The possibility to accelerate a Polarized Beam of p, d, t, ³He at JINR nuclotron

S.Vokal(1), A.D. Kovalenko(1), A.M. Kondratenko (2), M.A. Kondratenko (2), V.A. Mikhaylov(1), Yu. N. Filatov (1), S.S. Shimanskiy

(1) JINR, Dubna(2) GOO "Zaryad", Novosibirsk

PLAN

• the dynamic of the spin vector in JINR nuclotron

• strength of spin resonances

spin resonance crossing methods for JINR nuclotron

Basic Nuclotron Parameters

Charge to mass ratio ions	0.33 – 0.5, 1
Injection energy nuclei	5 MeV/u
protons	20 Mev
Maximum energy for nuclei with q/A=0.5	6 GeV/u
for protons	12.8 GeV
Transition energy	7.6 GeV
Circumference	251.52 m
Duration of acceleration	1 sec
Magnetic rigidity at injection	0.647 T·m
maximum	45.83 T∙m
Betatron tunes v_x	6.8
V_z	6.85
Nuber of superperiods P	8
Normalized emittance	$4.5\pi \cdot \text{mm} \cdot \text{mrad}$

Spin Motion at Circular Accelerator

Spin matching at nuclotron injection

Degree of depolarization due to mismatching			Scheme of spin matching							
- $ -$				H _{y1}		H_{y2}				
$D = 2\sin^2 \frac{\alpha_z}{2}$					\rightarrow	input	t channel		·	
	^{1}H	^{2}H	^{3}H	³ He			${}^{1}H$	^{2}H	^{3}H	³ He
α_{z} , grad	67	9.8	116	79		$(HL)_{y1}, Tm$	0.18	-0.027	-0.12	-0.26
D, %	62	1.5	55	81		$(HL)_{y2}$, Tm	0.2	0.14	0.04	-0.26

Vector of Polarization and Spin Resonances

$$\vec{\Pi} = \langle J \rangle \langle \vec{n} \rangle \implies D = 1 - \left| \langle J \rangle \right| \left| \langle \vec{n} \rangle \right|$$

$$\langle J \rangle - \text{change of spin integral of motion,}$$

$$\langle \vec{n} \rangle - \text{spread of n- axises}$$

Vector of polarization is changing in resonance region
Resonance condition: $\nu = \nu_k$, $\nu_k = k + k_x \nu_x + k_z \nu_z + k_y \nu_y$

Resonance coordinate system rotate around n-axis direction with the resonance frequency and spin is moving in the following field:

$$\vec{h} = \varepsilon \vec{e}_z + \vec{w}_z$$

 $\mathcal{E} = \mathcal{V}_0 - \mathcal{V}_k$ is resonance detune

Far

A

$$\vec{n} = \frac{h}{h} = \frac{\varepsilon}{\sqrt{\varepsilon^2 + w_k^2}} \vec{e}_z + \frac{\vec{w}_k}{\sqrt{\varepsilon^2 + w_k^2}}$$

wave from the resonance $(|\varepsilon| >> 1)$
 $|\langle \vec{n} \rangle| = 1$
t the resonance $(\varepsilon = 0)$

 $\left|\left\langle \vec{n}\right\rangle\right| = \left|\left\langle \vec{w}_{k} / w_{k}\right\rangle\right| \in [0;1]$

J- spin adiabatic invariant Adiabatic condition: $\left|\vec{h}'\right| \ll h^2$ or $\left|\mathcal{E}'\right| \ll \mathcal{E}^2 + w_k^2$ **Resonance region:** $\varepsilon' \sim h^2 \rightarrow \theta_{\rm res} \sim 1/\sqrt{\varepsilon'}$ $\langle J \rangle \neq \text{const}$ Far away from the resonance region: $\langle J \rangle = \text{const}$

$$|D^2\rangle >> 1 \text{ (not coherent)}, \quad D = \frac{1}{\pi \langle \mathbf{w}^2 \rangle} << 1$$

$$D \sim 1$$

Linear Spin Resonances at Nuclotron

Type of spin	Resonance condition	Number of resonance				
resonance		${}^{1}H$	^{2}H	^{3}H	³ He	
Intrinsic (P=8)	$v = kP \pm v_z$	6	_	8	9	
Integer	v = k	25	1	32	37	
Non-supereriodical	$v = k \pm v_z$	44	2	55	64	
Coupling resonance	$v = k \pm v_x$	49	2	63	73	

k_x	+	k_{z}	≤1	linear	spin	resonance
-------	---	---------	----	--------	------	-----------

	^{1}H	^{2}H	^{3}H	³ He
G	1.793	-0.143	7.92	-4.184
E_k^{\max} , GeV/u	12.84	6.00	3.74	8.28
$\varepsilon', (\tau = 0.5 \operatorname{sec})$	$7.0 \cdot 10^{-6}$	$2.8 \cdot 10^{-7}$	$1.0 \cdot 10^{-5}$	$1.1 \cdot 10^{-5}$
w_d , ($\tau = 0.5 \sec$)	$1.5 \cdot 10^{-3}$	$3.0 \cdot 10^{-4}$	$1.8 \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$

Intrinsic spin resonances at Nuclotron (p, t, ³He)

Integer spin resonances at Nuclotron (D,p, t, ³He)

Not superperiodical spin resonances at Nuclotron (D,p, t, ³He)

Coupling spin resonances at Nuclotron (D,p, t, ³He)

There are various methods for spin resonances crossing. These methods are based on:

- increasing the velocity of the spin-resonance crossing due to "jump" of the betatron tune;
- increasing the velocity of the spin-resonance crossing due to "jump" of the spin tune;
- resonance-strength compensation;
- an increase of the spin-resonance strength by means of specially introduced magnetic fields for adiabatic crossing of spin resonance (can be used for integer resonances crossing at nuclotron);
- decrease of the spin-resonance crossing velocity.

Methods of spin resonance crossing 1.Increasing of the spin-resonance strength for adiabatic crossing

Synchrotron modulation of energy

 $v = \gamma G = v_0 + \sigma_{\gamma} \cos \Psi_{\gamma}$

 σ_{γ} –energy spread srm of spin tune

 $v_{\gamma} = \Psi_{\gamma}' -$ synchrotron tune

 $\mathcal{E} = \mathcal{E}_0 + \mathcal{E}_{synch}$

 $\varepsilon'_{\rm synch} = \sigma_{\gamma} v_{\gamma} -$ synchrotron tuning velocity

The adiabatic condition

$$\left| \mathcal{E}' \right| \ll w_k^2$$

The adiabatic condition with synchrotron modulation

$$w_k^2 >> \max(\varepsilon'_0, \sigma_{\gamma} v_{\gamma})$$

At nuclotron

$$W_{adiab} \sim 10^{-1}$$

The following field integrals are necessary

-2

	^{1}H	^{2}H	³ <i>H</i>	³ He
$(HL)_{y1}, Tm$	1.0	3.4	0.3	0.9

$$B\rho = 45 T \cdot m$$

Integer resonances H_y, L_y The resonance strength due to solenoid $w_k = \frac{\varphi_y}{2\pi} = \frac{1+G}{2\pi} \frac{H_y L_y}{B\rho}$ $B\rho$ magnetic rigidity

Methods of spin resonance crossing 2.The method of compensation degree of depolarization

Methods of spin resonance crossing2.The method of compensation degree of depolarization (cont.)

The structure to manipulate of spin detune \mathcal{E} during resonance crossing

$$\frac{\varphi_x}{2} \qquad \varphi_y \qquad -\varphi_x \qquad -\varphi_y \qquad \frac{\varphi_x}{2}$$
$$H_x, \frac{L_x}{2} \qquad H_y, L_y \qquad -H_x, L_x \qquad -H_y, L_y \qquad H_x, \frac{L_x}{2}$$

Changing of the spin tune is $\Delta v = \frac{\varphi_x \varphi_y}{2\pi}$ **Vertical deviation of orbit is** $\Delta z_{\text{max}} = \frac{H_x L_x}{8B\rho} (4L_x + 5L_y)$

For implementation this method following parameters are necessary								
		$\Delta v \sim 4\sqrt{\varepsilon'}, \Delta t \sim 1/\varepsilon'$	ω_0 – revolution frequency					
Magnet length		Parameters	^{1}H	^{2}H	^{3}H	³ He		
$L_x = L_y = 40 \mathrm{cm}$		$\Delta \nu$	$1.1 \cdot 10^{-2}$	$2.1 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$		
One structure length		$\Delta t, \ \mu s \ (\beta = 1)$	50	250	40	40		
$L_{\rm str} = 160 {\rm cm}$		H_x, T	0.7	3.5	0.55	0.55		
Total structures length		H_y, T	4.3	14	1.35	3.8		
$L_{\rm tot} = 4 \times 160 {\rm cm}$		$\Delta z_{\max} \cdot \gamma$, cm	4	10	1.1	2.1		

Conclusions

•Tasks to accelerate polarized beams of p, t, ³He from the technical point of view are equivalent and differ for the beam of D.

•During injection of the polarized beams the vector of polarization must be directed along n-axis.

•Additional magnetic insertions must be included into the nuclotron lattice. Additional elements do not influence to the beam dynamic at nuclotron.

•For calculation of spin resonance strengths the software is developed.

•Developed methods can be applied for other accelerators, as example for NICA project, COSY, AGS and s.o.