

The 20th INTERNATIONAL SYMPOSIUM on Spin Physics (SPIN2012) JINR, Dubna, Russia September 17 - 22, 2012

Physics results and achievements with CLAS

Sébastien Procureur On behalf of the CLAS collaboration CEA-Saclay

Outline

The CEBAF Large Angle Spectrometer @ Jefferson Lab

GPDs and Deeply Virtual Compton Scattering

TMDs and Semi-Inclusive DIS

The neutron structure function F₂ⁿ with BONUS

An experimental achievement: the HD-ice target

Conclusion and outlook (CLAS12)

CLAS results & achievements

SPIN2012, *09/22/2012*

Jefferson Lab (today)

CLAS results & achievements

SPIN2012, 09/22/2012

CLAS results & achievements

SPIN2012, *09/22/2012*

The nucleon structure

- Ultimate goal: Wigner functions

 \rightarrow Probability distribution to find a quark q in a nucleon, at position **r** and with momentum **k**

- What we can access:

 \rightarrow k_T integrated distributions \Rightarrow GPDs H(x, \xi, t)

Information on spatial distribution of quarks

Requires hard exclusive measurements (DVCS/DVMP)

 \rightarrow r integrated distributions \Rightarrow TMDs f(x,k_T)

Information on transverse momentum distribution of quarks

Requires semi-inclusive measurements (SIDIS)

 \Rightarrow complementary information on the nucleon structure

CLAS results & achievements

SPIN2012, *09/22/2012*

GPD and **DVCS**

4 GPDs for each quark flavor

- Quark helicity independent: H, E
- Quark helicity dependent: H, E

Cleanest process to access GPDs: DVCS $ep \rightarrow ep\gamma$

Gives access to Compton Form factors:

$$\mathcal{H}(\xi,t) = i\pi H(\xi,\xi,t) + P \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi}$$

CLAS results & achievements

SPIN2012, 09/22/2012

GPD and **DVCS**

Cannot distinguish experimentally DVCS from the Bethe Heitler process

CLAS results & achievements

SPIN2012, 09/22/2012

DVCS experiments @ CLAS

e1-dvcs experiment (E01-113)

- \rightarrow unpolarized proton target
- \rightarrow beam polarization ~ 80%
- \rightarrow E_e ~ 5.8 GeV
- \rightarrow data taken in 2005

F-X. Girod et al., PRL 100 (2008), 162002

eg1-dvcs experiment (E05-114)

- → polarized proton (80%) and deuteron (40%) targets
- \rightarrow beam polarization ~ 85%
- \rightarrow E_e ~ 4.7 5.9 GeV
- \rightarrow data taken in 2009

 \rightarrow A_{LU}, A_{UL}, double asymmetries on p and n

CLAS results & achievements

SPIN2012, 09/22/2012

DVCS: A_{LU} and A_{UL}

- e1-dvcs

\rightarrow A_{LU} from e1-dvcs & A_{UL} from 1st exp. used for a model independent fit of CFF

 $\rightarrow A_{\text{UL}}$

 \rightarrow not all the statistics included \rightarrow no background subtraction (π^0)

M. Guidal, Phys. Lett. B 689 (2010), 156

- \rightarrow hints for a higher t slope for H?
- \rightarrow better accuracy for H (more data)

CLAS results & achievements

SPIN2012, 09/22/2012

DVCS cross sections (preliminary)

- e1-dvcs

\rightarrow Green band shows difference with BH

Difference of polarized cross sections

- \rightarrow Good agreement with Hall A data
- \rightarrow But much wider kinematical range
- \rightarrow Can be added to the CFF extraction

CLAS results & achievements

SPIN2012, *09/22/2012*

DVCS on neutron (very preliminary)

- eg1-dvcs

polarized beam, unpolarized neutron (ND₃): $ed \rightarrow e'n\gamma X$

CLAS results & achievements

SPIN2012, *09/22/2012*

TMDs and SIDIS

 \rightarrow functions of x and p_{T}

 \rightarrow only (usual) diagonal elements survive to p_T integration

 \rightarrow contain information on quark orbital angular motion & spin-orbit effects

Can be accessed in SIDIS:

 \rightarrow Mesure single & double spin asymmetries on *e.g.* pions \rightarrow Large acceptance needed (CLAS)

$$\rightarrow \text{ factorization if } p_{T}^{2} << Q^{2}$$

$$\sigma^{ep \rightarrow ehX} = \sum_{q} DF \otimes \sigma^{eq \rightarrow eq} \otimes FF$$

CLAS results & achievements

SPIN2012, *09/22/2012*

SIDIS and TMDs

SIDIS cross section:

A. Bacchetta et al., JHEP (2007), 0702:093

 ${d\sigma\over dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2}=$

CLAS results & achievements

SPIN2012, 09/22/2012

Double spin asymmetries

Now consider dependence in both x and p_T

^{0.6} م π π π 0.5 H. Avakian et al., PRL 105 (2010), 262002 0.4 0.3 0.2 0.1 0 -0.1 0.5 0.5 0.5 0 P_T (GeV/c)

 \rightarrow A₁ for π^+ may decrease with p_T

 \rightarrow Suggests different k_T distributions for f₁ and g₁

$$\frac{\sigma_{k_T}^{g_1}}{\sigma_{k_T}^{f_1}} = 0.7 \pm 0.1$$

 \rightarrow new preliminary data confirms p_T dependence for π^+

SPIN2012, 09/22/2012

S.Procureur

quark polarisation

h. 8 - 9

Boer-Mulders

N/q

U

U

 $f_1 \odot$

CLAS results & achievements

Target spin asymmetries

quark polarisation

 h_{i}^{\perp} (b) - (c)

Boer-Mulders

N/q

U

U

 $f_1 \odot$

lumber Densit

Single spin asymmetry:

Neutron structure function F₂

- Very precise measurements for proton and deuteron SF over a large kinematic range
- Difficulty to access neutron SF (Fermi motion + binding + EMC effect)

 $F_2^n \neq F_2^d - F_2^p$

- Still, F₂ⁿ usually extracted from measurements with deuterium targets (bound neutrons)
 - \rightarrow Non trivial corrections
 - \rightarrow Large uncertainties at high x

Yang & Bodek, EPJ C13 (2000), 241

A. Accardi et al., PRD D84 (2011), 014008

CLAS results & achievements

SPIN2012, 09/22/2012

Neutron structure function F₂

- Neutron SF would provide information on the (d) quark distrib. & constrain d/u at large x

SPIN2012, 09/22/2012

S.Procureur

SU(6)

Helicity conservation

 $O^2 = 10 \text{ GeV}^2$

0.2

CD-Bonn

AV18

WJC-1 WJC-2

0.4

 $F_{2} = x \sum_{i} e_{i}^{2} q_{i}(x) \rightarrow \frac{F_{2}^{n}}{F_{2}^{p}} \approx \frac{1+4d/u}{4+d/u}$

0.6

X

0.8

n/p

0.1

rel.err.

0

0

CLAS results & achievements

The BoNuS experiment (1/2)

e'\ k'

k

e

(v,q)

40

20

0 Í

- Measurements of $F_2{}^n$ through the reaction d(e,e'ps)X with spectator proton tagging - low momentum spectator proton detected in a radial TPC \to p_s > 70 MeV/c only

- Luminosity ~ 5 10^{32} /cm²/s
- Momentum reconstruction using 4 T solenoid field
- PID using energy loss

100

150

p/z (MeV/unit charge)

CLAS results & achievements S

SPIN2012, 09/22/2012

S.Procureur

200

60

50

40

30

20

10

250

The BoNuS experiment (2/2)

- Ratio analysis: compute the ratio between proton tagged events and inclusive events, for a given kinematic bin

$$R_{exp} = \frac{N_{tagged}(\Delta Q^2, \Delta W^*, \Delta p_s) / A_e(Q^2, W^*)}{N_{incl}(\Delta Q^2, \Delta W) / A_e(Q^2, W)}$$
$$R_{exp} = \frac{F_2^n (W^*, Q^2)}{F_2^p (W, Q^2)} \times I_{VIP}$$

+ normalization to world data @ x = 0.3

CLAS results & achievements

SPIN2012, 09/22/2012

W* or W [GeV]

Experimental achievement: HD-ice target

- Polarized target in a frozen-spin state

Procedure (very challenging):

→ Start with very pure HD sample with small H₂ and D₂ impurities (~10⁻⁴) → Polarize ortho-H₂ and para-D₂ with large B / low T (15 T / 12 mK) → Transfer polarization from H₂ to H and D₂ to D with spin-spin coupling

 \rightarrow Wait for decays ortho-para (H₂) and para-ortho (D₂) (and evacuate heat)

mass fraction

77%

16%

7 %

 \rightarrow wait for decays of the para (Π_2) and para-of the (D_2) (and evacu

 gm/cm^2

0.735

0.155

0.065

ightarrow Transfer to the experimental area (trickiest part)

Material

HD

A1

CTFE

- Advantages:

- \rightarrow Good dilution factor (0.77)
- \rightarrow Spin relaxation time ~ 1 year
- \rightarrow Intermediate B field to maintain the polarization (<1 T)
- \rightarrow Possibility to further transfer polarization from H to D
- Successfull run in 2012 with photon (g14) and tests with electron beams

 \rightarrow 5 HD targets used; p(H) ~ 0.6 <u>or</u> p(D) ~ 0.2 in average

- Offers new possibilities for transverse target exp. (e.g. to access the GPD E) \rightarrow CLAS12

CLAS results & achievements

SPIN2012, *09/22/2012*

X. Wei (S7-II)

T. Kageya (S3-IV)

B. Briscoe (S3-IV)

The future: the 12 GeV project

Schedule of the 12 GeV project

CLAS results & achievements

SPIN2012, *09/22/2012*

Conclusion (but not the end)

 \rightarrow First generation of dedicated experiments on DVCS measurements

 \rightarrow Major role on key issues for the nucleon structure (GPD, TMD, large x)

 \rightarrow Many topics not covered in this talk

Hall B All Publications (refereed Journals)

	Spectroscopy	Hard	Nuclear	Technical	Theory &	
	& Structure	Processes, Str. Func.	Processes	(NIM)	Reviews	ALL
≤ 2000	-	1	1	10	3	15
2001	2	3	-	3	1	9
2002	3	14	1			4
2003	7	4	1	2	2	16
2004	3	3	4	1	1	12
2005	7	3	2	2		14
2006	8	4	3	2		17
2007	7	2	3	2	1	15
2008	4	6	2	2	2	16
2009	8	7	4	2	1	22
2010	4	2	4	2	3	15
2011	3	1	4	4	1	13
2012	3	2	2	1	2	10
SUM	59	38	31	33	15	175

→ 128 physics papers in refereed journals (+ 33 technical papers) so far

 \rightarrow 18 accepted proposals for Hall B experiments @ 12 GeV...

 \Rightarrow much more to come with CLAS12!

CLAS results & achievements

SPIN2012, 09/22/2012

Backup

New equipments

Hall A (2 HRS + <u>11 GeV beam</u> for large installations)

