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WELCOME ADDRESS
by JINR Vice-Director R. Lednicky

Dear Colleagues,

Ladies and Gentlemen, on behalf of the Directorate of Joint Institute for Nuclear Research
it is a pleasure for me to welcome you here in Dubna at the 15-th International Workshop
on High Energy Spin Physics.

Unfortunately, I should start my talk from bad news. To the great sorrow of all of
us, the prominent theorist in the field of spin physics, one of the founders of this field in
Dubna, Vladimir Luboshitz, passed away this year. He will be remembered by many of
his friends and colleagues. His son, Valery, will present here a talk based on their common
work. Another great lost is the sudden death of Alexander Bakulev, the leading member
of Dubna QCD group. In dedicated session, there will be several presentations reflecting
his scientific interests and achievements. I would like to ask you to honor the memory of
both of them by the minute of silence.

JINR has a long-lasting tradition of experimental and theoretical studies of spin phe-
nomena. Back in 1981, the first workshop in high energy spin physics was organized in
Dubna by Lev Lapidus. These meetings became regular thanks to Anatoly Efremov, their
chairman for many years.

The current workshop is taking place in the important period of development of parti-
cle physics at JINR related with the construction of the NICA accelerator complex based
on the existing Nuclotron facility. The main physics goal of NICA project is a study of
hot and dense QCD matter.

The investigation of important properties of this matter, like critical point and mixed
phase, doesn’t require very large energies. These properties are expected to show up just
in NICA energy range. The NICA program is complementary to the CBM project at
FAIR and will continue the program of Beam energy scan at RHIC with much higher
luminosity. Besides the heavy ion program in the collider mode, the sophisticated fixed
target experiment — Baryonic Matter at Nuclotron — is under preparation and will be
presented at the workshop.

The spin physics program represents another important direction of experiments at
NICA in both collider and fixed target modes. It assumes the use of polarized deuteron
and proton beams and construction of the dedicated Spin Physics Detector (SPD) in
the second intersection point. The main goal is a study of Single Spin Asymmetries in
Drell-Yan processes and investigation of new distribution functions. There are also plans
to study spin asymmetries in the production of heavy quarkonia, spin-related signals in
heavy ion collisions and spin asymmetries in elastic scattering (the Krisch effect). There
will be a special session dedicated to the spin physics program at NICA. We are very much
interested in the assistance of the international spin physics community in preparation
of the competitive program on this new facility and formation of a wide international
collaboration for its realisation.

The Workshop is supported by Russian Foundation for Basic Research, “Dynasty”
Foundation, International Committee of Spin Physics, Physics-Online.ru and, of course,
by JINR. I would like to thank the organizers, wish you interesting talks, illuminating
discussions and a nice stay here in Dubna and JINR. The workshop is opened.



VIOLENT COLLISIONS OF SPINNING PROTONS AND POLARIZED
BEAMS:
PAST, PRESENT & PERHAPS AT NICA, FERMILAB, AGS AND
J-PARC

A.D. Krischf

Spin Physics Center, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
T TE-mail: krisch@umich. edu

Abstract

I will first discuss the history of polarized proton beams and of unpolarized
and polarized elastic and inclusive scattering, including the still unexplained large
transverse spin effects found several decades ago in high energy proton-proton spin
experiments at ZGS, CERN, AGS, Fermilab and RHIC. I will then briefly discuss
possible transverse spin experiments on violent elastic and inclusive collisions of
polarized protons at Fermilab’s new high-intensity Main Injector, NICA, J-PARC
and AGS. T will end by describing a new single 4-twist helix snake which might
efficiently maintain the proton polarization at these facilities in the 3-120 GeV
range.

Since much of my talk was about the history of Spin Physics with polarized beams,
which is a topic that I discussed at many conferences, it seems improper to again publish
an almost identical talk. Thus, I am only submitting references to some of these earlier
history talks [1,2] and articles [3,4] along with the last reference for a recent paper posted
on ArXiv [5]. This is about a new snake design which might allow the acceleration of po-
larized protons in Fermilab’s 120 GeV Main Injector and Dubna’s now-being-constructed
NICA 20 GeV collider, as well as other accelerators and colliders. To see this talk’s figures
and photos see Ref [6]. The details of my talk could be also found at the site

http://theor.jinr.ru/"spin/2013/
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THE STUDY OF THE DIFFERENT SCALING VARIABLES ON
TARGET MASS CORRECTED POLARIZED STRUCTURE FUNCTIONS

F. Abdolghafari!, S. Taheri Monfared 27 and S. M. Moosavi Nejad 2

(1) Physics Department, Yazd University, Yazd, Iran
(2) School of Particles and Accelerators, Institute for Research in Fundamental Sciences
(IPM), P.O.Box 19395-5531, Tehran, Iran

t sara.taheri@ipm.ir

Abstract

We study the effect of target mass corrections (TMCs) to the polarized structure
functions g1 (z, Q%) and go(z, Q%) at Next-to-Leading Order (NLO) approximation
following the method suggested by Georgi and Politzer. We compare three different
scaling variables which give certain corrections to the Bjorken scaling in the low-to-
moderate Q? region. Our results are compared with experimental data.

1 Introduction

Deep Inelastic Scattering (DIS) has played a basic role in the development of our present
understanding of the sub-structure of elementary particles. Discovering the Bjorken scal-
ing variable in the Quark Parton Model (QPM) and the other scaling variables motivated
physicists to consider the proton as a composite particle which is made of partons (i.e.
quarks and gluons). As the precision of the recent lepton-hadron scattering data has im-
proved, it is necessary for the theoretical analysis to keep pace. Therefore, it is important
to consider all sources of corrections which may contribute at a comparable magnitude,
such as quark and target mass corrections [1]. Understanding TMCs, which formally
are sub-leading 1/Q? corrections to leading twist structure functions, is very important.
Their effects are mostly pronounced at large-x and moderate-(Q?, which coincide with the
region where parton distribution functions (PDFs) are not very well determined.

In this paper, we firstly introduce the Nachtmann, Weizmann and Bloom-Gilman
scaling variables [2] and then study the effect of target mass corrections to the polarized
structure functions g; and go in the Operator Product Expansion (OPE). In fact, the
polarized DIS process involving the collision of a longitudinally polarized lepton beam
with a longitudinally or transversely polarized target, provides complementary and equally
important insight into the structure of the nucleon.

2 Different Scaling Variables

Many precise experiments have recently proved that the measured structure functions
2
do not exactly scale in the Bjorken variable, x = 2%—1/ Here, Q? = —¢? where q is

the four-momenta transferred from the lepton to the nucleon, M is the target nucleon
mass and v = F — E' is the energy transferred to the hadronic system in which the

13



(a) (b) (c)

Figure 1: The Nachtmann variable £, Bloom-Gilman variable zp_¢ and Weizmann variable z,, as a
function of Bjorken scaling variable = at Q% = 1,2,4,10 Gev2.

energies of the initial and final leptons are denoted by E and E', respectively. It was
commonly recognized that such scaling violation effects are clear evidence for validity of
the Quantum Chromodynamics (QCD), however there were some other attempts to re-
establish the scaling behavior by introducing new scaling variables. These new variables
have a more general meaning than the Bjorken variable and partly contain the target
mass corrections. Those are Nachtmann, Bloom-Gilman and Weizmann variables which
are listed here:

e At finite Q? and for massless quarks, the parton light-cone fraction is given by the
2
Nachtmann variable. This variable, £ = ——%— can be understood theoret-
M(v++/v2+Q3?)

ically by the energy conservation of quasi-elastic lepton-quark scattering in parton
language and naturally appears in the OPE frame.
Mzﬁ, makes the data scale at Q?
region which is not so large in comparison with M?2.

e The Bloom-Gilman variable [3], zp_¢ =

e The Weizmann variable [4], x, = % which includes the quark mass (m),

produces scaling even down to Q% = 0.

In Fig. 1, we plotted the Nachtmann,
Bloom-Gilman and Weizmann variables
versus the Bjorken variable at Q? = wosl Bjorken
1,2,4,10 GeVZ2 As it was expected, they " bioom-aiman
turn to be the Bjorken one at Q* ~ 10 oou| e
GeV?2. The x5_¢, ¥, scaling variables be- g
have quite identical due to very low mass R ol
effects of quarks. In Fig. 2, target mass cor- i
rected polarized structure function xg?M¢ Poor
is plotted in terms of the different variables 183 01 o1 1
at Q% = 2 GeV2. Among all the variables, X
only the Nachtmann variable could be un-
derstood theoretically by energy conserva-
tion of quasi-elastic lepton-quark scatter-

ing in parton language. The Bloom-Gilman variable and the Weizmann variable are

Figure 2: The polarized structure function zg? ¢
considering the target mass corrections for the dif-
ferent variables at Q? = 2 Gev2.
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lacking in clear theoretical reasoning. In next section, we use the Nachtmann variable to
consider TMCs into the polarized structure functions.

3 Polarized Structure Functions

To get TMCs into the nucleons polarized structure functions, we follow the method pro-
posed by Georgi and Politzer [5-7]. The explicit twist-2 expression of target mass corrected
g1 and gy are:

c zg1(§, Q% M =0) 4M32? x+E Yag' o,
W) = qLnngr @ ey oeanr=0
4M2 2 2 4M2 2 Q2 df
B Q;E 2((1+4M2x2//622 5/2/ ? 91§, Q%M =0), (1)
o B r1(6, Q%M =0) | x(l —4M%2£/Q*) [1dE
2 @@ = (1 +4M2 2/Q?)/ 5(1+4M2 2/@?)2/g e 91(€,Q% M = 0)
3 4M?2? ) Q? dg B
B 5(1+4fo2//Q2 5/2/ & (€ QM =) (2)

The above giM¢ satisfies the well-known Wandzura-Wilcek (WW) relation [8]. In our
analysis, we utilize the fit result of Ref. [9] in which the Polarized PDFs are determined
based on the Jacobi polynomial expansion method. TMCs are performed on their fit
results and the effect of different scaling variables are studied. Figures 3 and 4 display

(a) (b) (c)

Figure 3: The polarized structure functions g}, xg7 and xg{ as a function of x for Q% = 2 GeV?

our results for the polarized structure functions g, and g, at Q? = 2 Gev?, respectively.
For comparison, we also show the results obtained by E143 experimental data [10]. The
data are generally well described within error.

4 Results

Although, the Bjorken variable is a standard variable at finite Q% but it does not contain
any mass effects. The best available scaling variable is the Nachtmann one. In this analy-
sis, considering the target mass corrections we obtained the polarized structure functions

15



—— With TMC
- Without TMC
* E143

0.20 - —— With TMC
= Without TMC
e E143

Xg,

n
xg,
xgzd

(a) (b) (c)

Figure 4: The polarized structure functions xgh, 295 and zg¢ as a function of x for Q? = 2 Gev?

g1 and gy for Proton, Neutron and Deuteron and we compared them with the experimen-

tal data. The polarized structure function xg? ¢ is plotted for all defined variables. Our

results showed that TMCs play a remarkable role on the nucleon structure functions. In
fact, we found good agreement with the experimental data by applying these corrections.
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NUCLEAR EFFECTS IN THE POLARIZATION PHENOMENA

V.V. Abramov !t

(1) Institute for High Energy Physics, Protvino, Russia
T E-mail: Victor. Abramov@ihep.ru

Abstract

Atomic weight dependence of hyperon polarization and single spin asymmetry
is studied within the framework of chromomagnetic quark polarization model. Pre-
dictions are given for polarization of antihyperons, Py, produced by protons on
different nuclear targets. Oscillation of Py(xp) is predicted, which is due to anti-
quark spin precession in the strong chromomagnetic field, created by the fast moving
spectator quarks.

Polarization phenomena, such as hyperon polarization (Py) and hadron single spin
asymmetry (Ay) are often studied using nuclear beams and/or targets. In order to
compare the data, measured on different targets, we have to use a model, which is able to
describe the dependence of polarization effects on atomic weights, A; and As of colliding
particles. The chromomagnetic quark polarization model (CQPm), which is known also
as “effective color field model”, is used to describe the polarization data for 80 different
inclusive reactions, including reactions with nuclear beam and/or target [1-3].

The main assumptions of the CQP model are: 1) The creation of effective color field
(ECF) after initial color exchange, which has a linear chromoelectric and transverse circu-
lar chromomagnetic components; 2) Microscopic Stern-Gerlach like mechanism for gener-
ation of polarization phenomena in the ECF, created by relativistic spectator quarks; 3)
Quark spin precession in the ECF; 4) Quark counting rules for the ECF (field, created by
spectator quarks and antiquarks, from projectile and from the target, is a linear function
of their numbers with weights, depending on color factors). Quark flow diagrams are used
to count the number of the spectator quarks. 5) Circular transverse chromomagnetic field
has a focusing or defocusing effect on a probe quark color charge and this can lead to a
resonance like energy dependence of polarization observables, such as Py and Ay.

The global analysis is performed B(2<0) B(z>0) Spin UP quark
for the following type of polarization £ o +
data: the hadron asymmetry Ay, the <<O>> ._%@3;_;?/ {
hyperon polarization Py, the vector
meson alignment pgy and polarization — Tereet fragmentation Beam fragmentation Spin DN quark
a = (o — 201)/(or + 20r). In to-
tal, there are 80 inclusive reactions Figure 1: Pictorial view of the microscopic Stern-Gerlach

for hh. hA. AA and lepton— A interac- device for a quark, which is moving through a circular trans-
) )

. . . verse chromomagnetic field, created by spectator quarks.
?ODS’ W(iﬂll 3160 d?ta points and 99 The probe quark gets polarized in the color field.
ree model parameters.

It is assumed, that the model parameters have the power A-dependence: ~ A%AS5,
where the powers a and b are found for each particular parameter from the global fit.
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The microscopic Stern-Gerlach effect, which causes P
the polarization phenomena, in the framework of the 0.2
CQP model, is explained in Fig. 1. Spectator quarks,
which are the fragmentation products of the colliding
hadrons, are moving, in the c.m.s. reference frame,
along the z-axis. As a result, the color currents and
surroundig them transverse circular chromomagnetic 0=
field B* are created in the z < 0 and z > 0 regions.
The probe quark from the detected hadron gets, after
passing the region of inhomogeneous chromomagnetic
field, an additional transverse momentum &p!!, which
is directed to the left or to the right, for the quark Figure 2: Dependence Py (25) in the
spin directed up or down, respectively. The trajecto- |..ction pA — EYX [6]. Calcula-
ries of quarks with spin up and down are separating tion are for pp, pC, pCu and pPb-
from each other, as is shown in Fig. 1. The probe interactions and /s = 38,78 GeV.
quark could be not only a valence quark from the colliding hadrons, but also a sea anti-
quark, created in the interaction process. Even in this case the antiquark, after passing
the inhomogeneous chromomagnetic field, gets an additional transverse momentum &pl!,
which causes, for example, the antihyperon polarization in the baryon-baryon collisions.

0.1

T

Since, in general, the local direction of the B® field 1 Py
and the quark spin £ are not parallel, the quark spin 0sl
precession is taken into account and it is described by 06k
the equation (1), which is similar to the BMT one [1]: 04l "
o2
dé/dt = g.[B%)(gh — 2+ 2Mo/EQ) [2Mg, (1) ol
0.2+
where Mg and Eg — quark mass and its energy. The 04l S
electric charge in (1) is replaced by a color quark 06 L

charge (gs), and the magnetic g-factor is replaced by 0 02 04 06 08 1

a quark chromomagnetic g¢-factor.

Large value of quark anomalous chromomagnetic Figure 3: Dependence Py (), in the

moment Ap® = (g°—2)/2 ~ —0.4 was predicted in the reaction pA — Z*1X [7]. Calculation
framework of the instanton model in the mean field ap- are for pp, pBe, pCu pPb-interactions
proximation and assuming the dynamical quark mass and /s = 38,78 GeV.
m = 170 MeV [5]. From the global data analysis of polarization data the value
Ap® = —0.471 £ 0.007 is estimated for the u, c-quarks with charge 4+2/3 and the value,
which is smaller by a factor \/ﬂ, for the d, s, b-quarks with electric charge -1/3.

The polarization Py and asymmetry Ay are given by a set of equations:

Ay = C(Vs)F(pr, A)[G(d4) — 0G(¢5)]; (2)
G(¢) = (1 —cosg)/p+e- 9,

(3)

G4 = whya, ¢5 = WhyB, (4)

C(v/s) =vo/[(1 — Er/V/s)* + 03/, (5)

F(pr, A) = (1 — exp[=(pr/p})’])(1 —aaln A), A< Ag; (6)
F(pr, A) = (1 — exp[=(pr/p?)"))(1 — aaln Ag), A> Ag; (7)
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ya =24 — (Eo/\/s+ fa)(1 + cos ™) + ag(1 — cos ™), (8)

yp =15 — (Eo/vs + f)(1 — cos 0") + ag(1 + cos 0°™), 9)
yac0(pem _

e e 1o

) = T VAT -

o & -

where 0" is the hadron C' registration angle in the c.m.s., \/so = 1 GeV, 6 = 2.47+0.11,
Ar =56.4+9.0, k = 0.0071 4+ 0.0092 and ¢ = —0.004759 + 0.00011 are the global model
parameters, D, = D/p, w9, w%, fa, fB, ao, Fo, Er, Or, 0, pF, a4 and 6y are the local
parameters, describing a particular reaction. Function 52 ~ 00" — 6y) takes into
account the value and the sign of u and d-quark polarization in the polarized proton. It
takes also into account the threshold dependence of A (™) on the production angle 6
in the nucleon-nucleon c.m.s. reference frame. For the polarization Py the factor 52 = 1.
In (12) are used the following values: (g¢ —2)/2 - the quark () anomalous chromomagnetic
moment, where () = d, u, s, ¢, b, a, - the strong running coupling constant, g, = ++/4ma
- the color quark charge, M - its mass, c - the speed of light, p - the transverse radius of
region, occupied by chromomagnetic field, created by one quark, and S, - the parameter,
which describes the longitudinal size of the field.

The A-dependence of the CQP model parameters is estimated from the global fit of
polarization data for 80 inclusive reactions and is presented below:

(Eo(l, 1)A3e, xp > 0;
Ey = q Ey(1,1)A3°, zrp < 0; (13)

\E()(l, 1)(141142)&7 Tp = 07

(ER(l, 1)A3e, xp > 0;
Er = { Egr(1,1)A3°, rp < 0; (14)

kER(]'7 1)(A1A2)047 Tp = 07
Or = 0p(1,1)(A1A2), pn = pn(1,1) /(A1 Az)%/3, (15)
D, = D,(1,1)(Ay/A;)*/3, o=o(1,1)(A1/Ay)°, (16)
pOT = PE_)F(L 1)(141142)7/2, ag = 660(1: 1)/A¥, (17)

where a = 0.0390 4+ 0.0027, 6 = 0.2423 + 0.0071, v = a 4+ . The parameters f4 and fg
do not depend on A;, Ay. There is one exclusion from the above rules. For the reaction
pA — ATX the dependence of pJ on A; and Aj is the following:

pr = pr(1,1)/45. (18)

Understanding the antihyperon polarization Py in baryon-nucleus collisions is crucial
for the theory of strong interacions. Most of the models predict zero Py due to absence of
valence quarks form the colliding hadrons in the observed antihyperon. The experiments
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show the non-zero polarization. The CQP model predicts non-zero Py(zr), which oscil-
lates due to the antiquark spin precession in a strong chromomagnetic field, created by
the six spectator quarks. An example of Py(xr) dependence for the reaction pA — Z91X
is shown in Fig. 2, where the CQP model predictions are also shown [6]. The solid curve
is for C target, while the dashed one is for the proton target.
Polarization in the process pA — Z+1X is shown P
Fig. 3, with the data measured on Be target [7]. The 02
dashed curve is for the proton and the solid one is for
the Be target, respectively. O f s o —
Polarization in the process pA — AlX is shown
in Fig. 4, with the data measured in the experiment
E766 on the proton target [8]. Since at higher ener-
gies zero polarization was measured, the result of E766
means resonance-like energy dependence, described by 05 1 15 5 25
eq. (5), which is due to the focusing properties of a cir- P, Gevic
cular transverse chromomagnetic field [3]. The curves
are the calculations within the CQP model, which are Figure 4: Dependence Py (pr) in the
made for the proton (solid), Be (dashed), Cu (dotted) reaction pA — ATX [8]. Calculations
and Pb (dash-dotted) targets, respectively. are made for vp = —0.229, \/s = 7.31
Conclusion: the A-dependence of antihyperons, GeV and A=1, 9.01, 63.55 and 207.2.
produced in proton-nucleus collisions could be significant. The polarization is positive
for the proton target and xp > 0.4, while for heavier nuclei with A > 9 it is negative.
This work was partially supported by the RFBR grant 12-02-00737.
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Abstract
We discuss the expected sensitivity to Z’ boson effects of the W+ boson produc-
tion process at the Large Hadron Collider (LHC). The results of model dependent
analysis of Z’' boson effects are presented in terms of Z-Z’ mixing angle ¢ and Z’
boson mass Mz. We find that the process pp — WTW ™ + X allows to place strin-
gent constraints on the Z — Z’ mixing angle which is of order ~ 107 — 1073 for
Mz = 3 TeV at the nominal LHC energy and luminosity.

1 Introduction

Although the Standard Model (SM) of the electroweak and strong interactions describes
nearly all experimental data available today [1], it is widely believed that it is not the
ultimate theory. There is a number of Grand Unified Theories that predict the existence
of new neutral gauge bosons that can be accessible at current and/or future colliders [2].

The search for these Z’ particles is an important aspect of the experimental physics
program of current and future high-energy colliders. Present limits from direct produc-
tion at the LHC and virtual effects at LEP, through interference or mixing with the Z
boson, imply that new Z’ bosons are rather heavy and mix very little with the Z boson.
Depending on the considered models, Z' masses of the order of 2.5-3.0 TeV (LHC) [3,4]
and Z-Z' mixing angles at the level of ~ 1073 are excluded [5]. A Z’ boson, if lighter than
~ 5 TeV, could be discovered at the LHC with /s = 14 TeV in the Drell-Yan process

ptp—2 — 0+ +X (1)

with ¢ = e, u. Future ete™ International linear collider (ILC) with high ¢.m. energies and
longitudinally polarized beams could indicate the existence of Z’ bosons via its interference
effects in fermion pair production processes, with masses up to about 6 x /s while Z — 7’
mixing will be constrained up to ~ 10™* — 1072 in process ete™ — WTW~ [2].

After the discovery of a Z’ boson at the LHC, some diagnosis of its coupling and Z — 2’
mixing needs to be done in order to identify the correct theoretical frame. In this note
we study a potential of the LHC to discover Z — Z’' mixing effects in the process

pHp—Wr+W™+X (2)

and compare it with that expected at the ILC.

Process (2) is important for studying the electroweak gauge symmetry at the LHC.
Properties of the weak gauge bosons are closely related to electroweak symmetry breaking
and the structure of the gauge sector in general. In this letter, we examine the feasibility
of observing the Z’ boson in process (2) at the LHC, which is not the principal discovery
channel as Drell-Yan process, but can help to understand the origin of new gauge bosons.
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2 Cross section of pp — WTW~ + X process
At high energies the process (2) can be described by the mechanism analogous to Drell-

Yan that is indicated in Fig. 1.
The cross section of process (2) is written as 0\

do = Z//dgl dz {[fq\ﬂ (fl)ftilp2(£2)+ a v

o (€0 far(&2)] do(ag — WHW ) b, (3)

where fqp,, fzp, are parton distribution functions w
in P, and P, protons, while {; o determine the part |
of proton momentum carried by ¢ and §.

It is convenient to replace ;o variables with
rapidities using the following relations:

Figure 1: Schematic diagram representa-
tion of W+W = pair production in p1ps —
M M W*W~ + X process.
e¥, S=—e Y. (4)

Vs
Taking into account the experimental bounds on pseudo-rapidities obtained at the LHC
(Inl < Meut) one should change the integration limits in (3) [6,7]:

ly| <Y = min [In(v/s/M), newt] (5)

2] < Zeut = min [tanh(Y — [y[)/B, 1] . (6)

where Oy = /1 —4M3Z, /8, § = &6 = M? and My, is a W boson mass.

As a result, the resonance R(= Z’) production cross section with its subsequent decay
into a pair of W* bosons can be obtained by integrating the subprocess cross section over
z (2 = cosf) within the interval |z| < 2z, over rapidity of W*-pair |y| < Y and over
invariant mass M near resonance peak (Mgr — AM /2, Mr + AM/2).

( N ) MR+AM/2 Zeut do_qq ( )
opp - W™W™+ X :/ dM/ dy/ 7
Ma—AM/2 dM dydz

In the experimental discovery of a narrow resonance the observed width is determined
by the diboson W* invariant mass resolution, that we may associate to the size of the bin
AM introduced above. For the ATLAS detector, the bin size AM at invariant diboson
mass M measured in TeV units, can be parameterized as:

AM = 24 (0.625M + M? + 0.0056)/2 GeV. (8)

Throughout the paper we will use Eq. (8) for the bin size.
Differential cross section in (7) can be written as:

do- do,q
ot~ 12 ;{[fqm(él)fm(fz) +an@in@) 98 o

where K is the so-called K-factor that accounts for higher-order QCD corrections. In the
leading order to o, one has K ~ 1.10-1.15 (depending on the W* pair invariant mass) [8].
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We use the CTEQG6 parton distributions [9] with renormalization and factorization scales

1 = % = \/ (% + pi?)/2 for pure leptonic final states.
Hadron production of vector Z5 bosons in proton-proton collisions with their subse-
quent decay into a pair of W* bosons at parton level is described by subprocess

qq— -7, 217 ZQ - W+W—7 (10)

Feynman diagrams of which in the Born approximation are presented in Fig. 1.
Differential cross section of process (10) .4 W
is the following:

daqtj ﬁW j : ~ 2
—_— F / ! 9 . ]_1

NN !
, q w-oq w-
Here, A = =X = +1/2 are the quark helicc: ———p vy, ————
ities, the helicities of the W~ and W are q d
denoted by 7,7 = 4+1,0. The helicity am- _ VAN -
plitudes Fy,.(8,60) have a structure pre- 7 wta wr

sented in [6]. In evaluating 'z, we took Figure 2: Feynman diagrams of ¢G(¢'q’) — W*W~
into account the channels of Z5-boson de- process in the presence of Z5 boson.

cay into fermions (quarks and leptons) and bosons predicted by the SM.

3 Z-7' mixing

We start discussing the observability of the Z’ signal in the leptonic W¥ decay channels
with both equal and different flavor leptons in the final state. In the case of different
flavor leptons, the Z’ signal in process pp — Z' — WTW = — (t¢'~ vy (1 and I stand for
electrons and muons) possesses SM backgrounds coming from the production of WHW =
pairs, as well as, from ¢t pairs where the top quarks decay semi-leptonically. In the case
that the final state leptons in reaction pp — Z' — WTW~ — "/~ have the same
flavor (ee or uu), there are additional backgrounds originating from Drell-Yan lepton pair
production, as well as ZZ pair production with one Z decaying into charged leptons and
the other decaying invisibly or with both Z decaying into charged leptons two of which
escape undetected. After applying cuts described in [10] all backgrounds can be reduced.

In order to obtain constraints on Z’ boson parameters (¢ and M,) we evaluate the
ratio of cross sections, (0 x B),, and (¢ x B),,,.. Here, (¢ x B),, is the resonant cross
section calculated within some Z’ model (for arbitrary ¢ and M), while (o x B),, . is
the cross section required for a significance of 20 (95% C.L.). A discovery reach in a 7’
scenario is obtained by using the following criterion [11]:

(0 x B), /(0 x B),, <1. (12)

Fig. 3 shows the discovery reach (at a 95% C.L.) in the plane spanned by the Z — Z’
mixing angle and the Z; boson mass for the Z] model from Es obtained from the analysis
of the cross sections of process (2) at the LHC taking into account the pure leptonic
decay channels of W* bosons. The corresponding limits are indicated by solid lines in
Fig. 3. Also, Fig. 3 shows the discovery reaches obtained from analysis of the polarized

lim
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cross sections of process ete™ — WHTW~—

at the ILC [2]. Two options of energy and

time integrated luminosity have been chosen, namely, /s =0.5 TeV and L, =0.5 ab™!
(dashed lines) and /s =1.0 TeV and L;,; =1 ab™! (dot-dashed lines). In addition, the
Z'" mass limits obtained from the Drell-Yan process (1) in the current experiments at the
LHC at /s = 8 TeV and Ly = 20 fb~! as well as at nominal energy and luminosity,
Vs =14 TeV and L;,; = 100 fb~!, are depicted in Fig. 3 by horizontal lines.

One can see that the ILC with energy
of 0.5 TeV is able to place the limits on
the Z — Z' mixing angle at the level of
fewx 1073 that comparable with those ob-
tained from the global analysis of elec-
troweak data. It turns out that doubling
energy and luminosity leads to further im-
provement of the limit on Z— 7’ mixing an-
gle up to |¢| ~ fewx107%. The Fig. 3 also
demonstrates a high ability of the LHC to
study the Z — Z’' mixing effects that com-
parable with those obtained at the ILC for
Vs = 1 TeV. From the comparison of nu-
merical results relevant to the potentials of
LHC and ILC to study Z — Z’ mixing ef-
fects one can conclude that these colliders
would provide a complementary informa-
tion on Z — Z' mixing angle.

T T T T T
1 H 1 g
. z
4500 [LHC (14 TeV. 1T) } \ ! / P 0
100 fb” ! i / LHC (14 TeV, W'W)
| ! 1100 b
4000 [ I i H
' 1
i
%z 3500
O l 1 1 l
- ! 1
= om0 LHC (8 TeY,l 1) !
20 fby

1

: il 1 TeV !
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1
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2000 [~ | ! | 10.5 Tev,
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i '

I' 1

i 1 L 1
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Figure 3: Discovery reach (95% C.L.) for Z}, model
obtained from analysis of process (2) at the LHC
for leptonic channel (thick solid lines). The limits
obtained from analysis of the polarized cross sections
of process ete™ — WHTW~ with P, = 0.8 and
P = 0.5 at the ILC are also shown. Two options
of energy and time integrated luminosity have been
taken: /s =0.5 TeV, Li,; =0.5 ab~! (dashed lines)
and /s =1.0 TeV, L;,, =1 ab™! (dot-dashed lines).
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Abstract

We study the electromagnetic nucleon form factors within the approach based
on light-cone sum rules.

Introduction.  We derive light-cone sum rules (LCSRs) for the electromagnetic nu-
cleon form factors including the next-to-leading-order corrections for the contribution
of twist-three and twist-four operators and a consistent treatment of the nucleon mass
corrections. The soft Feynman contributions are calculated in terms of small transverse
distance quantities using dispersion relations and duality. The form factors are expressed
in terms of nucleon wave functions at small transverse separations (DAs), without any ad-
ditional parameters. The distribution amplitudes can be extracted from the comparison
with the experimental data on form factors and compared to the results of lattice QCD
simulations. A self-consistent picture emerges, with the three valence quarks carrying
40% : 30% : 30% of the proton momentum.

Our work can be split on three essential parts: (i) calculations within LCSR; (ii)
derivation of the factorized amplitude at the leading order (LO) up to twist-6 and at
the next-to-leading order (NLO) up to twist-4. We calculated 22 coefficient functions at
NLO and 20 of them are new ones. To avoid the mixture with the so-called evanescent
operators, we use the renormalization procedure for operators with open Dirac indices;
(iii) study of the corresponding distribution amplitudes. In particular, the light-cone
expansion to the twist-4 accuracy of the three-quark matrix elements with generic quark
positions.

The LCSR approach allows one to calculate the form factors in terms of the nucleon
(proton) DAs. To this end we consider the correlation function

,(P.g) = i [ ate (O (02" ()] P) 0

where 7(0) is the Ioffe interpolating current with (0|n(0)|P) = A\ymyN(P). The matrix
element of the electromagnetic current j;™(z) taken between nucleon states is convention-
ally written in terms of the Dirac and Pauli form factors F}(Q?) and F»(Q?) or in terms of
the electric Gg(Q?) and magnetic G;(Q?) Sachs form factors. We also define a light-like
vector n, by the condition ¢ -n =0,n* = 0 and introduce the second light-like vector as
pu = Py —n,m3 /(2P -n),p* =0, and g, = gu — (purw + puny)/(pn) . We consider the
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“plus” spinor projection of the correlation function involving the “plus” component of the
electromagnetic current, which can be parametrized in terms of two invariant functions

ATy = py {mnA(Q%, P?) + 4. B(Q*, P*)} N*(P), (2)

where Q? = —¢? and P? = (P — ¢)? and N*(P) = AEN(P), AT = pn/(2pn), A~ =
np/(2pn). Further, making use of the Borel transformation (s — P2)~! — e=5/M* one
obtains the following sum rules:

1 [
INFUQ) = - [ ds e i 40 ), (3)
T Jo
80
MEA@) = 1 [ dse O I B (Q? ). (1)
™ Jo

Each of the functions has a perturbative expansion which we write as A = A0 4
s (1) ANEO /37 and similar for B; p is the renormalization scale. For consistency with our
NLO calculation, we rewrite our results in a different form, expanding all kinematic factors
in powers of m%/Q* We keep all corrections O(m%/Q?) but neglect terms O(my/Q*)
etc. which is consistent with taking into account contributions of twist-three, -four, -five
(and, partially, twist-six) in the operator product expansion (OPE). After calculations,
the NLO corrections read (see all details in [1]).

QQAqNLO — /[dzl]{ Z [Vk(xi)qy’“ (xi;, W) + Ak(x,-)q‘f’“ (x;, W)]

k=1,3

+ ) [ng(xi)c;’é”’(xi,vv)+A§m)(xi)o§é”)(xi,vv)}}+(9(twist-5) (5)

m=1,2,3

and

q

Q2BqNLO _ /[dxz] {Vﬁ (xi)Dvl (x;, W) + Al(%)Dfl (4, W)] + O(twist-5). (6)

(1) (1)
Notice that 0212 (x;, W) = 052 (x;, W) = 0. The explicit expressions for all coefficient
functions have rather cumbersome forms and can be found in [1].

Results. In this paragraph, we discuss very shortly the main our results. The full and
comprehensive analysis and discussion of all input parameters, form factors and DAs can
be found in [1]. It is instructive to write down schematically the structure of all our form
factors as

fn v ©
‘7::‘7:0_‘_)\_1‘7_}1\1_"27711'?7711‘_‘_)\_12 Z Qoijf%j' (7)

i=0,1 1=1 j=0;5<i

Main nonperturbative input in the LCSR calculation of form factors is provided by nor-
malization constants, fy, A, and shape parameters of nucleon DAs, ¢;; and 7;;. The
existing information, together with our final choices explained below, is summarized in
Table 1 and Table 2. As it is seen, one exists quantitative estimates for fy/A; and the
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Model Method N/ | e10 P11 V20 P21 V22 Reference

ABO1 LCSR (NLO) —-0.17 0.05 0.05 0.075 —0.027 | 0.17 this work

ABO2 LCSR (NLO) -0.17 0.05 0.05 0.038 —0.018 | —0.13 this work

BLW LCSR (LO) -0.17 0.0534 | 0.0664 | - - - 2

BK pQCD - 0.0357 | 0.0357 | - - - 3

COZ QCDSR (LO) - 0.163 0.194 0.41 0.06 —0.163 4

KS QCDSR (LO) - 0.144 0.169 0.56 —0.01 —0.163 5
QCDSR (NLO) | —0.15 - - - - - [6]

BS(HET) | QCDSR(LO) - 0.152 0.205 0.65 —-0.27 0.020 [7]

LATO09 LATTICE —0.083 | 0.043 0.041 0.038 —0.14 —0.47 8]

LAT13 LATTICE —0.075 | 0.038 0.039 —0.050 | —0.19 —-0.19 9]

Table 1: Parameters of the nucleon distribution amplitudes at the scale ;> = 2 GeV2.

Model | Method 70 M1 Reference

ABO1 | LCSR (NLO) —0.039 | 0.140 | this work

ABO2 | LCSR (NLO) | —0.027 | 0.092 | this work

BLW LCSR (LO) 0.05 0.0325 | [2]

BK pQCD - - 3

COZ QCDSR (LO) - - 4

KS QCDSR (LO) - - 5
QCDSR (NLO) | - - 6

LAT09 | LATTICE - - 8]

LAT13 | LATTICE - - [9]

Table 2: Parameters of the nucleon distribution amplitudes at the scale ;> = 2 GeV2.

first-order shape parameters @19, @11 of the leading twist-3 DA. The other parameters,
in contrast, are very weakly constrained. From the comparison with the experimental
data, the larger values of fx/A\; are preferred so that we fix fy/A; = —0.17 and also
take 190 = 11 = 0.05 in agreement with lattice calculations and the previous LO LCSR
studies [2]. We then make a fit to the experimental data on the magnetic proton form
factor G4,;(Q*) and G%/G%, in the interval 1 < Q* < 8.5 GeV? with all other entries
as free parameters. We separate fits for M? = 1.5 GeV? and M? = 2 GeV? that are
referred as ABO1 and ABO2, respectively. The resulting values of shape parameters are
collected in Table 1 and Table 2 and the corresponding form factors (solid curves for the
set ABO1 and dashed for ABO2) are shown in Fig. 1 for the proton (left two panels)
and the neutron (right two panels). The ratio Q?F3(Q?)/FF(Q?) of Pauli and Dirac form
factors in the proton is demonstrated in Fig. 2. The quality of the two fits of the proton
data is roughly similar, whereas the description of neutron form factors is slightly worse
for ABO2 compared to ABO1. In both fits the neutron magnetic form factor comes out
to be 20-30% below the data.

Conclusions. In conclusion, our calculation incorporates the following new elements as
compared to previous studies:

(i) NLO QCD corrections to the contributions of twist-three and twist-four DAs;

(ii) the exact account of “kinematic” contributions to the nucleon DAs of twist-four and
twist-five induced by lower geometric twist operators (Wandzura-Wilczek terms);
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Figure 1: Nucleon electromagnetic form factors from LCSRs compared to the experimental data [1].

(iii) the light-cone expansion to the twist-four accu-
racy of the three-quark matrix elements with generic
quark positions;
(iv) a new calculation of twist-five off-light cone con-
tributions;
(v) a more general model for the leading-twist DA,
including contributions of second-order polynomials.
This work was supported by the German Research
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the RFBR (grant 12-02-00613) and the Heisenberg-
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Abstract

We present the results of our new QCD analysis of polarized parton distributions
of the nucleon at NLO accuracy in the fixed-flavor number scheme. Performing a
combined QCD fit on the global sets of all available inclusive and semi-inclusive
polarized deep inelastic scattering data, we are able to extract new polarized parton
distribution functions (PPDFs) at the input scale Q3 = 1 GeV?. Particulary, we
have calculated PPDFs considering light sea-quark decomposition and the results
are in good agreement with the experimental data and the most precise theoretical
models obtained by recent analyses of DSSV and LSS. Also the uncertainties of
PPDFs are determined using the standard Hessian method.

1 Introduction

In the recent years the determination of the spin projections of nucleon partonic com-
position from polarized high energy experimental data has improved remarkably and the
extracted polarized parton distributions have very essential role in the study of hard
scattering processes phenomenology.

In addition to the QCD analysis on polarized DIS experiments [1,2], semi inclusive
deep inelastic scattering (SIDIS) experimental data [3] have been also included by some
of the theoretical groups recently [4,11]. The extracted PPDFs of different analyses are
lightly different in valence quarks comparison but the PPDF's of sea quarks and gluon are
more different. The difference is caused by datasets selection, parametrization forms of
PPDFs and the method of evolution and QCD analysis. The impact of different PPDF's
and the spin Physics on the determination of fragmentation functions (FFs) have been
studied recently in Ref. [6]. Here we focus on the effect of SIDIS data on determination
of PPDFs, specially sea quarks distribution separation which was not considered in our
last DIS data analysis and we present the comparison between both results. The impact
of RHIC polarized proton proton collision data will be studied in a separate publication
in near future.

2 Polarized asymmetries

The polarized structure function g (z, Q?) can be predicted in perturbative QCD in terms
of PPDF's and strong coupling constant up to NLO approximation. The ratio of polarized
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and unpolarized structure functions, g; and F7i, is related to the measurable asymmetries
by [3]

g1 1
=—=——|A Asl . 1
Fr 1+72[1+7 2] (1)
The value of As can be neglected in a good approximation and it is being suppressed by
the small value of kinematic factor v in the limit m? < Q2.
In our QCD analysis we perform fit procedure on A; or g;/F; for DIS data

Ay, Q%) = %u ). @)

Note that such a procedure is equivalent to a fit to (g1)esp, but it is more precise than
the fit to the g; data themselves presented by the experimental groups because here the
g1 data are extracted in the same way for all of the data sets.

Unlike the inclusive polarized deep inelastic scattering wherein ¢, structure function is
measured by detecting only the final state lepton, the particle detected in semi inclusive
polarized deep inelastic experiments are charged hadrons in addition to scattered lepton.
The double-spin asymmetry in SIDIS experiments for the production of hadron A is

_ g{lN(‘xv ZvQQ)
FlllN(l" 2y QQ) '

The structure functions g and F!' are fully determined in terms of polarized and
unpolarized distributions respectively up to NLO approximation and are fully presented
in Ref. [3]. Thus we will determine g; and g7y from Egs. 2 and 3 in the analysis and
extract polarized parton distribution functions. We utilize two types of data sets from
DIS and SIDIS experiments which come from relevant experiments done at DESY, SLAC,
JLAB and CERN [3].

Aly(@,2,Q%) (3)

2.1 PPDFs Parametrization

In our analysis we choose an initial scale for the evolution of Q2 = 1 GeV? and assume
the PPDF's to have the following functional form

2 6q = Nyngz®(1 — )" (1 + ca”® + dga) (4)

with ¢ = du-+d1, dd+4d, d1, dd, 65 and §g. The Normalization constants N are chosen
such that 7, are the first moments of dg(z, Q3) and B(a,b) is the Euler beta function.

Since the present SIDIS data are not yet sufficient to distinguish s from s, we assume
ds(x, Q%) = 65(x, Q%) throughout. To control the behavior of PPDFs, we have to consider
some extra constraints; so we get a,4s = az and a4, 4 = ag = a5 to control the small
x behavior of @, d and s = 5. Also in the primary fitting procedures we find out that
the parameters by, bg, bs—s and b, become very close to each other, around 10. We
understand that they are not strongly determined by the fit, so we fix them to 10 which
is their preferred value to fulfill the positivity condition, |dg;(z, Q?)| < ¢;(z, Q%), and also
it controls the behavior of polarized sea quarks at large = region. In addition, we find
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flavor N a b c d

u+u 0.783 0.409+ 0.0025 | 2.733+ 0.0368 0.0* 80.855+1.4115

d+d -0.485 0.123+ 0.0036 | 4.249+ 0.0280 0.0* 83.3454+13.9609
0] 0.051+£ 0.0022 | 0.409+ 0.0025 10.0* 10.016+ 13.5510 | -32.424+ 15.8386
d -0.081+ 0.0020 | 0.123=+ 0.0036 10.0* 116.235£81.2783 | 902.567+ 615.0900
s -0.072+ 0.0077 | 0.123=+ 0.0036 10.0* 0.0* -16.045+4.7815
g -0.156+0.0039 | 2.453+ 0.0334 10.0* 0.0* -3.922+0.0659

Table 1: Final parameter values and their statistical errors at the input scale Q3 = 1 GeV?, those
parameters marked with (*) are fixed.

that the parameter ¢, is very close to zero for 6q = du + ou, od+ dd, 85 and &g so we fix
them at 0.

Generally PPDFs analysis use two well-known sum rules relating the first moments
of PPDFs to F' and D quantities which are evaluated in neutron and hyperon (S—decays
under the assumption of SU(2) and SU(3) flavor symmetries. A new reanalysis of F
and D parameters with updated [-decay constants acquired [6] F' = 0.464 £+ 0.008 and
D = 0.806 4 0.008, so we make use of these evaluations in our present analysis. Since
we do not focus on flavor symmetry and we have §u # dd # &s, we can use the following
relations in the analysis

Au+ Au = 0.9275+ As + As
Ad+Ad = —0.3415+ As + A5, (5)

so we exclude the parameters define the first moment of (du+ du) and (6d+6d) (i.e. Ny+a
and 74, 7) from the analysis and obtain them by Eq. 5.The evolution and computational
method of the current analysis are fully discussed in Ref. [3]

3 Results

The values of obtained parameters attached to the input PPDFs are summarized in Ta-
ble 1. We find x?/d.o.f. = 1171.571/1132 = 1.03 which yields an overlay acceptable fit to
the experimental data. In Fig. 1 we present the polarized parton distributions and their
comparison to parameterizations from DSSV09 [11] and LSS10 [4] at input scale Q3 = 1
GeV?2. Examining the x(du + 6u) and z(dd + dd) distributions we see that all of the fits
are in agreement. For the 0% and 2dd distributions, the curves, specially our model and
DSSV09, are very close; dd is negative for any z in the measured z region while §% passes
zero around x = 0.1 — 0.2 and becomes negative for large = for all presented models.
For the strange sea-quark density xds, the main difference between the presented model,
LSS10 and DSSV09 sets is that for x < 0.03 LSS10 is less negative than others, also both

of current model and LSS10 are less positive than DSSV09 for > 0.03.
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Figure 1: The result of our analysis for quark ' X
helicity distributions at Q3 = 1 GeV? in compar-

ison with DSSV09 [11] and LSS10 [4]. Figure 2: The quark helicity distribu-

tions for the difference (0% — 6d) at Q* =
2.5 ,3 GeV? comparing to other models
and experimental data [3].

By employing SIDIS data a flavour decomposi-
tion of the polarized sea quarks is obtained and the
light antiquark polarized densities 0%, dd and 6s = 5 are determined separately, Fig. 2
shows the difference between 0, 6d in the current analysis comparing to other models and
experimental data. Also in the present parametrization we use a term (1 + c,2%° + dyx)
in the input strange sea-quark distribution to let a sign changing for s = s, which was
not considered in the standard scenario [2]. The comparison of polarized light sea-quark
distributions (xds, xdu, xdd) in the standard scenario and current model are presented
in Ref. [3] and shows that the behavior of the polarized strange quark density remains
puzzling.
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Abstract

A first part lists basic rules, taken from the string- and multiperipheral models,
that a recursive quark fragmentation model should obey. A second part describes
spin effects given by the classical “string + 3P0” mechanism of quark-antiquark pair
creation, in pseudoscalar and vector meson production: Collins effect, jet handed-
ness and “hidden spin” effects in unpolarized experiments. The last part constructs
a recursive quantum-mechanical model of spin-dependent fragmentation. In a “ab
initio” approach an integral equation must be solved as a preliminary task. With
a “renormalized input”, this task is reduced to an ordinary integration. A spin-
dependent generalization of the symmetric Lund model is obtained.

1 Introduction

A jet model which takes into account the quark spin degree of freedom must start with
quantum amplitudes rather than probabilities. A “toy model” [1] using Pauli spinors and
inspired from the multiperipheral model and the classical string +3 Py mechanism [2, 3]
followed this principle. Collins- and longitudinal jet handedness [4] effects were generated.
However hadron mass-shell constraints were ignored. These constraints are satisfied in
an improved model [5], which is a symmetric-Lund model endowed with spin factors. In
the ab initio approach of [5] the inputs are quark propagators and quark-hadron vertices
derived from a string action. The recursive splitting function is obtained by solving an
integral equation. We will show that, starting from a renormalized input, this preliminary
task is replaced by an ordinary integration.

Section 2 lists the rules and approximations of a bona fide recursive jet model. Spin
effects produced by the classical string +3 P, mechanism or the “toy model” are sketched
in Sec.3. The next sections develop the model of Ref. [5] in three stages: the ab initio
approach, the renormalized input approach and the application with string anplitudes.

2 Rules and approximations for a recursive model

We take the example of W¥ decay into qa + qg and no gluon (lower part of Fig.1-left)
followed by a hadronisation into mesons and no baryon (upper part of Fig.1-left),

qA+qB—>h1+h2+hN (1)
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Figure 1: Left: quark-diagram of a hadronic decay of W*. Right: associated momentum diagram,
projected on the (p°, p*) plane.
In the multiperipheral picture, (1) is decomposed in recursive quark splittings

qr = hi+q2, qe—ho+qz, - av — hy +ap, (2)

with q; = qa ; h, is the meson of rank n < N ; qg = qn41 is the charge conjugate of qp
and “propagates backward in time”.

Factorization. We assume the approximate probability convolution

dP(W#— qaq
Povent = /dQ ( = W) gy + s by + hg... + hy). (3)

Povent 18 the exclusive N-particle distribution of the whole event. dP/dS is the angular
distribution of the quark momentum kj, in the W¥ rest frame. The last factor is the
exclusive N-particle distribution of reaction (1). ka/|ka| = z defines the jet azis. In a
more rigorous approach the convolution should bear on the amplitudes. ka is an internal
momentum of the loop diagram of Fig.1-left and Peyent is a double integral: in ks for the
amplitude and in k), for the complex conjugate amplitude. Factorization (3) ignores the
pure quantum-mechanical quantity ka — k.

Multiperipheral dynamics. FEach splitting conserves 4-momentum: k, = p, + k,11.
These relations are exhibited in the momentum diagram of Fig.1-right. A basic ingredient
of the multiperipheral model is the cutoff in the quark virtualities —k2. It implies:

e a cutoff in |kTk~| = (k° + k%) |k° — k*|, which insures the approximate ordering of
hy, hy, - - - hy in rapidity and the leading particle effect (or favored fragmentation).

e a cutoff in kt leading to the Local Compensation of Transverse Momenta (LCTM)
[6]. Tt leads to a cutoff in py of the hadrons!:2.

IThe converse is not true: the pt cutoff alone, used in some models, does not lead to a kr cutoff.
2The symmetric Lund splitting function reinforces the pr cutoff by the factor exp[—b(m? + p%)/Z].

34



Ladder approximation. A same hadronic
final state can be obtained with several mul-
tiperipheral diagrams which differ by permu-
tations. In the ladder approximation the in-
terferences between these diagrams are ne-
glected. Most often only one diagram is im-
portant, the others having rank ordering too
far from the rapidity ordering.

String dynamics. The same properties
are found in the String Fragmentation Model. Figure 2: Relation (4) between the quark mo-
Fig.2 represents the world sheet of the mas- mentum q3 in the multiperipheral picture and the

. tri dart stretched b da point Q3 where the q3qs pair is created in the
Stve string or aart stretche Y da Al 4B (lasical string fragmentation model with mq = 0,

and decaying into hadrons, in a classical 1+1 k., = 0.

dimensional model with massless quarks. It

is a particular type of quark multiperipheral model, if one orders the ()-corners according
to the null-plane time variable X~ = ¢t — z and make the correspondance?

t(Qn) - t<O) = ka/’ia Z(Qn) - Z<O) = ]{:2/%, (4)

where k£ ~ 1 GeV/fm is the string tension (hereafter we take k = 1). For a string
breaking point Q the condition that there is no other breaking in its past cone leads to
the suppression of large (OQ)?> = —kTk™ by a factor

exp (—b|kTh™]) (5)

where 2b is the string "fragility” in units x = 1. Quarks with masses and transverse
momenta are thought to be produced by a tunneling mechanism similar to the Schwinger
one for eTe™ creation in strong electric field. It provides the kr cutoff factor

exp[—w(mg1 + k3)/K]. (6)

3 Properties of the classical string + °P) mechanism

Fig.3 depicts the decay of the dart as if all Q,, where at equal time. Assuming that a q,q,
pair is created at Q,, in the 3P, state and with zero 4-momentum, one predicts a correlation
between the antiquark polarization S,, and transverse momentum k,, v: (k, - (z x S,,)) is
positive. A similar effect is predicted in atomic physics [7].

Case where hj, hy,... are pseudoscalar mesons. In that case q, and ¢, 1 forming
h,, have antiparallel spins. Combined with the (k-(2xS)) correlations it gives:

— a Collins effect toward S; x z for the ”favored” meson hy,

— Collins effects of alternate sides for the next mesons,

— a large Collins effect for hy,

— Relative Collins Effects (or IFF') larger than from “single-Collins” + LCTM alone.

3k = canonical quark momentum = mechanical momentum + string momentum flow through OQ.
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Case where h, is a leading vector meson. In a vector meson of linear polarization
A (being known from the decay products), the q and q polarizations are symmetrical
about the plane perpendicular to A (Fig.3b). Let us consider a 1™*-rank vector meson:
— if A || z the Collins asymmetry is opposite to that of a leading pseudoscalar meson,
— if A L z the Collins asymmetry is in the azimuth 2¢(A) — ¢(S;) — 7/2,
— if both A, # 0 and At # 0 and if q; is helicity-polarized, S, A, A-(z X p) is positive.
This is a longitudinal jet-handeness [4] effect.

These three effects are reproduced by the “toy model”. They correspond respectively
to lines 3, 5 and 6 of Eq.(27) of [1]. On the average, the Collins effect is -1/3 that of the
pseudoscalar meson [8].

Hidden spin effects. Whether q, is polarized or not, the (k-(z2xS)) correlation of the
string +° Py mechanism has an impact on the pt distribution of the rank > 2 mesons:

— for a pseudoscalar meson, (p3)meson > 2 (K%)quark »

— for a vector meson linearly polarized along z, (pP3)meson < 2 (k%) quark »

— for a vector meson linearly polarized along x, (p2) < 2 (k%) < (p).

On the average, (P%)vomeson < {(P>)PS-meson- LThese "hidden spin” effects allow an unex-
pensive test of the string + ® Py mechanism (note that the Schwinger mechanism predicts
no (k-(2xS)) correlation [9]). At least they suggest that quark spin plays a role even in
unpolarized experiments and should be included in any jet model.

4 The ab initio approach
The starting point is the multiperipheral hadronization amplitude

(kg, sg|Mn{aads — hihy - - -hn}ka, sa) =
kpsgD{as W {as.hn,an} - P{as}V{as.h2,q2 } D{az }V{az,h1,.qa }D{da tka,sa).  (7)

|kg, sg) is the negative energy state whose hole is |k(qg), s(qp)). Inside curly brakets,
{a} = (f, k) gathers the quark flavor f and 4-momentum k. For a meson {h} = (h, p, sp)
gathers the species h, the 4-momentum and the spin state. The quark propagator D{q} =
D(f, k) and the vertex function V{f', h, f} = Vp . s(K', k) are the inputs of the model. In
a step-by-step covariant model, |ka, sa) and |kg, sg) would be Dirac spinors and D and V
would be 4x4 matrices, e.g., D{q} = D(f,k*) (m;+-k). However Lorentz covariance is

L +K37 _ —kor
4 ds Q2 2
- - Y y ( ;—11 Y y
_; U 4 Q3 (} U d2 0y
—kar kot

Figure 3: (a) string decay into pseudoscalar mesons with the string+>3P, mechanism. (b) spin correlation
of the quark and antiquark in a vector meson linearly polarized along A.
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required only globally for the whole process of Fig.1. Together with P and C' conservation,
this requires the invariance of M under

— (a) rotations about z,

— (b) Lorentz transformations along z,

— (c) reflection about any plane containing z,

— (d) quark chain reversal or “left-right symmetry” [2], i.e., interchanging qa and qg.
These invariances can be realized with Pauli spinors, e.g., D{q} = ps+0, o-ky. Doing so,
we do not take into account the whole information (2 g-bits) carried by an off-mass-shell
Dirac spinor. We leave this question for further studies.

Hadronization “cross section” of quark q,. In the ladder approximation one can
define the hadronization “cross section” of an initial or intermediate polarized quark qy,,

Hids +Tdn — X} = TrR{dn} pldn}, (8)

where p{q,} = (I+0-S,,)/2 is the spin density matrix of ¢,

R} =5 3 [ dlha} o dtw) Ml My 8o+ px — bn = K(as)] ()

N>n

and [d{h}--- stands for 37, 37 ) [d*p/p°---. We are interested in the qa fragmen-

tation region, that is why we will took qg unpolarized. R{q} obeys the ladder integral
equation (illustrated by Fig.4):

Ria} = /d{h} THd' b, a} R{Q} T{d' b, q} + Y MM [k — kp)* —mi]  (10)

with T{q/,h,q} = V{d,h,q} D{q}. At large m% ~ |kg| k™,
R{q} ~ B{q} (m%)**, (11)

B{a} = 5(f. k1) [1+ A(f. k1) o-i(k)], (12)

with n(k) = zxk/|zxk|. In ordinary multiperipheral models ar and B{q} are the
intercept and residue of the output Regge trajectory. A(f,k%) is the single-spin asymmetry
of [q+ g — X. A(f,0)=0. B{q} is semi-positive definite: 5 > 0, |A| < 1.

Recursive Monte-Carlo algorithm. Suppose that we have already generated n—1
steps of (2) and recorded the density matrix p{q,}. The simulation of the next step
1dn — hy+ Tqne1 (hereafter rewritten Tq — h+ 7q’) proceeds in two sub-steps:

1) generate the species and momentum of h. From Egs.(10-11) the type and
momentum distribution of the next-rank particle is proportional to

az d2pT

dH{gs+1q} = 7

kg %> T [B{q'} T{d,h.q} p{a} T'{d",h,q}], (13)
s(h)

with Z =p* kT, K =k —p.
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Figure 4: Ladder unitarity diagram associated to Eqs.(8-10) with n=1, q = qi1, q’ = q2. Black bullets
represent quark propagators. The summation over N is understood.

2) calculate the polarization of 7q'. It is given by

p{d’} = [T{d b, a} p{a} T{d,h,q}] / Trfidem] . (14)
s(h)

If h has nonzero spin and one wants to simulate its decay, a more complicated algorithm
is needed, following the rules of [11] (see also Sec.5.1 of [12]).

In this ab initio approach one must calculate ar and the functions B(f, k%) and
A(f,k3) from the integral equation (10), as a preliminary numerical task.

5 The renormalized input approach

The physical properties (e.g., the multi-particle distributions) are unchanged by two kinds
of “renormalization” of the propagators and vertices:

(a) new D{q} = [k"k**D{q},  new V{q h,q} = [K"Tk"[*V{d hq} (15)
15
(b) new D{q} = A{q} D{a} A{a}, new V{d'h,q} = A"} V{d ha} A {q},

where A{q} = A(f, kr) is a matrix in spin space. Under (a) ag is shifted by 2A. Under
(b), new B{q} = AT{q} B{q} A{q}. Let us combine (a) and (b) with A = —ag/2 and A =
B~z (D/D)1 (these matrices commute). We get new ag = 0, new R{q} = new B{q} =
I. Taking the renormalized V{q',h,q} as unique input, the renormalized propagator is
obtained from (10):

D{q} =U"*{q} with U{q}= Z/d;—opVT{q’,h,q}V{q',h,q}- (16)

The preliminary task is now to evaluate (16). It is much easier than solving the integral
equation (10). Besides, (13) is simplified by the absence of |kg &'"|*® and B{q'}.
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6 Application with string amplitudes

An ab initio string hadronization amplitude [5] can be expressed in the multiperipheral
form with the propagator and vertex

D{q} = (k k™ —i0)™'4 exp [(i — b) k™" /2] d{q}, (17)

V{d b, a} = (0" /E) M exp [(0— i) Kk /2] (=p7 /D) gfd hyay. (18)
d{q} = d(f,kr) and g{q’,h,q} = gp n (K7, kr) are spin matrices and a{q} = a(f,k3).
In the ladder approximation one can remove the phases of the exponential factors and of
(k~k* —i0)2{a}. This does not change the probabilities. After renormalization,
V{d' b, q} = (K /p) 2 exp(=b K7k /2) (K /p7)" 92 g{d b q},  (19)
with a new ¢g{q’,h,q} and a{q} = old (ar — 2Rea{q}). The right Eq.(16) becomes

Uf{ql = u{q}/E(k k™)  with Ey(z) =2 """ et (20)

dZ (1= 2\ /m2 + p? , :
u{q} = Y /deT7 (T) 8q<thT) g{d b, aygfd h,q}. (21
)

h,s(h

Example: a{q} = constant and
g{d hya} = e POERD (0.0 k) T (g + 00 k) (22)

with [' = o, for a pseudoscalar meson and I' = G, V) I+ Gro-V} o, for a vector meson,
like in the “toy model ” [1]. A complex s with Imps > 0 reproduces the effects of the
string +3 Py mechanism.

The receipe (13-14) becomes

1. generate the species and momentum of h following the distribution

dZ (1—z\ /2 4 p2 , )
A?pr — (—Z ) &, (—hZ pT) > " Tr (H{q h,q} pfa} t1{d’ h,q}) (23)
s(h)

with {¢’,h,q} = g{d’,h,q} u=2{q},

2. calculate the polarization of Tq" with

pld} = [D_t{d' ha} p{a}t'{d;h, q}]/ Tr [idem]. (24)

s(h)
If quark spin is ignored, g{d, h,q} =g ¢(KE, pF. k), u{q} =u(f, k%) and one recovers

the symmetric Lund model. U{q} and (j|V{d,h,q}|i") (| V{d, h,q} |i) are the spin-
dependent generalizations of p, (V') and p,,/(V, V') in [10].
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7 Conclusion

We have built a bona fide recursive quark fragmentation model including the quark spin
degree of freedom. For pseudo-scalar and vector mesons the model can reproduce the
Collins effects of the classical string +3P, mechanism and also give longitudinal jet hand-
edness. It can be a guide for quark polarimetry and may also account for ”hidden spin”
effects in unpolarized quark fragmentation. The ab initio input consists in quark prop-
agators and vertices. Using it, an integral equation has to be solved in order to fix the
splitting distribution. Starting from the renormalized input, which consists in exponents
a{q} = a(f,k%) and vertex matrices g{q’,h,q} = g (K, kr), only an ordinary inte-
gration is needed. Putting vertices derived from the semiclassical string action in 141
dimension, one obtains a spin-dependent generalization of the symmetric Lund model
which may be implemented in a Monte-Carlo code of quark jet simulation.
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Abstract

An effect similar to the Collins asymmetry is found in the ionization of a hydro-
gen atom by a static electric field E. When the initial electron possesses an orbital
angular momentum (L) transverse to the field, the mean transverse velocity of the
final electron points in the direction of E x (L). However (L) is oscillating in time
due to the linear Stark effect, making (vr) oscillate.

Introduction. An atom can be ionized by a sufficiently strong static electric field E
thanks to the tunnel effect. This process has a strong similarity with the production of a
quark-antiquark pair (¢q) in a QCD string. If the initial electron has an orbital angular
momentum perpendicular to E, the average transverse velocity (vr) should be nonzero
and in the direction of (L) x F, where F = —¢E is the external force [1]. We refer to
it as the v.(LxF) asymmetry. The mechanism(Fig.1-left) looks like the string + 3P
mechanism (Fig.1-right) of hyperon polarization [2] and Collins effect [1,3].

At variance with the string + 2P, mechanism, the Schwinger mechanism of qq pair
creation yields no v.(LxF) asymmetry [1]. Thus the question of such an asymmetry in
string breaking remains open. It is at least instructive to study it in atomic physics.

1 Behavior of an H atom in an external electric field

We consider an hydrogen atom in an static electric field E = —(F/e)z. At small F'
the linear Stark effect just splits the n'" energy level in 2n — 1 sublevels separated by*
w = 3nF/2. Stark states are the eigenstates of Hy—Fz = p?/2 —1/r — Fz in the F' — 0
limit. For large enough F' ionization by tunneling becomes important and Stark states
move into resonances of complex energy F = Eg — iy/2. Using the parabolic coordinates
E=r-z, n=r+2z, p=arg(x + 1y), their wave functions have the separable form [4]

U =20 2 x(n) e, (1)
where ®(&) verifies
0*®/0E* + [E/2 + Ze /€ — (m* —1)/(4€7) — FE/4] (€) = 0 (2)

and x(n) an analogous equation with ' — —F and Z; — Z, = 1 — Z,. Stark states are
labeled |ng, n,, m), where ne and n, are the numbers of nodes of ®(£) and x(n), linked

n this paper we use atomic units: i/(meac) = 0.0529 nm for length, A/(m.a?c?) = 2.42 10717 s for
time, mea?c? = 27,2 eV for energy and m2a3c?/h = 5.14 10° eV /cm for force.
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Figure 1. Left: semi-classical motion of the electron extracted form the hydrogen atom
by a strong field E, when the electron is initally in a L, = 41 state. Right: String +
3Py mechanism correlating the tranverse momentum and the transverse polarization of a
quark created in string decay [3,1].

by n, + ne + |m| + 1 = n and fixing Z = (n + n¢ — n,)/(2n). With the change of vari-
ables \/&/ne¥=i+iy, ®(2,79) = /20 (€) e™¥ is the wave function of a 2-dimensional
harmonic oscillator of angular momentum m and energy e, = 2nZ = 2n¢ + |m| + 1.

L, oscillations. Stark states are also eigenstates of A,, where A is the Laplace-Runge-
Lenz-Pauli vector

A=r/r+(Lxp—pxL)/2. (3)

For F'=0, (A,)=2(z)/(3n?) = (n, — n¢)/n. For F#0 the transverse components (L, L,)
and (A,, A,) are not conserved. Starting from a L, eigenstate, (L,) oscillates in quadra-
ture with (A,), as pictured in Fig.2, with the period 27 /w. Let us take as an example
the initial state |n=2, L, =+1), whose wave function is

U(r,0) =8 1r V2 (2 4+iz) e/ = 0.5(]010) — [100) 4 7[001) + 4|00 — 1) ).  (4)

At t # 0 it evolves as
Ut) = 05 eit/s( +t1010) — —W|100> +i|001) + 400 — 1)) (5)
= 8¢ L,=+1) —sin® =~ |L,= + Lsm wt)|l=0)] . 6
| ) | —1) 7 (wt)|1=0) (6)

Thus the atom oscillates between three L, eigenstates.

time
--->

Figure 2: Classical picture of the Stark oscillations of L, and A,.
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2 Tunneling amplitudes

The external force is confining in & and changes ®(&) only little. Tunneling bears on
X(n). The wave function at large n describes the escaped electron. Using, as in Ref. [4],
the JWKB method to lowest order in F', one obtains for the state |i) = |ng, n,, m)

Wi (r, 1) psse = a; B2, ) exp{(—id E; — v;/2)t'} B(n,t) (7)

a; is the tunneling amplitude normalized to |a;|* = 7;, 0E; is the Stark shift, ®;(2,9) is
the 2-D oscillator wave function normalized to (®[;®;) = 1 and

B(n,t) = (4Fp*) " exp [(@/3)\/?(7; —p)¥? it )8 + 5m/4] . (8)

nrp = 1/(n?F) is near the tunnel exit and ¢’ =t — \/(n — nr)/F is the classical electron
exit time. For n=2 the amplitudes are

ay = agio = 14 Ago+1 ,
ay = agopr = ago—y = 27 2F7! exp [—1/(24F)], 9)

as = ajpo = aoo+1/(1q),

with ¢ = e™%/2/v/2F. The widths 7; = |a,|? agree with Slavjanov’s result [5].

3 v.(LxF) asymmetry for the initial state |[n=2,L,=+1)
With the initial state (4) the escaped electron density is, according to (5,7-8),

2
U (r, 1) = (4F%) 72

—00

O(i, 9,1

(10)

with n ~ 2z, (Z,9) ~ (x,y)/v2nz. In the n=2 case,
(') = 0.5 {a, D1 e /DY g By WD gy (oo + Do) e_ml/Q} - (11)

|U(r, )| looks like the density of a classical electron cloud falling freely in the force field
F. An electron leaving the tunnel at time ¢’ with the transverse velocity v, follows the
parabola of fixed (,7) ~ v, /v2F. The interference between even- and odd-m terms of
®(#) yields the v.(LxF) asymmetry, which is #-dependent. A measure of it is

A(t) = (02)/ v, = (S()|2[D(1)) /) (@(1)]a2]D(1)) (12)

~1/2

Alt'=0) = 8% (¢* +8+3¢7?) (13)

Like L,, A(t') changes sign at the Stark frequency, giving the ” crawling snake” of Fig.3 [6].
Conclusion. This study shows that the v.(LxF) effect does exist in field ionisation,
but is oscillating in time. Several constraints make its search challenging:

e Radiative transition may compete with field ionization.
e The initial asymmetry A(0) is small if the |a;|’s differ too much (see Egs.13 and 9).
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Figure 3: ”Crawling snake” motion of () versus z of the escaping electron. As t grows the undulations
move to the right.

e A(t') is fast oscillating, therefore one may only measure its time-averaged (A). This
one is large only if 7; 2 w, so that ionization is faster than oscillation.

These constraints are satisfied with a large enough field. In the n=2 case this field
is too strong to be produced in laboratory. Hopefully, our results can be generalized to
large n (Rydberg states), where the required field scales like n=* [7]. The vt distribution
can be measured by the photoelectron imaging techniques [8,9].

Our formulae, obtained at lowest order in F', cannot be applied at the required field.
Accurate numerical methods are given in [10, 11]. Nevertheless the above conclusions
should remain qualitatively correct.

References

1] X. Artru and J. Czyzewski, Acta Phys. Polonica C B29 (1998) 2015.
2] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Phys. Rep. 97 (1983) 31.
3] X. Artru, J. Czyzewski and H. Yabuki, Zeit. Phys. C 73 (1997) 527.

]

4] L.D. Landau, E.M. Lifshitz, Course of theoretical physics, Vol. 3, Quantum Mechanics,
Pergamon press, London.

[
[
[
[

[5] Yu. Slavjanov, Problemi Matematicheskoi Fiziki (Leningrad: Lenigrad State Univer-
sity, 1970), pp 125-34.

(6] E. Redouane-Salah and X. Artru, AIP Conf. Proc. 1444, 157 (2012).
(7] X. Artru and E. Redouane-Salah, in preparation.

8] Yu.N. Demkov, V.D. Kondratovich and V.N. Ostrovskii, Pis’'ma Zh. Eksp. Teor. Fiz.
34, 425 (1981) [JETP Lett. 34, 403 (1981)].

9] A.S. Stodolna, A. Rouze, F. Lépine, S. Cohen, F. Robicheaux, A. Gijsbertsen, J.H.
Jungmann, C. Bordas and M.J.J. Vrakking, Phys. Rev. Lett. 110, 213001 (2013).

[10] R.J. Damburg and V.V. Kolosov, J. Phys. B 9, 3149 (1976), B 11, 1921 (1978), B
12, 2637 (1979).

[11] T. Yamabe, A. Tachibana and H.J. Silverstone, Phys. Rev. A 16 (1977) 877.

44



LARGE-z FACTORIZATION OF TRANSVERSE-DISTANCE
DEPENDENT PARTON DENSITIES

1.0. Cherednikov -2

(1) EDF, Universiteit Antwerpen, B-2020 Antwerpen, Belgium
(2) BLTP JINR, RU-141980, Dubna, Russia

1 E-mail: igor.cherednikov@uantwerpen.be

Abstract

We discuss a large-x QCD factorization framework, which implies some practical
applications to the phenomenology of the TDDs accessible in future experimental
programs to be started at the Jefferson Lab 12 GeV and the Electron-lon Collider.
This approach suggests extraction of the three-dimensional parton distribution func-
tions as a convolution of a collinear jet function and soft transverse-distance depen-
dent (TDD) function defined as a vacuum average of a partially light-like Wilson
loop.

Transverse structure of the nucleon is encoded in the transverse-momentum dependent
PDFs what finalizes the three-dimensional picture in the momentum representation (see,
e.g., [1] and Refs. therein). An interesting opportunity to unravel the 3D PDF's at large
Bjorken x is provided by the forthcoming energy upgrade from 6 to 12 GeV to CEBAF
at Jefferson Lab. Given that CEBAF is a fixed-target facility, this upgrade will enable
probing the region 0.1 < x < 0.7, where valence quarks prevail. On the other hand,
smaller z for the similar )? can be reached at the planned Electron-Ion Collider, which
will explore the nucleon’s sea as well [1]. In total, the kinematic range of both experiments
is executed to be about 1073 < 2 < 1 and 2 GeV? < Q2 < 100 GeV?. This coverage will
allow one to make precision tests and compare various TMD factorization methods, as
well as to look for important relations between nuclear and high-energy phenomenology.
Having in mind the kinematical set up of the above-mentioned experiments, we will discuss
the generic 3D-correlation functions in the large-x limit which is easier to analyze within
an appropriate factorization scheme. We will show, moreover, how the theory of the
large-x PDF's can profit from the study of properties of the generalized loop space.

We start from a generic gauge-invariant transverse-distance dependent (TDD) corre-
lation function defined as a Fourier transform of the transverse-momentum dependent
(TMD) hadronic matrix element F (x, k; PT,n~, u?)

f(x,bl;Pﬂn*,,uz) = /d2/ﬁ e*"kL'bLf(x,kL;Pﬂn*,uz) =

dz" —ikTz— T A 1 — — T — —

%e <P |77Z)(Z 7bL)un*[Z 7bL;OO 7bL]ul [OO 7bL;OO 7OOL]' (1)
X Uploo™,0015007,0 [U,~[007,0.;07,0,](07,0,)| P) ,

which is supposed to contain the information about quark distribution in the longitudi-
nal one-dimensional momentum space and two-dimensional impact-parameter coordinate
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space. Generic semi-infinite Wilson line evaluated along a certain four-vector w, are
defined as

Uy o0 z] = Uy = Pexp [_@'9/ dr w, A'(z +wr)| (2)
0

where the vector w, parametrizes the path v: w,o, o € [0, 00|, the latter containing, in
general, light-like, longitudinal non-light-like, and transversal parts [2]. Large-z factor-
ization scheme for the gauge-invariant integrated PDF's has been proposed and developed
in Ref. [3]. Here we generalize this method to include the 3D-PDF, Eq. (2), see Ref. [4].

First we notice that at the large-x, the struck quarks moves as fast as the parent
nucleon, that is, in the infinite momentum frame, the soft-gluon contribution is factorized
into the eikonal operators [5]. Thus we re-write Eq. (2) as

2
X Uy [00; 0] Uploo; 0] Ub[oo; 0] $(0)] P)

F(wsbu P i) = [ e (P 1GG) Uplei ool Upleiod] U] [ (3)

where z = (07, 27,b,). For the sake of simplicity, we work in what follows in covariant
gauge, so the transverse segments of the path are omitted. The eikonal approximation
assumes that very fast quark having the momentum k, can be considered as a classical
particle moving parallel to the nucleon momentum P, so that instead of the quark fields
we use

Wiet (0) = Up[00; 0] %(0) , jer(z) = ¥(2) Up[z;00] (4)

where the fields lifin,jet, Uin—jet stand for the incoming-collinear jets in initial and final
states [5,3]. Before going over to the large-x approximation, we insert in Eq. (4) two full
sets of intermediate states

FlwbuPrnpf) = ) / % e (P [(2) Uplz 0] | q) (5)

x (q ULz 00] Ul [z 00) Uy~ [0030] Uplocs 0] | ¢') (¢ [Uhlocs 0] $(0)] P)

Now one observes that the large-x regime suggests the struck quark takes almost all
momentum of the parent nucleon:

k,~ P, . (6)

Given that in the infinite-momentum frame the transverse component of the nucleon
momentum vanishes, the transverse momentum of the incoming quark k, is acquired
completely due to the interactions with gluons. The following properties of the large-x
regime will be used from now on:

1. All real radiation can only by soft, that is the intermediate states in Eq. (6) carry
zero momenta in the leading approximation:

G @ ~ (1= 1) By (7)

2. Quark radiation is negligible in the leading-twist; virtual gluons can be either soft
or collinear, collinear gluons can only be virtual;
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3. Rapidity divergences (known also as “light-cone singularites”) originate only from
the soft contributions. This important observation can be justified as follows: given
that the rapidity divergence take place in the soft region of the integration over
momenta, that is at small virtual gluon momenta x* — 0, one concludes that the
minus-infinite rapidity region is responsible for their existence, whose gluons move
parallel to the outgoing jet, not incoming-collinear jet, where the rapidity is positive;

4. As distinct from the collinear PDFs, real contributions are ultraviolet-finite due to
the transverse distance b, acting as a large-momentum cutoff. They may, however,
contain rapidity singularities and exhibit non-trivial z- and b -dependence.

It follows immediately from the property (1) that the leading contribution to the
large-z TDD (6) is given by the vacuum intermediate state |0) = |¢,¢ = 0):

F(2,bis P on™ p°) =

/dz— K (P 1(2) Upliod] | 0) <0 UL [00; 0] ¥(0)] P> - (8)

5 ©
X <0 UL [2; 00] LI:L, [2; 00]U,,— [00; 0] Up[oo; 0] | 0> :

Using Eq. (4), we write (in the z — 1 regime)
dz~

f(vaJ_;P—l—an_nLﬂ) = /?

< (0 Ul 00] Ul (25 00fthy-[003 0] Uploc: 0] | 0) = | Fan-sea(P)
dz~

2

¢ (P [Winjen(2) | 0) (0 | Winges (0)] P (9)

e—i<l—x>P*f-<o\u;[z;oo]ug,[z;oo]un,[oo;()] Up|[c0; 0] | 0> . (10)

where Jiet(P) is the jet matrix element [6] which obeys
(P |Wiee(2) [ 0) (0 | Tiet(0)] P) =
—iPtz— \T —iPtz~
e (P [Tier(P) [ 0) 0 | Wier(P)| P) = ™% | Tiea(P)[* . (11)
We have shown, therefore, that the following large-= factorization scheme is valid
F(x,by; Pt 0", 1?) [omn = H(p®, P?) - ®(2,b1; PY on~ pi?) (12)

where the contribution of incoming-collinear partons is accumulated in the x-independent
jet function H, while the soft function ® reads

b(z,b; Ptn, ,u2):/dz_e_i(1_“’)P+z <0|L{1T3[z; oo]Z/{;;, [2; 00]U,,— [00; 0]UR[0; 0]|0), (13)

with two sorts of the Wilson lines: incoming-collinear (off-light-cone, P? # 0), Up, and
outgoing-collinear (light-like, (n™)* = 0), U,,-.

The properties (2 — 4) allow us to formulate the rapidity and renormalzation-group
evolution equations for the factorized TDD (12):

d d d
/’1/@ lnf‘(x7bJ_;P+7ninu/2) = ,U@ lnH(ILLQ) _'_:u@ ln(I)(w"bJ_;PJr’luQ) ) (14)

d d
P+mln]——($,bL;P+,n_,p2) = P+mln¢(x,bl;P+,p2) . (15)
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Note that the r.h.s. of Eq. (14) is b, -independent and shows up only single-logarithmic
dependence on the rapidity [7]. The r.h.s. of Eq. (15) corresponds hence to the Collins-
Soper-Sterman kernel Kcgs [8].

The rapidity associated with the plus-component of the momentum P is formally
infinite and must be supplied with proper regularization [6,7] Yp = lim, .o % In @ ,
where 7 is a rapidity cutoff.

Taking into account that the variation of the scalar product 6(P -n~) = §Sp corre-
sponds to a conformal transformation of the area restricted by the planar part of the path

~* on which the Wilson loop is defined
Uy, = ULz 00U [2; 00]Uy,- [00; 0)Up[0; 00] | (16)
that is
vk = P,oUn, o' Un,7UP,0 , (17)

with 0 € [—00;0] , 0’ € [0;00] , T € [00;0] , o € [0;00] . Therefore, implies the simple
relationship holds between rapidity and area logarithmic derivatives:

d d d

P = ~ .
dP+ dlnSp dYp

Hence the rapidity evolution of the soft function (13) can be related to the area trans-
formation law of a certain class of the paths. Moreover, in the recent work [9] we have
shown that the non-local classically conformal path variations can be introduced in terms
of the so-called Fréchet derivative associated to a diffeomorphism in generalised loop
space, which makes the whole approach mathematically consistent.
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Abstract
We have calculated the polarization of the final nucleon in charged current quasi-
elastic v— N scattering. We show that the longitudinal and transverse polarizations,
as well as their ratio exhibit simple dependence on the axial form factor and their
sensitivity to the axial mass is much stronger than that of the cross section. This
suggests that measurements of the polarization of the nucleon in the high-statistics
neutrino experiments could provide important information on the axial form factor.

1 Introduction

Important for understanding the electromagnetic structure of the nucleon are the two,
Dirac and Pauli, electromagnetic form factors (FFs) Fi(Q?) and Fy(Q?), that determine
elastic electron-nucleon scattering.

There are two ways of extracting F} », or the more convenient experimentally charge
and magnetic FFs Gg = F} — 7Fy, and Gy = Fy + Fy, 7 = Q*/4M?. The standard,
Rosenbluth, procedure is based on the unpolarized cross section and determines G and
Gyr separately with a limited sensitivity to G%, at higher Q. Tt was found:

1. At relatively low Q? < 5GeV? the magnetic FFs exhibit approximately the same

dipole @?-dependence, Gp(Q?) = (1 + Q*/0.71 Gevz)_Q‘

Ghy =1y Gp(Q%), Gl =k Gp(Q7). (1)
2. Up to @ < 6 GeV? all data exhibit " scaling” of the proton FFs:
1G5 (Q%)
MO =y = @

which implies the same Q*-dependence for G%, and G%,.
In the late 90-ies Jefferson Lab. started series of new type of experiments that allowed
a direct measurement of R. In 1968 it was shown [1] that the ratio of the transverse P
and longitudinal P polarization of the recoil proton is directly proportional to R:

P Gy 2¢ 3)
P Gy r(l+e)

where € = [1 + 2(1 + 7)tan?0/2]7!, 0 is the scattering angle. JLab measured the ratio
P\ /Py in the energy range Q?=[0.5 — 8.5] GeV? and unexpected results were obtained [2]:

IThe paper is supported by a priority Grant between Bulgaria and JINR. S.M. Bilenky acknowledges
the support of AvH Stiftung (contract Nr. 3.3-3-RUS/1002388) and RFBR Grant N 13-02-01442.
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1. ”Scaling” does not hold. The form factor G%(Q?) decreases much faster than
Gh(Q%): R =1at Q%> ~1 GeV? and falls down to R = 0.2 at Q* = 5.6 GeV>.

2. There is a clear discrepancy between the two methods in extracting R.

Polarization experiments drastically changed our knowledge about the e.m. FFs and
raised the important questions about radiative corrections and 2-photon exchange.

The JLab results strongly motivated our studies of the recoil nucleon polarization in
charged current quasi-elastic (CCQE) v(7) — N scattering as a source of independent in-
formation about the axial form factor. We obtain analytic expressions for the polarization
and estimate numerically the sensitivity of the polarization and the cross sections to the
axial mass. Most of the presented results can be found in more details in [3].

2 The weak charged current form factors

We study the CCQE processes:
vip—pt+n,  vAn—p +p (4)

which are the dominant processes at low neutrino energies and give a direct information
on the charged current (CC) weak form factors.
The matrix elements of (4) is determined by the 4 weak CC FFs — F{{’, G4 and Gp:
Gr

M = E(@wm(li%)uy) A(N[TECIN) ()

10,,q"
(N'JJCCINY = (7uF100+u—qFQCC‘f'%%GA‘Fq—M%GP) uy  (6)

2M 2M
Due to CVC Flcf are related to the em. FFs:
Fi5 (Q%) = F{5(Q%) — F5(Q%), (7)

where [, and FY', are the Dirac and Pauli form factors of the proton and neutron, known
at present in a wide region of @? [2]. The hypothesis for partial conservation of the axial
current (PCAC) implies that the contribution of Gp(Q?) can be neglected. Thus, study
of the CCQE processes (4) will give information about the axial form factor G4(Q?).

In analogy with the electromagnetic FFs, G4 is usually parameterized by the dipole
formula:

2\ _ ga
N = ®)

Here g4 = 1.2701 £ 0.0025 is the axial constant, known from the neutron [-decay data
and M, is a parameter — the ”axial mass”. At present, experiments on measurements of
the CCQE cross section, performed at different neutrino energies and on different nuclear
targets suggest different values for My [4]:
d or H — target My = 1.03+£0.02 GeV
Fe—target M, = 12670121008 Gev, MINOS
H>0 — target My = 1.20£0.12 GeV, K2K
C — target My = 1.054+0.02+0.06 GeV, NOMAD
C — target My = 1.35+£0.17 GeV, MiniBooNE (9)
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Though compatible within 2 o errors, these results show a clear discrepancy for the central
values of M4, that could originate in different reasons. The precise determination of the
axial FF is important not only for understanding the nucleon structure, but it is a basic
ingredient in interpretation of the neutrino oscillation experiments. Here we suggest that
measurement of the final nucleon polarization could provide an important independent
information about G 4.

3 Polarization of the final nucleon

T-invariance implies that the polarization vector of the final nucleons in (4) lays in the
scattering plane. We define its longitudinal s and transverse s, components:

§=s51€ + 5)€, (10)

where €| and €] are two orthogonal unit vectors in the scattering plane, ¢ = v/, v is
the 4-momentum of the final nucleon. We obtain:
e The transverse polarization exhibits a simple linear dependence on G 4:

—2F sinf
4]

e The longitudinal polarization s| is expressed solely in terms of G4 and GSF, ie.
the best known magnetic form factors of the proton and neutron, the poorly known G¢¢
does not enter:

(Jos)"" = [y GSF + (2 —y)Ga] G&° (11)

v, v 2M

(JOSH) :—% [j:yGf/[C—i—(Q—y)GA] {(2—3/) Gg/[C:E <y+f> GA] . (12)
o If the neutrino detector is in a magnetic field, then both s; and s could be measured

(like in elastic e — p scattering). Their ratio exhibits a simple linear dependence on G 4:

s\ _ @ [2-y) G £ Galy+2M/E)] (13)
S| 2F"sin @ G&C )
e The quantity J; 7 is determined via the differential cross section:
o do"?  Ar
I = — 14
0 dQQ G%-7 ( )
and is given by the expression:
B GCC)Q + (GCC)Q My T(GCC)2 + (G(JC)Q
T — 9] — G2 (Gl E G2 — M E
0 (1—y) |Ga+ T+ T A T+
+y2 (G%C :FGA)2 :|:4yG]\C/[C GA. (15)

Here vy, qo, |¢] are kinematic factors, E’ is the energy of the final lepton.
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4 Numerical results

Using the commonly used parametrizations for the e.m. FFs, we examined the sensitivity
of s and s, and their ratio s /s1 on the axial mass for the following values of My:

1) My =1.016 — full (black) line
2) My =120 — dashed (red) line (16)
3) Ma =1.35 — dash — dotted (blue) line

We compared it to the sensitivity of the cross section.

— n —
7+p—>#++n,E=1G9V,ST‘ ‘7+p—>p*+n,EzlGeV,sL‘ ‘V 2 = iy 2= LGRS G
St s S/ST
-03 F ;i o, 15
~04 ~Q
-05 10 oIl T
-0.6 T \\‘
-07 0.5} .
~08
L N, 2
02 04 06 08 Q

(b) (@

Figure 1: The dependence of the transverse sp and longitudinal s;, polarizations of the neutron at E=1
GeV ((a) and (b)), and their ratio s, /s (c) on the values of M4 (eq. (16)) in 7, +p — pu™ +n.

Fig. 12 shows that there is a clear sensitivity o  an
in the polarization of the final neutron in 7, +p — SSEes o o XG—E
pt +n. It is most clearly pronounced for s and, R
respectively, for the ratio s;/s,. An advantage of P

s/s1 is that many of the systematic uncertainties
and radiative corrections cancel, however a mag-
netic field should be applied to the detector in or-
der to measure s|. This sensitivity holds also for
higher values of neutrino energies F. In contrast,
Fig. 13 shows that the cross section exhibits very
weak sensitivity to M 4.

There is almost no sensitivity to the polarization Figure 2: The dependence on M4 (see eq.
of the proton in v, +n — pu~ + p, but the polar- (16)) of the cross section of 7, +p — p*+n
izations are big and could present an independent at E=1 GeV.
measurement of G 4.

P N W s~ O

2
0.8 Q
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Abstract

We study the response of diquark wave function in A-type baryons to strong
magnetic fields. It is found that quantum state of J=0 diquark (ud) in the mag-
netic field changes due to magnetic polarizability, and constituent quarks in (ud)
diquark become polarized. The phenomenon influences polarized quark distribu-
tion functions Au(x) and Ad(x), which therefore may be sensitive to the internal
electromagnetic fields in hypernuclei. We also speculate, that strange quark polar-
ization in nucleon may originate from the interaction of virtual ss quark pairs with
the intrinsic magnetic field of nucleon B ~ 10'3T.

1 Introduction

It has been suggested many years ago [1], that baryons and mesons contain fractionally
charged fermions - constituent quarks. According to Dirac equation, magnetic moment
of charged particles with spin s = 1/2 is u=h@Q/2m* and therefore, constituent quarks
should have magnetic moments. For baryons this concept works surprisingly well, and
measured magnetic moments of hyperons Q7,2 ==, %+, 3=, A°, proton and neutron,
can be understood as originating from the magnetic moments p,=1.85uy, ptg=-0.97puyN,
ps=-0.61py of quarks with constituent masses m;, m};~ 330MeV and m;=510MeV.

Consequently, open-flavor vector mesons should also have magnetic moments. For
example, K*" meson (bound state of u, § quarks with parallel spins) may be expected to
have magnetic moment figc++ = || + |is] = 2.5un (here py=3.1-10""*MeV/T).

The response of pseudoscalar mesons and scalar diquarks to external magnetic fields
can be understood using the analogy of (¢q¢’) bound states with muonium (e~ u™) and
positronium (e~e™). Similarly to singlet (J=0) ground state of positronium or muonium,
mesons 7., My, 1, ™, K, D, B should have zero magnetic moment [2]. In the magnetic
field however, due to magnetic polarizability of pseudoscalar mesons, induced magnetic
moment [i[B] is expected to appear [3], due to partial polarization of ¢g pair in J=0
quantum state. If the analogy with positronium behavior [4] is indeed correct, wave
function (1] + 1)/v/2 of (m.=0) substate of vector mesons can acquire the admixture of
pseudoscalar state (T — |7)/v/2 in the magnetic field, and quenching [5] of ¥(cc), Y (bb)
and ((s5) meson decays may occur [6] in static external fields B ~ 10'* — 10'°T.

Internal spin structure of scalar diquarks [7] in A-type baryons resembles quantum
state of pseudoscalar mesons: (7| — |1)/v/2. In strong magnetic field, a superposition of
(J=0) diquark with its excited state (J=1, m,=0) can take place. In this contribution we
discuss the magnetic polarizability of diquarks in baryons due to fields B ~ 10*-10T.
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2 Spin structure of A baryons

Internal spin structure of AY /2(1116) baryon differs from
that of proton, neutron and other spin 1/2 hyperons [8].
Typical s = 1/2 baryon contains two quarks (diquark) in
(J=1) triplet state accompanied with the third quark, as
described by naive SU(6) function LplT/Q in Eq.(1). One
may directly guess that ground state wave function of
proton (uud) is similar to X1 (uus), since both they con-
tain quarks (uu) accompanied by third d or s quark. Al- Figure 1: Scalar diquark (ud) in
most equal masses of £+, 37, X9 hyperons then suggest, A9 hyperon. The field is generated
that their constituent quantum spin structure is similar, 1y magnetic moment p of s-quark.
(given by Lpf}Z) as in the case of proton and neutron.

ps _(L=1D1 VZITL=(1L+11) 1 /V2
1/2 \/5 \/g

However, constituent quarks (uds) of 3! /9 hyperon can enter a lower-energy quantum

W)y = P =(T11) (1)

state Wls/z, with different configuration of quark spins. Such state is observed experi-
mentally as AY ,(1116). Mass difference (6 M=77MeV) between %°(1193) and A” baryon
comes from different interaction energy of constituent quark color-magnetic moments.

Quantum structure of A° hyperon thus contains scalar (J=0) diquark accompanied
with the third quark, which is then responsible for the spin of such baryon. A question,
which quarks enter the scalar (J=0) diquark state in flavor-degenerate baryons of type
A(uds), ZF(usc) or Q% (sch) has been discussed already by Franklin et al. [10]. The
conclusion was that two quarks with similar masses form a scalar diquark state, with
small admixture of other diquark flavor configurations. For A°(uds), Af (udc), A)(udb)
this means that scalar diquark (ud) is accompanied with heavier s, ¢ or b quark.

If all three constituent quark spins are oriented in parallel, baryon has spin s=3/2,
which corresponds to experimentally observed 2 hyperon and A, ¥* and =* resonances.
Spin wave function W3/, of such baryons is shown Eq.(1).

3 Internal hyperfine magnetic fields in baryons

Within the framework of MIT bag model [9], constituent quarks are bound together in
a small (R ~ 1fm) volume, which contains strong gluon fields and also virtual partons.
Constituent quarks are the source of magnetic dipole and electric fields, which are not
screened by the external vacuum. In a simplified picture of AY hyperon as purely (ud)-s
state, the measured magnetic moment puy, = —0.613uy is to be generated by s-quark:
pa = pis, because diquarks in quantum state ¥° = (1| — lT)\/§ (as well as pseudoscalar
mesons) should have zero magnetic moment.

However, the above said is not completely true. Magnetic dipole field lines, which
constitute the dipole field of A° hyperon are contained in (penetrating) the ”bag” volume
of baryon (see Fig.1). Therefore, scalar (ud) diquark state, described by the spin wave
function ¥ can be altered in the magnetic field, and achieve (due to its magnetic po-
larizability) an induced magnetic moment fi[B], as discussed for the n-meson case in [3].
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In such picture, virtual quark-antiquark pairs and scalar diquarks are swimming in a
deconfined QCD medium (the "bag”) containing also gluons and strong magnetic field.
Let us estimate the strength of hyperfine magnetic field inside baryons: Since the
source of the magnetic dipole field is localized inside the hadronic ”bag” volume, we shall
assume, that dipole magnetic moment p = cy-un of baryon comes from the fictious current
loop of radius Rg=r,[10"m] (for proton ¢;=2.79, for A hyperon ¢;=—0.61). One has

pw=1I1-S=1I 7R} — I = (c1/7r2) pun10% ~ 5(cy /mr2)10° A (2)
using uy =5-10727J /T. Magnetic field B;,; at the center of such current loop is
Bini = ol /2Rp — Bing = (2¢1/72)102 T | (3)

if magnetic permeability p, = 47 - 10""NA~2 of vacuum is used. For A° hyperon we then
obtain internal magnetic field BY, ~ 4 - 1012T (assuming r,=0.67 [fm]), and for proton

int
BY .~ 10'3 Tesla, assuming fictious current loop radius r, = 0.82 [fm].

4 Scalar diquarks in the magnetic field

External and intrinsic magnetic field of baryons can influence quantum state of scalar
diquarks via interaction term: Hmt:—ﬁq-é . Similarly to the case of Positronium and
Muonium, spin-singlet state s [B] becomes a quantum superposition of triplet and singlet
states [4], and induced magnetic moment [6] of scalar (ud) diquark appears

Ca — Sa Ca"'sa

V2 V2
where s, =sin(a) = y/+/1 4+ y?, ca=cos(a)=+/1 — 52, and y = = /(1 + /1 + 22) depends

on magnetic field B via parameter @ = 2( |, |+ |pa|) B/AEys. Hyperfine splitting AEy, is
(Mp — My) = 77MeV for A° hyperon, and 166MeV and 194MeV for Al and Ay hyperons.
In the limit B — oo, a = 45°, and scalar diquark becomes fully polarized ¥*=—||1) in

v[B] = | T — 1) (Al ) = (|pal+ |ual) sin(20) = Ap (4)

its (J=0) state: quark magnetic moments become oriented along field B direction, while
their spins are anti-parallel. In such extreme case, polarized quark distribution functions
Au(z) and Ad(z) of AY baryon are substantially affected.

Induced magnetic moment Ay of scalar diquark should contribute to the magnetic
moment of A® hyperon, as pointed out already by Franklin et al. [10]. In the limitting
case Ap — || + |a| = 2.8uxn. For our intrinsic magnetic field B = 4 - 10'*T in A°
hyperon: sin(2a) ~ x = 2(|pu|+|1a]) B/AEL = 0.0091 and Ap = 0.0264y, which is 4%
of pip. Here, we did not take into account the full wave function !Z'/IT/Q of ¥ baryon (see Eq.1),

which contains term (1] + |1)v/2 with probability (1/v/3)2. Magnetic polarizability of
scalar (us) and (ds) diquarks in =, hyperons originates from the same mechanism: the
superposition of ¥° with W1 triplet state of Z. hyperons (they correspond to X°). Due
to different quark magnetic moment orientation relative to quark spin in (us) and (ds)
diquarks, magnetic polarizability Gy = 2(09|fiqs|¥T)%/ AE}s of (ds) diquark is expected
to be much smaller compared to (us) and (ud) diquarks (see Eq.10 and Eq.11 in [2]).

The interaction of color-magnetic dipole moments of quarks induces additional hy-
perfine mixing [8,10] of wave functions ¥7 and ¥®, which is independent from purely
electromagnetic effects we study here.
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5 Virtual ss pairs polarization in nucleon

Similarly to virtual ete™ pairs, which contribute to anomalous magnetic moments of elec-
tron and muon, virtual (s3) pairs can influence nucleon properties. Various experimental
results suggest, that (ss) quark pairs in nucleon are polarized: As = —0.1 £ 0.02 [11].

Let us assume here, that intrinsic magnetic field B;,; ~ 10T in nucleon affects
quantum state of virtual (ss) pairs. Inside the hadronic bag, without any external fields,
virtual s5 pairs would appear in pure J=07" singlet state ¥% = (1| — |1)/v/2, or in
J=1"" triplet state. Due to its smaller energy, pseudoscalar configuration ¥° should
be more probable. If internal magnetic field B;,; ~ 10'3T in nucleon modifies the wave
function U9 [ B] of scalar s§ pairs as described by Eq.(4), induced magnetic moment of J=0
(s5) pairs appears: (fi)ss = 2|us| sin(2«), which may contribute to the nucleon magnetic
moment. At the same time, net polarization of virtual s quarks occurs.

6 Conclusions

We have discussed that quantum state of scalar diquarks in A° - type hyperons can be
influenced by internal and external magnetic fields. Our estimate of the intrinsic (hyper-
fine) magnetic field for A° hyperon is By, = 4 - 10*T. We suggest, that polarized quark
distribution functions Ag(x) of A°- type hyperons can be modified due to polarization
of scalar (ud) diquark in strong electromagnetic field, which may be remotely related to
EMC effect. We also suggest, that virtual ss pairs in nucleon are effectively polarized due
to the intrinsic magnetic field of nucleon By, ~ 10'3T.

Acknowledgement: This work is supported by Slovak Grant Agency VEGA (2/0197/14).
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ROLE OF TRANSVERSITY IN SPIN EFFECTS IN MESON
LEPTOPRODUCTION.
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Abstract

We analyze the light meson leptoproduction within the handbag approach. We
show that effects determined by the transversity Generalized Parton Distributions
(GPDs), Hr and Ep are essential in the description of pseudoscalar and vector
meson leptoproduction.

1 Introduction

In our papers [1], we calculated the processes of light meson leptoproduction within
the handbag approach, where the amplitudes factorize into hard subprocesses and in
(GPDs) [2] which encode soft physics. The modified perturbative approach [3], where the
quark transverse degrees of freedom accompanied by Sudakov suppressions are taken into
account, was used to calculate the hard subprocess amplitudes. We discuss some details
of this approach for vector meson (VM) production in section 2.

The pseudoscalar meson (PM) production was analyzed in [4,5]. It was found that
the transversity GPDs Hp and Ep are essential in the description of these reactions at
low Q2. Within the handbag approach the transversity GPDs are accompanied by twist-3
meson distribution amplitudes. These transversity contributions provide large transverse
cross sections for most of the pseudoscalar meson channels [5] (see section 3)

The role of transversity GPDs in the VM leptoproduction [6] is discussed in section
4. The importance of the transversity GPDs was examined in the Spin Density Matrix
Elements (SDMEs) and in asymmetries measured with a transversely polarized target.
For the transversity GPDs Hy and Ep we used the same parameterizations as in our study
of the PM leptoproduction. Our results for SDMEs are in good agreement with HERMES
experimental data on the p production. We also estimated the moments of transverse
target spin asymmetries Ay which contain the transversity contributions. The A?}I}(%)
asymmetry is found to be not small [6] at COMPASS energies.

2 Meson leptoproduction and handbag approach

The amplitude of meson leptoproduction at large Q2 is assumed to factorize [2] into a
hard subprocess amplitude H and a soft proton matrix element, parameterized in terms

of GPDs F(z,¢,t), E(T,&,t), ....
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The proton non-flip and spin-flip amplitude can be expressed in terms of gluons, quarks
or sea contributions

1 1

Mg X /1 deH,, , F(2,&,t), My q \g—_mt 1 deH",, B4z, & ). (1)

The subprocess amplitude is calculated within the MPA [3]. The amplitude H* is a
contraction of the hard part F* which includes the transverse quark momentum k; in
the propagators and the nonperturbative meson wave function W(k,) [7]. The gluonic
corrections are treated in the form of the Sudakov factors. The resummation and expo-
nentiation of the Sudakov corrections S can be performed in the impact parameter space
b [3], and the amplitude reads as

Hiyon X / drd*b (1, —b) Foroa(T: &, T, Q% b,) asexp[—S(, b, Q%))

Here 7 is the momentum fraction of the quark that enters into the meson.

The GPDs contain extensive information about the hadron structure. Hadron form
factors and parton angular momenta can be related with GPDs. At zero skewness £ and
momentum transfer GPDs are equal to ordinary PDFs

F(x,0,0) = f%z), E%2,0,0)=e"(x). (2)

Here quarks (valence and sea) and gluon PDFs f® are determined from CTEQ6 parame-
terization [8]. The PDFs e are taken from the Pauli form factor [9].

The GPDs are estimated using the double distribution representation [10] which con-
nects GPDs with PDFs through the double distribution function w. For the valence quark
contribution it looks like

3 [(1 — |2)* — v°]

Wi(x7y7t) = hi(xat) Z (1 — |$|)3 : (3)

The functions h are determined in the terms of PDFs and parameterized in the form
h(z,t) = Nebtz=® (1 — z)", (4)

Here the ¢- dependence is considered in a Regge form and «(t) is the corresponding Regge
trajectory. The parameters in (4) are obtained from the known information about PDF's
e.g, [8,9].

The handbag approach was successfully applied to light meson leptoproduction [1]. In
Fig.1, we show our results for Q% and W dependencies of the p leptoproduction which
are in good agreement with experimental data. It can be seen in Fig. 1, (left) that the
leading twist results do not reproduce data at low @Q*. The power k% /Q?* corrections
in the propagators of hard subprocess amplitude are important in the description of the
data. Corrections can be regarded as effective consideration of the higher twist effects.
From Fig 1 (right) we see that the model describes the p meson leptoproduction quite
well for W > 4GeV. The rapid growth of the cross section at lower energies has not been
understood within the handbag model till now.
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Figure 1: Left: Cross sections of the p production at W = 75GeV /10 and W = 90GeV. Dashed line:

leading twist results. Right: The longitudinal cross section for the p° production at Q2 = 4.0 GeV?.
References to experimental data can be found in [1]

3 Transversity in pseudoscalar mesons production

Exclusive electroproduction of PM was studied within the handbag approach [4,5]. It
was shown that the asymptotically dominant leading-twist contributions, which are de-
termined by the GPDs H and FE, are not suffcient to describe the experimental results on
electroproduction of PM at low Q2 It can be seen, for example, from AS1 n(s) asymmetry

A?Jirr}(aﬁs) x Im[Mg_,++M0+vO+]' (5)

This asymmetry was found to be small in the handbag model based on the leading twist
amplitudes. This result is inconsistent with the data where Abm(qﬁé 0.5.

A new twist-3 contribution to the My_ ; amplitude, Wthh is not small at ¢’ ~ 0,
is needed to understand the data. The inclusion in our consideration of the My, 44
amplitude which has a similar twist-3 nature is also extremely important to explain the
PM production at low Q%. We estimate these contributions by the transversity GPD Hr,
E7 in conjugation with the twist-3 pion wave function in the hard subprocess amplitude

H0—7u+ [5]

- ' w ¢ v
MY oc / 1dEH0_,M+(E,...)H¥; MY o / dTHo_ .+ (T,...) EX.  (6)

The Hr GPD is connected with transversity PDFs as
HS(2,0,0) = 6%(x); and §%(z) = C N&zY? (1 — 2) [qo(x) + Aga(x)]. (7)

We parameterize the PDF ¢ (see [4,5]) by using the model [11]. The double distribution
(3) is used to calculate GPD Hrp.

At the moment, the information on Er is very poor. Some results were obtained only
in the lattice QCD [12]. The lower moments of E% and E¢ were found to be of the same
sign, similar in size and quite large. At the same time, H* and H$ have different signs.
These properties of GPDs provide essential compensation of the E7 contribution in the
7t amplitude, but Hp effects are not small there. For the 7° production we have the
opposite case — the Ep contributions are large and the Hp effects are small.

29



T T T T T T 2 T T T T T
250 [ i x,=0.34 ] x,=0.26
200 [ i_, ----- ~ Q’=2.71 GeV™] Q*=2.3 GeV?
& B s ~ - 1
g r{ RN %
S R B
[ - 3] | i
= 1 39
% - E M
— B \
e N 15 e
\ } e S— i
" ) 1 E| O 1 1 1 1
0.6 0.8 0.2 0.4 0.6 0.8
AGeV? [GeV2]

Figure 2: Left: 7° production in the CLAS energy range together with the data [14]. Dashed-dot-dotted
line- ¢ = o1 + €0y, dashed line-o77, dashed-dotted- oprr. Right: 7/7° production ratio in the CLAS
energy range together with preliminary data [15].

In Fig. 2 (left), we present our results for the cross section of the 7° production. The
transverse cross section where the Er and Hyp contributions are important [4] dominates.
At small momentum transfer the Hy contribution is visible and provides a nonzero cross
section. At —t' ~ 0.2GeV? the Ep contribution becomes essential and gives a maximum
in the cross section. A similar contribution from E7 is observed in the interference cross
section opr. The fact that we describe well both unseparated o and o7 cross sections can
indicate that transversity effects were probably observed in CLAS [14]. In Fig. 2 (right),
we show the 1 and 7 cross section ratio obtained in the model (for details see [5]). At
small momentum transfer this ratio is controlled by the Hp contribution. At larger —t
the Er contributions become important. The value about 1/3 for the cross section ratio
in the momentum transfer —t' > 0.2GeV? is a consequence of the flavor structure of the
n and 70 amplitudes. This result was confirmed by the preliminary CLAS data [15].
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Figure 3: Left: Cross sections of the K°%+ production at HERMES energies. Right: Predicted moments
of Ay asymmetries for the K9+ channel at HERMES.

A similar essential transversity Ep contribution is observed in the kaon production.
An example of our results for the K°%T cross section is shown in Fig. 3 (left). As in the
7V production, we find here a dip near —t' = 0. It was found that the longitudinal cross
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section o, which is expected to play an important role, is much smaller with respect to
the transverse cross section or at low Q?- see Fig 3 (left). At sufficiently large Q? the
leading-twist o7 contribution will dominate because transversity twist-3 effects, which
contribute to o7, decrease quickly with Q2 growing. The same result was found in the 7°
production [16]. The predicted asymmetries in K% channel are shown in Fig. 3 (right).

4 Transversity in vector mesons production

Now we extend our analysis of transversity effects to theVM production [6]. Transversity
will be essential in the amplitudes with a transversely polarized photon and a longitu-
dinally polarized vector meson. The twist-3 amplitudes have a form of (6) where the
transversity GPDs occur in combination with twist-3 meson wave functions. The asymp-
totic form for the twist-3 chiral-odd DA hﬁs& = 67(1 — 7) is used.

Note that the transversity contribution in the VM production contains the parameter
my = 0.77GeV instead of p, = 2GeV for PM production [6]. As a result, the transversity
contribution to the VM amplitudes is parametrically about 3 times smaller with respect
to PM case. In calculation of the amplitude we use the same parameterizations for
transversity GPDs Hy and Ep which was obtained in our study of the PM leptoproduction
in the section 3.
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Figure 4: Transversity effects at SDMEs at W = 5 GeV together with HERMES data [17].

The importance of the transversity GPDs was examined in the SDMEs and in asym-
metries measured with a transversely polarized target. The My, + =< E7p > amplitude
is essential in some SDMEs. Really,

oo ~ Re[Mg o4 Mot ++]; roo ~ = Mot 147 7o ~ Re[MI, Mo+ ++]. (8)

Our results for these the SDMEs in the p° meson production at HERMES are shown
in Fig. 4. These values and signs are in good agreement with HERMES experimental
data [17]. We observe that large E7r effects found in the 7° channel are compatible with
SDME of the p production at HERMES energies.

In Fig. 5, we show our results for the sin(¢ — ¢s) moment of the Ayr asymmetry

Ailfr%wi%) ~ Im[Mg—,o+M0+,0+ - MS—,++M0+,++] (9)
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at HERMES and COMPASS energies. This asymmetry is determined essentially by in-
terference of the < £ > and < F > contributions (1) and is consistent with the data.
The effects of transversity are quite small here.
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Figure 5: Model results for the A;}HT((/)_(/)S) asymmetry. Left: at HERMES. Right: at COMPASS energy.

Data are from [18,19].

The sin(¢s) moment of the Ayr asymmetry is determined by the Hy GPDs.
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Figure 6: Left: ASI}HT(%) asymmetry as COMPASS. Data are from [19]. Right: Predicted A?}?ws)

asymmetry at HERMES and CLAS energies.

This asymmetry is found to be not small at COMPASS [6] and compatible with the

data [19] Fig 6 (left). The energy dependence of A;}HT(%) from CLAS to HERMES is quite
rapid and shown in Fig. 6 (right). This prediction can be verified in a future CLAS
experiment to test the - dependence of GPDs Hrp.

In Fig.7, we show the Q? dependencies of ASUmT(d)S) and AEO;(%) which is determined by
a similar to (10) equation only with the replacement of the imaginary to the real part

there. The model results are close to experimental data.
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Figure 7: Q2 dependences of Left: AE“T((/’S) asymmetry. Right: ACLO;((/)S) asymmetry at COMPASS
together with data [19].

5 Conclusion

The handbag approach, where the amplitudes factorize into the hard subprocesses and
GPDs [2], was successfully applied to light meson production. The results based on
this approach on cross sections and various spin observables were found to be in good
agreement with data at HERMES, COMPASS and HERA energies at high Q2 [1]
At the leading-twist accuracy the PM production is only sensitive to the GPDs H and
E which contribute to the amplitudes for longitudinally polarized virtual photons. It was
found that the leading twist contributions are not sufficient to describe spin observables
in PM production at sufficiently low photon virtualities Q?. We observe that the experi-
mental data on the PM leptonproduction also require contributions from the transversity
GPDs from Hp and Ep. Within the handbag approach the transversity GPDs are ac-
companied by twist-3 meson distribution amplitudes. These transversity contributions
provide large transverse cross sections for most of the pseudoscalar meson channels [5].
There is some indication that large transversity effects are available now at CLASS [14].
Thus, the transversity GPDs are extremely essential in understanding spin effects in the
PM production.

The role of transversity GPDs in the VM leptoproduction was investigated within
the handbag approach [6]. The transversity GPDs in combination with twist-3 meson
wave functions occur in the amplitudes with the transversely polarized virtual photon
and a longitudinal polarized vector meson. The importance of the transversity GPDs
was examined in the SDMEs and in asymmetries measured with a transversely polarized
target. The SDMEs for the light VM production were found to be in good agreement with
HERMES experimental data on the p° production [17]. We also estimated the Ai}r}(%%)
transverse target spin asymmetry [6]. The results are consistent with HERMES and
COMPASS data [18,19]. The A?}r}(%) asymmetry is found in the model to be not small
at COMPASS [6] and also compatible with the data [19]. Our predictions were compared
with the COMPASS experimental data in the COMPASS paper [19].

We described well the cross section and spin observables for various meson productions.
Thus, we can conclude that the information on GPDs discussed above should not be far
from reality. Future experimental results at COMPASS, JLAB12 can give important
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information on the role of transversity effects in these reactions.

This work is supported in part by the Russian Foundation for Basic Research, Grant
12-02-00613 and by the Heisenberg-Landau program.
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Abstract

In special relativity, quantum matter can be classified according to mass-energy
and spin. The corresponding field-theoretical notions are the energy-momentum-
stress tensor ¥ and the spin angular momentum tensor &. Since each object in
physics carries energy and, if fermionic, also spin, the notions of ¥ and & can be
spotted in all domains of physics. We discuss the € and & currents in Special
Relativity (SR), in General Relativity (GR) , and in the Einstein-Cartan theory of
gravity (EC). We collect our results in 4 theses: (i) The quark energy-momentum
and the quark spin are described correctly by the canonical (Noether) currents T
and &, respectively. (ii) The gluon energy-momentum current is described correctly
by the (symmetric and gauge invariant) Minkowski type current. Its (Lorentz) spin
current vanishes, & = 0. However, it carries helicity of plus or minus one. (iii)
GR contradicts thesis (i), but is compatible with thesis (ii). (iv) Within the viable
EC-theory, our theses (i) and (ii) are fulfilled and, thus, we favor this gravitational
theory.

1. Introduction. The nucleon spin and how it is built up in terms of spin and orbital
angular momentum contributions of the quark and gluon fields is still under discussion.
Recently, in this context, the problem has been addressed of the appropriate energy-
momentum and spin tensors of quark and gluon fields, see the review paper of Leader and
Lorcé [1]. They emphasize the importance of the splitting of the angular momentum of the
gluon field into orbital and spin parts. However, since the energy-momentum and angular
momentum distributions of a field are interrelated via the orbital angular momentum, the
angular momentum question can only be answered if the energy-momentum distribution
is treated at the same time. This is an expression of the semi-direct product structure of
the Poincaré group P(1,3) := T'(4) x SO(1,3); here T'(4) denotes the translation group
and SO(1,3) the Lorentz group.

These facts are, of course, recognized by Leader and Lorcé [1] perfectly well, as can be
seen by their discussion of the so-called Belinfante and the canonical energy-momentum
tensors of both, the gluon and the quark fields. Even though they mention general
relativity (GR) in this context, their main arguments are taken from special-relativistic
quantum field theory. On the other side it is known—we only remind of Weyl’s verdict [2]
that only “the process of variation to be applied to the metrical structure of the world,
leads to a true definition of the energy” of matter—that an appropriate gravitational
theory is obligatory in order to get a clear insight into the energy-momentum distribution
of matter.
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Why is this true? In Newton’s gravitational theory the mass density of matter is the
source of gravity; in GR, by an appropriate generalization, it is the (symmetric) Hilbert
energy-momentum tensor ™t;;, which is computed by variation of the matter Lagrangian
L with respect to the metric tensor g;;, namely fit;; := 26L/6g". Consequently, we have
to assume that the energy-momentum distribution is, in the classical limit, a measurable
quantity and that this localized energy-momentum distribution, with its 10 components,
is the source of the gravitational field. As long as we subscribe to GR, the Hilbert energy-
momentum tensor is the only viable energy-momentum tensor of matter, a fact that is
put into doubt by Leader and Lorcé.!

Teryaev [3] already pointed out that the energy-momentum tensor of matter will play
a decisive role at the interface between quantum chromodynamics (QCD) and gravity, see
also [16]. He discussed the gravitational moments of Dirac particles, as done earlier by
Kobzarev and Okun [5] and by Hehl et al. [6].

Let us recall the eminent importance of the Poincaré group. Wigner’s mass-spin clas-
sification of elementary (or fundamental) particles [7] is at the basis of the standard model
of particle physics, the quark and the gluon are particular examples of it. The mass-spin
classification, by means of a scalar and a vector quantity, underlines the particle aspect
of matter. The corresponding notions for elementary fields in classical field theory, are
the energy-momentum current? and the spin current. Thus, the mass-spin classification
of matter is mirrored on the field-theoretical side by the canonical (Noether) energy-
momentum current T;*, with 4 x 4 components, and the canonical (Noether) spin current
6,;F = —6&;;* with its 6 x 4 components. The relation of the Hilbert and the Noether
energy-momentum currents will be discussed further down.

On the gravitational side, some developments took place that are not without im-
plications for the understanding of the energy-momentum and the spin distribution of
matter fields, see also the thermodynamic considerations of Becattini & Tinti [8]. GR
got a competitor in the Einstein-Cartan(-Sciama-Kibble) theory of gravitation (EC) or,
more generally, in the Poincaré gauge theory of gravitation (PG). A short outline and the
classical papers of the subject can be found in Blagojevi¢ and Hehl [9], see also the review
paper [10].

The EC is a viable gravitational theory that can be distinguished from GR at very high
densities or at very small distances occurring in early cosmology. The critical distance
is fpc =~ (Acol?;)'/?, with the Compton wave length Ac, of the particle involved, about
1072¢ cm for the nucleon, and the Planck length fp; ~ 1073 cm. Mukhanov [11] has
argued the the data of the Planck satellite support GR up to distances of the order of
10727 cm, that is, the same order of magnitude where the deviations of EC are supposed
to set in.

The EC-theory is a simple case of a PG-theory. The PG-theory is formulated in
a Riemann-Cartan (RC) spacetime with torsion Cj;* (= —C;*) and curvature R;;*
(= —R;i* = —R;;'*). The gravitational Lagrangian of PG-theory is, in general, quadratic
in the field strengths torsion and curvature. EC-theory is the simplest case, when the
Lagrangian, apart from the cosmological term, consists only of a linear curvature piece
~ R;7* (summation!), the Riemann-Cartan generalization of the Hilbert-Einstein La-

L« we feel that the fundamental versions are the canonical and the Belinfante ones, since they involve

at least local fields...”, see [1], page 92.
2We use, for energy-momentum and spin, the notions ‘tensor’ and ‘current’ synonymously.
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grangian. Then, additionally to the gravitational effects of GR, we find a very weak spin-
spin-contact interaction that is governed by Einstein’s gravitational constant. But what is
more relevant in the present context is that in PG-theory—hence also in EC-theory—the
source of the Newton-Einstein type gravity is the canonical energy-momentum and the
source of a Yang-Mills type strong gravity the canonical spin.

However, one has to be careful in the details: Gauge field, like the electromagnetic or
the gluon field, do not carry canonical (Lorentz) spin, but rather only helicity, see [12]. In
this case, the canonical energy-momentum turns out to be what is conventionally called
the symmetrized energy-momentum. This will be explained in detail. With these provisos
in mind, we can state that the canonical tensors for energy-momentum and spin play the
role of sources of gravity in the PG-theory. Here we have an interface between gravity
and hadron physics as stressed by Teryaev [3].

2. Action principle, translational invariance. @~ We consider classical matter field
U(z) (scalar, Weyl, Dirac, Maxwell, Proca, Rarita-Schwinger, Fierz-Pauli etc.) in special
relativity (SR). The Minkowski spacetime My, with Cartesian coordinates z° (i,7,--- =
0,1,2,3), carries a Lorentz metric g;; = o;; := diag(+ — ——). An isolated material
system with first order action Wy = 1 [ dQL(V,0F) (see [14,13]) is invariant under
4 translations, #”* = x° 4 a’. The Noether theorem and §£/§¥ = 0 yield the energy-
momentum conservation in the form

: oL
J o
N 00,V

4x4

0,0 — L7, (1)

0,%7 =0/,

with the canonical (Noether) energy-momentum tensor of type (1), also called momentum
current density. It is, in general, asymmetric and has 16 independent components.
With metric we can lower the upper index of T,7and can decompose %;; irreducibly
with respect to the Lorentz group?® (here Eij =Ty — %lgij‘lkk):
1
T = ij + o T+ T (2)
16 = 9 (sym.tracefree) @ 6(antisym.) & 1 (trace).

An ansatz for a simple classical fluid (“dust”) is

.7 = ; u? observe natural index positions) . 3
L mho P ) (3)
mom. curr. d. mom. d. velocity

If the momentum density is transported in the direction of the velocity, p; = pg;ru”, with
p as mass-energy density, then Tj;;; = 0. A bit more refined is the classical ideal (perfect,
Euler) fluid, with p as pressure:

Tij = (p+ p)uiuj — pgij , Ly =0, T =p—3p. (4)

Superfluid *He in the A-phase is a spin fluid of the convective type, see Eq.(8) below.
The angular momentum law, as formulated for the A-phase on p. 427 of Vollhardt &
Wolfle [16], is a proof of this stipulation. This is an irrefutable result that asymmetric
stress tensors do exist in nature, a fact doubted in many texts.

3The Bach parentheses are (ij) := £{ij + ji}, [ij] :== 3{ij — ji}, see Schouten [15].
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The quark current, as spin 1/2 current, should be of a similar type as the superfluid
3He in the A-phase. That is, the (physically correct) energy-momentum current of the
quark field should be asymmetric and most probably the canonical (Noether) current T,/
of Eq.(1).

In electromagnetism, only Z,; survives (9 components), since it is massless, that is,
T* = 0, and carries helicity, but no (Lorentz) spin, i.e., Ziij) = 0. The analogous should
be true for the gluon field, since, like the Maxwell (photon) field, it is a gauge field, see
below for some more details.

From where did Einstein take the symmetry of the energy-momentum tensor? Ein-
stein, in [17] on the pages 48 and 49, discussed the symmetry of the energy-momentum
tensor of Maxwell’s theory. Subsequently, on page 50, he argued: “We can hardly avoid
making the assumption that in all other cases, also, the space distribution of energy is
given by a symmetrical tensor, T, ...” This is hardly a convincing argument if one
recalls that the Maxwell field is massless. As we saw, the A-phase of *He contradicts
Einstein’s assumption. Asymmetric energy-momentum tensors are legitimate quantities
in physics and, the symmetry of an energy-momentum tensor has to retire as a generally
valid rule.

3 Lorentz invariance. Invariance under 343 infinitesimal Lorentz transformations,
=2t 4w zj, with w# = 0, yields, via the Noether theorem and 6£/6V¥ = 0, angular
momentum conservation,

oL
(St + =%yt )=0, &;'=- Jiu V= =-6;". ()
~ —— ~— 83k
spin orb. angular mom. 6x4 Lor gen.

The canonical (Noether) spin &;;*, the spin current density, is a tensor of type (1), plays
a role in the interpretation of the Einstein-de Haas effect (1915). If we differentiate in
(5); the second term and apply 9,%;* = 0, then we find a form of angular momentum
conservation that can be generalized to curved and contorted spacetimes (x' is not a
vector in general):

O (&% + 2l =0 = 0,6k — gl = o, (6)

If &9% = 0, then Tl = 0, that is, the energy-momentum tensor is symmetric, but not
necessarily vice versa.

The irreducible decomposition of &%, with the axial vector piece **&;;, = S
and the vector piece YF¢&; ;% := 26,1 5|j], reads:
61]k — TENGijk + VECGijk 4 AXGZ]k7 (7)
2% = 16 @© 4 @ 4,

The Weyssenhoft ansatz for a classical spin fluid is again of the convective type:

J — . J ks ko 5.k
T, = p; u and St = 55 w, =-6;". (8)
mom. curr. d. mom. d. velocity spin curr. d. spin d. velocity

The momentum density p; is no longer proportional to the velocity, as it was in (3).
Usually, the constraint s;;u7 = 0 is assumed.
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For the Dirac field, which cannot be described by a Wessenhoff ansatz, the spin current

D D
is totally antisymmetric, &;jz=G/;x. Thus, only the axial vector spin current survives,

D
AX Gx# 0. The Dirac field is highly symmetric. Accordingly, we can introduce the spin
flux vector

1

S = 56”“(‘5%1 ~  (spin flux density 1 comp., spin density 3 comps.). (9)

The 3d spin flux density distribution is spatially isotropic.

4. Poincaré invariance.  We collect our results: The Poincaré invariance of the action
yields the 4 4+ 6 conservation laws,

T =0 (energy-momentum conservation) , (10)

WGy — Ty = 0 (angular momentum conservation) . (11)

These field theoretical notions T;* and &;;* have their analogs in a the particle description
of matter. The Lie algebra of the Poincaré group reads (see [18] for details, A = 1):

[-Pi7 P]] =0 ’
[Jij, Pl = 2t gii P (transl. and Lorentz transf. mix, as in &, + 2 %),  (12)
[Tijs Ta) = 2i(gngs T — GuaTje) -

We recognize its semidirect product structure, as it is manifest in the existence of orbital
angular momentum. The “square roots” of the Casimir operators P? (mass square) and
W? (spin square), with the Pauli-Lubariski vector W' := 1" J; P, correspond to T;*
and GUk

5. Exterior calculus in a Riemann-Cartan (RC) space, the electromagnetic
gluon energy-momentum, and the Dirac field. @ We introduce the generally co-
variant calculus of exterior differential forms that is valid not only in Minkowski space,
but also in the RC-spacetime of the Poincaré gauge theory of gravity, see [19]. We work
with an orthonormal coframe (tetrad) ¥ = e;*dx® and a Lorentz connection I'*¥ =
[;%%dxt = —TP%; the fields are exterior forms (0-forms, 1-forms,..., 4-forms) with val-
ues in the algebra of some Lie group; the frame (or anholonomic) indices are in Greek,
a,B,--- = 0,1,2,3. The electromagnetic potential is a 1-form A = A;dz’, the field
strength a 2-form F := dA = Fj;dz* A da?, the exterior derivative is denoted by d, the
gauge covariant exterior derivative is by D, for details see [20].

The matter currents translate from tensor to exterior calculus as follows: Energy-
momentum 3-form T, = T,7*V., = 6 Lypa;/69%, spin 3-form &,5=6,5" *, = Liar /TP,
with the Hodge star *. Here we displayed already the variational expression, which will
be explained below.

Maxwell’s vacuum field A(x) is a 1-form, a geometrical object independent of coordi-
nates and frames. As such, it has vanishing Lorentz-spin, &,5 = 0, but helicity £1. The
analogous is true for the gluon field. As a consequence, in exterior calculus, its canon-
ical (i.e. Noether) energy-momentum 3-form is symmetric and gauge invariant directly,
see [19], footnote 53. Conventionally, see [14], the coordinate dependent components A; of
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A are used in the Lagrangian formalism, see also the clarifying considerations of Benn et
al. [21].

Thesis 1: The energy-momentum current 3-form of the free gluon field F' = DA is given
by the Minkowski type expression [22]

. o1 ~
Ta =gl A (€] F) =" FA(e]F)] o %= 155Flekl — Fy " (13)

The (Lorentz) spin current of the gluon field vanishes, G,5" = 0, the gluon orbital angular
momentum current is given by x;,%g and represents the total angular momentum. As a
gauge potential, the gluon is described by a I1-form and has helicity £1.

The second example, Dirac field in exterior calculus for illustration. Its Lagrangian
reads,

Lp = %(E*’y A DV + DU A ) + *mB¥ (14)

with v := 7,9% and Vs = 0agls. The 3-forms of the canonical momentum and spin
current densities are (D, := e, | D, here | denotes the interior product sign):

Ta=5 (T A Dl + DU A E),  Gag=ta AV A T35 (15)

In Ricci calculus G5y = Sapy = ieamgﬁ%’y‘s\lf. Because of the equivalence principle,
the inertial currents T, and &, are, at the same time, the gravitational currents of the
classical Dirac field. A decomposition of (T, S,g5) a la Gordon, yields the gravitational
moment densities of the Dirac field [6]; it is a special case of relocalization, see below.

Thesis 2: The canonical (Noether) energy-momentum and the canonical (Noether) spin
current 3-forms of a Dirac/quark field are given by the expressions in Eq.(15).

6. Relocalization of energy-momentum and spin distribution. = We redefine the
canonical currents T,/ and G;;* by adding curls, see [23, 6],

T =T+ Y, 6yF = 6 Y+ ZyM, (16)

with the arbitrary antisymmetric super-potentials V¥ = —Y;* and Z,;" = — Z;;t =
— Z;*. We substitute (16); and the partial derivative of (16), into (10) and (11), Then
we recognize that these relocalized currents fulfill the original conservation laws:

9,37 =0, 96,5 —T,;=0. (17)

The integrated total energy-momentum and the total angular momentum of an insular ma-
terial system are invariant under relocalization [23]. However, “relocalization invariance”
under the transformations specified in (16) is not a generally valid physical principle. It
should rather be understood as a formal trick to compute the total energy-momentum
and angular momentum in a most convenient way.

It is convenient to introduce a new superpotential U that is equivalent to Y by

Ui =Yy =-U* = Yr=-Ur+U0"*-U7. (18)
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The Belinfante relocalization (1939) is a special case: Belinfante [24] effectively re-
quired &5/ = 0. Then, by (16)y and (18),, &;;* = U;;* — 8, Z;;* and the relocalized
energy-momentum, Pt/ := T/, with &,/ = 0, reads

Bl — ) - g (&7 — &%+ 47) with [ =0, Mgy =0]  (19)

For the Dirac field, because of the total antisymmetry of &;;;., we find simply Pelt;; =
Belt(ij) = T(;j), see [25]. Incidentally, the Gordon relocalization, mentioned above, differs
from the Belinfante relocalization.

7. Dynamic Hilbert energy-momentum in general relativity. How can we
choose amongst the multitude of the relocalized energy-momentum tensors and spin ten-
sors? After all, as physicists we are convinced that the energy and the spin distribution
of matter (but not of gravity!) are observable quantities, at least in the classical domain.
There must exist physically correct and unique energy-momentum and spin tensors in
nature. The Belinfante recipe was to kill Ty in order to tailor the energy-momentum for
the application in Einstein’s field equation.

Already in 1915, Hilbert defined the dynamic energy-momentum as the response of
the matter Lagrangian to the variation of the metric [26]:

) { g
Hltij = 2(5£mat<g> ‘IJ ) v \D)/(Sg” ; (20)

g" (or its reciprocal gy;) is the gravitational potential in GR. The matter Lagrangian is
supposed to be minimally coupled to g, in accordance with the equivalence principle.
Only in gravitational theory, in which spacetime can be deformed, we find a real local
definition of the material energy-momentum tensor. The Hilbert definition is analogous
to the relation from elasticity theory “stress ~ d(elastic energy)/d(strain)”. Recall that
strain is defined as €% := % ((dCfO) g0 — (undefo) g“b), see [27]. Even the factor 2 is reflected
in the Hilbert formula.

Rosenfeld (1940) has shown [28], via Noether type theorems, that the Belinfante ten-
sor Belt,; derived within SR, coincides with the Hilbert tensor Mit;; of GR. Thus, the
Belinfante-Rosenfeld recipe yields...

Thesis 3: In the framework of GR, the Hilbert energy-momentum tensor
Ty =Py = 37 — Vi (677 — &7 + 6%7) = T, (21)

localizes the energy-momentum distribution correctly; here (T;7,&,;*) are the canonical
Noether currents. The spin tensor attached to Hit;? vanishes.

The Rosenfeld formula (21) identifies the Belinfante with the Hilbert tensor. In other
words, the Belinfante tensor provides the correct source for Einstein’s field equation. As
long as we accept GR as the correct theory of gravity, the localization of energy-momentum
and spin of matter is solved. This state of mind is conventionally kept till today by most
theoretical physicists. In passing, one should note that the spin of matter has a rather
auxiliary function in this approach. After all, the spin of the Hilbert-Belinfante-Rosenfeld
tensor simply vanishes.

However, the Poincaré gauge theory of gravity (PG; Sciama, Kibble 1961, see [9] for
a review), in particular the viable Einstein-Cartan theory (EC) with the curvature scalar
as gravitational Lagrangian, has turned the Rosenfeld formula (21) upside down.

71



8. Dynamic Sciama-Kibble spin in Poincaré gauge theory. The gauging of the
Poincaré group identifies as gauge potentials the orthonormal coframe 9¥* = e;*dx’ and
the Lorentz connection 'Y = I';*?da? = —I'%*. The spacetime arena of the emerging
Poincaré gauge theory of gravity (PG) is a Riemann-Cartan space with Cartan’s torsion
and with Riemann-Cartan curvature as gauge field strength, respectively [10]:

Ci;* = Ven®, Ry = V7l (or C* = DY*, R = “D"T%F), (22)

The energy-momentum and angular momentum laws generalize to

Vi T = Gt T4 Ry™ 6", Vi 64" — Ty = 0; (23)
torsion curvature

here %k:: Vi + Ciw. GR is the subcase for Gijk = 0, see also [30,29]. The material
currents are defined by variations with respect to the potentials (minimal coupling!):

. I X T
KT = 6Lmat(e, U, D W) /be,, KBS = 0Lmar(e, U, D W) /6T . (24)

This Sciama-Kibble definition of the spin (1961) in equation (24) is only possible in
the Riemann-Cartan spacetime of PG. It is analogous to the relation “moment stress ~
d(elastic energy)/d(contortion)” in a Cosserat type medium, the contortion being a “ro-
tational strain”, see [31].

The application of the Lagrange-Noether machinery to the minimally coupled action
function yields, after a lot of algebra, the final result, see [19]:

SKsai — (S:Qi ’ SKgaﬁi — 6&,8Z ) (25)

The dynamically defined energy-momentum and spin currents a la Sciama-Kibble coincide
with the canonical Noether currents of classical field theory.

Thesis 4: Within PG, the quark energy-momentum and the quark spin are distributed in
accordance with the canonical Noether currents T," and S.45', respectively.

This is in marked contrast to the doctrine in the context of GR.
We express the canonical energy-momentum tensor in terms of the Hilbert one (see

[32]):
SKSai — zai —_ Hitai+ %k (Galk o Gika + Gkal) ’ SKGQﬁi — 60{51 ) (26)

The new Rosenfeld formula (26); reverses its original meaning in (21). Within PG, the
canonical tensor T’ represents the correct energy-momentum distribution of matter and
the (sym)metric Hilbert tensor now plays an auxiliary role. In GR, it is the other way
round. Moreover, we are now provided with a dynamic definition of the canonical spin
tensor. In GR, the spin was only a kinematic quantity floating around freely.

These results on the correct distribution of material energy-momentum and spin in the
framework of PG are are independent of a specific choice of the gravitational Lagrangian.
However, if we choose the RC curvature scalar as a gravitational Lagrangian, we arrive
at the Einstein-Cartan(-Sciama-Kibble) theory of gravitation, which is a viable theory of
gravity competing with GR.
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9. An algebra of the momentum and the spin currents?  We discussed exclu-
sively classical field theory. Can we learn something for a corresponding quantization of
gravity? Our classical analysis has led us to the gravitational currents T, and &,5. They
represent the sources of gravity.

In strong and in electroweak interaction, before the standard model had been worked
out, one started with the current algebra of the phenomenologically known strong and the
electroweak currents (see Sakurai [33], Fritzsch et al. [34], and also Cao [35]).

Schwinger (1963) studied, for example, the equal time commutators of the components
of the Hilbert energy-momentum tensor [8]. Should one try to include also the spin tensor
components and turn to the canonical tensors?

In the Sugawara model (1968), “A field theory of currents” was proposed [37] with
8 vector and 8 axial vector currents for strong interaction and a symmetric energy-
momentum current for gravity that was expressed bilinearly in terms of the axial and
the vector currents. Now, when we have good arguments that the gravitational currents
are T, and S,3, one may want to develop a corresponding current algebra by determining
the equal time commutator of these currents....
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Abstract

We discuss a new nonperturbative mechanism for spin effects in high energy
reactions with hadrons. This mechanism is based on the existence of a large anoma-
lous quark chromomagnetic moment (AQCM) induced by the nontrivial topological
structure of QCD vacuum. As an example, we estimate the contribution of this
interaction to the single spin asymmetry (SSA) in the inclusive pion production in
the proton-proton scattering. We show that SSA induced by AQCM is large and
its value is in qualitative agreement with experimental data.

The explanation of the large spin effects in high energy reactions with hadrons is
one of the long-standing problems in QCD (see [1,2] and references therein). It is well
known that QCD has a complicated structure of vacuum which leads to the phenomenon
of spontaneous chiral symmetry breaking (SCSB) in strong interaction. The instanton
liquid model of QCD vacuum [3,4] is one of the models in which the SCSB phenomenon
arises in a very natural way due to the quark chirality-flip in the field of strong fluctuation
of vacuum gluon fields called instantons. As the result, instantons lead to the anomalous
quark-gluon chromomagnetic vertex with a large quark spin-flip [5]'. Therefore, they can
give an important contribution to the spin dependent cross sections.

In this Letter, we discuss the mechanism of spin effects based on the quark spin-flip
by the nonperturbative contribution coming from AQCM. As an example, we present the
estimation of the AQCM contribution to SSA in the inclusive pion production in the high
energy proton-proton interaction?.

The general quark-gluon vertex with the AQCM contribution is

taFo(q?)

V 2 ta — Sta
u(a”) g (%Hr—qu

Tyl (1)
where the first term is the conventional pQCD quark-gluon vertex and the second term
in our model comes from the nonperturbative sector of QCD. In Eq.1, the form factor F5
describes nonlocality of the interaction, u, is AQCM, ¢? is the virtuality of the gluon and
M, is the dynamical quark mass.

IThe importance of SCSB phenomenon for quark spin-flip was also mentioned in the recent paper [6]
in the different aspect.
2The details of calculation of the AQCM contribution to SSA at the quark level can be found in [7].
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The form factor Fy(q?) suppresses the AQCM vertex at short distances when the
respective virtuality is large. Within the instanton model [3,4] it has the following form

B (q*) = Fy(lq 1 p),

where 4
F(2) = 5 = 2Ks(2) )
is the instanton form factor, Ks(2) is the modified Bessel function and p is the instanton
size.
In this model AQCM is [§]

3m(M,p.)?
mare) 3)

Os
where p. is the average size of instantons in the QCD vacuum. The value p, of AQCM
strongly depends on the dynamical quark mass M, generated by SCBS. In the mean
field approximation (MFA) [3], M, = 170 MeV and from Eq.3 p, M4 = —0.4. In the
Diakonov-Petrov model (DP) [4], M, = 350 MeV and puP* = —1.6. The strength of
nonperturbative interaction in Eq.1 has the following dependence on M, and the strong
coupling constant g

Ma = —

Vnonpert ~ %7
gs
which clearly shows the relation to the SCSB phenomenon induced by nonperturbative
QCD dynamics.
The SSA for the process of transversely polarized quark scattering on an unpolarized

quark, CIT(Pl) + q(p2) — q(py) + q(ph), is defined as

B do! — dot
 dol + doV’

(4)

N

where T| denote the initial quark spin orientation perpendicular to the scattering plane.
On the other hand, the value of SSA can be expressed in terms of the helicity amplitudes:

_ 2]77’1,[((1)1 + (1)2 + (1)3 — @4)@?]
|B1]2 4 [Do? + | D3] 4 [Dy? + 4]D5[?)

¢, = M++;++7 Py = M—H—;——a 3 = M+—;+—7 4= M+—;—+7 Q5 = M++;+—7

Ay =

(5)

where the symbols + or — denote the helicity of a quark in the c.m. frame. In Fig.1, we
present the set of diagrams which give a leading contribution to Ay.
The result of the calculation is shown

in the the left panel of Fig.2. It is evident § XIHI( i é é +EE:>

that Ay induced by AQCM is very large An X 3 3 3 3 5
and has a rather weak dependence on M,. 3 +|_T|+E: :g::*‘ i
We would like to emphasize that Ay in our ' '
approach does not depend on energy. This Figure 1: Contribution to SSA arising from differ-
behavior is directly related to the spin one ent diagrams.
t-channel gluon exchange.

This phenomenon is in agreement with experimental data. Another remarkable feature
of our approach is a flat dependence of SSA on the transverse momentum. It comes from

+
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Figure 2: Left panel: the ¢; dependence of SSA for the different values of the dynamical quark mass

and fixed value for the dynamical gluon mass my = 0.75 GeV. Right panel: STAR data for inclusive 7°

production [9)].

a rather soft power-like form factor in the quark-gluon vertex, Eq.2, and a small average
size of an instanton, p. ~ 1/3 fm [3]. Such a flat dependence has been observed by the
STAR collaboration in the inclusive 7 production in high energy proton-proton collision,
right panel of Fig.2, and was not expected in the models based on the so-called TMD
factorization [10]. Finally, the sign of the SSA is defined by the sign of AQCM and should
be positive. This sign is very important for explanation of the signs of SSA observed for
the inclusive production of 7, 7~ and 7 mesons in proton-proton and proton-antiproton
high energy collisions. We can estimate asymmetry at the hadron level for the inclusive
production of pions in the proton-proton scattering by using some simple assumptions.
Let us consider only leading fragmentation of pions from the final quark. In this case,
SSA for the different charge of pions is

A
AT () ~ %A%(qo, (6)

where A% (¢:) is SSA at the quark level presented in the left panel in Fig.2, Ag, is the
transverse polarization of the quark with the given flavor in the transversely polarized
proton and ¢ is the number of the corresponding quark in the proton. Using the additional
assumption Ag, ~ Agq, where Aq is the longitudinal polarization of the quark in the
longitudinally polarized proton we have got

AR (@) = 0.383A% (@), AR (@) = —03274% (@), AR (@) = 0.146A% (@), (7)

where we used values Au = 0.766 and Ad = —0.327 from [11]. Finally, one can verify that
our estimation given by Eq.7 is in qualitative agreement with the available experimental
data [9,12,13] for the large zr region.

In summary, we discussed the spin effects in high energy reactions induced by AQCM.
This phenomenon appears from the anomalous strong spin-flip quark-gluon interaction
induced by the topologically nontrivial configuration of the vacuum gluon fields called
instantons. As an example, we estimated the contribution of AQCM to SSA in the
inclusive production of the pions in the proton-proton scattering and showed that it
was large. Additional arguments for the importance of AQCM for spin effects in high

7



energy reactions can be found in [14] where its contribution to the elastic proton-proton
scattering at large momentum transfer was considered. We would like to mention that
the mechanism of spin effects based on AQCM is quite general and might happen in any
nonperturbative QCD model with SCSB. The attractive feature of the instanton model
is that within this model this phenomenon comes from rather small distances p. ~ 0.3
fm. As the result, it allows one to understand the origin of large observed spin effects at
large transverse momenta.

The authors are very grateful to A.V. Efremov for the invitation to DSPIN-13 Work-

shop and for the discussion.
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Abstract

It is shown that the existing four-loop result for the Bjorken polarized sum rule
for deep inelastic electron-nucleon scattering obtained within perturbative Quantum
Chromodynamics should be supplemented by the calculation of the diagrams of the
so called singlet type. We also suggest a new exact relation which connects the
Bjorken polarized sum rule and the the Gross-Llewellyn Smith sum rule.

Since the discovery of the asymptotic freedom [1] there was the enormous progress in
perturbative calculations in Quantum Chromodynamics (QCD). In particular calculations
of the Bjorken sum rule for polarized deep inelastic electron-nucleon scattering [2] have
now some history. The leading O(ay) correction in the strong coupling constant a, was
calculated in [3]. The next-to-leading O(a?) approximation was obtained in [4] and the
O(a?) correction was found in [5]. Quite recently the O(a?) approximation was published
[6].

In the present contribution we demonstrate that the calculation [6] should be supple-
mented by the calculation of the diagrams of the so called singlet type. We determine
this singlet contribution up to an overall constant using the Crewther relation [7].

We also suggest a new exact relation which connects the Bjorken polarized sum rule
and the the Gross-Llewellyn Smith sum rule.

The Bjorken sum rule for polarized deep inelastic scattering has the following form

1
/ (977 (2, Q%) — g7" (2, Q%)) dz = %ngp(as(QQ)) + nonperturbative terms, (1)
0

where g;¥ and g¢{" are the structure functions of polarized electron-proton and electron-
nucleon deep inelastic scattering, g4 &~ 1.22 is the axial constant of the neutron (-decay,
Q? is the Euclidean momentum transfered squared, a, = a,/7 is the strong couplant.

The coefficient function Cgj,(as) = 1 + O(as) enters the following short-distance op-
erator product expansion (OPE)

i/d%eiqu [J.(2)1,(0)] = (quan — QWQZ)HEM(Q2)+ (2)

euy,\p% [ %jp(as)A‘f\(O) + CEJ(@S)A/\(O)] + higher twists,

where the summation over repeated indexes is assumed, J, is the electromagnetic quark
current, ITPM(Q?) is the polarization function, A = ¥y\y5t%) is the non-singlet (NS)
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axial quark current, t* being the (diagonal) generator of the flavor SU(ny)-group, ny
being the number of quark flavors. Ay = 17,751 is the singlet (SI) axial quark current.

To calculate the coefficient function C%; (as) at the multiloop level one uses the
method of projections [8] which gives

i/d4xeiqx <o|T [E(p)%f’}/s,ta?ﬂ(—p)Ju(x)J,,(O)] 0> ‘Z;ngutated _ (3)

q
const ewgpq—gC%jp(as)ZAy

where 1 (p) is the Fourier transform of the quark field carrying the momentum p. Quark
legs are amputated. Z4 is the renormalization constant of the non-singlet axial current.
const is the normalization constant. The technique how to deal with the ~vs-matrix in
multiloop calculations within dimensional regularization and minimal subtraction scheme
is given in [9].

The coefficient function Cf; (a,) receives contributions from two types of diagrams.
The first type, the non-singlet one (with both electromagnetic vertexes attached to the
fermion line of external quark legs) produces the flavor factor Tr(Q3t*), where Q; is the
(diagonal) quark charge matrix Q; = diag(2/3,—1/3,—1/3,...). The second, the singlet
type (when one electromagnetic vertex is attached to the fermion line of external quark
legs and another to the internal quark loop) gives the flavor factor Tr(Qs)Tr(Qst*). The
ratio of these flavor factors does not depend on the index a

Tr(QNTr Q") &
Ti(@fct“)f _3;% @

where ¢; are electromagnetic quark charges. That is why one can factorize from C%; (as)
the a-independent coefficient function Cpj,(as) which enters the sum rule (1)

C’f;jp(as) =Tr (Qfet“) CN%(a,) + Tr (Qf) Tr (Qst?) C(ay) = (5)

ny
<C'Ns(as) + 3(2 qi)C’Sl> Tr (Q5t") = Cpjplas)Tr (Q7t") .
i=1
It is the contribution of the singlet type C'*7 which is missed in the calculation [6] of the
a-correction to the Bjorken polarized sum rule. It is interesting to note that individual
diagrams of the singlet type give non-zero contributions to the sum rule already in the
a? order but their total sum nullifies [5] in this order. It can be explained by using the
generalized Crewther relation [7]. The relation states that

Cij(GS)DNS(GS) =dp (1 + ﬁ(GS)K(%)> ) (6)

Qs

K<as) = aslG + ngKQ + aiKg + ..

where K; are calculable in QCD coefficients, dg is the dimension of the quark represen-
tation (dg = 3 in QCD), ((as) is the renormalization group [-function

aas i+2
i 7
Ble) = 5 = 3 ™)
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with the well known first coefficient 5y = —%C A+ %Tpn ¢, Ca being the quadratic Casimir
operator of the adjoint representation of the group and Tr being the trace normalization
of the fundamental representation.

The Adler function DV(a,) is defined as

D" (a,) = —127°Q*~ 55 i HEM@ ), (8)

DM (a,) = (Z q2> D5 (ay) <Z qz) D% (ay).

The singlet diagrams contributing to Cg;,(as) at the a® and the a? levels are proportional
to the color factor d®¢d®¢, where d®*¢ are the symmetric structure constants of the SU(N,)
color group (for QCD with the SU(3) group one gets d**¢d**¢ = 40/3). At the a? level the
sum of the singlet diagrams should nullify since the color factor d®¢d® is the complete
color factor for these diagrams and the coefficient 3, can not be factorized which is in the
contradiction with the Crewther relation (6). At the a? level there are enough loops (four)
to generate the color structure 3yd®“d® in accordance with the relation (6). Thus on
can get the non-zero singlet contribution to the Bjorken polarized sum rule in the order

4

g

ny
Cpjplas) = OV (as) + Xaipo Z g d™d™ + O(a?), 9)
i=1
where the non-singlet contribution was calculated up to and including the order a? in [6].
The numerical constant X is still to be calculated to get the complete O(a?) correction.
In principle it is possible that after calculating the singlet contribution to Cg;p(as)
one can see at the a? level the validity of the interesting relation which connects different
physical quantities

[C’NS(as) + nfC’SI(as)} DNS(a,) = Cars(as) [DNS(aS) + nfDSI(aS)} , (10)

here Cgrs(as) is the coefficient function of the Gross-Llewellyn Smith sum rule for deep
inelastic neutrino-nucleon scattering [11]. DV9(as)+n;D%!(as) = D(as)/nys, where D(as)
is the Adler function corresponding to the correlator of the flavor singlet quark currents.
This relation is valid at the a? level. To show that it can be valid in all orders let us

consider OPE for the following 3-point function
Tab

.0 =i [ <O (@) AWVAO] o > 7 dady, (1)
where Vi = E%@Z) is the vector singlet quark current, V? = 1)7,%) is the vector non-
singlet quark current, A is the axial vector current defined in eq.(2).

We can apply first the following OPE

; a % a q
Z/T [A)\(y)VVb(O)} e¥dy =0 be,\,,agQ—éCGLS(as)Va(O) + ... (12)
and substitute it into eq.(11) to get
a a q 1pT
TWZ’A(p, q) =90 qugQ—iC@Lg(as)/ < 0|T [V, (2)V,(0)] |0 > eP?dx + ... (13)
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For more formal derivation of the OPE for 3-point functions see [§].
On the other hand we can apply first the following OPE

i / T (V) V2O0)] €77 = s 2 [CV¥(0) + mgC¥(a)] AL0) + . (14)

and again substitute it into eq.(11) to obtain

a p
T/ui))\(pa Q) = E,uuaﬁp_i [CNS<CLS) + TLfCSI(CLS)] X (15)

/ < 0|T [AS(y)A%(0)] |0 > €"*dg + ...

Comparing eq.(13) and eq.(15) one can see a connection close to that of the relation (10).
But presently we do not have a proof of this relation.

If eq.(10) is valid then one can determine the constant X in eq.(7) without ex-
plicit calculations of the singlet contribution to Cpjp(as) using results of ref. [10]: X =

179 |, 25 5
—3m1 T 136 — 2165
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FEMTOSCOPIC CORRELATIONS OF TWO IDENTICAL
PARTICLES WITH NONZERO SPIN IN THE MODEL OF
ONE-PARTICLE MULTIPOLE SOURCES
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Abstract

The process of emission of two identical particles with nonzero spin and differ-
ent helicities is theoretically investigated within the model of one-particle multipole
sources. Taking into account the unitarity of the finite rotation matrix and symme-
try relations for d—functions, the general expression for probability of emission of
two identical particles by two multipole sources with angular momentum J, aver-
aged over the projections of angular momentum and over the space-time dimensions
of the generation region, has been obtained. For the case of unpolarized particles,
the formula for two-particle correlation function at sufficiently large 4-momentum
difference ¢ is derived by the additional averaging over helicities. The concrete cases
of emission of two unpolarized photons by dipole and quadrupole sources, and emis-
sion of two “left” neutrinos by sources with arbitrary .J have been also considered,
and the respective explicit expressions for the correlation function are obtained .

1. In the framework of the model of independent sources [1] with the angular mo-
mentum J and the projections of angular momentum onto the coordinate axis z, equaling
M and M’, the amplitude of emission of two identical particles with the momentum py,
helicity A\; and momentum ps, helicity \s has the following structure :

AMM’(pla)\ﬁpZ;)\Z) =

= D00 D3y (ng) €75 €725 4 DI () DYy () €472 €222, (1)

where x; and x5 are the space-time coordinates of two multipole sources,
p1r1 = Erty — p1x1, paxa = Eaty — paXa,

Df\ﬂw(nl) = DE\{)M(O,QM¢1) - (dy(0>917 1) eiM(z)l)AlM,

D (12) = DY 0,02,62) = (00,02, 6) €%

are elements of the finite rotation matrix corresponding to the angular momentum J,
n; = p1/|p1|, na = po/|p2|, 01,602 and @1, P - polar and azimuthal angles of the mo-
menta p; and ps, respectively .

Thus, in accordance with Eq. (1), the probability of emission of two identical particles
with spin S, respective 4-momenta pq, po and helicities A\j, Ay by two multipole sources

(2)

oM
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with the angular momentum J and projections M, M’ of angular momentum onto the
axis z amounts to :

Warns (91, M p2: Aa) = | Dy (m) ] D3 (o) | DS () D3 (o) o+
+ 2 (=1)% Re (DY) (00) D33} (m2) D3 (00) DY) () ) cos(q), (3)
where ¢ = p; — ps is the difference of 4-momenta of two identical particles and x = 1 —

is the difference of 4-coordinates of two one-particle multipole sources.

Now let us average this expression over the angular momentum projections M, M’ and
over the space-time dimensions of the emission region . In doing so, we take into account
that, due to the unitarity of the finite rotation matrix, the following relations hold :

J J
J
> D)= Y | D (m)f =
M=—J M/'=—J
J
J J
= 2 1D = >0 [ DS = 1. (4)
M=—J M'=—J

Let us remark that, without losing generality, we may choose the coordinate axis z
as lying in the plane of the momenta p; and p,, with the axis y being perpendicular to
this plane. Then the azimuthal angles of the momenta p; and p, will be equal to zero:
91 = ¢ = 0, and the angle § = #; — 0y will have the meaning of angle between the
momenta p; and ps. In doing so, once again due to the unitarity of the finite rotation
matrix, we obtain :

J J
> D@Dy me) = D (e, (6, =
=—J M=—-J
= (eiuy(elieg))xuz - (d;J)(ﬁ))/\MQ ) (5)
J J
* J —1 i
Z ‘Dgng/ ]\/([/))\1 (nl) Z (6 Jy02))\2M’ (6 Jy01>M’>\1 =
M'=—J M'=—J
= (ewy(el_%))hxl - (dgj)(_ﬁ))h,\l‘ (6)

Using the well-known symmetry relation (dé‘]) (6)ane = (dé‘])(—ﬁ)) A 2], we come
to the result :

Wararr (b1, A P2, Aa) = (242 @), 9 (-1 (cos(gn)}). ()

1
(2J 4+ 1)2
Let us emphasize that the quantity r = (dE\‘Q\2 (8))? has the meaning of the degree of
non-orthogonality (non-distinguishability ) of particle states with different helicities with

respect to the momenta, the angle between which equals 3 = 6; — 0y : (A1|\2) #0 .
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2. If the emitted identical particles with the momenta p, ps are unpolarized, then,
after averaging over all the (25 + 1) values of helicity allowed at spin S, we obtain:

W= <(2S HUHEDT2 Z Z 4007 COS(W») (27 i 1)2 (251 DY

A1=—8SXa=—5

At sufficiently large momentum differences g the correlation function, normalized by
unity, will take the form :

R@ =1+ T S S ) P (costan). )
(25+1 A=—S Ao=—5
In particular, if 8 = 0, then we have df\{)/\Q(O) = 0,2y, and formula (9) is simplified:

1
25 +1

R(q) =1+ (-1)* (cos(qz) ). (10)

Besides, taking into account the unitarity of the matrix d&‘?Az (B), it is easy to see from
Eq. (9) that at J = S formula (10) is valid at any angles between the momenta p; and
p2 . Let us stress that Eq.(10) is related to particles with nonzero mass .

3. In the case of emission of two unpolarized photons, when the mass equals zero, spin
S =1 and each of the helicities Aj, Ay takes only two (25) values: —1 and 1, irrespective
of the momentum direction, the correlation function for dipole sources has the form [3]:

Rg)=1+7

1 L@ 0D + @519 + (@4 (9 + (@4(8)) | (eos(ar)).  (11)

Taking into account the equalities:

1+ cosf 1—-cosf

() =dh L (0) = ——, dLB)=dY,@)=—7— = 12
we find:
1
R(qg) =1+ 1 (14 cos® B3) (cos(qx) ). (13)
At very small angles between the photon momenta ( < 1) we obtain:
1

R(g) = 1+ 5 {cos(gr) ). (14)

For the case of quadrupole sources , the correlation function is as follows:

1

R(g) = 14 7 | (@7 (9))° + (2 1(8)° + (@2 1(8))° + (di”4(8))* | {cos(ga)). (15)

Using the equalities:
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_ 1+cosp

di7(8) = d%) _1(8) = —5—— (2cos B~ 1), (16)
@) @) 1 —cosf
47,(8) = d2,(8) = —5—— 2cos B+ 1), (17)

we find the correlation function of two unpolarized photons emitted by the quadrupole
sources :

R(q) =1+ 111 (4cos* B —3cos® B+ 1) (cos(qr) ). (18)

At § ~ 0 we have : R(q) = 1+ % (cos(qx) ), i.e. here we also obtain the standard
formula ( see Eq. (14)), corresponding to two directions of polarization for each of the
photons [3]

Let us consider also the case of emission of two “left neutrinos ( two “right” antineu-

trinos ) , with helicity taking only one value A\; = Ay = + % For this case, the correlation
function in the model of multipole sources is as follows:

R(q) =1 — (d)(5))* (cos(q) ) . (19)

In particular, at J =5 = % we obtain :

R(q) =1 — cos? g (cos(qx) ) . (20)
In the limit 5 — 0 Eq. (20) gives:

1+ cos (5/2)

R(qg) =1- 5

(cos(qe) ) = 1 — (cos(gz)). (21)
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NAMBU-POISSON FORMULATION OF THE SPINNING PARTICLE
DYNAMICS IN THE (ACCELERATOR) EXTERNAL FIELDS
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Abstract

Concise introduction in QCD Renormdynamics and Hamiltonization methods of
the dynamical systems with application in heavy particle dynamics given.

Quantum field theory (QFT) and Fractal calculus provide universal language of fun-
damental physics (see e.g. [8]). In QFT existence of a given theory means, that we can
control its behavior at some scales by renormalization theory [2,3]. If the theory exists,
than we want to solve it, which means to determine what happens on other scales. This is
the problem (and content) of Renormdynamics. The result of the Renormdynamics, the
solution of its discrete or continual motion equations, is the effective QFT on a given scale
(different from the initial one). Perturbation theory series have the following qualitative
form
1 d

d=a— (1)

flx)=>_P(n)nla"™ = P(6)T(1+ ) .

n>0

So, we reduce previous series to the standard geometric progression series. This series is
convergent for |z| < 1or for |z|, =p~™* < 1, z = pFa/b, k > 1, p=2,3,5,...,29, ..., 137, ...
With an appropriate nomalization of the expansion parameter, the coefficients of the series
are rational numbers and if experimental data indicates for some prime value, then we
can take corresponding prime number and consider p-adic convergence of the series. In
the Yukawa theory of strong interactions (see e.g. [2]), we take o = p = 13,

1

f(p) = anpnv Jn = n!P(n)a p =13, |f|p < Z |fn|pp_n < 1—pt

(2)

So, the series is convergent. If the limit is rational number, we consider it as an observable
value of the corresponding physical quantity. In MSSM (see [6]) coupling constants
unifies at ;' =26.3 + 1.9+ 1. So, 23.4 < a; ' < 29.2

Question: how many primes are in this interval? (24, 25, 26, 27, 28, 29)

Only one! Proposal: take the value a;;' = 29.0... which will be two orders of magnitude
more precise prediction and find the consequences for the SM scale observables.

The Goldberger-Treiman relation (GTR) [5] plays an important role in theoretical
hadronic and nuclear physics. GTR relates the meson-nucleon coupling constants to the
axial-vector coupling constant in (-decay: g,y fr = gamy. If we take

2
Jan 130
—13= gy = 12.78: fr = —= — 91.9 MeV, my = 940 MeV, 3
2 =13 = gan 78: f. 7% 91.9 MeV, my = 940 MeV, (3)

QrN =
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we find

frgzn  91.9 X /521 5)
= = =1.2496 ~ 1.25 = —. 4
94 940 1 (4)
Renormdynamic equation
d:ﬁla+ﬁ2a2+... (5)

can be reparametrized,

a(t) = f(A(t)) = A+ oA+ .+ fud"+ ., A=bA+bA+ ...
a=Af'(A) = (b A+ byA? + )1+ 2fA+ ... +nf A" 4 )

by = B1, by = Bo + foB1 — 2foby = Ba — fof31,

by = B3+ 2f2B2 + faf — 2fabs — 3f3by = Bs +2(f3 — f3) 54,

bi = Ba+ 3fofs+ f382 4+ 2f382 — 3 fab1 — 3f3b2 — 2fabs, ...
bn:ﬁn—i‘..."‘ﬁlfn—Qben_l—...—benbl,... (6)

so, by reparametrization, beyond the critical dimension ((3; # 0) we can change any coef-
ficient but 3;. We can fix any higher coefficient with zero value. In the critical dimension
of space-time, 1 = 0, and we can change by reparametrization any coefficient but (3, and
B5. From the relations (6), in the critical dimenshion (3; = 0), we find that, we can define
the minimal form of the RD equation

A = By A + B3 A3, (7)

then, as in the noncritical case, explicit solution for a will be given by reparametrization
representation (6) [9]. If we know somehow the coefficients 3, e.g. for first several exact
and for others asymptotic values (see e.g. [7]) than we can construct reparametrization
function (6) and find the dynamics of the running coupling constant. At any given scale
by reparametrization a = f(A) we can define new expansion parameter A as appropriate
prime number. Statement: The reparametrization series for a is p-adically convergent,
when [, is rational numbers.

It was noted [12] that parton densities given by solution of the Altarelli-Parisi equation

M = AM, MT = (My, My, M3, ME),
My = /0 drx(u(x) +d(z)), My = /0 drx(u(z) + d(z)),

1 1
M3 :/ drx(s(z) + 5(x)), MS :/ draG(x), (8)
0 0
with the following valence quark initial condition at a scale m, My(m?) = Mj(m?) =
M (m?) = 0, My(m?) = 1 and as(m?) = 2, gives the experimental values M, =
0.44, My = M; = 0.04, M§ = 0.48. So, for valence quark model, a,(m?) = 2. We
have seen, that for m7pN model o,y = 3, and for 7N model a,n = 13. It is nice that
af 4+ a2,y = azy. Note that to a, = 2 corresponds

g =+V4ra, =5013 =5+ . 9)
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Let us consider a general dynamical system
Tp =vp(z), 1 <n < N. (10)

The following Lagrangian and the corresponding motion equations

OV,

L= (l’n - UTL(J:))wm Ty = Un(x)7 wn = —aT

extends the general system (10) by linear equation for the variables ¢). The extended
system can be put in the Hamiltonian form

ftn: {me}ﬂl}n - {me}U (12)
where the Hamiltonian and the bracket are defined as
o o 9 o

H = v, (x)y, {A’B}:A(Gx 90, 90 0u )B.

(13)

In the Faddeev-Jackiw formalism [4] for the Hamiltonian treatment of systems defined
by first-order Lagrangians and corresponding motion equations,

oH
L= n n_H ) mn.n:_7 14
@i = H@), fomitn = 5 (14)
for the regular structure function f,,,, we have
oH oH
Tn = Jnﬁ% = {mmmm}a = {zn, H}, (15)
where the fundamental Poisson (Dirac) bracket is

The system (11) is an important example of the first order regular Hamiltonian sys-
tems. Indeed, in the new variables, y} = z,,,y2 = ¥,

L = (&, — vn(x))n = %(In¢n - ¢n$n) = Un ()

1 . a . a 1 a
= SUne"in — H(y) = £ — H©), £ = Sune™,
w  Ofh Off
H = Un(yl) 727,7 'rml?n = aya - ayb =& b(STL’rrH
-a OH a ! am
Yy, = 6ab5an = {yna H}> {ynv yfn} = gab(snm- (17)

In the canonical formulation, the equations of motion of a physical system are defined
via a Poisson bracket and a Hamiltonian. In Nambu formulation, the Poisson bracket is
replaced by the Nambu bracket with n+41,n > 1, slots. For n = 1, we have the canonical
formalism with one Hamiltonian. For n > 2, we have Nambu-Poisson formalism, with n
Hamiltonians, [10], [13]. To study the strong interaction’s spin dependence with polarized
proton beams, one must preserve and control the polarization during acceleration and
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storage. The quasi-classical description of the motion of a relativistic point particle with
spin in accelerators and storage rings includes the equations of orbit motion

i'n = fn(x)u fn(x> = 5nma’mH7 n,m= 1727 --'76; Tn = 4n, Tnt3 = Pn,
H=¢ed+ c\/p?>+m22, p, =pn — EAn (18)
C

and Thomas-BMT equations [11,1] of classical spin motion
Sn = EnkamSk = {Hla HQa Sn}a Hl =Q- S, H2 = 527 {A7 Ba C} = enmkanAamBakC

" B opn 1+ k(1
On= —((1 4 kB, — kB onLERAEY) o (19)

myc m2c2(1 4+ 7) me(l + )
where parameters e and m are the charge and the rest mass of the particle, ¢ is the
velocity of light, K = (g — 2)/2 quantifies the anomalous spin ¢ factor, v is the Lorentz
factor, p, are components of the kinetic momentum vector, E,, and B, are the electric
and magnetic fields, and A,, and ® are the vector and scalar potentials. The spin motion
equations we put in the Nambu-Poisson form. The general method of Hamiltonization of
the dynamical systems we can use also in the spinning particle case. For this we invent
for unified configuration space ¢ = (z,p, ), Tn = Gn, Pn = Gns3, Sn = Quie, 1 = 1,2,3,
the extended phase space, (¢, %), Hamiltonian and corresponding motion equations

OV,

H = H(Q; ¢) = vrﬂbm Qn = Un(Q)v¢n = - aq ¢ma (20)

where v,, depends on external fields as control parameters which can be determined ac-
cording to the optimal control criterium.
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Abstract

We studied the generalized parton distributions of photon using the overlap
representation of light-front wave function and calculated both the helicity flip and
the non-flip case.

1 Introduction

In recent years Generalised Parton Distribution(GPD) functions have emerged as an im-
portant tool for acquiring information about the structure of hadrons [1]. GPDs are
special in the sense that they contain the combined information of the parton distribution
function and the form factors. GPDs are also related to the total angular momentum of
quarks inside the proton via Ji’s [2] sum rule thus providing us with an handle on the
elusive orbital angular momentum(OAM) of quarks inside the proton. GPDs are accessed
via exclusive process like the deeply virtual Compton scattering(DVCS),ep — ep’~y where
there is a finite momentum transfer between the initial and the final state with a real
photon being observed at the final state.

In [3] deeply virtual Compton scattering (DVCS) v*y — 7 on a photon target was con-
sidered in the kinematic region of large center-of-mass energy, large virtuality (Q?) but
small squared momentum transfer (—t). The calculation was done at leading order in
a and zeroth order in a, when the momentum transfer was purely in the longitudinal
direction. In another recent work [4], GPDs of the photon have been used to investigate
analyticity properties of DVCS amplitudes and related sum rules for the GPDs. In this
work we investigate the GPDs of photon when the momentum transfer is in both trans-
verse and longitudinal direction and we also study the helicity flip and non-flip case of
the real photon (target) state.

2 Generalised Parton Distributions of Photon

The GPDs for the photon can be expressed as the following off-forward matrix elements
defined for the real photon (target) state [3]:

dy~ —irty— T
Fa— gl_wef@(zﬂ’, ) 1O e (y™) [ (P A));
— dy~ —irty—

Fl= [ e (Y(P",X) [ 9(0)y 72 (y™) | v (P ). (1)
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F% and F? contributes when the photon is unpolarized
and polarized respectively. We have chosen the light-front
gauge AT = 0. We use the Fock space expansion of the
photon state to calculate F? and F?. We express the GPDs
in terms of photon light-front wave functions (LFWFs) and
calculate them analytically using these LEWFs.

By taking a Fourier transform (FT) with respect to the
transverse momentum transfer A+ we get the GPDs in the
transverse impact parameter space.

q(x, bJ‘) _ L /dZAJ_e_iAL.bLFq: i /AdAJO(Ab)Fq;
(2m)? 27
1 ALl o~ 1 ~
~ 1y —iA=-b q_ q
G(z,b™) e /dAe F o /AdAJO(Ab)F.

where Jy(z) is the Bessel function. The impact parameter
distribution for a polarized photon is given by G(z,b").

In Fig. 1(a) we have plotted the unpolarized photon
GPD F'? as a functions of x for a fixed value of ¢ and differ-
ent values of t. With A+ # 0 the symmetry with respect to
x = 0.5 is lost and also the GPDs become independent of ¢
as r — 1 because in this limit all the momentum is carried
by the quark in the photon. In Fig. 1(b) we have plotted
the Fourier transform (FT) of F? with respect to At as a
function of b and for fixed z. In all the plots we have taken
0 < x < 1 for which the contribution comes from the active
quark in the photon (¢¢). The smearing in b space reveals
the partonic substructure of the photon and its ’shape’ in

(b) ‘ b

Figure 1: (Color online.) Plots
of helicity non-flip (A = X\') Pho-
ton GPD. (a) Plot of unpolarized
GPD F vs z for fixed values of
—t in GeV? for ¢ = 0.1 and (b)
FT of unpolarized GPD ¢(x,b)
vs b for fixed values of x.

transverse space. The behavior in impact parameter space is qualitatively different than
a dressed quark target and also from phenomenological models of proton GPDs. In the
case of a photon there is no single particle contribution, and the distribution in b space
purely reveals the internal ¢g structure of the photon. Here near x ~ 1/2 the peak in b
space is very broad which means that the parton distribution is more dispersed when the
g and ¢ share almost equal momenta. The parton distribution is sharper both for smaller

x and larger x.

We extract the GPD that involves a helicity flip of the target photon from the non-
vanishing coefficient of the combination (el ;€ + €% €% ). The GPD with helicity flip can

be calculated analytically and is given by:

2
aeq

By = —La(1 - 2)*((AY) — (A% (2)

2
(> —q)

4 o) a0
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The above has the expected quadrupole structure com-
ing from ((A')? — (A2)*). As the photon is a spin one par-
ticle, in order to flip its helicity, the overlapping light-front
wave functions should have a difference of orbital angu-
lar momentum of two units, which manifests itself in the
quadrupole structure. This is in accordance with a simi-
lar observation for the helicity-flip GPD E for the proton,
which needs overlapping light-front wave functions of or-
bital angular momentum 41 unit [5,9]. Like the GPD E of
a spin 1/2 particle for example a dressed electron/quark [7],
the helicity flip photon GPD has no logarithmic term de-
pending on the hard scale of the process Q?, which is the
virtuality of the probing photon.

Starting from the expressions of photon GPDs, we de-

0.30pr T T T
_ano —-t=01
s} 9200 210
#TTN N ---~1=30
£ 02 e oy T
4 £ =5,
x 015
e
w010
005
0.00 1 1 1 SN
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Figure 2: (Color online) Plots

of Ey(x,A+) vs x for different
values of t(GeV?).

fine the parton distributions [8] with the helicity flip of the
photon in transverse impact parameter space as:

a1(z,bY) = j‘I—ﬁ /OO AdA / dg/l dq{<(b% - bbgg)Asin9>
(bAcos(bAsin@)sin& — Sin(bAsin9)> (¢% — @) (1 — x)g} N
(m2<1 — (1~ x)) +q(1—¢q)(1— :U)Q(AL)2>

In Fig. 2 we have plotted the helicity flip photon GPD E;(x, At) vs. z for different
values of ¢ and a fixed value of ¢ = tan™! ﬁ—f. The peak of Ey(x, A1) increases with —t
and also shifts towards higher . The GPD is zero when At = 0 because in order to
flip the helicity one needs non-zero OAM in the two-particle LEFWFs and the OAM is
zero when there is no momentum transfer in the transverse direction. There is no OAM
contribution at z = 0 and x = 1 since all momenta are carried by either the quark or the
antiquark in the photon. The upper limit of the At integration ideally should be co. But
in the numerical calculation we have a cutoff denoted by A,,... Fig. 3 shows a plot of
qi(z,b%) vs. bt and b? for a fixed value of = 0.3 and different values of Aaz. AS Appae
increases the peaks become sharper, which means that the distortion in b* space moves
closer to the origin.

3 Conclusion

We discussed the calculations for the generalized parton distributions of the photon for
both the helicity flip as well as the non-flip case. We calculated at zeroth order in ay
and leading order in . We also calculated the respective GPDs in the impact parameter
space.
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Apax = 2.0GeV Apax = 4.0GeV Apax = 8.0GeV
ql(xyk) ql(x’k) ql(xyk)

Figure 3: (Color online) Plots of g (z,b%) vs. bl,b? for different values of A,,4,. b and b? are in
GeV ™! and Ayyqp is in GeV. 2 = 0.3.
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In the recent time, Arminjon’s publications have emerged again [1-4], which declare
and provide grounds for the assertion that the Dirac theory is non-unique in a curved
and even flat spacetime. The proof is based on the demonstration that the form of
Dirac Hamiltonians depends on the choice of tetrads. In our opinion, this is absolutely
insufficient. To demonstrate the non-equivalence of Dirac Hamiltonians, one should find
the difference in physical characteristics of a system under consideration with different
choices of tetrads. Such characteristics may include energy spectra of Hamiltonians, mean
values of physical quantities, various transition amplitudes and so on.

We share the conclusions of previous studies [5,6] on the independence of physical
characteristics of the Dirac theory on the choice of tetrads.

In [7-9], using the methods of pseudo-Hermitian quantum mechanics [10-12] for arbi-
trary, including time-dependent, gravitational fields, we developed an algorithm to trans-
form any Dirac Hamiltonian in a curved spacetime with an arbitrary choice of tetrads
into the n- representation, in which the Hamiltonian becomes self-conjugate, and the
scalar product of wave functions becomes flat. The choice of different tetrads for the
same physical system can lead in the 7- representation to different forms of self-conjugate
Hamiltonians. However, they will always be related by unitary transformations associ-
ated with spacetime rotations of Dirac matrices. It is evident that such Hamiltonians are
physically equivalent. The choice of tetrads by a researcher is governed by convenience
considerations. One can handle Dirac Hamiltonians in a curved spacetime using Parker’s
weight operator in the scalar product of wave functions [13], or treat them in the 7- repre-
sentation with a flat scalar product, using the common apparatus of quantum mechanics.
In both cases physical characteristics of the systems remain identical.

Thus, as opposed to statements in [4] we show in papers [7-9] that the non-uniqueness
problem of the Dirac theory in a curved spacetime from the point of view of receipt of
different physical results for one and the same physical system does not exist.

Let us give some examples to illustrate this.

Example 1. In [7], three Hamiltonians, corresponding to three tetrad fields, and a
self-conjugate Hamiltonian in the 7- representation are derived for a weak Kerr field.

a) Killing tetrad field

Hy = im% imiyg — ivov 52 + 200y S+
M(szRz) 8 (JklRl) k

; MRk ,.)/O,.y + Qg =kl — m—=Er —p3 ) + <4)
22%57@% — 1M Tk — 3M} V570 V-

3M M (JunRu)
1 2
p=it gt i3

YoVk; (5)

95



b) tetrad field in symmetric gauge

H, = imnyg — ingYezar — imiso + 225%7 o2 + faltlknyyk4 (6)
2% (ugcéRz) aik _ imM(}]%’“Rl) "}/k 4 M(Jm ZRl)Sﬂaik'
3M My, Ry,
p=lt 0 (7)
c) tetrad field of Hehl and Ni [14]
Hy_n = imyo — im0 — ivoksae + 208 yovE o2 + & M8y yky @
2 MU 0 4 4 {20 g, — MU
3M
p=1+ T (9)
d) self-conjugate Hamiltonian in the n- representation
H, = imryg — im0 — i0mgor + 20707 508 — 10 Y07 E+

| ' 10
QiMUMR) & i { YTk — 3M} 75707k o
p=1 (11)

In (1) - (11), M is the mass of a source of the Kerr gravitational field, J,, is the
angular momentum tensor of the Kerr field, Spr = 5 (Ym ¥k — VeVm)-

Each of the Hamiltonians (1), (6), (3), (12) differ from each other in their form.
However, with the transition to the - representation, all the Hamiltonians become the
same, which proves their physical equivalence.

Example 2. We know that a free Dirac Hamiltonian in spherical coordinates of
Minkowski space can be written in two ways resulting in substantially different expressions
(see, e.g., [15])

) ) 0 1 1 0 1 1 0
Hy =imyy — WO{% (E + T) +-7% (80 + 5 Ct99> + m%@} , (12)
) , 0 1 (9 1 0
Hy =im~g — i {%a T 5 TV a¢} (13)

In (13),
v, = sinf [y1cos¢ + Yasing| + yzcosd = Ry R~
Yo = cos0 [y1c08¢ + yasing] — yzsind = RygR™* (14)
—Y181n¢ + Yecosp = RyzR™L.

Yo =
The set {75, Yo, Y. } is related to the set {7y1, 72,73} by a unitary matrix R,
R - R1T1R2T2

Ry =exp (—%7;72) ;o T = \%’YQ’YL(E +7172) (15)
Ry =exp (—gvﬂg) ;o Iy = \/%7572 (£ +7371) -

This shows that the Hamiltonians (12), (13) are physically equivalent, because they
are related by the unitary transformation (15)

Hy=RH,R™, R'=R". (16)
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Example 3. In [9], the following form of a Dirac Hamiltonian in Boyer-Lindquist coor-
dinates is derived for a weak Kerr field:

Hpp = im (1= 52) 70 =i (1= 3) 20n (5 +7) -
i ——)-[%%(aﬁ $etg0) + Wi 1)~ (17)

- 0
0158 — 27;?—3“8—¢ — 2——3737152719

Let us compare this Hamiltonian with Hamiltonian (12). We rewrite (12) using some-
what different notation
Hy = im (L= 5) 30 = 1 (1= %) ogr—
58 Y0 Yk Tk — 155 ( 18952 28x1 + (18)
2

roa |:’71’72 (1 3 ) 7 ,y 3m3 T _’7 713m3m2:| )

In (18), ro =2M, J= Ma, a=(0,0,a).

The summands with the momentum of rotation a in (17), (18) differ substantially
from each other. However, in [9], these terms in (17), (18) are shown to be also physically
equivalent using matrices (14), (15).

Example 4. For the solution

ds® = V2 (x)dt* — W? (x) dx? (19)

Obukhov [16] obtained a self-conjugate Hamiltonian with a flat scalar product of wave
functions

1 Vv Vv
Hoy, = 6mV + = 5 {ap— + —ap} (20)
n (20), 3 =1° of =%~

Then, after the unitary Eriksen-Kolsrud transformation [17], in the approximation of
a weak gravitational field, Hamiltonian (20) becomes equal to

HE K:g(mv+ﬁ)—£{p2 V—1}+

(21)
S Ap2 ¥ —1}+ 222 (f x p) + V] + 1 (2®).
In (21), ® = VV; f = V(%); Y = ( g 2_ ) However, for correct classical

interpretation of individual summands in the Hamiltonian, initial expression (20) should
be subjected to a unitary Foldy-Wouthuysen transformation [18], [19], [20].

As a result, A.Silenko and O. Teryaev [19] obtained the following expression for the
transformed Hamiltonian:

HFW:ﬁ<mV+%)—%{p2,V 1}—|—ﬁ{p ¥ —1}+

D98 (f x p) + V] — £ 25 (@ x p) + V], (22)

The last summand in (22), instead of direct interaction between spin and gravity (%ECI)),
describes the spin-orbital and contact interaction of a Dirac particle similarly to the
interaction with an electromagnetic field [18].
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Note that all the three Hamiltonians (20), (21), (22), are physically equivalent, because
they are related to each other by unitary transformations. However, for the quasi-classical
interpretation of Hamiltonian terms, one should use the Foldy-Wouthuysen representation
[19], [20].

Now we consider the example given in one of the last works of Arminjon [3], in which
he demonstrates the non-uniqueness (in his opinion) of the Dirac theory even in the flat
Minkowski space.

Example 5. Arminjon considers a flat Minkowski space, (¢',2',y/,2'), with a free
Dirac Hamiltonian

H =a'p' + 'm. (23)

Then he considers a set of other time-dependent Dirac matrices

p=p
ol = oleoswt + a?sinwt
o? = o?coswt — o/t sinwt

ad = a3,

(24)

As a result, for the new tetrads leading to the set of matrices o (24), a new Hamil-
tonian is obtained:

H=ap' + pm — gZ’?’, (25)

where 3% = ia’'a/? = iata? = 33

Comparing (23), (25) Arminjon [3,4] concludes that the Dirac theory is non-unique
even in the flat Minkowski space.

In fact, as opposite to the initial Hamiltonian (23), the Hamiltonian (25) depends on
time clearly (see. (24)). In addition, the Hamiltonian (25) has a complementary term
—£%" and therefore in [3], [4] a question of physical significance of the direct spin-rotation
coupling is discussed.

However, note that the matrices o (24) are related to the initial matrices o by a
unitary transformation matrix R (t)

o' = Ra"R", (26)

where
W—to/lo/Q X

R(t) =5 Rt(t)=e (27)

Considering that R (t) is time dependent, we see that the Hamiltonians (25) and (23) are
related by the unitary transformation

_wt 11,12
5 o )

+
H=RHR" — iR%. (28)

Consequently, the Hamiltonians (23) and (25) are physically equivalent. If the free
Hamiltonian (23) transforms to the Foldy-Wouthuysen representation, we obtain the

known Hamiltonian [18]
Hpw = 8y/m? + p”. (29)

In [4] Arminjon attempted to define the difference between the mean values (H) and
(H') exactly. However, at averaging of the physical quantities for the spin particles it is
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necessary to average also over spin states with appropriate change of normalizing condition

S [t (K 8) (X, ) dx = 3 [ (x50 (¢, 5) dx’ = 1. Then
+s +s

(=5 3o

In (30) we choose a movement particle direction along 2’ coordinate (|p’| = p"). As
opposite to [4] following (30) the mean values of the Hamiltonians H and H’ coincide.
Hence, the spin-rotation coupling in (25) is not physically relevant. It can manifest
itself with a choice of a specific tetrad field, but it has no effect on the magnitude of final
physical characteristics of the system under consideration (absolute analogy with direct
spin-gravitation coupling in Example 4).
Example 6. In his work [3], Arminjon also considers a rotating frame of reference:

(q,- s dx———z /w x| 5) 2% (x, s)dx'=0. (30)

t=1t
x = x'coswt + ' sinwt
o / (31)
Yy = —x sinwt + Y coswt
z=2.
The metric corresponding to coordinates (31) is expressed as
ds® = [1 —w* (2* + y*)] dt* + 2w (ydz — zdy) dt — (dz* + dy* + dz*) . (32)

In (32), to ensure that goo > 0, the condition wy/x? 4+ 3% < 1 should be satisfied. v—
matrices corresponding to the chosen tetrad field have the form

70 — ,y/O
= ’y’lcoswt + 2 sinwt + 7wy
2 _ : 2 10 (33)
= 7 Lsinwt + v?coswt — vwx
7 =9"°
As a result, we can obtain a self-conjugate Hamiltonian,
0 0
H, +pm —w — . 34
a'p’ + 3 ( Yar 8y> (34)
With another set of tetrads, Arminjon in [3] obtains the following form of y-matrices:
V%T' _ 7/(1) 0
Tar. =7+ wy
" 35
Vir. =7 = 7w (35)
Vir. = 7"

The self-conjugate Hamiltonian has the following form:

0 0
Hyy = aanp' + fm —iw (y% — ﬂ7a—y) — 32/3- (36)

Note that the matrices v*,~? in (33) can be written as

— R+’7/1R + ’YIOWZ/
— R+7/2R _ ’Y/OWCE-
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One can see from this that the matrices (35) and (33) are related by the unitary trans-
formation
Var, = RV'RT. (38)

The Hamiltonians (36) and (34), similarly to the Hamiltonians (25), (23), are physi-
cally equivalent, because they are related by the unitary transformation R (t)
OR*

ot

Thus, as a result of our consideration, we can draw the following conclusions:

1. The problem of non-uniqueness of the Dirac theory in a curved spacetime does
not exist. If treated properly, Dirac Hamiltonians will always determine correct physical
characteristics of the systems under consideration irrespective of the choice of tetrads.

2. The spin-rotation coupling for Dirac particles in the context of [3,4] does not
represent a physically relevant quantity. It can manifest itself with a certain choice of
tetrads, but the spin-rotation coupling has no effect on the final physical characteristics
of the quantum mechanical systems under consideration.

Hu. = RH,R* — iR (39)
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Abstract

The search for the EDM of charged particles is only possible at storage rings. At
the moment, COSY at IKP, Forschungszentrum Juelich, is a unique facility in the
world to study the relevant spin dynamics and to perform the precursor measure-
ments of the proton and deuteron EDM. Such studies are must before embarking a
construction of the dedicated EDM storage rings. The recently formed JEDI Col-
laboration aims at exploring the emerging tremendous scientific and technological
challenges. This talk summarizes a status of the project and principal plans for
2014 and beyond, with an emphasis on the theoretical understanding of prominent
systematic errors.

1. Introduction. The motivations for the search for electric dipole moments (EDMs) for
charged particles have been extensively reviewed in the talk at the previous DSPIN-2011 [1]
and should not be repeated here at length. The nonvanishing EDM is only possible if P- and
CP-invariance are broken symmetries. The CP-violation is one of Sakharov’s criterions for the
Big Bang baryogenesis. A fundamental issue is that, while the CP violation in the kaon and
B-decays can be parameterized in terms of the SM CKM matrix, the SM fails miserably with
the experimentally known baryon content of the Universe. Consequently, our very existence is
the best proof that the CKM mechanism is not the end of the story. On the pure dimensional
counting, a natural scale for the EDM, d ~ 1072* e-cm, is set by the magnetic moment (MDM)
times ~ 1077 fo the parity nonconservation times ~ 10~3 for the CP-violation. With the CKM
mechanism one needs the weak interaction to two orders, so that dgys ~ 103! e-cm. The
current upper bound on the neutron EDM, d,, < 3 - 10726 e-cm, does not preclude a possibility
of a much larger proton and deuteron EDMs, d,, 4 ~ 10724 e-cm.

The ultimate goal of the JEDI Collaboration, which enrolled about 100 physicists from about
30 Institutions, is to carry out direct measurement of the proton and deuteron EDMs. The road
to this goal is paved by tremendous scientific and technological challenges. The immediate
target is studies of the spin coherence time (SCT) and systematic errors - the issues common
to all future storage ring experiments. Subsequent goals include first direct measurements of
the proton and deuteron EDMs at the magnetic storage ring COSY using RF techniques, and
the development of a dedicated, primarily electric storage ring for light ion (p, d, 3He) EDM
searches.

2. Frenkel-Thomas-BMT equation and the EDM signal at storage rings. Fora

spinning particle at rest the spin interaction with the B— and E—fields reads H = — m -B—d-E =
—S - (uB+dFE). Notice a fundamental duality: EDM in an electric field is doing on spin exactly
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the same job as MDM does in a magnetic field. The EDM observable is a precession of the
spin in an electric field. The charged particles can be subjected to an electrlc field only in a
storage ring. On the closed-orbit for a reference equilibrium particle B B = ﬁ E =0. The spin
precession is described by the familiar Frenkel-Thomas-Bargmann-Michel-Telegdi equation

ds - =
il Q xS,
G = “laBy (g -G-1)FxBrn(E+ixB) (1)
- m ﬁQ 77 9
~—_———
MDM EDM

where G is the anomalous G-factor, we undebraced the MDM and EDM contributions to the
spin precession, and 1 = dm/e.

The default prediction from the CP-violation models is  ~ 10710 and the only way to
enhance the EDM signal is to let the EDM contribution to drive the imperfection spin resonance.

The dedicated, frozen spin, EDM rings will operate at K = 0 imperfection resonance. In
the simplest case of protons it will be an MDM-transparent, pure electric ring run at 5% =
1/(G+1), p =~ 0.7 GeV/c, such that the spin tune v = K = 0. Then, for an infinitely
long time, the injected pure longitudinal spin will be subject to driven up-down oscillations
with the angular velocity 3, = (enE/m)é,. In practice, the observation time will be limited
by the longitudinal spin decoherence time, 75¢, and the attainable EDM signal - the vertical
polarization, Sy, will be limited by S, < Q,75¢c < 1.

At the moment, we are interested in a pure magnetic ring like COSY. The interaction of the
EDM with the static motional electric field tilts the stable spin axis,

O=—— {GB + s x B} QR {cos£€y +sinée,} (2)
and modifies the spin tune,
Gy
Vg = , tané=n.
cos&

Here one starts with injection of the vertical spin and rotates it onto the ring plane by
a radio-frequency radial electric field resonant to the spin-tune frequency plus/minus the ring
frequency harmonics [1],
VRr = Vs + K, K=0,£1,%2,...,

where vs = G-y is the spin tune for an idle precession, which is a principal feature of all-magnetic
rings. In a pure magnetic ring, E = 0, the interaction of the EDM with the motional electric
field mimics the interaction of the MDM with the radial imperfection magnetic fields.

Adding a proper vertical RF B-field, one can make the RF device an MDM-transparent one,
in which the motional magnetic field is compensated for by the B-field. Such an RF-ExB spin
flipper provides spin kicks around the Oz axis, x, 7 0. The second option is the RF ExB Wien
filter, where one adjusts B-field such that the Lorentz force exerted on the beam is zero,

E+f(3xB=0.

Thereby, the excitation of coherent betatron oscillations of the beam, inherent to the spin
flipper, is avoided. According to the FT-BMT equation, the RF ExB Wien filter is an EDM
transparent device, which only produces a pure magnetic kick x, to the phase of the spin
precession around the Oy axis, which thereby changes from the idle one to the RF-modulated
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one. As Y. Semertzidis observed, under the resonance condition, this frequency modulation
conspires with the EDM interaction with the motional electric field to entail the nonvanishing
driven up-down spin oscillation tune,

1
Vo = VEDM = %5)(3/'

By a remarkable duality, the two devices with identical RF radial E-field generate identical EDM

signals,
1 1

27 o

Unfortunately, by the same token, this frequency modulation of the spin tune would generate
the background vypy by the interaction of the MDM with the imperfection magnetic fields. On
the other hand, the EDM rotation by the MDM-transparent RF E x B spin flipper is free of the
background from the imperfection magnetic fields. The RF ExB spin flipper is unacceptable,
though, since it excites the coherent betatron oscillations. The possible scheme to temper these
oscillations has been discussed in Ref. [1], whether it is feasible at COSY or not calls for further
studies.

A pattern of the EDM-driven oscillations is common to all the spin rotators, including the
familiar MDM rotation by the RF solenoid. Let Oy’ be the normal to the ring plane at the
running particle position and X'Y” be a vertical plane which rotates with respect to the tangent
to the ring with the spin-tune frequency v, fr. The oscillating spin lies in the X'Y”’ plane and
the Oz’ axis serves as a running spin axis. The driven spin oscillation tune,

VEDM = EXxy

Vo = VEDM + VMDM

is common to Sy = S, and S,». Driven oscillations modulate the idle precession, and the
resulting Fourier spectrum of the horizontal spin would consist of two side bands,

Vp = Vs + Vg,

which could be resolved by the fast time-stamp (= 90 ps/tick) polarimetry of the horizontal
polarization developed at COSY [2]. Simultaneously, one can measure v, directly from driven
up-down oscillations of S,,. Such a doublet Fourier spectrum of horizontal spin precession under
the driven oscillations has indeed been observed experimentally in the September 2013 run at
COSY. The preliminary analysis of the spin tune data indicates an unprecedented precision of
1078 per 4 second time interval, and even higher precision of 107!° can be reached.

Evidently, the momentum spread in the beam causes a spread of the the spin tune,

20D

b
Should dp stay constant, the spin would docehere instantly, 7cg ~ 1/ frAvs, at the millisecond
scale. Such a runaway spin decoherence is stopped by the RF cavity. Sill, one has to elim-
inate/minimize the effects of chromatic aberrations caused by the synchrotron and betatron
oscillations and the coupling between the momentum changes and betatron oscillations - the
2012 runs (COSY experiment #176 [3]) gave a convincing evidence this can be achieved by
proper tuning of the arc sextupoles [4,5]. An ehancement of the spin coherence time to the
record ~ 300 sec has been achieved, confirming the earlier findings at e*e™ colliders in Novosi-
birsk [6]. The momentum spread changes the beam revolution time, which changes the phase
of the RF EB field and, thus, decoheres the driven oscillations - further experiments with more
sextupole families are planned in 2014.

Avs = Gyf3
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2.1. Mapping the imperfections at COSY. COSY has never been intended to be
used as a machine to determine particle EDMs. At the present stage, the primary goal is to
test the ideas behind the spin dynamics which would be an integral part of all the dedicated
EDM rings, and to set an upper bound on the proton and deuteron EDMs, or n as a convenient
dimensionless parameter. Because the ballpark value of 7 is so small, one must be able to control
the MDM to imperfection coupling driven background to a very high accuracy. To this end, the
imperfection field properties of COSY remain an open issue. Furthermore, they are subject to
steering the closed orbit.

Imperfection spin kicks add up all over the particle trajectory in the ring. This effect is
coherent for all particles, because imperfection fields are static. Although an invariant spin axis
exists, it is not strictly vertical. In case of a purely vertical invariant spin axis, the spin tune
would be vy = G (G is the anomalous magnetic moment, and ~ the relativistic Lorentz factor).
Now we comment on the task of mapping the static imperfections.

We illustrate the principal idea on an example of localized longitudinal static imperfection
magnetic fields. Let y; be the corresponding average spin kicks per single crossing. First we cite
the familiar case of a single imperfection,

cos mvs = cos(mGy) cos (;X) (3)

For the deuteron with small G ~ —0.14, the imperfection clearly increases the spin tune.
Consider next two imperfections opposite to each other in the ring. Then it is easy to derive
the spin tune

1 1
COSTVy = cos? (27rny) cos 4 — sin’ <27TG’}/> CoSy_ . (4)
1 =
Y+ = §(X1 +x2). (5)

Obviously, the extremum of the cos v, is a saddle point at x1 = x2 = 0, at which v; = G~. If
either x; = 0 or x2 = 0, one would recover the single-imperfection result.

An interplay of an intrinsic imperfection of the ring with two static solenoids placed in
opposite straight sections is more tricky. We cite the result for an intrinsic imperfection with
the integrated kick o, located at the phase 6* in the ring, which is corrected for by two artificial
spin kicks, x1 and y2, produced by static solenoid magnets, each located in one of the straight
sections, as in the previous example:

cos(mvs) =

= COS(%WG’)/) [cos (%) cos(%wG’y) cos(y4+) — sin (%) cos(%(w — 20%)Gv) sin(y+)] —

- sin(%ﬂGv) |:COS (%) Sin(%ﬁGv) cos(y_) — sin (%) sin(%(w —20")G~) sin(y)} (6)
As a function of the relevant spin kicks from the two solenoids, one would again have a saddle-
point structure, but the intrinsic imperfections shall offset the saddle point location from the ori-
gin. Obviously, this offset would depend on the beam energy. To which extent just two solenoids
could compensate for the generic distributed imperfection fields, needs more scrutiny. At COSY,
mapping of the imperfection fields can be performed using two straight section solenoids, which
are used as magnetic guide fields for the electron beams in the 30kV and in the 2 MV electron
cooler. The aim is to recable one of the compensation solenoids of the 30kV electron cooler
with a separate power supply, whereby field integrals of &~ 0.15 Tm would become available. The
main solenoid of the 2 MV cooler provides field integrals of about 0.54 Tm, and will be used as
a second solenoid.
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2.2. Disentangling the EDM from static machine and RF imperfections.
Mapping the imperfection is but a starting point. One must not be discouraged by a nonideal
cancellation of the ring imperfection field effects. Indeed, consider the case of the RF Wien filter.
The EDM interaction with the motional electric field in the ring and the MDM interaction with
the imperfection magnetic field combine into the EDM-like spin kick around the running spin
axis,

1
v, = §¢\/§2 — 28, cos 0% + a2 .

Q

%d}(ax — & cosf”) (7)

The effective position of the imperfection field must be kept stable, but varying the phase of the
RF amounts to moving the Wien around the ring, which amounts to varying the phase 8*. Then,
the #*-dependence of v, will be used to constrain the EDM signal by the measurement of the
doublet splitting of the idle precession Fourier spectrum or of the up-down oscillation frequency.
To this end, one would use the above described manipulation with artificial imperfections to
maximize the variation of v,.

One might benefit from a larger splitting of the doublet of side-bands in the Fourier spectrum
of the horizontal spin. One option is to add an RF solenoid run from the same source as the RF
Wien filter. In the imperfection-free ring one would find

V, = Vsl + VEDM COSO* (8)

where now 6* stands for the relative phase shift between two kicks, which can be controlled
radiotechnicaly. This way, one could vary the interference of the two kicks from the constructive
to destructive and thus deduce the EDM signal.

In 2014 the RF ExB dipole (stripline), operated in the Wien-filter mode, will be installed
at COSY. Within the momentum range of COSY, it will be operated at the first few harmonics
of the spin tune (yG + K). Initially, it will provide the radial magnetic field with the vertical
electric field of &~ 76 kV/m. Its principal action on a spin will be a rotation of the MDM around
the radial axis. As such, it will simulate the RF ExB EDM flipper, but will be free of parasitic
excitation of coherent betatron oscillations. As we stated above, the RF-ExB flipper generated
EDM signal is free of the background generated by static imperfection fields. This feature can be
experimentally tested with the RF-ExB Wien filter, which will operate in precisely the RF-ExB
EDM flipper mode. One must run it simultaneously with the above discussed static solenoids
and verify that the tune of up-down spin oscillations is independent of the solenoid strengths.

3. Outlook for a future JEDI studies. The long range activities related to mapping
out the imperfection content of COSY can be summarized as follows:

1. Spin tune studies vs static solenoid field strength under idle precession. The result will
be a determination of the intrinsic imperfection properties of the COSY ring.

2. Runs with the RF ExB Wien filter would check, that regarding the driven up-down oscil-
lations, the device is doing the same job as the RF solenoid in all the aspects.

3. Studies of the driven up-down oscillation frequency and idle-precession frequency vs arti-
ficial imperfections induced by the static solenoids.

4. Run simultaneously the frequency-locked RF solenoid and the horizontal RF Wien filter
to study their interference vs the relative phase shift. Here one of the RF devices can be
viewed as an RF EDM rotator.
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5. The above items describe experiments with the RF ExB Wien filter operated with the ra-
dial RF B-field, thus simulating the MDM-transparent RF-E flipper. Rotate the RF Wien
filter into an upright position with vertical RF magnetic field, so that it will frequency
modulate the spin tune. Use the MDM interaction with static solenoid(s) to simulate
the EDM interaction with the motional electric field in the ring. First thing is to check
that the FM modulation of the spin tune would exhibit the resonance coupling to static
imperfection magnetic fields. Varying the RF of the Wien filter around the spin tune
frequency one can measure the width of the resonance line. That would be a direct proof
of the utility of the RF ExB wien filter as the resonance EDM rotator.

6. Run simultaneously the frequency locked RF solenoid and the upright RF Wien filter to
study their interference vs the relative phase shift and to investigate a utility of the split-
ting of the Fourier spectrum of the horizontal spin under driven oscillations to determine
the strength of the up-down spin rotator.

7. Tilting the RF Wien filter from the pure vertical to pure horizontal orientation of its
magnetic field will test a significance of the misalignement of the Wien filter as a source
of possible systematic errors.

The above set of experiments would basically exhaust a simulation of all possible systematic
effects which will be encountered with RF EDM rotators. Remarkably, already in 2014 JEDI
will be in possession of all the instrumentation to conduct preliminary studies of all the above
items. Stay tuned to new results to be reported at the next Workshop.
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Abstract

The trident production process e~ — e~ + e~ + eT in a background magnetic
field has been studied in the lowest Landau levels (LLL) approximation. The pro-
cess rate is determined by the resonant case, when the second-order Feynman graph
decomposes into two first-order diagrams which correspond to radiation and pho-
toproduction processes. It is shown, that the process rate is maximum with the
initial electron spin along the field and the final electron spins opposite to the field.
This implies spin-flip radiation process which is not suppressed for transitions from
a relativistic initial state to the lowest energy levels.

Pair production by an electron is not possible in free space, thus, strong enough
background field is needed to make such process noticeable. In quantum electrodynamics
(QED), the measure of strong field is the critical field B, ~ 4.41 - 10'* G. In laboratory
conditions the highest feasible magnetic field strength is only ~ 107 G which is still much
less than the critical one [1].

Nevertheless, astrophysics has long-standing interest in the physics of QED processes
in a magnetic field [2]. Neutron stars are believed to have surface magnetic field with
magnitude from 10? to 10'® G. Particularly, pair production processes in a pulsar magne-
tosphere are essential for understanding the pulsar radiation mechanism.

The present study of pair production by an electron in a magnetic field is partially
motivated by the experimental observation of the similar process in the field of a light
wave at SLAC National Accelerator Laboratory, reported in 1997 [3].

According to the theorem proved by Nikishov [4], a process in constant electromagnetic
field involving relativistic particles can be described by the rate of the same process in
constant crossed fields, E 1 B and E = B. This includes the case of an electromagnetic
wave though an additional averaging over the wave period is needed. Thus, it is possible
to estimate the number of events in the SLAC experiment using the rate of magnetic
production. Such comparison was done in Refs. [5, 6], which showed reasonably good
agreement with the experimental data. However, in Ref. [5,6] the simplest case of pair
production to ground levels was considered. The purpose of the present work is to study
pair production to exited Landau levels in the reaction

e- — e + e +et. (1)

The Feynman diagrams of the process (1) are shown in Fig. 1. The calculations have
been carried out in the frame of Furry picture and the solutions of the Dirac equation in
a magnetic field were used for the electron and positron scattering states.
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An electron in a magnetic field occupies
discrete energy levels with eigenvalues

E = \/p2c® + m2ct + 2lb m2ct,  (2)

where [ is the Landau level number, p, is
the parallel to the field momentum, and
b = B/B, is magnetic field strength in the
units of B,.. The motion of the initial elec-
tron along the field can be excluded with-

: Figure 1: Feynman diagrams of e~e™ pair produc-
out loss of generality by Lorentz transfor- tion by an electron in a magnetic field. Double lines

mation, p;, = 0. We will consider the case represent solutions of Dirac equation in a magnetic

when the final particles occupy low energy field:

levels (lowest Landau levels approximation) and the magnetic term in (2) is small in
comparison with the electron rest energy,

hb <1, b < 1, I < 1. (3)

At the same time, the initial electron energy E; should exceed the threshold value to
produce a pair,

E; > (i + 1y +my) A2, mj = ma/1+ 2. (4)

We assume that the initial electron energy is close to the threshold value.

It is known that two-vertex QED processes exhibit resonant behavior. The process
rate diverges when the virtual photon momentum fulfill the usual relativistic relation
k, k¥ = 0. Resonant divergences can be eliminated by introducing the width A to the
virtual state in accordance with Breit-Wigner prescription [7], w — w—iA/2. Resonances
are not kinematically separated in the considered process and the rate is determined by
the resonant regime.

The calculations has been carried out within standard QED perturbation theory. The
obtained rate has the greatest order of magnitude when the spin projections are

Siz = +1/2, S1z = —1/2, (5)
Sy, =+1/2, S9, = —1/2.

The potential energy of spin-field interaction is negative in this spin state. The resulting
expression of the rate looks like

W g2 (e 2 /7 Q2L 2% (L 4 1/2) ©)
Tt h) 3v3 A LN LY
L=UL+hL+1l, Q=2/b (7)

The superscript denotes spin projection of the initial electron, and the subscripts denote
spin projections of the final electrons and the positron respectively.

At the resonance a two-vertex process can be viewed as a cascade of two first-order pro-
cesses, namely photon radiation and photoproduction in the present case. The indicated
spin projections (5) mean that the initial electron makes spin-flip radiative transition,
though it is known that photon emission with change of the electron spin projection is

108



not probable [8]. Nevertheless, if an electron transits from a high energy level to a near-
ground level, the probability to change spin projection from the positive to the negative
value increases and become comparable with the probability of the no-spin-flip process [9].
The considered case of resonant pair production near the threshold includes such transi-
tion, which explains the issue.

There are 16 possible spin states in all. The corresponding rates, expressed in the
units of W*_,, are

+ — + o 50 _ 46 1
U]__+ 17 w+_+ == 3 llb w77+ == 37 w;,+ - 5 llb7
) 50 -
+ _ Y fr
w___ = 3 l+b, wi_++ 3 l b w___ l+b7 ’U):++ = %lgb, (8)
1 1 20
+  _Z 2 - T ’
Wl SgRLVwlo=guet, e SRR b
. 26
wio =gttt = Onnnp, wio=TALE wr —o,

where 0 = (m; — my — My — My )/m.

There is a simple pattern in the above expressions. When a final particle is created
with unfavorable spin orientation (spin up for an electron and spin down for a positron),
then the rate contains small factor (Ib) with the corresponding level number. When all
particles spins are oriented in the energetically high way, the leading order cancels and
the rate become negligibly small within the accuracy of the considered approximation,
wy,  — 0.

Such behavior of the rate is inherited from one-photon pair production [9], which is
the second stage in the resonant process (1).
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Abstract

We derive the Noether identities and the conservation laws for general gravi-
tational models with arbitrarily interacting matter and gravitational fields. These
conservation laws are used for the construction of the covariant equations of motion
for test bodies with minimal and nonminimal coupling.

Metric-affine gravity [1] provides a general framework for the discussion of dynamics
of arbitrarily interacting matter and gravitational field. In this formalism, one can analyse
minimal coupling of matter with or without microstructure, along with extended nonmin-
imal coupling schemes, in any spacetime geometry. The gravitational field potentials are
the independent metric tensor g;; and the linear connection I'y;?. The corresponding field
strengths [1] are the curvature, the torsion, and the nonmetricity:

Rui? = Ol — 0% + Ui/ T — T/ T, (1)
Tu' = Tw' =Ty, (2)
Qrij = —Vigij = —0gij + Tri' g + T ga. (3)

The deviation from Riemannian geometry (specified by the Christoffel connection fkji =
% 9" (0;g1 + Orgi; — Oigr;) and marked by tilde) is measured by the distorsion tensor

Ny = fkji — Ty (4)

Noether identities arise from the symmetries of the action I = [d*xzL. Here we
study the case when the Lagrangian density £ = L(¢?, V2, gij, Riai?, Tty Qrijy Nij') is
a function of the metric, the curvature (1), the torsion (2), the nonmetricity (3), the matter
field ¢4, and its covariant derivative Viih? = O — Ty? (045);° 9B, We assume that
the action is invariant under general coordinate transformations of the gravitational and
the matter fields: 2' — x°+ 6%, g;j — gij + 07, Tni? — Tri? + 0047, and 94 — A + 59p4

or' = &(x), (5)
0gij = —(0: )gk] (9;€*) gir, (6)
Wt = — (3 (o"B); V", (7)
Ty’ = — (BT — (8:8) T + (08 Thi' — 058 (8)

The generators (6g); of the coordinate transformations satisfy commutation relations
(o) (0 B)" = (0e)i" (0 B);" = (07 5)" 6] = (0'B)," 4. (9)
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After a straightforward computation, we find for the variation of the action

of =— /d45€ {fk U + (9:67) ' + (956" Y + (95,6 )Qkij”], (10)
where explicitly
oL oL oL ,
Q. = — Okgij + —=0 O | =—=—— 0wt —6i.L
oL oL oL
0; | =——kGmn W™ + —=——=——0x0; 11, 11
+ (58igmn kg ) + o, m 88 T, m Ok0it (11)
, oL oL oL
Q' = 2— B4 O
S gy T a7 At
oL oL oL
20, ——OkGmn + 0; ‘
+ (aan l]gjk‘) aal G kg + (aa]wA(o- B) 1/} )
oL oL oL , oL
Iy’ Iy — =T oy
ar Wt o T r e Lo garm
oL oL oL ,
—— 0"+ ———— 0" — ———— 0.1, 12
F a0, T g, O g, O (12
g oL oL oL
09 = o wB + r.m
: 00 ,wA( ") O (ip)* " 00Ty "
L oL oL :
g™ DTy " 90T )
y oL
Q" = (14)
99 Lip*
Invariance of the action, 0/ = 0, yields the four Noether identities:
QU =0, U'=0, UY7=0 Q" =0, (15)
General coordinate symmetry is due to the fact that the density £ is constructed from
covariant objects. Denoting p*; = 81?5#’ oy = a?“fjk’ VR = agi”’ p, = 82,%, we find
oL oL . g g , A g N
g W(UABW P 42074207 4 20" T 20" Ty — i, (16)
oL g oL | - N g
_ ijk — ki =, (Ki)j (k)i _ kY 17
A e o =Y + 5 (W™ 4 ) (17)

As a result, we verify that €, = 0 and €™ = 0 are satisfied identically. Using (16) and
(17), we then recast the Noether identities (11) and (12) into

oL oL oL
R

897
< 8'C A n m

v¢-¢%)
oL
oV A

(0 B)m™ P Riygn™
_ |:§jyjmn . vz (M(zm)n + Iu(m)m M(mn z):| akgmn
-+ pilnmakRilnm + al”mﬁlenm + ,U/lnmakNlnm + l/lmnalemn = 07 (18)
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oL oL oL

Qo= 2 Vit
S g T gV
—V.29% — 0L (04 B)" 0P ) + W, (u 4 e imy g
g\ eV k avijUBkw n (M 2 H ik
— " N L N 4 N+ 20, T — o T
+ 2pllnmRklnm + plnllenkm - plnmlenmz + V’Lankmn - 0 (19>

An arbitrary tensor density A"; 7 is mapped into a density of the same weight by
VA 3 = 0, A" 3 4 Ty d A B = Tyl A T, (20)
A similar covariant derivative, defined by the Riemannian connection, is denoted
VA" I = O A I T A B = Tl A (21)

It is worthwhile to note that the variational derivative with respect to the metric is an
explicitly covariant density. This follows from the fact that the Lagrangian depends on
gi; not only directly, but also through the objects Qy;; and Ni;7. Explicitly, we find

oL drl oL oL ~ N B
_ = — + V" — —V (ni)j iy (nj)i _ ,(@)nY 29
59ij dgij (aangij ) agij ( a a ) ( )

The Noether identity (18) is apparently noncovariant in contrast to (19). To fix this, we
replace €2, = 0 by an equivalent covariant identity: € = Qp — I'1,,"*Q2,,"* = 0. Explicitly,

_ or i oL
Q= oA Vi + (W V™ — 5k£) - (8%@#‘ Vit ) Ty
o . nij ni)j n ij)n oL oL A n, B m
+ {VW - —V (u7 4 ) — ) — E} Qrij + W(U B)m" " Rin
+ pllnmkailn + U mvkﬂnm + Vlmnkalmn + ,ulnmkalnm = 0. (23)

When the matter fields satisfy the field equations §£/§¢* = 0, the Noether identities
(19) and (23) reduce to the conservation laws for the energy-momentum and hypermo-
mentum, respectively.

Nonminimal coupling models [2-4] have attracted considerable attention recently.
Using our results above, we can analyse a large class of models with the Lagrangian

L = /=gF Lya. (24)

The coupling function F' = F(gij, Rui’, T, Qrij, Ni*) depends arbitrarily on its argu-
ments, whereas the matter Lagrangian L, = Lmat(wA, Va4, gij) has the usual form.

The matter is characterized by the canonical energy-momentum tensor, the canonical
hypermomentum tensor, and the metrical energy-momentum tensor

; aLrnat A ; ; aLmat A B 2 5( _ngat)
i = — 5 Loty A" = — npB t = V. Itmat) (o
k GVZ'QZ)A Vk¢ t k 8V1¢A (U B)k ¢ ¥ \/_—g 69” ( 5)

The usual spin arises as an antisymmetric part of the hypermomentum, 7,;* = A[ij]k,
whereas the trace A¥ = A%* is the dilation current. The symmetric traceless part de-
scribes the proper hypermomentum [1].
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The conservation laws are derived from (19) and (23) , and they read
FY = Fti' +v, (FAL), (26)

* , . 1 ..
Vi(FX') = F (EllTkil — A" Ry — Et”Qki]’> — Liat Vi F. (27)

The so-called modified covariant derivative is defined as %Z = V, + N;;*. These results
generalize our previous findings [5-7].

The equations of motion of extended bodies are obtained from the conservation
laws, see the historic overview in [8]. There exist various schemes using the so-called
multipole expansion technique in which the motion of an extended body, sweeping a
finite world tube, is approximated by the motion of a point particle, which is characterized
by a (infinite, in general) set of moments. The latter are defined as integrated quantities
derived from the Noether currents that describe body’s matter. Here we use the covariant
expansion approach of Synge [9,10].

In Synge’s formalism, two-points tensors (or bitensors) are introduced as tensorial
functions of two spacetime points. Most important among them is the world-function
o(x,y), which measures the interval (distance) along a unique geodesic curve connecting
the two points x and y, and the parallel propagator ¢¥,(x,y) that transfers tensorial
objects along this geodesic. Covariant derivatives of the world-function are denoted by
o, = V,0, etc.

Let us consider, for now, the special case when the microstructure of matter is reduced
to the spin 7;;* and the geometry of spacetime, accordingly, is characterized by the van-
ishing nonmetricity Qz;; = 0. The general equations of motion based on the conservation
laws (26) and (27) will be analysed elsewhere.

The lowest (pole and dipole) integrated moments are p¥© = fZ(s) gyomixowzdzm, and

Yo — _/ O.ylgyoxoizorzdzzw gYoy1 — _/ gyozogylxlg[zom]mdzm. (28)
¥(s) 3(s)

The tilde denotes densitized canonical energy-momentum and spin tensors, and the inte-
gration is done over the spatial cross-section ¥(s) of a world tube of a body at the value
s of the proper time parameter along the representative world line z'(s).

Performing the appropriate integrations of the conservation laws (26) and (27), we
obtain the equations of motion in the pole-dipole approximation [11]

D 1~
—P* = _RabchCdvb + fa7
ds

D
: g = —oyleptl 4 fab, (29)

ds

Here v* = dx®/ds is the 4-velocity of the body, and we construct the generalized total
energy-momentum vector and the total angular momentum tensor

Ppr— [ (pa o %NacdSCd) + <pba o Sab) VbF, jab —F (Lab + Sab) 7 (30)

from the integrated 4-momentum p* of the body, the integrated orbital angular momentum
L = 2pletl " and the integrated spin angular momentum S = —25%.
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The Mathisson-Papapetrou equations (29) contain an additional force and torque due
to the higher multipole moments and the nonminimal coupling (with A; = V, log F):

fe FOY" VTt — 2¢" Ny "V F + 2F ¢V A, — EVOF + €'V, V°F,  (31)
o = 2reer, bl aFpQle Tt _ 4glaltly p — ocletlp, (32)

Here é = fz(s) Zmatwmdzxga é"y = fg(s) O-yzmatwmdzxw b — % (qbca + qbac - qcab)7 and

qy0y1y2 — /E‘( )gyoxogylilgyzmﬁxom]xzwdem. (33)
s

For the definition of w” see [10].

Interestingly, the form of the torsion-dependent pieces of the additional force and
torque exactly reproduces the contribution of the quadrupole translational moment stud-
ied for fermionic matter in [12,13]. An important next step would be to establish the
complete structure of the equations of motion up to the quadrupole order both in the
rotational and translational moments. Such a study can be most conveniently done along
the lines of the approach of Bailey and Israel [14].

Our covariant equations of motion (29) extend and confirm previous results on the
dynamics of extended bodies with spin [15,16] and [8]. In particular, when the coupling is
minimal (F = 1), we immediately verify that the post-Riemannian geometrical structure
of spacetime can be detected only by using test particles with intrinsic spin. Rotating
macroscopic bodies are thus, so to say, neutral to the torsion.

Nevertheless, it is worthwhile to notice that even structureless massive point particles
can be affected by the post-Riemannian gravitational field when the coupling function F'
depends on the torsion and nonmetricity. Such single-pole particles do not move along
geodesic curves (in contrast to minimally coupled point particles). A “pressure” like force
arises as the gradient of the coupling function:

mi® = & (6 — v'vy) V' log F. (34)

A similar force determines the nongeodetic motion of test particles in the scalar-tensor
theory of gravitation [17,18] where the gravitational coupling constant is replaced by the
scalar coupling function.
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FLAVOR DEPENDENCE OF THE SPIN-INDEPENDENT AND
SPIN-DEPENDENT PARTS OF GPDs(z,t,£ = 0)

O.V. Selyugin'

LBLTP, Joint Institute for Nuclear Research, Dubna, Russia

Abstract

The different sets of PDF with the new form of t-dependence of generalized
parton distributions (GPDs) were examined in the descriptions of the electromag-
netic form factors of the proton and neutron. One of the purposes was to minimize
the number of fitting parameters. We found that main flavor difference related to
the spin-dependent of PDF incoming as part in GPDs. Hence, contrary to some
other work, our result shows a little flavor dependence of the t-dependence of the
GPDs(x,t,& =0).

The parton picture of the hadron is in most part represented by the parton distribution
functions (PDFs). They are determined in the deep inelastic processes. The next step in
the development of the picture of the hadron was made by introducing the non-forward
structure functions - general parton distributions - GPDs [1] with spin-independent the
H(z,&,t) and the spin-dependent F(z,&,t) parts. Generally, GPDs depend on the mo-
mentum transfer ¢, the average momentum fraction x = 0.5(z; + x¢) of the active quark,
and the skewness parameter 2§ = z; — x; that measures the longitudinal momentum
transfer. Some of the advantages of GPDs were presented by the sum rules [1]

Fi(t) = /0 de Hi(z, & =0,t), Fj(t)= /0 dx E9(x, & = 0,1). (1)

Now we cannot obtain the t-dependence of GPDs from the first principles, but it can be
obtained from the phenomenological description by GP Ds of the nucleon electromagnetic
form factors. Many different forms of the ¢-dependence of GPDs were proposed. In the
quark diquark model [2,3] the form of GPDs consist of three parts - PDFs, function
distribution and Regge-like.

Fy(w,t) = Ny Gyt (x,1) Rl (a,t). 2)
The parameters have the flower dependence for the all three parts. As a result, they came
to the conclusion: ”The data show, in particular, a suppression of d quarks with respect
to u quarks at large momentum transfer”. In other works (see e.g. [4]) the description
of the t-dependence of GPDs was developed in a more complicated picture using the
polynomial forms with respect to x. Note that in [5] it was shown that at large 2 — 1
and momentum transfer the behavior of GPDs requires a larger power of (1 — x)" in the
t-dependent, exponent:

Hi(x,t) ~ expla (1 —x)" t] q(x). (3)

Iselugin@theor.jinr.ru
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Figure 1: The model description of the electromagnetic form factors for the proton(left) uG% /G, and
the neutron (right) G, /(1Gd) with the different PDFs.

with n > 2. It was noted that n = 2 naturally leads to the Drell-Yan-West duality
between parton distributions at large x and the form factors.

Let us modify the original Gaussian ansatz and choose the t-dependence of GPDs in
the simple form

H(x,t) = q(x) explay (1 —x)?/a™ t]. (4)

The value of the parameter m = 0.4 is fixed by the low ¢ experimental data while the free
parameters ax (ay - for H and a_ - for £) were chosen to reproduce the experimental
data in the whole t region. The isotopic invariance can be used to relate the proton and
neutron GPDs. Hence, we do not change any parameter and keep the same ¢-dependence
of GPDs as in the case of proton.

In our first work [6] the function ¢(z) is based on the MRST02 global fit [6]. In all
calculations we restrict ourselves to the contributions of only valence u and d quarks.
Following the standard representation we have for the Pauli form factor Fj

Ex,t) = E%x) expla- (1 —x)?/2"" 1]; ()
Ex) =  ky/Ny (1 —2)" u(z), E%zx) =ky/Ng (1 —2) d(z),

where k; = 1.53 and k3 = 0.31 [8]. According to the normalization of the Sachs form
factors, we have k, = 1.673, k; = —2.033, N, =153, Nyg=0.946

Now many PPDs, proposed by different Collaborations, were examined to compare
the descriptions of the electromagnetic form factors of the proton and neutron. We take
464 experimental data and take into account only statistical errors. As a result, we find
that the different PDF sets, which well describe the deep inelastic processes, gave the
large difference in the description of the form factors [9]. The whole sets of the results
will be published. Now we note that a better description of the form factors was given
by PDFs of the [10,11] and [12]. The obtained description of the electromagnetic form
factors is shown on Fig. 1 (left) for the proton and Fig.1(right) for the neutron. Note that
at small momentum transfer practically all PDFs gave the same descriptions. However,
at large t we obtain the different description for the different PDFs.

Now let us examine separate contributions of the v and d quarks to the electromagnetic
form factors in our model of the t-dependence of GPDs. We take PDF's of [10] which give
the one of the best descriptions of the electromagnetic form factors. We analyze the two
cases: first - the base variant of GPDs with only 4 free variation parameters, second -
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Figure 3: The same as in Fig.2 for the k=12 Fy(t).

with the maximum number of free variation parameters - 10.

Hi(z,t) = q(@)y explo (ase(l — ) + (1 — )" /(e + 2)* 1] (6)
+  q(2)q explaas (agz(l —z) + (1 — )% /(e + x)* t]. (7)
Elx,t) = q(@)u(l —2)" expla (as2(l —z) + (1 —2)" /(e +2)™ 1]
+  q@)a(l — 2)*2 explaas (agzr(l — x) + (1 — )% /(e + x)* 1].

Here the parameters as, ay, as, ag represent the flavor dependence of the Regge part of
GPDs and the parameters kq, ky are responsible for the flavor dependence of the spin-
dependent part of PDFs. If we take the PDFs sets from [10] we obtain the small difference
in 3" x? in the descriptions of the electromagnetic form factors in these two cases, only
25%. However, the number of free parameters differs essentially: 4 and 10. Further
increase in the number of free parameters leads to a very small decrease in > x2.

The u and d quark contributions to Fj(¢) multiplied by ¢? is shown in Fig.2. We
compare the fits with 4 free parameters (left) and 10 free parameters (right). It is clear that
the difference is very small. Only the d quark contribution is slightly less in the last case.
However, the t-dependence in both the cases is practically the same. In Fig.2, we present
the same calculations for Fy(t). Again, the contribution of the d quark decreases in the
case of a large number of free parameters. Despite the large number of the free parameters,
our calculations better coincide with extractions of the u and d quark contributions up
to —t = 2 GeV? [13]. The u and d quark contributions to F(t) (left) and Fy(¢) (right)
at large momentum transfer are shown in Fig.3. It is clear that at large ¢ the behavior of
the u and d quark contributions is the same.
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transfer.

Our analysis of PDFs sets of the different Collaborations show a large difference in
the descriptions of the electromagnetic form factors of the proton and neutron. The best
result can be obtained with PDFs sets of [10] and [11]. These sets lead to minimum of
S~ x?. They also show the small dependence of the GPDs on the increasing different free
parameters. The obtained ¢ dependence of GPDs has a simple form and a small number
of the free parameters.

The flavor dependence in these cases in most part comes from the spin dependent part
of PDFs. We obtained the good descriptions of the electric and magnetic form factors of
the proton and neutron simultaneously. We found that different PDFs gave almost the
same descriptions of the proton form factors at small momentum transfer. The difference
appear only at large t. Our calculations of the u and d quark contributions show the same
t dependence at large t.
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FORMULAS OF CONNECTION BETWEEN THE DIFFERENT QCD
ORDERS FOR PARTON DISTRIBUTION AND FRAGMENTATION
FUNCTIONS

|O.Yu. Shevchenko|

Joint Institute for Nuclear Research, Dubna, Russia

Abstract

The formulas directly connecting parton distribution functions (PDFs) and frag-
mentation functions (FFs) at the next to leading order (NLO) QCD with the same
quantities at the leading order (LO) are derived. These formulas are universal, i.e.
have the same form for all kinds of PDFs and FF's, differing only in the respective
splitting functions entering there.

Recently [1] the formulas directly connecting parton distribution functions (PDFs) and frag-
mentation functions (FFs) at the next to leading order (NLO) QCD with the same quantities
at the leading order (LO) were derived. To obtain these formulas only the DGLAP evolution
equations and the asymptotic condition that PDFs (FFs) at different QCD orders become the
same in the Bjorken limit were used as an input. Due to universality of this input the obtained
connection formulas are also universal, i.e. they are valid for any kind of PDFs (FFs) we deal
with, differing only in the respective splitting functions entering there. Moreover, operating in
the same way as in Ref. [1] one can also establish the connection of PDFs (FFs) at LO (as
well as at NLO) with these quantities at any higher QCD order (NNLO, NNNLO, ...) (will be
published elsewhere).

Let us discuss the derivation of the connection formulas in some detail. We start with some
necessary notation and definitions. For the flavor non-singlet and singlet quantities we introduce
the notation Qyg and V = (Qg, G), where Qung can be either gyg (non-singlet combinations
of quark densities), or Agygs (non-singlet combinations of helicity PDFs), or combinations of
transversity PDFs Arq(q) = hig g, - ., or D% (“non-singlet” combination of FFs D(’;),. .., while
Qs can be ¢g, Agg, Dg,. .., G can be g, Ag, DZ,. ... In this notation the DGLAP evolution
equations (see [2] for review) look as

Q*dV(Q*,2)/dQ* = (as/2m) [PV (2) + (ay/2m)PW (2) + O(a2)] @ V(Q?, 2), (1)
where the convolution (®) is given by
1 1 1 "
(A® B)(z) = /0 dxl/o drs (2 — 1w9) A1) B(zs) = / C;yA(y)B(y),

and analogously for Qg with the replacement P(z, as) — P(x, as) = PO (2)+ (s /210) P () +
O(a?). Here P is 2 x 2 matrix with the elements Pyq, Py, Pyq, Pyg, and the splitting functions
for unpolarized PDF's and helicity PDFs can be found in the review [3], for transversity PDFs
— in the review [4], for FFs — in Ref. [5] and references therein.

Following [6] it is convenient to define the evolution operators E and E (2 x 2 matrix with
the elements Eyq, Eqg, Egq, Egq) as

QNS(Q27$) = E(Q2>X) ® QNS(Q%,-CU), V(QQ,{E) = E(szx) ® V(Q%,x) (2)
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Here we are interested in the initial conditions!
E(Q*=Q.z)=0(1-2), E(Q*=Q}z)=161-2), (3)

which allow to evolve Qns and V from the initial scale Q3 to an arbitrary scale Q2.
It is also convenient to use, following [6], the evolution variable ¢ = (2/3) In (s (Q3) /ais(Q?))
instead of the standard variable In(Q?/u?). Besides, we introduce the notation

A‘LOE A, ‘4|NL0E A, (4)

for any quantity A at LO and NLO, respectively.

From now on we consider only the nontrivial singlet case. Transition to the simple non-
singlet case will be easily done in the end of calculations by making the replacement of the
matrices with the respective commuting quantities.

In terms of quantities ¢t and E the DGLAP equations are rewritten in LO as

d

d?E(f’ z)=PO @B 2), (5)

while in NLO they look as

%E(t, v) = [PO@) + 22 R() + 0(ad)] @ Blt, ), (6)
where
R(z) = PW(z) — 1 po) (z). (7)

260
Solution of (5) with the initial condition (3) E(f = 0,z) = 18(1 — z) reads [6]

E(f,z) = Exp(PO(2)H)=16(1 — 2) + PO (z) + l; PO2) o PO (z) + ..., (8)

while to solve NLO equation (6) one can apply the elegant method of Ref. [6] based on the analogy
with the perturbative quantum mechanics (see Egs. (5.47)—(5.54) in Ref. [6]). Operating in this

way one obtains the general solution of (6) in the form (for a moment we omit = dependence
and §(1 —z))

E(t) = {E(t) ® [1 + O‘Sg%) /t,t dr e PTPE(-r) 9 R® E(T)} ® E(t/)} QE{).  (9)

Putting t — oo in (9) one reproduces the solution (Eq. (5.54) in Ref. [6]) satisfying the
boundary condition E — E as t — co. In turn, putting t = 0 in (9) one gets the solution
(@)

E(t) = [1 + 2

t r PT2f (1 b(—7 f
- /Od B(r) @ R ® B )] 2 B(1), (10)

satisfying the boundary condition (3) we deal with.
The key point to proceed is the condition that all PDFs and FF's should take the same values
in LO and NLO (as well as in NNLO,...) as Q? — oc:

QNS(Q2 — 00,T) = QNS(Q2 — 00, 1), V(Q2 — 00,T) = \’\/(Q2 — 00, ). (11)

'We do not consider the asymptotic conditions [6] E (E) — E (E) as Q* — oo (see Eq. (5.57) in [6]),
since we deal only with particular realization (2) of the general conditions given by Egs. (5.18) in [6].
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Though this asymptotic condition seems to be intuitively clear, let us argue it in some detail
because of its great importance for what follows.

Imagine that two researchers analyse in LO (the first) and NLO (the second) the same
“ideal” data — the data available with tremendous statistics even in the Bjorken “sub-limit” (so
high Q? values are accessible that the Bjorken scaling violation becomes invisible even within
extremely small uncertainties on measured asymmetries and cross-sections). For determinacy
and simplicity let us suppose that they analyse the imaginary “ideal” polarized SIDIS data
on pion production and extract the valence helicity PDFs Auy, Ady from the proton and
deuteron difference asymmetries (see Ref. [7] and references therein) measured in the Bjorken
“sub-limit”. The first uses LO formulas A;#_f ~ (4Auy — Ady)/(4uy — dy) and AT*”_ ~
(Auy + Ady)/(uy + dy) (ie., performs the analysis analogous to one of COMPASS [8]), and
the second their NLO generalization (Eqgs. (6-10) in Ref. [7]). Besides, for self-consistency,
both imaginary researches do not use the existing parametrizations on uy, dy but extract these
quantities themselves (as well as the integrated over cut in z difference? D; — Dy of favored
and unfavored pion FFs) using the same SIDIS data on pion production averaged over spin and
studying the quantities F27;+(d,3He,...) — Fzg(d,SHe,...)v where in both LO and NLO only uy, dy and
Dy — Dy survive. It is obvious that all terms with convolutions ® (see Egs. (6-10) in Ref. [7])
distinguishing NLO and LO equations for finding Auy, Ady and uy, dy, D1 — D5 just disappear
as one approaches the Bjorken limit, so that comparing the results on these quantities obtained
in the Bjorken “sub-limit” both researchers could not discriminate between them.

So, let us pass to limit Q2 — oo in Eq. (2) using the asymptotic condition (11). Then, on
the one hand (NLO evolution)

V(Q*z) =E(t > —00,2) ® V(Q] — 00,2) = E(t — —00,2) @ V(Qf — 00, ), (12)
and, on the other hand (inverse LO evolution)

V(Q2 — o0, z) = B(f — 00,2) ® V(Q?, ). (13)

Combining Egs. (12) and (13) one obtains

®\7(Q2,x). (14)

Qf—o0

V(Q?% z) = [ lim E(t,z) @ E(-{,z)

Using Eqgs. (8), (10) and the relation limg2_,(as/ds) = 1 we arrive at the connection formula
between NLO and LO flavour singlet PDFs (FFs) V and V at the same finite Q? value

V(Q?, ) = {1 0(1—xz)— %ﬁ‘gz) fi)oo dr ePoT/2 E(T,x) @R(z) ® E(—T,x)

s (Q? R
® Exp (—% In d5582§ P©) (x)) ®V(Q% ), (15)

where all dependence on the unreachable infinite point Q% just cancels out.
In the non-singlet case the relation (15) is significantly simplified. The terms E(7,z) =
Exp(rP©)(z)) and E(—7,z) cancel out each other in the integrand and one easily obtains

Qus(@% @) = [5(1 — ) + =& (5 PO@) - 2PV (@))]

® Bxp (— 2 n 2%} PO(2)) © Qs(Q? 7). (16)

20n simultaneous determination of valence PDFs and D; — D from the SIDIS data see, for example,
[9].
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Egs. (15) and (16) connecting flavour singlet and non-singlet quantities in NLO with the
same quantities in LO is the main result of the paper. Let us briefly discuss their practical use.

There are not any problems with application of Eq. (16) and the task of reconstruction of
NLO non-singlet quantities from LO ones is reduced just to the trivial calculation of the integrals
entering the convolutions ®. Indeed, the parameter e = —(2/0) In(as/ds) is very small even at
the minimal (the lower boundary of the experimental cut on Q? is usually about 1 GeV?) really
available Q? values, so that one can achieve very good accuracy keeping only few first terms in
the expansion Exp (e PO () =6(1—x)+e PO (z) + (€2/2!) PO)(z) @ PO)(z) 4 ... Certainly,
the same statement holds for term Exp (e P©) (z)) in Eq. (15), but there arises an additional
problem how to deal with the integral over 7. As usual, the problem is easily solved in the space
of Mellin moments. Notice that @? independent integral over 7 in Eq. (15) just coincides® with
the quantity —U(z) in Ref. [6] (see Eq. (5.45) in [6]), which enters the solution of DGLAP with
the boundary conditions limgz ., E (E) = E (E) (see footnote 2). Then, applying the inverse
Mellin transformation, one easily obtains instead of (15) the formula suitable* for numerical
calculations

2 as(Q?) /CHOO z " } 2\ (0) ()2
V(Q%z) = |16(1 — z) + 222 dn>—U(n)|® Exp (e(Q )P (x))@V(Q ,z), (17)

s C—ico 27
where 2 x 2 matrix U(n) = fol drx" 1 U(z) is given by Eq. (5.41) in Ref. [6].

In summary, the formulas allowing to transform LO parton distribution and fragmentation
functions to NLO ones are derived. To obtain these formulas we use as an input only the
DGLAP evolution equations and the asymptotic condition that PDFs (FFs) at different QCD
orders become the same in the Bjorken limit. Due to universality of this input the connection
formulas are also universal, i.e. they are valid for any kind of PDFs (FFs) we deal with. Besides,
it is obvious that operating in the same way one can also establish the connection of PDF's (FFs)
at LO (as well as at NLO) with these quantities at any higher QCD order (NNLO, NNNLO,
...), and the only restriction here is the knowledge of the respective splitting functions.
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one can immediately check that r.h.s. of Eq. (15) indeed satisfies the NLO DGLAP equation (1).

“In Ref. [10] one can find the efficient algorithm for the numerical calculation of the integral over n
(proper choice of the integration contour, etc. — see discussion around Eq. (3.2) in Ref. [10]).

123



IMPORTANCE OF SEMI-INCLUSIVE DIS PROCESSES IN
DETERMINING FRAGMENTATION FUNCTIONS!

E. Leader®, A.V. Sidorov’' and D.B. Stamenov®

(a) Imperial College, Prince Consort Road, London SW7 2BW, England
(b) Joint Institute for Nuclear Research, 141980 Dubna, Russia
(c) Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
Blvd. Tsarigradsko Chaussee 72, Sofia 1784, Bulgaria
1 E-mail: sidorov@theor.jinr.ru

Abstract

A NLO QCD analysis of the HERMES and COMPASS data on pion multiplici-
ties is presented. Sets of pion fragmentation functions are extracted from fits to the
data and compared with those obtained from other groups before these data were
available. The consistency between HERMES and COMPASS data is discussed.
We point out a possible inconsistency between the the HERMES [z, 2] and [Q?, z]
presentations of their data.

In the absence of charged current neutrino data, the experiments on polarized inclusive
deep inelastic lepton-nucleon scattering (DIS) yield information only on the sum of quark
and anti-quark parton densities Ag + Ag and the polarized gluon density AG. In order
to extract separately Aq and Aq other reactions are needed. One possibility is to use the
polarized semi-inclusive lepton-nucleon processes (SIDIS) [ + N — " + h + X, where h
is a detected hadron (pion, kaon, etc) in the final state. In these processes new physical
quantities appear - the fragmentation functions Dg’q(z, Q?) which describe the fragmenta-
tion of quarks and antiquarks into hadrons. Due to the different fragmentation of quarks
and anti-quarks, the polarized parton densities Aq and Ag can be determined separately
from a combined QCD analysis of the data on inclusive and semi-inclusive asymmetries.
The key role of the fragmentation functions (FFs) for the correct determination of sea
quark parton densities Ag was discussed in [1]. There are different sources to extract the
fragmentation functions themselves: The semi-inclusive e e~ annihilation data, single-
inclusive production of a hadron h at a high transverse momentum pr in hadron-hadron
collisions, unpolarized semi-inclusive DIS processes. It is important to mention that the
data on hadron multiplicities in unpolarized SIDIS processes are crucial for a reliable de-
termination of FFs, because only then one can separate D!(z, Q?) from D!(z, Q*). Such
data have been used only by the DSS group in their global analysis [2]. As a result, the
properties of the extracted set of FFs significantly differ, especially in the kaon sector,
from those of the other sets of FFs [3]. Unfortunately, the new properties of the DSS FF's
are based on the unpublished HERMES’05 SIDIS data on hadron multiplicities which are
not confirmed by the final HERMES data [4]. It turns out that not only the DSS FFs,
but all other sets of pion and kaon FFs are NOT in agreement with the recent HERMES
and COMPASS data [5] on hadron multiplicities.

IThis research was supported by the JINR-Bulgaria Collaborative Grant and the RFBR
Grants (Nrs 11-01-00182, 12-02-00613 and 13-02-01005).
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In this talk we present our results on new pion fragmentation functions extracted
from a NLO QCD fit to the HERMES and COMPASS (the first ref. in [5]) data on the
pion multiplicities. While COMPASS reports data only on a deuteron target, HERMES
presents data on both the proton and deuteron targets.

The multiplicitiy M ( ,Q?, 2) of pions using a proton (deuteron) target are defined
as the number of pions produced normalized to the number of DIS events, and can be

expressed in terms of the semi-inclusive cross section Tod) and the inclusive cross section

DIS.
Tp(d) -

e ) B d3N;(d)(x,Q2,z)/dde2dz B d*a7 o) (T Q?, 2)/dzdQ*dz
p(d)<x’Q ’Z) - d2NpD(é)S(x Q2)/dde2 - d2 DIS<1, QZ)/ddeQ

I+ A =y))2eF ) (2, Q% 2) +2(1 — y)x T, (2, Q% 2) M
N (1+ (1 —y2)22F ) (z, Q%) + 2(1 — y) Frp (a:Q) ‘

In Eq. (1) F},F! and Fy,F;, are

M) ] 1.0
best fit |

the semi-inclusive and the usual nucleon L pssFrs| °°
. . . 06 * 1 06
structure function respectively, which are 1
expressed in terms of the unpolarized par- 02 . 02 .
. . x=0.016, Q*=1.24,y, x=0.035, Q'=260,y, "~ ¥

ton densities and the fragmentation func- O s R
tions (F', F}'), and by the unpolarized wf R b '

o, . 10F
parton densities (Fi, Fy). oof osl

Let’s start our discussion with the re-
sults of the fit to COMPASS deuteron i ] s
x=0. =5, [ x=0.206, Q@*=15.2, y,
data. In our fit we have used the R brsldndit el . n:AQ !
2 .
ly,2(Q%),2] presentation of the data, Figure 1: Comparison of our NLO QCD results for

where y = QQ/QMEI' is the fractional en- cOMPASS 7+ multiplicities with the data. The mul-
ergy of the virtual photon, and M and tiplicities computed with the DSS FFs are also shown.

E are the mass of the nucleon and the
energy of the muon beam, respectively. o
The data on the multiplicities are dis- o8
tributed in five y-bins as functions of z o4
at different fixed values of (z,Q%). The  “koow a=124y,
total number of the data points is 398, W v W W e we W
199 for 7™ and 199 for 7~ multiplicities.

06 08z

10 : | 10}
\ " M)

x=0.035, Q*=2.60, y, |

best fit 08}
---DSSFFs
06l
04t

02

x=0078, Q*=5.78,y, | [ P x=0206,Q%=152,y, |

The errors used are quadratic combina- o y
tions of the statistical and systematic er-
rors. The number of free parameters, at- & S 0z
tached to the input parametrizations of B z

the pion FFs [D™+(z), Dg"'(z)’ DZ;JF(Z)] Figure 2: Comparison of our NLO QCD results for
at QQ =1 GeV? and determined from the COMPASS 7~ multiplicities with the data. The mul-
fit, is 12. The assumption that all unfa- tiplicities computed with the DSS FF's are also shown.
vored pion FFs are equal is used. For the unpolarized parton densities we use the NLO
MRST’02 set of PDFs [6]. The charm contribution to the multiplicities is not taken into
account. For the value of x?>/DOF corresponding to the best fit to the data we obtain
283.12/386=0.73. An excellent description of the COMPASS pion data is achieved. The

quality of the fit is illustrated for the ys-bin [0.2-0.3] (see Fig. 1 for 7™ and Fig. 2 for
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7~ multiplicities). In the figures are presented also the multiplicities at the COMPASS
kinematics calculated using the DSS FFs (dashed curves). The extracted pion FFs will
be presented later and compared to those obtained from our fit to the HERMES data, as
well as to some of the FF's sets available at present. Here we would like only to mention
that it is obvious that the COMPASS data are in disagreement with the DSS FFs.

Let us discuss now our results on the pion FFs extracted from a NLO QCD fit to
the HERMES proton and deuteron data on pion multiplicities, corrected for exclusive
vector meson production [4]. In our analysis we have used the [z, 2] as well as the [Q?, 2]
presentation of the data. The pion multiplicities are given for 4 z-bins [0.2-0.3; 0.3-0.4; 0.4~
0.6; 0.6-0.8] as functions of z for the [z, z] or functions of Q? for the [Q?, 2] presentation.
The total number of the 7+ and 7~ data points is 144. It turned out that we can not find
a reasonable fit to the HERMES [z, z] data. Also, there is a strong indication that the
HERMES [z, z] and COMPASS data are not consistent. We observe a big discrepancy

2,4F T T = T
2l " Mz ——FFs(COMPASS) 4 ,,I @ Mz  ——FFs(COMPASS) ]
210 ] --- FFs (HERMES) 18l 3 - -- FFs (HERMES)
1,8} ] 16f : [ {
16| ] 14r 7 ]
' i3 ¢
1,4} ] 12r z=0.2-0.3
12[ 1 10} .
10f 1 ost ___'__.___ ______ .
oal 1 osf N
' z=0.3-04
1 0‘4 1
0,1 0,1
0,6 T 04 T
z2=0.4-0.6 L 2=0.4-0.6
o5F i § -z m—m—a ] R A
B L B t 03f O %
wab T o]
03} 1 o2}
z=0.6-0.8
02} e ]
s = = 01
0,1

L
0,1

Figure 3: Comparison of HERMES [z, 2] proton data on 71 (left) and 7~ multiplicities (right) with the
multiplicities at the same kinematic points calculated by our FFs extracted from the COMPASS data
(solid curves) and from HERMES [Q?, 2] data (dashed curves).

between the values of the HERMES data on pion multiplicities and multiplicities at the
same kinematic points computed with our FFs extracted from the COMPASS data (see
solid curves in Fig. 3 for proton and Fig. 4 for deuteron data).

We were very surprised to find that the situation is dramatically changed if the HER-
MES data on pion multiplicities in [Q?, 2] presentation are used in the QCD analysis. In
this case a reasonable fit to the data is achieved, x?/DOF = 151.73/132 = 1.15. The
errors used in the fit are quadratic combinations of the statistical and point-to-point sys-
tematic errors. As in the COMPASS case: a) isospin symmetry for FFs is imposed, b) we
assume that all unfavored pion FFs are equal and ¢) the same parametrizations for the
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Figure 4: Comparison of HERMES [z, z] deuteron data on 7+ (left) and 7~ multiplicities (right) with
the multiplicities at the same kinematic points calculated by our FFs extracted from the COMPASS data
(solid curves) and from HERMES (Q?, 2) data (dashed curves).

input FFs are used in the analysis. We find that the description of the proton data (the
mean value of x? per point is equal to 0.96 for 7 and 0.70 for 7~ multiplicities) is better
than that of the deuteron data (where the mean value of x? per point is equal to 1.25 for
7w and 1.31 for 7~ multiplicities). The quality of the fit to the data is illustrated in Fig.
5 (for the proton target) and Fig. 6 (for the deuteron target).

Using the extracted FFs from the HERMES data on multiplicities in the [Q?, 2] pre-
sentation we have calculated the multiplicities at the kinematic points for the [z, z] pre-
sentation. The obtained value for x? is huge, 2093.3 for 144 experimental points. The
results are shown (dash curves) in Fig. 3 for a proton and in Fig. 4 for a deuteron target.
As seen from the figures, the discrepancy is very large for both the proton and deuteron
targets for the first z-bin [0.2-0.3], as well as at lowest x, for all z-bins. It follows from
this observation that the [z,z] and [Q?, z] presentation of the HERMES data are not
consistent and that the use of different presentations of the same data leads to different
physical results. A further study of this unusual situation is urgently needed.

The extracted pion FFs from the fit to COMPASS data (solid curves) and from the
fit to HERMES data on pion multiplicities (dash curves) are presented in Fig. 7, and
compared to those determined by DSS [2] and HKNS (the 2nd reference in [3]) in Fig. 8.
Due to the visible difference in the z region [0.4-0.6] between the favored fragmentation
functions DT extracted from HERMES and COMPASS data, and the large difference
between the corresponding gluon FFs, the dashed curves in Fig. 5 and Fig. 6 corre-
sponding to the multiplicities at the HERMES [@Q?, z] data points calculated by the FFs
(COMPASS), lie systematically lower than the data points for the same z-bin. Combined
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Figure 5: Comparison of HERMES [Q?, 2] proton data on 7+ (left) and 7~ multiplicities (right) with
the best fit curves. The dashed curves correspond to the multiplicities at the same kinematic points
calculated using our FFs extracted from the COMPASS data.
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Figure 6: Comparison of HERMES [Q?, z] deuteron data on n* (left) and 7~ multiplicities (right) with
the best fit curves. The dashed curves correspond to the multiplicities at the same kinematic points
calculated using our FFs extracted from the COMPASS data.
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Figure 7: Our FFs extracted from the fit to COMPASS data (solid curves) and HERMES (Q?, z) data
(dashed curves).

fits to the COMPASS and HERMES [Q?, 2] data on pion multiplicities will answer the
important question if the discrepancy between the two data sets, shown in Figs. 5 and 6,
will be removed, or more generally, if the HERMES [Q?, z] and COMPASS data are or
are not consistent.
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Figure 8: Comparison between the new pion FFs and those of DSS and HKNS.

One can see from Fig. 8 that the new sets of pion FFs for the quarks are close to that
of DSS. The differences, however, between Df corresponding to the different sets, are

large. Also, for the DSS set the favored fragmentation function Dzl—r+ is larger than DT
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because in their analysis a violation of isospin symmetry was allowed. This is the main
reason that the values of the multiplicities calculated by the DSS FFs for the COMPASS
kinematics (dashed curves in Figs 1 and 2) are systematically larger then the experimental
values. The situation is the same for the HERMES data.

In conclusion, new sets of pion FF's are determined from the fits to the recent HERMES
and COMPASS data on pion multiplicities. They differ from those of DSS and HKNS
obtained before these data were available. The