamma}_{i}^{\tau}=\nu_{i} \varepsilon_{1}^{2} \beta_{0}\left[G_{i}^{0} R_{\tau 0}+G_{i}^{1} R_{\tau 1}\right] \tag{1}
\end{equation*}
$$

where $R_{r S}$ are phenomenological rates introduced by Dalitz and Block; ν_{i} - normalization of the spectroscopic factor; and
$G_{i}^{0}\left(G_{i}^{0}\right)$ - weight of the singlet (triplet) state in the wave function of the $\mathrm{N} \Lambda$ pair.
The coefficients ν_{i} and ε_{i} actually are related to strong interaction. They disappear in the ratio:
which depends on single structure characteristic, G_{i}^{0}, only.
But it differs strongly for two 2^{+}states in ${ }^{8} \mathrm{Be}$:

$$
\begin{array}{ll}
G_{1}^{(0)}=0.5 & \text { for state at } \mathrm{E}=3 \mathrm{MeV}: \quad[4]{ }^{11} \mathrm{D}_{2}, \\
\text { and } \\
G_{2}^{(0)}=0.1 \text { for state } \mathrm{E}=16.7 \mathrm{MeV}: \quad[31]\left({ }^{13} \mathrm{P}_{2}+{ }^{33} \mathrm{P}_{2}\right),
\end{array}
$$

PHENOMENOLOGICAL ANALYSIS

Ratios $\gamma_{i}^{n / p}$ for different models of weak interaction.

model	$R_{n 0} / R_{p 0}$	$\begin{gathered} A=4 \\ R_{n 1} / R_{n 0} \end{gathered}$	$R_{p 1} / R_{p 0}$	$\begin{gathered} A=10 \\ \gamma_{1}^{n / p} \quad \gamma_{2}^{n / p} \end{gathered}$
IUM V_{π}	2.0	1.0	27.0	$0.14 \quad 0.08$
$+V_{2 \pi / \rho}$	2.5	2.6	35.0	0.250 .19
$+V_{\omega}$	2.0	0.57	10.0	$\begin{array}{lll}0.28 & 0.14\end{array}$
$+\mathrm{V}_{2 \pi / \sigma}$	2.0	0.39	3.40	0.630 .28
$\begin{array}{ll}\text { SIO } & \pi \\ & \pi+K \\ & \text { HQ } \\ & \\ & \text { all }\end{array}$	2.0	0.54	15.0	0.190 .09
	1.8	4.6	19.0	0.50
	0.85	1.3	0.74	$\begin{array}{ll}1.12 & 1.41\end{array}$
	0.13	26	4.40	0.650 .75
OME $\begin{aligned} & \pi \\ & \text { PS } \\ & \text { PS }+ \text { PV }\end{aligned}$	2.0	0.7	12.1	$\begin{array}{lll}0.25 & 0.13\end{array}$
	2.0	7.6	30.0	$\begin{array}{ll}0.56 & 0.51\end{array}$
	2.0	35	21.3	$3.22 \quad 3.26$
phenomenological				
AG1	0.6	2.2	1.2	0.871 .06
AG2	2.0	2.2	5.0	$1.07 \quad 0.90$

PHENOMENOLOGICAL ANALYSIS

STRONG INTERACTION

PRODUCTION REACTION	+	TARGET "DETECTOR"	\Rightarrow	ENERGY PATTERN
$\left(K^{-}, \pi^{-}\right)\left(\pi^{+}, K^{+}\right)$		p-shell nuclei		doublet splittings: ${ }^{3} S_{1} \times s_{\Lambda}, \quad{ }^{1} D_{2} \times s_{\Lambda} \quad \ldots$
OBEP Jülich, NSC	\Leftrightarrow	G - MATRIX	\Leftrightarrow	PHENOMENOLOGICAL PARAMETERS $T, \Delta, S_{\Lambda}, S_{N}$

WEAK INTERACTION

PRODUCTION REACTION	+	"DETECTOR"	\Rightarrow	$\begin{aligned} & \Gamma_{\alpha \alpha i}^{\mathrm{n}}\left({ }_{\Lambda}^{10} \mathrm{Be}\right) \\ & \Gamma_{\alpha \alpha i}^{\mathrm{p}}\left({ }_{\Lambda}^{10} \mathrm{~B}\right) \end{aligned}$	
relativistic hypernuclei		${ }^{8} \mathrm{Be}$		\\|	
model WI OME, TPE, HQ	\Leftrightarrow	$\begin{aligned} & \Gamma^{\mathrm{n}}\left({ }^{4} \mathrm{H}\right), \Gamma^{\mathrm{n}}\left({ }^{4} \mathrm{He}\right) \\ & \Gamma^{\mathrm{p}}\left({ }^{4} \mathrm{H}\right), \Gamma^{\mathrm{p}}\left({ }^{4} \mathrm{He}\right) \end{aligned}$	\Leftrightarrow	$\mathrm{R}_{n S}, \mathrm{R}_{p S}$	

H. Tamura : Impurity nuclear physics

Fig. $\quad \gamma$-ray spectrum of ${ }^{7} \mathrm{Li}$ measured with
$M 1\left(\frac{1}{2}+(T=1) \rightarrow \frac{3}{2}^{+}\right)$, and $M 1\left(\frac{1}{2}^{+}(T=1) \rightarrow \frac{1}{2}^{+}\right)$, were observed.

Fig. Level scheme of ${ }_{\Lambda}^{7} \mathrm{Li}$ established by the E419 experiment, shown together with the level scheme of the core nucleus ${ }^{6} \mathrm{Li}$. Observed transitions are shown in thick arrows.

Fig. 8. $\gamma-\gamma$ coincidence method for hyperfragments produced from stopped K^{-}absorption.

RELATIVISTIC HYPERNUCLEI

KINEMATICS						
beam	target	SLOW secondaries		FAST secondaries		
K^{-}	$+{ }^{A} \mathrm{Z}$	\rightarrow	${ }_{\Lambda}^{A} \mathrm{Z}$		$+$	π^{-}
:---:						
${ }^{A} \mathrm{Z}$	$+\mathrm{p} \quad \rightarrow \quad K^{+} \quad+{ }_{\Lambda}^{A} \mathrm{Z}+\mathrm{n}$					

FIRST EXPERIMENTS

1976	Berkeley	T. Bowen	PR C13	${ }_{\Lambda}^{16} \mathrm{O}$
1989	Dubna	S. Khorozov, J. Lukstins	NC A 102	${ }_{4}^{4} \mathrm{H}$
1992	Dubna	S. Khorozov, J. Lukstins	NP A 547	${ }_{\Lambda}^{3} \mathrm{H}$

NEW PROPOSALS:
Dubna, Nuclotron, Juris Lukstins: Nucl. Phys A 691 (2001)

KEK, 50 GeV PS, A. Sakaguchi:
Int. Workshop on Nuclear and Particle Physics, KEK, Dec. 2001

RELATIVISTIC HYPERNUCLEI

The production of hypernuclei in relativistic heavy ion collision has several advantages:

- The points of the production and decay of relativistic hypernuclei are separated by many centimeters (instead of some microns in the emulsion);
- decay products are emitted into small laboratory solid angle.
M. I. Podgoretskii, E. O. Okonov,
in Proc. Sem. Nuclotron and Relativistic Nuclear Physics, June 1974, Dubna
J. Bartke et al., in Proc. Int. Workshop on RELATIVISTIC NUCLEAR PHYSICS:
from HUNDREDS of MeV to TeV , Varna, Bulgaria, September 2001.
At the end of the 80-ies hypernuclear experiments were performed on the Dubna synchrophasotron ion beams $\left({ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{6} \mathrm{Li}\right)$ using the streamer chamber. The production cross sections as well as the lifetimes of ${ }_{\Lambda}^{4} \mathrm{H}$ and ${ }_{\Lambda}^{3} \mathrm{H}$ were measured S. Avramenko et al., NP A 547 ('92).
The advantage of these experiments were low background and unambiguous identification of observed hypernuclei.
The same group has prepared program for the Nuclotron accelerator: to measure the lifetimes for ${ }_{\Lambda}^{3} \mathrm{H},{ }_{\Lambda}^{4} \mathrm{H}$ and ${ }_{\Lambda}^{6} \mathrm{He}$ hypernuclei during the initial runs of the Nuclotron J. Lukstins, NP A 691 ('01).

The next step of the suggested hypernuclear experiments program will be investigation of nonmesonic decays by searching two α 's from ${ }^{8} \mathrm{Be}$. If ${ }^{8} \mathrm{Be}$ decays from the ground state, then the back to back momentum of two α 's is very low and both α 's hit the detectors at the same point. However, prevailing part of α 's proceeds from excited states of ${ }^{8} \mathrm{Be}$. These events can be registered by high resolution devices.

So, the new trigger tuned to search for two tagged α particles, opens an unprecedent possibility to determine
$\Gamma_{\alpha \alpha 2}^{\mathrm{n}}\left({ }_{A}^{10} \mathrm{Be}\right), \quad \Gamma_{\alpha \alpha 1}^{\mathrm{n}}\left({ }_{A}^{10} \mathrm{Be}\right), \quad \Gamma_{\alpha \alpha 2}^{\mathrm{p}}\left({ }_{A}^{10} \mathrm{~B}\right) \quad$ and $\quad \Gamma_{\alpha \alpha 1}^{\mathrm{p}}\left({ }_{A}^{10} \mathrm{~B}\right)$ at the Dubna Nuclotron.

Investigation of Hypernuclei and Δ, N - isobar Behavior in Nuclear Matter.

ABSTRACT
GIBS Collaboration, 2002-2006

S.V.Afanasiev, V.D.Aksinenko, M.Kh.Anikina, Yu.S.Anisimov, S.A.Avramenko, Yu.A.Batusov, Yu.A.Belikov, V.K.Bondarev, Yu.T.Borzunov, A.G.Galperin, A.I.Golokhvastov, L.B.Golovanov, A.Yu.Isupov, S.A.Khorozov, A.N.Khrenov, A.D.Kirillov, V.I.Kolesnikov, V.A.Krasnov, A.G.Litvinenko, J.Lukstins, A.I.Malakhov, P.K.Manyakov, E.A.Matyushevsky, V.T.Matyushin, E.A.Matyushina, I.I.Migulina, A.S.Nikiforov, V.A.Nikitin, O.V.Okhrimenko, A.N.Parfenov, V.N.Penev, S.G.Reznikov, P.A.Rukoyatkin, V.S.Richvitsky, I.S.Saitov, S.A.Sedikh, V.A.Smirnov, N.A.Shutova, A.I.Shklovskaya, O.Yu.Tyatyushkina, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
I.Atanasov, L.Dimitrov, G.Georgiev, I.Ts.Ivanov, I.Rusanov, N.Shukov, I.Vankov

Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria
L.Majling

Nuclear Physics Institute, CAS, Řez̈, Czech Republic
D.Chren, B.Sopko

Czech Technical University, Prague, Czech Republic
E.K.Khusainov, N.N.Nurgozhin

Physical Technical Institute AS of Kazakhstan, Alma-Ata, Kazakhstan
V.P.Kondratiev, L.V.Krasnov, I.V.Stepanov

St.Petersburg State University, St.Petersburg, Russia
K.Gajewski, J.Mirkowski, Z.Pavlowski, A.Piatkowski

Radiotechnical Institute, Warsaw University, Warsaw, Poland
Yu.S.Pol, G.G.Taran
Lebedev Institute of Phisics, RAS, Moscow, Russia
M.V.Evlanov, A.M.Sokolov

Institute for Nuclear Research NAS of Ukraine, Kiev, Ukraine

RELATIVISTIC HYPERNUCLEI

JINR DUBNA :

SPHERE spectrometer for the investigation of nonmesonic decay of ${ }_{A}^{10} B$ produced in the Nuclotron carbon beam. S - the beam control counters; T - target; $\mathrm{C}_{1,2}$ - the trigger Čerenkov counters; V - vacuum decay volume; HR - high resolution detectors; M - magnet; PC_{1-4} - proportional chambers.

CHART of light hypernuclei

Notation

- $n \rightarrow \Lambda \quad\left(K^{-}, \pi^{-}\right)$and/or $\left(\pi^{+}, K^{+}\right)$
- $p \rightarrow \Lambda \quad\left(K^{-}, \pi^{0}\right)$ and/or $\left(\gamma, K^{+}\right)$
$\star \quad p p \rightarrow n \Lambda \quad\left(K^{-}, \pi^{+}\right)$and/or $\left(\pi^{+}, K^{-}\right)$

ENERGY SPECTRA OF SOME (HYPER) NUCLEI WITH TWO BODY NEUTRON HALO

$$
\begin{array}{ccc}
{ }^{6} \mathrm{He} & \xrightarrow{\otimes \Lambda}{ }_{\Lambda}^{7} \mathrm{He} \\
\downarrow p^{-1} & & \\
{ }^{5} \mathrm{H} & \xrightarrow{\otimes \Lambda} & { }_{\Lambda}^{6} \mathrm{He}
\end{array}
$$

Myint \& Akaishi	Korsheninnikov	Tilley	Hiyama et al
PTP Sup 146('02)	PRL 87 ('01)	NP A708 ('02)	PRC 53 ('96)

$$
\mathrm{S} \& \mathrm{DCX} \quad{ }^{A} Z\left(K^{-}, \pi^{+}\right)_{\Lambda}^{A}(Z-2)
$$

elementary processes:
(a) $K^{-}+p \rightarrow \pi^{+}+\Sigma^{-}$

$$
\Sigma^{-}+p \rightarrow \Lambda+n
$$

(b): $K^{-}+p \rightarrow \Lambda+\pi^{0}$ $\pi^{0}+p \rightarrow n+\pi^{+}$

$$
K^{-}+\quad{ }^{6} \mathrm{Li} \quad \rightarrow \quad{ }_{\Lambda}^{6} \mathrm{H} \quad+\pi^{+}
$$

$$
\begin{array}{cccl}
p^{-1}: & p+{ }^{5} \mathrm{He} & \Sigma^{-} \otimes{ }^{5} \mathrm{He} & {[f]=[41]} \\
s^{-1}: & p+{ }^{3} \mathrm{H} \otimes{ }^{2} \mathrm{H} & { }_{\Lambda}^{4} \mathrm{H} \otimes n n & {[f]=[32]}
\end{array}
$$

Primted ie Aestrie

The Hypernuclei with Neutron Halo

2 Hypernucleus ${ }_{A}^{7} \mathrm{He}$ and the Structure of the Neutron Halo in ${ }^{6} \mathrm{He}$
Although the most spectacular nucleus of that class is ${ }^{11} \mathrm{Li}$, some characteristics of the neutron halo, e.g., three particle ($\operatorname{core}+n+n$) bound state, are studied in the simplest ${ }^{6} \mathrm{He}$ nucleus [10].

The wave functions of 0^{+}and $2^{+}(T=1)$ states are extremely simple-in the $\alpha+n+n$ model:

$$
\begin{aligned}
& \left|2^{+} 1>=\cos \theta_{2}\right|^{31} D_{2}>+\left.\sin \theta_{2}\right|^{33} P_{2}> \\
& \left|0^{+} 1>=\cos \theta_{0}\right|^{31} S_{0}>+\left.\sin \theta_{0}\right|^{33} P_{0}>
\end{aligned}
$$

therefore, the structure of the ${ }_{A}^{7} \mathrm{He}$ states is also transparent:

$$
\begin{aligned}
& 1 \frac{s}{2}^{+}>=\left|2^{+}>\times\right| s_{\Lambda}> \\
& 1 \frac{3}{2}^{+}>=\cos \beta\left|2^{+}>\times \cdot\right| s_{\Lambda}>+\sin \beta\left|1^{+}>\times\right| s_{A}> \\
& 1 \frac{1}{2}^{+}>=\cos \alpha\left|0^{+}>\times\left|s_{\Lambda}>+\sin \alpha\right| 1^{+}>\times\right| s_{\Lambda}>
\end{aligned}
$$

The location of the thresholds and energy levels in ${ }^{6} \mathrm{He}$ nucleus [11] and ${ }_{\mathrm{A}}^{7} \mathrm{He}$ hypernucleus is displayed in Fig.1.

Figure 1. Spectrum of the ${ }^{6} \mathrm{He}$ (experiment) and ${ }_{\mathrm{A}}^{7} \mathrm{He}$ (calculations [12], [13])

The current calculations (see also [14]) locate the doublet of excited states well below the neutron threshold (2.92 MeV). Obviously, the electromagnetic decay rates for the excited states

$$
\frac{5}{2}^{+} \stackrel{M 1}{-3^{+}} \xrightarrow{M_{1}} \frac{1}{2}^{+} \quad \text { and/or } \quad \frac{5}{2}^{+} E_{2} \frac{1}{2}^{+}
$$

Phys. At. Nuclei

$$
66(103) \quad 1651
$$

TRETYA KOLA

VA, LANSKOY

Table 2. Differential cross sections (in $\mathrm{nb} / \mathrm{sr}$) of the $\left(\pi^{-}, K^{+}\right)$reaction at zero angle at $p_{\pi}=1.05 \mathrm{GeV} / c$

Final hypernucleus	State	One-step mechanism	Two-step mechanism
${ }_{\Lambda}^{10} \mathrm{Li}$	2^{-}		66.8
	1^{-}		3.2
${ }_{\Lambda}^{12} \mathrm{Be}$	1^{-}	1.4	6.5
	0^{+}	0.1	2.1
${ }_{\Lambda}^{16} \mathrm{C}$	2^{+}	0.3	0.4
	0^{+}	0.01	0.1

${ }^{10} B\left(\pi^{-}, \mathrm{K}^{+}\right)$spectrum with Year02+Year03

In total, about 40 counts in the bound region

