ΔG from high p_T events at COMPASS

Konrad Klimaszewski

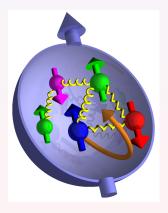
Soltan Institute for Nuclear Studies, Warsaw on behalf of the COMPASS collaboration

XII Workshop on High Energy Spin Physics (DSPIN-07) Dubna 03.09.2007

(D) (A) (A)

COMPASS experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy


Konrad Klimaszewski △G from high p⊤ events at COMPASS

Nucleon spin

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$


"Spin Crisis"

- Only a small fraction of nucleon spin is carried by quarks $\Delta \Sigma = 0.30 \pm 0.01 (\text{stat.}) \pm 0.02 (\text{evol.}) \\ (\text{QCD NLO fits})$
- How big is the contribution of gluons and orbital momentum?
- Precision of Δ*G* determined from QCD fits is poor.
- Answer: directly measure polarization of the gluons and orbital momentum of partons.

Experimental asymmetry

Photon Gluon Fusion - PGF

Experimental asymmetry

• Extract asymmetry (asymmetries are sensitive to small effects):

$$A_{exp} = \frac{N_U - N_D}{N_U + N_D}$$

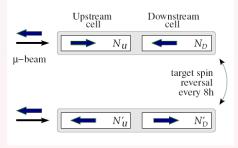
- One cell polarized parallel and one cell polarized antiparallel to the beam.
- Both cells exposed to same beam flux.
- Spectrometer acceptance is not the same for both cells.

(D) (A) (A)

Experimental asymmetry

Experimental asymmetry

• Solution: reverse polarization every 8 hours.


$$A_{exp} = 1/2 \left(rac{N_U - N_D}{N_U + N_D} + rac{N'_D - N'_U}{N'_D + N'_U}
ight)$$

• Experimental asymmetry is related to cross-section asymmetry:

$$A_{exp} = P_T P_B f A_{||}$$

where

- P_T Target polarization (measured with NMR probes)
- *P_B* Beam polarization (parametrization)
 - f dilution factor (parametrisation)

Experimental asymmetry

Δ G/G from PGF

$$\mathsf{A}^{IN} \equiv \mathsf{A}_{||} \equiv \frac{\Delta\sigma}{\sigma} \equiv \frac{\sigma^{\downarrow\uparrow\uparrow} - \sigma^{\downarrow\downarrow\downarrow}}{\sigma^{\downarrow\uparrow\uparrow} + \sigma^{\downarrow\downarrow\downarrow}}$$

•
$$\Delta \sigma = \Delta F \otimes \Delta \hat{\sigma} \otimes \tilde{D}; \ \sigma = F \otimes \hat{\sigma} \otimes \tilde{D}$$

 $\Delta F, F: \ \Delta G, \ \Delta q, \ G, \ q$
 $A_{\parallel} = \Delta q = \sum_{f} e_{f}^{2} (\Delta q_{f}(x) + \Delta \bar{q}_{f}(x))$
 $q = \sum_{f} e_{f}^{2} (q_{f}(x) + \bar{q}_{f}(x))$
 $\Delta \hat{\sigma}, \hat{\sigma}$ - hard process cross-sections
 \tilde{D} - fragmentation functions

• To minimise statistical error a weighting method is used Events are weighted with $w = fDP_B$ instead of using mean values

D - depolarisation factor of the virtual photon

Experimental asymmetry

$\Delta G/G$ from PGF

$$\mathsf{A}^{IN} \equiv \mathsf{A}_{||} \equiv \frac{\Delta\sigma}{\sigma} \equiv \frac{\sigma^{\downarrow\uparrow\uparrow} - \sigma^{\downarrow\downarrow\downarrow}}{\sigma^{\downarrow\uparrow\uparrow} + \sigma^{\downarrow\downarrow\downarrow}}$$

•
$$\Delta \sigma = \Delta F \otimes \Delta \hat{\sigma} \otimes \tilde{D}; \ \sigma = F \otimes \hat{\sigma} \otimes \tilde{D}$$

 $\Delta F, F: \Delta G, \Delta q, G, q$

$$\Delta q = \sum_{f} e_{f}^{2} (\Delta q_{f}(x) + \Delta \bar{q}_{f}(x))$$
 $q = \sum_{f} e_{f}^{2} (q_{f}(x) + \bar{q}_{f}(x))$
 $\Delta \hat{\sigma}, \hat{\sigma}$ - hard process cross-sections
 \tilde{D} - fragmentation functions
$$A_{||} = R_{sig} < a_{LL}^{sig} > \Delta G \\ A_{||} = R_{sig} < a_{LL}^{sig} > \Delta G \\ R_{i} - \text{fraction of process } "i"$$
 $< a_{LL} > = < \Delta \hat{\sigma} / \hat{\sigma} >$
 $A_{bg} - \text{background asymmetry}$

• To minimise statistical error a weighting method is used Events are weighted with $w = fDP_B$ instead of using mean values

D - depolarisation factor of the virtual photon

$$\begin{split} \frac{A_{||}}{D} &= -\frac{1}{2|P_t|} \left(\frac{\sum w_u - \sum w_d}{\sum w_u^2 + \sum w_d^2} - \frac{\sum w'_u - \sum w'_d}{\sum w'_u^2 + \sum w'_d} \right) \\ \delta \left(\frac{A_{||}}{D} \right) &= \frac{1}{2|P_t|} \sqrt{\frac{1}{\sum w_u^2 + \sum w_d^2} - \frac{1}{\sum w'_u^2 + \sum w'_d}} \end{split}$$

Experimental asymmetry

Δ G/G from PGF

$$\mathsf{A}^{IN} \equiv \mathsf{A}_{||} \equiv \frac{\Delta\sigma}{\sigma} \equiv \frac{\sigma^{\downarrow\uparrow\uparrow} - \sigma^{\downarrow\downarrow\downarrow}}{\sigma^{\downarrow\uparrow\uparrow} + \sigma^{\downarrow\downarrow\downarrow}}$$

•
$$\Delta \sigma = \Delta F \otimes \Delta \hat{\sigma} \otimes \tilde{D}; \ \sigma = F \otimes \hat{\sigma} \otimes \tilde{D}$$

 $\Delta F, F: \Delta G, \Delta q, G, q$
 $A_{||} = R_s$
 $\Delta q = \sum_f e_f^2 (\Delta q_f(x) + \Delta \bar{q}_f(x))$
 $q = \sum_f e_f^2 (q_f(x) + \bar{q}_f(x))$
 $A_{||} = R_s$

 $\Delta \hat{\sigma}, \hat{\sigma}$ - hard process cross-sections \tilde{D} - fragmentation functions • $A_{||} = R_{sig} < a_{LL}^{sig} > \frac{\Delta G}{G} + R_{bg}A_{bg}$ R_i - fraction of process "i" $< a_{LL} > = < \Delta \hat{\sigma} / \hat{\sigma} >$

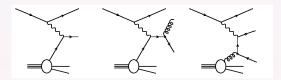
Abg - background asymmetry

• To minimise statistical error a weighting method is used Events are weighted with $w = fDP_B$ instead of using mean values

D - depolarisation factor of the virtual photon

$$\begin{aligned} \frac{A_{||}}{D} &= -\frac{1}{2|P_t|} \left(\frac{\Sigma w_u - \Sigma w_d}{\Sigma w_u^2 + \Sigma w_d^2} - \frac{\Sigma w'_u - \Sigma w'_d}{\Sigma w'_u^2 + \Sigma w'_d^2} \right) \\ \delta\left(\frac{A_{||}}{D}\right) &= \frac{1}{2|P_t|} \sqrt{\frac{1}{\Sigma w_u^2 + \Sigma w_d^2} - \frac{1}{\Sigma w'_u^2 + \Sigma w'_d^2}} \end{aligned}$$

PGF selection

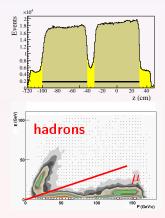

- Open charm production
 - cc production
 - hard scale set by $4m_c^2$
 - no background asymmetry
 - limited statistics
- 2 high p_T hadrons ($Q^2 > 1 \text{GeV}^2$)
 - hard scale set by Q^2
 - large statistics
 - contamination by other processes
- 2 high p_T hadrons ($Q^2 < 1 {
 m GeV}^2$)
 - hard scale set by p_T
 - very large statistics
 - contamination by other processes (resolved photon not negligible)

(D) (A) (A)

High p_{T} hadrons High p_{T} ($Q^2 > 1$ GeV²) analysis High p_{T} ($Q^2 < 1$ GeV²) analysis

High p_T background processes

Contributing diagrams ($Q^2 > 1 \text{GeV}^2$)

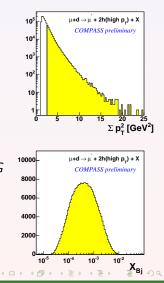

- For Leading Process struck quark goes along photon direction
- *p_T* of hadron in the final state is small
- Non zero p_T can originate from fragmentation or intrinsic p_T of quark
- Selection of events with high p_T suppresses Leading Process

(D) (A) (A)

High p_T selection

Event selection:

- Primary vertex is reconstructed within target volume.
- Extrapolated beam track goes through both target cells.
- Hadron identification
 - For hadron candidates that have an energy measurement in calorimeter: E_{cal}/p > 0.3
 - Hadron candidates don't have associated clusters behind muon filters

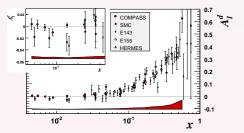

(D) (A) (A)

High pr hadrons

High p_T selection

Kinematic cuts:

- Enhance PGF contribution also ensure factorisation for $Q^2 < 1$ GeV²sample:
 - $p_T > 0.7$ GeV (for both hadrons) • $\Sigma p_T^2 > 2.5$ GeV²
- - suppress region with low contribution to $\Delta G/G$
- y < 0.9 suppress region with large radiative corrections
- $x_F, z > 0.1$: current fragmentation region
- $m(h_1,h_2)>1.5$ GeV : remove ho resonance

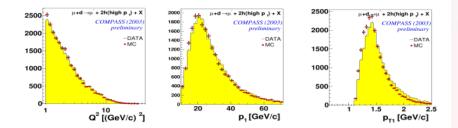

High p_T hadrons

 $\begin{array}{l} \text{High } \rho_{\mathcal{T}} \quad \text{hadrons} \\ \text{High } \rho_{\mathcal{T}} \quad (Q^2 > 1 \ \text{GeV}^2) \text{ analysis} \\ \text{High } \rho_{\mathcal{T}} \quad (Q^2 < 1 \ \text{GeV}^2) \text{ analysis} \end{array}$

High p_T $(Q^2 > 1 \,\, { m GeV}^2)$: $\Delta G/G$ extraction

$$\frac{A_{||}}{D} = A_1 \left(\left\langle \frac{a_{LL}^{LP}}{D} \right\rangle R_{LP} + \left\langle \frac{a_{LL}^{QCDC}}{D} \right\rangle R_{QCDC} \right) + \frac{\Delta G}{G} \left\langle \frac{a_{LL}^{PGF}}{D} \right\rangle R_{PGF}$$

- For region x < 0.05 A₁ is small we can neglect contribution from LP and QCDC (included in systematic error)
- *R_{PGF}* fraction of PGF events determined from MC simulations



(D) (A) (A)

 $\begin{array}{l} \text{High } \rho_{\mathcal{T}} \quad \text{hadrons} \\ \text{High } \rho_{\mathcal{T}} \quad (Q^2 > 1 \ \text{GeV}^2) \text{ analysis} \\ \text{High } \rho_{\mathcal{T}} \quad (Q^2 < 1 \ \text{GeV}^2) \text{ analysis} \end{array}$

High $p_T (Q^2 > 1 \text{ GeV}^2)$: Monte Carlo

- Monte Carlo generator: LEPTO
- Reasonable agreement with data

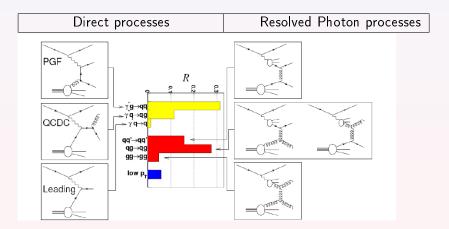
High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis

High p_T ($Q^2 > 1$ GeV²): result

• Result based on data collected in 2002-2003:

$$rac{\Delta G}{G}=0.06\pm0.31(\textit{stat.})\pm0.06(\textit{syst.})$$

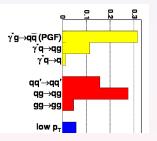
$$R_{PGF} = 0.34 \pm 0.7$$


$$< x_g >= 0.13$$

- Analysis of 2004 and 2006 data ongoing.
- We are working on methods to improve sample selection.

(D) (A) (A)

High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis


High p_T ($Q^2 < 1$ GeV²): additional processes

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

High $p_T (Q^2 < 1 \text{ GeV}^2)$: additional processes

$$\begin{aligned} A_{||}/D &= R_{PGF} \left\langle \frac{a_{LL}^{PGF}}{D} \right\rangle \frac{\Delta G}{G} \\ &+ R_{QCDC} \left\langle \frac{a_{LL}^{QCDC}}{D} \right\rangle A_{1} \\ &+ R_{qq} \left\langle \frac{a_{LL}^{qq}}{D} \right\rangle \frac{\Delta q}{q} \frac{\Delta q^{\gamma}}{q^{\gamma}} \\ &+ R_{qg} \left\langle \frac{a_{LL}^{qg}}{D} \right\rangle \frac{\Delta q}{q} \frac{\Delta G^{\gamma}}{G^{\gamma}} \\ &+ R_{gg} \left\langle \frac{q}{D} \right\rangle \frac{\Delta G}{G} \frac{\Delta q^{\gamma}}{q^{\gamma}} \\ &+ R_{gg} \left\langle \frac{a_{LL}^{gg}}{D} \right\rangle \frac{\Delta G}{G} \frac{\Delta G^{\gamma}}{G^{\gamma}} \end{aligned}$$

High p_{τ} ($Q^2 < 1$ GeV²) analysis

- R_i process fraction (MC).
- a; hard process asymmetry (QCD).
- A₁, q, Δq parton distributions in the nucleon (parametrisation).
- q^γ, G^γ unpolarised PDFs in photon (parametrisation).
- Δq^{γ} , ΔG^{γ} polarised PDFs in photon (min-max scenario).

イロト イポト イヨト

High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis

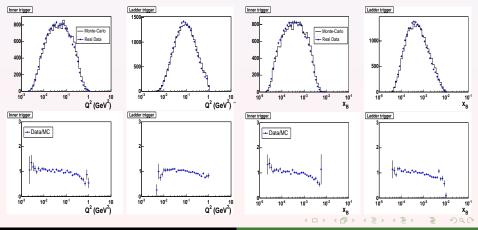
High p_T ($Q^2 < 1$ GeV²): Parametrisations

- A_1 parametrisation based on the E143 and SMC data.
- $q, \Delta q$ parametrisations GRV98LO and GRSV2000 respectively.
- q^γ, G^γ parametrisation by Glück, Reya, and Schienbein [Phys. Rev. D60, 054019]
- $\Delta q^{\gamma}, \, \Delta {\cal G}^{\gamma}$ can be decomposed into two terms:

$$\Delta f^{\gamma} = \Delta f^{\gamma}_{VMD} + \Delta f^{\gamma}_{pl}$$

- $\Delta f_{_{pl}}^{\gamma}\,$ photon fluctuates into $q \, \overline{q}\,$ pair
 - term calculable in QCD + QED
- Δf_{VMD}^{γ} photon fluctuates into a vector meson
 - this term is non perturbative.

We can only estimate it via max-min scenarios:

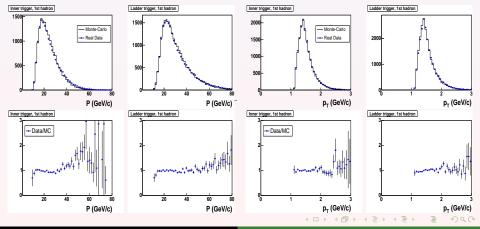

$$-f_{VMD}^{\gamma} < \Delta f_{VMD}^{\gamma} < f_{VMD}^{\gamma}$$

Unpolarised distribution are constrained by data. [Ref: *Glück, Reya, and Sieg,* Eur. Phys. J. **C20**, 271-281]

High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis

High $p_T (Q^2 < 1 \text{ GeV}^2)$: Monte Carlo

Monte Carlo generator: PYTHIA (GRV98LO) Agreement between Real Data (blue points) and Monte Carlo


Konrad Klimaszewski

 $\triangle G$ from high p_T events at COMPASS

High p_T hadrons High p_T ($Q^2 > 1 \text{ GeV}^2$) analysis High p_T ($Q^2 < 1 \text{ GeV}^2$) analysis

High p_T ($Q^2 < 1$ GeV²): Monte Carlo (*cont'd*)

Intrinsic k_T^{γ} in the resolved photon was tuned to obtain agreement in p and p_T for both leading and second hadrons.

Konrad Klimaszewski

 $\triangle G$ from high p_T events at COMPASS

 $\begin{array}{l} \text{High } p_{\mathcal{T}} \quad \text{hadrons} \\ \text{High } p_{\mathcal{T}} \quad (Q^2 > 1 \ \text{GeV}^2) \text{ analysis} \\ \text{High } p_{\mathcal{T}} \quad (Q^2 < 1 \ \text{GeV}^2) \text{ analysis} \end{array}$

High $p_T (Q^2 < 1 \text{ GeV}^2)$: systematics

Main contributions to systematic errors

- False asymmetries (experimental systematics): 0.014
- Resolved photon contribution (min max scenario): 0.013
- Monte Carlo: 0.052
- False Asymmetries (FA) can be decomposed into:
 - Reproducible FA appears if properties of the apparatus depend on the sign of solenoid filed.
 - Almost completely cancelled out thanks to two MW settings:
 - $A_{rep} = \frac{1}{2} \left(A_{+} A_{-} \right); \quad A_{R} = A_{rep} \times \frac{(\delta A_{-})^{2} (\delta A_{+})^{2}}{(\delta A_{-})^{2} + (\delta A_{+})^{2}}$
 - Random FA originate from random fluctuation.
 Estimated using "pulls" method on large number of data groups, after correction for A_{rep}.
 - Systematic FA eg. efficiency of a detector degrades in time.

 $\begin{array}{l} \text{High } p_{\mathcal{T}} \quad \text{hadrons} \\ \text{High } p_{\mathcal{T}} \quad (Q^2 > 1 \ \text{GeV}^2) \text{ analysis} \\ \text{High } p_{\mathcal{T}} \quad (Q^2 < 1 \ \text{GeV}^2) \text{ analysis} \end{array}$

High p_T ($Q^2 < 1$ GeV²): systematics

Main contributions to systematic errors

- False asymmetries (experimental systematics): 0.014
- Resolved photon contribution (min max scenario): 0.013
- Monte Carlo: 0.052
- False Asymmetries (FA) can be decomposed into:
 - Reproducible FA appears if properties of the apparatus depend on the sign of solenoid filed.
 - Almost completely cancelled out thanks to two MW settings:

$$A_{rep} = \frac{1}{2} (A_{+} - A_{-}); \quad A_{R} = A_{rep} \times \frac{(\delta A_{-})^{2} - (\delta A_{+})^{2}}{(\delta A_{-})^{2} + (\delta A_{+})^{2}}$$

- Random FA originate from random fluctuation.
 Estimated using "pulls" method on large number of data groups, after correction for A_{rep}.
- Systematic FA eg. efficiency of a detector degrades in time. Constant on-line monitoring during data taking. Can be decomposed into A_{rep} and A_{rand} Rafts.

 $\begin{array}{l} \text{High } p_{\mathcal{T}} \;\; \text{hadrons} \\ \text{High } p_{\mathcal{T}} \;\; (Q^2 > 1 \;\; \text{GeV}^2) \; \text{analysis} \\ \text{High } p_{\mathcal{T}} \;\; (Q^2 < 1 \;\; \text{GeV}^2) \; \text{analysis} \end{array}$

High p_T ($Q^2 < 1$ GeV²): systematics

Main contributions to systematic errors

- False asymmetries (experimental systematics): 0.014
- Resolved photon contribution (min max scenario): 0.013
- Monte Carlo: 0.052
- False Asymmetries (FA) can be decomposed into:
 - Reproducible FA appears if properties of the apparatus depend on the sign of solenoid filed.

- Almost completely cancelled out thanks to two MW settings:

$$A_{rep} = \frac{1}{2} (A_{+} - A_{-}); \quad A_{R} = A_{rep} \times \frac{(\delta A_{-})^{2} - (\delta A_{+})^{2}}{(\delta A_{-})^{2} + (\delta A_{+})^{2}}$$

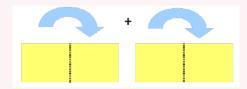
- Random FA originate from random fluctuation.
 Estimated using "pulls" method on large number of data groups, after correction for A_{rep}.
- Systematic FA eg. efficiency of a detector degrades in time. Constant on-line monitoring during data taking. Can be decomposed into A_{rep} and A_{rand} parts.

$\begin{array}{l} \text{High } p_{\mathcal{T}} \quad \text{hadrons} \\ \text{High } p_{\mathcal{T}} \quad (Q^2 > 1 \; \text{GeV}^2) \; \text{analysis} \\ \text{High } p_{\mathcal{T}} \quad (Q^2 < 1 \; \text{GeV}^2) \; \text{analysis} \end{array}$

High p_T ($Q^2 < 1$ GeV²): systematics

Main contributions to systematic errors

- False asymmetries (experimental systematics): 0.014
- Resolved photon contribution (min max scenario): 0.013
- Monte Carlo: 0.052
- False Asymmetries (FA) can be decomposed into:
 - Reproducible FA appears if properties of the apparatus depend on the sign of solenoid filed.
 - Almost completely cancelled out thanks to two MW settings:

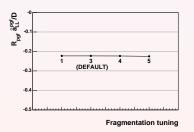

$$A_{rep} = \frac{1}{2} (A_{+} - A_{-}); \quad A_{R} = A_{rep} \times \frac{(\delta A_{-})^{2} - (\delta A_{+})^{2}}{(\delta A_{-})^{2} + (\delta A_{+})^{2}}$$

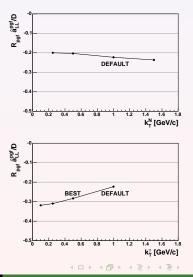
- Random FA originate from random fluctuation.
 Estimated using "pulls" method on large number of data groups, after correction for A_{rep}.
- Systematic FA eg. efficiency of a detector degrades in time. Constant on-line monitoring during data taking. Can be decomposed into A_{rep} and A_{rand} parts.

High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis

High p_T ($Q^2 < 1$ GeV²): systematics

- False asymmetries (cont'd)
 - Studied on low p_T sample: $\sim 250 \otimes$ more statistics
 - Considered scenarios:
 - Microwave setting "+" vs "-"
 - Upper vs Lower part of spectrometer
 - Left vs Right part of the spectrometer
 - Asymmetries within one target cell

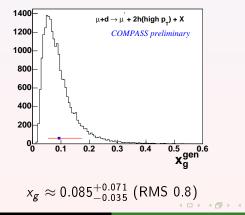



< 日 > (一) > (二) > ((二) > ((L) > ((L)

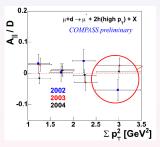
High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis

High ρ_T ($Q^2 < 1$ GeV²): MC systematics

- MC parameters were varied in a range with reasonable Data/MC agreement:
 - parton fragmentation
 - k_τ of partons in nucleon and in photon
 - renormalisation and factorisation scales
 - parton showers



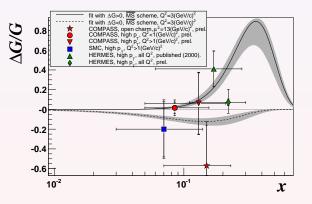
High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis


High p_T ($Q^2 < 1$ GeV²): estimation of x_g

- x_g estimated using MC.
- Each process probes $\Delta G/G$ at different x_g .
- Contributions from processes are weighted by sensitivity to $\Delta G/G$.

High p_T ($Q^2 < 1$ GeV²): result

- 2002-2003 data (PLB 633 (2006) 25-32) $\frac{\Delta G}{G} = 0.024 \pm 0.089(stat.) \pm 0.057(syst.)$
- 2004 data: $\frac{\Delta G}{G} = 0.015 \pm 0.077(stat.) \pm 0.056(syst.)$


(D) (A) (A)

• Preliminary result based on 2002-2004 data:

$$rac{\Delta G}{G} = 0.016 \pm 0.058(\textit{stat.}) \pm 0.055(\textit{syst.})$$

- $x_g \approx 0.085^{+0.071}_{-0.035}$ (RMS 0.8)
- Scale 3GeV²

$\Delta G/G$

QCD fits:

High p_T ($Q^2 < 1$ GeV²) analysis

- Lines obtained from NLO QCD fits including a new COMPASS deuteron results on g^d₁ (PLB 647 (2007) 8-17).
- Two equally good solutions for $\Delta G/G$ were found. For both $|\Delta G| = 0.2 - 0.3$.

High p_T hadrons High p_T ($Q^2 > 1$ GeV²) analysis High p_T ($Q^2 < 1$ GeV²) analysis

Prospects

- 2006 and 2007 data to be analysed
- Increased statistics in 2006 and 2007 due to new COMPASS magnet
- 2004 data for High p_T ($Q^2 > 1 \text{ GeV}^2$) sample is being analysed
- Usage of neural networks is studied as a tool for selecting PGF events

- Recent results of $\Delta G/G$ from COMPASS were presented
- Present measurements indicate that $\Delta G/G$ is consistent with zero at $x_g pprox 0.1$

High p_{τ} ($Q^2 < 1$ GeV²) analysis

- We are working on further analysis and hope to show new results with even better precision in near future
- Measurement of orbital momentum of partons in nucleon is needed to solve "nucleon spin puzzle"

(日) (同) (三) (三)