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Introduction

Outstanding problem of modern physics:

status of quantum gravity

Quantized Einstein’s theory is non-renormalizable

Maybe metric (tetrad, connection) is not fundamental?

Long history of attempts to construct gravity models from

more fundamental constituents: to mention but a few

De Broglie-Vigier “fusion” theory: particles of higher spins

arise as union (fusion) of spin 1/2 particles

[L. De Broglie, Introduction to the Vigier theory of

elementary particles (Elsevier, 1963)]

Nonlinear spinor theory of Heisenberg

[W. Heisenberg, Einführung in die einheitliche Feldtheorie

der Elementarteilchen (Hirzel, 1967)]
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Pregeometry models

Terazawa (1980): metric from scalar fields

gij = ∂iΦ ∂jΦ

Akama (1978): tetrad from fermion fields

eαi =
i

2

(
Ψγα∂iΨ − ∂iΨγ

αΨ
)

Most recent: Diakonov model [D. Diakonov, Towards

lattice-regularized quantum gravity, arXiv: 1109.0091;

Talk at Köln Colloquium (9 December 2011)]

Advantages of Diakonov gravity model:

Gauge-theoretic (a la Yang-Mills) approach to gravity

Explicit Lorentz invariance (improving Akama)

Our main aim: understanding Diakonov’s model using tools

of modern differential geometry and gauge theory;

extending model also to connection
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Gauge approach to gravity

[F.W. Hehl, et al, Metric-affine gauge theory of gravity:

Field equations, Noether identities, world spinors, and

breaking of dilation invariance, Phys. Repts. 258 (1995) 1;

Yu. N. Obukhov, Poincaré gauge gravity: selected topics,

Int. J. Geom. Meth. Mod. Phys. 3 (2006) 95;

V. N. Ponomarev, A.O. Barvinsky, Yu. N. Obukhov,

Geometodynamical methods and gauge approach in the

theory of gravitational interactions (Moscow, 1985)]

Gravity described by orthonormal coframe (tetrad) and

Lorentz connection
ϑα = ei

αdxi, Γαβ = Γi
αβdxi = −Γβα

(translational potential and Lorentz potential, Kibble 1961)

Field strengths: torsion and curvature
Tα = Dϑα, Rαβ = −Rβα = “DΓαβ ′′
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Diakonov’s model of gravity

Original field variables of Diakonov’s theory are

(ϑα,Γαβ, ψ, ψ)

Fermion field ψ is treated as fundamental

Coframe arises as ϑα = ϑα(ψ,ψ):

ℓ−4ϑα =
i

2

(
ψγαDψ −Dψγαψ

)

In Poincaré gauge gravity framework,

Diakonov’s Lagrangian reads (with ηαβ = ⋆(ϑαβ), η = ⋆1)

L = V + Lmat = −
1

2κ

(
a0R

αβ ∧ ηαβ − 2Λ η
)

+ Lmat

“Matter” Lagrangian is a constraint

Lmat := ϕα ∧ λα, ϕα =
i

2

(
ψγαDψ −Dψγαψ

)
− ℓ−4ϑα
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Diakonov is left with variables Γαβ, ψ, ψ and λα

Field equations (derived for the first time)

ℓ−4λα = −
a0

2κ
Rρσ ∧ ηαρσ +

Λ

κ
ηα,

a0

2κ
T ρ ∧ ηαβρ = −

1

8
ψ(γρσαβ + σαβγ

ρ)ψ λρ,

iγαλα ∧Dψ −
i

2
γα(Dλα)ψ = 0

Lagrange multiplier found in terms of Einstein’s 3-form,

Dλα = −
ℓ4

κ

(a0

2
ηαβρσR

ρσ − Ληαβ

)
∧ T β

Meaning of constraintϕα = 0 that eliminates tetrad:

It’s Hooke’s type constitutive law in Cosserat elasticity

ΣD
α = ℓ−4gαβ

⋆
⌢

ϑβ .

(force stress ΣD
α )∝(distortion ϑ) with (el.moduli ℓ−4gαβ)
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Extension of Diakonov’s model

Although using gauge approach, Diakonov went half-way

in recasting gravitational variables in terms of fermions

Coframe ϑα is translational potential; Σα its current

Analogously: connection Γαβ is rotational (Lorentz)

potential; spin moment (torque) ταβ its current

Natural extension: add to translational constitutive law

ϕα = 0 its rotational counterpart

τD
αβ = L−2gαγgβδ

⋆Kγδ

Here Kαβ = Γ̃αβ − Γαβ is contortion

We thus have additional constraint

ϕαβ :=
1

4
⋆
(
ϑαβ ∧ ψγγ5ψ

)
− L−2

(
Γ̃αβ(ϑ,dϑ) − Γαβ

)

to be added with Lagrange multiplier, +ϕαβ ∧ λαβ
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Field equations of extended model

We derive complete set of equations

a0

2κ
Rρσ ∧ ηαρσ − Λ

κ
ηα = − ℓ−4λα + L−2Dξα − L−2(eα⌋T

β) ∧ ξβ,
a0

2κ
T ρ ∧ ηαβρ = − 1

8
ψ(γρσαβ + σαβγ

ρ)ψ λρ + L−2λαβ,

iγαλα ∧Dψ − i
2
γα(Dλα)ψ + 1

4
ϑαβ ∧ ⋆λαβ ∧ γγ5ψ = 0

Here ξα = 2eρ⌋λρα + 1

2
ϑα ∧ (eρ⌋eσ⌋λρσ)

Dynamics is contained in non-linear spinor equation

Following Akama and Diakonov, we choose a0 = 0; that

reduces gravitational Lagrangian to volume of spacetime

L =
Λ

κ
η + ϕα ∧ λα + ϕαβ ∧ λαβ .
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Resulting theory is highly nonlinear, also the system of

equations for Lagrange multipliers

Solving these iteratively, in first approximation we find

λα =
Λℓ4

κ
ηα,

⋆λαβ = −
Λℓ4L2

4κ
ηαβρσϑ

ρ ψγσγ5ψ

As a consequence, spinor equation simplifies to

iγαDαψ −
3

8
L2 (ψγαγ5ψ) γαγ5ψ = 0

Thus, in lowest approximation, extended Diakonov model

reduces to Heisenberg’s nonlinear spinor theory, one of

most advanced models attempted to describe all physical

interactions in terms of fundamental fermions

Now: with gravity included!
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Conclusions and Outlook

Diakonov’s grand challenge: quantizing this model by

evaluating partition function (path integral) using methods

of lattice field theory

Such a quantum model is well defined, well-behaved in

ultraviolet, explicitly Lorentz and diffeomorphism invariant

in continuum limit

Our results: Extended model includes all gravitational

potentials (coframe and connection) as constructs of

fundamental fermions

Physical basis: complete set of constitutive laws for elastic

Cosserat continuum (model of spacetime)

Heisenberg’s nonlinear spinor theory found in lowest order

Work was done together with Friedrich Hehl (Cologne):

Phys. Lett. B713 (2012) 321.
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Thanks !
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