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Black-Holes and Spinning Particles.

As it was first noticed by ‘t Hooft [G. ‘t Hooft, Nucl

Phys. B 335, 138 (1990)], the recent ideas and methods

in the black hole physics are based on complex analyticity

and conformal field theory, which unifies the black hole

physics with (super)string theory and physics of elemen-

tary particles.

Kerr-Newman solution:

as a Rotating Black-Hole and

as a Kerr Spinning Particle: Carter (1968), (g =

2 as that of the Dirac electron), Israel (1970), AB (1974),

Lopez (1984) ...

About Forty Years of the Kerr-Schild Geometry and

Twistors. They were created in the same time in the

same place! (R.P. Kerr, Private talk.)

R. Penrose, J. Math. Phys.(1967).

G.C. Debney, R.P. Kerr, A.Schild, J. Math. Phys.(1969).

The Kerr Theorem.

– Twistor-String – Real and Complex Twistor-Stringy

Structures of the Kerr-Schild Geometry.

– Twistor-beams. – New results on Black-Holes (AB,

First Award of GRF 2009, arXive: 0903.3162).
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Kerr-Schild form of the rotating black hole so-

lutions:

gµν = ηµν + 2Hkµkν, H =
mr − e2/2

r2 + a2 cos2 θ
. (1)

Vector field kµ(x) is tangent to Principal Null Congruence

(PNC).

kµ(x) = P−1(du + Ȳ dζ + Y dζ̄ − Y Ȳ dv), (2)

where Y (x) = eiφ tan θ
2,

2
1
2ζ = x + iy, 2

1
2 ζ̄ = x− iy, 2

1
2u = z − t, 2

1
2v = z + t

are the null Cartesian coordinates.

Congruence PNC is twosheeted and controlled by

the Kerr Theorem:

The geodesic and shear-free null congruences (GSF

PNC, type D) are determined by holomorphic function

Y (x) which is analytic solution of the equation

F (T a) = 0 , (3)

where F is an arbitrary analytic function of the projective

twistor coordinates

T a = {Y, ζ − Y v, u + Y ζ̄}. (4)
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Figure 1: The Kerr singular ring and the Kerr congruence.

The Kerr singular ring r = cos θ = 0 is a branch

line of space on two sheets: “negative (–)” and “positive

(+)” where the fields change their directions. In particu-

lar,

kµ(+) 6= kµ(−) ⇒ g(+)
µν 6= g(−)

µν . (5)
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Twosheetedness! Mystery of the Kerr source!

Doubts since 1964 up to now.

a) Stringy source: E.Newman 1964, A.B. 1974, W.Israel

1975, A.B. 1975, ...

b) Rotating superconducting disk. W.Israel (1969),

Hamity, I.Tiomno (1973), C.A. L‘opez (1983)9; A.B. (1989,2000-

2004) (Supercondacting bag U(1)×U(1) model), .... The

Kerr ring as a “mirror gate” to “Alice world”.

Oblate spheroidal coordinates cover spacetime twice:

x + iy = (r + ia)eiφ sin θ (6)

z = r cos θ, t = ρ + r

disk r = 0 separates the ‘out’-sheet r > o, from ‘in’-sheet

r < o.

New Look: Holographic BH interpretation.

A.B.(2009) based on the ideas C.R. Stephens, G. t’ Hooft

and B.F. Whiting (1994), ‘t Hooft (2000), Bousso (2002).
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Figure 2: Penrose conformal diagrams. The unfolded Kerr-Schild spacetime
corresponds to the holographic structure of a quantum black-hole spacetime.

Twosheetedness of the Kerr-Schild geometry corre-

sponds to holographic black-hole Kerr-Schild space-

time. For stationary black hole solutions, the both: in-

and out- sheets can be used as ‘physical sheets’(MTW).

Presence of the electromagnetic field determines out-

sheet as ‘physical one (out-going electromagnetic solu-

tions far from black hole .) Alignment of the electro-

magnetic field to PNC,

Aµk
µ = 0 !

PNC is in-going at r < 0, passing through the Kerr

ring to ‘positive’ sheet, r > 0, and turns into out-going.
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Desirable structure of a quantum black hole space-

time ( Stephens, t’ Hooft and Whiting (1994)): the in-

and out-sheets separated by a (holographically dual) 2+1

boundary: (Y, t) ∈ S2 ×R . Out-sheet is ‘physical one.

For m > 0 the horizon exists only for r > 0 - out-sheet

which is identified as a ‘physical sheet’ of the black hole.

Kerr congruence performs holographic projection of

3+1 dim bulk to 2+1 dim boundary. “Geodesic and

shear-free” (GSF) congruences:

GSFconditions ⇔ Y,2 = Y,4 = 0 provide pull-

back of the conformal-analytic structure from boundary

onto bulk and conformal-analytic structure of the solu-

tions.
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Complex Shift. Appel solution (1887!) and

Complex Structure of the Kerr geometry.

A point-like charge e, placed on the complex z-axis

(x0, y0, z0) = (0, 0,−ia), gives a real potential

φa = Re e/r̃, (7)

where r̃ turns out to be a complex radial coordinate r̃ =

r + iξ, and we obtain

r̃2 = r2− ξ2 +2irξ = (x−x0)
2 +(y−y0)

2 +(z−z0)
2,

which leads to two equations

rξ = az, r2 − ξ2 = x2 + y2 + z2 − a2, (8)

corresponding to the Kerr oblate spheroidal coordinates

r and θ.

Starting from the usual system of angular coordinates,

we would like to retain after complex shift the relation

z = r cos θ, and obtain ξ = a cos θ,

r̃ = r + ia cos θ, (9)

and the equation (r2 +a2) sin2 θ = x2 +y2, which may be

split into two complex conjugate equations. This splitting

(x± iy) = (r ± ia)e±iφ sin θ (10)

yields the Kerr-Schild Cartesian coordinate system.
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Complex Light Cone. Twistors as Null Planes.

Complex Kerr-Schild null tetrad ea, (ea)2 = 0: real

directions

e3 = du + Ȳ dζ + Y dζ̄ − Y Ȳ dv

(PNC) and

e1 = dζ − Y dv, e2 = dζ̄ − Ȳ dv, e4 = dv + he3.

The complex light cone with the vertex at some com-

plex point xµ
0 ∈ CM 4: (xµ − x0µ)(xµ − xµ

0) = 0, can

be split into two families of null planes: ”left” planes

xL = x0(τ ) + αe1 + βe3 (11)

spanned by null vectors e1 and e3, and”right”planes

xR = x0(τ ) + αe2 + βe3, (12)

spanned by null vectors e2 and e3.

The Kerr congruence K arises as a real slice of the fam-

ily of the ”left” null planes (Y = const.) of the complex

light cones whose vertices lie at a complex source x0(τ ).
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Complex Source of the Kerr geometry and

Retarded Time

The Appel complex source (xo, yo, zo) → (0, 0,−ia)

can be considered as a mysterious ”particle” propagating

along a complex world-line xµ
0(τ ) in CM 4 and parametrized

by a complex time τ . There appears a complex retarded-

time construction (Newman, Lind.) In the complex case

there are two different ways for obtaining retarded time.

For a given real point x ∈ M 4 one considers the past

light cone

↙x↘
to obtain the root of its intersection with a given com-

plex world-line x0(τ ). It is known that the light cone splits

into

the left:

↙x

and right: x↘ complex null planes.1

Correspondingly, there are two roots:

x0↙x and x↘x0
,

and two different (in general case) retarded times

τ0↙t and t↘τ0

for the same complex world-line: the ‘Left’ and ‘Right’

projections.

1In the Kerr null tetrad ea, they are spanned, correspondingly, on the null forms e3∧e1

and e3 ∧ e2.

10



The real Kerr-Schild geometry appears as a real slice

of this complex structure.

This construction may be super-generalized by ‘super-

complex translation’, leading to super Kerr-Newman so-

lution to broken N=2 supergravity (AB, Clas.Q. Grav.,2000).

Along with the considered complex world-line, there is

a complex conjugate world-line, and we shall mark them

the ‘Left’ and ‘Right’ ones, XL(τL) and XR(τR).

Figure 3: Complex light cone at a real point x and two null directions e3(±) =
e3(Y ±

L (x)). The adjoined to congruence Left and Right complex null planes
intersect the Left and Right complex world lines at four points: Xadv

L , Xret
L

and Xadv
R , Xret

R which are related by crossing symmetry.

Complex world-line forms really a world-sheet of an

Euclidean string XL(τL) ≡ Xµ
L(tL + iσL). It is open

string with the ends at σ = ±a. Left and Right struc-

tures form an Orientifold (Ω = Antip.map + CC +

Revers of time).

Antipodal map: Y → −1/Ȳ .
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Twistor-Beams. The exact time-dependent

KS solutions.

Debney, Kerr and Schild (1969). The black-hole at

rest: gµν = ηµν + 2Hkµkν, P = 2−1/2(1 + Y Ȳ ).

Tetrad components of electromagnetic fieldFab = eµ
ae

ν
bFµν,

F12 = AZ2, F31 = γZ − (AZ),1 , (13)

here Z = −P/(r + ia cos θ) is a complex expansion of

the congruence. Stationarity ⇒ γ = 0.

Kerr-Newman solution is exclusive:

ψ(Y ) = const.

In general case ψ(Y ) is an arbitrary holomorphic function

of Y (x) = eiφ tan θ
2, which is a projective coordinate on

celestial sphere S2,

A = ψ(Y )/P 2, (14)

and there is infinite set of the exact solutions, in which

ψ(Y ) is singular at the set of points {Yi}, ψ(Y ) =∑
i

qi
Y (x)−Yi

, corresponding to angular directions φi, θi.

Twistor-beams. Poles at Yi produce semi-infinite

singular lightlike beams, supported by twistor rays of the

Kerr congruence. The twistor-beams have very strong

backreaction to metric gµν = ηµν − 2Hkµkν, where

H =
mr − |ψ|2/2

r2 + a2 cos2 θ
. (15)
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How act such beams on the BH horizon?

Black holes with holes in the horizon, A.B., E.Elizalde,

S.R.Hildebrandt and G.Magli, Phys. Rev. D74 (2006)

021502(R)

Singular beams lead to formation of the holes in the

black hole horizon, which opens up the interior of the

“black hole” to external space.

−30 0 30
−30

0

30

event horizon
r
g
+   r

g
− 

g
00

 =0 

singular ring 

axial       
singularity 

z 

Figure 4: Near extremal black hole with a hole in the horizon. The event
horizon is a closed surface surrounded by surface g00 = 0.
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Twistor-beams are exact stationary and time-dependent

Kerr-Schild solutions (of type D) which show that ‘ele-

mentary’ electromagnetic excitations have generally sin-

gular beams supported by twistor null lines. Interaction

of a black-hole with external, even very weak, electro-

magnetic field resulted in appearance of the beams, which

have very strong back reaction to metric and horizon and

form a fine-grained structure of the horizon pierced by

fluctuating microholes. A.B., E. Elizalde, S.R. Hilde-

brandt and G. Magli, Phys.Lett. B 671 486 (2009),

arXiv:0705.3551[hep-th]; A.B., arXiv:gr-qc/0612186.

Figure 5: Excitations of a black hole by weak electromagnetic field yields
twistor-beams creating a horizon covered by fluctuating micro-holes.

14



Time-dependent solutions of DKS equations

for electromagnetic excitations, γ 6= 0, A.B. (2004-

2008)

a) Exact solutions for electromagnetic field on the Kerr-

Schild background, (2004),

b) Asymptotically exact wave solutions, consistent with

Kerr-Schild gravity in the low frequency limit, (2006-

2008)

c) Self-regularized solutions, consistent with gravity for

averaged stress-energy tensor, (A.B. 2009)

Electromagnetic field is determined by functions

A and γ,

A,2−2Z−1Z̄Y,3 A = 0, A,4 = 0, (16)

DA + Z̄−1γ,2−Z−1Y,3 γ = 0, (17)

and

Gravitational sector: has two equations for func-

tion M, which take into account the action of electro-

magnetic field

M,2−3Z−1Z̄Y,3 M = Aγ̄Z̄, (18)

DM =
1

2
γγ̄. (19)

where cD = ∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2 .
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Similar to the exact stationary solutions, typical

time-dependent (type D) solutions contain outgoing

singular beam pulses which have very strong back re-

action to metric and perforate horizon.

Eqs. of the electromagnetic sector were solved (2004).

GSF condition Y,2 = Y,4 = 0,⇒ kµ∂µY = 0.

Stationary Kerr-Schild solutions

A = ψ/P 2, where ψ,2 = ψ,4 = 0 ⇒ ψ(Y ) ⇒ align-

ment condition kµ∂µψ = 0.

Time-dependent solutions need a complex retarded

time parameter τ, obeying τ,2 = τ,4 = 0, and ψ = ψ(Y, τ ).

There appears a dependence between Ȧ and γ

(∂3−Z−1Y,3 ∂1−Z̄−1Ȳ ,3 ∂2)A+Z̄−1γ,2−Z−1Y,3 γ =

0.

Integration yields

γ =
21/2ψ̇

P 2Y
+ φ0(Y, τ )/P, (20)

which shows that nonstationarity, ψ̇ =
∑

i ċi(τ )/(Y−
Yi) 6= 0, creates generally the poles in γ ∼ ∑

i qi/(Y−
Yi), leading to twistor-beams in directions Yi = eiφ tan θ

2.
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Self-regularization.

Structure of KS solutions inspire the regularization

which acts immediately on the function γ. Free function

φ0(Y, τ ) of the homogenous solution may be tuned, to

cancel the poles of function ψ̇ =
∑

i ċi(τ )/(Y − Yi).

i-th term

γi(reg) =
21/2ċi(τ )

Y (Y − Yi)P 2
+ φ

(tun)
i (Y, τ )/P. (21)

Condition to compensate i-th pole is

γi(reg)(Y, τ )|Ȳ =Ȳi
= 0. (22)

We obtain

φ
(tun)
i (Y, τ ) = − 21/2ċi(τ )

Y (Y − Yi)Pi
, (23)

where

Pi = P (Y, Ȳi) = 2−1/2(1 + Y Ȳi) (24)

is analytic in Y, which provides analyticity of φtun
i (Y, τ ).
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As a result we obtain

γi(reg) =
ċi(τ )(Ȳi − Ȳ )

P 2Pi(Y − Yi)
. (25)

First gravitational DKS equation gives

m = m0(Y ) +
∑

i,k

ci ˙̄ck(Yk − Y )

(Y − Yi)

∫

Ȳk

dȲ

P P̄k(Ȳ − Ȳk)
.

(26)

Using the Cauchy integral formula, we obtain

m = m0(Y ) + 2πi
∑

i

(Yk − Y )

(Y − Yi)

∑

k

ci ˙̄ck

|Pk|2 . (27)

Functions ci and c̄k for different beams are not corre-

lated,

< ci̇̄ck >= 0. Time averaging retains only the terms

with i = k,

< m >t= m0 − 2πi
∑

k

ck ˙̄ck

|Pk|2 . (28)
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Representing ci(τ ) = qi(τ )e−iωiτ via amplitudes qi(τ )

and carrier frequencies ωi of the beams. The mass term

retains the low-frequency fluctuations and angular non-

homogeneity caused by amplitudes and casual angular

distribution of the beams,

< m >t= m0 + 2π
∑

k

ωk

∑

k

<
qkq̄k

|Pkk|2 > . (29)

Second gravitational DKS equations is definition of the

loss of mass in radiation,

ṁ = −1

2
P 2

∑

i,k

γi(reg)γ̄k(reg) = −1

2

∑

i,k

ċi ˙̄ck

P 2PiP̄k
(30)

Time averaging removes the terms with i 6= k and yields

< ṁ >t= −1

2

∑

k

ċk ˙̄ck

P 2|Pk|2 . (31)

In terms of the amplitudes of beams we obtain

< ṁ >t= −1

2

∑

k

ω2
k <

q̇kq̄k

|Pkk|4 >, (32)

which shows contribution of a single beam pulse to the

total loss of mass.

The obtained solutions are consistent with the Einstein-

Maxwell system of equations for the time-averaged stress-

energy tensor.

19



Obtained results.

1) Exact time-dependent solutions for Maxwell eqs.

on the Kerr-Schild background ⇒ singular twistor-beam

pulses.

2) Exact back reaction of the beams to metric and

horizon ⇒ fluctuating metric and horizon perforated by

twistor-beam pulses.

3) Exact time-dependent solutions for Maxwell eqs.

on the Kerr-Schild background leading to regular, but

fluctuating radiation ⇒ regular < T µν >, but metric

and horizon are covered by fluctuating twistor-beams!

4) Consistency with the corrected Einstein equations

Rµν − 1
2Rgµν =< T µν > .

We arrive at a semiclassical (pre-quantum)

geometry of fluctuating twistor-beams which takes

an intermediate position between the Quantum and the

usual Classical gravity.

THE END.

THANK YOU FOR YOUR ATTENTION!
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Singular pp-wave solutions (A.Peres)

Self-consistent solution of the Einstein-Maxwell equa-

tions: singular plane-fronted waves (pp-waves). Kerr-

Schild form with a constant vector kµ =
√

2du = dz−dt

gµν = ηµν + 2hkµkν.

Function h determines the Ricci tensor

Rµν = −kµkν¤h, (33)

where ¤ is a flat D’Alembertian

¤ = 2∂ζ∂ζ̄ + 2∂u∂v . (34)

The Maxwell equations take the form ¤A = J = 0,

and can easily be integrated leading to the solutions

A+ = [Φ+(ζ) + Φ−(ζ̄)]f+(u)du, (35)

(36)

where Φ± are arbitrary analytic functions, and function

f+ describes retarded waves.

The poles in Φ+(ζ) and Φ−(ζ̄) lead to the appearance

of singular lightlike beams (pp-waves) which propagate

along the z+ semi-axis.

pp-waves have very important quantum properties, be-

ing exact solutions in string theory with vanishing all

quantum corrections ( G.T. Horowitz, A.R. Steif, PRL

64 (1990) 260; A.A. Coley, PRL 89 (2002) 281601.)
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Quadratic generating function F(Y) and in-

terpretation of parameters. A.B. and G. Magli,

Phys.Rev.D 61044017 (2000).

The considered in DKS function F is quadratic in Y ,

F ≡ a0 + a1Y + a2Y
2 + (qY + c)λ1− (pY + q̄)λ2, (37)

where the coefficients c and p are real constants and

a0, a1, a2, q, q̄, are complex constants. The Killing vec-

tor of the solution is determined as

K̂ = c∂u + q̄∂ζ + q∂ζ̄ − p∂v. (38)

Writing the function F in the form

F = AY 2 + BY + C, (39)

one can find two solutions of the equation F = 0 for the

function Y (x)

Y1,2 = (−B ±∆)/2A, (40)

where ∆ = (B2 − 4AC)1/2.

We have also

r̃ = −∂F/∂Y = −2AY −B, (41)

and consequently

r̃ = PZ−1 = ∓∆. (42)
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These two roots reflect the known twofoldedness of the

Kerr geometry. They correspond to two different direc-

tions of congruence on positive and negative sheets of the

Kerr space-time. In the stationary case

P = pY Ȳ + q̄Ȳ + qY + c . (43)

Link to the complex world line of the source. The

stationary and boosted Kerr geometries are described by

a straight complex world line with a real 3-velocity ~v in

CM 4:

xµ
0(τ ) = xµ

0(0) + ξµτ ; ξµ = (1, ~v) . (44)

The gauge of the complex parameter τ is chosen in such

a way that Re τ corresponds to the real time t.

K̂ is a Killing vector of the solution

K̂ = ∂τx
µ
0(τ )∂µ = ξµ∂µ . (45)

P = K̂ρ = ∂τx
µ
0(τ )e3

µ , (46)

where

ρ = λ2 + Ȳ λ1 = xµe3
µ. (47)

It allows one to set the relation between the parameters

p, c, q, q̄, and ξµ, showing that these parameters are con-

nected with the boost of the source.
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The complex initial position of the complex world line

xµ
0(0) in Eq. (44) gives six parameters for the solution,

which are connected to the coefficients a0, a1 a2 . It can

be decomposed as ~x0(0) = ~c + i~d, where ~c and ~d are real

3-vectors with respect to the space O(3)-rotation. The

real part ~c defines the initial position of the source, and

the imaginary part ~d defines the value and direction of

the angular momentum (or the size and orientation of a

singular ring).

It can be easily shown that in the rest frame, when

~v = 0, ~d = ~d0, the singular ring lies in the orthogonal

to ~d plane and has a radius a = |~d0|. The corresponding

angular momentum is ~J = m~d0.
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Smooth and regular Kerr sources.

A.B., E. Elizalde, S.Hildebrandt and G. Magli, PRD

(2002)

The Gürses and Gürsey ansatz gµν = ηµν + 2hkµkν,

where h = f (r)/(r2 + a2 cos2 θ).

Regularized solutions have tree regions:

i) the Kerr-Newman exterior, r > r0, where f (r) =

mr − e2/2,

ii) interior r < r0− δ, where f (r) = fint and function

fint = αrn, and n ≥ 4 to suppress the singularity at

r = 0, and provide the smoothness of the metric up to

the second derivatives.

iii) a narrow intermediate region providing a smooth

interpolation between i) and ii).

Non-rotating case: by n = 4 and α = 8πΛ/6,

interior is a space-time of constant curvature R =

−24α.

Energy density of source ρ = 1
4π(f ′r − f )/Σ2,

tangential and radial pressures prad = −ρ, ptan =

ρ− 1
8πf ′′/Σ, where Σ = r2.

There is a de Sitter interior for α > 0, and anti de

Sitter interior for α < 0. Interior is flat if α = 0.

The resulting sources may be considered as the bags

filled by a special matter with positive (α > 0) or neg-

ative (α < 0) energy density. The transfer from the

25



external electro-vacuum solution to the internal region

(source) may be considered as a phase transition from

‘true’ to ‘false’ vacuum. Assuming that transition region

iii) is very thin, one can consider the following useful

graphical representation.
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Figure 6: Regularization of the Kerr spinning particle by matching the ex-
ternal field with dS, flat or AdS interior.

The point of phase transition r0 is determined by the

equation fint(r0) = fKN(r0) which yields

m =
e2

2r0
+

4

3
πr3

0ρ. (48)

The first term on the right side is electromagnetic mass

of a charged sphere with radius r0, Mem(r0) = e2

2r0
, while

the second term is the mass of this sphere filled by a
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material with a homogenous density ρ, Mm = 4
3πr3

0ρ.

Thus, the point of intersection r0 acquires a deep phys-

ical meaning, providing the energy balance by the mass

formation.

Transfer to rotating case. One has to set Σ =

r2+a2 cos2 θ, and consider r and θ as the oblate spheroidal

coordinates.

The Kerr source represents a disk with the boundary

r = r0 which rotates rigidly. In the corotating with

disk coordinate system, the matter of the disk looks ho-

mogenous distributed, however, because of the relativistic

effects the energy-momentum tensor increases strongly

near the boundary of the disk.

In the limit of a very thin disk a stringy singularity

develops on the border of disk. This case corresponds to

the Israel-Hamity source 1970-1976.

The Kerr-Newman spinning particle with J = 1
2~,

acquires the form of a relativistically rotating disk which

has the form of a highly oblate ellipsoid with the thick-

ness r0 ∼ re and the Compton radius a = 1
2~/m. Interior

of the disk represents a “false” vacuum having supercon-

ducting properties which are modelled by the Higgs field.
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Figure 7: Matching the (rotating) internal “de Sitter” source with the ex-
ternal Kerr-Schild field. The dotted line f1(r) = (r2 + a2)/2 determines
graphically the position of horizons as the roots of the equation f(r) = f1(r).

Properties of the disklike Kerr source

• the disk is oblate and rigidly rotating,

• the rotation is relativistic, so the board of the disk is

moving with the speed which is close to the speed of

light,

• the stress-energy tensor of the matter of the disk has

an exotic form resembling a special condensed vac-

uum state (de Sitter, flat or anti de Sitter vacua).

• electromagnetic properties of the matter of the disk

are close to superconductor,
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Figure 8: The sources with different masses M and matter densities ρ.
Sources form the rotating disks with radius ∼ a and thickness ∼ r0 which
depends on the matter density r0 = ( 3M

4πρ
)1/3. The formation of the black hole

horizons is shown for a2 < M2.

• the charge, strong magnetic and gravitational fields

are concentrated on the stringy board of the disk,

and are partially compensated from the oppositely

charged part of the disk surface. It yields a very

specific form of the electromagnetic field (see fig.4,

and fig.5).

• finally, the main property of Kerr-Schild source - the

relation J = Ma between the angular momentum

J , mass M , and the radius of the Kerr ring a.
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Complex Kerr source, complex shift. Appel

1887!

A point-like charge e, placed on the complex z-axis

(x0, y0, z0) = (0, 0, ia), gives the real Appel potential

φa = Re e/r̃, (49)

where r̃ = r + ia cos θ is the Kerr complex radial coordi-

nate and r and θ are the oblate spheroidal coordinates.

In the Cartesian coordinates x, y, z, t

r̃ = [(x−x0)
2+(y−y0)

2+(z−z0)
2]1/2 = [x2+y2+(z−ia)2]1/2.

(50)

Singularity of the Appel potential φa corresponds to

r = cos θ = 0, and therefore, the singular ring z =

0, x2 + y2 = a2 is a branch line of space-time for two

sheets, just similar to the Kerr singular ring.

Appel potential describes exactly the em field of the

Kerr-Newman solution on the auxiliary M 4.
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Complex world line and complex Kerr string.

If the Appel source is shifted to a complex point of

space (xo, yo, zo) → (0, 0, ia), it can be considered as a

mysterious ”particle” propagating along a complex world-

line xµ
0(τ ) in CM 4 and parametrized by a complex time

τ . The complex source of the Kerr-Newman solution has

just the same origin and can be described by means of a

complex retarded-time construction for the Kerr geome-

try.

The objects described by the complex world-lines oc-

cupy an intermediate position between particle and string.

Like a string they form two-dimensional surfaces or world-

sheets in space-time. In many respects this source is sim-

ilar to the ”mysterious” N = 2 complex string of super-

string theory.

The Kerr congruence may be understood as a track of

the null planes of the family of complex light cones em-

anating from the points of the complex world line xµ
0(τ )

in the retarded-time construction.
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Complex retarded-time parameter.

Parameter τ may be defined for each point x of the

Kerr space-time and plays the role of a complex retarded-

time parameter. Its value for a given point x may be de-

fined by L-projection, using the solution Y (x) and form-

ing the twistor parameters λ1, λ2 which fix a left null

plane. The points xµ and xµ
0 are connected by the left

null plane spanned by the null vectors e1 and e3.

The point of intersection of this plane with the complex

world-line x0(τ ) gives the value of the ”left” retarded

time τL, which is in fact a complex scalar function on the

(complex) space-time τL(x).

By using the null plane equation, one can get a retarded-

advanced time equation

τ = t∓ r̃ + ~v ~R. (51)

For the stationary Kerr solution r̃ = r + ia cos θ, and

one can see that the second root Y2(x) corresponds to

a transfer to the negative sheet of the metric: r →
−r; ~R → −~R, with a simultaneous complex conju-

gation ia → −ia.
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The analytical twistorial structure of the Kerr spin-

ning particle leads to the appearance of an extra axial

stringy system. As a result, the Kerr spinning particle

acquires a simple stringy skeleton which is formed by a

topological coupling of the Kerr circular string and the

axial stringy system. The projective spinor coordinate Y

is a projection of sphere on complex plane. It is singular

at θ = π, and such a singularity will be present in any

holomorphic function ψ(Y ). Therefore, all the aligned

e.m. solutions turn out to be singular at some angular

direction θ. The simplest modes

ψn = qY n exp iωnτ ≡ q(tan
θ

2
)n exp i(nφ + ωnτ ) (52)

can be numbered by index n = ±1,±2, ....

The leading wave terms are

F|wave = fR dζ ∧ du + fL dζ̄ ∧ dv, (53)

where

fR = (AZ),1 ; fL = 2Y ψ(Z/P )2 + Y 2(AZ),1 (54)

are the factors describing the “left” and “right” waves

propagating along the z− and z+ semi-axis correspond-

ingly.

The parameter τ = t−r−ia cos θ takes near the z-axis

the values τ+ = τ |z+ = t−z−ia, τ− = τ |z− = t+z+ia.
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The leading wave for n = 1,

F−
1 = 4qei2φ+iω1τ−

ρ2 dζ̄ ∧ dv,

propagates to z = −∞ along the z− semi-axis.

The leading wave for n = −1,

F+
−1 = −4qe−i2φ+iω−1τ+

ρ2 dζ ∧ du,

is singular at z+ semi-axis and propagates to z = +∞.

The n = ±1 partial solutions represent asymptotically

the singular plane-fronted e.m. waves propagating with-

out damping.
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Figure 9: The Kerr disk-like source and two axial semi-infinite beams.
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Wonderful Consequences of the Kerr Theo-

rem

Kerr’s multi-particle solution is obtained on the base

of the Kerr theorem. Choosing generating function of

the Kerr theorem F as a product of partial functions Fi

for spinning particles i=1,...k, we obtain a multi-sheeted,

multi-twistorial space-time over M 4 possessing unusual

properties. Twistorial structures of the i-th and j-th par-

ticles do not feel each other, forming a type of its internal

space. Gravitation and electromagnetic interaction of the

particles occurs via a singular twistor line which is com-

mon for twistorial structures of interacting particles. The

obtained multi-particle Kerr-Newman solution turns out

to be ‘dressed’ by singular twistor lines linked to sur-

rounding particles. We conjecture that this structure of

space-time has the relation to a stringy structure of vac-

uum and opens a geometrical way to quantum gravity.
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The Kerr theorem generating function F (T a) has to

be at most quadratic in Y to provide singular lines to

be confined in a restricted region, which corresponds to

the Kerr PNC up to the Lorentz boosts, orientations of

angular momenta and the shifts of origin.

Another form for this function is F = (λ1−λ0
1)Ǩλ2−

(λ2 − λ0
2)Ǩλ1 which is related to the Newman-initiated

complex representation of the Kerr geometry. In this

case, function F (Y ) can be expressed via the set of pa-

rameters q which determine the motion and orientation

of the Kerr spinning particle and takes the form

F (Y |q) = A(x|q)Y 2 + B(x|q)Y + C(x|q). (55)

This equations can be resolved explicitly, leading to two

roots Y = Y ±(x|q) which correspond to two sheets of the

Kerr space-time. The root Y +(x) determines via (??) the

out-going congruence on the (+)-sheet, while the root

Y −(x) gives the in-going congruence on the (−)-sheet.

Therefore, function F may be represented in the form

F (Y |q) = A(x|q)(Y − Y +)(Y − Y −), which allows one

to obtain all the required functions of the Kerr solution

in explicit form. The detailed form of Y ±(x|q) is not

important for our treatment.
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Multi-twistorial space-time. Selecting an iso-

lated i-th particle with parameters qi, one can obtain the

roots Y ±
i (x) of the equation Fi(Y |qi) = 0 and express Fi

in the form

Fi(Y ) = Ai(x)(Y − Y +
i )(Y − Y −

i ). (56)

Then, substituting the (+) or (−) roots Y ±
i (x) in the re-

lation (??), one determines congruence k
(i)
µ (x) and con-

sequently, the Kerr-Schild ansatz (??) for metric

g(i)
µν = ηµν + 2h(i)k(i)

µ k(i)
ν , (57)

and finally, the function h(i)(x) may be expressed in

terms of r̃i = −dY Fi, (??), as follows

h(i) =
m

2
(
1

r̃i
+

1

r̃∗i
) +

e2

2|r̃i|2 . (58)

Electromagnetic field is given by the vector potential

A(i)
µ = <e(e/r̃i)k

(i)
µ . (59)

What happens if we have a system of k particles? One

can form the function F as a product of the known blocks

Fi(Y ),

F (Y ) ≡
k∏

i=1

Fi(Y ). (60)
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The solution of the equation F = 0 acquires 2k roots

Y ±
i , and the twistorial space turns out to be multi-sheeted.
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Figure 10: Multi-sheeted twistor space over the auxiliary Minkowski space-
time of the multi-particle Kerr-Schild solution. Each particle has twofold
structure.

The twistorial structure on the i-th (+) or (−) sheet is

determined by the equation Fi = 0 and does not depend

on the other functions Fj, j 6= i. Therefore, the particle

i does not feel the twistorial structures of other particles.

Similar, the condition for singular lines F = 0, dY F = 0

acquires the form

k∏

l=1

Fl = 0,

k∑
i=1

k∏

l 6=i

FldY Fi = 0 (61)

and splits into k independent relations
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Fi = 0,

k∏

l 6=i

FldY Fi = 0. (62)

One sees, that i-th particle does not feel also singular

lines of other particles. The space-time splits on the in-

dependent twistorial sheets, and therefore, the twistorial

structure related to the i-th particle plays the role of its

“internal space”.

It looks wonderful. However, it is a direct generaliza-

tion of the well known twofoldedness of the Kerr space-

time which remains one of the mysteries of the Kerr so-

lution for the very long time.
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Multi-particle Kerr-Schild solution. Using the

Kerr-Schild formalism with the considered above gen-

erating functions
∏k

i=1 Fi(Y ) = 0, one can obtain the

exact asymptotically flat multi-particle solutions of the

Einstein-Maxwell field equations. Since congruences are

independent on the different sheets, the congruence on

the i-th sheet retains to be geodesic and shear-free, and

one can use the standard Kerr-Schild algorithm of the

paper [?]. One could expect that result for the i-th sheet

will be in this case the same as the known solution for iso-

lated particle. Unexpectedly, there appears a new feature

having a very important consequence.

Formally, we have only to replace Fi by F =
∏k

i=1 Fi(Y ) =

µiFi(Y ), where µi =
∏k

j 6=i Fj(Y ) is a normalizing factor

which takes into account the external particles. However,

in accordance with (??) this factor µi will appear also in

the function r̃ = −dY F = −µidY Fi, and in the function

P = µiPi.

So, we obtain the different result

hi =
mi(Y )

2µ3
i

(
1

r̃i
+

1

r̃∗i
) +

(e/µi)
2

2|r̃i|2 , (63)

A(i)
µ = <e

e

µir̃i
k(i)

µ (64)

which looks like a renormalization of the mass m and
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charge e.2

This fact turns out to be still more intriguing if we

note that µi is not constant, but a function of Yi. We can

specify its form by using the known structure of blocks

Fi

µi(Yi) =
∏

j 6=i

Aj(x)(Yi − Y +
j )(Yi − Y −

j ). (65)

The roots Yi and Y ±
j may coincide for some values of Yi,

which selects a common twistor for the sheets i and j.

Assuming that we are on the i-th (+)-sheet, where con-

gruence is out-going, this twistor line will also belong to

the in-going (−)-sheet of the particle j . The metric and

electromagnetic field will be singular along this twistor

line, because of the pole µi ∼ A(x)(Y +
i −Y −

j ). Therefore,

interaction occurs along a light-like Schild string which is

common for twistorial structures of both particles. The

field structure of this string is similar to the well known

structure of pp-wave solutions.

These equations give the exact multi-particle solution

of the Einstein-Maxwell field equations. It follows from

the fact that the equations were fully integrated out in

[?] and expressed via functions P and Z before (without)

concretization of the form of congruence, under the only
2Function mi(Y ) is free and satisfies the condition (mi),Ȳ = 0. It and has to be chosen

in the form mi(Y ) = m0µ
3
i to provide reality of metric.
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condition that it is geodesic and shear free. In the same

time the Kerr theorem determines the functions P and

Z via generating function F, eq.(??), and the condition

of reality for metric may be provided by a special choice

of the free function m(Y ).

The obtained multi-particle solutions show us that,

in addition to the usual Kerr-Newman solution for an

isolated spinning particle, there is a series of the exact

‘dressed’ Kerr-Newman solutions which take into account

surrounding particles and differ by the appearance of sin-

gular twistor strings connecting the selected particle to

external particles. This is a new gravitational phenom-

ena which points out on a probable stringy (twistorial)

texture of vacuum and may open a geometrical way to

quantum gravity.

The number of surrounding particles and number of

blocks in the generating function F may be assumed

countable. In this case the multi-sheeted twistorial space-

time will possess the properties of the multi-particle Fock

space.
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Figure 11: Schematic representation of the lightlike interaction via a common
twistor line connecting out-sheet of one particle to in-sheet of another.
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