Quantum gravity model with fundamental spinor fields

Yuri N. Obukhov

Institute of Theoretical Physics, University of Cologne

Talk at "Spin Physics" SPIN2012 International Symposium, JINR Dubna, 21 September 2012

イロト イポト イヨト イヨト

- Extension of Diakonov's model
- 4 Recovering Heisenberg's nonlinear spinor theory

イロト イポト イヨト イヨト

Introduction

- Outstanding problem of modern physics: status of quantum gravity
- Quantized Einstein's theory is non-renormalizable
- Maybe metric (tetrad, connection) is not fundamental?
- Long history of attempts to construct *gravity models* from more fundamental constituents: to mention but a few
- De Broglie-Vigier "fusion" theory: particles of higher spins arise as union (fusion) of spin 1/2 particles
 [L. De Broglie, Introduction to the Vigier theory of elementary particles (Elsevier, 1963)]
- Nonlinear spinor theory of Heisenberg [W. Heisenberg, *Einführung in die einheitliche Feldtheorie der Elementarteilchen* (Hirzel, 1967)]

• Pregeometry models

Terazawa (1980): metric from scalar fields

 $g_{ij} = \partial_i \Phi \, \partial_j \Phi$

Akama (1978): tetrad from fermion fields

$$e_i^{\alpha} = \frac{i}{2} \left(\overline{\Psi} \gamma^{\alpha} \partial_i \Psi - \partial_i \overline{\Psi} \gamma^{\alpha} \Psi \right)$$

- Most recent: Diakonov model [D. Diakonov, *Towards lattice-regularized quantum gravity*, arXiv: 1109.0091; Talk at Köln Colloquium (9 December 2011)]
- Advantages of Diakonov gravity model:
- Gauge-theoretic (a la Yang-Mills) approach to gravity
- Explicit Lorentz invariance (improving Akama)
- Our main aim: understanding Diakonov's model using tools of modern differential geometry and gauge theory; extending model also to connection

Gauge approach to gravity

- [F.W. Hehl, et al, Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Repts. 258 (1995) 1; Yu. N. Obukhov, Poincaré gauge gravity: selected topics, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 95; V. N. Ponomarev, A.O. Barvinsky, Yu. N. Obukhov, Geometodynamical methods and gauge approach in the theory of gravitational interactions (Moscow, 1985)]
- Gravity described by orthonormal *coframe* (tetrad) and Lorentz connection

$$\vartheta^{\alpha}=e_{i}{}^{\alpha}dx^{i},\qquad \Gamma^{\alpha\beta}=\Gamma_{i}{}^{\alpha\beta}dx^{i}=-\Gamma^{\beta\alpha}$$

(*translational* potential and *Lorentz* potential, Kibble 1961)Field strengths: torsion and curvature

$$T^{lpha}=Dartheta^{lpha}, \qquad R^{lphaeta}=-R^{etalpha}="`D\Gamma^{lphaeta''}$$

Diakonov's model of gravity

• Original field variables of Diakonov's theory are

$$(\vartheta^\alpha,\Gamma^{\alpha\beta},\psi,\overline{\psi})$$

- Fermion field ψ is treated as *fundamental*
- Coframe arises as $\vartheta^{\alpha} = \vartheta^{\alpha}(\psi, \overline{\psi})$:

$$\ell^{-4}\vartheta^{\alpha} = \frac{i}{2} \left(\overline{\psi} \gamma^{\alpha} D \psi - D \overline{\psi} \gamma^{\alpha} \psi \right)$$

 In Poincaré gauge gravity framework, Diakonov's Lagrangian reads (with η_{αβ} = *(ϑ_{αβ}), η = *1)

$$L = V + L_{\text{mat}} = -\frac{1}{2\kappa} \left(a_0 R^{\alpha\beta} \wedge \eta_{\alpha\beta} - 2\Lambda \eta \right) + L_{\text{mat}}$$

• "Matter" Lagrangian is a constraint

$$L_{\text{mat}} := \varphi^{\alpha} \wedge \lambda_{\alpha}, \qquad \varphi^{\alpha} = \frac{i}{2} \left(\overline{\psi} \gamma^{\alpha} D \psi - D \overline{\psi} \gamma^{\alpha} \psi \right) - \ell^{-4}_{\Xi} \vartheta^{\alpha}_{\Xi}$$

Diakonov is left with variables Γ^{αβ}, ψ, ψ and λ_α
Field equations (derived for the first time)

$$\ell^{-4}\lambda_{\alpha} = -\frac{a_0}{2\kappa}R^{\rho\sigma}\wedge\eta_{\alpha\rho\sigma} + \frac{\Lambda}{\kappa}\eta_{\alpha},$$

$$\frac{a_0}{2\kappa}T^{\rho}\wedge\eta_{\alpha\beta\rho} = -\frac{1}{8}\overline{\psi}(\gamma^{\rho}\sigma_{\alpha\beta} + \sigma_{\alpha\beta}\gamma^{\rho})\psi\lambda_{\rho},$$

$$i\gamma^{\alpha}\lambda_{\alpha}\wedge D\psi - \frac{i}{2}\gamma^{\alpha}(D\lambda_{\alpha})\psi = 0$$

- Lagrange multiplier found in terms of Einstein's 3-form, $D\lambda_{\alpha} = -\frac{\ell^4}{\kappa} \left(\frac{a_0}{2} \eta_{\alpha\beta\rho\sigma} R^{\rho\sigma} - \Lambda \eta_{\alpha\beta}\right) \wedge T^{\beta}$
- Meaning of constraint $\varphi^{\alpha} = 0$ that eliminates tetrad:
- It's Hooke's type constitutive law in Cosserat elasticity

$$\Sigma^{\mathrm{D}}_{\alpha} = \ell^{-4} g_{\alpha\beta} \, {}^{\star}\!\vartheta^{\beta} \, .$$

(force stress $\Sigma^{\rm D}_{\alpha}$) \propto (distortion ϑ) with (el.moduli $\ell^{-4}g_{\alpha\beta}$)

Extension of Diakonov's model

- Although using gauge approach, Diakonov went half-way in recasting gravitational variables in terms of fermions
- Coframe ϑ^{α} is translational potential; Σ_{α} its current
- Analogously: connection Γ^{αβ} is rotational (Lorentz) potential; spin moment (torque) τ_{αβ} its current
- Natural extension: add to translational constitutive law $\varphi^{\alpha} = 0$ its rotational counterpart

$$\tau^{\rm D}_{\alpha\beta} = L^{-2} g_{\alpha\gamma} g_{\beta\delta} \, {}^{\star}\! K^{\gamma\delta}$$

- Here $K^{\alpha\beta} = \widetilde{\Gamma}^{\alpha\beta} \Gamma^{\alpha\beta}$ is contortion
- We thus have additional constraint

$$\varphi^{\alpha\beta} := \frac{1}{4} \star \left(\vartheta^{\alpha\beta} \wedge \overline{\psi} \gamma \gamma_5 \psi \right) - \mathcal{L}^{-2} \left(\widetilde{\Gamma}^{\alpha\beta}(\vartheta, \mathrm{d}\vartheta) - \Gamma^{\alpha\beta} \right)$$

to be added with Lagrange multiplier, $+\varphi_{-}^{\alpha\beta} \wedge \lambda_{\alpha\beta}$

Field equations of extended model

We derive complete set of equations

$$\begin{aligned} \frac{a_0}{2\kappa} R^{\rho\sigma} \wedge \eta_{\alpha\rho\sigma} - \frac{\Lambda}{\kappa} \eta_{\alpha} &= -\ell^{-4}\lambda_{\alpha} + \mathrm{L}^{-2}\mathrm{D}\xi_{\alpha} - \mathrm{L}^{-2}(\mathrm{e}_{\alpha} \rfloor \mathrm{T}^{\beta}) \wedge \xi_{\beta}, \\ \frac{a_0}{2\kappa} T^{\rho} \wedge \eta_{\alpha\beta\rho} &= -\frac{1}{8} \overline{\psi}(\gamma^{\rho}\sigma_{\alpha\beta} + \sigma_{\alpha\beta}\gamma^{\rho})\psi \,\lambda_{\rho} + \mathrm{L}^{-2}\lambda_{\alpha\beta}, \\ i\gamma^{\alpha}\lambda_{\alpha} \wedge D\psi - \frac{i}{2}\gamma^{\alpha}(D\lambda_{\alpha}) \,\psi + \frac{1}{4} \,\vartheta^{\alpha\beta} \wedge^{\star}\lambda_{\alpha\beta} \wedge \gamma\gamma_5 \psi = 0 \end{aligned}$$

- Here $\xi_{\alpha} = 2e^{\rho} \rfloor \lambda_{\rho\alpha} + \frac{1}{2} \vartheta_{\alpha} \wedge (e^{\rho} \rfloor e^{\sigma} \rfloor \lambda_{\rho\sigma})$
- Dynamics is contained in non-linear spinor equation
- Following Akama and Diakonov, we choose a₀ = 0; that reduces gravitational Lagrangian to volume of spacetime

$$L = \frac{\Lambda}{\kappa} \eta + \varphi^{\alpha} \wedge \lambda_{\alpha} + \varphi^{\alpha\beta} \wedge \lambda_{\alpha\beta}.$$

・ロット (雪) (日) (日)

- Resulting theory is highly nonlinear, also the system of equations for Lagrange multipliers
- Solving these iteratively, in first approximation we find

$$\lambda_{\alpha} = \frac{\Lambda \ell^4}{\kappa} \eta_{\alpha}, \qquad {}^{\star} \lambda_{\alpha\beta} = -\frac{\Lambda \ell^4 L^2}{4\kappa} \eta_{\alpha\beta\rho\sigma} \vartheta^{\rho} \overline{\psi} \gamma^{\sigma} \gamma_5 \psi$$

• As a consequence, spinor equation simplifies to

$$i\gamma^{\alpha}D_{\alpha}\psi - \frac{3}{8}\operatorname{L}^{2}\left(\overline{\psi}\gamma^{\alpha}\gamma_{5}\psi\right)\gamma_{\alpha}\gamma_{5}\psi = 0$$

- Thus, in lowest approximation, extended Diakonov model reduces to *Heisenberg's nonlinear spinor theory*, one of most advanced models attempted to describe all physical interactions in terms of fundamental fermions
- Now: with gravity included!

・ロット (雪) (日) (日)

Conclusions and Outlook

- Diakonov's grand challenge: quantizing this model by evaluating partition function (path integral) using methods of lattice field theory
- Such a quantum model is well defined, well-behaved in ultraviolet, explicitly Lorentz and diffeomorphism invariant in continuum limit
- Our results: Extended model includes all gravitational potentials (coframe and connection) as constructs of fundamental fermions
- Physical basis: complete set of constitutive laws for elastic Cosserat continuum (model of spacetime)
- Heisenberg's nonlinear spinor theory found in lowest order
- Work was done together with Friedrich Hehl (Cologne): Phys. Lett. **B713** (2012) 321.

Thanks !

Yuri N. Obukhov Fermion gravity model

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○