OPTICAL POTENTIAL MODEL FOR THE ELASTIC $\vec{d} p$ SCATTERING AT INTERMEDIATE ENERGIES

M.A. SHIKHALEV
Laboratory of High Energies, JINR

(within LNS project at LHE, JINR)

Goals

$\sqrt{ }$ Obtaining more information about intermediate- and short-range $N N$ interaction; $\sqrt{ }$ Probing of the deuteron structure at small distances (current work);
$\sqrt{ }$ Investigation of the significance of $3 N$-forces and its nature.

Problems

$\sqrt{ }$ No reliable quantitative model for $N N$-interaction above the inelastic threshold;
$\sqrt{ }$ It is no longer three-body problem above the pion production threshold;
$\sqrt{ }$ Difficulties in performing relativistic Faddeev calculations at higher energies.

Theoretical framework

Faddeev equation: $U=P G_{0}^{-1}+P T G_{0} U$
$U=U_{\mu_{d}^{\prime} \mu_{N}^{\prime}, \mu_{d} \mu_{N}}\left(\overrightarrow{q^{\prime}}, \vec{q}\right)-$ amplitude of elastic $d p$-scattering,
μ_{d}, μ_{N} - spin quantum numbers,
\vec{q} - relative momentum in the proton-deuteron c.m.;
$T-N N$ scattring matrix, $G_{0}=\left(E-H_{0}+i \epsilon\right)^{-1}-$ free propagator of $3 N$ system, and $P \equiv P_{12} P_{23}+P_{13} P_{23}-$ permutation operator.

Framework of the optical potential model: $U=V_{\text {opt }}+V_{\text {opt }} G_{d} U$
$V_{\mathrm{opt}}=P G_{0}^{-1}+P T_{c} G_{0} V_{\mathrm{opt}}-p d$ optical potential.
Series expansion:

$$
V_{\mathrm{opt}}=P G_{0}^{-1}+P T_{c} P+P T_{c} G_{0} P T_{c} P+\ldots \ldots
$$

$T_{c}-N N$ T-matrix with subtracted deuteron pole term;
G_{d} - deuteron contribution in the spectral decomposition of the two-body Hamiltonian.
$\underline{\text { Graphical representation: Initial state }|i\rangle \equiv\left|\vec{q} ; \mu_{d} \mu_{N}\right\rangle_{1(23)}}$

$$
\begin{aligned}
& \langle f| V_{\mathrm{opt}}|i\rangle={ }_{2(31)}\langle f| G_{0}^{-1}|i\rangle+{ }_{1(23)}\langle f| T_{c}^{2(31)}|i\rangle+{ }_{1(23)}\langle f| \widetilde{T}_{c}|i\rangle+ \\
& \quad{ }_{1(23)}\langle f| \widetilde{T}_{c} G_{0} T_{c}^{2(31)}|i\rangle+{ }_{1(23)}\langle f| T_{c}^{2(31)} G_{0} \widetilde{T}_{c}|i\rangle+{ }_{2(31)}\langle f| T_{c}^{1(23)} G_{0} T_{c}^{2(31)}|i\rangle
\end{aligned}
$$

One - nucleon exchange :

$$
\begin{gathered}
{ }_{2(31)}\langle f| G_{0}^{-1}|i\rangle=-G_{N}^{-1} \Psi_{13}\left(\vec{q}+\frac{1}{2} \overrightarrow{q^{\prime}}\right) \Psi_{23}\left(\overrightarrow{q^{\prime}}+\frac{1}{2} \vec{q}\right) \\
q^{\prime}=q=\left(\frac{T_{\mathrm{lab}} M_{N}^{2}\left(T_{\mathrm{lab}}+2 M_{d}\right)}{\left(M_{N}+M_{d}\right)^{2}+2 M_{N} T_{\mathrm{lab}}}\right)^{1 / 2},
\end{gathered}
$$

$T_{\text {lab }}$ - kinetic energy of deuteron in lab.

Single scattering :

$$
{ }_{1(23)}\langle f| T_{c}|i\rangle=\int \frac{\mathrm{d}^{3} \mathrm{p}}{(2 \pi)^{3}} \Psi_{23}\left(\vec{p}+\frac{1}{4} \vec{k}\right) T_{c}\left(\overrightarrow{q^{\prime}}, \vec{p}-\frac{3}{4} \overrightarrow{q^{\prime}}+\frac{1}{4} \vec{q} ; \vec{q}, \vec{p}-\frac{3}{4} \vec{q}+\frac{1}{4} \overrightarrow{q^{\prime}}\right) \Psi_{23}\left(\vec{p}-\frac{1}{4} \vec{k}\right)
$$

$k=\vec{q}-\overrightarrow{q^{\prime}}-$ transferred momentum.
Modified impulse approximation:

$$
T_{c}^{\mathrm{cm}}\left(\mathcal{L}^{-1} q^{\prime}, \mathcal{L}^{-1} q ; E_{e f f}\right)=T_{c}^{\mathrm{cm}}(t, u),
$$

t, u - kinematical invariants.
Continuation on mass-shell - $s=4 M_{N}^{2}-t-u$.

Double scattering term :

$$
\begin{aligned}
&{ }_{1(23)}\langle f| T_{2} G_{0} T_{1}|i\rangle=\int \frac{\mathrm{d}^{3} \mathrm{p}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathrm{p}^{\prime}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathrm{q}^{\prime \prime}}{(2 \pi)^{3}} \delta^{3}\left(\overrightarrow{p^{\prime}}+\vec{p}-\frac{1}{2} \overrightarrow{q^{\prime \prime}}+\frac{1}{4} \overrightarrow{q^{\prime}}+\frac{1}{4} \vec{q}\right) \\
& \times \Psi_{23}\left(\frac{\overrightarrow{p^{\prime}}-\vec{p}}{2}-\frac{3}{8} \overrightarrow{q^{\prime}}-\frac{1}{8} \vec{q}+\frac{1}{2} \overrightarrow{q^{\prime \prime}}\right) T_{2}\left(\overrightarrow{q^{\prime}}, \overrightarrow{p^{\prime}}-\frac{3}{4} \overrightarrow{q^{\prime}}+\frac{1}{4} \overrightarrow{q^{\prime \prime}} ; \overrightarrow{q^{\prime \prime}}, \overrightarrow{p^{\prime}}-\frac{3}{4} \overrightarrow{q^{\prime \prime}}+\frac{1}{4} \overrightarrow{q^{\prime}}\right) G_{0} \\
& \times T_{1}\left(\overrightarrow{q^{\prime \prime}}, \vec{p}-\frac{3}{4} \overrightarrow{q^{\prime \prime}}+\frac{1}{4} \vec{q} ; \vec{q}, \vec{p}-\frac{3}{4} \vec{q}+\frac{1}{4} \overrightarrow{q^{\prime \prime}}\right) \Psi_{23}\left(\frac{p^{\prime}-\vec{p}}{2}+\frac{3}{8} \vec{q}+\frac{1}{8} \overrightarrow{q^{\prime}}-\frac{1}{2} \overrightarrow{q^{\prime \prime}}\right) .
\end{aligned}
$$

Results of calculations

Conclusions

$\sqrt{ }$ Good description of the data at 270 MeV .
$\sqrt{ }$ High dependence of the observables on short-range behavior of the deuteron wave function.
$\sqrt{ }$ Strong influence of the double-scattering terms in the optical potential.
$\sqrt{ }$ Quite high value of total angular momentum $J(J=37 / 2)$ to obtain convergent results, that prevents direct employing of Faddeev calculations in partial-wave basis.
$\sqrt{ }$ But not very drastic sensitivity to higher $N N$ partial waves with $J>3$.
$\sqrt{ }$ The observables are not very sensitive to inelasticities in $N N$-channel (that comes in the model through the complex values of $N N$-phase shifts).

