Longitudinal polarization of $\Lambda/\bar{\Lambda}$ hyperons in lepton-nucleon deep inelastic scattering

Dmitry V.Naumov

JINR

DSPIN07

Dmitry V.Naumov (JINR)

 $\Lambda/\bar{\Lambda}$ polarization

イロト イヨト イヨト

7/09/2007

1 / 57

Preface

Paper: Longitudinal Polarization of Lambda and anti-Lambda Hyperons in Lepton-Nucleon Deep-Inelastic Scattering., John Ellis, Aram Kotzinian, Dmitry Naumov, Mikhail Sapozhnikov, hep-ph/0702222. Accepted to European Physics Journal C in 2007. Basic conclusions of our work:

- We demonstrate that new COMPASS data can sharpen two free parameters of our model
- An accurate measurement of $\Lambda, \overline{\Lambda}$ lngitudinal polarization in COMPASS and HERA gives a new method to measure $s(x), \overline{s}(x)$ in the nucleon.
- The spin structure of Λ , $\overline{\Lambda}$ hyperons could be extracted from the same data (SU(6) μ BJ models)
- Finally, we emphasize that the nucleon polarized strangeness is reflected in a longitudinal polarization of Λ hyperons which can be measured in COMPASS, HERA, JLAB

Outline

Dmitry V.Naumov (JINR)

・ロト ・回ト ・ヨト ・ヨト ・ヨー うへで

Outline

Introduction to nucleon strangeness 1 • Why $\Lambda/\bar{\Lambda}$?

- Theoretical kitchen
- Results

э

・ロト ・ 日 ・ ・ ヨ ・ ・

What do we know about the strangenss in nucleon?

- s quarks carry about 4% of the nucleon spin at $Q^2 = 20$ F₉B ©CCFR
- combination of electric and magnetic form-factors is small: $G_E + 0.39G_M = 0.025 \pm 0.020 \pm 0.014$ ©HAPPEX, $G_E + 0.225G_M = 0.039 \pm 0.034$ ©A4
- s quark contributes little to the magnetic moment of nucleon: $-0.1 \pm 5.1\%$ ©SAMPLE

On the other hand:

"Spin crysis" suggests that the quarks carry only $\sim 1/3$ of the nucleon spin with $\Delta s \approx -10\%$!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQC

How else the strangeness can be measured?

- di-muon events in (anti) neutrino
 - doable but involves large uncertainties in m_c and hadronization. Not sensitive to $\Delta s \dots$
- neutrino and anti-neutrino cross-sections asymmetry:

$$A = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}}$$

gives a road to strange form-factors and thus to Δs . ©W.A.Alberico, S.M.Bilenky, C.Maieron, hep-ph/0102269

• an excelent idea but VERY difficult experimentally...

イロト イポト イヨト イヨト

Λ и Δs

In SU(6) model the $\Lambda/\bar{\Lambda}$ spin is carried by s/\bar{s} , thus a possible Δs can be transferred to Λ hyperon and measured in $\Lambda \to p + K_s^0$

Idea

Measure P_{Λ} in lepton-nucleon DIS to feel Δs in the nucleon

Spin structure of Λ

Bukrhard, Jaffe noted that using SU(6) and the "spin crysis" for the proton one gets the same "spin crysis" for Λ :

$$\Delta u_{\Lambda} = \Delta d_{\Lambda} \approx -20\%$$

$\Lambda/\bar{\Lambda}$ vs $s(x)/\bar{s}(x)$

- Today $s(x)/\bar{s}(x)$ are badly known
- Various parametrizations differ by 100% (as GRV98 and CTEQ5L)
- If $\Lambda/\bar{\Lambda}$ are produced from fragmentation of $s(x)/\bar{s}(x)$ than one can expect the final hyperon polarization to be proportional to s(x) for Λ and $\bar{s}(x)$ for Λ

(日) (四) (王) (王) (王)

Outline

Introduction to nucleon strangeness Why Λ/Λ?

- Jur work
- Theoretical kitchen
- Results

3 Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・

Ingredients

- Interaction of lepton with nucleon
- Hadron fragmentation
- What is the mother of a hadron?
- Polarization of hadrons

ъ

・ロト ・回ト ・ヨト

Interaction of lepton with nucleon

We use LEPTO 6.1 package to model interactions of lepton (charged or neutrino) with nucleon. The following bugs were corrected by us:

- $\bullet\,$ In LEPTO 6.1 it was missing the lepton scattering off sea $u,\,d$ quarks
 - the bug was corrected and the author of LEPTO 6.1 was informed
- To model a nucleus LEPTO 6.1 "reweights" quark distributions of protons and neutrons according to their fractions. This is OK for unpolarized case but wrong for polarized physics.
 - We first generate samples with protons and neutrons targets, perform polarization analyses and then mix events proportionally to the cross-sections.

We use JETSET7.4 package to model hadron fragmentation of quarks, di-quarks. JETSET has many free parameters tunable from experiments:

• we used the parameters tuned by the NOMAD Collaboration, which describe yields of $\Lambda \ \mu \ \bar{\Lambda}$ hyperons, produced promtly or from decays of $(\Sigma^*, \Sigma^0, \Xi)$. ©Artem Chukanov

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Hadron rank or what is the hadron mother

In order to assign a polarization to the hadron one has to order hadrons in the hadrons string: decide is the considered hadron close to fragmenting quark or close to the target nucleon remnant. To account this we introduce two ranks:

- R_q hadron number from the quark end of the string
- R_{qq} hadron number from the target nucleon remnant

Hadron rank or what is the hadron mother

We consider two extreme cases to get an estimate of theory uncertainty.

- Model A: Restrict spin transfer in (di)quark fragmentation to hyperons with (R_{qq} = 1, R_q ≠ 1) R_{qq} ≠ 1, R_q = 1;
- Model B: Allow spin transfer in (di)quark fragmentation to hyperons with $(R_{qq} > R_q) R_{qq} < R_q$.

Polarization of hadrons. Quarks fragmentation

If a hadron is produced from the quark fragmentation (promtly or via heavier resonance), it could be polarized. The spin transfer is computed for SU(6) and "spin crysis" BJ models:

Λ 's parent	C_u^{Λ}		C_d^{Λ}		C_s^{Λ}	
	SU(6)	BJ	SU(6)	BJ	SU(6)	BJ
quark	0	-0.18	0	-0.18	1	0.63
Σ^0	-2/9	-0.12	-2/9	-0.12	1/9	0.15
Ξ^0	-0.15	0.07	0	0.05	0.6	-0.37
Ξ^{-}	0	0.05	-0.15	0.07	0.6	-0.37
Σ^{\star}	5/9	_	5/9	_	5/9	_

Таблица: Spin correlation coefficients in the SU(6) and BJ models.

・ロト ・同ト ・ヨト

Polarization of hadrons. Di-quarks fragmentation

Model of polarized strangeness

- small mass of pseudo scaler mesons π , K, η means strong attraction with quantum numbers $J^P = 0^-$.
- Vacuum density of strange pairs is quite large

 $\begin{aligned} \langle 0|\bar{u}u|0\rangle &\approx \langle 0|\bar{d}d|0\rangle \approx (250 \mathrm{M}\mathfrak{s}\mathrm{B})^3, \\ \langle 0|\bar{s}s|0\rangle &\approx (0.8\pm0.1)\langle 0|\bar{u}u|0\rangle. \end{aligned}$

This model was suggested in works of Ellis, Sapozhnikov, Kotzinian and Kharzeev

17 / 57

Polarization of hadrons. Di-quarks fragmentation

We do not know how strong is the correlation between spins of struch quark and sea strange (anti)quark. We introduce two free parameters $C_{sq_{sea}}, C_{sq_{val}}$. We fit these parameters from the NOMAD data:

Model A:
$$C_{sq_{val}} = -0.35 \pm 0.05, C_{sq_{sea}} = -0.95 \pm 0.05.$$

Model B: $C_{sq_{val}} = -0.25 \pm 0.05, C_{sq_{sea}} = 0.15 \pm 0.05.$

Spin transfer to Λ is computed as:

$$C_{\Lambda}^{l\,u}(prompt; N) = C_{\Lambda}^{l\,d}(prompt; N) = C_{sq},$$

$$C_{\Lambda}^{l\,u}(\Sigma^{0}; p) = C_{\Lambda}^{l\,d}(\Sigma^{0}; n) = \frac{1}{3} \cdot \frac{2 + C_{sq}}{3 + 2C_{sq}},$$

$$C_{\Lambda}^{l\,u}(\Sigma^{\star 0}; p) = C_{\Lambda}^{l\,d}(\Sigma^{\star 0}; n) = C_{\Lambda}^{l\,d}(\Sigma^{\star +}; p) =$$

$$C_{\Lambda}^{l\,u}(\Sigma^{\star -}; n) = -\frac{5}{3} \cdot \frac{1 - C_{sq}}{3 - C_{sq}}.$$

Dmitry V.Naumov (JINR)

7/09/2007 18 / 57

・ロト ・ 一下・ ・ ヨト・

Description of the NOMAD data

John Ellis, Aram Kotzinian, Dmitry V. Naumov published a paper in 2002 with predictions for Λ hyperons polarization for various experiments **Eur.Phys.J.C25:603-613,2002.**

Dmitry V.Naumov (JINR)

 $\Lambda/\bar{\Lambda}$ polarization

7/09/2007

19 / 57

What is our aim in this work 5 years later?

③ Predictions for $\bar{\Lambda}$ for COMPASS, HERA

2 Predictions for Λ for JLAB, COMPASS, HERA

- The NOMAD data are restricted to x > 0.05. We need smaller x to better fix $C_{sq_{sea}}, C_{sq_{val}}$. For this purpose the COMPASS data is essential.
- Study a dependence of spin transfer to $s(x)/\bar{s}(x)$ для COMPASS, HERA

Distributions of x_F for $\Lambda/\bar{\Lambda}$

- Let us examine distributions of x_F for $\Lambda/\bar{\Lambda}$ in different kinematic domains.
- What is the fraction of $\Lambda/\bar{\Lambda}$ produced from fragmentation of quark, di-quark, or resonance?

・ロト ・回ト ・ヨト

Our work Re

Results

Distributions of x_F для Λ in COMPASS

Dmitry V.Naumov (JINR)

7/09/2007 22 / 57

Our work R

Results

Distributions of x_F для $\overline{\Lambda}$ in COMPASS

Results

Distributions of x_F для Λ in HERA

7/09/2007

24 / 57

Results

Distributions of x_F для $\overline{\Lambda}$ in HERA

Dmitry V.Naumov (JINR)

7/09/2007 25 / 57

Resume

- For the COMPASS energy the dominant mechanism of Λ production is the di-quark fragmentation. $\overline{\Lambda}$ are produced mainly from \overline{s} fragmentation.
- For the HERA energy quark and diquark mechanisms are well separated, however a new mechanism becomes effective quark-antiquatk string fragmentation, like in $e^+ e^-$ collisions. Thus it is not instructive to require really very large energies for such studies

Spin transfer to $\Lambda/\bar{\Lambda}$

- How it depends on kinematics?
- How large it is?
- What are the main sources?

・ロト ・同ト ・ヨト

Spin transfer to Λ in COMPASS

SU(6), Model B

 $\Lambda/\bar{\Lambda}$ polarization

Spin transfer to $\overline{\Lambda}$ in COMPASS

SU(6), Model B

Spin transfer to Λ in COMPASS

SU(6), Model B

Dmitry V.Naumov (JINR)

 $\Lambda/\bar{\Lambda}$ polarization

7/09/2007

57

Spin transfer to $\overline{\Lambda}$ in COMPASS

SU(6), Model B

Resume

- Apparent domains in x_F, x sources of $\Lambda/\bar{\Lambda}$ polarization due to di-quark (only for Λ) and quark fragmentations.
- Polarization of Λ
 is essentially defined by s

 fragmentation. Thus it could be an instrument to study s

・ロト ・ 一下・ ・ ヨト

Models A and B for $\Lambda/\bar{\Lambda}$

- How sensitive are our predictions on model of tagging of particles?
- Is it possible to reduce theor. uncertainy?

・ロト ・ 一下・ ・ ヨト・

Our work R

Results

Models A and B for Λ in COMPASS

Our work Results

Models A and B for $\overline{\Lambda}$ in COMPASS

Our work Re

Results

Models A and B for Λ in COMPASS

7/09/2007

36 / 57

Our work Re

Results

Models A and B for $\overline{\Lambda}$ in COMPASS

Dmitry V.Naumov (JINR)

7/09/2007 37 / 57

- Predictions for Λ strongly depend on models A and B. This dependence is due to much smaller x accessile in COMPASS an not accessible in NOMAD used to tune the parameters. We need the COMPASS data to fix the parameters and reduce systematics.
- Predictions for $\overline{\Lambda}$ are practically insensitive to A and B tagging. This is very valuable to have a model independet probe of $\overline{s}(x)$!

Comparison of GRV98 and CTEQ5L for $\Lambda/\bar{\Lambda}$

• How sensitive our predictions on parametrizations of strange sea in the nuclen?

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Comparison of GRV98 and CTEQ5L for Λ in COMPASS

Our work Results

Comparison of GRV98 and CTEQ5L for $\overline{\Lambda}$ in COMPASS

Dmitry V.Naumov (JINR)

 $\Lambda/\bar{\Lambda}$ polarization

7/09/2007 41

41 / 57

Results

Comparison of GRV98 and CTEQ5L for Λ in HERA

Dmitry V.Naumov (JINR)

 $\Lambda/\bar{\Lambda}$ polarization

7/09/2007 42 / 57

Results

Comparison of GRV98 and CTEQ5L for $\overline{\Lambda}$ in HERA

Resume

- An accurate measurement of spin transfer to $\Lambda/\bar{\Lambda}$ can be probes(x) u $\bar{s}(x)$.
- For COMPASS this effect is present for both $\Lambda/\bar{\Lambda}$, while HERA would be sensitive only with Λ
- There is no sense to require large energy because new mechanisms (like in e^+e^-) becomes more and more effective thus loosing sensitivity to s(x) and $\bar{s}(x)$.

・ロト ・ 一下・ ・ ヨト・

Comparison of SU(6) and BJ for $\Lambda/\bar{\Lambda}$

• Can we learn from an experiment about the "spin crysis" for $\Lambda/\bar{\Lambda}$?

・ロト ・ 一下・ ・ ヨト・

Results

Comparison of SU(6) and BJ for Λ in COMPASS

Dmitry V.Naumov (JINR)

7/09/2007

46 / 57

Results

Comparison of SU(6) and BJ for $\overline{\Lambda}$ in COMPASS

7/09/2007 47 / 57

Results

Comparison of SU(6) and BJ for Λ in HERA

Dmitry V.Naumov (JINR)

7/09/2007 48 / 57

Results

Comparison of SU(6) and BJ for $\overline{\Lambda}$ in HERA

7/09/2007 49 / 57

• An accurate measurement of spin transfer to $\Lambda/\bar{\Lambda}$ gives a possibility to study the spin structure of $\Lambda/\bar{\Lambda}$

・ロト ・回ト ・ヨト ・

Sensitivity to polarized strangeness of Λ

• What will change if we switch off the spin stanfer from nucleon strangeness, i.e. $C_{sq} = 0$?

7/09/2007

51 / 57

Sensitivity to polarized strangeness of Λ in JLAB

• Spin transfer to Λ in JLAB is defined by polarized strangeness. Thus JLAB could be essential to define C_{sq} .

∃ ⊳

・ロト ・回ト ・ヨト・

Our work Results

Spin transfer to Λ in COMPASS for various s(x), BJ, SU6

7/09/2007 54 / 57

Spin transfer to $\overline{\Lambda}$ B COMPASS for various $\overline{s}(x)$, BJ, SU6

Dmitry V.Naumov (JINR)

 $\Lambda/\bar{\Lambda}$ polarization

7/09/2007 55 / 57

Outline

Introduction to nucleon strangeness Why Λ/Λ?

2 Our work

- Theoretical kitchen
- Results

3 Conclusions

э.

<ロ> (四) (四) (三) (三)

- New data of COMPASS can sharpen domain of two free parameters of our model
- An accurate measurement of polarization of $\Lambda, \overline{\Lambda}$ in COMPASS and HERA gives a new method to measure $s(x), \overline{s}(x)$ in nucleon
- Spin structure of $\Lambda, \bar{\Lambda}$ can be extracted from the same data
- Polarized nucleon strangeness can be extracted from measured Λ polarization in COMPASS, HERA, JLAB

A D N A B N A B N