

Asymmetry Measurement in the Elastic π^+p Scattering at 0.8 GeV/c.

I.G. Alekseev, P.E. Budkovsky, V.P. Kanavets, L.I. Koroleva, B.V. Morozov, V.M. Nesterov, V.V. Ryltsov, D.N. Svirida, A.D. Sulimov, V.V. Zhurkin.

Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow, 117218, Russia. Tel: 7(095)129-96-29, Fax: 7(095)883-96-01, E-mail : Vadim.Kanavets@itep.ru

Yu.A. Beloglazov, E.A. Filimonov, A.I. Kovalev, S.P. Kruglov, D.V. Novinsky, V.A. Shchedrov, V.V. Sumachev, V.Yu. Trautman.

Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188350, Russia.

N.A. Bazhanov, E.I. Bunyatova

Joint Institute for Nuclear Research, Dubna, Moscow district, 141980, Russia.

Preface

- → New data on polarization (asymmetry) in π^+p
- ➢ Backward angles, 0.80 GeV/c

> The latest and the last experiment in the series of the polarization parameter measurements by ITEP-PNPI collaboration in the last decade

(A[±] at 1.00, 1.43 and 1.62 GeV/c, P⁻ at 1.43, 1.78 and 2.07 GeV/c, P⁺ at 1.94 and 2.07 GeV/c)

Beam momentum range (0.8-2.1) GeV/c ideal for resonance spectroscopy: 65 % of light quark resonances in 3 clusters

MAIN GOAL:

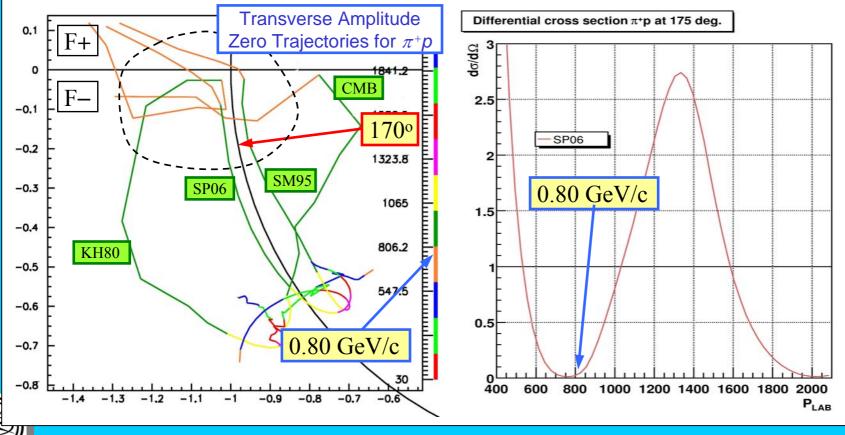
> Data for the UNAMBIGUOUS RECONSTRUCTION of the elastic πp scattering amplitudes by PWA to resolve problems in LIGHT BARYON SPECTROSCOPY

Background

* Light baryon resonances in the latest PDG are based mainly on PWA's KH80 and CMB80, both performed more than two decades ago. * More recent analyses by VPI/GWU group did not revealed 4 of 13 resonances * Latest data on the asymmetry and spin rotation parameters in πp do not confirm KH80 and CMB80 in the backward scattering region, while the agreement with GWU is far from perfect either

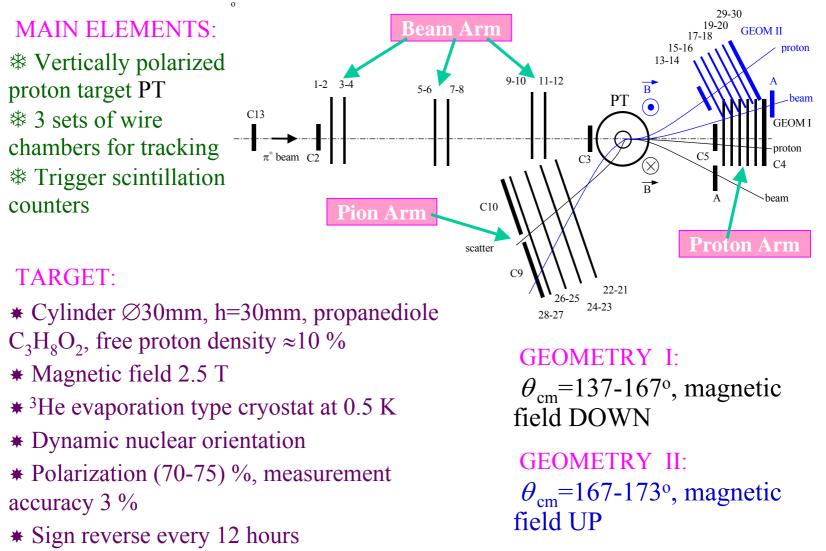
Kinematic Region: 0.8 GeV/c, Backward

DSPIN-07


✤ Zero trajectories approach real surface close to 180°

 \Rightarrow Both transverse amplitudes are very small: $|F+| \sim 0$, $|F-| \sim 0$

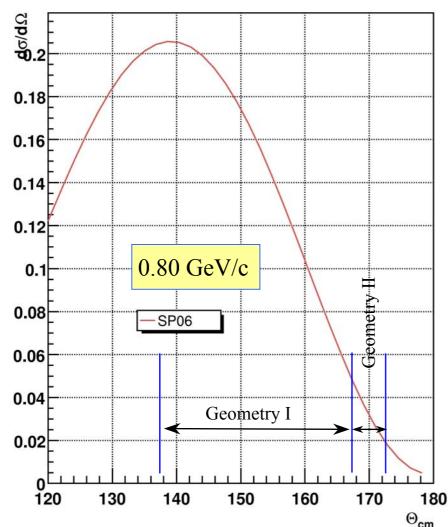
 \Rightarrow Very low cross-section


Trajectory behavior different in PWAs due to very poor experimental data and possible discrete ambiguity

Potential sensitivity to the high momentum resonances

Experimental Setup

DSPIN-07



Data Processing 1

Differential cross section π^*p at 0.80 GeV/c

MAIN DIFFICULTY:

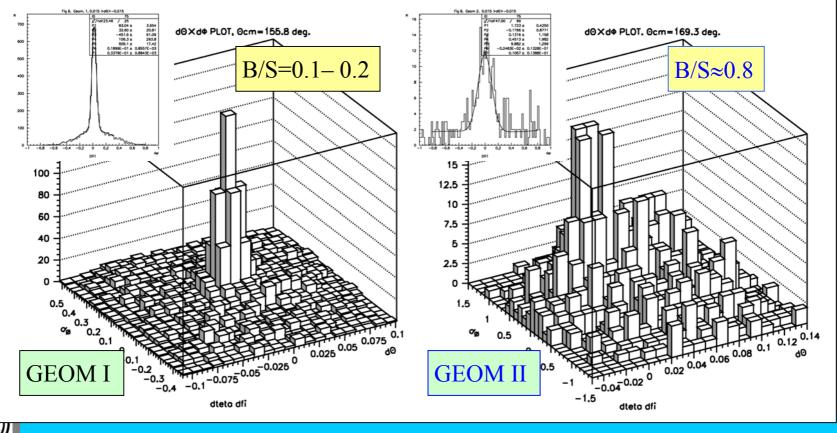
Low cross section in Geomerty II: 2--4 times less events than in each of 4 intervals in Geometry I

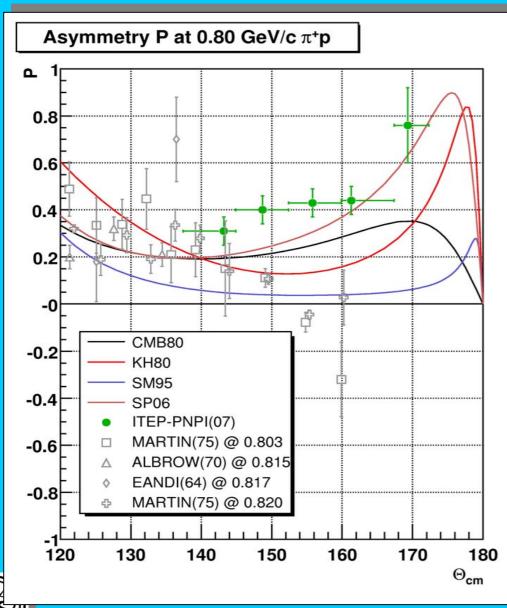
ELASTIC EVENT SELECTION: ✓ Coplanarity and kinematic correlation

 $\Delta \varphi$, $\Delta \theta$ – deviations from the elastic kinematics

NORMALIZATION:

♦ Using "unpolarized" event counts – quasi-elastic 2-particle events in the vicinity of the elastic peak, but not under it


Data Processing 2


BACKGROUND SUBTRACTION:

2-dim 12-parameter polynomial fit for the background SYSTEMATIC ERROR ESTIMATES:

Various cuts on the elastic locus region

Results: Asymmetry *P* at 0.80 GeV/c in π^+p

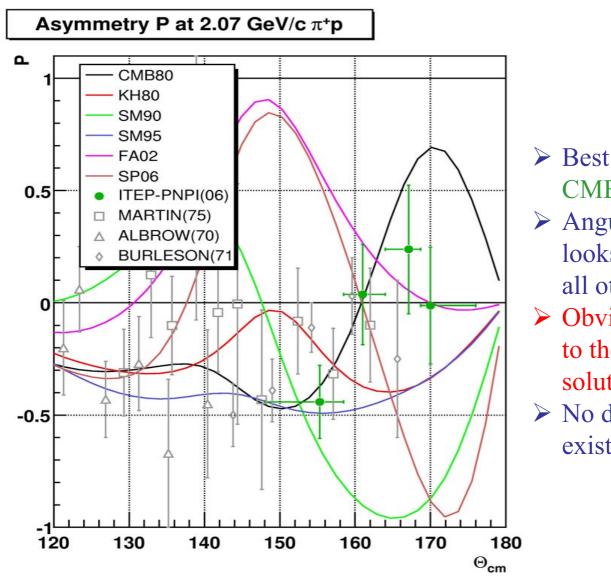
ERRORS include:

- Elastic event numbers
- Background calculations

DSPIN-07

DUBN/

- Intensity and efficiency normalization
- Overall normalization error due to target polarization uncertainty is ~3% and are not included


FEATURES:

- Best correspondence to the latest VPI/GWU SP06 analysis
- Agreement with the old data in the leftmost point
- Contradiction to MARTIN(75) at Θ_{cm} >145°

Dima Svirida (ITEP)

Asymmetry *P* at 2.07 GeV/c in $\pi^+ p$

- Best resemblance to CMB80
- Angular dependence looks contradictory to all other analyses
- Obvious contradiction to the latest VPI/GWU solution
- No disagreement with existing data

Conclusion

➢ GWU group significantly improved their analysis in the recent years, yet our data doesn't always confirm it

> New polarization parameter data require NEW GLOBAL TYPE PWA

➢ We extremely welcome the recent efforts of the Helsinki group on resurrection of KH80 analysis

Acknowledgements

➢ We are grateful to the ITEP accelerator team for providing us with the excellent beam conditions

➤ This work was partially supported by the Russian Fund for Basic Research grant 02-02-16111 and Russian State Scientific Program "Fundamental Nuclear Physics".

> GREAT THANKS to the organizers of this traditionally remarkable conference ! ! !

