Transverse Spin Physics at HERMES

V.A. Korotkov

on behalf of the HERMES collaboration

Institute for High Energy Physics, Protvino, Russia

- Spin Puzzle
- HERMES Experiment
- TTSA in semi-inclusive meson production
- TTSA in exclusive reactions
- Summary

Spin Puzzle

$$\frac{1}{2} = J_q + J_G$$
$$J_q = \frac{1}{2}(\Delta u + \Delta d + \Delta s) + L_q$$
$$J_G = \Delta G + L_G$$

 Δq - known from DIS (contribute about 30% to the nucleon spin only!)

 ΔG - there are first measurements (small?)

 L_q and L_G - are unknown.

To clarify the nucleon spin structure one need to measure:

- orbital angular momenta L_q , L_G
- transversity distribution function $\delta q(x)$

HERMES Experiment

27.5 GeV polarized e^+/e^- beam of HERA

V.A. Korotkov, DSPIN-07, Dubna, 04.09.07 - p. 3

- e/h rejection: TRD, Preshower, Calorimeter, RICH
- \bullet magnetic spectrometer: $\Delta p/p < 2.5\%$ and $\Delta \theta < 0.6$ mrad

HERMES Experiment

2002 – 2005 data taking years:

- transversely polarized atomic hydrogen ($P \sim 75\%$);
- flip of the polarisation direction every 90 sec in 0.5 sec;
- ullet integrated luminosity about 170 pb^{-1}

Motivation: Transversity Distribution Function

Leading Twist: three quark distribution functions.

V.A. Korotkov, DSPIN-07, Dubna, 04.09.07 – p. 5

Motivation: Transversity Distribution Function

Leading Twist: three quark distribution functions.

- for non-relativistic quarks: $\delta q(x) = \Delta q(x)$.
- no gluon transversity for spin-1/2 nucleon
- $\delta q(x)$ doesn't contribute to inclusive DIS, $ep \rightarrow eX$, due to its chiral-odd nature.
- requires a combination with other chiral-odd object, e.g. Collins FF \implies study of transverse target-spin asymmetries (TTSA) in SIDIS, $ep \rightarrow ehX$.

TTSA in SIDIS

- Collins FF H_1^{\perp} describes an influence of the quark transverse polarization on the hadron transverse momentum $\vec{P}_{h\perp}$.
- A completely different possible mechanism for target-related SSA's is known. Sivers DF f_{1T}^{\perp} describes a correlation of struck quark p_T with target polarization.
- Fortunately, two mechanisms produce different angular dependencies of the A_{UT} .

$$A_{XY}$$
: X(Y) - Beam (Target) polarization.

$$A_{UT}^{h}(\phi,\phi_{S}) = \frac{1}{|S_{T}|} \frac{N_{h}^{\uparrow}(\phi,\phi_{S}) - N_{h}^{\downarrow}(\phi,\phi_{S})}{N_{h}^{\uparrow}(\phi,\phi_{S}) + N_{h}^{\downarrow}(\phi,\phi_{S})}$$

 $\begin{aligned} A_{UT}^{h}(\phi,\phi_{S}) &\propto \sin(\phi+\phi_{S}) \sum_{q} e_{q}^{2} \cdot \mathcal{I}[h_{1T}^{q}(x,P_{T}^{2}) \cdot H_{1}^{\perp q}(z,k_{T}^{2})] & - & \text{``Collins''} \\ A_{UT}^{h}(\phi,\phi_{S}) &\propto \sin(\phi-\phi_{S}) \sum_{q} e_{q}^{2} \cdot \mathcal{I}[f_{1T}^{\perp q}(x,P_{T}^{2}) \cdot D_{1}^{q}(z,k_{T}^{2})] & - & \text{``Sivers''} \end{aligned}$

 $\mathcal{I}[\dots]$ - convolution integral over initial (P_T^2) and final (k_T^2) quark transverse momenta.

SIDIS Kinematics

 $\boldsymbol{e}(k) + \boldsymbol{P}(P) \longrightarrow \boldsymbol{e'}(k') + \boldsymbol{h}(P_h) + \boldsymbol{X}(P_X)$

$$Q^2 = -q^2 = -(k - k')^2, \ x_B = \frac{Q^2}{2P \cdot q}, \ y = \frac{P \cdot q}{P \cdot k}, \ W^2 = (P + q)^2, \ z = \frac{P \cdot P_h}{P \cdot q}$$

 $W^2 > 10 \ {\rm GeV^2}, \ \ 0.1 < y < 0.85, \ \ Q^2 > 1 \ {\rm GeV^2}, \ \ 0.2 < z < 0.7$

 $< Q^2 >= 2.4~{
m GeV^2}$, < x >= 0.09, < y >= 0.54, < z >= 0.36, $P_{h\perp} = 0.41~{
m GeV^2}$

Extraction of TTSA Amplitudes

- Unbinned maximum likelihood (ML) fits are used to extract simultaneously the Collins and Sivers amplitudes.
- Probability density function is defined as:

$$F(2 < \sin(\phi + \phi_S) >_{UT}^{h}, \ 2 < \sin(\phi - \phi_S) >_{UT}^{h}, \ \dots, \ P, \ \phi, \ \phi_S) = \frac{1}{2} \left(1 + P \cdot \left(2 < \sin(\phi + \phi_S) >_{UT}^{h} \cdot \sin(\phi + \phi_S) + 2 < \sin(\phi - \phi_S) >_{UT}^{h} \cdot \sin(\phi - \phi_S) + 2 < \sin(3\phi - \phi_S) >_{UT}^{h} \cdot \sin(3\phi - \phi_S) + 2 < \sin(2\phi - \phi_S) >_{UT}^{h} \cdot \sin(2\phi - \phi_S) + 2 < \sin(2\phi - \phi_S) >_{UT}^{h} \cdot \sin(2\phi - \phi_S) + 2 < \sin(\phi_S) >_{UT}^{h} \cdot \sin(\phi_S) \right) \right)$$

• The logarithm of the likelihood function $\mathcal{L} = \prod_i F_i^{w_i}$ is maximized wrt the TTSA amplitudes.

Collins amplitudes for charged pions

- all data (2002 2005) are used (PRL, 94 (2005) 012002)
- positive amplitudes for π^+
- negative amplitudes for π^-
- large negative amplitudes for π^- were unexpected

•
$$H_1^{\perp,unf}(z) \approx -H_1^{\perp,fav}(z)$$

•
$$H_1^{fav} = H_1^{u \to \pi^+} = H_1^{d \to \pi^-} = H_1^{\bar{u} \to \pi^-} = H_1^{\bar{d} \to \pi^+}$$

• $H_1^{unf} = H_1^{u \to \pi^-} = H_1^{d \to \pi^+} = H_1^{\bar{u} \to \pi^+} = H_1^{\bar{d} \to \pi^-}$

Collins amplitudes for charged pions

Efremov, Goeke, Schweitzer (Phys.Rev.D73,094025,2006) Preliminary HERMES data 2002 - 2004.

$$\langle 2B_{\text{Gauss}} H_1^{\perp (1/2) \text{fav}} \rangle = (3.5 \pm 0.8)\%$$

 $\langle 2B_{\text{Gauss}} H_1^{\perp (1/2) \text{unf}} \rangle = -(3.8 \pm 0.7)\%$

Collins amplitudes for charged kaons

- K^+ amplitudes are consistent with π^+
- K^- may have the opposite sign from π^-

V.A. Korotkov, DSPIN-07, Dubna, 04.09.07 – p. 11

Sivers amplitudes for charged pions

- significantly positive for π^+
- a signiture of non-zero quark orbital angular momentum
- π⁻ amplitudes consistent with zero

Sivers amplitudes for charged kaons

- $K^- = s \bar{u}, \ \pi^- = d \bar{u}$ sat
- same antiquark
- $K^+ = u\bar{s}, \ \pi^+ = u\bar{d}$ different antiquarks
- May suggest significant antiquark Sivers functions and strongly flavor-dependent.

- significantly positive for K^+
- *K*⁻ amplitudes consistent with zero
- K^+ amplitude is 2.3 ± 0.3 times larger than for π^+

Amplitudes for neutral pions

Using charge conjugation and isospin symmetry of the Collins fragmentation function π^+ , π^- , and π^0 amplitudes can be related:

$$<\sin(\phi \pm \phi_S) >_{UT}^{\pi^+} + C < \sin(\phi \pm \phi_S) >_{UT}^{\pi^-} + (1 - C) < \sin(\phi \pm \phi_S) >_{UT}^{\pi^0} = 0$$

Here, $C = \sigma_{UU}^{\pi^+} / \sigma_{UU}^{\pi^-}$

Hermes results for the extracted TTSA amplitudes fulfill the isospin symmetry relation.

Two-pion Asymmetry

$$ep \to e\pi^+\pi^- X$$

$$\vec{P}_h = \vec{P}_1 + \vec{P}_1$$

$$A_{UT} \propto |S_{\perp}| \sin(\phi_{R\perp} + \phi_S) \, \frac{\sum_q e_q^2 \, h_1^q \, H_1^{\diamondsuit, sp}}{\sum_q e_q^2 \, f_1^q \, D_1^q}$$

 $H_1^{\triangleleft, sp}$ – interference fragmentation between pion pair in *s*- and *p*-wave.

Alternative access for Transversity

Advantages:

• direct product of h_1^q and FF (no convolution)

Disadvantages:

- less statistics
- cross-section depends on 9 variables (acceptance effects more complex)

Two-pion Asymmetry

$$A_{UT}(\phi_{R\perp},\phi_S,\theta) =$$

$$\frac{1}{|S_T|} \frac{\sigma^{\uparrow}(\phi_{R\perp}, \phi_S, \theta) - \sigma^{\downarrow}(\phi_{R\perp}, \phi_S, \theta)}{\sigma^{\uparrow}(\phi_{R\perp}, \phi_S, \theta) + \sigma^{\downarrow}(\phi_{R\perp}, \phi_S, \theta)}$$

Data of 2002–2004 years only.

$$A_{UT}^{\sin(\phi_{R\perp} + \phi_S)\sin\theta} = 0.040 \pm 0.009(stat) \pm 0.003(syst)$$

Efforts to include data of 2005 are underway.

Two-pion Asymmetry

- result disfavors model of Jaffe, 1997;
- model of Bacchetta and Radici:
 - overestimates amplitudes;
 - no sign change.

Jaffe et al, 1997

Motivation: Total Angular Momentum of Quarks

Ji's relation (1996):

$$J_{q,g} = \frac{1}{2} \int_{-1}^{1} dx \cdot x [H_{q,g}(x,\xi,0) + E_{q,g}(x,\xi,0)]$$

A measurement of Generalized Parton Distributions (GPD) H and E is required. \implies Hard Exclusive reactions, e.g. DVCS, meson production

Motivation: Total Angular Momentum of Quarks

• twist-2 GPDs $H, E, \widetilde{H}, \widetilde{E}(x, \xi, t)$ for spin 1/2 hadron

 $x \pm \xi$: longitudinal momentum fractions of the partons,

- ξ : fraction of the momentum transfer, $\xi \simeq \frac{x_B}{2-x_B}$,
- t: invariant momentum transfer, $t \equiv (p p')^2$.

GPDs \Rightarrow **Form Factors**:

 $GPDs \Rightarrow PDFs$:

$$\begin{split} \int_{-1}^{1} dx \cdot H_{q} \left(x, \xi, t \right) &= F_{1}^{q} \left(t \right), & H_{q} \left(x, 0, 0 \right) &= q \left(x \right) \\ \int_{-1}^{1} dx \cdot E_{q} \left(x, \xi, t \right) &= F_{2}^{q} \left(t \right), & \tilde{H}_{q} \left(x, 0, 0 \right) &= \Delta q \left(x \right) \\ \int_{-1}^{1} dx \cdot \tilde{H}_{q} \left(x, \xi, t \right) &= G_{A}^{q} \left(t \right), & H_{g} \left(x, 0, 0 \right) &= g \left(x \right) \\ \int_{-1}^{1} dx \cdot \tilde{E}_{q} \left(x, \xi, t \right) &= G_{P}^{q} \left(t \right). & \tilde{H}_{g} \left(x, 0, 0 \right) &= \Delta g \left(x \right). \end{split}$$

DVCS depends on four GPDs $H, E, \widetilde{H}, \widetilde{E}$.

DVCS TTSA provides an access to GPD E without a kinematic suppression.

Exclusive production of vector mesons (ρ , ω , ϕ) depends on two GPDs, *H* and *E*.

Deeply Virtual Compton Scattering

V.A. Korotkov, DSPIN-07, Dubna, 04.09.07 - p. 20

Deeply Virtual Compton Scattering

- \mathcal{T}_{BH} depends on known Dirac and Pauli FFs F_1 , F_2
- T_{DVCS} depends on Compton FFs $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}$, and $\widetilde{\mathcal{E}}$, which are convolutions of respective GPDs with hard-scattering kernels.
- At HERMES, $|\mathcal{T}_{BH}| \gg |\mathcal{T}_{DVCS}|$.
- \mathcal{I} contains an information on the amplitudes and phases of the Compton FFs.

Transverse Target-Spin Asymmetry for DVCS

- $A_{UT}(\phi, \phi_s) = \frac{d\sigma(\phi, \phi_S) d\sigma(\phi, \phi_S + \pi)}{d\sigma(\phi, \phi_S) + d\sigma(\phi, \phi_S + \pi)} \propto \operatorname{Im}[F_2 \mathcal{H} F_1 \mathcal{E}] \cdot \sin(\phi \phi_S) \cos\phi + \dots$
- $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ is sensitive to \mathcal{E} and therefore to J_q .
- Previously measured A_{LU} (HERMES, 2001) is mainly sensitive to \mathcal{H} .

DVCS Measurements at HERMES

- Photons: calorimeter $\delta E_{\gamma}/E_{\gamma} \sim 5\%$
- Recoiling protons not detected \Rightarrow missing mass technique ($ep \rightarrow e'p\gamma$)

$$M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$$

• Background contribution $\sim 5\%$ is determined from MC and corrected.

TTSA at HERMES

• The nucleon helicity flip GPD E in the forward limit can be modelled as $e_q(x) = E_q(x, 0, 0) = A_q \cdot q_{val}(x) + B_q \cdot \delta(x)$. The values of A_q and B_q are related to J_q : $\frac{1}{2} \int dx \, x[q(x) + e_q(x)] = J_q$, $\int dx \, e_q(x) = F_2^q(0) = k^q$. Goeke et al., Prog.Part.Nucl.Phys. 47, 401 (2001)

• $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ is sensitive to J_u and insensitive to other model parameters. Ellinghaus et al., Eur.Phys.J.C46(2006)729

A Model-Dependent Constraint on J_u vs J_d

•
$$\chi^2(J_u, J_d) = \frac{\left[A_{\mathrm{UT}}^{\sin\left(\phi - \phi_{\mathrm{S}}\right)\cos\phi}|_{exp} - A_{\mathrm{UT}}^{\sin\left(\phi - \phi_{\mathrm{S}}\right)\cos\phi}(J_u, J_d)|_{VGG}\right]^2}{\delta A_{stat}^2 + \delta A_{syst}^2}$$

• 1- σ constraint on J_u versus J_d is determined by $\chi^2(J_u, J_d) \leq \chi^2_{min} + 1$

A Model-Dependent Constraint on J_u vs J_d

- First model dependent constraint on total quark angular momentum J_u , J_d .
- 2005 data still to be included.

TTSA for Exclusive ρ^0 Electroproduction

- cross-section for vector meson production depends on GPDs H and E
- GPV 2001 calculated TTSA for the HERMES kinematic
- TTSA is quite non-zero and depends (due to a model) on J_u , J_d
- factorization requires disentengling of ho_L^0 and ho_T^0

Exclusive ρ^0 Production at HERMES

$$ho^0 o \pi^+ \pi^-$$

- no recoil detection
- exclusive ρ^0 reaction through the energy and momentum transfer:

 $\Delta E = rac{M_x^2 - M_p^2}{2M_p} < 0.6 \; {\rm GeV}$

 ρ_L^0, ρ_T^0 Separation

- each ρ^0 polarization state has a characteristic decay angular state
- one may use angle $\theta_{\pi\pi}$ to disentangle ρ_L^0, ρ_T^0
- under assumption of *s*-channel helicity conservation (SCHC) the results may be compared to GPD based calculations
- HERMES has measured spin density matrix elements (SDME) of exclusive ρ^0 production at unpolarized target
- the results mostly in agreement with SCHC hypothesis

$$W(\phi, \phi_S, \theta_{\pi\pi}) = \frac{3}{2} \left[r_{00}^{04} \cos^2 \theta_{\pi\pi} (1 + A_{UU,\rho_L}(\phi) + P_T A_{UT,\rho_L}^l(\phi, \phi_S)) + (1 - r_{00}^{04}) \frac{1}{2} \sin^2 \theta_{\pi\pi} (1 + A_{UU,\rho_T}(\phi) + P_T A_{UT,\rho_T}^l(\phi, \phi_S)) \right]$$

Exclusive ρ TTSA at HERMES

• assuming SCHC the results can be compared with a theory

Exclusive Production of Longitudinal ho^0

• data in favor to positive J_u

• in agreement with HERMES DVCS result

V.A. Korotkov, DSPIN-07, Dubna, 04.09.07 - p. 30

Summary

- Non-vanishing Collins effect observed for π^{\pm} . Published data confirmed with much more high accuracy. Collins amplitudes for π^{-} have an opposite sign wrt to π^{+} and unexpectedly large. An explanation: $H_{1}^{\perp,unf}(z) \approx -H_{1}^{\perp,fav}(z)$
- First evidence of Sivers distribution in DIS.
- Sivers amplitudes for K^+ by factor 2.3 ± 0.3 larger than for π^+ . Sea quarks?
- First observation of transverse asymmetries in IFF. Final data will be based on 2.5 higher statistic.
- TTSA for DVCS provides a first model-dependent constraint on total angular momentum J_u vs J_d . Final data will be based on 2.5 higher statistic.
- First data on ρ_L^0 in electroproduction. Under the SCHC the results in favor to positive J_u and in agreement with HERMES DVCS result.
- Polarized beam (< $P_B \cdot P_T > \approx 30\%$). Studies of g_2 and A_{LT} are underway.

