COMPASS results on inclusive and semi–inclusive polarised DIS

Helena Santos

LIP - Lisboa

on behalf of the COMPASS Collaboration

- The nucleon spin
- The COMPASS experiment
- Longitudinal spin structure functions
- Valence quark polarisations
- Conclusions and outlook

DSPIN - 07 - XII WORKSHOP ON HIGH ENERGY SPIN PHYSICS

The Nucleon Spin

naïve parton model: $\Delta \Sigma = \Delta u + \Delta d = 1$

gluons, sea and *c* quarks are important

complete description: orbital angular momenta

EMC (1988): $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$ $\Delta s + \Delta \overline{s} = -0.14 \pm 0.03$

$$S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$
 (h=1)

Deep Inelastic Scattering

Polarised Deep Inelastic Scattering

photon-nucleon asymmetry

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_{q} e_{q}^{2} \Delta q(x)}{\sum_{q} e_{q}^{2} q(x)} = \frac{g_{1}(x)}{F_{1}(x)}$$

The COMPASS Experiment at the CERN-SPS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

OMPA

Luminosity: ~5 10^{s2} cm² s⁻¹ Beam intensity: 2.10^s ct/spill (4.8s/16.8s) Beam momentum: 160 GeV/c 230 physicists from 12 countries

DSPIN - 07 - XIk Workshop on High Energy Spin Ph

LHC

SPS

The COMPASS Spectrometer

NIM A 577 (2007) 455

The Target System

Two 60 cm long target cells with opposite polarisation

Target material: ⁶LiD

Polarisation ~ 50%

Solenoid field: 2.5 T

³He/⁴He: T_{min} ~ 50mK

Field reversal every 8h

From 2006 on:

New solenoid with 180 mrad acceptance

Three target cells (better to face systematics)

Inclusive Asymmetry, Q² < 1 (GeV/c)²

- A₁^d asymmetry compatible with 0 at low x range (0.0005<x<0.02)
- At low x A₁^d has been measured only by COMPASS and SMC
- Systematic errors are mainly due to false asymmetries

The $g_1(x)$ Structure Function $Q^2 < 1 (GeV/c)^2$

Knowledge of g₁ at low Q² is needed to test non-perturbative models: Regge and (G)VDM

DSPIN - 07 - XII Workshop on High Energy Spin Physics

Inclusive DIS Asymmetry

Phys. Lett. B 647 (2007) 8

- A₁ compatible with 0 for x < 0.05
- Large asymmetry at large x
- Systematic errors: Multiplicative $\rightarrow \delta \cong 0.10A$ ($\delta P_B, \delta P_T, \delta f$ and δD)

Additive \rightarrow rad. corrections \approx 10⁻⁴ — 10⁻³; $A_{false} < 0.4\delta A_{stat}$

Inclusive DIS Asymmetry

- Good agreement with previous experiments
- Improved significantly statistics at low x
- No tendency towards negative values at x < 0.03

The g₁^d(x) Structure Function

QCD Analyses

$$g_1(x,Q^2) = \frac{1}{2} \langle e^2 \rangle \left[C_q^S \otimes \Delta \Sigma + C_q^{NS} \otimes \Delta q^{NS} + 2n_f C_G \otimes \Delta G \right]$$
$$\Delta \Sigma = \Delta u + \Delta d + \Delta s, \quad \Delta q_3 = \Delta u - \Delta d, \qquad \Delta q_8 = \Delta u + \Delta d - 2\Delta s$$

DGLAP equations:

$$\frac{d}{dt}\Delta q^{NS} = \frac{\alpha_s(t)}{2\pi} P_{qq}^{NS} \otimes \Delta q^{NS}$$

$$\frac{d}{dt} \begin{pmatrix} \Delta \Sigma \\ \Delta G \end{pmatrix} = \frac{\alpha_s(t)}{2\pi} \begin{pmatrix} P_{qq}^S & 2n_f P_{qG}^S \\ P_{Gq}^S & P_{GG}^S \end{pmatrix} \otimes \begin{pmatrix} \Delta \Sigma \\ \Delta G \end{pmatrix} , \quad t = \log\left(\frac{Q^2}{\Lambda^2}\right)$$

Input parameterisations (x-dependence at a fixed Q_0^2):

$$(\Delta \Sigma, \Delta q_3, \Delta q_8, \Delta G) = \eta \frac{x^{\alpha} (1-x)^{\beta} (1+\gamma x)}{\int_0^1 x^{\alpha} (1-x)^{\beta} (1+\gamma x) dx}$$

Minimization routine:

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left[g_{1}^{\text{calc}}(x, Q^{2}) - g_{1}^{\exp}(x, Q^{2})\right]^{2}}{\left[\sigma_{\text{stat}}^{\exp}(x, Q^{2})\right]^{2}}$$

- 2

QCD Fits

- Two different approaches have been used:
 - 1 Numerical integration in (x,Q²) space (PRD58(1998) 112002)
 - 2 Solution of DGLAP in space of moments (PRD70(2004) 074032)
- Fits to world data \rightarrow 230 world data points, 43 from COMPASS
- NLO analysis (MS scheme)

Data well described by two solutions: $\triangle G > 0$ and $\triangle G < 0$

Towards Structure Functions

Towards Structure Functions

Polarised Parton Distributions

 \checkmark Very small sensitivity of x($\Delta q + \Delta \overline{q}$) to x ΔG

H. Santos (helena@lip.pt)

QCD Fits Results

(world data)

Phys. Lett. B 647 (2007) 8

Quark polarisation:

Gluon polarisation (indirect determination via DGLAP):

- Solutions with $\eta_{G} > 0$:
- Solutions with $\eta_{G} < 0$:

$$\begin{split} \eta_{\mathsf{G}}^{\mathsf{prog1}} &= \boldsymbol{0.34}_{_{-0.07}}^{_{+0.05}}, \quad \eta_{\mathsf{G}}^{\mathsf{prog2}} &= \boldsymbol{0.23}_{_{-0.05}}^{_{+0.04}} \\ \eta_{\mathsf{G}}^{_{\mathsf{prog1}}} &= -\boldsymbol{0.31}_{_{-0.14}}^{_{+0.10}}, \quad \eta_{\mathsf{G}}^{_{\mathsf{prog2}}} &= -\boldsymbol{0.19}_{_{-0.11}}^{_{+0.06}} \end{split}$$

|η_G| ≈ 0.2 - 0.3

Gluon Polarisation $\Delta G/G$

Comparison between direct measurement of gluon polarisation (Y. Bedfer's talk) and COMPASS NLO QCD fits to g₁

- Unpolarised G(x) from MRST
- Bands correspond to statistical errors of ΔG

First Moment of g₁

(COMPASS data only)

Phys. Lett. B 647 (2007) 8

 $\Gamma_1^{N}(\mathbf{Q}_0^2 = 3(\text{GeV/c})^2) = \int_0^1 g_1^{N}(\mathbf{x}) d\mathbf{x} = 0.0502 \pm 0.0028(\text{stat}) \pm 0.0020(\text{evol}) \pm 0.0051(\text{syst})$

• in literature (S.A. Larin et al., PLB404 (1997) 153):

$$\Gamma_{1}^{N}(\mathbf{Q}^{2}) = \frac{1}{9} \left(1 - \frac{\alpha_{s}(\mathbf{Q}^{2})}{\pi} + O(\alpha_{s}^{2}) \right) \left(a_{0}(\mathbf{Q}^{2}) + \frac{1}{4}a_{8} \right)$$
 (from Y. Goto *et al.*, PRD62 (2000) 034017:
 $a_{8} = 0.585 \pm 0.025$)

 $a_0(Q_0^2 = 3(GeV/c)^2) = 0.35 \pm 0.03(stat) \pm 0.05(syst)$

extrapolating to $Q^2 \rightarrow \infty$ $\hat{a}_{0(Q^2 \rightarrow \infty)} = 0.33 \pm 0.03(\text{stat}) \pm 0.05(\text{syst})$

$$(\Delta s + \Delta \overline{s}) = \frac{1}{3}(\hat{a}_0 - a_8) = -0.08 \pm 0.01(\text{stat}) \pm 0.02(\text{syst})$$

Semi-inclusive asymmetries

CERN-PH-EP/2007-024 $A_{1}^{h}(x) = \frac{\sum_{q} e_{q}^{2}(\Delta q(x)D_{q}^{h} + \Delta \bar{q}(x)D_{\bar{q}}^{h})}{\sum_{q} e_{q}^{2}(q(x)D_{q}^{h} + \bar{q}(x)D_{\bar{q}}^{h})}$ $A^{+} = \frac{\sigma_{\uparrow\downarrow}^{n+} - \sigma_{\uparrow\uparrow}^{n+}}{\sigma_{\uparrow\downarrow}^{n+} + \sigma_{\uparrow\downarrow}^{n+}}$ $A^{-} = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\downarrow\downarrow}^{h-} + \sigma_{\downarrow\downarrow}^{h-}}$ A_d^{h-} A_d^{h+} COMPASS COMPASS 0.6 0.6 △ HERMES △ HERMES 0.5 0.5 SMC SMC 0.4 0.4 0.3 0.3 0.2 0.2 ↓ ↓ ↓ 0.1 0.1 0 0 -0.1 -0.1 10^{-2} 10⁻¹ 10-2 10^{-1} Х Х

• COMPASS kinematic domain: inclusive DIS + 0.2 < z < 0.85

- Statistics: $N^+ = 30 \times 10^6$, $N^- = 25 \times 10^6$, $corr(N^+, N^-) \approx 20\%$
- Systematic errors: Multiplicative $\rightarrow \delta \cong 0.08A$ ($\delta P_B, \delta P_T, \delta f$ and δD)

Additive: rad. corrections $\approx 10^{-5} - 10^{-4}$; $A_{false} < 0.52 \delta A_{stat}$

Difference asymmetry

$$A^{+-} = \frac{(\sigma_{\uparrow\downarrow}^{h+} - \sigma_{\uparrow\downarrow}^{h-}) - (\sigma_{\uparrow\uparrow}^{h+} - \sigma_{\uparrow\uparrow}^{h-})}{(\sigma_{\uparrow\downarrow}^{h+} - \sigma_{\uparrow\downarrow}^{h-}) + (\sigma_{\uparrow\uparrow}^{h+} - \sigma_{\uparrow\uparrow}^{h-})}$$

• In LO QCD FF do cancel out in A⁺⁻. For a deuteron target:

$$A_d^{h^+ - h^-} = A_d^{\pi^+ - \pi^-} = A_d^{K^+ - K^-} = \frac{\Delta u_v + \Delta d_v}{u_v + d_v}$$

• The contribution of sea quarks to the nucleon spin can be obtained by combining the matrix elements a₀ and a₈ and the integral

$$\Gamma_v \equiv \int_0^1 (\Delta u_v(x) + \Delta d_v(x)) dx$$

$$\Delta \bar{u} + \Delta \bar{d} = (\Delta s + \Delta \bar{s}) + \frac{1}{2}(a_8 - \Gamma_v)$$
$$= 3\Gamma_1^N - \frac{1}{2}\Gamma_v + \frac{1}{12}a_8$$

• To disentangle between <u>symmetric</u> and <u>asymmetric</u> sea scenarios $\delta\Gamma_v < 2|\Delta s + \Delta \bar{s}|$ is needed

DSPIN - 07 - XII Workshop on High Energy Spin Physics

H. Santos (helena@lip.pt)

Difference asymmetry

CERN-PH-EP/2007-024

• The measured x range is 0.006 < x < 0.7, as r becomes 1

• For the acceptance studies full chain of MC simulation (spectrometer + same cuts as for data) with default LEPTO settings was performed

Valence quark polarisations

CERN-PH-EP/2007-024

• All points evolve to Q₀² = 10 (GeV/c)² accordingly to DNS parameterisation (D. De Florian, G.A. Navarro and R. Sassot, Phys. Rev. D71 (2005) 094018)

 LO DNS analysis, based on KKP param. of FF, includes: All DIS g₁ prior to COMPASS 2004 data; All SIDIS data from SMC and HERMES (∆u = ∆d = ∆s = 0 for x > 0.3)

Unpolarised MRST 2004 LO PDFs have been used

DSPIN - 07 - XII Workshop on High Energy Spin Physics

DNS parameterisation predicts successfully COMPASS SIDIS data

Estimate for the first moments (LO)

	<i>x</i> -range	Q^2	$\Delta u_v + \Delta d_v$		$\Delta \bar{u} + \Delta \bar{d}$	
		$(\text{GeV}/c)^2$	Exp.Value	DNS	Exp.Value	DNS
SMC	0.003-0.7	10	$0.26 \pm 0.21 \pm 0.11$	0.386	$0.02 \pm 0.08 \pm 0.06$	-0.009
HERMES	0.023-0.6	2.5	$0.43 \pm 0.07 \pm 0.06$	0.363	$-0.06 \pm 0.04 \pm 0.03$	-0.005
COMPASS	0.006-0.7	10	$0.40 \pm 0.07 \pm 0.05$	0.385	—	-0.007
	0-1		$0.41 \pm 0.07 \pm 0.05$	—	$0.0 \pm 0.04 \pm 0.03$	—

- Contribution from the unmeasured 0.7 < x < 1 region is 0.004 (DNS fit)
- SU(3) symmetric sea was assumed in SMC
- The estimated Γ_v (SIDIS + DIS) is 2.5 σ_{stat} away from the symmetric sea scenario

Conclusions

 \checkmark From the first moment of g_1^d , we extract the <u>quark contribution to the nucleon spin</u> (COMPASS data only):

 $\hat{\mathbf{a}}_{o} \equiv \Delta \Sigma = \mathbf{0.33} \pm \mathbf{0.03(stat)} \pm \mathbf{0.05(syst)}$

$$(\Delta s + \Delta \overline{s}) = -0.08 \pm 0.01(\text{stat}) \pm 0.02(\text{syst})$$

✓ QCD fits to world data give for <u>quark and gluon contributions</u>:

 $\eta_{\Sigma}(Q_0^2 = 3(\text{GeV}/c)^2) = 0.30 \pm 0.01(\text{stat}) \pm 0.02(\text{evol})$

 $|\Delta G| \approx 0.2 - 0.3$

✓ ∆u_v + ∆d_v have been extracted from difference asymmetry approach
 ✓ Increase of the precision at small x by a factor of ~6 as compared to SMC
 ✓ DNS parameterisation predicts successfully COMPASS SIDIS data
 ✓ SU(3) symmetric sea scenario is disfavoured

Prospects

Flavour separation with 2002 — 2006 deuteron data and 2007 proton data

COMPASS decisive in the understanding of polarised PDFs