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WELCOME ADDRESS
by JINR Vice-Director R. Lednicky

Dear Colleagues,
Ladies and Gentlemen, on behalf of the Directorate of Joint Institute for
Nuclear Research it is a pleasure to welcome you at the 14-th International
Workshop on High Energy Spin Physics. The first Workshop of this series
was held in Dubna already 30 years ago. It was chaired by Lev Lapidus,
who, starting in the middle of fifties, contributed significantly to the de-
velopment of High Energy Spin Physics for about three decades. Besides
his own research, he stimulated a very fruitful and extensive participation
of physicists from Eastern countries in a number of international projects
devoted to this field of physics. Later on, these spin Workshops became
regular due to the initiative of Anatoly Efremov, their chairman for many
years.

I think there is no need to stress here the importance of the spin and
polarization phenomena for deeper understanding of particle physics. The
JINR laboratories are largely involved in this important field of physics
including both theoretical and experimental studies. The latter have been
carried out with unique polarized beams at JINR Nuclotron as well as
in the outside experiments within collaborations HERMES, COMPASS
and STAR. These studies will be continued also within the project NICA
(Nuclotron based ion collider facility) which is presently realized in JINR.

After its completion in 2017, it will provide, besides the heavy ion
beams, also polarized proton and deuteron beams in the energy range up
to center-of-mass energy of about 27 GeV for proton collisions. Though the
main physics goal of the NICA project is a study of the QCD matter at a
highest net baryon density with a dedicated multipurpose detector MPD,
we plan a construction of the second detector SPD, dedicated for Spin
Physics studies. The following measurements are foreseen: Drell-Yan and
J/ψ production processes with longitudinally and transversally polarized
proton and deuteron beams for the extraction of unknown or poorly known
parton distribution functions; spin effects in baryon, meson and photon
production; spin effects in various exclusive reactions and diffractive pro-
cesses; spin-dependent cross sections, helicity amplitudes and double spin
asymmetries (Krisch effect) in elastic reactions; spectroscopy of quarkonia;
polarimetry.
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We are certainly very much interested in the assistance of the interna-
tional spin community in preparation of the competitive program of polar-
ization studies on this new facility. A worldwide cooperation is anticipated
at all stages of the project - from the elaboration of the scientific program
up to its realization.

Besides JINR, this Workshop is supported by the International Com-
mittee for Spin Physics as a joint Dubna-Prague-Warsaw Workshop by the
Russian Foundation for Basic Research by the European Physical Society
and by the DYNASTY foundation. I would like to thank the Workshop
organizers for their uneasy work. I hope that you will benefit from the
traditional friendly and fruitful atmosphere of this meeting. I wish you a
productive work, interesting and stimulating discussions and, of course, a
pleasant stay here in Dubna.

Using the occasion I would like to congratulate from the name of JINR
Directorate Anatoly Radyushkin, one of the pioneers in proving the factor-
ization in QCD and the Generalized Parton Distributions, with his 60-th
anniversary. A special session is planned to be devoted to this event.

Thank you for the attention.
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15 YEARS WITH GPDs

A.V. Radyushkin 1† 2, 3

(1) BLTP, JINR, Dubna, Russia
(2) Old Dominion University, Norfolk, Virginia, USA

(3) Jefferson Lab, Newport News, Virginia, USA
† E-mail: radyush@theor.jinr.ru

Abstract

An introductory review of Generalized Parton Distributions (GPDs) is given.

1 Introduction: What are GPDs?

The fundamental physics to be accessed via the generalized parton distributions (GPDs)
[1–4] is the structure of hadrons. The situation in hadron physics may be illustrated in
the following way:
i) All the relevant particles are already established, i.e., no “higgses” to find.
ii) The QCD Lagrangian is known.
iii) However, we still need to understand how QCD works, i.e., to understand hadronic
structure in terms of quark and gluon fields.

Projecting quark and gluon fields q(z1) , q(z2) , . . . onto hadronic states |p, s〉 gives
matrix elements:

〈 0 | q̄α(z1) qβ(z2) |M(p), s 〉 , 〈 0 | qα(z1) qβ(z2) qγ(z3)|B(p), s 〉 (1)

that can be interpreted as hadronic wave functions. In particular, in the light-cone (LC)
formalism [5], a hadron is described by its Fock components in the infinite-momentum
frame. For the nucleon, one can schematically write:

|P 〉 = |q(x1P, k1⊥)q(x2P, k2⊥)q(x3P, k3⊥)〉+ |qqqG〉+ |qqqq̄q〉+ . . . , (2)

where xi are momentum fractions satisfying
∑

i xi = 1; ki⊥ are transverse momenta,∑
i ki⊥ = 0. In principle, solving the bound-state equation H|P 〉 = E|P 〉 one should get

the wave function |P 〉 that contains complete information about the hadron structure.
In practice, however, the equation (involving an infinite number of Fock components) has
not been solved yet in the realistic 4-dimensional case. Moreover, the LC wave functions
are not directly accessible experimentally.

The way out in this situation is the description of hadron structure in terms of phe-
nomenological functions. Among the “old” functions used for a long time we can list form
factors, usual parton densities, and distribution amplitudes. The “new” functions, gen-
eralized parton distributions (for reviews, see [6–9]), are hybrids of form factors, parton
densities and distribution amplitudes. Furthermore, the “old” functions are limiting cases
of the “new” ones.
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2 Form factors

Figure 1: Elastic eN scattering
in the one-photon exchange ap-
proximation.

The form factors are defined through matrix elements of
electromagnetic (EM) and weak currents between hadronic
states. In particular, the nucleon electromagnetic form fac-
tors are given by

〈 p′, s′ | Jµ(0) | p, s 〉 = ū(p′, s′)
[
γµF1(t) +

rνσµν

2mN

F2(t)

]
u(p, s) ,

where r = p− p′ is the momentum transfer and t = r2. The
electromagnetic current is given by the sum of its flavor
components:

Jµ(z) =
∑

f

ef ψ̄f (z)γµψf (z) .

The nucleon helicity non-flip form factor F1(t) can also be written as a sum
∑

f efF1f (t).
A similar decomposition holds for the helicity flip form factor F2(t) =

∑
f efF2f (t). At

t = 0, these functions have well known limiting values. In particular, F1(t = 0) = eN =∑
f Nfef gives total electric charge of the nucleon (Nf is the number of valence quarks

of flavor f) and F2(t = 0) = κN gives its anomalous magnetic moment. The form factors
are measurable through elastic eN scattering.

3 Usual parton densities

The parton densities are defined through forward matrix elements of quark/gluon fields
separated by light-like distances. In particular, in the unpolarized case we have

〈 p | ψ̄a(−z/2)γµψa(z/2) | p 〉
∣∣
z2=0

= 2pµ

∫ 1

0

[
e−ix(pz)fa(x)− eix(pz)fā(x)

]
dx . (3)

In the local limit z = 0, the operators in this definition coincide with the operators
contributing into the non-flip form factor F1. Since t = 0 for the forward matrix element,
we obtain the sum rule for the numbers of valence quarks:

∫ 1

0

[fa(x)− fā(x)] dx = Na . (4)

The definition of parton densities has the form of the plane wave decomposition.
This observation allows one to give the momentum space interpretation: fa(ā)(x) is the
probability to find a (ā)-quark with momentum xp inside a nucleon with momentum p.
The classic process to access the usual parton densities is deep inelastic scattering (DIS)
γ∗N → X.

Using the optical theorem, the γ∗N → X cross section is given by the imaginary
part of the forward virtual Compton scattering amplitude. The momentum transfer q
is spacelike q2 ≡ −Q2, and when it is sufficiently large, perturbative QCD factorization
works. At the leading order, one deals with the so-called handbag diagram, see figure 2.
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Figure 2: Lowest order pQCD
factorization for DIS.

Through simple algebra, 1
π
Im 1/(q + xp)2 ≈ δ(x −

xB)/2(pq), one finds that DIS measures parton densities
at the point x = xB, where the parton momentum fraction
equals the Bjorken variable xB = Q2/2(pq). Comparing
parton densities to form factors, we note that the latter
have a point vertex instead of a light-like separation and
p 6= p′.

4 Nonforward parton densities

“Hybridization” of different parton distributions is the key idea of the GPD approach. As
the first step, we can combine form factors with parton densities [10] and write the flavor
components F1a(t) of form factors as integrals over the momentum fraction variable x:

F1a(t) =

∫ 1

0

[Fa(x, t)−Fā(x, t)] dx . (5)

In the forward limit t = 0, the new objects—nonforward parton densities Fa(ā)(x, t)
(NPDs)—coincide with the usual (“forward”) densities:

Fa(ā)(x, t = 0) = fa(ā)(x) . (6)

NPDs can be also treated as Fourier transforms of the impact parameter b⊥ distributions
f(x, b⊥) describing the variation of parton densities in the transverse plane [11,12].

A nontrivial question is the interplay between x and t dependencies of Fa(ā)(x, t).
The simplest factorized ansatz Fa(x, t) = fa(x)F1(t) satisfies both the forward constraint,
Fa(x, t = 0) = fa(x), and also the local constraint (5). The reality may be more compli-
cated: light-cone wave functions with Gaussian k⊥ dependence

Ψ(xi, ki⊥) ∼ exp

[
− 1

λ2

∑
i

k2
i⊥/xi

]
(7)

suggest that
Fa(x, t) = fa(x)ex̄t/2xλ2

, (8)

where x̄ ≡ 1−x. Taking fa(x) from existing parametrizations and adjusting λ2 to provide
the standard value of the quark intrinsic transverse momentum 〈k2

⊥〉 ≈ (300 MeV)2 gives a
rather reasonable description of the proton form factor F1(t) in a wide range of momentum
transfers −t ∼ 1 − 10 GeV2 [10]. To comply with the Regge behavior, one may wish to
change ex̄t/2xλ2 → x−α′t, where α′ is the Regge trajectory slope. The modified Regge
ansatz,

Fa(x, t) = fa(x)x−α′(1−x)t , (9)

allows one to easily fit electromagnetic form factors for the proton and neutron [13]. A
similar model was proposed in Ref. [14].
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Figure 3: Compton scattering amplitude in terms
of nonforward parton densities.

The same nonforward parton densities
appear in the handbag diagrams for the
wide-angle real Compton scattering, see
figure 3.

The handbag contribution is approx-
imately given by the product of a new
form factor, Ra

V (t), and the cross section
of the Compton scattering off an elemen-
tary fermion (given by Klein–Nishina ex-
pression):

dσ

dt
=

[∑
a

e2
aR

a
V (t)

]2
dσ

dt

∣∣∣∣
KN

with Ra
V (t) =

∫ 1

0

Fa(x, t)

x
dx . (10)

The predictions based on handbag dominance and NPDs [10, 15] are in much better
agreement with the existing data [16] than the predictions based on two-gluon hard ex-
change mechanism of asymptotic perturbative QCD: the predicted cross section is too
small in the latter case. The absolute normalization for predictions is settled by the form
of the nonperturbative functions (NPDs in the handbag approach and nucleon distribu-
tion amplitudes in the pQCD approach) which were fixed by fitting the F1 form factor
data. Still, when there is an uncertain overall factor, it is risky to make strong state-
ments. Remarkably, the perturbative QCD hard scattering mechanism and soft handbag
mechanism give drastically different predictions for the polarization asymmetry ALL [15].
Experiment E-99-114 performed at Jefferson Lab [16] strongly favors handbag mechanism
that predicts the value close to the asymmetry for the scattering on a single quark.

5 Distribution amplitudes

Another example of nonperturbative functions describing the hadron structure are the
distribution amplitudes (DAs). They can be interpreted as light cone wave functions
integrated over transverse momentum, or as 〈0| . . . |p〉 matrix elements of light cone op-
erators. In the case of the pion, we have

〈 0 | ψ̄d(−z/2)γ5γ
µψu(z/2) |π+(p) 〉

∣∣
z2=0

= ipµfπ

∫ 1

−1

e−iα(pz)/2ϕπ(α) dα , (11)

with x1 = (1 + α)/2, x2 = (1 − α)/2 being the fractions of the pion momentum carried
by the quarks. The distribution amplitudes describe the hadrons in situations when
the pQCD hard scattering approach is applicable to exclusive processes. The classic
example is the γ∗γ → π0 transition; its amplitude is proportional to the 1/(1 − α2)
moment of ϕπ(α), see figure 4. The predictions for the γ∗γ → π0 form factor based
on two competing models for the pion DA, the asymptotic ϕas

π (α) = 3
4
(1 − α2) and

Chernyak-Zhitnitsky DA ϕCZ
π (α) = 15

4
α2(1− α2) differ by factor of 5/3, which allows for

an experimental discrimination between them. A comparison with CLEO and CELLO
data for Q2Fγ∗γπ0(Q2) favors ϕas(α). However, recent BaBar data [17] show increase of the
combination Q2F (Q2) in the region Q2 > 10 GeV2, which may be explained by assuming
a flat distribution amplitude [18,19].
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Figure 4: Lowest-order pQCD factorization for γ∗γ → π0 tran-
sition amplitude and for the pion electromagnetic form factor.

It is also worth noting that
perturbative QCD works here
from rather small values of mo-
mentum transfer Q2 ∼ 2GeV2.
Another classic application of
pQCD to exclusive processes is
the pion electromagnetic form
factor, see figure 4. With
the asymptotic pion DA ϕas

π (α),
the hard pQCD contribution to
Fπ(Q2) is (2αs/π)(0.7 GeV2)/Q2, which is less than 1/3 of the experimental value. So, in
this case we deal with the dominance of the competing soft mechanism which is described
by nonforward parton densities, exactly in the same way as the proton form factor F p

1 (t)
discussed in the previous section.

6 Hard electroproduction processes

Another attempt to use perturbative QCD to extract new information about hadronic
structure is the study of deep exclusive photon [2] or meson [3, 4] electroproduction re-
actions. In the hard kinematics when both Q2 and s ≡ (p + q)2 are large while the mo-
mentum transfer t ≡ (p− p′)2 is small, one can use pQCD factorization which represents
the amplitudes as a convolution of a perturbatively calculable short-distance amplitude
and nonperturbative parton functions describing the hadron structure. The hard pQCD
subprocesses in these two cases have different structure, see figure 5. Since the photon
is a pointlike particle, the deeply virtual Compton scattering (DVCS) amplitude has the
structure similar to that of the γ∗γπ0 form factor: the pQCD hard term is of zero order
in αs (the handbag mechanism), and there is no competing soft contribution. Thus, we
can expect that pQCD works from Q2 ∼ 2 GeV2. On the other hand, the deeply virtual
meson production process is similar to the pion EM form factor: the hard term has a
O(αs/π) ∼ 0.1 suppression factor. As a result, the dominance of the hard pQCD term
may be postponed to Q2 ∼ 5− 10 GeV2.

Figure 5: Lowest-order factorization for deeply virtual photon
and meson production.

One should also have in
mind that the competing soft
mechanism can mimic the same
power-law Q2-behavior (just
like in case of pion and nucleon
EM form factors). Hence, a
mere observation of a “right”
power-law behavior of the cross
section may be insufficient to
claim that pQCD is already working. One should look at other characteristics of the
reaction, especially its spin properties, to make strong statements about the reaction
mechanism.
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7 Deeply virtual Compton scattering and generalized

parton distributions

It is convenient to visualize DVCS in the γ∗N center-of-mass frame, with the initial
hadron and the virtual photon moving in opposite directions along the z-axis. Since the
momentum transfer t is small, the hadron and the real photon in the final state also
move close to the z-axis. This means that the virtual photon momentum q = q′ − xBp
has the component −xBp canceled by the momentum transfer r. In other words, the
momentum transfer r has the longitudinal component r+ = xBp+, where xB = Q2/2(pq)
is the DIS Bjorken variable. One can say that DVCS has a skewed kinematics in which
the final hadron has the “plus” momentum (1 − ζ)p+ that is smaller than that of the
initial hadron. In the particular case of DVCS, we have ζ = xB.

The parton picture for DVCS has some similarity to that of DIS, with the main
difference that the plus-momenta of the incoming and outgoing quarks in DVCS are
not equal; they are Xp+ and (X − ζ)p+, see figure 5. Another difference is that the
invariant momentum transfer t in DVCS is nonzero: the matrix element of partonic fields
is essentially nonforward.

Thus, the nonforward parton distributions (NFPDs) Fζ(X, t) describing the hadronic
structure in DVCS depend on X (the fraction of p+ carried by the outgoing quark), ζ
(the skewedness parameter characterizing the difference between initial and final hadron
momenta), and t (the invariant momentum transfer). In the forward r = 0 limit, we have
a reduction formula

Fa
ζ=0(X, t = 0) = fa(X) (12)

relating NFPDs with the usual parton densities. The nontriviality of this relation is that
Fζ(X, t) appear in the amplitude of the exclusive DVCS process, while the usual parton
densities are measured from the cross section of the inclusive DIS reaction.

Another limit for NFPDs is zero skewedness ζ = 0, where they correspond to non-
forward parton densities: Fa

ζ=0(X, t) = Fa(X, t). The local limit relates NFPDs to form
factors: ∫ 1

0

Fa
ζ (X, t)

dX

1− ζ/2
= F a

1 (t) . (13)

The description in terms of NFPDs has the advantage of using the variables most close
to those of the usual parton densities. However, the initial and final hadron momenta are
not treated symmetrically in this scheme. Ji [2] proposed to use symmetric variables in
which the plus-momenta of the hadrons are (1+ξ)P+ and (1−ξ)P+, and those of the active
partons are (x+ ξ)P+ and (x− ξ)P+, P being the average momentum P = (p+p′)/2, see
figure 6. In the simplified case of scalar fields, the GPD parametrization of the nonforward
matrix element is

〈P + r/2|ψ(−z/2)ψ(z/2)|P − r/2〉 =

∫ 1

−1

e−ix(Pz)H(x, ξ) dx +O(z2) . (14)

To take into account the spin properties of hadrons and quarks, one needs four off-
forward parton distributions H, E, H̃, Ẽ, each of which is a function of x, ξ, and t. The
skewness parameter ξ ≡ r+/2P+ can be expressed in terms of the Bjorken variable,
ξ = xB/(2− xB), but it does not coincide with it.
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Figure 6: Comparison of NFPDs and OFPDs. .

Depending on the value of
x, each GPD has 3 distinct re-
gions. When ξ < x < 1, GPDs
are analogous to usual quark
distributions; when −1 < x <
−ξ, they are similar to anti-
quark distributions. In the re-
gion −ξ < x < ξ, the “return-
ing” quark has a negative mo-
mentum and should be treated as an outgoing antiquark with momentum (ξ − x)P . The
total qq̄ pair momentum r = 2ξP is shared by the quarks in fractions r(1 + x/ξ)/2 and
r(1 − x/ξ)/2. Hence, a GPD in the region −ξ < x < ξ is similar to a distribution
amplitude Φ(α) with α = x/ξ.

In the local limit, GPDs reduce to elastic form factors:

∑
a

ea

1∫

−1

Ha(x, ξ; t) dx = F1(t) ,
∑

a

ea

1∫

−1

Ea(x, ξ; t) dx = F2(t) . (15)

The E function, like F2(t), comes with the rµ factor. Hence, it is invisible in DIS described
by the forward r = 0 Compton amplitude. However, the t = 0, ξ = 0 limit of E exists:

Ea,ā(x, ξ = 0; t = 0) ≡ κa,ā(x) . (16)

In particular, its integral gives the proton anomalous magnetic moment κp,

∑
a

ea

1∫

−0

(κa(x)− κā(x)) dx = κp , (17)

while its first moment enters Ji’s sum rule for the total quark contribution Jq to the proton
spin:

Jq =
1

2

∑
a

1∫

−0

x [fa(x) + f ā(x) + κa(x) + κā(x)] dx . (18)

Note that only valence quarks contribute to κp, while Jq involves also sea quarks. Fur-
thermore, the values of κp,n (unlike ep,n ≡ F p,n

1 (0)) strongly depend on dynamics, e.g.,
κN ∼ 1/mq in constituent quark models.

8 Double distributions

To model GPDs, two approaches are used: a direct calculation in specific dynamical mod-
els: bag model, chiral soliton model, light-cone formalism, etc., and a phenomenological
construction based on the relation of GPDs to usual parton densities fa(x), ∆fa(x) and
form factors F1(t), F2(t), GA(t), GP (t). The key question in the second approach is the
interplay between x, ξ and t dependencies of GPDs. There are not so many cases in which
the pattern of the interplay is evident. One example is the function Ẽ(x, ξ, t) which is
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related to the GP (t) form factor and is dominated for small t by the pion pole term
1/(t−m2

π). It is also proportional to the pion distribution amplitude ϕ(α) ≈ 3
4
fπ(1−α2)

taken at α = x/ξ. The construction of self-consistent models for other GPDs is performed
using the ansatz based on the formalism of double distributions (DD) [20].

The main idea behind the double distributions is a “superposition” of P+ and r+

momentum fluxes, i.e., the representation of the parton momentum k+ = βP+ + (1 +
α)r+/2 as the sum of a component βP+ due to the average hadron momentum P (flowing
in the s-channel) and a component (1 + α)r+/2 due to the t-channel momentum r, see
figure 7. In the simplified case of scalar fields, the DD parametrization reads

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉 =

∫

Ω

F (β, α) e−iβ(Pz)−iα(rz)/2 dβ dα +O(z2) . (19)

Thus, the double distribution f(β, α) (we consider here for simplicity the t = 0 limit)
looks like a usual parton density with respect to β and like a distribution amplitude with
respect to α. The connection between the DD variables β, α and the GPD variables x, ξ
is obtained from r+ = 2ξP+, which results in the basic relation x = β + ξα. The formal
connection between DDs and GPDs is

H(x, ξ) =

∫

Ω

F (β, α) δ(x− β − ξα) dβ dα . (20)

Figure 7: Comparison of GPD and DD descrip-
tions.

The forward limit ξ = 0, t = 0 corre-
sponds to x = β, and gives the relation
between DDs and the usual parton densi-
ties:

∫ 1−|β|

−1+|β|
Fa(β, α; t = 0) dα = fa(β) . (21)

The DDs live on the rhombus |α| + |β| ≤ 1 [denoted by Ω in (19) and (20)] and are
symmetric functions of the “DA” variable α: fa(β, α; t) = fa(β,−α; t) (“Munich” sym-
metry [21] ). These restrictions suggest a factorized representation for a DD in the form
of a product of a usual parton density in the β-direction and a distribution amplitude in
the α-direction:

F (β, α) = f(β) h(β, α) , hN(β, α) ∼ [(1− |β|)2 − α2]N

(1− |β|)2N+1
,

∫ 1−|β|

−1+|β|
h(β, α) dα = 1 . (22)

To obtain usual parton densities from DDs, one should integrate (scan) them over
the vertical lines β = x = const. To obtain the GPD H(x, ξ) with nonzero ξ from DDs
f(β, α), one should integrate (scan) DDs along the parallel lines α = (x − β)/ξ with a
ξ-dependent slope. One can call this process the DD-tomography. The basic feature of
GPDs H(x, ξ) resulting from DDs is that for ξ = 0 they reduce to usual parton densities,
and for ξ = 1 they have a shape like a meson distribution amplitude. A more complete
truth is that such a DD modeling misses terms invisible in the forward limit: meson-
exchange contributions and so-called D-term, which can be interpreted as σ-exchange.
The inclusion of the D-term induces nontrivial behavior in the central |x| < ξ region (for
details, see [22]).
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9 GPDs and the structure of hadrons

Hadronic structure is a complicated subject, and it requires a study from many sides and
in many different types of experiments. The description of specific aspects of hadronic
structure is provided by several different functions: form factors, usual parton densities,
distribution amplitudes. Generalized parton distributions provide a unified description:
all these functions can be treated as particular or limiting cases of GPDs H(x, ξ, t).

Usual parton densities f(x) correspond to the case ξ = 0, t = 0. They describe a
hadron in terms of probabilities ∼ |Ψ|2. However, QCD is a quantum theory: GPDs
with ξ 6= 0 describe correlations ∼ Ψ∗

1Ψ2. Taking only the point t = 0 corresponds to
integration over impact parameters b⊥ — information about the transverse structure is
lost.

Form factors F (t) contain information about the distribution of partons in the trans-
verse plane, but F (t) involve integration over momentum fraction x — information about
longitudinal structure is lost.

A simple “hybridization” of usual densities and form factors in terms of NPDs F(x, t)
(GPDs with ξ = 0) shows that the behavior of F (t) is governed both by transverse and
longitudinal distributions. GPDs provide adequate description of nonperturbative soft
mechanism. They also allow to study transition from sort to hard mechanism.

Distribution amplitudes ϕ(x) provide quantum-level information about the longitudi-
nal structure of hadrons. In principle, they are accessible in exclusive processes at large
momentum transfer, when hard scattering mechanism dominates. GPDs have DA-type
structure in the central region |x| < ξ.

Generalized parton distributions H(x, ξ, t) provide a 3-dimensional picture of hadrons.
GPDs also provide some novel possibilities, such as “magnetic distributions” related to the
spin-flip GPD E(x, ξ, t). In particular, the structure of nonforward density E(x, ξ = 0, t)
determines the t-dependence of F2(t). Recent JLab data give F2(t)/F1(t) ∼ 1/

√−t rather
than 1/t expected in hard pQCD and many models — a puzzle waiting to be resolved.
The forward reductions κa(x) of E(x, ξ, t) look as fundamental as fa(x) and ∆fa(x): Ji’s
sum rule involves κa(x) on equal footing with f(x). Magnetic properties of hadrons are
strongly sensitive to dynamics providing a testing ground for models. The GPDs for
N → N + soft π processes can be used for testing the soft pion theorems and physics of
chiral symmetry breaking.

An interesting problem is the separation and flavor decomposition of GPDs. The
DVCS amplitude involves all four types of GPDs, H, E, H̃, Ẽ, so we need to study other
processes involving different combinations of GPDs. An important observation is that, in
hard electroproduction of mesons, the spin nature of produced meson dictates the type
of GPDs involved, e.g., for pion electroproduction, only H̃, Ẽ appear, with Ẽ dominated
by the pion pole at small t. This gives an access to (generalization of) polarized parton
densities without polarizing the target.

In summary, the structure of hadrons is the fundamental physics to be accessed via
GPDs. GPDs describe hadronic structure on the quark-gluon level and provide a three-
dimensional picture (“tomography”) of the hadronic structure. GPDs adequately reflect
the quantum-field nature of QCD (correlations, interference). They also provide new
insights into spin structure of hadrons (spin-flip distributions, orbital angular momen-
tum). GPDs are sensitive to chiral symmetry breaking effects, a fundamental property
of QCD. Furthermore, GPDs unify existing ways of describing hadronic structure. The
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GPD formalism provides nontrivial relations between different exclusive reactions and
also between exclusive and inclusive processes.
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Abstract
New data on the polarization and the SSA are discussed in the framework of the

Effective Color Field (ECF) model. The origin of large spin effects is connected with
the microscopic Stern-Gerlach mechanism and the spin precession of the quarks in
the effective color field of the QCD strings. Along with data on inclusive processes
for the first time in a global analysis are also included the exclusive reactions. From
the analysis of the polarization data are obtained estimates of the size of ECF, the
dynamical quark masses and their anomalous chromomagnetic moments.

In this report we discuss the semi-classical mechanism of single-spin phenomena in
inclusive reactions A↑ + B → C + X and A + B → C↑ + X. The explanation of new
and some old but not yet interpret data is possible within a model of effective color field
(ECF) [1, 2]. It is assumed in the ECF model that the color string field that is created
after an initial color exchange, has a circular chromomagnetic and a linear chromoelectric
components. Microscopic Stern-Gerlach like mechanism in a inhomogeneous ECF and
the spin precession of the quark is a source of polarization phenomena. Circular chro-
momagnetic field has a focusing or defocusing effect on the probe quarks and this results
in the first case in the resonance like energy dependence of the polarization observables.
Contribution to the color field of qq̄ pairs produced at high energies is a linear function
of the hadron multiplicity in the event. Global analysis of worldwide single-spin data
is done, which includes 86 inclusive and exclusive reactions with more than 5500 data
points.

There are a longitudinal chromoelectric field Ea and a circular chromomagnetic field
Ba of the ECF, which are shown schematically in Fig. 1a [3, 1].
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(a) (b)

Figure 1: (a) Schematic picture of the string between a quark and an antiquark. (b) Quark flow
diagram for the reaction p + p → Ξ0↑ + X. The weight ν of the spectator quark contribution to the ECF
is indicated. Net contribution of the spectator quarks to the ECF is νA = (2 + 2λ− 3τλ).

The quark Q of the observed hadron C, which receives pT kick of the Stern-Gerlach
force and is spinning in the ECF is called a “probe” and it “measures” integrals of the

21



fields Ba and Ea. The spectators are all the quarks, which are not constituents of the
observed hadron C. For example, in the case p + p → Ξ0↑ + X reaction (see Fig. 1b)
the probe s quark from the Ξ0 “measures” the field, created by forward moving spectator
quarks with weight νA = λ, by antiquarks with weight νA = 1, and by backward moving
target quarks with weight νB = −τλ, respectively, where τ = 0.0534± 0.0009. The value
of the color factor λ = −0.1332± 0.0006, obtained in a global analysis of 86 reactions, is
close to the expected λ0 = −|Ψqq′(0)|2/|Ψqq̄′(0)|2 ≈ 1− e1/8 ≈ −0.13315, that is a strong
argument in favor of the ECF model [1, 2].

The quark spin precession is described by the Bargman-Michel-Telegdi eqs. (1)-(2) [4]:

dξ/dt = a[ξBa] + d[ξ[Eav]], (1)

a = gS(ga
Q − 2 + 2MQ/EQ)/2MQ , d = gS[ga

Q − 2EQ/(EQ + MQ)]/2MQ . (2)

The precession frequency depends on the color charge gS, quark mass MQ and its
energy EQ, as well as color ga

Q-factor. Variable ∆µa
Q = (ga

Q − 2)/2 is called a color
anomalous magnetic moment and it has a negative value in the instanton model [5, 6].

The equations describing the hadron SSA or hyperon polarization can be written as [1]

AN = C(
√

s)F (pT , A)[G(φA)− σG(φB)]; (3)

G(φ) = (1− cos φ)/φ + ε · φ , C(
√

s) = v0/[(1− ER/
√

s)2 + δ2
R]1/2 ; (4)

F (pT , A) = (1− exp[−(pT /p0
T )3])(1− α ln A) , φA(B) = ω0

A(B)yA(B) ; (5)

v0 =
−Dga

Qξ0
y

2ρ(ga
Q − 2)

, ω0
A(B) =

gsαsνA(B)S0(g
a
Q − 2)

MQvρ2
; (6)

where ξ0
y = ±Θ(xF − x0) is polarization of the valence u(d) quark in the proton, ρ =

0.94± 0.02 fm is an effective transverse radius of ECF. The G(φA(B)) takes into account
the oscillating Stern-Gerlach force acting on the probe quark in the fragmentation region
of the hadron A(B). The C(

√
s) describes the effect of probe quark focusing in the ECF.

The F (pT , A) is a color form-factor. The variable yA(B) takes into account the motion of
quarks inside proton and the spin precession in ECF:

yA = xA − (E0/
√

s + f0)(1 + cos θcm) + a0(1− cos θcm), (7)

yB = xB − (E0/
√

s + f0)(1− cos θcm) + a0(1 + cos θcm), (8)

where xA(B) = (xR ± xF )/2 and θcm is the angle of registration of hadron in c.m., a0,
f0 and E0 are the phenomenological parameters [1, 2]. The S0 = 1.489 ± 0.062 fm is
the length of ECF, and ε = −0.00461 ± 0.00006. There are 8 local parameters for each
reaction: α, σ, E0, ER, f0, a0, x0, p0

T , some of which can be expressed as functions of
global parameters. There are 43 global parameters for 86 reactions (S0, ε, λ, τ , ∆µa

Q, ...).

Most of the data on Λ̄ polarization in pp or pA collisions were obtained at high energy,√
s > 27 GeV and have the polarization PN , compatible with zero (diamonds in Fig. 2a).

The only non-zero data are measured at
√

s = 7.31 GeV (solid points in Fig. 2a) [7].
In the ECF model the large PN is due to the effect of quark focusing (eq. (4)) with
the parameter ER = 7.2 ± 1.1 GeV. The Λ̄ spin is carried by a single polarized s̄, which
makes the resonance parameter δR = 0.064 smaller and focusing effect stronger, with
almost zero polarization at high energies. In the case of other antibaryon production
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Figure 2: (a) The dependence of the PN (pT ) for p + p(A) → Λ̄↑ + X reaction. (b) The dependence of
the PN (pT ) for νµ + A → Λ↑ + X reaction at

√
s = 6.82 GeV. Predictions are made for xF = −0.23 (a)

and xF = −0.27 (target fragmentation region) (b), respectively.

we have three probe quarks of different flavors Q, which makes the resonance parameter
δR ∼ δ(MQ/∆µa

Q) ≈ 0.3 larger and leads to a nonzero PN at high energies.
The polarization of Λ in νµA collisions is measured in the NOMAD experiment [8]

and is shown in Fig. 2b. We assume that W+, emitted by νµ, interacts with the d quark
and produces the u quark, which is moving forward, in the νµ direction. The ECF is
created by this u beam from νµ, and by the two quarks from the target remnant, which
are moving in the opposite direction in c.m. The model predictions are shown by the
dashed line. The polarization of Λ is equal to the s quark polarization.
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Figure 3: (a) The dependence of the AN (pT ) for e+p↑ → π+ + X reaction. (b) The dependence of the
AN (pT ) for e+p↑ → K++X reaction. Predictions are made for xF = −0.30 (solid curve) and xF = +0.01
(dashed curve), respectively.

The π+ (Fig. 3a) and K+ (Fig. 3b) production SSA in e+p collisions are measured in
the HERMES experiment at

√
s = 7.26 GeV [9]. We assume that virtual photon produces

qq̄ pair (vector meson dominance), which interacts with the target quarks and produces
a π+ or a K+. The probe quark for both reactions is the polarized u. The signs of AN

and xF are changed to the opposite, as an assumption that the proton is the projectile.
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The π+ data do not show a significant xF dependence, while for the K+ the magnitude of
AN increases in the target fragmentation region. Not monotonic behavior of the AN(pT )
occurs because of the dependence of scaling variables yA and yB, eqs. (7) and (8), on
the production polar angle θcm. This leads to the dependence on pT of the quark spin
precession angles φA, φB, and as a consequence, the dependence of the AN(pT ).
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Figure 4: (a) The A-dependence of the PN for the Λ-hyperon polarization in e+A collisions at
√

s = 7.26
GeV. (b) The AN (xF ) for inclusive production of π+ in p↑p collisions at

√
s = 200 GeV. The data are

measured for three samples with the ratio Rm of charged multiplicity to the mean value, 2.373, 1.0 and
0.068, respectively. Predictions are made for Rm = 2.373 (solid curve), Rm = 1 (dotted curve), and
Rm = 0.068 (dashed curve), respectively.

The A-dependence of Λ polarization PN in e+A collisions is measured in the HERMES
experiment [10]. The effective number of quarks, creating ECF is specified by νA =
1 + λ(3Aeff − 2) − τ(λ + 1), where Aeff ≈ 0.6A1/3 is the effective number of nucleons
contributing to the ECF [1, 2]. The first term in the expression for νA is due to the
contribution of one spectator s̄, the second term is associated with the contribution of
the nuclear target quarks, which cancels the first term. The ECF and PN ∼ νA, which is
close to zero for large A ≈ 120. Solid curve in Fig. 4a is the model prediction.
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Figure 5: (a) The AN in the reaction p↑p(A) → p + X at
√

s = 8.77 GeV and
√

s = 200 GeV as a
funcion of xF . (b) The GA as function of he quark spin persession angle φA.

The AN of π± in p↑p collisions is measured in the BRAHMS experiment [11]. The
data are presented in Fig. 4b for three values of charged hadron multiplicity in the central
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region, normalized to the average (Rm). The greatest Rm corresponds to a larger value of
ECF due to the correlation of the number of strings and the multiplicity. The contribution
of qq̄ pairs in the ECF, fN , has a factor 1 + am(Rm − 1), where am = 0.025 ± 0.004 is a
global parameter, which takes into account the correlation of Rm and AN .
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Figure 6: The GA(φA) in the reaction π−p↑ → K0 + Λ (a) and K−p↑ → K− + p (b).

The proton AN in p↑p(A) collisions is measured in the FODS-2 experiment at
√

s =
8.77 GeV [12] and in the BRAHMS experiment at

√
s = 200 GeV [13]. Oscillations of

AN(xF ), displayed on Fig. 5a, are due to the quark spin precession and the microscopic
Stern-Gerlach forces in the ECF. In Fig. 5b are shown the same data (AN), but in a
transformed way: GA(φA) = AN/C(

√
s)/F (pT , A) + σGB(φB), using eq. (3).

The data for the exclusive reactions are shown in Fig. 6 and 7, depending on the
quark spin precession angle φA. The data in Fig. 6 and 7 show an oscillating behavior
with a decreasing magnitude, as expected for the GA(φA) in (4).
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Figure 7: The GA(φA) in the reaction pn↑ → n + p for φA < 20 (a) and for φA < 240 (b).

Results of global analysis of 86 different reactions for the quark masses and their
anomalous chromomagnetic moments are presented in Table 1.

Conclusion: A semi-classical mechanism is proposed to explain the existing polar-
ization data. Dozens of reactions (86), the exclusive and inclusive, were analyzed in the
framework of the Effective color field model, including those that are not normally consid-
ered or have recently been measured. The measured data could be used in global analysis
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Table 1: Global analysis results. Used current quark masses mq; additional dynami-
cal quark mass, ∆MQ(0); constituent masses MQ(0) = mq + ∆MQ(0); and anomalous
chromomagnetic moments of constituent quarks, ∆µa

Q(0) at zero virtuality, q = 0.

Flavor mq, GeV/c2 ∆MQ(0), GeV/c2 MQ(0), GeV/c2 ∆µa
Q(0)

u 0.0025 0.2350± 0.0009 0.2375 −0.524± 0.004
d 0.0050 0.2955± 0.0024 0.3005 −0.438± 0.005
s 0.1010 0.4215± 0.0048 0.5225 −0.510± 0.005
c 1.270 0.145± 0.062 1.415 −0.658± 0.025
b 4.357 0.056± 0.340 4.413 −0.621± 0.037

in order to estimate parameters that describe phenomena such as spontaneous chiral sym-
metry breaking, the origin of hadron and quark masses, confinement, color interaction of
quarks and their transition into hadrons.

I would like to thank the DSPIN-11 Organizing Committee for their support and
hospitality, H. Arthru, A.V. Efremov, N. Kochelev and K. Rith for fruitful discussions and
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Abstract

The first moments of the polarized valence parton distribution functions (PDFs)
truncated to the wide Bjorken x region 0.004 < x < 0.7 are extructed in NLO
QCD from both COMPASS and HERMES data are directly (without any fitting
procedure) extracted in NLO QCD from the combined SIDIS data of COMPASS and
HERMES. Applying the proposed original procedure to these results we estimate
the contributions of sea u and d quarks to the proton spin, which occur just zero
within the errors.

The first moments of polarized parton distribution functions (PDFs), which directly
compose the nucleon spin together with the orbital parton momenta, are of crucial im-
portance for solution of the proton spin puzzle, attracting great both theoretical and
experimental efforts during many years. The procedure of direct extraction in NLO QCD
of n-th moments of the valence PDFs from the measured difference asymmetries is de-
scribed in Refs. [1–3] in detail. The key equations allowing to find from the data on the

difference asymmetries Aπ+−π−
p,d the n-th moments ∆

′
nq ≡

∫ b

a
dx xn−1q(x) of valence PDFs

truncated to the accessible for measurement x region (a, b) look as

∆
′
nuV ' 1

5

A(n)
p +A(n)

d

L(n)1 − L(n)2

; ∆
′
ndV ' 1

5

4A(n)
d −A(n)

p

L(n)1 − L(n)2

, (1)

where all notations are almost the same as in Ref. [2] (see (9)-(16)) in [2]). The only dif-

ference is that we rewrite equation for the quantities A(n)
p,d entering (1) in more convenient

form1 (compare with (16) in [2]):

A(n)
p =

Nbins∑
i=1

Aπ+−π−
p (〈xi〉)

1 + R

∣∣∣
Z

∫ xi

xi−1

dxxn−1(4uV−dV )(x)

∫ 1

Z

dzh[1+⊗αs

2π
C2

qq⊗](D1−D2),

(2)

and analogously for A(n)
d with the replacements (1 + R)−1 → (1 + R)−1(1− 1.5 ωD)−1 and

(4uV − dV ) → (uV + dV ).
Both COMPASS [4, 5] and HERMES [6] collaborations published the data only on

asymmetries Aπ±
p,d, while the published data on the pion difference asymmetries Aπ+−π−

p,d is

1This form allows to explicitelly account for the corrections due to the factor R = σL/σT and the
deutron D-state contribution ωD = 0.05 ± 0.01 (see, for example, discussion around (10) in [10] and
references therein).
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still absent. That is why the special procedure was applied in [2] to construct asymmetries

Aπ+−π−
p,d from the HERMES data on pion production, and we repeat here this procedure

for the COMPASS case. Namely, in each i-th bin the pion difference asymmetries can be
rewritten as

Aπ+−π−(xi) =
R

+/−
i

R
+/−
i − 1

Aπ+

(xi)− 1

R
+/−
i − 1

Aπ−(xi), (3)

where the quantity R
+/−
i is just the ratio of unpolarized cross-sections for π+ and π−

production: R
+/−
i = σπ+

unpol(xi)/σ
π−
unpol(xi) = Nπ+

i /Nπ−
i . As it was argued in Ref. [2] this

relative quantity is very well reproduced by the the LEPTO generator of unpolarized
events [7], which gives a good description of the fragmentation processes. So, we again
use here the LEPTO generator to this end.

Let us now discuss the question of Q2 dependence of asymmetries and its influence on
the final results. The point is that both DIS and SIDIS asymmetries very weekly depend
on Q2 (see, for instance, Fig. 5 in Ref. [8]), so that the approximation A(xi, Q

2
i ) '

A(xi, Q
2
0) is commonly used (see, for example, Refs. [9, 6, 5]) for analysis of the DIS and

SIDIS asymmetries. Nevertheless, for more comprehensive analysis, it is useful to account
for the corrections caused by the weak Q2 dependence of the difference asymmetries,
i.e., to estimate the shifts δiA

π+−π−
p,d = Aπ+−π−

p,d (xi, Q
2
0)− Aπ+−π−

p,d (xi, Q
2
i ) in the difference

asymmetries and their influence on the moments of the valence PDFs. To this end we
operate just as in Ref. [2] and use two new parameterizations [11, 10] on polarized PDFs
(elaborated with application of both DIS and SIDIS data). Of importance is the optimal
choice of the common for evolved asymmetries scale Q2

0, allowing as much as possible to
reduce shifts in the results due to evolution. Our experience shows that for combined
analysis of COMPASS and HERMES data (see below) the optimal choice is close to
Q2

0 = 10 GeV2.
We perform the combined analysis of COMPASS [5,4] and HERMES [6] data on pion

production with both proton and deuteron targets. COMPASS collaboration published
their data in the Bjorken x range 0.004 < x < 0.7 and 0.004 < x < 0.3 for proton
and deuteron targets, respectively, while the HERMES data Aπ±

p,d were presented in the
range 0.023 < x < 0.6 for both targets. Inclusion of HERMES data into the analysis is
especially important because COMPASS data in the region 0.3 < x < 0.7 for deuteron
target is still absent. Besides, application of the combined data allows us to increase the
available statistics, and therefore to decrease the errors.

The statistical addition of asymmetries Aπ±
p,d and their errors is performed in accordance

with the standard formulas

Ah
N |averaged ==

Ah
N |exp1/(δA

h
N |exp1)

2 + Ah
N |exp2/(δA

h
N |exp2)

2

1/(δAh
N |exp1)2 + 1/(δAh

N |exp2)2
, (4)

(δAh
N |averaged)

2 ==
1

1/(δAh
N |exp1)2 + 1/(δAh

N |exp2)2
. (5)

However this is the case only for the last three bins of COMPASS and HERMES exper-
iments we deal with (after proper extrapolation2 of HERMES data in the last bin from
0.6 to 0.7 upper x value). Besides, notice that for two last bins the COMPASS published

2Our experience show that a such extrapolation leads to negligible change in the final result, irrespec-
tive of the choice of the extrapolation procedure.
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Table 1: Four first moments of polarized valence PDFs truncated to the region 0.004 < x < 0.7 are
presented at Q2 = 10 GeV 2. The moments are obtained as a result of NLO QCD analysis of the combined
data on Aπ+−π−

p,d , constructed with (3) from the COMPASS data on Aπ±
p,d in the region 0.004 < x < 0.7 and

HERMES data on Aπ±
p,d in the region 0.2 < x < 0.6 (last three bins of HERMES). Capital letters A and B

correspond to the application of AKK08 and DSS parameterizations for FFs, respectively. Rome numbers
I and II correspond to the moments uncorrected and corrected due to evolution, respectively. Besides,
the relative corrections δr(∆′

nqV ) ≡ δ(∆′
nqV )/∆′

nqV for moments caused by evolution are presented here.

∆′
nuV

n AI AII δr(∆′
nuV ) BI BII δr(∆′

nuV )
1 0.731± 0.087 0.695± 0.087 -3.8% 0.693± 0.084 0.713± 0.084 2.8%
2 0.166± 0.024 0.167± 0.024 0.8% 0.155± 0.024 0.158± 0.024 1.6%
3 0.055± 0.010 0.055± 0.010 1.3% 0.052± 0.010 0.052± 0.010 1.8%
4 0.022± 0.005 0.022± 0.005 1.5% 0.021± 0.005 0.021± 0.005 2.0%

∆′
ndV

n AI AII δr(∆′
ndV ) BI BII δr(∆′

ndV )
1 −0.519± 0.162 −0.524± 0.162 0.9% −0.473± 0.157 −0.481± 0.157 1.7%
2 −0.100± 0.054 −0.102± 0.054 1.8% −0.090± 0.051 −0.092± 0.051 2.7%
3 −0.029± 0.023 −0.030± 0.023 2.5% −0.026± 0.022 −0.027± 0.022 3.7%
4 −0.011± 0.011 −0.011± 0.011 3.1% −0.010± 0.010 −0.010± 0.010 4.4%

SIDIS data for deuteron target is still absent. That is why it is of especial importance to
include in the analysis of COMPASS data the HERMES data in the region 0.2 < x < 0.6
(last three bins of HERMES). The respective results are presented in the Table 1.

In the Table 1 we present the results obtained both with and without corrections
due to weak Q2-dependence of asymmetries. One can see that the difference is not too
significant (the relative corrections δ(∆′

nqV )/∆′
nqV take the small values).

Thus, we estimated in NLO QCD the contributions of valence quarks (first moments
of polarized valence PDFs) to the nucleon spin. Let us now to find the respective contri-
butions of light sea quarks.

Within this procedure one first of all uses some NLO QCD parameterization on the
polarized PDFs to estimate the quantities ∆′

1q + ∆′
1q̄ (q = u, d). Since the sums ∆q(x) +

∆q̄(x) (q = u, d) are well fitted by the reach purely inclusive DIS data (these quantities are
considered as relatively well known and practically are the same for the different modern
parameterizations) it is not especially important which parameterization one applies for
this purpose (here we use the most popular and widely cited DSSV [11] parameterization).
Then, having in his disposal both (∆′

1q + ∆′
1q̄)|parameterization (q = u, d) and (see Table 2)

(∆′
1qV (q = u, d) quantities one easily gets the truncated first moments of sea u and d

quarks, applying the obvious relation ∆′
1q̄ = 1

2
((∆′

1q + ∆′
1q̄)|parameterization −∆′

1qV ) . The
received in such a way first moments ∆′

1ū, ∆′
1d̄, as well as their differences and sums

are presented in the Table 2. Looking at this table one can draw the conclusion that
irrespective of the procedure used in the SIDIS data analysis the first moments of sea
PDFs are consistent with zero within the errors.

Conclusion. The pion difference asymmetries are constructed by combining the SIDIS
data of COMPASS and HERMES on pion production. The new direct (free of any fitting
procedures) method of QCD analysis is applied to these asymmetries. As a result, the
valence contributions to the nucleon spin (first moments of polarized valence PDFs) are
found in NLO QCD. Using these results on valence PDFs the contributions of light sea

29



Table 2: First moments of polarized sea PDFs truncated to the region 0.004 < x < 0.7 are presented
at Q2 = 10 GeV 2, as well as their sums and differences. DSSV parameterization is used to estimate
(∆′

1q + ∆′
1q̄)|parameterization, while the first moments of valence PDFs are taken from the Table 1 (only

HERMES data from three last bins are applied). Capital letters A and B correspond to the application
of AKK08 and DSS parameterizations for FFs, respectively. Rome numbers I and II correspond to the
moments uncorrected and corrected due to evolution, respectively.

AI AII BI BII

∆′
1ū 0.018± 0.044 0.036± 0.044 0.037± 0.042 0.027± 0.042

∆′
1d̄ 0.065± 0.081 0.067± 0.081 0.042± 0.079 0.046± 0.079

∆′
1ū + ∆1d̄ 0.082± 0.092 0.102± 0.092 0.078± 0.089 0.072± 0.089

∆′
1ū−∆1d̄ −0.047± 0.092 −0.032± 0.092 −0.005± 0.089 −0.019± 0.089

quarks to the nucleon spin are estimated. They occur surprisingly small: compatible with
zeros within the errors.

The authors are grateful to N. Akopov, A. Efremov, O. Ivanov, A. Korzenev, A. Kotikov,
V. Krivokhizhin,A. Maggiora, A. Nagaytsev, A. Olshevsky, G. Piragino, G. Pontecorvo,
I. Savin, A. Sidorov, O. Teryaev, R. Windmolders and E. Zemlyanichkina for fruitful
discussions.
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Abstract

We discuss the foreseeable sensitivity to Z ′s of W±-pair production cross sections
at e+e− International linear collider (ILC), especially as regards the potential of
distinguishing observable effects of the Z ′ from analogous ones due to competitor
models with anomalous trilinear gauge couplings that can lead to the same or similar
new physics experimental signatures at the ILC.

1 Introduction

The W± boson pair production process

e+ + e− → W+ + W− (1)

is one of the crucial process to study the electroweak gauge symmetry in e+e− annihilation.
It is well known that properties of the weak gauge bosons are closely related to electroweak
symmetry breaking and the structure of the gauge sector in general, detailed examination
of W boson physics will throw light on what lies beyond the Standard Model (SM).

Electroweak theories beyond the SM based on spontaneously broken extended gauge
symmetries naturally envisage the existence of new heavy neutral gauge bosons Z ′. The
variety of the proposed Z ′ models is somewhat broad, and for definiteness in the sequel
we shall focus on the so-called Z ′

SSM, Z ′
E6

, Z ′
LR and Z ′

ALR models. Particular attention
has recently been devoted to the phenomenological properties and the search reaches on
such scenarios, and in some sense we may consider these Z ′ models as representative of
this New Physics (NP) sector [1].

NP may appear either directly, as in the case of new particle production, e.g., Z ′, or
indirectly through deviations of the observables from the predictions of the SM. In the
case of direct production of Z ′, e.g., at the LHC, its discovery and identification would
be relatively straightforward once spin, masses and various couplings were determined
through precision measurements [2]. In the case of indirect discovery the effects may be
subtle and many different NP scenarios may lead to the same or similar experimental
signatures. It is clear that determination of the origin of the NP in these cases will prove
more difficult and new tools must be available to deal with this potentiality. In this
note we propose such a technique that makes use of the specific modifications in angular
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distributions of process (1) induced by Z −Z ′ mixing and Z ′ exchange from those caused
by anomalous trilinear gauge couplings (AGC).

Here we study the effects of extra gauge Z ′ bosons on the W± pair production (1) at
the next generation e+e− International Linear Collider (ILC), with center of mass energy√

s = 0.5 TeV and time-integrated luminosity Lint = 0.5 ab−1 [3,4], where the really high
precision measurements that will be possible there.

2 Parameterizations of Z ′-boson and AGC effects

2.1 Z ′ boson

The starting point of our analysis will be the expression of the invariant amplitude for the
process (1). In Born approximation, this can be written as a sum of a t-channel and of
an s-channel components. In SM case, the latter will be schematically written as follows:

M(λ)
s =

(
−1

s
+

cot θW (v − 2λa)

s−M2
Z

)
× G(λ)(s, θ), (2)

where s and θ are the total c.m. squared energy and W− production angle; electron
vector and axial-vector couplings in SM, omitting the fermionic subscripts, are defined
as v = (T3,e − 2Qe s2

W )/2sW cW and a = T3,e/2sW cW , respectively, with T3,e = −1/2; λ
denotes the electron helicity (λ = ±1/2 for right/left-handed electrons); MZ is the mass
of Z-boson; finally, G(λ)(s, θ) is a kinematical coefficient, depending also on the final W ’s
helicities. For simplicity we omit its explicit form.

The expression of the amplitude with extra Z ′ will be written as [5]:

M(λ)
s =

(
−1

s
+

gWWZ1(v1 − 2λa1)

s−M2
1

+
gWWZ2(v2 − 2λa2)

s−M2
2

)
× G(λ)(s, θ), (3)

where a1,2 and v1,2 are correspondingly axial and vector couplings of Z1 and Z2 bosons
to electrons, M1 and M2 are masses of Z1 and Z2 bosons respectively, gWWZ1 and gWWZ2

are corresponding trilinear gauge couplings.
It turns out that it is convenient to rewrite Eq. (3) in the following form:

M(λ)
s =

(
−gWWγ

s
+

gWWZ(v − 2λa)

s−M2
Z

)
× G(λ)(s, θ), (4)

where the ‘effective’ gauge boson couplings gWWγ and gWWZ are defined as:

gWWγ = 1 + δγ = 1 + ∆γ(Z1) + ∆γ(Z2), (5)

gWWZ = cot θW + δZ = cot θW + ∆Z(Z1) + ∆Z(Z2), (6)

Explicit expressions for ∆γ(Z1), ∆γ(Z2), ∆Z(Z1) and ∆Z(Z2) can be found in [5].

2.2 AGC

It has already been pointed out in previous subsection that a model with one extra Z ′

would produce virtual manifestations in the final W+W− channel at the ILC that in
principle could mimic those of a model (of completely different origin) with AGC.
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Using the notations of, e.g., Ref. [6], the relevant trilinear WWV interaction which
conserves U(1)e.m., C and P , can be written as (e =

√
4παem):

Leff = −ie(1 + δγ)
[
Aµ

(
W−µνW+

ν −W+µνW−
ν

)
+ FµνW

+µW−ν
]

− ie (cot θW + δZ)
[
Zµ

(
W−µνW+

ν −W+µνW−
ν

)
+ ZµνW

+µW−ν
]

− ie xγ FµνW
+µW−ν − ie xZ ZµνW

+µW−ν

+ ie
yγ

M2
W

F νλW−
λµW

+µ
ν + ie

yZ

M2
W

ZνλW−
λµW

+µ
ν , (7)

where W±
µν = ∂µW

±
ν − ∂νW

±
µ and Zµν = ∂µZν − ∂νZµ. In the SM at the tree-level, the

anomalous couplings in (7) vanish: δγ = δZ = xγ = xZ = yγ = yZ = 0.
The general expression for the cross section of process (1) with longitudinally polarized

electron and positron beams can be expressed as

dσ

d cos θ
=

1

4

[
(1 + PL)

(
1− P̄L

) dσ+(λ, λ′)
d cos θ

+ (1− PL)
(
1 + P̄L

) dσ−(λ, λ′)
d cos θ

]
, (8)

where PL and P̄L are the actual degrees of electron and positron longitudinal polarization,
respectively, and σ± are the cross sections for right-handed and left-handed electrons.

3 Discovery and identification of Z ′

The sensitivity of the polarized differential cross sections to δγ and δZ is assessed numer-
ically by dividing the angular range | cos θ| ≤ 0.98 into 10 equal bins, and defining a χ2

function in terms of the expected number of events N(i) in each bin:

χ2 =
∑

{PL, P̄L}

bins∑
i

[
NSM(i)−NNP (i)

δNSM(i)

]2

, (9)

where N(i) = Lint σi εW with Lint the time-integrated luminosity, and (z = cos θ):

σi = σ(zi, zi+1) =

zi+1∫

zi

(
dσ

dz

)
dz, (10)

Here εW is the efficiency for W+W− reconstruction, δNSM(i) is the uncertainty on the
number of events, which combines both statistical and systematic errors.

As a criterion to derive the constraints on the coupling constants in the case where no
deviations from the SM were observed, we impose that χ2 ≤ χ2

CL, where χ2
CL is a number

that specifies the chosen confidence level.
In order to identify Z ′, i.e. to discriminate it from AGC effects, we can define χ2

function analogous to Eq. (9) as

χ2 =
∑

{PL, P̄L}

bins∑
i

[
NZ′(i)−NAGC(i)

δNZ′(i)

]2

, (11)

and apply the criterion χ2 ≤ χ2
min + χ2

CL, which allows to identify Z ′. Obviously it can
be done in a model independent way on the basis of δγ, δZ parameters of Z ′-boson.
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To perform model dependent analysis (for different E6 or LR models) one should switch
from δγ and δZ parameters to such physical parameters as mass M2 and Z − Z ′-mixing
angle φ and obtain discovery and identification (ID) reaches for a set of extended gauge
models. Some results are shown in Fig. 1. Additional results are presented in Tab. 1.
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Figure 1: (a) Discovery (dashed line) and identification (solid line) reach for χ-model (E6) on (φ,M2)
plane obtained from polarized initial e+ and e− beams with (PL = ±0.8, P̄L = ∓0.5). (b) Same as in
(a), but for left-right symmetric (LRS) model.

Table 1: Discovery and ID reach on Z − Z ′ mixing angle φ for Z ′ models with M2 = 2
TeV for polarized initial (PL = ±0.8, P̄L = ∓0.5) states.

Z ′ model χ ψ η I LRS SSM
φDIS, 10−3 ±1.6 ±2.2 ±1.7 ±1.9 ±1.6 ±1.3
φID, 10−3 ±3.8 ±42.6 ±17.6 ±4.4 ±8.0 –
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ASYMMETRIES ASSOCIATED WITH HIGHER TWISTS: GAUGE
INVARIANCE, GLUONIC POLES AND TWIST THREE

I. V. Anikin 1, 2 †, O. V. Teryaev 1

(1) Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
(2) Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

† E-mail: anikin@theor.jinr.ru

Abstract

We explore the electromagnetic gauge invariance of the hadron tensor of the
Drell-Yan process with one transversely polarized hadron. Due to the special role
of the contour gauge for gluon fields, the prescription for the gluonic pole in the
twist 3 correlator can be related to the causality prescriptions for exclusive hard
processes. Because of this, we find the extra contributions, which naively do not
have an imaginary phase. The single spin asymmetry for the Drell-Yan process is
accordingly enhanced by the factor of two.

Introduction. The problem of the electromagnetic gauge invariance in the deeply
virtual Compton scattering (DVCS) and similar exclusive processes has intensively been
discussed during last few years, see for example [1–6]. This development explored the
similarity with the earlier studied inclusive spin-dependent processes [7], and the trans-
verse component of momentum transfer in DVCS corresponds to the transverse spin in
DIS. Here we combine the different approaches to apply them in the relevant case of the
Drell-Yan (DY) process where one of hadrons is the transversally polarized nucleon. The
source of the imaginary part, when one calculates the single spin asymmetry associated
with the DY process, is the quark propagator in the diagrams with quark-gluon (twist
three) correlators. This leads [8,9] to the gluonic pole contribution to SSA. The reason is
that these boundary conditions provide the purely real quark-gluon function BV (x1, x2)
which parameterizes 〈ψ̄γ+AT

αψ〉 matrix element. By this fact the diagrams with two-
particle correlators do not contribute to the imaginary part of the hadron tensor related
to the SSA [10]. In our paper, we perform a thorough analysis of the transverse polarized
DY hadron tensor in the light of the QED gauge invariance, the causality and gluonic
pole contributions. We show that, in contrast to the naive assumption, our new-found
additional contribution is directly related to the certain complex prescription in the glu-
onic pole 1/(x1−x2) of the quark-gluon function BV (x1, x2) (cf. [11] and see e.g. [12] and
Refs. therein). Finally, the account for this extra contributions corrects the SSA formula
for the transverse polarized Drell-Yan process by the factor of 2. Note that our analysis is
also important in view of the recent investigation of DY process within both the collinear
and the transverse-momentum factorization schemes with hadrons replaced by on-shell
parton states [13].

Causality and contour gauge for the gluonic pole. We study the single spin
(left-right) asymmetry measured in the Drell-Yan process with the transversely polar-
ized nucleon. Since we perform our calculations within a collinear factorization, it is
convenient (see,e.g., [14]) to fix the dominant light-cone directions for the DY process
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p1 ≈ Qn∗+/(xB

√
2), p2 ≈ Qn−/(yB

√
2). Focusing on the Dirac vector projection, con-

taining the gluonic pole, let us start with the standard hadron tensor generated by the
diagram depicted on Fig. 1(a):

W(1)
µν =

∫
d4k1 d4k2 δ(4)(k1 + k2 − q)

∫
d4` Φ(A) [γ+]

α Φ̄[γ−] ×

tr

[
γµγ

−γνγ
+γα

`+γ− − k−2 γ+ − `T γT

−2`+k−2 − `2
T + iε

]
, (1)

where Φ
(A) [γ+]
α and Φ̄[γ−] defined as in [15]. Analyzing the γ-structure, i.e γ+γαγ± in the

trace, we may conclude that (i) the `+γ− term singles out γ+γαγ− with α = T which
will lead to 〈ψ̄ γ+AT

αψ〉 giving the contribution to SSA; (ii) the k−2 γ+ term separates out
γ+γαγ+ with α = −. Therefore, this term will give 〈ψ̄ γ+ A+ ψ〉 which will be exponenti-
ated in the Wilson line [−∞−, 0−]; (iii) the `T γT term separates out γ+γαγT with α = T
and, then, will be exponentiated in the Wilson line [−∞−,−∞T ;−∞−, 0T ]. Indeed,
integrating over `+, the k−2 -term contribution reads

W(1) [k−2 ]
µν =

∫
dµ(ki; x1, y)tr

[
γµγ

−γνγ
+

]
Φ̄[γ−](k2)×

∫
d4η1e

−ik1·η1〈ψ̄(η1)γ
+ig

+∞∫

−∞

dz−θ(−z−)A+(z−)ψ(0)〉 . (2)

Including all gluon emissions from the antiquark going from the upper blob on Fig. 1(a),
the k−2 -type terms result in the following matrix element:

∫
d4η1 e−ik1·η1〈p1, S

T |ψ̄(η1) γ+[−∞−, 0−]ψ(0)|ST , p1〉. (3)

If we include the mirror contributions, we will obtain 〈p1, ST |ψ̄(η1)γ
+[η−1 ,−∞−]ψ(0)|ST , p1〉

which will ultimately give us the Wilson line connecting the points 0 and η1. This is
exactly what happens in the spin-averaged DY process. However, for the SSA we are
interested in, these two (direct and mirror) diagrams have to be considered individually.
Their contributions to SSAs differ in sign and the dependence on the boundary point at
−∞− does not cancel. To eliminate the unphysical gluons from our consideration and use
the factorization scheme [7], we may choose a contour gauge [16] which actually implies
also the axial gauge A+ = 0 used in [7]. Imposing this gauge one arrives [16] at the
following representation of the gluon field in terms of the strength tensor:

Aµ(z) =

∞∫

−∞

dω−θ(z− − ω−)G+µ(ω−) + Aµ(−∞) . (4)

Moreover, if we choose instead an alternative representation for the gluon in the form with
Aµ(∞), keeping the causal prescription +iε in (1), the cost of this will be the breaking
of the electromagnetic gauge invariance for the DY tensor. Consider now the term with
`+γ− in (1) which gives us finally the matrix element of the twist 3 operator with the
transverse gluon field. The parametrization of the relevant matrix elements is

〈p1, S
T |ψ̄(λ1ñ) γβ gAT

α(λ2ñ) ψ(0)|ST , p1〉 F
−1
2= iεβαST p1

BV (x1, x2) . (5)
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Using the representation (4), this function can be expressed as

BV (x1, x2) =
T (x1, x2)

x1 − x2 + iε
+ δ(x1 − x2)B

V
A(−∞)(x1) , (6)

where the real regular function T (x1, x2) ( T (x, x) 6= 0) parametrizes the vector matrix
element of the operator involving the tensor Gµν (cf. [17]). Owing to the time-reversal
invariance, the function BV

A(−∞)(x1) can be chosen as BV
A(−∞)(x) = 0. If the only source

of the imaginary part of the hadron tensor is the quark propagator, one may realize this
property by assumption: BV (x1, x2) = T (x1, x2)P/(x1−x2) corresponding to asymmetric
boundary condition for gluons [9]: BV

A(∞)(x) = −BV
A(−∞)(x). Here we suggest another way

of reasoning. The causal prescription for the quark propagator, generating its imaginary
part, simultaneously leads to the imaginary part of the gluonic pole. Note that the fixed
complex prescription +iε in the gluonic pole of BV (x1, x2) (see, (6)) is one of our main
results and is very crucial for an extra contribution to hadron tensor we are now ready to
explore.

Hadron tensor and gauge invariance. We now return to the hadron tensor and
calculate the part involving `+γ−, obtaining the following expression for the standard
hadron tensor (see, the diagram on Fig. 1(a)):

W(1) [`+]

µν = −q̄(yB)=m

∫
dx2 tr

[
γµγβγν p̂2γ

T
α

(xB − x2)p̂1

(xB − x2)ys + iε

]
BV (xB, x2) εβαST p1

. (7)

We are now in position to check the QED gauge invariance by contraction with the photon
momentum qµ. Calculating the trace, one gets if the gluonic pole is present. We now focus
on the contribution from the diagram depicted on Fig. 1(b). The corresponding hadron
tensor takes the form:

W(2)
µν =

∫
d4k1 d4k2 δ(4)(k1 + k2 − q)tr

[
γµF(k1)γνΦ̄(k2)

]
, (8)

where the function F(k1) reads

F(k1) = S(k1)γα

∫
d4η1 e−ik1·η1〈p1, S

T |ψ̄(η1) gAT
α(0) ψ(0)|ST , p1〉 . (9)

Performing the collinear factorization, we derive the expression for the factorized hadron
tensor which corresponds to the diagram on Fig. 1(b):

W(2)

µν = q̄(yB) tr

[
γµ

(∫
d4k1 δ(xBp+

1 − k+
1 )F(k1)

)
γν p̂2

]
. (10)

2

2
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Figure 1: The Feynman diagrams which contribute to the polarized Drell-Yan hadron tensor.
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After some algebra, the integral over k1 in (10) can be rewritten as

∫
d4k1 δ(x1p

+
1 − k+

1 )F [γ+](k1) =
p̂2γ

T
α γβ

2p−2 p+
1

εβαST p1

1

x1 + iε

1∫

−1

dx2 BV (x1, x2) , (11)

where the parametrization (5) has been used. Taking into account (11) and calculating

the Dirac trace, the contraction of the tensor W(2)

µν with the photon momentum qµ gives
us

qµW(2)

µν =

∫
dx1 dy

[
δ(x1 − xB)δ(y − yB)

]
q̄(y) ενp2ST p1

1∫

−1

dx2=mBV (x1, x2) . (12)

If the function BV (x1, x2) is the purely real one, this part of the hadron tensor does not

contribute to the imaginary part. We now study the W(1)

µν and W(2)

µν contributions and its
role for the QED gauge invariance. One can easily obtain:

qµW(1)

µν + qµW(2)

µν = ενp2ST p1
q̄(yB)=m

1∫

−1

dx2 BV (xB, x2)

[
xB − x2

xB − x2 + iε
− 1

]
. (13)

Assuming the gluonic pole in BV (x1, x2) exists, after inserting (6) into (13), one gets

qµW(1)

µν + qµW(2)

µν = 0. This is nothing else than the QED gauge invariance for the
imaginary part of the hadron tensor. We can see that the gauge invariance takes place
only if the prescriptions in the gluonic pole and in the quark propagator of the hard part
are coinciding. As we have shown, only the sum of two contributions represented by
the diagrams on Fig. 1(a) and (b) can ensure the electromagnetic gauge invariance. We
now inspect the influence of a “new” contribution 1(b) on the single spin asymmetry and
obtain the QED gauge invariant expression for the hadron tensor. It reads

WGI

µν = W(1)

µν +W(2)

µν = − 2

q2
ενST p1p2

[xB p1 µ − yB p2 µ] q̄(yB) T (xB, xB) . (14)

Within the lepton c.m. system, the SSA [8] related to the gauge invariant hadron tensor
(14) reads

ASSA = 2
cos φ sin 2θ T (xB, xB)

M(1 + cos2 θ)q(xB)
, (15)

where M is the dilepton mass. We want to emphasize that this differs by the factor of 2
in comparison with the case where only one diagram, presented on Fig. 1(a), has been
included in the (gauge non-invariant) hadron tensor. Therefore, from the practical point
of view, the neglecting of the diagram on Fig. 1(b) or, in other words, the use of the QED
gauge non-invariant hadron tensor yields the error of the factor of two.

Conclusions and Discussions. Shortly summarizing, we want to notice that if we
start to work within the axial (light-cone) gauge, without any referring to the contour
gauge, we have to sort out all possible prescriptions in order to choose such ones which
are in agreement with the gauge invariance [18]. Also, if we “blindly” work within the
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axial (light-cone) gauge, in order to get the gauge invariance, we are forced to introduce
a such specific subject as the so-called special propagator a la J.w.Qiu. [11, 13]. On the
other hand, having considered the axial gauge as a particular case of the path-dependent
contour gauge, we have no ambiguities with the prescriptions which automatically agree
with the gauge invariance. The practical issue of that the gauge invariance has been
restored is the new-found factor of 2 in the expression for SSA in the transverse polarized
Drell-Yan process.

Thus, we showed that it is mandatory to include a contribution of the extra diagram
which naively does not have an imaginary part. The account for this extra contribution
leads to the amplification of SSA by the factor of 2. This additional contribution emanates
from the complex gluonic pole prescription in the representation of the twist 3 correlator
BV (x1, x2) which, in its turn, is directly related to the complex pole prescription in the
quark propagator forming the hard part of the corresponding hadron tensor. The causal
prescription in the quark propagator, involved in the hard part of the diagram on Fig.1(a),
selects from the physical axial gauges the contour gauge. We argued that, in addition to
the electromagnetic gauge invariance, the inclusion of new-found contributions corrects
by the factor of 2 the expression for SSA in the transverse polarized Drell-Yan process.
We proved that the complex prescription in the quark propagator forming the hard part
of the hadron tensor, the starting point in the contour gauge, the fixed representation
of BV (x1, x2) and the electromagnetic gauge invariance of the hadron tensor must be
considered together as the deeply related items. In recent work [19], the factor 1/2
instead of 2 has been claimed. So, in addition to the sign puzzle, do we have a factor of
2 puzzle?!

Supported by grant RFBR 12-02-00613.
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Abstract

The results of our new QCD analysis of helicity parton distributions of the
nucleon up to NLO order will be presented. Doing a QCD fit on newest inclusive
and semi-inclusive polarized deep inelastic scattering data, we are able to extract
polarized structure function of nucleons by choosing new parton distributions at
input scale Q2

0. Particulary we have calculated parton distributions in SU(2) and
SU(3) symmetry breaking scenario and the results are in good agreement with the
experimental data and the most precise theoretical model obtained by DSSV09.

1 Introduction

One of the major goals of Quantum Chromo Dynamics (QCD) in recent years has been
the detailed investigation of the spin structure of the nucleon and nuclei and determi-
nation of the partonic composition of their spin projection. Recently some theoretical
and experimental studies on the spin structure of the nucleon has been discussed in great
detail in several recent reviews mentioned in [1].

In our latest analysis we studied the impact of the recent very precise inclusive po-
larized DIS data on the determination of polarized parton distributions in symmetry sce-
nario [1] and now we consider SU(2) and SU(3) symmetry breaking scenario and include
semi inclusive polarized DIS (SIDIS) data for parton distributions from HERMES [2] and
COMPASS [3]. These experiments give important information about the nucleon struc-
ture in quite different kinematic regions and also different data sets are complementary in
the sense that they probe different aspects of the helicity dependent PDFs. Fully inclusive
DIS data from the many different experiments are pivotal in precisely determining the
sums of quark and anti-quark distributions and SIDIS data help to tell different quark
flavors and quark and anti-quarks apart.

2 QCD Analysis & Parametrization

The idea behind a global analysis is to extract the universal PDFs entering factorized cross
sections such as by optimizing the agreement between the measured polarized structure
function from DIS, and polarized parton distributions from SIDIS experiments, relative
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to the accuracy of the data, and corresponding theoretical calculations, through variation
of the shapes of the polarized PDFs.

The twist-2 contributions to the spin-dependent structure function g1(x,Q2) are given
in terms of a Mellin convolution of the PDFs with the corresponding Wilson coefficient
functions ∆Cq,g [4] by

gp
1(N, Q2) =

1

2

∑

q=u,d,s

e2
q

{
(1 +

αs

2π
∆CN

q ) × [δq(N, Q2) + δq̄(N,Q2)]

+
αs

2π
2∆CN

g δg(N, Q2)
}

. (1)

For our analysis we choose an initial scale for the evolution of Q2
0 = 4 GeV 2 and

assume the helicity PDFs to have the following functional forms:

x δuv = Nuvηuvx
auv (1− x)buv (1 + duvx),

x δdv = Ndvηdvx
adv (1− x)bdv (1 + ddvx),

x (δd̄− δū) = Nd̄−ūηd̄−ūx
ad̄−ū(1− x)bd̄−ū(1 + cd̄−ū

√
x),

x (δd̄ + δū) = Nd̄+ūηd̄+ūx
ad̄+ū(1− x)bd̄+ū(1 + cd̄+ū

√
x),

x δs = x δs̄ = Nqηsx
as(1− x)bs(1 + dsx),

x δg = Ngηgx
ag(1− x)bg , (2)

10
-3

10
-2

10
-1

x

0

0.1

0.2

0.3

0.4

xδ
u v(x

,Q
2 ) AKTO

DSSV09

10
-3

10
-2

10
-1

x

-0.15

-0.1

-0.05

0

0.05

xδ
d v(x

,Q
2 )

10
-3

10
-2

10
-1

x

-0.02

0

0.02

xδ
u(

x,
Q

2 )

10
-3

10
-2

10
-1

x

-0.04

-0.02

0

0.02

xδ
d(

x,
Q

2 )

10
-3

10
-2

10
-1

x

-0.02

0

0.02

xδ
s(

x,
Q

2 )

10
-3

10
-2

10
-1

x

-0.1

-0.05

0

0.05

0.1

xδ
g(

x,
Q

2 )

1 1

1 1

1 1

Q
2
=4 GeV

2

NLO

MODEL
DSSV09
LSS10

Figure 1: The quark densities in the NLO approxi-
mation as a function of x comparing with DSSV09 [7]
model.

where the normalization constants Ni are
chosen such that ηi are the first moments of
δqi(x,Q2

0), ηi =
∫ 1

0
dxδqi(x,Q2

0) [5]. Since
the SIDIS data are not yet sufficient to dis-
tinguish s from s̄ , we assume δs(x,Q2) =
δs̄(x,Q2) throughout, on the other hand
the currently available data do not fully
constrain the entire x dependence of δq im-
posed in Eq. (2), and we are forced to make
some restrictions on the parameter space,
so we tie the small x behavior, represented
by the ag in Eq. (2) of gluon to that of sea
distribution by imposing ag = as +1 where
we get c = 1 which is reasonable as gluon
likely dominate in this region. The param-
eter bd̄−ū, bd̄+ū and bs=s̄ always came out
close to each other, so we set them equal.

The parameters ηuv and ηdv are the first
moments of the δuv and δdv polarized va-
lence quark densities; these quantities can
be related to F and D as measured in neutron and hyperon β–decays [6] under the
assumption of SU(2) and SU(3) flavor symmetries; ū = d̄ = s̄ = s:

a3 = ∆Σu + ∆Σd = ηuv − ηdv = F + D , (3)

a8 = ∆Σu + ∆Σd − 2∆Σs = ηuv + ηdv = 3F −D . (4)
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We make use of these constraints in our present analysis; however, as we are not interested
in forcing flavor symmetry, we leave aside that strong assumption and relax the symme-
try relations introducing two parameters, εSU(2) and εSU(3) respectively. These parame-
ters account quantitatively for eventual departures from flavor symmetry considerations,
including also some uncertainties on the low-x behavior, and higher order corrections.
Specifically, we set [7]

∆Σu + ∆Σd = (F + D)
[
1 + εsu(2)

]
,

∆Σu + ∆Σd − 2∆Σs = (3F −D)
[
1 + εsu(3)

]
. (5)
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Figure 2: The quark helicity distributions
evaluated at Q2 = 2.5, 3 GeV 2 comparing to
the COMPASS10 [3] and HERMES06 [2] data.

εSU(2,3) parameterize the departures from exact
SU(2) and SU(3) symmetries and are included
in the QCD fit procedure. We note that the
relative deviations of F+D and 3F−D may not
fully reflect the actual breaking of the SU(2)
and, in particular, SU(3) symmetries, for which
larger breaking effects have been discussed in
the literature mentioned in [5]. This issue may
need to be revisited in the future but for now
we note that as a result of this the PDFs in
our fits will naturally have a tendency to have
relatively small εSU(2,3) at the input scale.

The input distributions are evolved to the
scale Q2 and an inverse Mellin-transform to x-
space is then performed [5], the resulting δq(x)
for the respective distribution depends on the
parameters of the polarized parton distribu-
tions chosen at the input scale Q2

0 and αs(Q
2
0)

which are determined by a fit to the experimen-
tal data.

Our analysis is performed using the QCD-
PEGASUS program [8]. We work at NLO in
the QCD evolution using Nf = 3 in the fixed-
flavor number scheme with massless partonic
flavors. For the proton, neutron and deuteron
DIS data we use the same as [1] and for the
polarized parton distributions SIDIS data we
use HERMES [2] and COMPASS [3]. After the
preliminary minimization, we then set the parameters duv , ddv , bg to their obtained value
and fix them in the second minimization as these are relatively flat directions in χ-space,
on the other hand according to Eq. (5) we extract ηuv and ηdv from the value of εsu(2)

and εsu(3) indirectly, so we exclude them in the fit procedure. Finally we minimize the
χ2 with the 15 unknown parameters plus εsu(2,3) and an undetermined αs(Q

2
0), the values

of these parameters are summarized in Table 1. We find χ2/d.o.f. = 392.25/473 = 0.829
which yields an acceptable fit to the experimental data.
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3 Results

Figure 1 shows the extracted NLO polarized PDFs as compared with parametrizations
from DSSV09 [7]. Examining the xδuv and xδdv distributions we see that both of the
fits are in agreement. For the xδs, xδū, xδd̄ and xδs distributions, the curves are also
comparable while the DSSV analysis employs results from semi-inclusive DIS ALL data
including fragmentation functions which can impose individual constraints on individual
quark flavor distributions in the nucleon [7]. Finally, for the gluon distribution, the DSSV
results have a sign change in the region of x ∼ 0.1 while the other fits, like our model, are
positive. Using RHIC pp data by DSSV give a first direct constraint on gluon polarization
as their mentioned in the literature, which is not included in our analysis. Figure 2 displays
results for the polarized PDFs evaluated to Q2 = 2.5, 3 comparing with COMPASS [3]
and HERMES [2] data, the data are generally well described within errors.

εsu(2) = 0.0444± 0.0439 εsu(3) = −0.0122± 0.0535
δuv η 0.707 δū + δd̄ η -0.0363 ± 0.065

a 0.428 ± 0.043 a 0.032 ± 0.015
b 3.221 ± 0.093 b bδd̄−δū

d 51.076(fixed) c 19.402 ± 20.560
δdv η -0.244 δs η 0.118 ± 0.037

a 0.419 ± 0.117 a 0.057 ± 0.029
b 3.901 ± 0.424 b bδd̄−δū

d 34.341 (fixed) d -35.512 ± 15.38
δd̄− δū η -0.215 ± 0.056 δg η 0.117 ± 0.149

a 0.493 ± 0.060 a aδs + 1
b 14.003 ± 3.551 b 3.425 (fixed)
c 1.690 ± 2.003

αs(Q
2
0) = 0.340± 0.021 χ2/NDF = 392.254/473 = 0.829

Table 1: Final parameter values and their statistical errors at the input scale Q2
0 = 4.0 GeV 2.
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Abstract

The quark spin degree of freedom is introduced in the string fragmentation
model, using Pauli spinors and matrices. The hadron mass-shell constraints, which
were omitted in a preliminary model, are now satisfied. The algorithm for a recursive
Monte-Carlo generation of a polarized quark jet is described.

1 Introduction

Quark spin plays a dynamical role in jet formation, as confirmed by the Collins effect.
The Collins asymmetry can be used as a quark polarimeter for transversity. Similarly, jet
handedness provides a polarimeter for quark helicity. To optimize these polarimeters, a
theoretical model is needed as a guide. Since helicity and transversity are non-commuting
observables, a model describing both effects must start with quantum amplitudes rather
than probabilities. In this direction a toy model was proposed in [1]. This model, which
uses Pauli spinors, not only reproduces the transverse spin effects of the classical string +
3P0 mechanism [2,3], but yields jet handedness in addition. However, it does not take into
account the hadron mass-shell constraints. This approximation allows a full decoupling
of longitudinal and transverse momenta and makes analytical calculations possible, but
is too crude for realistic Monte-Carlo simulations of jets.

In this paper we propose a model with mass-shell constraints. It combines the spin
factors of the toy model and the kinematical dependance of the string fragmentation
model [2]. In Section 2 we review the two main models of quark jets without spin : the
ordinary recursive model and the string fragmentation model. In Section 3 we review the
toy model of [1]. In Section 4 we write the quantum amplitudes underlying the string
fragmentation model and include spin matrix factors in them. In Section 5 we give the
Monte-Carlo algorithm for a recursive processing of the model.

2 Spinless fragmentation models

Fig.1a depicts an event of e+e− annihilation or W± decay into quark qA + antiquark q̄B,
followed by the hadronisation process

qA + q̄B → h1 + h2... + hN . (1)

Hadrons at the right and left sides form the quark and antiquark jets. Here we will restrict
ourselves to processes without hard gluon and without initial or final baryon.
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(a) (b)

Figure 1: (a) e+e− annihilation or W± decay in quark-antiquark → hadrons. (b) String fragmentation.

The simple recursive model. The most simple model of quark jets for Monte-Carlo
simulations is the recursive model [4, 5]. Looking from right to left at the upper part of
Fig.1a, the process (1) can be decomposed in

q0 → h1 + q1 ,

q1 → h2 + q2 ,

· · · · · · qN−1 → hN + qB .

(2)

q0 ≡ qA and qB ≡ qN is the charge conjugate of q̄B propagating “backward in time” with
4-momentum qB ≡ −q̄B. The 4-momentum conservation qn−1 = pn + qn holds at each
step. pn is the 4-momentum of nth-rank hadron. qn stands either for the species (u, d
or s) of the nth-rank quark or for its 4-momentum. In the simplest receipe, the sharing
between pn and qn is made according to the splitting probability distribution,

dζn d2qnT f(ζn, qnT) , (3)

where qT = (qx, qy), ζn = q+
n /q+

n−1 and q± ≡ q0± qz. The +z and −z directions are along
qA and q̄B.

Including the quark flavor degree of freedom is relatively easy. The q → h+q′ splitting
function depends on the flavors and writes fq′,h,q(ζ, q′T).

Notations. The symbol {qn}, with curly brackets, represents the momentum and the
flavor of the nth quark altogether. See, e.g. Eq.(5). A four-momentum q is separated in
transverse part qT = (qx, qy) and time-longitudinal part qL = (q0, qz). The virtual mass
square is q2 = qL

2 − qT
2 = q+q− − qT

2.
The polarization vector of a quark is decomposed as S = (SL,ST) where SL/2 =

〈helicity〉, ST = 〈transversity〉. The density matrix is ρ = (1 + S.~σ)/2.

The string fragmentation model [2, 6]. One may consider Fig.1a as a diagram of
the dual resonance model. Hadronization is the cascade decay of a massive string (the
dart) stretching between qA and q̄B. The space-time picture is shown in Fig.1b. At the
nth string breaking point (starting from the right) a qnq̄n pair is created. q̄n moves to
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Figure 2: The string + 3P0 mechanism for Collins effect.

the right, meets qn−1 which is moving to the left and both form the hadron hn. If the
null-plane coordinate X− = t− z is used as time variable, the hadrons are emitted in the
ordering of (2) and the string model can be treated as a recursive one, with the symmetric
Lund splitting function [2],

fq′,h,q(ζ,q′T,qT) ∝ Za{q} (1/Z − 1)a{q′} exp

(
−b

m2
h + pT

2

Z

)
. (4)

Z = 1−ζ and a{q} ≡ aq(q
2
T), which generally depends on the quark flavor q and transverse

momentum qT. Eq.(4) is used in the Monte-Carlo simulation code PYTHIA.
The string fragmentation model is invariant under

− (a) rotations about the z-axis,
− (b) Lorentz transformations along the z-axis
− (c) mirror reflection about any plane containing the z-axis (equivalent to parity),
− (d) quark chain reversal or “left-right symmetry”, i.e., interchanging qA and q̄B.
It is not covariant locally (i.e., step-by-step), but globally for the whole process of Fig.1.

3 Review of the toy model of Ref. [1]

The classical string + 3P0 mechanism [2, 3]. We consider the simplest case where
all the emitted partices are pseudoscalar mesons. Then (qnq̄n−1) in hn is a spin singlet.
At a string breaking the qnq̄n pair is assumed to be created in the 3P0 state with zero
total momentum (corresponding to the vacuum quantum numbers). Fig.2 depicts the
recursive decay of the dart when q0 has a transverse, anti-clockwise polarization. (q0q̄1)
is a spin-singlet, therefore q̄1 spins clockwise. (q1q̄1) is a spin-triplet, therefore q1 also
spins clockwise. Due to the 3P0 configuration, the relative q1 − q̄1 orbital momentum L1

is opposite to the spins, therefore anti-clockwise. It makes q̄1 move upward and q1 move
downward in the figure. The upward momentum of q1 is taken by hadron h1, resulting in
a Collins effect, with p1T on the side of S0T × ẑ.

Iterating this reasoning, q2 and q̄2 are spinning anti-clokwise, L2 is clokwise, etc. One
obtains Collins effects of alternate sides for h2, h3, etc. Of course, successive spins are
not so rigidly coupled and the Collins effect decays along the quark chain. Nevertheless
the model predicts a Collins effect for h2 opposite to that of h1 and reinforced by the fact
that q1 and q̄2 move on the same side. This is in agreement with experiment.

The string + 3P0 mechanism also explains the polarization of inclusive hyperons [2].

The covariant quark-multiperipheral amplitude. The upper half of Fig.1a looks
like a multiperipheral diagram [7], but with quark exchanges instead of meson exchanges.
We treat qA and q̄B as on mass-shell quarks and assume that the probability of the
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whole process of Fig.1a factorizes in the probabilities of the upper and lower parts. The
amplitude of (1) writes

M{qAq̄B → h1h2...hN} =
Γ{qB, hN , qN−1}∆{qN−1} · · ·∆{q2}Γ{q2, h2, q1}∆{q1}Γ{q1, h1, qA} . (5)

∆{q} = Dq(q
2) (µq + γ.q) is the quark propagator. µq is the quark mass. Dq(q

2) is a fast
decreasing function of |q2|. Γ{q′, h, q} ≡ Γq′,h,q(q

′, q) is the q → h + q′ vertex function,
which is a 4×4 matrix in the space of Dirac spinors. For the emission of a pseudoscalar
meson, Γ{q′, h, q} = γ5 Gq′,h,q(q

′2, q2). The model is covariant locally, i.e., at each vertex
and propagator.

Another important approximation is to neglect interferences between several diagrams
giving the same final state. Then the total hadronisation cross section writes

R{q̄B, qA} =
∑
N

∑

h1,...hN

∫
d3p1 · · · d3pN

p0
1 · · · p0

N

δ4(p1 + p2... + pN − qA − q̄B}

|v̄(q̄B,SB)M{qAq̄B → h1h2...hN}u(qA,SA)|2 . (6)

The second summation bears on the hadron species. u(qA,SA) and v(q̄B,SB) are the Dirac
spinors of qA and q̄B.

Reduction to Pauli spinors. We now describe the spin degree of freedom in the most
economical way, with Pauli instead of Dirac spinors. We give up local covariance, but
maintain the invariances (a), (b), (c) and (d) listed in the introduction about the string
model. For this we replace [1]

• u(q0,S0) by the Pauli spinor χ(S0)

• v̄(qq̄B
,Sq̄B

) by −χ†(−Sq̄B
) σz

• γ5 by σz

• µq + γ.q by µq + σz σ.qT.

Thus, the propagators has the non-covariant form

∆{q} = Dq(qL
2,qT

2) (µq + σz σ.qT) . (7)

The toy model [1]. We consider only pseudo-scalar mesons, with the momentum-
independent emission vertex σz, and take a factorized, flavor-independent quark propa-
gator

∆{q} = DL(qL
2) exp(−BqT

2/2) (µ + σz σ.qT) . (8)

Furthermore we ignore the mass-shell constraint m2
n = p+

n p−n − p2
n,T. This crude approxi-

mation achieves the full decoupling of the longitudinal momenta from the transverse ones
and from the quark spin. The joint pT -distibutions of the n first mesons have simple
expressions, for instance

I(p1T,p2T,p3T) ∝ exp(−BqT
2
1 −BqT

2
2 −BqT

2
3) Tr

{
M3 M2 M1 ρ0 M†

1 M†
2 M†

3

}
, (9)

where ρ0 = (1 + S0.σ)/2 is the spin density matrix of q0 and Mn = (µ + σzσ.qTn) σz.
For complex µ one obtains a Collins effect for each meson, the analyzing power of which
depends only on the meson rank. See Ref. [1] for more properties of the model.
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(a) (b)

Figure 3: (a) Trajectories of massive qA and q̄B . (b) Tunneling trajectories of qn and q̄n.

4 The semi-quantized string model

Let us first consider spinless quarks and mesons. Following the sum-over-histories ap-
proach of Feynman, to the classical string history of Fig.1b we associate the amplitude

M(qAq̄B → h1h2...hN) = exp[ (−iκC + 2iκ)A ]
(q+

Ap−1 )α{qA} (−p+
1 p−2 − i0)α{q1} · · · (−p+

N−1p
−
N − i0)α{qN−1} (p+

N q̄ −
B )α{qB}

g{qB, hN , qN−1} · · · g{q2, h2, q1} g{q1, h1, q0} . (10)

• A is the space-time area swept by the dart. κC = κ − iP/2 is the complex string
tension of the dart [8], accounting for its unstability (in analogy with the complex mass
m− iΓ/2 of an unstable particle). We will use b ≡ P/(2κ2).

The exponent of the first line contains the pure string action of the dart (proportional
to −κC) and “missing propagation phases” (proportional to 2κ) of the final hadrons,
taking into account their different emission points [9].

• The first and last power-law factors of the 2nd line takes into account the quark actions
of qA and q̄B, which in the case of non-zero mass follow the pieces of hyperbolas in Fig.3a.
We have

α{qA} = (b− i/κ) µ2
A /2 (idem for q̄B). (11)

These factors also take into account the “missing string area” between the hyperbolas
and the brokenline trajectories that would be followed by massless quarks.

• The intermediate power-law factors of the 2nd line take into account the actions of
the quarks and antiquarks created in pairs at string ruptures (Fig.3b). They simulate a
multi-Regge behavior at large rapidity gaps, α{q} being the quark Regge trajectory. One
may take the analytic continuation of (11), replacing q+

A by −p+
n , p−1 by p−n+1 :

α{qn} = (µ2
n + q2

nT) (b− i/κ)/2 . (12)

For real µn the modulus square of the nth factor is

(p+
n p−n+1)

b(µ2
n+q2

nT) exp[−π(µ2
n + q2

nT)/κ] , (13)
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which exhibits the characteristic exponential factor of Schwinger tunneling [2]. This
tunneling is represented by a dotted line in Fig.3b. There is however a limitation to
Eq.(12). The tunneling length is 2EqT/κ = 2(µ2 + q2

T)1/2/κ. It must be smaller than the
string length, which is of the order of P−1/2. In fact the production of large ET quarks
should not be described by the string model, but by perturbative QCD. Besides, at large
rapidity gap (large p+

n p−n+1), the first factor of (13) would too much favor heavy quarks.
A possible sensible choice is to use Eq.(12) with b = 0.

• The last line contains vertex functions

g{q′, h, q} ≡ gq′,h,q(qT
′2,qT

′.qT,qT
2) (14)

which depend on flavours and transverse momenta, but not on longitudinal ones. Quark
chain reversal imposes g to be symmetric under the interchange {q;qT} ↔ {q′;q′T}.

Taking the modulus square of (10) for the fully differential cross section of (1) is
equivalent to the symmetric Lund model.

Figure 4: Spin matrices to be inserted in the
string amplitude.

Inclusion of quark spin. Spin is simply
included by inserting the 2×2 matrices of the
toy model. Fig.4. indicates where such ma-
trices operate. Restricting ourselves to pseu-
doscalar meson production, we have to mul-
tiply the expression (10) by the chain of 2×2
matrices

σz (µN−1 + σzσ.qTN−1) σz · · ·
(µ2 + σzσ.qT2) σz (µ1 + σzσ.qT1) σz . (15)

To sum up, the fully differential cross section of (1) with polarized qA and q̄B is given by

R{q̄B, qA} =
∑
N

∑

h1,...hN

∫
d4q1 · · · d4qN−1 2δ(p2

1 −m2
1) · · · 2δ(p2

N −m2
N)

∣∣χ†(−SB) σz Mχ(SA)
∣∣2 , (16)

M being given by (10) times (15). Unlike the toy model, the present string fragmentation
model takes into account the mass-shell conditions properly.

5 Recursive Monte-Carlo Algorithm

• The string amplitude (10) times (15) can be put in a multiperipheral form. The splitting
amplitude, defined as the product of the nth vertex and the nth propagator, is given by

Tn ≡ T{qn, hn, qn−1} ≡ ∆{qn}Γ{qn, hn, qn−1} =

exp

(
i− b

2
q+
n−1p

−
n

)
(q+

n−1p
−
n )α{qn−1}

(−p+
n − i0

q+
n

)α{qn}
g{q′, h, q} (µn + σzσ.qnT) σz . (17)

Introducing the sub-amplitude MN−n for qn + q̄B → hn+1 + · · ·hN , we have

M≡MN = MN−n Tn · · ·T2 T1 . (18)
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Figure 5: Unitarity diagram for R.

• Using (18), the n-particle inclusive cross section with polarized quarks writes

dσ(qA + q̄B → h1, · · ·hn + X)

d3p1/p0
1 · · · d3pn/p0

n

= Tr{ ρ0 T †
1 T †

2 · · ·T †
n R{qn} Tn · · ·T2 T1} , (19)

where ρ0 is the spin density matrix of qA and

R{qn} =
∑
N>n

∫
d3pn+1 · · · d3pN

p0
n+1 · · · p0

N

M†
N−n σz

1− σ.S(q̄B)

2
σz MN−n (20)

is the cross section matrix [10] of the reaction qn + q̄B → hadrons. It operates in the spin
space of qn. It also depends on the antiquark polarization S(q̄B), but at large (qn + q̄B)2

this dependence is negligible and we may take S(q̄B) = 0. Fig.5 represents the unitarity
diagram giving R{qA}. Encircled in dashed line is the unitarity diagram for R{q1}. The
general cross section matrix R{q} satisfies the integral recursion relation

R{q} =
∑

h

∫
d3p

p0
T †{q′, h, q}R{q′}T{q′, h, q} . (21)

• We assume the following Regge behavior at large (q + q̄B)2 :

R{q} ∼ |(q̄B)−q+|αout
[
βq(q

2
T) + γq(q

2
T) σzσ.qT

]
. (22)

αout is the output Regge intercept. a{q} of Eq.(4) and α{q} of Eq.(10) are linked by [8]

a{q} = αout − 2α{q} . (23)

A preliminary numerical task consists in calculating αout and the Regge residue functions
βq(q

2
T) and γq(q

2
T), solving the integral equation(21).

• Suppose that we know the flavor and momentum of quark {qn−1} ≡ {q} and its
polarization Sn−1 ≡ S. From Eqs.(21) and (22), one can write

σ{q + q̄B} = Tr {ρ R{q}} = |(q̄B)−|αout
∑

h

∫
d3p

p0

(q′+)αout Tr
{

T{q′, h, q} ρ T †{q′, h, q} [βq′(q
′
T

2
) + γq′(q

′
T

2
) σzσ.q′T]

}
(24)

with p+q′ = q and ρ = (1+σ.S)/2. The second line is proportional to the probability that
quark {q} ≡ {qn−1} emits a hadron {hn} of species h and 4-momentum p. In the Monte-
Carlo method, one generates h and p at random according to this probability. {q′} ≡ {qn}
is related to {h} by the conservation of charge, strangeness and 4-momentum.
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• Once the flavors and momenta of {p} ≡ {pn} and {q′} ≡ {qn} are known, the q′

polarization is given by

1 + σ.S′

2
≡ ρ′ =

T{q′, h, q} ρ T †{q′, h, q}
Tr ( T{q′, h, q} ρ T †{q′, h, q} )

. (25)

Thus one has {qn} and Sn. Iterating the last two steps, one generates the jet of a polarized
quark.

6 Conclusion

We have given the principle of a recursive quark fragmentation model which includes
the spin degree of freedom. Since spin has essentially quantum properties, we started
from amplitudes rather probabilities. For that we took the amplitudes which underly the
symmetric Lund fragmentation model.

When an imaginary part is given to the quark mass µ, the model produces the spin
asymmetries of Collins and jet handedness, like in the toy model of [1] but with hadron
mass shell contraints duly taken into account. For the moment we have no theoretical
justification for taking a complex µ, but it provides a quantum realization of the string
+ 3P0 mechanism, which up to now is in qualitative agreement with experiment.
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Abstract

We discuss the possibility of non-minimal gauge invariance of transverse-momen-
tum-dependent parton densities (TMDs) that allows direct access to the spin degrees
of freedom of fermion fields entering the operator definition of (quark) TMDs. This
is achieved via enhanced Wilson lines that are supplied with the spin-dependent
Pauli term ∼ Fµν [γµ, γν ], thus providing an appropriate tool for the “microscopic”
investigation of the spin and color structure of TMDs. We show that this gener-
alization leaves the leading-twist TMD properties unchanged but modifies those of
twist three by contributing to their anomalous dimensions. We also comment on
Collins’ recent criticism of our approach.

Precise knowledge of the geometrical structure, as well as of the spin and color proper-
ties, of the Wilson lines (gauge links) in the operator formulation of TMDs is an essential
ingredient of the QCD factorization approach to semi-inclusive hadronic processes [1, 2].

The path-[C]-dependent non-Abelian gauge links [y; x|C] ≡ P exp
[
−ig

∫ y

x[C] dzµAa
µ(z)ta

]
,

which ensure the gauge invariance of nonlocal operator products and correlators, are
intimately related to important issues of TMDs, like the ultraviolet (UV) and rapidity
evolution equations, the generation of T−odd effects, the proof or violation of factor-
ization, etc. [2, 3]. Different operator definitions of the TMDs can comprise bunches of
longitudinal and transverse gauge links possessing a quite involved space-time structure,
with non-trivial properties in color space as well (see, e.g., [3–8] and further discussions
and references cited therein). Moreover, the location of the gauge integration contours
in the (z+, z−,z⊥)-plane (in contrast to collinear PDFs, where they belong to a single
lightlike ray and are, therefore, one-dimensional) necessitates the inclusion of (possible)
contributions of non-minimal spin-dependent terms, expressed in terms of enhanced Wil-
son lines (more below). The path-dependence, being in some sense “hidden” in the case of
collinear PDFs [7], becomes a key issue in TMDs. In particular, explicit spin-dependent
terms in the gauge links can create significant effects in lattice simulations [2,9], depend-
ing on the geometry of the integration paths, and may also affect the TMD-factorization
properties [3].

To this end, we introduced in [10] an enhanced gauge link, denoted by [[...]], which con-
tains the Pauli term proportional to the gluon strength tensor∼ F a

µνJµν = (1/4)F a
µν [γµ, γν ].
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This is the simplest example to realize a direct product of two orthogonal “spaces”: The
first “space” is the color one, with the minimal Wilson lines in the fundamental or adjoint
representation of SU(3)c. In the second “space”, the spin correlations are generated by
the Pauli terms [10]. The spin-dependent terms yield next-to-leading-order twist effects
with respect to the spin-“blind” ones, as it follows from usual power-counting.

We discuss below, the main results of our study of the renormalization-group properties
of the TMD distribution functions with enhanced gauge-link insertions [10], focusing on
the UV properties of the “quark-in-a-quark” TMD. According to our generalized concept
of gauge invariance, the unsubtracted distribution function of a quark with momentum k
and flavor a in a quark with momentum p reads

FΓ
a (x, k⊥) =

1

2
Tr

∫
dk−

∫
d4ξ

(2π)4
e−ik·ξ〈p, s |ψ̄a(ξ)[[ξ

−, ξ⊥;∞−, ξ⊥]]†

×[[∞−, ξ⊥;∞−, ∞⊥]]†Γ [[∞−,∞⊥;∞−,0⊥]][[∞−,0⊥; 0−,0⊥]]ψa(0)|p, s〉 , (1)

where Γ stands for the Dirac structure constructed from one or several γ-matrices. The
matrix elements interpolate between the one-fermion states with momentum p and spin
s: |p, s〉. In the tree-approximation one has

FΓ(0)(x, k⊥) =
1

2
Tr [(p̂ + m) (1 + γ5ŝ) Γ] δ(p+ − xp+)δ(2)(k⊥) . (2)

For the unpolarized TMD PDF with Γ = γ+, one obtains the (twist-two) result

Fγ+(0)(x, k⊥)=
1

2
Tr

[
(p̂ + m) (1 + γ5ŝ) γ+

]
δ(p+ − xp+)δ(2)(k⊥)=δ(1− x)δ(2)(k⊥) . (3)

The helicity and the transversity distributions read, respectively,

Fγ+γ5(0)(x, k⊥) = δ(1− x)δ(2)(k⊥) · λ , F iσi+γ5(0)(x, k⊥) = δ(1− x)δ(2)(k⊥)·si
⊥ , (4)

where λ is the helicity and si
⊥ is the transverse spin of parton i. Note that the above

normalization conditions can only be obtained within the quantization procedure in the
lightcone gauge, where the (minimal) longitudinal Wilson lines vanish and the equal-
time canonical commutation relations for the quark creation and annihilation operators
{a†(k, λ), a(k, λ)} are consistent with the parton-number interpretation of the TMD in the
tree-approximation (see [11] for more): F (0)(x, k⊥) ∼ 〈p|a†(k+,k⊥; λ) a(k+,k⊥; λ)|p〉. In
line with the above explanations, we define a generic enhanced gauge link evaluated along
some fixed but else arbitrary direction w from zero to infinity according to

[[∞; 0]] = P exp

[
−ig

∫ ∞

0

dσ wµ Aµ
a(wσ)ta − ig

∫ ∞

0

dσ JµνF
µν
a (wσ)ta

]
, (5)

where the four-vector w may be longitudinal (lightlike) wL = n−, or transverse wT =
(0+, 0−, l⊥). The enhanced Wilson lines (5) significantly enlarge the gauge-invariant for-
malism of quark and gluon operators entering the TMD correlators.

To investigate the structure of the UV singularities in the leading αs-order, we evaluate
all graphs contributing to this order given in [10], where one can also find the technical
details and the appropriate Feynman rules. Note that there are two different perturbative
expansions in the generalized TMD given by (1): one stems from the Heisenberg quark
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field operators, i.e., ψa(ξ) = e−ig[
∫

dη ψ̄Âψ] ψfree
a (ξ),

∫
dx ψ̄Âψ ≡ ∫

d4x ψ̄(x)γµψ(x)Aµ(x).
The other originates from the evaluation of the product of the enhanced gauge links up
to O(g2). Applying the lightcone gauge A+ = 0) one has

[[∞−,∞⊥;∞−,0⊥]] · [[∞−,0⊥; 0−,0⊥]] = 1− ig (U1 + U2 + U3)− g2 (U4 + U5 + . . .U10) ,
(6)

where the individual contributions Ui have to be contracted with themselves as well as
with corresponding terms in the Heisenberg field operators.

The singularity structure of the twist-two TMD with the Dirac structures Γtw− 2 =
{γ+, γ+γ5, iσi+γ5}, cancel by the Hermitean conjugated (mirror) diagrams, in contrast to
the twist-three TMDs (e.g., Γtw− 3 = γi) which receive non-trivial UV divergent contri-
butions from the Pauli term, like

Γtw− 3〈A⊥F−〉+ 〈A⊥F−〉Γtw− 3 = −CF
1

4π
[γ+, γ−] Γ(ε)

(
4π

µ2

λ2

)ε

. (7)

Here, 〈A⊥F−〉 denotes the result stemming from the cross-talk between the minimal
transverse gauge link and the enhanced longitudinal gauge link containing a Pauli term.
In order to render the TMD singularity-free, one has to handle the overlapping UV and
rapidity divergences induced by the gluon propagator in the lightcone gauge. To this
end, we refurbished in [7] the untruncated definition in Eq. (1) by a soft renormalization
factor along a particular gauge contour going off the lightcone. This soft factor takes care
of the overlapping UV and infrared (rapidity) divergences which cannot be regularized
dimensionally, as in the case of purely longitudinal gauge links—see [12] and references
cited therein.

Recently, Collins [4] questioned the validity of this definition and proposed another one.
He argues that the gluon propagator in the lightcone gauge subject to the Mandelstam-
Leibbrandt (ML) boundary prescription, Dµν

ML, is not transverse, i.e., nµD
µν
ML 6= 0. The

propagator displayed by Collins as Eq. (15) in [4] is not the ML one but the result of
using the Principal-Value prescription. This propagator, as well as the Retarded and
the Advanced one, are indeed not transverse. In contrast, the correct ML propagator
(see last entry in [7]) is transverse and the soft factor reduces to unity. The second
argument by Collins is that the graphs shown in Eq. (16) in [4] give uncanceled rapidity
divergences. If the displayed graphs are to be evaluated in the lightcone gauge, as used
in our works in [7] and in [10], then they both vanish. In a general covariant gauge, these
graphs contribute singularities that are indispensable in order to cancel those singular
terms, induced by the gluon propagator, which contain the gauge parameter. There are
no surviving singularities.

In conclusion, we discussed a new operator formulation of gauge-invariant TMDs which
provides direct access to the spin degrees of freedom of the partonic fields by means of
the Pauli term in the gauge links, hence allowing a microscopic analysis of the spin-color
structure of TMDs relevant for phenomenology.

Acknowledgements The first author (I.O.C.) thanks the Organizers for the warm
hospitality and exciting atmosphere during the conference.
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Abstract

We summarize the assumptions made by the different groups in extracting the
fragmentation functions. We define tests for the commonly used assumptions:
DK+

d = DK−
d , Dπ+−π−

u = −Dπ+−π−
d and the SU(2)-relations between DK++K−

q

and D
K0

s
q .

1 Introduction

At present, the main source of information about the fragmentation functions (FFs) are
the semi-inclusive processes for hadron production h in e+e−-annihilation:

e+e− → h + X, dσh '
∑

e2
q(D

h
q + Dh

q̄ ), h = π±, K±, p/p̄ ... (1)

They determine directly the FFs (Dh
q + Dh

q̄ ), but cannot in principle distinguish the
quark Dh

q and anti-quark Dh
q̄ FFs. That’s why in all analysis of e+e−-annihilation data,

information about Dh
q and Dh

q̄ separately is based on the different assumptions made by
the different groups, especially on the FFs for the light quarks. Bellow we summarize
some of them.

• The assumptions used by the different groups for the kaon FFs:

I) The BKK group [1] introduces 2 independent FFs: all favoured FFs are equal and all
unfavoured FFs are equal:

DK+

u = DK+

s̄ ⇐ fav.

DK+

ū = DK+

s = DK+

d = DK+

d̄ ⇐ unfav. (2)

II) The more recent analysis of HKNS [3] and DSS [4] take into account that the strange
quark is heavier ms >> mu,d and introduce 3 FFs: the favoured FFs are not equal, but
all unfavoured FFs are equal:

DK+

u , DK+

s̄ ⇐ fav.

DK+

ū = DK+

s = DK+

d = DK+

d̄ ⇐ unfav. (3)

1The paper is supported by 288/2008 Grant of Bulgarian National Science Foundation and a priority
Grant between Bulgaria and JINR.
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III) The most economic analysis is done by Kretzer [4], who uses only one FFs, assuming
certain hierarchy of the FFs: favoured and unfavoured FFs are power suppressed:

DK+

s̄ , DK+

u = (1− z) DK+

s̄ ⇐ fav.

DK+

d = DK+

d̄ = (1− z)2DK+

s̄ ⇐ unfav. (4)

IV) The most general analysis is performed by AKK [5], that uses 5 independent FFs:
favoured and unfavoured FFs are not equal and the only assumption is on DK+

d,d̄
:

DK+

u , DK+

s̄ ⇐ fav.

DK+

ū , DK+

s , DK+

d = DK+

d̄ ⇐ unfav. (5)

In general, the assumptions used by all groups are different, but common for them are
the following two assumptions:

1) DK+

d = DK+

d̄ (6)

for the charged kaons, and

2) DK0+K̄0

d = DK++K−
u , DK0+K̄0

u = DK++K−
d , DK0+K̄0

s = DK++K−
s (7)

that relate the neutral and charged kaon FFs. The last one follows from SU(2) invariance.

• The assumptions used by the different groups for the pion FFs are:

I) The HKNS group uses 2 FFs: one for the favoured and one for the unfavoured FFs:

Dπ+

u = Dπ+

d̄ : SU(2) ⇐ fav.

Dπ+

d = Dπ+

ū = Dπ+

s = Dπ+

s̄ ⇐ unfav. (8)

II) The AKK group uses 3 FFs: one for the favoured and two for the unfavoured FFs:

Dπ+

u = Dπ+

d̄ : SU(2) ⇐ fav.

Dπ+

d = Dπ+

ū Dπ+

s = Dπ+

s̄ ⇐ unfav. (9)

III) The DSS group fits the data with 3 independent FFs and 2 more fitted parameters
N and N ′: the favoured and unfavoured FFs are proportional:

Dπ+

u = NDπ+

d̄ : N = 1.10 ⇐ fav. (10)

Dπ+

ū = Dπ+

d , Dπ+

s = N ′Dπ+

ū : N ′ = 0.82 ⇐ unfav. (11)

IV) Kretzer uses one FF: the favoured are equal, the unfavoured are power suppressed:

Dπ+

u = Dπ+

d̄ : SU(2) ⇐ fav.

Dπ+

s = Dπ+

s̄ = Dπ+

d = (1− z) Dπ+

u ⇐ unfav. (12)

Common in all analysis are the following two assumptions:

1) Dπ+−π−
u = −Dπ+−π−

d (13)
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and

2) Dπ0

q = (Dπ+

q + Dπ−
q )/2. (14)

It is only the DSS analysis that introduces the parameters N , eq. (10) to test eq.(13).
The data expected from COMPASS and HERMES on hadron production in semi-

inclusive deep inelastic scattering (SIDIS):

l + N → l + h + X, dσh
N '

∑
e2

q

(
q Dh

q + q̄ Dh
q̄

)
, h = π, K, p... (15)

will allow to disentangle Dh
q and Dh

q̄ . However, this suggests implicitly a good knowledge
for both the valence and the sea quarks parton distribution functions (PDFs). Even small
uncertainties in the small sea quark PDFs would result in considerable errors in the FFs.

Here we show how relations (6), (7) and (13), used in all analysis, can be tested in
SIDIS. The advantage of the proposed tests, as compared to global analysis of process
(15), is that in the proposed tests only the best known valence quark PDFs enter. In
addition, as we dial with non-singlets (NS) only, the gluon PDFs and FFs, that introduce
most of the uncertainties in global analysis, do not enter. This would allow easier to
evolve data at different Q2. We show also that relation (7) can be tested using solely the
most accurate e+e− annihilation kaon data.

The presented relations are based only on C-invariance, without any assumptions on
the PDFs and the FFs and thus hold in any QCD order. The results are based only on
the relations Dh+−h−

g = 0 and Dh+−h−
q = −Dh+−h−

q̄ that follow from C-invariance:
We present our results in NLO in QCD, in more details they are given in [6].

2 Test of DK+

d = DK−
d

Assuming only DK+

d = DK−
d , we obtain that the difference cross sections of K+ and K−

production in SIDIS on proton or deutron targets are expressed in terms of DK+−K−
u :

dσK+−K−
p =

4

9
uV ⊗ (1 +

αs

2π
Cqq) ⊗DK+−K−

u (16)

dσK+−K−
d =

4

9
[uV + dV ]⊗ (1 +

αs

2π
Cqq)⊗DK+−K−

u , (17)

where Cqq are the known Wilson coefficients. As (6) is the only assumption used, eqs.
(16) and (17) present tests for DK+

d = DK−
d .

3 Test of Dπ+−π−
u = −Dπ+−π−

d

If the usually made assumption (13) holds (motivated by SU(2) symmetry of the pion
wave function), then the difference cross sections of π+ and π− on proton or deuteron
targets in SIDIS are determined by the combination Dπ+−π−

u :

dσπ+−π−
p =

1

9
[4uV − dV ]⊗ (1 +

αs

2π
Cqq)⊗Dπ+−π−

u (18)

dσπ+−π−
d =

1

3
[uV + dV ]⊗ (1 +

αs

2π
Cqq)⊗Dπ+−π−

u . (19)
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As (13) is the only assumption, eqs. (18) and (19) test Dπ+−π−
u = −Dπ+−π−

d . It is only
the DSS analysis that introduces a parameters N , eq. (10), to test this assumption, but
in addition to the assumptions in eq. (11). Their analysis indicates ∼ 10% deviation.

Note that both in dσK+−K−
N and dσπ+−π−

N only the best determined valence uV and dV

PDFs enter and their are no gluon quantities g and Dh
g – eqs. (16) - (19) are non-singlets.

The difference cross sections of K± or π± production in pp collisions are also expressed
in terms of the same quantities DK+−K−

u or Dπ+−π−
u , respectively [6].

4 Test of SU(2) invariance for the kaons

If in addition to charged K±, also neutral kaons K0
s = (K0 + K̄0)/

√
2 are measured, due

to SU(2) invariance (7), no new FFs are introduced. Then we show that the combinations

σK++K−−2K0
s ≡ σK+

+ σK− − 2σK0
s (20)

in the three types of semi-inclusive processes, K = K±, K0
s :

e+ + e− → K + X, (21)

e + N → e + K + X, N = p, d (22)

are expressed in terms of the single NS combination DK++K−
u−d ≡ (Du −Dd)

K++K−
:

dσ
K++K−−2K0

s

e+e− (z, Q2) = 6 σ0 (ê2
u − ê2

d)(1 +
αs

2π
Cq ⊗ ) DK++K−

u−d (z, Q2) (23)

dσK++K−−2K0
s

p (x, z, Q2) =
1

9
[(4ũ− d̃)⊗ (1 +

αs

2π
Cqq) +

αs

2π
g ⊗ Cgq]⊗ DK++K−

u−d (24)

dσ
K++K−−2K0

s
d (x, z, Q2) =

1

3
[(ũ + d̃)⊗ (1 +

αs

2π
Cqq) + 2

αs

2π
g ⊗ Cgq]⊗ DK++K−

u−d (25)

q̃ ≡ q + q̄

As these relations rely only on (7) and do not involve any assumptions about PDFs or
FFs, they test SU(2) invariance for kaons.
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Abstract

The measurements from the DIS experiments providing information on the elec-
tric and magnetic form factors of the nucleon have revealed a significant amount
of strangeness in the nucleon. This has been further reinforced by the experiments
performed in the recent past. In view of the very exciting recent developments in
the field, we propose to apply the techniques of chiral constituent quark model to
develop the structure of baryons using the electric and magnetic form factors.

In the context of deep inelastic scattering (DIS), the strange spin polarization of the
nucleon looks to be well established through the measurements of polarized structure
functions of the nucleon [1]. The recent measurements by several groups SAMPLE at
MIT-Bates [2], G0 at JLab [3], A4 at MAMI [4] and by HAPPEX at JLab [5] regarding
the contribution of strangeness to the electromagnetic form factors of the nucleon have
triggered a great deal of interest in finding the strangeness magnetic moment of the proton
(µ(p)s).

The perturbative generation of “quark sea” from the quark-pair production by gluons
is symmetric w.r.t. ū and d̄ [6] which is in contradiction with the observed value of
ū − d̄ asymmetry [7]. Therefore, one has to consider the “quark sea” produced by the
non-perturbative mechanism. One such model which can yield an adequate description
of the “quark sea” generation through the chiral fluctuations is the chiral constituent
quark model (χCQM) [8] which is not only successful in giving a satisfactory explanation
of “proton spin crisis” but is also able to account for the baryon magnetic moments
and hyperon β−decay parameters [9]. It, therefore, becomes desirable to examine the
strangeness contribution to the nucleon in the χCQMconfig thereby giving vital clues to
the non-perturbative effects of QCD. In particular, we would like to calculate the strange
spin polarization ∆s, strangeness contribution to the weak axial vector couplings ∆3, ∆8

and ∆0, strangeness contribution to the magnetic moments µ(p)s and µ(n)s. For the
sake of completeness, we would also like to calculate the strangeness contribution to the
magnetic moments of decuplet baryons µ(∆++)s, µ(∆+)s, µ(∆o)s and µ(∆−)s which have
not been observed experimentally.

The basic process in the χCQM formalism is the emission of a Goldstone boson (GB)
by a constituent quark which further splits into a qq̄ pair, for example, q± → GB0 + q

′
∓ →

(qq̄
′
)+ q

′
∓ , where qq̄

′
+ q

′
constitute the “quark sea” [6] and the ± signs refer to the quark

helicities. The effective Lagrangian describing interaction between quarks and a nonet

of GBs, consisting of octet and a singlet, can be expressed as L = g8q̄
(
Φ + ζ η′√

3
I
)

q =

g8q̄ (Φ′)q , where ζ = g1/g8, g1 and g8 are the coupling constants for the singlet and octet
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GBs, respectively, I is the 3 × 3 identity matrix. The GB field which includes the octet
and the singlet GBs is written as

Φ′ =




π0√
2

+ β η√
6

+ ζ η
′

√
3

π+ αK+

π− − π0√
2

+ β η√
6

+ ζ η
′

√
3

αK0

αK− αK̄0 −β 2η√
6

+ ζ η
′

√
3


 and q =




u
d
s


 . (1)

The spin structure of a nucleon is defined as B̂ ≡ 〈B|N |B〉, where |B〉 is the nucleon
wavefunction defined and N is the number operator giving the number of q± quarks. The
spin polarization functions ∆q = q+ − q− are related to the non-singlet combinations of
the quark spin polarizations (∆3 and ∆8) as well as the flavor singlet combination (∆0)

∆3 = ∆u−∆d , ∆8 = ∆u + ∆d− 2∆s ,

∆0 =
1

2
∆Σ =

1

2
(∆u + ∆d + ∆s) . (2)

The magnetic moment of a given baryon in the χCQM can be expressed as µ(B)total =
µ(B)val + µ(B)sea, where µ(B)val represents the contribution of the valence quarks and
µ(B)sea corresponding to the quark sea. Further, µ(B)sea can be written as µ(B)sea =
µ(B)spin + µ(B)orbit, where the first term is the magnetic moment contribution of the q

′

coming from the spin polarization and the second term is due to the rotational motion of
the two bodies, q

′
and GB and referred to as the orbital angular momentum by Cheng

and Li [6].
The strangeness contribution to the magnetic moment of the proton µ(p)s receives

contributions only from the quark sea and is expressed as µ(p)s = µ(p)s
spin + µ(p)s

orbit

where µ(p)s
spin =

∑
q=u,d,s ∆q(p)s

seaµq and µ(p)s
orbit = 4

3
[µ(u+ → s−)] − 1

3
[µ(d+ → s−)].

Here, µq = eq

2Mq
(q = u, d, s) is the quark magnetic moment, eq and Mq are the electric

charge and the mass respectively for the quark q and µ(q+ → s−) = es

2Mq
〈lq〉+ eq−es

2MGB
〈lGB〉.

The quantities (lq, lGB) and (Mq,MGB) are the orbital angular momenta and masses of
quark and GB, respectively. The strangeness contribution to the magnetic moments of
the neutron n(ddu) as well as the decuplet baryons ∆++(uuu), ∆+(uud), ∆o(udd) and
∆−(ddd) can be calculated similarly.

The χCQMconfig parameters a, aα2, aβ2, aζ2 representing respectively the probabilities
of fluctuations to pions, K, η, η

′
have been fitted using ∆u, ∆3, ū− d̄ and ū/d̄ as inputs.

A fine grained analysis leads to a = 0.13, ζ = −0.10, α = β = 0.45 as the best fit
values. In Table 1, we have presented the results of our calculations pertaining to the
strangeness dependent parameters in χCQMconfig. For comparison sake, we have also
given the corresponding quantities in constituent quark model (CQM) [10]. We find that
we are able to achieve a fairly good fit in the case of spin polarization functions. In
particular, the agreement in terms of the magnitude as well as the sign in the case of ∆s
is in good agreement with the latest data [1]. The agreement in the case of ∆8 and ∆0,
which receives contribution from ∆s also, not only justify the success of χCQMconfig but
also strengthen our conclusion regarding ∆s.

In the table, we have also presented the spin and orbital contributions pertaining to
the strangeness magnetic moment of the nucleon and ∆ baryons. The present result for
the strangeness contribution to the magnetic moment of proton looks to be in agreement
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Parameter Data CQM χCQMconfig

s̄ − 0 0.10
ū− d̄ −0.118± 0.015 [7] 0 −0.118
ū/d̄ 0.67 ± 0.06 [7] 0 0.66
∆u 0.85 ± 0.05 [1] 1.333 0.867
∆d −0.41 ± 0.05 [1] −0.333 −0.392
∆s −0.10± 0.04 [1] 0 −0.08

−0.07± 0.03 [1]
∆3 1.267 ± 0.0035 [14] 1.666 1.267
∆8 0.58± 0.025 [14] 1 0.59
∆0 0.19± 0.025 [14] 0.50 0.19

µ(p)s
spin, µ(p)s

orbit 0.12± 0.55± 0.07 [11] 0, 0 −0.09, 0.06
0.37± 0.26± 0.20 [2]

µ(n)s
spin, µ(n)s

orbit − 0, 0 0.06, −0.09
µ(∆++)s

spin, µ(∆++)s
orbit − 0, 0 −0.29, 0.18

µ(∆+)s
spin, µ(∆+)s

orbit − 0, 0 −0.14, 0.11
µ(∆o)s

spin, µ(∆o)s
orbit − 0, 0 −0.04, −0.03

µ(∆−)s
spin, µ(∆−)s

orbit − 0, 0 −0.09, 0.15

Table 1: The calculated values of the strangeness dependent flavor and spin polarization functions as
well as the magnetic moment of nucleon and ∆ decuplet baryons in the CQM and χCQMconfig.

with the most recent results available for µ(p)s [2, 11–13]. The spin and orbital angular
momentum of the “quark sea” contributions are fairly significant and they cancel in the
right direction to give the right magnitude to µ(p)s, For example, the spin contribution
in this case is −0.09µN and the contribution coming from the orbital angular momentum
is 0.06µN . These contributions cancel to give a small value for µ(p)s −0.03µN which
is consistent with the other observed results. Interestingly, in the case of µ(n)s, the
magnetic moment is dominated by the orbital part as was observed in the case of the
total magnetic moments [9] however, the total strangeness magnetic moment is same as
that of the proton. The results of µ(∆++)s, µ(∆+)s, µ(∆o)s, µ(∆−)s have also been
presented and here also we find that there is a substantial contribution from spin and
orbital angular momentum.

In conclusion, χCQMconfig is able to give a quantitative description of the important
parameters such as ∆s, the weak axial vector couplings ∆8 and ∆0, strangeness contribu-
tion to the magnetic moment µ(p)s. In the case of µ(p)s, our result is consistent with the
latest experimental measurements as well as with the other calculations. The constituent
quarks and the weakly interacting Goldstone bosons constitute the appropriate degrees
of freedom in the nonperturbative regime of QCD and the quark sea generation through
the chiral fluctuation is the key in understanding the strangeness content of the nucleon.

Acknowledgments. The authors would like to thank the organizers of DSPIN2011
and DAE-BRNS, Government of India, for financial support.
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Abstract

We show that both the kT - and collinear factorization for DIS structure functions
can be obtained by consecutive reductions of the Compton scattering amplitude.
Each of these reductions is an approximation valid under certain assumptions. In
particular, the transitions to the kT - factorization is possible when the virtualities of
the partons connecting the perturbative and non-perturbative blobs are space-like.
If the parton distribution in the kT - factorization has a sharp maximum in k⊥, this
factorization can be reduced to the collinear factorization.

1 Introduction

The QCD factorization is the fundamental concept to provide theoretical grounds for
applying the Perturbative QCD to description of hadronic reactions. According to the
factorization, any scattering amplitude A in QCD can be represented as a convolution of
a perturbative (E) and non-perturbative (T) contributions:

A = E ⊗ T (1)

There are two kinds of the factorization in the literature: Collinear factorization [1] and
the kT - factorization [2] where the DIS structure functions f(x, Q2) are respectively rep-
resented as follows:

f(x,Q2) =

∫ 1

x

dβ

β
f (pert)(x/β, Q2/µ2)φ(β, µ2) (2)

and

f(x,Q2) =

∫ 1

x

dβ

β

∫
dk2

⊥
k2
⊥

f (pert)(x/β, Q2/k2
⊥)Φ(β, k2

⊥) (3)

where f (pert) stand for the perturbative components of the structure functions; φ and Φ
are the parton distributions and µ is the factorization scale. In what follows we obtain
Eqs. (2,3), simplifying the factorized expression for the amplitude Aµν of the Compton
scattering off a hadron target. By doing so, we summarize and generalize the results
obtained in [3]. Using appropriate projection operators Pr the Compton amplitude Aµν

can be expanded into a set of invariant amplitudes Ar. According to the Optical Theorem,
every structure function fr can be expressed through Ar:

fr =
1

π
=Ar . (4)
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Among amplitudes Ar there is the amplitude AS related to the structure function F1

singlet. We will address this amplitude as the singlet and will address as non-singlets
to all other invariant amplitudes and use for them the generic notation ANS. We also
will use the generic notation A for both the singlet and non-singlet amplitudes when it is
relevant.

2 Basic Factorization for the Compton amplitude

Let us expand the invariant amplitude A into a set of convolutions depicted in Fig. 1
where the t- channel states involve arbitrary number of partons. Throughout the paper

p p

q q

= k k + + . . .

Figure 1: Representation of Aµν through the convolution of two blobs.

we will consider only the first graph in Fig. 1 where the blobs are connected by the
two-parton state, with the partons being quarks. Consideration of the two-gluon state
yields the same results as shown in [3]. All blobs in Fig. 1 can contain both perturbative
and non-perturbative contribution, so this kind of factorization does not correspond to
the conventional scenario of the QCD factorization. We will address it as the primary
convolution. Introducing the Sudakov parametrization of the moment r:

k = −α(q + xp) + βp + k⊥, (5)

we can write the primary convolution as follows, using the :

A(q2, w) =

∫ ∞

−∞

dβ

β

∫ ∞

0

dk2
⊥

∫ ∞

−∞
dα Ã(wβ, q2, k2)

B

(k2)2T (wα, k2) , (6)

where Ã and T denote the upper and lower blobs respectively; w = 2pq, k2 = −wαβ −
k2
⊥ and factor B, with B = w(α2 + β2) + k2

⊥, appears because of simplification of the
spin structure of the intermediate quarks. We have skipped in Eq. (6) dependence on
unessential arguments like masses, spin, etc. The integrand in Eq. (6) becomes singular at
k2 → 0. This infrared (≡ IR) divergence must be regulated. The IR-sensitive perturbative
contents for the singlet and non-singlet amplitudes are different. ANS contain the IR-
sensitive perturbative logarithms whereas AS includes both logarithms and the power-
factor:

ANS = ANS

(
ln(wβ), ln(Q2/k2)

)
, AS =

(
wβ/k2

)
MS

(
ln(wβ), ln(Q2/k2)

)
. (7)

Therefore in order to keep the integral Eq. (6) IR stable , amplitudes T must obey the
following restrictions at small k2:

TNS ∼
(
k2

)γ
, TS ∼

(
k2

)1+γ
, (8)
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with γ > 0. Similarly, in order to get the ultraviolet stability of A the blob T at large α
should decrease with growth of |α|:

TNS ∼ |α|−1−h , TS ∼ |α|−h . (9)

Eq. (6) in the Born approximation is depicted in Fig. 2. Radiative corrections are absent

k k

T

p p

q q

Figure 2: Born approximation for the amplitude of the forward Compton scattering.

there, so blob T is totally non-perturbative. Inserting the radiative corrections into the
Born approximation is depicted in Fig. 3. We stress that we neglect graphs with extra

k

T

p p

q q

k

T

p p

q q

(a) (b)

Figure 3: Radiative corrections to the Born amplitude.

propagators touching the lower blob (e.q. graph (b)) because they lead to the convolution
with three or mote intermediate partons depicted in Fig. 1 and we do not consider such
multiparton states in this paper. In order to back up this course of actions we would like
to notice that all evolution equations available operate with the two-parton initial states
only. So, we account for the graphs which do not touch it (e.q. graph (a)). Obviously all
such graphs can be included into the upper blob, leaving the lower blob non-perturbative.
As a result, we convert the convolution in Eq. (6) into the similarly looking convolution

A(q2, w) =

∫ ∞

−∞

dβ

β

∫ ∞

0

dk2
⊥

∫ ∞

−∞
dα A(pert)(wβ, q2, k2)

B

(k2)2T (wα, k2) , (10)

where the upper blob A(pert) is perturbative and the lower blob T is non-perturbative. The
integral in (10) is free of IR singularities at small k2. Therefore, Eq. (10) corresponds to

67



the concept of QCD factorization, though this factorization differs from the Collinear and
kT - factorizations. By this reasons we will address it as the basic factorization. Applying
Optical Theorem, we convert (10) into the basic factorization for the structure functions:

f(x,Q2) =

∫ ∞

−∞

dβ

β

∫ ∞

0

dk2
⊥

∫ ∞

−∞
dα f (pert)(x/β,Q2/k2)

B

(k2)2 Ψ(wα, k2) (11)

where Ψ stands for the totally unintegrated parton distributions.

3 Reducing Basic factorization to kT - and collinear

factorizations

In order to proceed from Eq. (11) to (3), we need to integrate out the α- dependence with-
out touching the perturbative . Obviously, it cannot be done straightforwardly because
f (pert) depends on α trough k2. However, imposing the restriction

wαβ ¿ k2
⊥ , (12)

we can neglect this dependence in and integrate Ψ over α. As a result we arrive at (3)
with

Φ(β, k⊥) =

∫ k2
⊥/wβ

k2
⊥/w

dα T (α, k2) . (13)

In order to keep (3) IR stable at k⊥ → 0, the parton distributions Φ should decrease with
k⊥:

ΦNS ∼
(
k2
⊥
)γ

, ΦS ∼
(
k2
⊥
)1+γ

. (14)

Transition from the kT - expression (3) to the collinear factorization (2) is also impossible
in the straightforward way. Let us suppose that the k⊥-dependence of ΦS,NS in (3) has a
peaked form with one or several sharp maximums at k2

⊥ = µ2
0, µ

2
1, ... as shown in Fig. 4.

We address such scales as intrinsic scales. We do not assume any special form for the curve

Φ(β, k2

⊥
)

µ2 k2

⊥

Figure 4: The peaked form of Φ(β, k2
⊥) with one maximum.

in Fig. 3 save that it obeys the restriction (14). It allows us to approximately integrate
over k⊥ in (3), dealing with Φ only and arriving at

f(x,Q2) =

∫ 1

x

dβ

β
f (pert)(x/β, Q2/µ2

0)ϕ(β, µ2
0) (15)
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where the parton distributions ϕ are expressed through the distributions Φ which have
been used in the kT - factorization:

ϕ(β, µ2
0) =

∫ w

0

dk2
⊥

k2
⊥

Φ(β, k2
⊥) . (16)

4 Comparison of conventional collinear factorization

and Eq. (16).

The parton distribution φ in the conventional approach to the collinear factorization and
distribution ϕ are widely different. The distribution φ includes both perturbative and non-
perturbative contributions whereas ϕ is purely non-perturbative. The factorization scale
µ used in the conventional approach is arbitrary while µ0 corresponds to the maximum in
Fig. 4. However, it is easy to relate them, using any kind of the perturbative evolution to
evolve ϕ from scale µ0 to µ. Naturally, the value of µ can be chosen anywhere between µ2

0

and Q2. At the same time the perturbative part, f (pert)(x/β,Q2/µ2
0), should be evolved

from µ0 to µ. As a result, we arrive at the conventional formula (2) where the convolution
is independent of µ. In other words, changing the factorization scale from the intrinsic
scale µ0 to an arbitrary scale µ leads to the re-distribution of the radiative corrections
between the upper and lower blobs of the collinear convolution. We do not specify which
kind of the perturbative evolution should be used because our approach is insensitive
to details of this evolution. In particular, he DGLAP equations can be used for such
evolution.

5 Restrictions on the DGLAP fits for the parton dis-

tributions

Combining Eqs. (9, 13. 16) leads to the following dependence of the parton distributions
Φ and ϕ at small β:

ΦNS ∼ βh, ΦS ∼ β−1+h , ϕNS ∼ βh , ϕS ∼ β−1+h . (17)

As shown in Eq. (18), the standard DGLAP -fits for the DIS structure functions in the
collinear factorization include a normalization N , the singular factors x−a, with a > 0,
and the regular terms:

δq, δg = Nx−a(1− x)b(1 + cxd) , (18)

where the parameters N, a, b, c, d > 0. Such expressions do not look as the ones obtained
with the perturbative methods, so we identify them with non-perturbative distributions
ϕ. Eq. (17) excludes the use of the singular factors in the expressions for the non-singlet
structure functions F2, F

NS
1 , g1, etc and also suppress the singular factors with a > 1 in

the expressions for the singlet F1. However, the parton distributions used for F1 and F2

are identical, therefore the suppression of the singular factors with a > 0 can be applied to
all structure functions, including the singlet F1. The singular factors x−a in the DGLAP
fits for initial parton densities should be removed from the fits because they contradict to
the integrability of the basic convolutions of the Compton amplitudes.
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6 Conclusion

Both the kT - and collinear factorizations are obtained by consecutive reductions of the
Compton scattering amplitude represented as the convolution of two blobs connected by
two parton lines. We neglect all convolutions with number of the intermediate states
greater than two. It has no impact on our further analysis because every convolution
should be finite independently of the multiplicity of intermediate states. Exploiting the
IR stability of the convolution we convert it into the basic QCD convolution and to the
KT - factorization. This transition is performed with purely mathematical means. In
contrast, the transition from the KT -to the collinear factorization is based on the physical
assumption: we assume that the k⊥-dependence of the parton distribution has one or
several sharp maximums which become the intrinsic factorization scales. The sharper the
maximums are, the more accurate this reduction is. In order to keep the lower blob un-
perturbative, the value of the intrinsic scale(s) should be close to ΛQCD. Our assumption
of the peaked k⊥- distributions can be checked by analysis of experimental data in the
framework of the kT -factorization. Transition to the conventional parton distributions φ
defined at other factorization scales µ located in the domain of the perturbative QCD
(conventionally µ ∼ several GeV), can be done with the use of the evolution equations.
On the other hand, this perturbative scale can be regarded as the one achieved with the
perturbative evolution starting from a lower scale which can be associated with our in-
trinsic scale µ0. Therefore, the conventional approach involves the intrinsic scale, though
implicitly, while our approach sets this scale explicitly.

Acknowledgement. We are grateful to Organizing Committee of the workshop DSPIN-2001 for
support. The work is partly supported by Grant RAS 9C237, Russian State Grant for Scientific School
RSGSS-65751.2010.2 and EU Marie-Curie Research Training Network under contract MRTN-CT-2006-
035505 (HEPTOOLS).

References

[1] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys, B140 (1978) 54;
A.V. Efremov, A.V. Radyushkin, Teor. Mat. Fiz, 42 (1980) 147;
A.V. Efremov,A.V. Radyushkin, Theor. Math. Phys, 44 (1980) 573;
A.V. Efremov,A.V. Radyushkin, Teor.Mat.Fiz, 44 (1980) 17;
A.V. Efremov, A.V. Radyushkin, Phys.Lett, B63 (1976) 449;
A.V. Efremov, A.V. Radyushkin, Lett.Nuovo Cim, 19 (1977) 83;
S. Libby, G. Sterman, Phys, Rev, D18 (1978) 3252;
S.J. Brodsky, G.P. Lepage, Phys. Lett, B87 (1979) 359;
S.J. Brodsky, G.P. Lepage, Phys. Rev, D22 (1980) 2157;
J.C. Collins, D.E. Soper. Nucl. Phys, B193 (1981) 381;
J.C. Collins, D.E. Soper. Nucl. Phys, B194 (1982) 445;
J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys, B250 (1985) 199;
A.V. Efremov and I.F. Ginzburg. Fortsch.Phys.22 (1974) 575;
A.V. Efremov and A.V. Radyushkin. Report JINR E2-80-521;
Mod.Phys.Lett. A24 (2009) 2803.

[2] S. Catani, M. Ciafaloni, F. Hautmann, Phys. Lett, B242 (1990) 97;
S. Catani, M. Ciafaloni, F. Hautmann, Nucl.Phys. B366 (1991) 135.

[3] B.I. Ermolaev, M. Greco, S.I. Troyan, arXiv:1005.2829

70



HARD MESON ELECTROPRODUCTION AND TWIST-3 EFFECTS.

S. V. Goloskokov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna
141980, Moscow region, Russia
E-mail: goloskkv@theor.jinr.ru

Abstract

We analyze light meson electroproduction within the handbag model. We study
cross sections and spin asymmetries for various mesons. The essential role of the
transversity H̃T and ẼT GPDs in electroproduction of pseudoscalar mesons is found.
Our results are in good agrement with experiment.

In this report, investigation of the pseudoscalar meson leptoproduction is based on
the handbag approach where the leading twist amplitude at high Q2 factorizes into hard
meson electroproduction off partons and the Generalized Parton Distributions (GPDs) [1].

The amplitude of the meson electroproduction off the proton reads as a convolution
of the partonic subprocess amplitude H and GPDs H

Ma
µ′±,µ+ =

∑
a

[〈Ha〉+ ...]; 〈Ha〉 ∝
∑

λ

∫ 1

xi

dxHa
µ′λ,µλ(Q

2, x, ξ) Ha(x, ξ, t), (1)

where a denotes the gluon and quark contribution with the corresponding flavors; µ (µ′)
is the helicity of the photon (meson), and x is the momentum fraction of the parton with
helicity λ. The skewness ξ is related to Bjorken-x by ξ ' x/2.

The subprocess amplitudes HV are calculated within the modified perturbative ap-
proach (MPA) [2] where the quark transverse momenta k⊥ are taken into account together
with the gluonic radiation, condensed as a Sudakov factor. The amplitude HV contains
a convolution of a perturbatively calculated hard part where we keep in the propagators
the k 2

⊥ terms and the k⊥- dependent wave function [3].
To estimate GPDs, we use the double distribution (DD) representation [4]

Hi(x, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dαδ(β + ξ α− x) fi(β, α, t). (2)

The GPDs are related with PDFs through the double distribution function

fi(β, α, t) = hi(β, t)
3

4

[(1− |β|)2 − α2]

(1− |β|)3
. (3)

The functions hi are expressed in terms of PDFs and parameterized as

h(β, t) = N eb0tβ−α(t) (1− β)n. (4)

Here the t- dependence is considered in a Regge form and α(t) is the corresponding
Regge trajectory. The parameters in (4) are obtained from the known information about
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PDFs [5] e.g, or from the nucleon form factor analysis [6]. The model results on the cross
sections and spin density matrix elements (SDME) for vector meson production obtained
in [7–10] are in good agreement with experimental data in a wide energy range.

The hard exclusive pseudoscalar meson leptoproduction in the leading twist is sensi-
tive to the polarized GPDs H̃ whose parameterization can be found in [9] and Ẽ. The
pseudoscalar meson production amplitude with longitudinally polarized photons MP

0ν′,0ν

dominates at large Q2. The amplitudes with transversally polarized photons are sup-
pressed as 1/Q. The pseudoscalar meson production amplitude can be written as [11]:

MP
0+,0+ ∝ [〈H̃P 〉 − 2ξmQ2

1− ξ2

ρP

t−m2
P

]; MP
0−,0+ ∝

√−t′

2m
[ξ〈ẼP 〉+ 2mQ2 ρP

t−m2
P

]. (5)

The first terms in (5) represent the handbag contribution to the pseudoscalar (P)
meson production amplitude (1) calculated within the MPA with the corresponding tran-
sition GPDs. For the π+ production we have the p → n transition GPD where the
combination F̃ (3) = F̃ (u) − F̃ (d) contributes. The second terms in (5) appear for charged
meson production and are connected with the P meson pole. In calculations we use the
fully experimentally measured electromagnetic form factor of P meson.

In addition to the pion pole and the handbag contribution, which in the leading twist
is determined by the H̃ and Ẽ GPDs, a twist-3 contribution to the amplitudes M0−,++

and M0+,++ is required to describe the polarized data at low Q2. To estimate this effect,
we use a mechanism that consists of the transversity GPD HT , ĒT in conjugation with
the twist-3 pion wave function. For the M0−,µ+ amplitude we have [11]

MP,twist−3
0−,µ+ ∝

∫ 1

−1

dxH0−,µ+(x, ...) [HP
T + ...O(ξ2 EP

T )]. (6)

The HT GPD is connected with transversity PDFs as

Ha
T (x, 0, 0) = δa(x); δa(x) = C Na

T x1/2 (1− x) [qa(x) + ∆qa(x)]. (7)

Here we parameterize the PDF δ using the model [12]. The DD form (2,3) is used to
calculate GPD HT . It is important that the Hu

T and Hd
T GPDs are different in sign.

The twist-3 contribution to the amplitude M0+,µ+ has a form [13] similar to (6)

MP,twist−3
0+,µ+ ∝

√−t′

4m

∫ 1

−1

dxH0−,µ+(x, ...) ĒP
T . (8)

The information on ĒT was obtained only in the lattice QCD [14]. The lower moments
of Ēu

T and Ēd
T were found to be quite large, have the same sign and a similar size. This

means that we have an essential compensation of the ĒT contribution in the π+ amplitude:
Ē

(3)
T = Ēu

T − Ēd
T . HT does not compensate in this process. For the π0 production we have

the opposite case. We find here a large contribution from Ēπ0

T = 2/3Ēu
T + 1/3Ēd

T , HT

effects are not so essential here. The parameters for individual PDFs were taken from the
lattice results, and DD model was used to estimate ET .

In Fig. 1a, we show the full unseparated cross section of the π+ production which
describes fine the HERMES data [15]. The longitudinal cross section determined by
leading-twist dominates at small momentum transfer −t < 0.2GeV2. At larger −t we
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(a) (b)

Figure 1: (a)The cross section of the π+ production together with HERMES data. (b) π0 production
at HERMES. For both: full line- unseparated cross section, dashed-dotted- σL, dotted line- σT .

(a) (b)

Figure 2: (a) Q2 dependence of π0 production cross section at HERMES. (b) Predictions for the
moments of AUT asymmetry of π0 production at HERMES.

find a not small contribution from the transverse cross section. Effects of ET is negligible
here.

For the π0 production we show above that the transversity effect should be essential.
They lead to a large transverse cross section σT . The longitudinal cross section, which is
under control of the leading twist contribution and expected to play an important role, is
much smaller with respect to the transverse σT cross section. The predominated role of
transversally polarized photons is mainly generated by the ET GPDs contribution.

This surprising result for the cross section of the π0 production at HERMES energies
[13] is presented in Fig. 1b. It was found that the transversity GPDs leads to a large
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σT for all reactions of pseudoscalar meson production with the exception of π+ and η′

channels [13]. These twist-3 effects have 1/Q suppression with respect to the leading twist
contribution. The Q2 dependence of the transverse cross section in Fig. 2.a shows a rapid
decrease of σT at HERMES energies. It is important that the MP,twist−3

0+,µ+ amplitude (7)
which is under control of ET GPDs has a zero for −t′ = 0. This provides a minimum of
the cross section at zero momentum transfer, Figs. 1b, 2a.

In Fig. 2b, our predictions for the sin(φ−φs) and sin(φ) moments of AUT asymmetry
for the transversally polarized target are presented. Predicted asymmetries are quite large
and can be measured experimentally.

If Fig. 3a we show the ratio of the η/π0 cross section at CLAS energies for two
parameterizations of HT GPDs. Different combinations of the quark contributions to
these processes leas to the essential role of HT effects at −t < 0.2GeV2 in this ratio. At
larger momentum transfer the ET contributions predominate. That leads to the rapid t-
dependence of the η/π0 cross section ratio. The preliminary CLAS data [16] confirm the
large ET effects in π0 production found in the model.

(a) (b)

Figure 3: (a) The ratio of the η/π0 cross section at CLAS together with preliminary CLAS data. (b)
The π0 cross section at CLAS together with preliminary CLAS data. Full line- unseparated cross section,
dashes- σLT , dashed dotted- σTT . Dashed-dot-dotted line– the alternative parameterizations of HT

In Fig 3b, we show our prediction for π0 production at the CLAS energy range to-
gether with preliminary experimental data. The data are not far from our predictions
at the CLAS energy [16] and definitely show the dip at low momentum transfer which
is less with respect to the standard HT parameterization (full line). The alternative HT

parameterization [13] shows a smaller dip at t′ = 0 and a smaller cross section at large t′

as well. The main prediction of the model- large σT cross section can be checked if the
data on the separated σL and σT cross section will be available.

In a similar way we can estimate ET effects in the vector meson leptoproduction. Some
details can be found in [11]. The M0+,++ amplitude and correspondingly the transversity
twist-3 effects are essential in the r1

00 and r5
00 SDME. Our results are shown in Fig. 4. They

are consistent in signs and values with HERMES data [17] without any free parameters.
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However, such estimations now can be made only for the quark contribution and cannot
be used for the low xB range.

In this report, the hard pseudoscalar meson electroproduction is calculated within the
MPA which takes into account the quark transverse degrees of freedom and the Sudakov
suppressions. At the leading-twist accuracy this class of reactions is sensitive to the
GPDs H̃ and Ẽ. However, rather strong contributions from the amplitudes M0−,++ and
M0+,++ are required to describe experimental data. These amplitudes are generated by
the transversity GPDs HT and ĒT accompanied by the twist-3 pseudoscalar meson wave
functions. Our parameterizations of GPDs are consistent with the lattice QCD results
and other information like nucleon form factors. The model predicts the large η/π0 cross
section ratio ∼ 1 at small momentum transfer and its small value ∼ .3 at −t′ > 0.2GeV2.
The small value of the ratio is compatible with the CLAS data. At the same time, JLAB
data on unseparated cross section have definite dip at t′ ∼ 0. These model results are
determined by the twist-3 transversity ET effects compatible with the data.

Figure 4: Twist-3 effects in spin density matrix
elements of ρ0 production at HERMES.

Our calculations of the twist-3 transver-
sity effects in SDME of ρ0 production are
not far from the HERMES data. Since
our parameterization of ĒT fully depends
on the lattice QCD estimations, our re-
sults for the cross sections of electroproduc-
tion of pseudoscalar mesons are real pre-
dictions. All these observations can indi-
cate the large transversity effects in the
mentioned reactions. To check them, ad-
ditional investigation is needed. For exam-
ple, the analysis of separated σL and σT

cross section in π0 production is impor-
tant to get the definite conclusion about
ĒT GPDs.

We describe fine the well-known data
on the cross section and spin observables for various meson productions [7–10]. We give
predictions for cross sections and spin asymmetries for all pseudoscalar meson channels
[11,13] at low skewness and small momentum transfer. Our predictions can be examined
in future experiments and shed light on the role of transversity effects in these reactions.

Thus, we can conclude that information about twist-3 transversity effects can be ob-
tained from pseudoscalar meson electroproduction for example at JLAB energies.

This work is supported in part by the Russian Foundation for Basic Research, Grants
09-02-01149, 12-02-00613 and by the Heisenberg-Landau program.
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Abstract

Thanks to progress in optics in the past two decades, it is possible to create
photons carrying well-defined non-zero orbital angular momentum (OAM). Boost-
ing these photons into high-energy range preserving their OAM seems feasible. In-
termediate energy electrons with OAM have also been produced recently. One can,
therefore, view OAM as a new degree of freedom in high-energy collisions and ask
what novel insights into particles’ structure and interactions it can bring. Here we
discuss generic features of scattering processes involving particles with OAM in the
initial or final state.

1 Introduction

Laser beams carrying non-zero orbital angular momentum (OAM) are well-known and
routinely used in optics, [1]. The lightfield in such beams is described via non-plane wave
solutions of the Maxwell equations, for example by Bessel or Laguerre-Gaussian beams.
Each photon in this lightfield, which we call a twisted photon, carries a well-defined energy
and longitudinal momentum directed along axis z as well as a definite OAM projection
onto this axis quantized in units of ~. The wavefronts of such a lightfield are not planes
but helices.

So far, experiments with twisted light were confined mostly to the optical energy range.
However it was recently noted that one can use Compton backscattering of twisted optical
photons off an ultra-relativistic electron beam to generate high-energy photons carrying
non-zero OAM [2]. Technology necessary for such convertion already exists. In addition,
successful creation of twisted electrons has also been reported recently, [3]. Such electrons
carried the energy as high as 300 keV and the orbital quantum number up to m ∼ 100.
Finally, it was recently noted that OAM is naturally transmitted from one to another
particles in a generic elastic scattering, [4]. Future progress in this field will lead to
creation of even more energetic twisted electrons and other particles, which can then be
used in scattering experiments. Thus, OAM can be viewed as a new degree of freedom
which one can exploit in preparing initial states of a high-energy process. It is therefore
timely to ask how such a collision can be described and what new insights into the
properties of particles and their interactions it can bring.

In this contribution we consider generic features of scattering processes involving
twisted particles More details about the results presented here can be found in [5].
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2 Describing twisted states

Here we briefly summarize the formalism of Bessel-beam twisted states introduced in [2]
starting with the scalar field.

We first fix the z axis and solve the free wave equation in cylindric coordinates r, ϕr, z.
A solution |κ,m〉 with definite frequency ω, longitudinal momentum kz, modulus of the
transverse momentum |k| = κ and a definite z-projection of the orbital angular momentum
m has the form

|κ,m〉 = e−iωt+ikzz · ψκm(r) , ψκm(r) =
eimϕr

√
2π

√
κJm(κr) , (1)

where Jm(x) is the Bessel function. A twisted state can be represented as a superposition
of plane waves:

|κ,m〉 = e−iωt+ikzz

∫
d2k

(2π)2
aκm(k)eikr , aκm(k) = (−i)meimϕk

√
2π

δ(|k| − κ)√
κ

. (2)

More details about properties of twisted states, their normalization and phase space den-
sity can be found in [2, 5].

Description of photons carrying non-zero OAM is subtler than for scalar particles
due to their polarization degree of freedom. A plane wave photon with helicity λ = ±1
is described, in addition to the fixed four-momentum kµ, by an appropriately defined
polarization vector eµ

λ(k), with the properties eλµk
µ = 0 and e∗λµe

µ
λ′ = −δλλ′ . In the plane

wave case, the polarization vector appears as an overall factor in front of the space-time
wave function: the components of the polarization vector, which can be selected to be
only transverse, remain constant across the transverse plane orthogonal to the Poynting
vector. The same is valid for the Stokes parameters for a general elliptic polarization
state.

In the twisted case both the polarization vector of a pure helicity state and the Stokes
parameters of an elliptically polarized state acquire non-trivial spatial dependence. Even
worse, the polarization vectors taken at different points cannot lie in the same plane
because the directions of the Poynting vector calculated at distinct spatial points are
different. One can represent a pure helicity twisted photon state in the coordinate space
similarly to (2):

Aµ
λ κm(x) =

√
4π

∫
d2k

(2π)2
eµ

λ(k) aκm(k)e−ikµrµ

, (3)

Even with the four-potential (3) depending non-trivially on the coordinates, the gauge
invariance in its usual definition as an invariance under Aµ(x) → Aµ(x) + ∂µf(x) still
holds. Note however that the definition (3) should be accompanied with a prescription
of how vectors eµ

λ(k) for different k are related to each other. Recall that for the plane

waves with ~k = (0, 0, k), the polarization vector is defined up to an overall phase: ~eλ =
−(λ, i, 0) · eiα/

√
2, but the (arbitrary) α disappears in the matrix elements squared. This

phase shift is equivalent to the shift of the zero moment of time.
This can be repeated for each plane wave inside a twisted state. If the three-momentum

~k = ω(sin θ cos φ, sin θ sin φ, cos θ), we can introduce, following [6], the unit vectors ~eθ, ~eφ

and construct circular polarizations as ~eλ(~k) = −(λ~eθ + i~eφ) · eiα(φ)/
√

2, where α(φ) is,
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in principle, an arbitrary periodic function, which, however, does not affect the physical
observables. We choose α(φ) = λφ which yields the correct paraxial limit.

At this point it is necessary to address the issue of spin-OAM separation, which (in the
non-abelian case of QCD) is a hot topic in the high-energy physics community, especially
in the context of the spin proton puzzle [7]. Here we talk about photons with a definite
value of OAM and a definite helicity λ. However this is not the spin/OAM separation
that one usually has in mind due to two reasons: (1) this is a separation of spin and OAM
degrees of freedom not at the level of operators, but at the level of their average values
over certain states, and (2) the average vales of only z components of these operators
are involved. At this level, the possibility to separate these two degrees of freedom is
not unexpected, see e.g. a detailed discussion in [8]. Let us also mention that for the
paraxial twisted light beams the separation of OAM and helicity is also easily derived,
see [9]. For non-paraxial beams this issue is more tricky; in this case the evolution of
OAM and helicity in the course of beam propagation can be cast into the form of an
effective spin-orbital interaction, [6].

3 Scattering of twisted states

Let us now consider a generic collision of a twisted particle with a plane wave: |κ,m〉 +
|PW (p)〉 → X. The final system X is assumed to be describable by plane waves. The
passage from the plane wave to the twisted state is given by (2) and is applied at the level
of scattering matrix:

Stw =

∫
d2k

(2π)2
aκm(k)SPW (k,p) . (4)

Its square is

|Stw|2 =

∫
d2k

(2π)2

d2k′

(2π)2
aκm(k)a∗κm(k′)SPW (k,p)S∗PW (k′,p)

=

∫
d2k

(2π)4
aκm(k)a∗κm(k)δ(2)(k + p− pX)|M(k,p)|2 .

Here pX is the transverse momentum of the final system X. The last line here contains
the expression that enters the plane wave cross section of the same process. Skipping
details which can be found in [5], we give the final result which links the single-twisted
cross section to the plane wave cross section:

dσtw =

∫
dφk

2π
dσPW (k) · jPW (k)

jtw

. (5)

Here jPW and jtw are the plane-wave and the twisted flux functions. Discussions on subtle
aspects of the definitions of the (averaged) cross section and the flux functions for the
twisted scattering can be found in [2,5]. Here we just note that the ratio of the fluxes in
(5) is very close to unity for κ values achievable with today’s technology.

The expession (5) is remarkable in several aspects. First, it is an unusual quantity in
the sense that it involves averaging over the initial particle’s azimuthal angle at fixed final
momenta. Second, the single-twisted cross section is m-independent, which proves that
twisted particles scatter as easily as plane waves. Third, the cross section (5) stays finite in
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the small κ limit. Fourth, dσtw is represented as an incoherent sum of dσPW (k) for different
angles φk, although the initial twisted state itself is a coherent superposition. The initial
coherence is lost not during the interaction itself, but as a result of the usual condition
that final states with distinct momenta do not interfere in the incoherent detectors we
have.

Consider now the same process but assume that the twisted particle is in a superposi-
tion of states with different m, for example, a|κ,m〉+ a′|κ, m′〉, with |a|2 + |a′|2 = 1. The
calculation can be repeated yielding dσ = dσtw + 2|aa′|dσ∆m

tw , where dσtw is given by (5)
and the new term is

dσ∆m
tw =

∫
dφk

2π
cos(∆mφk + α) dσPW (k) · jPW (k)

jtw

, (6)

with ∆m = m−m′ and α being the relative phase between a and a′.
Looking at (5) and (6) can observes that with a well controlled m distribution of the

initial twisted state one can perform the Fourier-analyzer of the plane wave cross section
with respect to the initial azimuthal angle φk. This tool can be complementary to the
usual partial wave analysis.

Let us now consider a collision of two twisted particles: |κ,m〉 + |η, n〉 → X. Now,
the scattering matrix squared is proportional to∫

d2k d2p d2k′ d2p′

(2π)8
aκm(k)aηn(p)a∗κm(k′)a∗ηn(p′)

× δ(2)(k + p− pX)δ(2)(k′ + p′ − pX)M(k,p)M∗(k′,p′) .

Trying to satisfy all the kinematical restrictions which enter this expression at fixed final
transverse momentum pX , we end up with exactly two kinematical configurations, which
are at work both for M(k,p) and the conjugate of M(k′,p′):

direct: k′ = k , p′ = p ,

reflected: k′ = k∗ ≡ −k + 2(knX)nX , p′ = p∗ ≡ −p + 2(pnX)nX , (7)

with nX ≡ pX/|pX |. Since these two possibilities interfere, the double-twisted cross
section will depend not only on |M(k,p)|2 but also on M(k,p)M∗(k∗,p∗), the autocor-
relation function of the amplitude. Note that such a quantity is inaccessible with plane
wave scattering.

Again, skipping the details which can be found in [5] we show the result for the cross
section:

dσ2tw =
1

8π sin(δk + δp)

∫
dφkdφp

jPW (k,p)

j2tw

[dσPW (k,p) + dσ′PW (k,p)] , (8)

where dσPW (k,p) is the usual plane wave cross section, while

dσ′PW (k,p) =
(2π)4δ(Ei − Ef )δ(pzi − pzf )δ

(2)(k + p− pX)

4EpωjPW

× Re
[
e2im(φk−φX)+2in(φp−φX)M(k,p)M∗(k∗,p∗)

]
dΓX . (9)

and

δk = arccos

(
p2

X + κ2 − η2

2|pX |κ
)

, δp = arccos

(
p2

X − κ2 + η2

2|pX |η
)

.

Note that, in contrast to the single-twisted case, the double-twisted cross section is m,n-
dependent and, similarly to the single-twisted case, stays finite at small κ, η.
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4 Detecting final OAM

Twisted particles can have even stronger impact on particle physics, if the OAM of a
final high-energy particle can be measured. Although OAM of low-energy photons and
electrons can be measured, these techniques become impractical above MeV energy range.
Here we propose an indirect method of observing the OAM of an energetic charged par-
ticle: via detection of the OAM of the photons emitted in bremsstrahlung.

� � �

N�

S

� � � � �

T

Figure 1: Kinematical conventions for
bremsstrahlung of a twisted electron.

Consider the standard process ep → epγ where
the initial and final electron (proton) momenta are
denoted by k1(p1) and k2(p2), respectively, while the
emitted photon momentum is k3. The scattering ma-
trix element of the process can be written as

SPW = i(2π)4δ(4)(k1 + p1 − k2 − k3 − p2) ·M , (10)

and In the soft photon limit, ω ¿ Ee, the amplitude
M splits into the elastic scattering amplitude and an
extra factor due to bremsstrahlung:

M≈ eMel ·
(

(ek1)

(k3k1)
− (ek2)

(k3k2)

)
. (11)

If now the initial electron and the final photon are described by twisted states |κ,m〉 and
|κ′,m′〉, see Fig. 1. Then in the paraxial approximation, the scattering matrix element is
proportional to

Stw ∝ cos(mϕ∗ −m′ϕ′∗)√
κ′2 − κ2 cos2 β

δ
[
κ′2 + (k′z′ − q)2 − κ2

]
(12)

where

cos ϕ∗ =
sin ξ

sin β
, cos ϕ′∗ =

tan ξ

tan β
, with cos ξ ≡ κ′

κ
.

For pure Bessel states κ′ < κ, but m′ can be arbitrarily large. As it was found in [10],
this is an artefact of taking infinite pure Bessel states. If transverse wave packets are used
for the initial state, |i〉e =

∫
dκ f(κ)|κ,m〉 and |i〉p =

∫
d2p g(p)|PW (p)〉, with weight

functions: f(κ) peaked at κ0 with width σe, g(p) peaked at zero with width σp, then Stw

is suppressed for large |m−m′|:

|m−m′| ∼<
κ0

σp

. (13)

The m′-distribution is peaked at m′ = m; therefore, measuring m′, we can deduce m.
Numerical results confirm this analytic estimate. Due to the sensitivity to the σp of the
initial beam, this scattering represents a novel beam-size effect, which can be used, for
example, to coherently monitor the transverse state of a beam.

5 Conclusions

Orbital angular momentum (OAM) is a new degree of freedom, which can be used in
high-energy physics to gain more insight into properties of particles and their interactions.
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Electron and photon beams carrying OAM (twisted electrons and photons) have already
been realized experimentally, and suggestions exist how to obtain high-energy twisted
protons and other particles.

Scattering experiments with particles carrying OAM in the initial state can probe
subtler features than the usual plane wave scattering, such as the autocorrelation function
of the amplitude. If the OAM of a final twisted particle can be detected (for example, of
the final twisted electrons in a twisted version of DIS), even greater insight can be gained
with these novel beams.
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Abstract

We study the polarized Bjorken sum rule at low momentum transfers using
precise Jefferson Lab (JLab) data with the four-loop expression for the coefficient
function CBj(αs) in the framework of the common QCD perturbation theory (PT)
and the singularity-free analytic perturbation theory (APT). Our analysis of the PT
series for CBj gives a hint to its asymptotic nature manifesting itself in the region
Q < 1 GeV. Besides, the related values of the higher twists (HT) coefficients turn
out to be highly unstable with respect to the PT order. On the contrary, the APT
approach allows us to describe accurately the whole bulk of the JLab data down to
Q ∼ 300 MeV and gives a possibility for reliable extraction of stable values for the
HT coefficients providing accuracy of theoretical predictions higher then accuracy
of current data.

Recently we have investigated [1] the interplay between higher orders of the PT ex-
pansion up to α3

s -order and higher-twist contributions using the high-precision JLab data
on the lowest moments of the spin-dependent proton and neutron structure functions
Γp,n

1 (Q2) and Γp−n
1 (Q2) in the range 0.05 < Q2 < 3 GeV2 [2, 3]. We have demonstrated

that in the singularity-free APT the convergence of both the higher orders and HT series
is much better and the satisfactory description of the data down to Qmin ∼ ΛQCD ' 350
MeV can be achieved.

In this report we continue the line of previous investigations and using the fresh four-
loop expression for the coefficient function CBj(αs) [4], we explore our analysis of the
Bjorken sum rule (BSR) up to α4

s -order. In the following we use the total expression for
the BSR, Γp−n

1 (Q2), which is a sum of two series in powers of the QCD running coupling
αs and in powers of 1/Q2:

Γp−n
1 (Q2) =

gA

6

[
1−∆Bj(Q

2)

]
+

∞∑
i=2

µ2i

Q2i−2
, (1)

where the standard PT series for ∆Bj(Q
2) up to the known the four-loop (N3LO) level in

the massless case with the number of active quarks nf = 3 can be written as

∆Bj = 0.3183 αs + 0.3631 α2
s + 0.6520 α3

s + 1.804 α4
s =

∑
i≤4

δi(αs) . (2)

As is know the moments of the structure functions are analytic functions in the complex
Q2-plane with a cut along the negative part of the real axis (see Ref. [5] for details). The
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perturbative representation (2) violates these analytic properties due to the unphysical
singularities of αs(Q

2) in the physical region Q2 > 0. To resolve the issue, we apply the
APT method [6], which allows one to combine the RG invariance with correct analytical
properties of the QCD coupling and observables. At small enough Q ≤ 1 − 2 GeV the
properties of the APT expansion become considerably different from the PT one. At
large momentum transfers, all the APT functions Ak(Q

2) become proportional to the k-
th power of the usual perturbative coupling [αs(Q

2)]k and the APT expansion for ∆Bj(Q
2)

reduces to the power series (2).
In Fig. 1, we illustrate the behavior of the perturbative part of the BSR in different

orders (NLO, N2LO, N3LO) in both the PT and APT approaches. As a normalization
point, we take the most accurate αs-value αs(MZ) = 0.1184±0.0007 [7]. For completeness,
we also give the combined SLAC and JLab data on Γp−n

1 (Q2) used in our analysis. The
SLAC points [8] are denoted by squares, the JLab CLAS Hall A 2002 – by downward
pointing triangles, the JLab CLAS Hall B 2003 – by diamonds [3], and the most recent
JLab data [2] – by circles. The horizontal dotted line shows the limiting value Γp−n

1 (∞) =
gA/6, where the nucleon axial charge gA = 1.267± 0.004 [7].

Figure 1: Perturbative part of the
BSR as a function of Q2 in different or-
ders in both the APT and standard PT
approaches against the combined set of
the Jefferson Lab and SLAC data.

One sees from Fig. 1 that the APT curves in all
three orders practically (at about 1 % accuracy) coin-
cide with each other, so we represent the APT result
by a single heavy broken curve. At the same time, the
deviation of APT curve from the data clearly shows
for necessity of the HT contribution which is also quite
stable [1]. The PT four-loop curve describes the data
quite well at Q2 ≥ 0.7 GeV2. But, at Q2 ≤ 0.7 GeV2

the four-loop curve describes the data equally bad as
the three- and two-loop ones. This is a signal that one
has to account for HT contributions, which strongly
depend on the PT order used for its extraction [1].
This changes in the APT case where the higher-loop
stability is achieved due to the absence of unphysical singularities. To test that, we
present in Fig. 2 the relative contributions Ni(Q

2) = δi(Q
2)/∆Bj(Q

2) of separate terms in
the four-loop expansion in both the PT and APT approaches (see Eq. (2)).

(a) (b)

Figure 2: The Q2-dependence of the relative contributions at the four-loop level in the PT (a) and
APT (b) approach.
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Figures 2a and 2b demonstrate the essential difference between the PT and APT cases,
namely, the APT expansion converges much better than the PT one. In the APT case,
the higher order contributions are stable at all Q2 values, with the one-loop contribution
giving about 70 %, two-loop – 20 %, three-loop – not exceeds 5%, and four-loop – up to 1
%. The four-loop APT term can be important, only if the theoretical accuracy to better
than 1 % will be actual.

Using expression (1) fitted to the above mentioned data [2, 3] we can extract the
coefficients µ2i of the HT OPE corrections. In Figs. 3a and 3b we present the results of 1-
and 3-parametric fits in various orders of PT and APT. The corresponding fit results for
HT terms, extracted in different orders of PT and APT, are given in Table 1 (all numerical
results are normalized to the corresponding powers of the nucleon mass M). From these

Table 1: Results of HT extraction from the JLab data on the BSR in various orders of PT and all
orders of APT with left border Q2

min [GeV2] of fitting domain.

Method Q2
min µ4/M2 µ6/M4 µ8/M6 χ2

d.f.

The best µ4-fit results
PT NLO 0.5 −0.028(3) − − 0.80
PT N2LO 0.66 −0.014(5) − − 0.59
PT N3LO 0.71 0.006(7) − − 0.51
APT 0.47 −0.050(2) − − 0.82

The best µ4,6,8-fit results
PT NLO 0.27 −0.026(9) −0.01(1) 0.008(4) 0.69
PT N2LO 0.34 0.01(2) −0.06(4) 0.04(2) 0.67
PT N3LO 0.47 0.05(3) −0.17(9) 0.12(6) 0.46
APT 0.08 −0.061(2) 0.009(1) −0.0004(1) 0.91

figures and Table follows that APT allows one to move further down to Q2 ∼ 0.1 GeV2

in description of the data [1]. At the same time, in the framework of the standard PT
the lower border shifts up to higher Q2 scales with increasing of the PT expansion order.
This is due to the more strong resulting singularities in the higher powers of usual strong
coupling. The magnitude of HT (O(1/Q2)) decreases with an order of PT and becomes
compatible to zero at the four-loop level, but the APT application leads to higher loops
stability of the HT extraction.

We investigate additionally the sensitivity of the extracted values of the HT term µ4 to
the Λ in various orders of PT. In Fig. 4 we show values of the coefficient µ4 extracted from

(a) (b)

Figure 3: The one-parametric µ4-fits (a) and three-parametric µ4,6,8-fits (b) of the BSR JLab data in
various orders of the PT and the all-order APT expansions.

85



the JLab data using two-, three- and four-loop PT at Q2
min = 0.66 GeV2 vs the Λ variation.

Figure 4: Value of the HT coefficient
µ4 extracted from the JLab data using
the PT at different orders at Q2

min =
0.66 GeV2 with error bands. Vertical
lines denote the corresponding uncer-
tainty ranges in the Λ value.

In the APT, the sensitivity of µ4 to the Λ is weak,
and it does not depend on the order of the loop ex-
pansion. Correspondingly, the values of the HT coef-
ficients turn out to be considerably more precise than
those extracted in the PT approach (see also Table 1).
The PT does not lead to a stable results. The ex-
tracted coefficient µ4 changes quite strongly between
different orders of the PT expansion and it happens in
both in absolute value and sign. On the other hand,
these data tell us that the absolute value of µ4 de-
creases with the order of PT and just at four-loop
order becomes compatible to zero. This may be con-
sidered as a manifestation of duality between higher
orders of PT and HT (see Ref. [9]). Moreover, when
PT series reveals the asymptotic behavior (and becomes closer to data), the HT (which
may be considered as a contribution completing the PT series) can be reduced to zero.

Thus, the remarkable properties of the APT approach allows us to describe accurately
the whole bulk of the JLab data down to Q ∼ 300 MeV and gives a possibility for
reliable extraction of stable values for the HT coefficients providing accuracy of theoretical
predictions higher then accuracy of current data.

This work was partly supported by the Russian presidential grant Scient. School–
3810.2010.2, the RFBR grants 09-02-00732, 09-02-01149, 11-01-00182, the BelRFFR-JINR
grant F10D-001, and by the Carl Trygger Foundation.
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Abstract

We discuss the polarization of top quarks produced at a polarized linear e+e−–
collider. Close-to-maximal values of the top quark polarization can be achieved with
longitudinal beam polarizations (h− ∼ −0.80, h+ ∼ +0.625) or (h− ∼ +0.80, h+ ∼
−0.625) at intermediate beam energies. The option (h− ∼ −0.80, h+ ∼ +0.625)
has to be preferred since this choice is quite stable against variations of the beam
polarization. All our quantitative results have been obtained at NLO QCD.

1 Introductory remarks

It is well–known that the top quark keeps its polarization acquired in production when
it decays since τhadronization À τdecay. One can test the Standard Model (SM) and/or
non-SM couplings through polarization measurements involving top quark decay (mostly
t → b + W+). New observables involving top quark polarization can be defined such as

< ~P ·~p > (see e.g. [1–6]). It is clear that the analyzing power of such observables is largest

for large values of the polarization of the top quark |~P |. This calls for large polarization
values. It is, nevertheless, desirable to have a control sample with small polarization of
the top quark.

Figure 1: Total NLO top quark polarization for
zero beam polarization

In this talk we report on the results
of investigations in [7] whose aim was to
find maximal and minimal values of top
quark polarization at a linear e+e−–collider
by tuning the longitudinal beam polariza-
tion [7]. At the same time one wants to
keep the top quark pair production cross–
section large. It is a lucky coincidence that
all these goals can be realized at the same
time.

Let us remind the reader that the top
quark is polarized even for zero beam po-
larization through vector-axial vector in-
terference effects ∼ veae, veaf , vfae, vfaf , where

ve, ae : electron current coupling (1)

vf , af : top quark current coupling (2)
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In Fig. 1 we plot the cos θ dependence of the zero beam polarization top quark polarization
for different characteristic energies at

√
s = 360 GeV (close to threshold),

√
s = 500 GeV

(ILC phase 1),
√

s = 1000 GeV (ILC phase 2) and
√

s = 3000 GeV (CLIC). We mention
that the planning of the ILC has reached a stage where the Technical Design Report
(TDR) will be submitted in 2012.

2 Top quark polarization at threshold

and in the high energy limit

The polarization of the top quark depends on the c.m. energy
√

s, the scattering angle
cos θ, the electroweak coupling coefficients gij and the effective beam polarization Peff , i.e.
one has

~P = ~P (
√

s, cos θ, gij, Peff) , (3)

where the effective beam polarization appearing in (3) is given by

Peff =
h− − h+

1− h−h+

. (4)

and where h− and h+ are the longitudinal polarization of the electron and positron beams
(−1 < h± < 1), respectively.

For general energies the functional dependence Eq.(3) is not simple. Even if the
electroweak couplings gij are fixed one remains with a three–dimensional parameter space
(
√

s, cos θ, Peff). However, the polarization formula considerable simplifies at nominal
threshold

√
s = 2m and in the high energy limit

√
s →∞.

At threshold and at the Born term level one has

~Pthresh =
Peff − ALR

1− PeffALR

n̂e− , (5)

where ALR is the left-right beam polarization asymmetry (σLR − σRL)/(σLR + σRL) at
threshold and n̂e− is a unit vector pointing into the direction of the electron momentum.
We use a notation where σ(LR/RL) = σ(h− = ∓1; h+ = ±1). In terms of the electroweak
coupling parameters gij, the nominal polarization asymmetry at threshold

√
s = 2mt is

given by ALR = −(g41 + g42)/(g11 + g12) = 0.409. Eq.(5) shows that, at threshold and

at the Born term level, the polarization ~P is parallel to the beam axis irrespective of
the scattering angle and has maximal values |~P | = 1 for Peff = ±1. Zero polarization is
achieved for Peff = ALR = 0.409.

In the high energy limit the polarization of the top quark is purely longitudinal, i.e.
the polarization points into the direction of the top quark. At the Born term level one
finds ~P (cos θ) = P (`)(cos θ) · p̂t with

P (`)(cos θ) =

(g14 + g41 + Peff(g11 + g44))(1 + cos θ)2 + (g14 − g41 − Peff(g11 − g44))(1− cos θ)2

(g11 + g44 + Peff(g14 + g41))(1 + cos θ)2 + (g11 − g44 − Peff(g14 − g41))(1− cos θ)2

(6)

In the same limit, the electroweak coupling coefficients appearing in (6) take the numerical
values g11 = 0.601, g14 = −0.131, g41 = −0.201 and g44 = 0.483.
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It is quite evident that the two limiting cases have quite a different characteristics
and different functional behaviour. The question is whether the two limiting cases can
be taken as guiding principles for intermediate energies and for which. The answer is yes
and no, or sometimes.

Take, for example, the differential cos θ rate which is flat at threshold and shows a
strong forward peak in the high energy limit with very little dependence on Peff . This
can be seen by substituting the numerical high energy values of the gauge couplings gij

in the denominator of Eq.(6). One finds

dΓ

d cos θ
(s →∞) ∝ (1.084− 0.332Peff)(1 + cos θ)2 + (0.118− 0.007Peff)(1− cos θ)2 . (7)

More detailed calculations show that the strong forward dominance of the rate sets in
rather fast above threshold [7]. This is quite welcome since the forward region is favoured
from the polarization point of view.

As another example take the vanishing of the polarization which, at threshold, occurs
at Peff = 0.409. In the high energy limit, and in the forward region where the numerator
part of (6) proportional to (1 + cos θ)2 dominates, one finds a polarization zero at Peff =
(g14 + g41)/(g11 + g44) = 0.306. The two values of Peff do not differ much from another.

3 Effective beam polarization

Let us briefly recall how the effective beam polarization Peff defined in Eq.(4) enters
the description of polarized beam effects. Consider the rates σLR and σRL for 100%
longitudinally polarized beams. The rate σ(beampol) for partially polarized beams is
then given by (see. e.g. [8])

σ(beampol) =
1− h−

2

1 + h+

2
σLR +

1 + h−
2

1− h+

2
σRL

= 1
4
(1− h−h+)

(
σLR + σRL + Peff(−σLR + σRL)

)
. (8)
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Figure 2: Contour plot in (h+, h−)–
plane

The rate σ(beampol) carries an overall helicity align-
ment factor (1 − h−h+) which drops out when one
calculates the normalized polarization components
of the top quark as in Eqs.(5) and (6). This explains
why the polarization depends only on Peff and not
separately on h− and h+. Note also that there is
another smaller rate enhancement factor in (8) for
negative values of Peff due to the fact that generally
σLR > σRL.

Next consider contour plots Peff = const in the
(h−, h+)–plane as shown in Fig.2. If one wants large
production rates one has to keep to Quadrants II
and IV in Fig.2 because of the helicity alignment
factor (1 − h−h+) in Eq.(8). Fig.2 shows that near
maximal values of Peff can be achieved with non-
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maximal values of (h−, h+). The two examples shown in Fig.2 refer to

(h− = −0.80, h+ = +0.625) leads to Peff = −0.95

(h− = +0.80, h+ = −0.625) leads to Peff = +0.95 (9)

These two options are at the technical limits what can be can achieved [9]. In the next
section we shall see that the choice Peff ∼ −0.95 is to be preferred since the polarization
is more stable against small variations of Peff . Furthermore, a negative value of Peff gives
yet another enhancement of the rate [7] as also indicated in the denominator of Eq.(5)
and in the rate formula (7).

4 Stability of polarization against variations of Peff

Extrapolations of |~P | away from Peff = ±1 are more stable for Peff = −1 than for Peff =
+1. Take, for example, the magnitude of the top quark polarization at threshold Eq. (5)
and differentiate it w.r.t. Peff at Peff = ±1. One finds

d|~Pthresh |
dPeff

= ±1± ALR

1∓ ALR

. (10)

For Peff = −1 one has a slope of −(1 − ALR)/(1 + ALR) = −0.42 while one has a much
larger positive slope of (1 + ALR)/(1−ALR) = +2.38 for Peff = +1. This feature persists
at higher energies [7].

Figure 3: Parametric plot of the orientation and the length of the
polarization vector in dependence on the c.m. energy

√
s for values θ =

60◦, 90◦, 120◦, and 150◦ for Peff = −1 (solid lines) and Peff = −0.95
(dashed lines). The three tics on the trajectories stand for

√
s =

500 GeV , 1000 GeV , and 3000 GeV .

Figure 4: Same as Fig.3 but
for Peff = +1 (solid lines) and
Peff = +0.95 (dashed lines).
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5 Longitudinal and transverse polarization

P (`) vs. P (tr) for general energies

In Figs. 3 and 4 we plot the longitudinal component P (`) and the transverse compo-
nent P (tr) of the top quark polarization for different scattering angles θ and energies

√
s

starting from threshold up to the high energy limit. P (tr) is the transverse polarization
component perpendicular to the momentum of the top quark in the scattering plane.
Fig. 3 is drawn for Peff = (−1,−0.95) and Fig. 4 for Peff = (+1, +0.95). The apex of

the polarization vector ~P follows a trajectory that starts at ~P = Pthresh(− cos θ, sin θ) and
~P = Pthresh(cos θ,− sin θ) for negative and positive values of Peff , respectively, and ends
on the line P (tr) = 0. The two 60◦ trajectories for 60◦ show that large values of the size of
the polarization |~P | close to the maximal value of 1 can be achieved in the forward region
for both Peff ∼ ∓1 and at all energies. However, the two figures also show that the option
Peff ∼ −1 has to be preferred since the Peff = −1 polarization is more stable against
variations of Peff whereas the polarization in Fig. 4 has changed considerably when going
from Peff = 1 to Peff = 0.95.

The plots Figs. 3 and 4 are drawn for NLO QCD. At NLO there is also a normal
component P (n) generated by the one–loop contribution which, however, is quite small
(of O(3%)).

6 Summary

The aim of the investigation in [7] was to maximize and to minimize the polarization

vector of the top quark ~P = ~P (Peff ,
√

s, cos θ) by tuning the beam polarization. Let us
summarize our findings.

A. Maximal polarization.
Large values of ~P can be realized for Peff ∼ ±1 at all intermediate energies. This is
particularly true in the forward region where the rate is highest. Negative large values for
Peff with aligned beam helicities (h−h+ neg.) are preferred for two reasons. First there is
a further gain in rate apart from the helicity alignment factor (1− h−h+) due to the fact
that generally σLR > σRL as explained after (8) . Second, the polarization is more stable
against variations of Peff .

B. Minimal polarization.
Close to zero values of the polarization vector ~P can be achieved for Peff ∼ 0.4. Again
the forward region is favoured. In order to maximize the rate for the small polarization
choice take quadrant IV in the (h−, h+)–plane.
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Abstract

Considering the spin properties of elementary particles and the spin precession
in an external electromagnetic field we are going to give a systematic exposition of
a classical approach to describing the precession of the spin relativistic particles for
the different initial conditions and its correspondence with the quantum mechanical
calculations.

Introduction

For a long time a misconception that the classical theory of spin does not possible (see p.
277 in [1]) was existed among many of physicists. Such conclusion was done because the
quantum theory often leads to various paradoxes that go far beyond the classical theory.
Only with the advent of the equation Bargmann-Michel-Telegdi (BMT) [2], it was possible
to take into account opened by those time the anomalous magnetic moment, which made it
possible to give the accurate semiclassical representation of the spin precession in external
fields.

According to the classical theory the spin precession is a rotation of the proper mag-
netic moment vector of a particle around a certain direction (e.g. the direction of the
magnetic field). In terms of the quantum theory this process does not exist, and only
spin-flip transitions along two preferred directions are possible. But we can show here that
in the semiclassical approximation ~→ 0 the classical and quantum theories of precession
give the totally identity results. This statement is the subject of our investigation.

1 Description of spin precession in the classical and

quantum theory

A consistent description of the quantum method of the study of neutron radiation in an
external magnetic field can be found in the pioneering work [3] (see also work [4]).

In the classical theory the spin precession of the neutron with magnetic moment µN =
−|µ| = −1, 93µnucl. < 0 in a uniform magnetic field HHH = (0, 0, H) is described by solution
of Bargmann-Michel-Telegdi (BMT) equation [5]

Πµν = Πµν
1 − 1

Ω
q[µαΠ

ν]
α1 sin Ωτ − (2Πµν

1 +
1

Ω2
q[µαqαβΠ

βν]
1 )(1− cos Ωτ).
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Here Πµν is a dimensionless spin tensor with the invariant

1

2
ΠµνΠ

µν =
1

2
Πµν1Π

µν
1 = 1.

Index ”1” corresponds to the initial conditions, the square brackets denote an antisym-
metrization a[µbν] = aµbν − aνbµ, Ω is a neutron spin precession frequency in the units of
the proper time τ :

Ω =
2|µ|H
~

√
1− β2cos2α = ωγ, (1)

when it moves in accordance with βββ = β(sinα, 0, cosα), the tensor qµν is space-like part
of the tensor hµν = −2(|µ|/~)Hµν .

Description of the spin precession in quantum theory is given by a non-stationary wave
function of Dirac-Pauli equation [3], [6]

ψ(rrr, t) = Aψ1(rrr)exp(−i
m0c

2

~
γ1t) + Bψ−1(rrr)exp(−i

m0c
2

~
γ−1t). (2)

Here γ±1 is a dimensionless gamma-factor with respect to the spin direction, pµ = −i~∂µ

is an operator of the four-dimensional impulse,γµ = iρ3(1, α̂̂α̂α), σµν = (−iα̂̂α̂α, σ̂̂σ̂σ) - Dirac’s
matrixes, numeric coefficients A and B (A+A + B+B = 1) are determined by the initial
condition

(Π̂̂Π̂Πnnn)ψ(rrr, 0) = λψ(rrr, 0). (3)

which are given by the projection of the spin operator

Π̂̂Π̂Π = m0c
2σ̂̂σ̂σ + cρ2[σ̂̂σ̂σp̂̂p̂p], (4)

on the arbitrary direction nnn = (sin θ cos ϕ, sin θ sin ϕ, cos θ).

2 Analysis of the initial conditions

To take into account the initial conditions required to impose additional conditions on
the time-dependent wave function (2). In the calculation of the probability densities of
the spin operator we use the definition

〈Q̂(t)〉 = A+A〈ψ1|Q̂|ψ1〉+ A+B〈ψ1|Q̂|ψ−1〉 exp
(
i
m0c

~
(γ1 − γ−1)t

)
+

+AB+〈ψ−1|Q̂|ψ1〉 exp
(
i
m0c

~
(γ−1 − γ1)t

)
+ B+B〈ψ−1|Q̂|ψ−1〉,

or in the easiest form

〈Q̂(t)〉 = A+A〈1|Q̂|1〉+ A+B〈1|Q̂| − 1〉 exp(iωt)+

+AB+〈−1|Q̂|1〉 exp(−iωt) + B+B〈−1|Q̂| − 1〉. (5)

Now, let as perform a comprehensive analysis of the initial conditions (3).
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1. Initial spin is directed along the x-axis. For this special case Π1x = (Π1, 0, 0), ϕ = 0,
θ = π/2. The coefficients of normalization and the eigenvalue of the spin operator
are the following

A = − 1√
2

√
1− ζγβ2 sin α cos α√

1 + γ2β4 sin2 α cos2 α
, B =

1√
2

√
1 +

ζγβ2 sin α cos α√
1 + γ2β4 sin2 α cos2 α

,

λ = ζ
√

1 + γ2β2 cos2 α.

Using the matrix elements from (5) one can obtain the average value of the spin
operator

〈Π̂x(t)〉 = ζ
γ2β2 cos2 α + cos ωt√

(1− β2 cos2 α)(1 + γ2β4 sin2 α cos2 α)
,

〈Π̂y(t)〉 = ζ
γ sin ωt√

1 + γ2β4 sin2 α cos2 α
, 〈Π̂z(t)〉 = −ζ

γ2β2 sin α cos α√
1 + γ2β2 cos2 α

.

2. Initial spin is directed along the y-axis. Calculating the corresponding values with
respect to Π1y = (0, Π1, 0), ϕ = π/2, θ = π/2 it is easy to show that

A =
i√
2
, B =

ζ√
2
, λ = γζ,

〈Π̂x(t)〉 = −ζ
sin ωt√

1− β2 cos2 α
, 〈Π̂y(t)〉 = ζγ cos ωt, 〈Π̂z(t)〉 = 0.

3. Spin is directed along the z-axis. Finally, applying the same procedure to Π1z =
(0, 0, Π1) and θ = 0 we have two expressions for λ

λ1 =
cos2 α + γ2 sin2 α

γ
√

1− γ2β2 cosα
, A 6= 0, B = 0,

λ2 = −cos2 α + γ2 sin2 α

γ
√

1− γ2β2 cosα
, A = 0, B 6= 0,

〈Π̂x(t)〉 = −ζ
γβ2 sin α cos α√

1− β2 cos2 α
, 〈Π̂y(t)〉 = 0, 〈Π̂z(t)〉 = ζγ

√
1− β2 cos2 α.

It can be shown, that in the second case (spin is directed along the y-axis) all the for-
mulas for 〈Π̂(t)〉 have a total correspondence between the classical and quantum theories.
Thus, there is am agreement with the BMT equation’s solution, and the frequency of the
spin precession corresponds to the quantum spin-flip transition ζ → −ζ. It equals to

ω =
m0c

2

~
(γζ − γ−ζ) = ζ2 2|µ|H

~
√

1− β2 cos2 α,

and (1) is also the same.
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Conclusion

Thus, we propose here two methods to verify the fact that in our consideration of the
results of classical and quantum theories are the same:

1. Direct checking: we can show that, in general, an arbitrary choice of initial con-
ditions, taking into account the quantum structure of the expressions 〈Π̂ΠΠ〉t of the
classical equations of spin precession is unchanged. So, it all comes down to the
following replacing ΠΠΠ → 〈Π̂ΠΠ〉t

2. Inverse checking by the substitution in solutions of BMT-equation: the substitution
of the initial values 〈Π̂ΠΠ1〉 of the quantum expressions in the classical solutions 〈Π̂ΠΠ〉t
can yield the exactly same expression as in the quantum theory.

In this paper, we give an overview of the current state of theoretical research problem
of spin precession of relativistic particles. We also completely examined the role of initial
conditions for the spin orientation in the classical and quantum theories, and the total
agreement with the correspondence principal of the classical and quantum spin precession
was found.
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Abstract

Using the technique of helicity amplitudes, the electromagnetic process e+e− →
µ+µ− is theoretically investigated in the one-photon approximation. The structure
of the triplet states of the final (µ+µ−) system is analyzed. It is shown that in
the case of unpolarized electron and positron the final muons are also unpolarized,
but their spins are strongly correlated. Explicit expressions for the components of
the correlation tensor of the final (µ+µ−) system are derived. The formula for the
angular correlation at the decays of final muons µ+ and µ−, produced in the process
e+e− → µ+µ−, is obtained. It is demonstrated that spin correlations of muons in the
process of electron-positron pair annihilation have the purely quantum character,
since one of the incoherence inequalities for the correlation tensor components is
always violated.

1. In the first non-vanishing approximation over the electromagnetic constant e2/~c,
the process of conversion of the electron-positron pair into the muon pair is described by
the well-known one-photon Feynman diagram.

Due to the electromagnetic current conservation, the virtual photon with a time-like
momentum transfers the angular momentum J = 1 and negative parity. Taking into
account that the internal parities of muons µ+ and µ− are opposite, the (µ+µ−) pair is
generated in the triplet states (the total spin S = 1) with the total angular momentum
J = 1 and with the orbital angular momenta L = 0 and L = 2, being the superpositions
of the states 3S1 and 3D1 with the negative space parity.

The respective helicity amplitudes have the following structure:

fΛ′Λ(θ, φ) = RΛ′Λ(E) d
(1)
Λ′Λ(θ) exp(iΛφ), (1)

where θ and φ are the polar and azimuthal angles of the flight direction of the positively
charged muon (µ+) in the center-of-mass (c.m.) frame of the considered reaction with
respect to the initial positron momentum;
d

(1)
Λ′Λ(θ) are the Wigner functions (elements of the finite rotation matrix) for the angular

momentum J = 1;
Λ is the difference of helicities of the positron and electron, coinciding with the projection
of total spin and with the projection of total angular momentum of the (e+e−) pair onto
the direction of positron momentum in the c.m. frame (the projection of orbital angular
momentum onto the momentum direction equals zero);
Λ′ is the difference of helicities of the muons µ+ and µ−, coinciding with the projection
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of total angular momentum of the (µ+µ−) pair onto the direction of momentum of the
positively charged muon µ+ in the c.m. frame (see, for example, [1,2]).

Due to the factorizability of the Born amplitude, we can write:

RΛ′Λ(E) = r
(µ)
Λ′ (E) r

(e)
Λ (E). (2)

Here Λ′ and Λ take the values +1, 0,−1; in doing so, the parameters r
(µ)
Λ′ , r

(e)
Λ depend

upon the initial energy E of the positron (electron) in the c.m. frame of the pair e+e−,
but do not depend upon the angles θ and φ.

On account of the space parity conservation in the electromagnetic interactions, we
have:

r
(µ)
+1 = r

(µ)
−1 = r

(µ)
1 , r

(e)
+1 = r

(e)
−1 = r

(e)
1 . (3)

In accordance with the structure of electromagnetic current for the pairs e+e− and µ+µ−

in the c.m. frame [1], the following relations are valid:

r
(µ)
0 =

mµ

E
r
(µ)
1 =

√
1− β2

µ r
(µ)
1 , r

(e)
0 =

me

E
r
(e)
1 , (4)

where mµ and me are the masses of the muon and electron, respectively, βµ is the muon
velocity in the c.m. frame. Since for the process e+e− → µ+µ− the inequality E ≥ mµ À
me is always satisfied, the contribution of electron-positron states with antiparallel spins
(equal helicities) can be neglected. In doing so, RΛ0(E) ≈ 0.

The calculation of the one-photon diagram gives:

r
(µ)
1 (E) = r

(e)
1 (E) =

|e|√
2E

, (5)

where e is the electron charge. If the relativistic invariant

s = (pe+ + pe−)2 = (pµ+ + pµ−)2 = 4E2

is introduced, the expression for the cross section of the process e+e− → µ+µ− takes the
following form [1]:

σ =
4π

3

e2

s

(
1 +

2m2
µ

s

) √
1− 4m2

µ

s
. (6)

Taking into account the explicit formulas for d-functions corresponding to the angular
momentum J = 1 [1,2], we find the angular distribution of muon emission, normalized by
unity, in the c.m. frame :

dWµ+µ− =
3

16π

1 + cos2 θ + (m2
µ/E

2) sin2 θ

1 + (m2
µ/2E

2)
d Ω =

3

8π

2− β2
µ sin2 θ

3− β2
µ

d Ω, (7)

where d Ω is the element of solid angle.

2. Taking into account the relations (1) -(4) for the helicity amplitudes, it is clear
that if the positron and electron are totally polarized along the positron momentum in
the c.m. frame, then the (µ+µ−) system is produced in the triplet state of the following
form:

|Ψ〉(+1) =

√
2√

2− β2
µ sin2 θ

(
1 + cos θ

2
|+ 1 〉 −

√
1− β2

µ

sin θ√
2
| 0 〉+

1− cos θ

2
| − 1 〉

)
. (8)
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Here βµ =
√

1− (m2
µ/E

2) is the velocity of each of the muons, as before;

|+ 1 〉 = |+ 1/2〉(µ+) ⊗ |+ 1/2〉(µ−), | − 1 〉 = | − 1/2〉(µ+) ⊗ | − 1/2〉(µ−),

| 0 〉 =
1√
2

(
|+ 1/2〉(µ+) ⊗ | − 1/2〉(µ−) + | − 1/2〉(µ+) ⊗ |+ 1/2〉(µ−)

)

are the states with the projection of total spin of the (µ+µ−) pair onto the direction of
momentum of the muon µ+ in the c.m. frame of the reaction e+e− → µ+µ−, equaling +1,
−1 and 0, respectively.

Let us note that the real values of the coefficients of superposition of the triplet states
|+1 〉, | 0 〉 and |− 1 〉 in the state |Ψ〉(+1) (8) correspond to the choice of the quantization
axes z′ and z along the positron momentum and µ+ momentum, respectively, in the c.m.
frame of the reaction e+e− → µ+µ−, and the axis y - along the normal to the plane of
this reaction.

If the positron and electron are totally polarized in the direction being antiparallel to
the positron momentum, then the (µ+µ−) pair is generated in the following triplet state:

|Ψ〉(−1) =

√
2√

2− β2
µ sin2 θ

(
1− cos θ

2
|+ 1 〉+

√
1− β2

µ

sin θ√
2
| 0 〉+

1 + cos θ

2
| − 1 〉

)
. (9)

3. If the positron and electron are not polarized, then, since r(e) ≈ 0, the final state
of the (µ+µ−) pair represents a noncoherent mixture of spin states |Ψ〉(+1) and |Ψ〉−1, each
of them being realized with the relative probability of 1/2. Taking into account Eqs. (8)
and (9), we can find the elements of the spin density matrix of the (µ+µ−) system in the
representation of triplet states |+ 1 〉, | 0 〉 and | − 1 〉 [3].

The spin states of two particles with spin 1/2 are characterized by the polarization
vectors ζ1= 〈σ̂(1)〉, ζ2= 〈σ̂(2)〉 and the components of the correlation tensor Tik =

〈σ̂(1)
i ⊗ σ̂

(2)
k 〉. Here σ̂ = {σ̂x, σ̂y, σ̂z} is the vector Pauli operator, σ̂i, σ̂k are the Pauli

matrices, i, k → {1, 2, 3} → {x, y, z}; the axis z is directed along the momentum of the
positively charged muon µ+ in the c.m. frame of the considered reaction, and the axis y
is directed along the normal to the reaction plane; the symbol 〈...〉 denotes the averaging
over the quantum ensemble. If both the particles are not polarized and the correlations
are absent, then Tik = 0. For two independent particles with the polarization vectors ζ1

and ζ2 the correlation tensor is factorized : Tik = ζi ζk .
It is easy to see that, at the annihilation e+e− → µ+µ− of the unpolarized positron

and electron, the produced muons µ+ and µ− are unpolarized (ζµ+ = ζµ− = 0), but their
spins are correlated: the correlation tensor components have the following form (see also
[5]):

T (µ+µ−)
xx =

(2− β2
µ) sin2 θ

2− β2
µ sin2 θ

, T (µ+µ−)
yy = − β2

µ sin2 θ

2− β2
µ sin2 θ

, T (µ+µ−)
zz =

2 cos2 θ + β2
µ sin2 θ

2− β2
µ sin2 θ

,

T (µ+µ−)
xz = −(1− β2

µ)1/2 sin 2θ

2− β2
µ sin2 θ

, T (µ+µ−)
xy = T (µ+µ−)

yz = 0. (10)
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The “trace” of the correlation tensor of the (µ+µ−) pair is:

T (µ+µ−) = 〈 ˆσµ+ ⊗ ˆσµ−〉 = T (µ+µ−)
xx + T (µ+µ−)

yy + T (µ+µ−)
zz = 1, (11)

just as it should hold for any triplet state 1).

4. The “trace” of the correlation tensor T determines the angular correlation between
flight directions for the products of decay of two unstable particles with spin 1/2 in the
case when space parity is not conserved [4-8].

Actually, the angular distribution at the decay of any polarized unstable particle with
spin 1/2 under space parity nonconservation, normalized by unity, has the form (see, for
example, [9]):

dW =
1

4π
(1 + α ζ n)d Ωn,

where ζ is the polarization vector of the unstable particle, α is the angular asymmetry
coefficient, n is the unit vector along the momentum of the particle, formed in the decay,
in the rest frame of the decaying unstable particle.

Then the double distribution for the flight directions of the decay products of two
unstable particles under space parity nonconservation, normalized by unity, is as follows
[4,5]:

d2W =
1

16π2
(1 + α1 ζ1 n1 + α2 ζ2 n2 + α1α2

3∑
i=1

3∑

k=1

Tik n1,i n2,k)d Ωn1 d Ωn2 . (12)

Here ζ1 and ζ2 are the polarization vectors of the first and second unstable particle, α1

and α2 are the coefficients of angular asymmetry for the decays of the first and second
particle; n1 and n2 are unit vectors defined in the rest frames of the first and second
unstable particle, respectively, and specified with respect to a unified system of spatial
coordinate axes [7, 8]; just as before, i, k → {1, 2, 3} → {x, y, z}.

Using the method of moments, the components of the polarization vectors and cor-
relation tensor can be found as a result of averaging the corresponding combinations of
trigonometric functions of angles over the double distribution of decay directions [4,5].

The integration of the double distribution of flight directions over all angles, except
the angle δ between the vectors n1 and n2, leads to the following formula for the angular
correlation [4,5]:

dW =
1

2

(
1 +

α1α2T

3
cos δ

)
d(− cos δ); cos δ = n1n2. (13)

Let us apply Eq. (13) to the decays of the muons µ+ and µ− produced in the process of
electron-positron pair annihilation e+e− → µ+µ−. According to Eq. (11), in this case the
“trace” of the correlation tensor of the muon pair is equal to unity (T = 1). It is known
that the asymmetry coefficient in the angular distribution of electrons at the decay of
the polarized negatively charged muon µ− → e−νµν̄e, integrated over the electron energy
spectrum, equals −1/3 (α1 = −1/3) [9]. Due to the CP invariance, the asymmetry

1) For the singlet state T = −3 ; in the general case, T = ρt − 3ρs, where ρt and ρs are the fractions
of the triplet and singlet state, respectively [4-6].
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coefficient in the angular distribution of positrons at the decay of the polarized positively
charged muon µ+ → e+ν̄µνe, integrated over the positron energy spectrum, amounts
to +1/3 (α2 = +1/3). As a result, we obtain the following formula for the angular
correlation at the decays µ− → e−νµν̄e and µ+ → e+ν̄µνe :

dW (µ+µ−) =
1

2

(
1− 1

27
cos δ

)
d(− cos δ). (14)

5. Previously it was shown in the papers [4,5] that in the case of incoherent mixtures
of factorizable states of two particles with spin 1/2 the modulus of the sum of any two
(and three) diagonal components of the correlation tensor cannot exceed unity, i.e. the
following inequalities are satisfied:

|Txx + Tyy| ≤ 1, |Txx + Tzz| ≤ 1, |Tyy + Tzz| ≤ 1, |T | = |Txx + Tyy + Tzz| ≤ 1.

However, for nonfactorizable (entangled) states some of these inequalities may be violated.

In the process of annihilation of the unpolarized positron and electron e+e− → µ+µ−,
the muon pair is produced in the nonfactorizable two-particle quantum states |Ψ〉(+1) and
|Ψ〉(−1) ( see Eqs. (8) and (9)). In so doing, one of the incoherence inequalities is violated:
indeed, using Eqs. (10), we obtain at the angle θ 6= 0:

T (µ+µ−)
xx + T (µ+µ−)

zz = 1− T (µ+µ−)
yy =

2

2− β2
µ sin2 θ

> 1. (15)

Our consideration relates, of course, also to the process e+e− → τ+τ−, with the replace-
ments mµ → mτ , βµ → βτ .

6. At very high energies the annihilation processes e+e− → µ+µ−, e+e− → τ+τ− are
conditioned not only by the electromagnetic interaction through the virtual photon, but
also by the weak interaction of neutral currents through the Z0 boson [9].

The interference of amplitudes of the purely electromagnetic and weak interaction leads
to the charge asymmetry in lepton emission and to the effects of space parity violation. In
the framework of the standard model of electroweak interaction, at the electron-positron
pair annihilation the pairs µ+µ−, τ+τ− are produced in the states 3S1,

3D1 with the
negative space parity and, due to the weak interaction, also in the state 3P1 with the
positive space parity. In doing so, the total angular momentum is J = 1 and CP parity
of the pairs is positive.

If the weak interaction contribution is neglected, then the lepton pairs, generated at
the annihilation of the unpolarized positron and electron, are correlated but unpolarized.
Analysis shows that, due to the weak interaction through the exchange by the virtual Z0

boson with the nonconservation of space parity, the final leptons acquire the longitudinal
polarization. Since the lepton pairs are produced in the triplet states, the polarization
vectors of the positively and negatively charged leptons are the same, and their average
helicities λ+ = −λ− have different signs in consequence of the opposite directions of
momenta in the c.m. frame [3].

The structure of the correlation tensor of the final leptons is, on the whole, similar to
that for the case of purely electromagnetic annihilation at very high energies ( βµ → 1,
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βτ → 1 ). In doing so, the nonzero components of the correlation tensor are: Tzz = 1,
Txx = −Tyy, as before. Again one of the incoherence inequalities for the correlation tensor
components is violated: Txx + Tzz > 1 ( see [3]).

Thus, the consequences of the quantum-mechanical coherence for two-particle quan-
tum systems with nonfactorizable internal states manifest themselves distinctly in spin
correlations of lepton pairs produced in the annihilation processes e+e− → µ+µ−, e+e− →
τ+τ−, and they can be verified experimentally.
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Abstract

Relations between invariant and helicity amplitudes for exclusive vector-meson
electroproduction on spinless nuclei and nucleons are established. It is shown that
the proposed choice of the kinematic tensors guarantees the absence of singularities
of the invariant amplitudes in the kinematic region of the vector-meson production.
The obtained relations between invariant and helicity amplitudes are compared with
those presented by Fraas and Schildknecht for scalar targets. The asymptotic be-
haviour at small photon virtuality, transverse momentum transferred to the nucleon,
and the vector meson mass is considered. Certain ratios of the invariant amplitudes
of the ρ0-meson production are obtained from the HERMES data.

1. Introduction. Recent interest to the exclusive vector-meson production in deep-
inelastic scattering (DIS) of leptons on nucleons and nuclei is caused by a possibility to
extract the Generalized Parton Distributions (GPDs) [1–3] which give a wealth of in-
formation on the nucleon structure (see, for instance, review [4]). But the factorization
theorem [5] is proven not for all amplitudes of the process under discussion. Hence we have
to extract all the amplitudes directly from the experimental data to obtain GPDs from
those for which the factorization theorem is proven. The direct extraction of the amplitude
ratios from the data on the vector-meson electroproduction in DIS was first performed by
the H1 and HERMES collaborations [6, 7]. The extraction of the amplitudes permits to
distinguish between the production of final particles through intermediate vector-mesons
(resonance process) from the direct electroproduction of final particles (background pro-
cess). This is hardly possible in the usually used extraction method of the spin-density
matrix elements proposed in the pioneer work [8].

2. Vector-Meson Production on Spinless Nucleus. In the one-photon-exchange
approximation, all the observables in electroproduction can be expressed through the
helicity amplitudes FλVλ2λγλ1 of the process

γ∗(λγ) + T (λ1) → V (λV ) + T ′(λ2) (1)

where the helicities of the virtual photon (γ∗), vector meson (V ), initial (T ) and final
(T ′) target nucleus are given in parentheses in (1). If the nucleus spin is zero the helicity
indexes λ1 and λ2 will be canceled in the amplitudes. For production on the nucleon, we
shall replace T → N , T ′ → N ′ in all formulas.
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The helicity amplitudes TλVλγ for the production on targets with zero spin can be
expressed through five invariant amplitudes Fn, n = 1, .., 5 by the formulas [9]

TλVλγ = ε∗µ(λV)Tµτe
τ (λγ), (2)

Tµτ = −F1(h3)µ(g0)τ − F2√
2
(h3)µ(g1)τ +

F3√
2
(g1)µ(g0)τ − F4Sµτ + F5Aµτ (3)

where eτ (λγ) denotes the virtual-photon polarization vector while ε∗µ(λV ) is the complex-
conjugate polarization vector of the vector meson; λγ and λV equal to ±1 correspond
to the transverse polarization while λγ and λV equal to zero describe the longitudinal
polarization. The symmetric Sµτ and anti-symmetric Aµτ kinematic tensors in (3) are

Sµτ = (g1)µ(g1)τ + (g2)µ(g2)τ = (g0)µ(g0)τ − (g3)µ(g3)τ − gµτ , (4)

Aµτ = −(g1)µ(g1)τ + (g2)µ(g2)τ . (5)

The unit four-vectors in (3)− (5) are expressed through the four-momenta of the photon
q, vector meson v, initial p1 and final p2 nucleus, p = (p1 + p2)/2 and pseudo-vector
dµ = εµνθκq

νvθpκ where εµνθκ is the totally anti-symmetric tensor by Levi-Civita (ε0123 = 1)

h3 =
qm2

v − v(qv)

zmv

, g0 =
Q2v + (qv)q

Qz
, g2 =

d

vtMT

√
ν2 + Q2

, g3 =
q

Q
, (6)

g1 =
[νMT − (m2

v + Q2 − t)/4][v(m2
v + Q2 − t)/2− q(m2

v + Q2 + t)/2]− pz2

MT zvt

√
ν2 + Q2

, (7)

where MT (mv) is the target nucleus (vector-meson) mass, ν = (qp1)/MT , Q2 = −q2,
W 2 = 2MT ν + M2

T −Q2, t = (p1 − p2)
2, z2 = (qv)2 + Q2m2

v, vt is the transverse part of
the vector-meson three-momentum in the γ∗T center-of-mass (CM) system.

Let us define a Lorentz system of frame called below the Collinear System (CS) where
the three-momenta of the virtual photon and vector meson are collinear and their energies
are equal to each other. We have from (2)− (7) in the CS system [9]

T00 = F1, T11 = F4, T01 = F2, T10 = F3, T1−1 = F5. (8)

Since the transverse dσT /dt ∝ |T11|2 + |T01|2 + |T1−1|2 and longitudinal dσL/dt ∝ |T00|2 +
2|T10|2 cross sections cannot be infinite formulas (8) show that all the invariant amplitudes

are finite in the kinematic region of reaction (1). The invariant amplitudes F
(FS)
1 , ..., F

(FS)
5

introduced by Fraas and Schildknecht (FS) in Ref. [10] can be expressed in terms of F1, ...,
F5 defined by equations (2)−(7). As shown in [9] the coefficients of these relations contain
the scalar product (qv) in the denominator which is zero at Q2 = m2

v − t. We conclude
that the FS invariant amplitudes contain non-physical poles in the kinematic region of
reaction (1). Therefore they are inconvenient for fitting the experimental data.

If the tensor Tµν is non-singular and single-valued, then the helicity amplitudes are
non-singular and single-valued functions of the kinematic variables. But at Q → 0 the
components of the four-vector g0 become infinite according to (6). To avoid singularities
at Q → 0 in expression (3), the amplitudes F1 and F3 which are multiplied by g0 should
go to zero at least as Q. Remembering (8) we see that T00 → 0, T10 → 0 at Q → 0.
These relations are very natural since the virtual photon at Q → 0 becomes real which
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has no longitudinal polarization (λγ 6= 0). Using representation (4) of Sµτ in terms of g1

and g2 we see that Sµτ is regular at Q → 0. Hence F4 may go to a non-zero constant when
Q → 0. The same is true for the amplitudes F2 and F5. Since the components of the four-
vectors g1 and g2 are proportional to 1/vt at vt → 0 we conclude in the analogous way that
T01 ∝ vt, T10 ∝ vt, T1−1 ∝ v2

T while T00 and T11 ∝ (vt)
0 . Indeed, using representation

(4) for Sµτ in terms of g0 and g3 we see that Sµτ has no singularity at vt → 0. Hence F4

has not to go to zero at vt → 0. The product h3g0 is also finite at vt → 0 which permits F1

to be non-zero at vt → 0. The above discussed behaviour at vt → 0 means the existence
of the hierarchy of amplitudes at small vt: T00 ∼ T11 À T01 ∼ T10 À T1−1 which was
confirmed experimentally in Ref. [7] at the CM energy W ≈ 5 GeV and v2

t ≤ 0.4 GeV2.
Since h3 behaves as 1/mv at mv → 0 according to (6) the amplitude F1 multiplied by h3

in (3) has to be proportional to mv at small mv.

3. Vector-Meson Production on Nucleon. The relation between invariant and
helicity amplitudes is described by the formula

FλVλ2λγλ1 = ε∗µ(λV)ū2(p2, λ2)T̂µτu1(p1, λ1)e
τ (λγ) (9)

where the Dirac bispinor u1(p1, λ1) and the Dirac-conjugate bispinor ū2(p2, λ2) describe
the initial and final nucleon, respectively. Any amplitude FλVλ2λγλ1 can be decomposed
into the sum of the Natural Parity Exchange (NPE) amplitude TλVλ2λγλ1 and the Un-

natural Parity Exchange (UPE) amplitude UλVλ2λγλ1 [8]. The tensor T̂µτ can also be

represented with the sum of the NPE (N̂µτ ) and UPE (Ûµτ ) parts [9]

FλVλ2λγλ1 = TλVλ2λγλ1 + UλVλ2λγλ1 , T̂µτ = N̂µτ + Ûµτ . (10)

The NPE and UPE tensors can also be decomposed into the sum of two terms [9]

N̂µτ = N (1)
µτ I +N (2)

µτ γ5ĝ2, Ûµτ = U (1)
µτ γ5 + U (2)

µτ ĝ2 (11)

where γτ , τ = 0, 1, 2, 3 and γ5 are the Dirac matrices and ĝ2 ≡ (g2)
τγτ where the unit

four-vector g2 is defined in (6). The representation of N (j)
µτ for j = 1 or 2 with using the

tensors Sµτ and Aµτ and the unit vectors defined by (4)-(7) generalizes equation (3)

N (j)
µτ = −F

(j)
1 (h3)µ(g0)τ − F

(j)
2√
2

(h3)µ(g1)τ +
F

(j)
3√
2

(g1)µ(g0)τ − F
(j)
4 Sµτ + F

(j)
5 Aµτ (12)

and contains five invariant amplitudes F
(j)
n , n = 1, ..., 5 for any j. Therefore the total

number of the NPE invariant amplitudes and hence the linearly independent NPE helicity
amplitudes is ten. The representation of U (j)

µτ for j = 1, 2 looks like

U (j)
µτ = G

(j)
1 (h3)µ(g2)τ + G

(j)
2

(g1)µ(g2)τ + (g2)µ(g1)τ

2
+ G

(j)
3 (g2)µ(g0)τ + G

(j)
4

εµταβqαvβ

z
√

2
.(13)

As obvious from (13) the total number of the UPE invariant amplitudes (linearly inde-
pendent UPE helicity amplitudes) is equal to eight.
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Figure 1: Kinematic de-
pendence of amplitude ratios
Re(T11/T00) and Re(T01/T00).
The full circles are taken from
Ref. [7] while the full squares
show the result of the present
work. Inner error bars show
the statistical uncertainty while
the outer ones (for the circles
only) indicate statistical and
systematic uncertainties added
in quadrature. The solid curves
show the fit result of Ref. [7]
while the dotted lines show the
total uncertainty of the fitting
curves.

The asymptotic behaviour of F
(1)
n at small Q, vt, and

mv is the same as for the spinless targets. Since N (2)
µτ is

multiplied by ĝ2 having the singularity 1/vt the invariant

amplitudes F
(2)
n have additional factor vt compared to F

(1)
n .

The asymptotic behaviour at small Q and mv of F
(2)
n is the

same as for F
(1)
n . In the same way as for the spinless case,

it can be established that G
(j)
3 ∝ Q for Q → 0 for j = 1, 2

while G
(j)
n for n 6= 3 can be non-zero at Q = 0. The small-

mv behaviour of G
(j)
1 ∝ mv at j = 1, 2 follows from the

singularity of h3 ∝ 1/mv while all other G
(j)
n at n 6= 1 can be

non-zero at mv = 0. The components of the vectors g1 and g2

behave as 1/vt at vt → 0. Therefore G
(1)
4 ∝ (vt)

0, G
(1)
1 ∝ vt,

G
(1)
3 ∝ vt, and G

(1)
2 ∝ (vt)

2. Since U (2)
µτ is multiplied by ĝ2

which has the singularity 1/vt at vt → 0 the amplitude G
(2)
n

has the addition factor vt compared to G
(1)
n for any n.

The ratios of the helicity amplitudes TλVλγ ≡ TλV
1
2
λγ

1
2

in the CM system were extracted in Ref. [7] from the
HERMES data on the ρ0-meson production in DIS of elec-
trons/positrons off unpolarized protons at 3.0 GeV < W <
6.3 GeV and 0.5 GeV2 < Q2 < 7.0 GeV2. The amplitudes
with the nucleon helicity flip TλV− 1

2
λγ

1
2

were neglected. The

certain ratios versus Q2 and −t′ = v2
t are shown in Fig. 1

by the full circles. The calculated helicity amplitude ratios
in the CS are shown in Fig. 1 by the full squares. They are
named ”invariant amplitudes” since the invariant amplitudes
coincide with the CS helicity amplitudes in agreement with
relations (8). As seen Re{T11/T00} in the CS and CM sys-
tem are close to each other. The ratio Re{T01/T00} shows
definitely that the helicity-flip amplitude T01 is non-zero in
the CM system. This corresponds to the s-channel helicity
violation actively discussed in literature (see, for instance,
review [11]). In contrast, Re{T01/T00} in the CS is compatible with zero. This shows
probably that the helicity violation in the CS is far less than in the CM system.
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Abstract

The anomaly sum rule (ASR) for meson transition form factors based on the
dispersive representation of axial anomaly and quark-hadron duality in octet channel
is obtained and analyzed. It is valid at all virtual photon momenta and allows one
to express the transition form factors entirely in terms of meson decay constants.
This relation is in a good agreement with experimental data.

Axial anomaly is known to be a fundamental notion of nonperturbative QCD and
hadronic physics. The dispersive form of axial anomaly can be considered for the case of
virtual photons [1], which we will interesting in. By use of dispesion representation an
exact anomaly sum rule (ASR) can be obtained, which does not have both perturbative
corrections (due to Adler-Bardeen theorem) as well as nonperturbative QCD corrections
(due to ’t Hooft consistency principle). Recently, this sum rule was applied to the analysis
of pion transition form factors [2] which attracted much attention because of unexpected
and provocative data of BABAR collaboration.

Recently, the BABAR collaboration extended the analysis and presented the data for
η and η′ meson transition form factors [3]. In this work we analyze the η and η′ transition
form factors by means of generalized ASR which account meson mixing.

Let us briefly remind the dispersive representation for axial anomaly and derive anomaly
sum rule for the octet channel of axial current. We start from the VVA triangle graph
correlator

Tαµν(k, q) =

∫
d4xd4ye(ikx+iqy)〈0|T{Jα5(0)Jµ(x)Jν(y)}|0〉 (1)

where Jµ = (euūγµu + edd̄γµd + ess̄γµs); k, q are momenta of photons and the octet

component of axial current: J
(8)
α5 = 1√

6
(ūγαγ5u + d̄γαγ5d− 2s̄γαγ5s).

Following [1]we write the tensor decomposition of correlator (1) in a form:

Tαµν = F1 εαµνρk
ρ + F2 εαµνρq

ρ + F3 kνεαµρσk
ρqσ + F4 qνεαµρσk

ρqσ

+ F5 kµεανρσk
ρqσ + F6 qµεανρσk

ρqσ, (2)

where the coefficients Fj = Fj(k
2, q2, p2; m2), p = k+q, j = 1, . . . , 6 are the corresponding

Lorentz invariant amplitudes constrained by current conservation and Bose symmetry.
In this paper we are interested in the case of one real (k2 = 0) and one virtual photon

(Q2 = −q2 > 0). Then for the invariant amplitude F3 − F6 the anomaly sum rule (ASR)
takes the form [1]: ∫ ∞

4m2

A3a(t; q
2,m2)dt =

1

2π
NcC

(a) , (3)
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where Nc = 3 is a number of colors and A3a = 1
2
Im(F3 − F6), C

(3) = 1√
2
(e2

u − e2
d), C

(8) =
1√
6
(e2

u + e2
d − 2e2

s), C
(0) = 1√

3
(e2

u + e2
d + e2

s).

As I have told before, ASR (3) is an exact relation, i.e. it does not have any7 corrections
to the integral. Another important property of this relation is that it holds for an arbitrary
quark mass m and for any q2.

Saturating the l.h.s. of the 3-point correlation function (1) with the resonances and
singling out their contributions to ASR (3) we get the sum of resonances with appropriate
quantum numbers:

f 8
η Fη + f 8

η′Fη′ + (other resonances) =

∫ ∞

4m2

A3a(t; q
2,m2)dt =

1

2π
NcC

(8). (4)

Here the coupling constants fa
M are defined as: 〈0|J (a)

α5 (0)|M(p)〉 = ipαfa
M , and the form

factors FMγ of the transition γγ∗ → M are defined by the matrix elements:

∫
d4xeikx〈M(p)|T{Jµ(x)Jν(0)}|0〉 = εµνρσk

ρqσFMγ . (5)

The relation (4) is exact and expresses the global duality between hadrons and quarks.
The contributions of higher resonances can be accounted in usual way as continuum
contribution, i.e. the integral of spectral density starting from some parameter, called
continuum threshold s0. As we will see, in the case of anomaly it is fixed by anomaly
itself, so in our case we really do not need the local quark-hadron duality hypothesis, it
enough the global one.

One should note that the particles with nonzero two-photon decays cannot be included
in the continuum as it vanishes at Q2 = 0, so they should be taken into account explicitly in
the ASR. For heavy mesons the corresponding coupling constants should be suppressed [4]

at least as (mη/mres)
2 which follows from the conservation of axial current J

(8)
µ5 in the chiral

limit (if only strong interaction is taken into account). That is why we restrict ourselves
only to η and η′ mesons. The ASR for the octet channel finally reads:

πf 8
η Fηγ(Q

2) + πf 8
η′Fη′γ(Q

2) =
1

2π
√

6

s0

Q2 + s0

. (6)

Let us stress that this relation is correct for all Q2 due to the absence of the corrections
to the Im(F3 − F6) [5] which allows to utilize the above expression for different Q2.

By the way, for real photons (Q2 = 0) the above expression coincides with the expres-
sion in [4], which was obtained from dispersive approach to axial anomaly in somewhat
different way by use of PCAC relation:

The equation (6) allows us to fix the continuum threshold s0 by considering the limit
Q2 →∞ where the QCD factorization [6,7] is applicable (contrary to ASR the exploration
of this limit in generic QCD sum rules is obscured by possible corrections). The form
factors at large Q2 [8, 9] are:

Q2F as
ηγ = 2(C(8)f 8

η + C(0)f 0
η )

∫ 1

0

φas(x)

x
dx (7)
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and the same for η′. We take into account that in the limit Q2 → ∞ the light cone
distribution amplitudes of both η, η′ mesons are described by their asymptotical form [6,7]:
φas(x) = 6x(1− x).

Then the ASR for the octet channel at large Q2 leads to:

s0 = 4π2((f 8
η )2 + (f 8

η′)
2 + 2

√
2[f 8

η f 0
η + f 8

η′f
0
η′ ]). (8)

Substituting (8) into (6) we express ASR in terms of meson decay constants fa
M only,

which is our main result:

f 8
η Fηγ(Q

2) + f 8
η′Fη′γ(Q

2) =√
2
3

4π2 + Q2/((f 8
η )2 + (f 8

η′)
2 + 2

√
2[f 8

η f 0
η + f 8

η′f
0
η′ ])

. (9)

Let us now pass to applications of (9). As an example, let us analyze the ASR (9) for
usual mixing scheme with one angle, where matrix of decay constants is:

F ≡
(

f 8
η f 8

η′

f 0
η f 0

η′

)
=

(
f8 cos θ f8 sin θ
−f0 sin θ f0 cos θ

)
. (10)

This mixing scheme was analyzed in many papers (see e.g. [10] and references therein),
giving the values of mixing angle in the range θ = −12o ÷−22o.

In this case the ASR acquires a simple form:

Q2(Fηγ(Q
2) cos θ + Fη′γ(Q

2) sin θ) =

√
2

3

Q2

4π2f8 + Q2/f8

, (11)

where constant f8 is defined by the anomaly sum rule at Q2 = 0 ( [4]):

f8 =
α

4
√

6π3/2

(√
Γη→2γ

m3
η

cos θ +

√
Γη′→2γ

m3
η′

sin θ

)−1

. (12)

Thus, (11) and (12) determine the mixing angle in terms of physical quantities (decay
widths and transition form factors).
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Figure 1: (a) ASR for one-angle mixing scheme θ = −14o. (b) ASR for one-angle mixing scheme
θ = −16o.
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The corresponding relation is plotted for different mixing angles in Fig.1. The dots
with error bars correspond to the l.h.s. of Eq. (11), where the form factors of η, η′ mesons
are taken from experimental data of CLEO [11] and BABAR [3] collaborations.
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Abstract
We consider a non-uniqueness problem of gauge invariant nucleon spin decompo-

sition. A gauge invariant decomposition with a generalized Coulomb constraint for
the physical gluon has been constructed. The decomposition scheme is consistent
with the concept of helicity in non-Abelian gauge theory. We provide an explicit
representation for the gauge invariant Abelian projection which implies further sep-
aration of gluon into binding and valence parts.

It has been a long standing problem of gauge invariant definition of gluon spin and
orbital angular momentum [1, 2]. Recently a gauge invariant decomposition of the total
nucleon angular momentum into quark and gluon constituents has been proposed [3], and
subsequently other possible gauge invariant decompositions for nucleon spin have been
suggested [4, 5]. Despite on this progress there are still principal controversies on funda-
mental conceptual level in determining a consistent notion for spin and orbital angular
momentum [6]. In the present article we revise the problem of nucleon spin decomposition
and existence of a consistent gauge invariant concept of spin in the non-Abelian gauge
theory.

Let us start with the well known canonical decomposition of total angular momentum
in quantum chromodynamics (QCD)

J can
µν =

∫
d3x

{
ψ̄γ0 Σµν

2
ψ − iψ̄γ0x[µ∂ν]ψ − ~A[µ · ~Fν]0 − ~F0α · x[µ∂ν]

~Aα

}
, (1)

where we use vector notations for vectors in color space. All terms in this decomposition,
except the first one, are gauge non-invariant. In the series of papers [3] Chen et al
have proposed gauge invariant decomposition of the total angular momentum in quantum
electrodynamics (QED) and QCD. The basic idea in Chen et al approach is to separate
pure gauge and physical degrees of freedom of the gauge potential in a gauge covariant
way

~Aµ = ~Apure
µ + ~Aphys

µ . (2)

Adding an appropriate surface term one can obtain the following expression for the total
angular momentum tensor

J can
µν =

∫
d3x

{
ψ̄γ0 Σµν

2
ψ − iψ̄γ0x[µDν]ψ −

~F0[µ · ~Aphys
ν] − ~F0α · x[µ(Dν]

~Aphys
α − ~Fν]α(Apure))

}
, (3)
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where Dµ contains a pure gauge field ~Apure
µ only. The given expression for the angular

momentum is valid for any split of the gauge potential before imposing any constraint
on physical and pure gauge fields. In the case of QCD a consistent gauge invariant
decomposition for the nucleon angular momentum has been proposed by requiring two
conditions on pure gauge ~Apure and physical ~Aphys components of the gauge field [3]

~Fµν(Apure) = 0, Di
~Aphys

i = 0, (4)

where Latin letters are used for space indices, i, k, ... = (1, 2, 3). Solving these conditions
leads to the gauge invariant decomposition in the form corresponding to the vector part
of (3) [3]. In the gauge ~Apure = 0 the decomposition reduces to the canonical one in
the Coulomb gauge. One should notice, that this decomposition is not Lorentz invariant,
so that the notion of gluon spin is frame dependent. The gauge invariant and Lorentz
invariant nucleon spin decomposition has been suggested in [5]. However, in that decom-
position the solving a constraint for the physical gauge potential on mass-shell encounters
a serious problem.

To choose a proper physical nucleon spin decomposition we require consistence con-
dition with the helicity notion, which will guarantee the Lorentz invariance. We will
construct explicitly such a spin decomposition using gauge invariant variables in non-
Abelian theory [7]. The main idea in constructing gauge invariant variables is to find

a pure gauge SU(2) matrix field in terms of the initial gauge potential ~A. Using the
equation of motion for the temporal component Aa

0 one can write down the equation for
the matrix function v ∈ SU(2)

∂0v(A) = v(A)
( 1

D2(A)
Dj(A)∂0Âj − ĵ0

)
, (5)

where Âi ≡ Aa
i τ

a/2. Due to the equation of motion for Aa
0 it follows that v transforms

covariantly, v(Ag) = vg−1. The solution to equation (5) can be obtained in the form of
time ordered exponent [7]

v(A) = T exp
{ ∫ t

dt
1

D2(A)
Dj(A)∂0Âj − ĵ0

}
. (6)

This allows to define the gauge invariant variables [7]

ÂI
i (A) = v(A)(∂i + Âi)v

−1(A), ψI(A,ψ) = v(A)ψ. (7)

One can check that ÂI
i satisfies a constraint which represents a generalized covariant

Coulomb gauge condition

Di(A
I)∂0Â

I
i − ĵ0 = 0. (8)

One should stress, that we do not impose this condition, it follows from the definition of
ÂI

i and v(A). Finally, from Eqn. (7) one finds the following split for the gauge potential

Âi = v̂−1(A)∂iv̂(A) + v̂−1(A)ÂI
i (A)v̂(A) ≡ Âpure

i + Âphys
i , (9)

where we can identify the first and second terms as the pure gauge and physical compo-
nents needed to make the desired gauge invariant decomposition. The pure gauge tempo-
ral component is defined by v−1(A)∂0v(A). The presented construction of the pure gauge
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and physical fields in terms of the unconstrained gauge potential provides an explicit re-
alization of the gauge invariant nucleon spin decomposition (3) with ~Fνα(Apure) = 0. The

decomposition reduces to the canonical one in the gauge ~Apure = 0, i.e., in the generalized
covariant Coulomb gauge (8).

Let us check consistence of our construction with the concept of helicity. This will pro-
vide frame independent relationship between our gauge invariant definition of gluon spin
density and gluon helicity ∆g measured in experiment. The helicity states are described
by representations of the little group E(2) [8,9] which is a subgroup of the Lorentz group.
Transformations of the little group leave the four-momentum of gluon invariant. If gluon
momentum is directed along the z axis, pµ = (ω, 0, 0, ω), the generators of the little group
E(2) are given by rotation generator J3 and combinations of Lorentz boost and rotation

N1 = K1 − J2, N2 = K2 + J1. (10)

The gauge potential represents helicity eigenstates of the operator J3 if the following helic-
ity conditions are satisfied ~Aphys

0 = 0, ~Aphys
3 = 0 [9]. To provide both helicity conditions in

a consistent manner with equations of motion has been an unresolved problem in the case
of non-Abelian gauge theory. In our approach, since one has the first condition ~Aphys

0 = 0

on mass-shell by construction, the second helicity condition ~Aphys
3 = 0 can be realized by

choosing a gauge of either Coulomb or axial or light-cone type. This is our main result
which allows to select a physical gauge covariant operator ~Aphys(A) and corresponding
spin density consistently with the helicity notion.

Another application of our gauge invariant spin decomposition is the possibility to
provide an explicit representation for the gauge invariant Cho-Duan Abelian projection
[10,11] which may play an important role in definition of spin decomposition with dynamic
quark momentum [5]

~Aµ = Aµn̂ + ~Cµ + ~Xµ ≡ Âµ + ~Xµ,

~Cµ = −1

g
n̂× ∂µn̂, ~Xµ · n̂ = 0, (11)

where Aµ is a binding gluon, ~Xµ is the valence potential and n̂ is a unit color triplet.

The restricted potential Âµ transforms as SU(2) gauge connection, whereas the valence

gluon ~Xµ transforms as a covariant vector. Let us define the vector n̂ by the relation

v(A) = exp[iωn̂i~τ i]. The pure gauge field ~Apure
µ can be constructed in terms of n̂ as

follows [12]

~Apure
µ = −C̃µn̂ + ~Cµ, (12)

where C̃µ is a dual magnetic potential. With this we decompose the gauge potential into
pure gauge and physical parts

~Aµ = −C̃µn̂ + ~Cµ + ~Aphys
µ , ~Aphys

µ ≡ ~Aµ − ~Apure
µ = Aµn̂ + ~Xµ. (13)

Using decompositions (11) one can derive the expression for the gluon total angular mo-

mentum (3) which is simplified crucially on mass-shell due to the property ~Aphys
0 = 0, i.e.,

A0 = ~X0 = 0,

Jgluon
µν =

∫
d3x

{
− F0[µAν] − ∂0

~X[µ · ~Xν] + F0αx[µ∂ν]Aα + ∂0
~Xα · x[µ∂ν]

~Xα

}
, (14)
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where Fµν = ∂µAν − ∂νAµ. The given decomposition implies further separation of spin
densities of binding and valence gluons. This allows to define a new spin decomposition
with dynamic quark momentum containing only binding gluon. By splitting the gauge po-
tential ~Aµ = Âµ + ~Xµ and adding an appropriate surface term to the canonical expression
(1) one results in a gauge invariant decomposition given by Eqn. (3) with replacement

( ~Apure
µ ↔ Âµ, ~Aphys

µ ↔ ~Xµ). A new feature of this decomposition is that it does not
contain the spin density for the binding gluon. Since the binding gluon supposed to have
a dominant gluon contribution to nucleon spin [5], this supports the experimental data
on a small value for the gluon helicity, ∆g ≈ 0.

In conclusion, one has a unique Lorentz invariant nucleon spin decomposition [5],
however, it is not defined on mass-shell and its physical meaning remains unclear. Other
known decompositions [3, 4] are not Lorentz invariant and lead to frame dependent def-
initions for gluon spin. The only gauge invariant and frame independent notion of spin
in the gauge theory is the helicity. In the present work we have proposed a spin decom-
position which is consistent with helicity concept and leads to correct expression for the
gluon helicity ∆g.
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Abstract

Measurements involving the gluon spin density, ∆G(x, t), can play an important
role in the understanding of proton structure. The shape of the gluon asymmetry,
A(x, t) ≡ ∆G(x, t)/G(x, t), contains significant dynamical information about non-
perturbative spin-orbit effects. This asymmetry can be written in a form that
we can use to calculate it within a given factorization prescription from evolution
and known parton distributions. This is a complementary approach to using data
directly to determine ∆G. Combining this with the Jz = 1

2 sum rule provides a way
to determine the amount of orbital angular momentum generated by mechanisms
associated with confinement and chiral dynamics. The results are consistent with
alternate non- perturbative approaches for determination of Lz in the proton.

Several experimental programs [1] have devised strategies aimed at providing a signif-
icant measure ∆G(x, t) in the proton, where t ≡ log[αs(Q

2
0)]/ log[αs(Q

2)] is the evolution
variable. The interest in these measurements is often framed using the Jz = 1

2
sum rule,

Jz =
1

2
≡ 1

2
< ∆Σ(t) > + < ∆G(t) > +Lz(t), (1)

where < ∆Σ(t) > and < ∆G(t) > are the projections of the spin carried by all quarks
and the gluons on the helicity (or z)-axis, respectively. Also Lz(t) is the net z-component
of the orbital angular momentum of the constituents.

Recent DIS experiments [2] have significantly lowered the measurement errors of the
quark spin contribution (∆Σ) to equation (1). The COMPASS collaboration analysis
quotes a result

< ∆Σ >= 0.30± 0.01(stat)± 0.02(evol), all data (2)

while the HERMES collaboration analysis quotes a result

< ∆Σ >= 0.330± 0.025(exp)± 0.011(th)± 0.028(evol), all data. (3)

These values can be used with the Jz = 1
2

sum rule to evaluate the impact of existing and
potential gluon asymmetry measurements.

Recent experimental results sensitive to ∆G(x, t) and the gluon asymmetry, A(x, t) ≡
∆G(x, t)/G(x, t) have provided important new information. So far, the analysis of these
experiments is limited in sensitivity and range of < x >,so the results have not determined
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the shape nor overall magnitude of ∆G(x, t0). Understanding the shape of ∆G(x, t) for
the whole range x ∈ (0, 1) is important in understanding the structure of the nucleons.
Experimental evidence on ∆G(x, t0) for a limited range of x and t0 must be combined
with an extrapolation in order to specify the nature of < ∆G(t) > and Lz(t) at large t.
The specific approach in this paper helps to illuminate these possibilities and to fix onto
crucial experimental results.

We write the polarized gluon asymmetry using the decomposition

A(x, t) ≡ ∆G(x, t)/G(x, t) = Aε
0(x) + ε(x, t), (4)

where Aε
0(x) is dependent only upon x, calculable in PQCD by the using definition

Aε
0(x) ≡

[
(
∂∆G(x, t)

∂t
)/(

∂G(x, t)

∂t
)
]
. (5)

The numerator and denominator on the right side of equation (5) are calculable from the
DGLAP equations and each depends strictly upon x via the respective convolutions. The
small correction, ε(x, t) describes shape-dependent differences in the evolutions of G(x, t)
and ∆G(x, t) at leading order (LO) in QCD perturbation theory.

The expression (4) for A(x, t) at some initial t = t0 leads to an equivalent decomposi-
tion for ∆G(x, t) in the form

∆G(x, t0) = Aε
0(x) ·G(x, t0) + ∆gε(x) (6)

where the “polarized gluon excess”, ∆gε(x), is given by

∆gε(x) = ε(x, t) ·G(x, t) (7)

and is t−independent. This provides a boundary condition for the partial differential
equation (5) that defines Aε

0(x) and can be used to characterize possible different shapes
for A(x, t) in equation (4). This boundary condition for the partial differential equation
(5) occurs at an unphysical region in that the decomposition in (6) cannot be valid
when G(x, t0) = 0. In practice, this means that there are nontrivial constraints on the
magnitude of ∆gε(x).

The solution of equations based on equations (4) and (5) was proposed by Ramsey and
Sivers [3]. The calculation of the asymmetry provided a method to determine ∆G without
theoretical biases on its shape. This was followed by analysis of the relation between the
∆gε parameterizations and the corresponding range of possible Lz [3]. Since new data for
the asymmetry have been made available, this method has allowed us to refine the range
of possible < ∆G > and Lz consistent with this data [4]. The culmination of this work is
presented here.

The perturbative component of the polarized gluon asymmetry Aε
0(x) can be calcu-

lated from a parameterization of the correction ∆gε(x) by inserting equation (6) into the
expression (5) for Aε

0(x). Then equation (5) can then be solved using ∂∆G/∂t and ∂G/∂t
given by DGLAP evolution. In kinematic regions where the DGLAP evolution equations
are valid, equation (5) allows one to generate Aε

0(x) by

Aε
0(x) =

[
∆Pgq ⊗∆q + ∆Pgg ⊗ (∆G)

Pgq ⊗ q + Pgg ⊗G

]
. (8)
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Then equations (5) and (6) can be used to generate the corresponding asymmetry using
the equation

Aε
0(x) =

[
∆PGq ⊗∆q + ∆PGG ⊗ [Aε

0 ·G + ∆gε]

PGq ⊗ q + PGG ⊗G

]
. (9)

Since the Aε
0(x) term occurs on both sides of the equation, we parametrize Aε

0(x) and
∆gε(x) subject to theoretical constraints and determine the coefficients of the parame-
terizations that satisfy equation (9). For each parameterization of ∆gε(x), the resulting
asymmetry A(x, t) and corresponding ∆G from equation (6) can then be checked for pos-
itivity with the corresponding unpolarized gluon at LO. The various parametrizations of
∆gε(x) were chosen to have integrals over all x between −0.5 and 0.5. One parametriza-
tion was selected to change sign, consistent with instanton models. This possibility has
not been ruled out by data [1]. The process to determine the NLO corrections to the
asymmetry is similar to that of LO with the appropriate corrections to the splitting func-
tions and evolution parameters. Since most data are analyzed at LO, our analysis is done
here at LO as well.

The calculation of Aε
0(x) in equation (9) has been done using the CTEQ5 and MRST [6]

unpolarized parton distributions for comparison and the polarized quark distributions
from reference [6]. All are evaluated at Q2

0 = 1 GeV 2 for the LO distributions. The
polarized distributions given by GGR [6] in terms of the unpolarized ones. To establish
an initial reference point for the solution of equation (9), practical constraints for the
asymmetry at LO should include:

• strong positivity: |A(x, t0)| ≤ 1 for all 0 ≤ x ≤ 1, and

• endpoint values: A(0, t0) = 0 and A(1, t0) = 1.

Simple positivity for the gluon asymmetry at LO requires |A(x, t)| ≤ 1. The strong
positivity constraint enforces the restriction that ∆gε(x) is small. We start with an Aε

0(x)
parameterization in the form

Aε
0(x) ≡ Axα − (B − 1)xβ + (B − A)xβ+1, (10)

which automatically satisfies the endpoint constraints provided the exponents α and β are
positive. This parameterization includes substantial flexibility in adjusting shapes while
keeping the number of free parameters to a minimum.

Using the current data for ∆Σ as input, we combine equations (1), (2) and (3) to write

Lz(t)+ < ∆G(t) >≈ 1

2
(1− < ∆Σ >) ≈ 0.34± 0.02 (11)

in a chiral factorization prescription. The quoted error is entirely due to the data un-
certainties in equations (2) and (3). Our approach to the study of ∆G(x, t) is largely
complementary to the usual global analysis determination discussed, for example, by Hi-
rai and Kumano and others [5] where the main input for ∆G(x, t) involves measurement
of the scaling violations for ∆q(x, t). Since it is highly unlikely that future experiments
sensitive to ∆G(x, t) will determine this distribution with an accuracy similar to that
found in the determination of ∆q or to that of G(x, t) and q(x, t), our method takes
into account the similarities between the evolution of ∆G(x, t) and G(x, t) to provide the
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necessary extrapolations to all x. Using knowledge of ∆q(x, t), q(x, t) and G(x, t) data
sensitive to values of ∆G(x, t) in limited regions of x and t can then be used efficiently to
obtain valid estimates for Lz(t).

For those parameterizations of ∆gε(x) for which a stable solution to Eq. (9) exists at
t = 0, we can insert the decomposition of Eq. (6) into Eq. (11) to write

Lz(0) = 0.34± 0.04− < Aε
0(x) ·G(x, 0) > − < ∆gε(x) > (12)

and evolve the equivalent possible forms of ∆G(x, 0) to compare with experimental ex-
tractions of ∆G(x, t) found through processes such as prompt photon and photon + jet
measurements. The terms in Eq. (12) use the experimental averages for < ∆Σ > from
COMPASS and HERMES, and the CTEQ or MRST parameterizations for G(x, t0). The
error quoted here is due to the uncertainties in the data, as previously mentioned and the
small theoretical uncertainties associated with the unpolarized distributions.

Table 1: Best Fit Gluon Asymmetries at Q2
0 = 1 GeV2

∆gε < ∆gε > Aε
0 < ∆G >

0 0 3x1.5 − 3x2.2 + x3.2 0.28
−90x2(1− x)7 −0.25 3.5x1.3 − 4.5x2.2 + 2x3.2 0.25

9x(1− x)7 0.125 3.75x1.4 − 3x1.6 + 0.25x2.6 0.40
−9x(1− x)7 −0.125 3.25x1.4 − 3.75x2.2 + 1.5x3.2 0.25
−4.5x(1− x)7 −0.0625 2.25x1.1 − 2.25x1.9 + x2.9 0.43
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Figure 1: Best fit model asymmetries compared with data.
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Figure 2: Allowed Lz values versus ∆G.

From these results, a strictly theoretical approach to finding feasible values to Lz yields
a range allowed by the “practical” constraints of

−0.13 ≤< ∆G >≤ 0.63 and

−0.29 ≤ Lz(0) ≤ 0.47, (13)

where the theoretical and experimental uncertainties have been included in the quoted
inequality values. The range is not sensitive to the unpolarized input distributions and
the corresponding theoretical uncertainties have been included in this range. The ranges
of < ∆G > and < Lz > appear to be numerically limited by the constraints on < ∆gε >,
which is limited in absolute value to 0.25 by the constraints. From a theoretical point of
view, this results in relatively small values of ∆G and Lz, but the range is still considerable.
Using the parameterizations that best agree with data (Table 1) narrows the ranges of
∆G and Lz:

0.21 ≤< ∆G >≤ 0.47 and (14)

−0.13 ≤ Lz(0) ≤ 0.13, (15)

where, again, the uncertainties are included in the extreme values. A sample of parametriza-
tions and data are shown in Figure 1. These results are consistent with data and the MIT
Bag model, discussed by Chen and Ji. [7] The corresponding range of Lz for these ∆G
values are shown in Figure 2. Using present data, the range of ∆G and Lz have been
narrowed, but clearly, accurate data over a wider kinematic range can more significantly
constrain both the gluon polarization and the orbital angular momentum of the con-
stituents. The results for the scenarios we have shown are not significantly different from
each other.
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Our results indicate that the integrated < ∆G > is likely positive and small at Q2
0 ≈ 1

GeV2. This is consistent with data [1], chiral quark models and the MIT bag model [7].
Although most of our parameterizations of the asymmetry are positive definite, the one
in the second line of Table 2 changes sign and is consistent with data. This possibility
has been discussed by others and is not ruled out by present data [1, 7]. Many of our
parameterizations give a gluon polarization consistent with zero, in agreement with much
of the data from RHIC. [1] Clearly there is still work to be done. However, we have
provided a mechanism for calculating the gluon asymmetry that allows extraction of
information on both ∆G and Lz.
The author would like to thank Krzysztof Kurek for discussions regarding the asymmetry
data.
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Abstract

The tensor of an effective three-photon vertex has been calculated in the one-
loop approximation for a medium with non-zero chemical potential. The tensor
properties at various photon wavelengths and frequencies have been analyzed. The
case of photon scattering by a magnetic field has been studied in detail. Possible
applications of the results obtained have been discussed.

The physical vacuum is the subject of quantum nature, and a variety of phenomena due to the
nature was the theoretically calculated and experimentally measured more than fifty years ago. Is, for
example, the Casimir effect [1] or scattering of light by light. However, in contrast to the processes in
dense media, for these phenomena c-parity remains, and even the presence of a small number of particles
does not cause qualitative changes in the photons interaction. In contrast, Furry theorem is violated
in dense media [2], and photon vertices with the odd number of external photon lines can exist, and
a three-photon vertex is have greatest value of all other new unlocked vertexes. This object also was
investigated in the works [3, 4]. In the work [3] processes in a two-dimensional space are considered
(so the elements of the tensor can be calculated in exact form, even for the most general case), in the
work [4] we have three-dimensional space, but in both cases used the static approximation. Obtained
results very interesting, but they describe the phenomena, localized in the media. These processes have a
significant influence on the evolution of large objects, consisting of dense matter, like neutron stars and,
possibly, white dwarfs, but at the same time, in terms, available to us, experimentally observing of static
effects are extremely difficult. One of the important results of works [3, 4] is the proof that the using of
Feynman parametrization violate the transversality three-photon vertex, hence to calculate their tensors
such parametrization is not applicable. In this work we used the approximation low-frequency photons,
which is sufficient to describe most of the new phenomena in a medium, since to high-energy photons
medium are asymptotically transparent.

1 Three-photon Vertex in the Static-field Case

In this section, we aim at calculating the nonzero components of the three-photon vertex
tensor in a medium; they exist in the one-loop approximation for the state of rest at zero
temperature. In a (3 + 1)-dimensional space, this case was examined in more details in
work [4]. In case of static fields, the form of the vertex function becomes considerably
simpler, with only the following tensor components remaining nonzero:

Π444 =
ie3

2π3
(4

3∑

i=1

J2(k(i)) +
3∑

n=1,n6=l

3∑

l=1

J1(k(l), k(n))((k(l))2 + (k(n))2 + (k(l), k(n))− 4m2)− 4J3(k(l), k(n))), (1)

Πij4 =
ie3

2π3

(
3∑

n=1,n6=l

3∑

l=1

J1(k(l), k(n))(k
(1)
j k

(3)
i − (k(1)k(3))δij)− 4J3(k(2))(δij +(k

(1)
j k

(3)
i )

(k(1)k(3))− (k(1))2 − (k(3))2

(k(1)k(3))2
)).

(2)

Here, J1, J2, and J3 are the functions of the external momenta k(1), k(2), and k(3), the
chemical potential µ, and the mass m. The analytical integration for the functions J1, J2,
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and J3 to a final result can be fulfilled only in the case where all the momenta are collinear.
Otherwise, asymptotic approximations can be derived for J1 and J3. The symmetric
components Πi4j and Π4ij are obtained by making the corresponding substitutions k(1) →
k(2), k(2) → k(3), and k(3) → k(1) for the former, and k(1) → k(3), k(3) → k(2), and
k(2) → k(1) for the latter.

For large momenta,
(

k(1)

a
, k(2)

a

)
À 1, and in the symmetric limit, formulas (1) and (2)

give the following result for tensor components:

Π444 = O(
k(1)

a
), Πij4 = O(

k(1)

a
). (3)

It testifies that, in the high-momentum and, accordingly, short-distance approximation,
the medium becomes asymptotically transparent, and its influence on the field properties
is insignificant. This takes place, because the vertex function is proportional to the
chemical potential, the latter being a small parameter in the case of high momenta.
However, for linear scales r ≥ (µ2−m2)−

1
2 , the substitution of Πµνγ by its asymptotic value

does not violate the adequacy of description for the properties of an electromagnetic field
with an arbitrary strength distribution. Under such conditions, the quantity

√
µ2 −m2/k

is a large parameter, and there is no necessity to use the “adiabatic expansion”.

2 Three-photon Vertex in the Case of Low-frequency

Photons

In the case of low-frequency photons and, hence, low k4-values, the determination of mul-
tipliers Hn demands that the linear approximation be used and the obtained expressions
be expanded into power series of k4. After carrying out the corresponding calculations,
those multipliers can be expressed as follows:

H1 ≈ ne(ε0)− np(ε0)

2iε0[2pk(1) + (k(1))2][−2pk(2) + (k(2))2]
;

H2 ≈ (ne(ε1)− np(ε1))(2iε1[2pk(1) − (k(1))2][−2p(k(2) + k(1)) + (k(2))2 − (k(1))2])−1;

H3 ≈ (ne(ε2)− np(ε2))(2iε2[2pk(2) − (k(2))2](−2p(k(2) + k(1)) + (k(1))2 − (k(2))2))−1, (4)

where ne(εn) and np(εn) are the electron and positron, respectively, density functions,
which look like ne(εn) = [1 + exp(β(εn − µ)]−1, np(εn) = [1 + exp(β(εn + µ)]−1.

The Hn-multipliers generate three groups of terms for each vertex function component,
each of the latter including k4 raised to a certain power ranging from 0 to 4, and terms
with k4 raised to a power larger than one can be neglected. At the same time, the terms
without k4 comprise a static part of the components, which was calculated in work [4].
Then, all we need is to calculate those terms, which depend linearly on k4:

F444 ≈ F stat
444 + Re{H1[pk(2)k

(1)
4 + (pk(1) − ε2

0)k
(2)
4 ] + H2[(ε2

0 + pk(1) + ε2
1)k

(2)
4 +

+ (2ε2
0 + pk(2) − k(1)k(2) + 2ε2

1)k
(1)
4 ]−H3[(ε2

0 − pk(2) + ε2
2)k

(1)
4 + (2ε2

0 − pk(1) − k(1)k(2) + 2ε2
2)k

(2)
4 ]}. (5)

The function F is coupled with Π by the relation Πµνγ = ie3

(2π)3β

∫
d3pFµνγ. While calcu-

lating Fij4, we should take into consideration that i 6= 4 and j 6= 4, so that δi4 = δj4 = 0.

122



Moreover, we use the approximation, for which k
(a)
4 k

(b)
4 = 0. Therefore, we find

Fij4 ≈ F stat
ij4 + Re{ε0δij(H2ε1k

(1)
4 + H3ε2k

(2)
4 ) + H1[(pk(2)δij + 2pipj − pik

(2)
j − pjk

(2)
i )k

(1)
4 +

+ (pk(1)δij + 2pipj − pik
(1)
j − pjk

(1)
i )k

(2)
4 ] + H2[((p(2k(1) + k(2)) + (k(1)))2δij + 2pipj + pik

(2)
j +

+ pjk
(2)
i )k

(1)
4 − ((p k(1) + (k(1))2δij + 2pipj + pik

(1)
j + pjk

(1)
i )k

(2)
4 ]−H3[((p(2k(2) + k(1))−

− (k(2)))2δij − 2pipj + pik
(1)
j + pjk

(1)
i )k

(2)
4 + ((−p k(2) + (k(2))2δij + 2pipj − pik

(2)
j − pjk

(2)
i )k

(1)
4 ]}. (6)

In a similar way, we make transformations for other tensor elements. Taking into account
that F stat

i44 = F stat
ijl = 0 in the static case, we obtain

Fijl ≈ Im


H1ε0

{
{(k

(2)
l

δij+k
(2)
j δil−

−k
(2)
i δjl−2pjδil)

}
k
(1)
4 +

+
{(k

(1)
l

δij−k
(1)
j δil+

+k
(1)
i δjl+2piδjl)

}
k
(2)
4

}
+ H2ε1

{
{(k

(2)
i δjl−k

(2)
l

δij−k
(2)
j δil+(k

(1)
i +2pi)×

×δjl+(k
(1)
l

+2pl)δij−(k
(1)
j +2pj)δil)

}×

×k
(1)
4 +

{(k
(1)
l

δij−k
(1)
j δil+

+k
(1)
i δjl+2piδjl)

}
k
(2)
4

}
+

H3ε2

{
{(k

(1)
j δil−k

(1)
l

δij−k
(1)
i δjl+(k

(1)
j −2pj)×

×δil+(k
(1)
l
−2pl)δij−(k

(1)
i −2pi)δjl)

}×

×k
(2)
4 +

{(k
(2)
l

δij+k
(2)
j δil−

k
(2)
i δjl−2piδjl)

}
k
(1)
4

}

 , (7)

Fi44 ≈ Im[H2ε1[((k
(1)
i + 2pi)− k

(2)
i )k

(1)
4 + (k

(1)
i + 2pi)k

(2)
4 ] + H3ε2[((k

(2)
i − 2pi)− k

(1)
i )k

(2)
4 + (k

(2)
i − 2pi)k

(1)
4 ]

− ε0(H2 + H3)[(k
(2)
i − 2pi)k

(1)
4 + (k

(1)
i + 2pi)k

(2)
4 ]]. (8)

The expressions derived for all tensor elements in the long-wave approximation compose
a system that describes such photon–photon processes as the photon decay into two
photons, the decay of an electric field into free photons, the generation of a magnetic
field in the presence of the electric one, and the interaction between a free photon and a
magnetic field. The expressions found for the tensor components testify that the processes
of creation of real photons take place only in alternating fields, because the corresponding
tensor components include only dynamic parts. Unlike the static case, dynamic processes
can be observed “from outside” the medium. Therefore, they are suitable for studying
the microscopic volumes in a dense medium.

On the basis of the results obtained, let us consider a case of the interaction between
photons and a classical magnetic field in the presence of fermionic plasma. In this case,
we have a state of the external field without energy transfer and with a definite fixed

spatial momentum, which can be designated as (k
(1)
l + k

(2)
l ), where l ∈ 1, 3. Then, the

element of the scattering cross-section looks like

S = Fijlk
(1)
i k

(2)
j (k

(1)
l + k

(2)
l ) + F44lk

(1)
4 k

(2)
4 (k

(1)
l + k

(2)
l ) + Fi4lk

(1)
i k

(2)
4 (k

(1)
l + k

(2)
l ) + F4jlk

(1)
4 k

(2)
j (k

(1)
l + k

(2)
l ). (9)

According to the assumption that k4 is small, the term F44lk
(1)
4 k

(2)
4 (k

(1)
l + k

(2)
l ) approxi-

mately equals zero, whereas the components with k4 in the terms Fi4lk
(1)
i k

(2)
4 (k

(1)
l + k

(2)
l )

and F4jlk
(1)
4 k

(2)
j (k

(1)
l + k

(2)
l ) – all of them are dynamic contributions – are also reduced.

However, since they are written down as (k
(1)
l + k

(2)
l ), the equality k

(1)
4 = −k

(2)
4 must be

satisfied, and we have a process of elastic photon scattering by a magnetic field. Then,
the nonzero tensor elements look like Fi4l = F stat

i4l , F4jl = F stat
4jl ,

Fijl ≈ Imk
(1)
4 {H1ε0((k

(2)
l − k

(1)
l )δij + (k

(2)
j + k

(1)
j )δil − (k

(2)
i + k

(1)
i )δjl − 2piδjl − 2pjδil) +

+ H2ε1[k
(2)
i δjl − k

(2)
l δij − k

(2)
j δil + plδij − pjδil] + H3ε2[k

(1)
j δil − k

(1)
l δij − k

(1)
i δjl − plδij + piδjl]}. (10)

One can see that all dynamics of the process is contained in the element Fijl, whereas the
other nonzero tensor components describe only the statics. In addition, since we consider
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the process of free photon scattering by a magnetic field, the dispersion relations must

be satisfied. Therefore, k(1) = k(2) = k, because |k(1)
4 | = |k(2)

4 |. We can take advantage
of this property by multiplying the tensor by the corresponding vectors k. Then, we
immediately obtain an expression for the scattering cross-section; it contains only scalar
products (k(1),k(2)) that can be equalized to each other. The final expression for the
effective scattering cross-section has the form

k
(1)
i k

(2)
j Fijl(k

(2)
l + k

(1)
l ) ≈ −Imk

(1)
4 (k)2{2(1 + cos γ)(cos α + cos β)

ne(ε0)− np(ε0)

2i[2p cos α + k][−2p cos β + k]
p +

+ (k(1 + cos γ) +
p(cos α + cos β)

[−2p(cos β + cos α)]
(
ne(ε1)− np(ε1)

2i[2p cos α− k]
+

ne(ε2)− np(ε2)

2i[2p cos β − k]
)}, (11)

where γ is the angle between the vectors k(1) and k(2), and α and β are the angles between
the vector p and the corresponding k. As follows from the general form of expression
(11), the cross-section of photon scattering by a magnetic field is proportional to the
squared absolute value of the photon wave vector. The behavior of this dependence can
be used, while studying this scattering process experimentally. Notice that, for instance,
in the case of an external magnetic field without a medium, the scattering cross-section
is proportional to k4 [7, 8].

3 Discussion of Results
Thus, we have obtained the explicit expressions for the components of the three-photon vertex tensor in two approximations,
the static-field and low-frequency ones, and a special case of the interaction between free photons and a magnetic field is
analyzed. The static-case approximation demonstrates the essence of why the nonlinear behaviour of fields emerges in a
dense medium. At the same time, it forms a necessary basis for the description of various processes considered above.
The low-frequency approximation describes a large number of nonlinear photon–photon interactions and allows dynamic
processes to be studied. We consider the photon scattering by a magnetic field as the most interesting case. Therefore, it
was examined in more details. As a result, we derived an exact expression for the scattering cross-section. The obtained
dependence for the cross-section is a quadratic function of the absolute value of photon momentum. It can be used to
experimentally check the presence (formation) of a dense medium.

The phenomena arising in media with broken C-parity are of great interest, first of all, because they are an experimental
confirmation of theoretical principles used in quantum electrodynamics. However, physical phenomena of such an origin
can also find practical applications even today, mainly, as a detector of the presence of dense fermionic substances and a
tool of their research. Using the asymptotic relations that describe processes in the medium, the internal characteristics of
such media—first of all, the chemical potential—can be measured.

The low-frequency approximation used in this work reveals new opportunities for taking the influence of a medium
on the interaction between fields into consideration. This case can be reduced to a number of probable processes. In our
opinion, the process of free photon scattering by a magnetic field is the most interesting. The scattering parameters depend
only on the field characteristics and the chemical potential µ of a medium. Theoretically, this process allows one to measure
µ by detecting scattered photons. The phenomenon of such a type can find application in the NICA and FAIR projects
(where collisions between heavy nuclei are studied) both as a tool for the reliable detection of the very fact of the generation
of a dense fermionic matter and to study the properties of this matter.
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Abstract

We re-examine the extraction of ρ(s, t), the ratio of the real part to the imaginary
part of the scattering amplitude, and of the spin-flip amplitude, from the existing
experimental data in the Coulomb-hadron interference region. We show that it is
not possible to find reasonable assumptions about the structure of the scattering
amplitude of proton-proton and proton-antiproton elastic scattering at high energy
that would lead, in proton-antiproton scattering for 3.8 < pL < 6.0 GeV/c, to an
agreement between data and an analysis based on dispersion relations.

1 Introduction

The calculation via dispersion relations of the ratio of the real part to the imaginary part
of the forward spin-non-flip amplitude, ρ(s, t), does not agree with the data until one gets
to high energies, and it misses all the interesting intermediate-energy structures.

On the theory side, the situation is very complex and uncertain. Analyticity showed
that one could not do without a real part, while polarization data proved that it was not
possible to ignore spin complications, as the real part of the spin-non-flip amplitude has
a zero, around which the contribution of the spin-flip amplitude, which decreases quite
slowly with energy, cannot be ignored.

On the experimental side, the situation is not entirely clear cut either [1], and one of the
difficulties is due to the lack of experimental data at high energies and small momentum
transfer.

In this talk, we consider in great detail the situation concerning ρ(s, t). The model
we propose takes into account all known features of the near-forward proton-proton and
proton-antiproton data, i.e. different slopes for the spin-non-flip and the spin-flip ampli-
tudes, the value of total cross sections and of ρ(s, t), the relative phase of the Coulomb
and hadron amplitudes and the form factors of the nucleons.

1selugin@theor.jinr.ru
2jr.cudell@ulg.ac.be
3predazzi@to.infn.it
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Figure 1: ρ(s, 0) - the ratio of the real part to the imaginary part of the elastic scattering amplitude
for proton-antiproton scattering at low energies. The curve shows the dispersion relation description for
pp̄ scattering [8], and the stars are the result of our analysis.

2 Impact of the Coulomb-hadron phase

Let us first compare different approximations for the Coulomb-hadron interference used
in fits to the experimental pp̄-scattering data [2]. First, we use the simple West-Yennie
form of the relative phase [3]. This leads to values for ρ(s, 0) shown in the second column
of Table 1. The results show the distribution of the values of ρ(s) extracted from the
experiments. In two cases, they lie slightly above ρexp (at pL = 4.066, 5.603, 5.94
GeV/c); in three cases they lie considerably higher than ρexp (at pL = 5.72, 6.23
GeV/c) and in one case they lie below (at pL = 3.7 GeV/c).

If we take the slightly more complicated phase proposed by Cahn [4], the results are
almost the same (see the third column of Table 1). Finally, if we use the expression
derived by one of us [5, 6], taking into account the two-photon amplitude and using a
dipole form factor, the fit gives different values for ρ(s) (see the last column of Table 1):
the results lie above ρexp for all the considered energies, so that the difference with the
predictions of the dispersion analysis gets worse, as shown in Fig. 1.

3 Impact of the spin-flip amplitude

In most analyses, one assumes that the imaginary and real parts of the spin-non-flip am-
plitude have an exponential behaviour with the same t slope, and that the imaginary and
real parts of the spin-flip amplitudes, without the kinematic factor

√
|t|, are proportional

to the corresponding spin-non-flip parts of the amplitude, with a proportionality constant
independent of s. In [7] it was shown that if the slope of the spin-flip amplitude is bigger
than that for spin non-flip, Bsf = 2Bnf , the contribution of the spin-flip amplitude can
be felt in the differential cross sections of elastic hadron scattering at small |t|. As it is
not possible to calculate the hadronic amplitudes from first principles, we have to resort
to some assumptions about their s and t dependencies [9, 10].

Here, we use this simple model for the spin-flip amplitude and study its impact on
the determination of ρ(s, t). We take the spin-non-flip and spin-flip amplitudes in the
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Table 1: The dependence of ρ(s, 0) on the model used for the Coulomb-hadron phase in proton-
antiproton scattering. N is the number of data points.

pL(GeV/c) N ρexper. [2] ρ (phase [3]) ρ (phase [4]) ρ (phase [5, 6])

3.702 34 +0.018± 0.03 +0.0077± 0.02 +0.0078± 0.08 +0.028± 0.08
4.066 34 −0.015± 0.03 +0.0377± 0.02 +0.0378± 0.08 +0.0324± 0.08
5.603 215 −0.047± 0.03 +0.035± 0.02 +0.036± 0.08 −0.0017± 0.08
5.724 115 −0.051± 0.03 +0.0139± 0.02 +0.014± 0.08 −0.0088± 0.08
5.941 140 −0.063± 0.03 −0.0003± 0.02 −0.004± 0.08 −0.0055± 0.08
6.234 34 −0.06± 0.03 +0.0162± 0.02 +0.0162± 0.08 −0.0216± 0.08

simplest exponential form

F h
nf = hnf [i + ρ(s, 0)] eBnf t/2; (1)

F h
sf =

√−t/mp hsf [i + ρ(s, 0)] eBsf t/2, (2)

with Bsf = 2Bnf . The differential cross section in this case will be

dσ

dt
= 2π [|Fnf |2 + 2|Fsf |2], (3)

where the amplitudes Fnf and Fsf will include the corresponding electromagnetic parts
and the Coulomb-hadron phase factors as mentioned previously.

The results of our new fits of the proton-antiproton experimental data for pL in
[3.7, 6.2] GeV/c are presented in Table 2. The changes of χ2 after the inclusion of the
spin-flip amplitude are measured by the coefficient

Rχ =
χ2

without sf. − χ2
with sf.

χ2
without sf.

. (4)

We again obtain values of ρ close to zero and prevalently positive. Once again, as seen
from Fig. 1, the results do not agree with the prediction by the dispersion analysis [8].

4 Conclusion

The present analysis, which includes the contributions of Coulomb interference and spin
effects, shows a contradiction between the extracted value of ρ(s, 0) and the predictions
from the analysis based on dispersion relations.

If such a situation is confirmed by future new data from the LHC experiments, it could
reveal new effects such as , for example, a fundamental length of the order of 1 TeV.

It is likely, however, that the theoretical analysis can be further developed, to include
additional corrections connected with possible oscillations in the scattering amplitude and
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Table 2: Spin dependence of proton-antiproton elastic scattering

pL(GeV/c) N ρexp. Rχ ρmodel hsf , GeV

3.702 34 +0.018± 0.03 8% +0.057± 0.02 49.8± 1.4
4.066 34 −0.015± 0.03 25% +0.052± 0.009 48.9± 0.7
5.603 215 −0.047± 0.03 3.5% +0.014± 0.005 35.6± 4.
5.724 115 −0.051± 0.03 6.5% +0.023± 0.004 38.2± 4.5
5.941 140 −0.063± 0.03 4.5% +0.007± 0.003 43.2± 0.4

with the t-dependence of the spin-flip scattering amplitude. We hope that the forward
experiments at NICA will also give valuable information for the improvement of our
theoretical understanding of this question.
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Abstract

Nucleon to meson transition distribution amplitudes (TDAs), non-diagonal ma-
trix elements of nonlocal three quark operators between a nucleon and a meson
states, arise within the collinear factorized description of hard exclusive electropro-
duction of mesons off nucleons in the backward direction. Below we address the
problem of modelling pion to nucleon TDAs. We suggest a factorized Ansatz for
quadruple distributions with input from the soft pion theorem for πN TDAs. In or-
der to satisfy the polynomiality property in its full form the spectral representation
is complemented with a D-term like contribution from the nucleon exchange in the
u-channel of the reaction. We present our estimates for the backward pion electro-
production unpolarized cross section and its transverse target single spin asymmetry
within our composite model for πN TDAs.

The possibility to provide a description for hard exclusive electroproduction of mesons
(specifically here pions) off nucleons

e(k1) + N(p1) →
(
γ∗(q) + N(p1)

)
+ e(k2) → e(k2) + π(pπ) + N ′(p2). (1)

in terms of the fundamental degrees of freedom of QCD resides on the collinear factor-
ization theorem [1] valid in the so-called generalized Bjorken limit: large Q2 = −q2 and

s = (p+q)2; fixed xBj = Q2

2(p·q) and the skewness ξ, defined with respect to the t-channel mo-

mentum transfer: ξ = − (p2−p1)·n
(p1+p2)·n (n is the conventional light cone vector occurring in the

Sudakov decomposition of the relevant momenta) and small t-channel momentum transfer
squared t ≡ (p2− p1)

2. This factorization theorem allows to present the scattering ampli-
tude as a convolution of the hard part (coefficient function - CF) with non-perturbative
soft parts (generalized parton distributions - GPDs and distribution amplitudes - DAs)
describing hadronic contents.

According to the conjecture made in [2], a similar collinear factorization theorem for
the reaction (1) should be valid in the complementary kinematical regime: large Q2 and
s; fixed xBj and the skewness variable, which is now defined with respect to the u-channel

momentum transfer ∆ ≡ pπ− p1: ξ = − (∆·n)
(p1+pπ)·n and small u-channel momentum transfer

squared u ≡ (pπ− p1)
2 (rather than small t). Under these assumptions, referred to as the

backward kinematics regime, the amplitude of the reaction (1) factorizes as it is presented
on Fig.1 (see Ref. [5] for the detailed framework).
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Figure 1: Factorization for hard
production of pions off nucleons in
the backward kinematics.

This requires the introduction of supplementary non-
perturbative objects in addition to GPDs – nucleon to
pion transition distribution amplitudes (πN TDAs) de-
fined through the Fourier transform of the πN matrix
element of the three-local quark operator on the light
cone [3], [4]:

Ôαβγ
ρτχ (λ1n, λ2n, λ3n) = Ψα

ρ (λ1n)Ψβ
τ (λ2n)Ψγ

χ(λ3n). (2)

Here α, β, γ stand for quark flavor indices and ρ, τ , χ
denote the Dirac spinor indices; antisymmetrization in
color is implied; gauge links are omitted in the light-like
gauge A · n = 0.

The physical picture encoded in baryon to meson
TDAs is conceptually close to that contained in baryon GPDs [6]. By Fourier transforming
baryon to meson TDAs to the impact parameter space (∆T → bT ) a comprehensible three
dimensional physical picture may be obtained. Baryon to meson TDAs encode comple-
mentary information on the hadron structure in the transverse plane. In particular, they
allow to probe the localization of baryonic charge in the transverse plane and perform the
femto-photography of hadrons [7] from a new perspective. There are also hints [8] that
πN TDAs may be used as a tool to perform spatial imaging of the structure of nucleon’s
meson cloud. This point, which still awaits a detailed exploration, opens a fascinating
window for the investigation of the various facets of the nucleon’s interior. πN TDAs
were recently estimated within the light cone quark model [9].

Below we briefly discuss how πN TDAs meet the fundamental requirements following
from the symmetries of QCD, summarizing the main results of Refs. [10], [11].

• For given flavor contents spin decomposition of the leading twist-3 πN TDA in-
volve eight invariant functions V πN

1,2 , AπN
1,2 , T πN

1,2,3,4 each depending on the longitudinal

momentum fractions xi (
∑3

i=1 xi = 2ξ), skewness parameter ξ and the u-channel
momentum transfer squared ∆2 ≡ (pπ−p1)

2 as well as on the factorization scale µ2.

• Not all πN TDAs are independent. Taking the account of the isotopic and permu-
tation symmetries (see [11]), one may check that in order to provide description of
all isotopic channels of the reaction (1) it suffices to introduce eight independent
πN TDAs: four in both the isospin-1

2
and the isospin-3

2
channels.

• The evolution properties of πN TDAs are described by the appropriate generaliza-
tion [12] of the Efremov-Radyushkin-Brodsky-Lepage/ Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (ERBL/DGLAP) evolution equations.

• The support of πN TDAs in the longitudinal momentum fractions xi is given by
the intersection of three stripes −1 + ξ ≤ xi ≤ 1 + ξ (

∑3
i=1 xi = 2ξ) [10]. One

can distinguish the ERBL-like domain, in which all xi are positive and two type of
DGLAP-like domains, in which one or two xi turn negative.

• The polynomiality property for the Mellin moments of πN TDAs in the longitu-
dinal momentum fractions xi is the direct consequence of the underlying Lorentz
symmetry. Similarly to the GPD case, the (n1, n2, n3)-th (n1 +n2 +n3 ≡ N) Mellin
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moments of nucleon to meson TDAs in x1, x2, x3 are polynomials of power N or
N + 1 in the skewness variable ξ.

• Crossing transformation relates πN TDAs to πN generalized distribution ampli-
tudes (GDAs), defined by the matrix element of the same operator (2) between
the πN state and the vacuum. The soft pion theorem [13] for πN GDAs [14] also
constrains πN TDAs near the soft pion threshold ξ = 1, ∆2 = M2, where M is the
nucleon mass.

The most direct way to ensure both the polynomiality and the support properties for
πN TDAs is to employ the spectral representation in terms of quadruple distributions [10].
Our strategy of modeling πN TDAs [15] is completely analogous to that employed for
modeling nucleon GPDs with the help of Radyushkin’s double distribution Ansatz [16].
The main difficulty is that, contrary to GPDs, baryon to meson TDAs lack a comprehen-
sible forward limit (ξ = 0). In order to propose a model for quadruple distributions it is
illuminating to consider the alternative limit ξ = 1, in which πN TDAs are constrained
by the chiral dynamics through the soft pion theorem [13] for πN GDAs. In this limit
πN TDAs are expressed through the nucleon DAs {V p, Ap, T p} [17]. For example, πN

TDAs V π0p
1 , Aπ0p

1 , T π0p
1 reduce to the following combination of the nucleon DAs

{
V π0p

1 , Aπ0p
1

}
(x1, x2, x3, ξ = 1) = −1

4
× 1

2

{
V p, Ap

} (x1

2
,
x2

2
,
x3

2

)
;

T π0p
1 (x1, x2, x3, ξ = 1) =

1

4
× 3

2
T p

(x1

2
,
x2

2
,
x3

2

)
, (3)

and
{
V π0p

2 , Aπ0p
2 , T π0p

2

}
(x1, x2, x3, ξ = 1) = −1

2

{
V π0p

1 , Aπ0p
1 , T π0p

1

}
(x1, x2, x3, ξ = 1).

With appropriate change of spectral parameters the spectral representation for πN
TDAs of Ref. [10] can be rewritten as:

H(wi, vi, ξ) =

∫ 1

−1

dκi

∫ 1−κi
2

− 1−κi
2

dθi

∫ 1

−1

dµi

∫ 1−µi
2

− 1−µi
2

dλi δ
(
wi − κi − µi

2
(1− ξ)− κiξ

)

×δ
(
vi − θi − λi

2
(1− ξ)− θiξ

)
F (κi, θi, µi, λi). (4)

The index i = 1, 2, 3 here refers to one of three possible choices of independent variables
(quark-diquark coordinates): wi = xi − ξ, vi = 1

2

∑3
k,l=1 εiklxk. We suggest to use the

following factorized Ansatz for the quadruple distribution F in (4):

F (κi, θi, µi, λi) = 4V (κi, θi) h(µi, λi), (5)

where V (κi, θi) is the combination of nucleon DAs to which πN TDA in question reduces
in the limit ξ = 1 (c.f. Eq. (3)), rewritten in terms of independent variables: κi = 2yi−1;
θi =

∑3
k,l=1 εiklyk.

The profile function h(µi, λi) is normalized as
∫ 1

−1
dµi

∫ 1−µi
2

− 1−µi
2

dλi h(µi, λi) = 1 . The

support of the profile function h is also that of a baryon DA. The simplest assumption for
the profile is to take it to be determined by the asymptotic form of baryon DA (120y1y2y3

with
∑3

i=1 yi = 1) rewritten in terms of variables µi = 2yi − 1, λi =
∑3

k,l=1 εiklyk:

h(µi, λi) =
15

16
(1 + µi)((1− µi)

2 − 4λ2
i ). (6)
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Similarly to the GPD case [18], in order to satisfy the polynomiality condition in its
complete form the spectral representation for πN TDAs {V1,2, A1,2, T1,2}πN should be
complemented by a D-term like contribution. The simplest possible model for such a
D-term is the contribution of the u-channel nucleon exchange into πN TDAs computed
in [11]. In this way we come to a two component model for πN TDAs involving the
spectral representation part, based on the factorized Ansatz (5) with the profile (6) and
with input from the soft pion theorem, and the D-term, originating from the nucleon
exchange in the u-channel. It provides a model for πN TDAs in the complete domain of
their definition.

Within the factorized approach the leading order (both in αs and 1/Q) amplitude of
backward hard pion production Mλ

s1s2
reads [5]:

Mλ
s1s2

= C 1

Q4

[
Sλ

s1s2
I(ξ, ∆2) + S ′λs1s2

I ′(ξ, ∆2)
]
. (7)

The spin structures S and S ′ are defined as Sλ
s1s2

≡ Ū(p2, s2)Ê(λ)γ5U(p1, s1) ; S ′λs1s2
≡

1
M

Ū(p2, s2)Ê(λ)∆̂T γ5U(p1, s1), where E denotes the polarization vector of the virtual
photon and U is the usual nucleon Dirac spinor. C is the normalization constant C ≡
−i

(4παs)2
√

4παemf2
N

54fπ
, where αem(αs) stands for the electromagnetic (strong) coupling, fπ =

93MeV is the pion decay constant and fN is the normalization constant of the nucleon
DA [17].

The coefficients I, I ′ result from the calculation of 21 diagrams contributing to the
hard scattering amplitude [5]:

{I, I ′}(ξ, ∆2) ≡
∫

d3xδ(
∑

i

xi − 2ξ)

∫
d3yδ(

∑
i

yi − 1)

(
2

7∑
α=1

{
Tα, T ′

α

}
+

14∑
α=8

{
Tα, T ′

α

}
)

,

where the convolution integrals in xi and yi stand over the supports of πN TDAs and
nucleon DAs respectively. The explicit expressions for the coefficients Tα and T ′

α for γ?p →
π0p channel are presented in the Table I of Ref. [5]. The result for γ?p → π+n channel can
be read off the same Table with the obvious changes: Qu À Qd; {V1,2, A1,2, T1,2,3,4}pπ0 →
{V1,2, A1,2, T1,2,3,4}pπ+

; {V, A, T}p → {V, A, T}n. In [15] we develop a reliable method for
the calculation of the corresponding convolution integrals.

Within the suggested factorization mechanism for backward pion electroproduction
only the transverse cross section d2σT

dΩπ
receives a contribution at the leading twist level.

We establish the following formula for the unpolarized transverse cross section through
the coefficients I, I ′ introduced in (7):

d2σT

dΩπ

= |C|2 1

Q6

Λ(s,m2,M2)

128π2s(s−M2)

1 + ξ

ξ

(|I|2 − ∆2
T

M2
|I ′|2), (8)

where Λ(x, y, z) =
√

x2 + y2 + z2 − 2xy − 2xz − 2yz is the usual Mandelstam function.
Within our two component model for πN TDAs I receives contributions both from the
spectral representation component and nucleon pole exchange contribution. I ′ is deter-
mined solely by the nucleon pole contribution. On Fig. 2 we present our estimates for
the unpolarized cross section d2σT

dΩπ
of backward production of π+ and π0 off protons for

Q2 = 10GeV2 and u = −0.5GeV2 in nb/sr. CZ solution [17] for the nucleon DAs is used
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as phenomenological input for our model. The magnitude of the cross sections is large
enough for a detailed investigation to be carried at high luminosity experiments such as
J-lab@12GeV and EIC. The scaling law for the unpolarized
cross section (8) is 1/Q8.
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Figure 2: Unpolarized cross sec-
tion for backward π+ (solid) and π0

(dashed) production off proton.

Asymmetries, being ratios of the cross sections, are
less sensitive to perturbative corrections. Therefore,
they are usually considered as more reliable observ-
ables to test the factorized description of hard reac-
tions. For the backward pion electroproduction the
evident candidate is the single transverse target spin
asymmetry (STSA) [19] defined as:

A =
1

|~s1|

(∫ π

0
dϕ̃|Ms1

T |2 −
∫ 2π

π
dϕ̃|Ms1

T |2
)

(∫ 2π

0
dϕ̃|Ms1

T |2
)

= − 4

π

|∆T |
M

Im(I ′(I)∗)

|I|2 − ∆2
T

M2 |I ′|2
. (9)

Here ϕ̃ ≡ ϕ − ϕs, where ϕ is the angle between leptonic and hadronic planes and ϕs

is the angle between the leptonic plane and the transverse spin of the target. Our two
component model for πN TDAs provides a non-vanishing numerator in the last equality
of (9) thanks to the interfering contributions of the spectral part into ImI(ξ) and of the
nucleon pole part into ReI ′(ξ).

On Fig. 3 we show the result of our calculation of the STSA for backward π+ and π0

electroproduction off protons for Q2 = 10 GeV2 and u = −0.5 GeV2. STSA turns out to
be sizable in the valence region and its measurement should be considered as a crucial
test of the applicability of our collinear factorized
scheme for backward pion electroproduction.
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Figure 3: Single transverse spin asym-
metry for backward π+ (solid) and π0

(dashed) production off proton.

Our estimates of backward pion electroproduction
cross section and single transverse spin asymmetry
make us hope for bright experimental prospects for
measuring baryon to meson TDAs with high luminos-
ity electron beams such as J-lab@ 12 GeV and EIC.
Experimental data from J-lab@ 6 GeV on backward
π+, π0, η and ω meson production are currently be-
ing analyzed [20]. We eagerly await for the experi-
mental evidences for validity of the factorized picture
of backward electroproduction reactions suggested in
our approach.
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Abstract

The chiral quark model gives a reasonably good description of many low-energy
observables by incorporating the effective degrees carried by the constituent quarks
and Goldstone bosons. We calculate the magnetic moments of negative-parity low-
lying nucleon resonances in the chiral constituent quark model and discuss the effect
of Goldstone boson degrees of freedom. The results obtained are compared with the
calculations of the other phenomenological models.

The study of magnetic moments of the nucleon and its resonances is one of the inter-
esting topics in hadron physics as it provides valuable insight into the nonperturbative
aspects of QCD. One of the important lowest lying nucleon resonance with JP = 1

2

−
is

the S11(1535). In particular, the large mass splitting between the nucleon ground state
N(939) and its negative parity partner N∗(1535) is connected to the spontaneous breaking
of the chiral symmetry [1]. For the S11(1535) resonance, it is believed that its magnetic
moment can be extracted through the process of γp → γηp [2]. Since this resonance
strongly couples to the ηN channel, the η meson in the final state can be regarded as a
probe of the S11(1535) resonance in intermediate state.

In the low energy regime, chiral constituent quark model with spin-spin generated
configuration mixing (χCQM) [3] successfully explains the “Proton spin crisis” and other
related properties [4–8]. The χCQM is further extended to calculate the octet and decuplet
baryon magnetic moments incorporating the sea quark polarizations and their orbital
angular momentum through a generalization of the Cheng-Li mechanism [9, 10]. In this
work, we intend to extend the applicability of the model to study the magnetic moments
of the negative-parity low-lying nucleon resonances with orbital angular moment being 1.

In the nonrelativistic SU(6) constituent quark model, the lowest-lying negative-parity
nucleon resonances are |N2P1/2〉 and |N4P1/2〉, where the usual spectroscopic notations
2P1/2 and 4P1/2 are used to indicate their total quark spin S = 1/2, 3/2 (2S + 1 = 2, 4),
orbital angular momentum L = 1 (P -wave), and total angular momentum J = 1/2 [11].
The wavefunctions of the |N2P1/2〉 and |N4P1/2〉 states are explicitly given as

|N2P1/2〉 =
1√
2

∑
mlms

〈 1 1

2
ml ms | 1

2

1

2
〉
{

ψρ
1ml

[ 1√
2

(
χλ

ms
φρ + χρ

ms
φλ

)]

+ψλ
1ml

[ 1√
2

(
χρ

ms
φρ − χλ

ms
φλ

)]}
, (1)

|N4P1/2〉 =
1√
2

∑
mlms

〈 1 3

2
ml ms | 1

2

1

2
〉
[
ψρ

1ml
χs

ms
φρ + ψλ

1ml
χs

ms
φλ

]
, (2)
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where ψ, χ, and φ denote the spatial, spin, and flavor wavefunctions [12].
The spin angular momentum S = 1/2 couples with the orbital angular momentum

L = 1 to give the total angular momentum J = 1/2 and J = 3/2. The physical eigenstates
are linear combinations of these two states. The physical states for the four L=1 negative-
parity resonances are:

|S11(1535)〉 = cos θ|N2P1/2〉 − sin θ|N4P1/2〉 , |S11(1650)〉 = sin θ|N2P1/2〉+ cos θ|N4P1/2〉 .
(3)

The magnetic moments of the S11(1535) and S11(1650) resonances, in terms of the
|N2P1/2〉 and |N4P1/2〉 states are expressed as

µ(S11(1535)) = µ(N2P1/2) cos2 θ + µ(N4P1/2) sin2 θ − 2 〈N2P1/2 |µz |N4P1/2 〉 sin θ cos θ ,

µ(S11(1650)) = µ(N2P1/2) sin2 θ + µ(N4P1/2) cos2 θ + 2 〈N2P1/2 |µz |N4P1/2 〉 sin θ cos θ .

The magnetic moments of the qqq baryons has contributions coming from both quark spin
and orbital angular momentum, i.e. µ = µS + µL with

µS =
∑

i

µs
i =

∑
i

Qi

2mi

si = ∆uµu + ∆dµd + ∆sµs , (4)

µL =
∑

i

µl
i =

∑
i

Qi

2mi

li = ∆u(1)µu + ∆d(1)µd + ∆s(1)µs , (5)

where the index i sums over three quarks. The spin polarizations ∆q = q↑ − q↓ (q↑ or q↓

being the number of quarks with spin up or spin down) and ∆q(1) = q(1) − q(−1) [6] (q(1)

or q(−1) being the number of quarks with the projection of the orbital angular momentum
to be mL = −1). Here, µq = eq

2Mq
(q = u, d, s, c) is the quark magnetic moment, eq and

Mq are the electric charge and mass for the q quark, respectively.
The magnetic moment of the S11(1535) and S11(1650) states in the constituent quark

model are expressed as

µ(S+
11(1535)) =

(
−2

9
µS

u −
1

9
µS

d +
4

9
µL

u +
2

9
µL

d

)
cos2 θ +

(
10

9
µS

u +
5

9
µS

d

−1

9
µL

u −
2

9
µL

d

)
sin2 θ − 2 sin θ cos θ

(
4

9
µS

u −
4

9
µS

d

)
, (6)

µ(S0
11(1535)) =

(
−1

9
µS

u −
2

9
µS

d +
2

9
µL

u +
4

9
µL

d

)
cos2 θ +

(
5

9
µS

u +
10

9
µS

d

−2

9
µL

u −
1

9
µL

d

)
sin2 θ − 2 sin θ cos θ

(
−4

9
µS

u +
4

9
µS

d

)
, (7)

µ(S+
11(1650)) =

(
−2

9
µS

u −
1

9
µS

d +
4

9
µL

u +
2

9
µL

d

)
sin2 θ +

(
10

9
µS

u +
5

9
µS

d

−1

9
µL

u −
2

9
µL

d

)
cos2 θ + 2 sin θ cos θ

(
4

9
µS

u −
4

9
µS

d

)
, (8)

µ(S0
11(1650)) =

(
−1

9
µS

u −
2

9
µS

d +
2

9
µL

u +
4

9
µL

d

)
sin2 θ +

(
5

9
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u +
10

9
µS

d

−2

9
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u −
1

9
µL

d

)
cos2 θ + 2 sin θ cos θ

(
−4

9
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u +
4

9
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. (9)
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The key to understand the magnetic moment of the baryons, in the χCQM formalism
[4], is the fluctuation process q± → GB + q

′∓ → (qq̄
′
) + q

′∓ , where GB represents the
Goldstone boson and qq̄

′
+ q

′
constitute the “quark sea” [6, 5]. The effective Lagrangian

describing the interaction between quarks and a nonet of GBs, can be expressed as L =

g8q̄
(
Φ + ζ η′√

3
I
)

q = g8q̄ (Φ′)q , where ζ = g1/g8, g1 and g8 are the coupling constants for

the singlet and octet GBs, respectively, I is the 3× 3 identity matrix. The GB field can
be expressed as

Φ′ =




π0√
2

+ β η√
6

+ ζ η
′

√
3

π+ αK+

π− − π0√
2

+ β η√
6

+ ζ η
′

√
3

αK0

αK− αK̄0 −β 2η√
6

+ ζ η
′

√
3


 and q =




u
d
s


 . (10)

The parameter a(= |g8|2) denotes the probability of chiral fluctuation u(d) → d(u)+π+(−),
whereas α2a, β2a and ζ2a respectively denote the probabilities of fluctuations u(d) →
s + K−(0), u(d, s) → u(d, s) + η, and u(d, s) → u(d, s) + η

′
.

The sea and orbital quark spin polarizations corresponding to each baryon can be
calculated by substituting for each valence quark

q↑ → Pqq
↑ + |ψ(q↑)|2 , (11)

q(1) → Tqq
(1) + |ψ(q(1))|2 , (12)

where Pq and Tq are the probability of no emission of GBs from quark q↑ and q(1), re-
spectively, and |ψ(q↑)|2 and |ψ(q(1))|2 are the probability of transforming a q↑ and q(1)

quark [6]. For the orbital angular momentum contributions readers are requested to refer
to the Ref. [10].

We can calculate the magnetic moment of the N∗ resonances in the same framework.
In this work, we have calculated the magnetic moment of the states S+

11(1535), S0
11(1535),

S+
11(1650), and S0

11(1650) states. The calculation of magnetic moments in χCQM involve
the symmetry breaking parameters a, aα2, aβ2, aζ2, representing, respectively, the prob-
abilities of fluctuations of a constituent quark into pions, K, η, η

′
. The best fit to the

set of parameters obtained by carrying out a fine grained analysis of the spin and flavor
distribution functions of proton [6, 7] leading to a = 0.12 , α = β = 0.45 , ζ = −0.15 .

Using the value θ = −31.7◦ in Eqs. (6)-(9), we obtain

µS+
11(1535) = 1.89 µN and µS0

11(1535) = −1.28 µN ,

µS+
11(1650) = 0.11 µN and µS0

11(1650) = 0.95 µN ,

Using the Eqs. (11)-(12) and the set of χCQM parameters discussed above, we obtain

µS+
11(1535) = 2.09 µN and µS0

11(1535) = −1.57 µN ,

µS+
11(1650) = −0.29 µN and µS0

11(1650) = 0.98 µN .
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Abstract

The strange quark polarization puzzle, i.e. the contradiction between the nega-
tive polarized strange quark density obtained from analysis of inclusive DIS data and
the positive values obtained from combined analysis of inclusive and semi-inclusive
SIDIS data using de Florian et. al. (DSS) fragmentation functions, is discussed. To
this end the results of a new combined NLO QCD analysis of the polarized inclusive
and semi-inclusive DIS data, using the Hirai et. al. (HKNS) fragmentation func-
tions, are presented. It is demonstrated that the polarized strange quark density
is very sensitive to the kaon fragmentation functions, and if the set of HKNS frag-
mentation functions is used, the polarized strange quark density from the combined
analysis turns out to be negative and well consistent with values obtained from the
pure DIS analysis.

In the absence of neutrino reactions on a polarized target, the inclusive polarized
deep inelastic lepton-hadron reactions determine only the sum of quark and antiquark
polarized parton density functions (PDFs), ∆q(x) + ∆q̄(x), and provide no information
at all about the individual polarized antiquark densities. All analysis of the polarized
inclusive DIS data have produced results for the polarized strange quark density function,
∆s(x)+∆s̄(x), which are significantly negative for all values of x1 (for more recent analysis
see [1,2]). One way to determine polarized quark and sea-quark densities separately is to
use the data on polarized semi-inclusive reactions (SIDIS) like l + p → l + h + X, where
h is a detected hadron. In the past few years more data on polarized SIDIS processes
have become available and have led to assertions that ∆s(x) + ∆s̄(x) is positive for most
of the range of measured x. This contradiction between the behaviour of the polarized
strange quark densities extracted from the analysis of pure inclusive and the combined
inclusive and semi-inclusive deep inelastic scattering data, respectively, is known as the
strange quark polarization puzzle. In this talk we discuss the role of the fragmentation
functions (FFs) in determining of the sea-quark densities, and in particular, a possible
resolution of the puzzle.

The key to resolving the puzzle lies, we believe, in the properties of FFs needed in
the theoretical expressions for the measured SIDIS cross-sections and asymmetries, which
involve convolutions of either unpolarized or polarized PDFs with the FFs. There are

1Note that in all the QCD analysis of the pure inclusive DIS data an input parameterization for
∆s(x) + ∆s̄(x) which does not allow its changing sign behaviour was used. We have recently shown that
a more general input parameterization of ∆s(x) + ∆s̄(x) does not change the result.
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three modern versions of the FFs in the literature, Hirai et al. (HKNS) [3], de Florian
et al. (DSS) [4] and Albino et. al. (AKK) [5], sometimes differing significantly from
each other. They are based mainly on semi-inclusive e+ e− annihilation data (HKNS),
e+ e− annihilation and RHIC data on reactions like pp → π or K + X (AKK), and a
global analysis (DSS) of the data on semi-inclusive e+ e− annihilation, the proton-proton
collisions at RHIC and unpolarized SIDIS processes.

The early claim by the HERMES Collaboration [6] that the polarized SIDIS data
implied marginally positive ∆s(x)+∆s̄(x) in the measured x range [0.023-0.3] was based
on a LO QCD analysis of the data. In 2008, de Florian, Sassot, Stratmann and Vogelsang
(DSSV) carried out a combined NLO QCD analysis [7] of polarized DIS, SIDIS and RHIC
data using the DSS fragmentation functions and effectively confirmed the LO result. More
precisely, using the assumption ∆s(x) = ∆s̄(x) they obtained a sign-changing solution
for ∆s(x) + ∆s̄(x), negative for x < 0.03 and positive in the region x > 0.03. Later
we repeated this analysis [8], using polarized DIS and SIDIS data and found substantial
agreement with DSSV. We confirmed the sign-changing behavior of ∆s̄(x), though our
∆s̄(x) is less negative at x < 0.03 and less positive for large x and compatible with zero
within the errors. Note that the polarized pp data from RHIC are not important for the
determination of the polarized quark and antiquark densities; they constrain mainly the
gluon polarization.

Figure 1: Comparison between polarized
strange quark densities obtained from different
kinds of NLO QCD analysis (see the text).

In order to understand better the issue
of the strange quark polarization puzzle we
first carried out a combined NLO QCD anal-
ysis [9] of the polarized world DIS data and
just the pion SIDIS data [10], using the DSS
FFs. Note that in this case only the sum
x(∆s+∆s̄)(x,Q2) can be determined from the
data because of the reasonable assumption
Dπ

s = Dπ
s̄ used for all the sets of the fragmen-

tation functions. The result for x(∆s+∆s̄)/2
is illustrated in Fig. 1 (dashed curve) and
compared to those obtained from the LSS’06
DIS analysis [2] (dotted curve) and the com-
bined LSS’10 fit to the DIS and SIDIS data [8]
(solid curve). As seen from Fig. 1, in the
presence of only the Aπ

1N data, x(∆s(x) + ∆s̄(x))/2 (dashed curve) is still negative in the
measured x range as in the analysis of the purely inclusive data.

This definitely seemed to point towards the kaon FFs as the source of the conflict.
Note also that it had already been pointed out by COMPASS Collaboration (2nd and 3rd
references in [10]) that in the LO QCD approximation the value of the first moment of
∆s(x) in the measured range of x is very sensitive to the assumed value of the ratio of
the s̄-quark to u-quark fragmentation functions into positive kaons. Therefore, we carried
out a new combined NLO QCD analysis [11] of the world polarized DIS [12] and all the
SIDIS data [10, 13] using the HKNS set of FFs [3], which differ significantly from the
DSS ones in the kaon sector, especially for the transition s̄ → K+, as shown in Fig 2. In
Fig. 2 two error bands for the HKNS FFs are presented. The narrow one corresponds to
∆χ2 = 1 while the wide corridor corresponds to ∆χ2 = 19.2. The latter value corresponds
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Figure 2: Comparison between NLO HKNS and DSS kaon FFs at Q2 = 10 GeV 2.

to 17 parameters fit in the MINUIT-procedure when only the statistical errors are taken
into account. However, the authors of [3] apply this procedure for the statistical and
systematic errors added in quadrature which definitely overestimates the uncertainties.

The significant difference in the kaon sector between the DSS FFs and the other sets
of FFs, including HKNS, is due to the unpublished HERMES’05 data on the hadron
multiplicities used only in the DSS analysis. It turns out, however, that the DSS predic-
tions are NOT in agreement with the new preliminary HERMES [14] and the COMPASS
data [15] on the multiplicities. So, there is no reason to favor the DSS FFs until the final
HERMES and COMPASS data on the hadron multiplicities are presented.

The method used in this analysis is the same as in our previous one [8] of the same set
of data when the DSS FFs were used. Note that the present SIDIS data are not precise
enough to determine separately ∆s(x) and ∆s̄(x). So, as in our previous analysis the as-
sumption ∆s(x) = ∆s̄(x) was used. A good description of the SIDIS data (χ2

NrP =0.92) is
achieved using the HKNS FFs (NrP is the number of corresponding experimental points).
The quality of the fit to the data is demonstrated in Fig. 3 (solid curves) for some of the
SIDIS asymmetries obtained by the HERMES and COMPASS Collaborations. The new
curves are compared to our previous theoretical curves (dashed ones) obtained from the
best fit to the data using the DSS FFs (χ2

NrP =0.87). As seen from Fig. 3 the results from
both the fits are very close to each other and for some of the asymmetries the curves are
almost identical.

Let us discuss the impact of the HKNS fragmentation functions on the polarized sea-
quark densities. It is known that the present SIDIS data do not influence the gluon
polarization. It is mainly determined from inclusive DIS and semi-inclusive pp RHIC
data. The new values of the sea quark and gluon polarized densities (solid curves) are
presented in Fig. 4 together with their error bands and compared to those obtained
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Figure 3: Comparison of our NLO LSS’11 (solid curves) and LSS’10 (dash curves) results for the SIDIS
asymmetries with the data at measured x and Q2.

using the DSS FFs (LSS’10). As seen from Fig. 4 the changes in the polarized sea quark
densities are as follows: negligible for x∆d̄(x), visible for x∆ū(x) at x > 0.03 and dramatic
for x∆s̄(x), although the central values of the first moments of ∆s̄(DSS) and ∆s̄(HKNS)
are very close to each other (−0.052 ± 0.016 and −0.048 ± 0.012 at Q2 = 1 GeV 2 for
DSS and HKNS FFs, respectively) and coincide within the errors. In Fig. 4 our LSS’06
result [2] for x(∆s(x) + ∆s̄(x))/2 (dot curve) obtained from the NLO QCD analysis of
the world inclusive DIS data is presented too. We find now that if the HKNS FFs are
used, ∆s̄(x) is negative and well consistent with (∆s(x) + ∆s̄(x))/2 obtained from the
pure DIS analyses [1, 2].

In conclusion, we have found that in the presence of semi-inclusive DIS data the
strange quark density is very sensitive to the choice of the FFs. We have also demon-
strated that the strange quark polarization puzzle can be resolved by using the HKNS
set of fragmentation functions rather than the DSS ones. Finally, we like to stress we do
not claim to have presented a unique resolution to the strange polarization puzzle. The
final HERMES and COMPASS data on multiplicities will be crucial for a more reliable
determination of FFs and a possible resolution of the strange quark polarization puzzle.
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Figure 4: Comparison between NLO LSS’11(HKNS FFs) and LSS’10(DSS FFs) sea quarks and gluon
polarized PDFs at Q2 = 2.5 GeV 2. The dot curve corresponds to x(∆s(x)+∆s̄(x))/2 obtained from the
pure DIS analysis [2].
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Abstract

We briefly recall the main physical features of the parton distributions in the
quantum statistical picture of the nucleon. Some predictions from a next-to-leading
order QCD analysis are successfully compared to recent unpolarized and polarized
experimental results. We will discuss the extension to the transverse momentum
dependence of the parton distributions and its relevance for semiinclusive deep in-
elastic scattering. Finally, we will present some new positivity constraints for spin
observables and their implications for parton distributions.

1 A short review on the statistical approach

Let us first recall some of the basic ingredients for building up the parton distribution
functions (PDF) in the statistical approach, as oppose to the standard polynomial type
parametrizations, based on Regge theory at low x and counting rules at large x. The
fermion distributions are expressed by the sum of two terms [1], the first one, a quasi
Fermi-Dirac function, for a given helicity and flavor, and the second one, a flavor and
helicity independent diffractive contribution equal for light quarks. So we have, at the
input energy scale Q2

0 = 4GeV2,

xqh(x,Q2
0) =

AXh
0qx

b

exp[(x−Xh
0q)/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
, (1)

xq̄h(x,Q2
0) =

Ā(X−h
0q )−1x2b

exp[(x + X−h
0q )/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
. (2)

Notice the change of sign of the potentials and helicity for the antiquarks. The parameter x̄
plays the role of a universal temperature and X±

0q are the two thermodynamical potentials
of the quark q, with helicity h = ±. It is important to remark that the diffractive
contribution occurs only in the unpolarized distributions q(x) = q+(x) + q−(x) and it is
absent in the valence qv(x) = q(x)− q̄(x) and in the helicity distributions ∆q(x) = q+(x)−
q−(x) (similarly for antiquarks). The eight free parameters1 in Eqs. (1,2) were determined
at the input scale from the comparison with a selected set of very precise unpolarized and
polarized Deep Inelastic Scattering (DIS) data [1]. They have the following values

x̄ = 0.09907, b = 0.40962, b̃ = −0.25347, Ã = 0.08318, (3)

X+
0u = 0.46128, X−

0u = 0.29766, X−
0d = 0.30174, X+

0d = 0.22775 . (4)

1A = 1.74938 and Ā = 1.90801 are fixed by the following normalization conditions u−ū = 2, d−d̄ = 1.
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For the gluons we consider the black-body inspired expression

xG(x,Q2
0) =

AGxbG

exp(x/x̄)− 1
, (5)

a quasi Bose-Einstein function, with bG = 0.90, the only free parameter2, since AG = 20.53
is determined by the momentum sum rule. We also assume that, at the input energy
scale, the polarized gluon distribution vanishes, so x∆G(x,Q2

0) = 0. For the strange
quark distributions, the simple choice made in Ref. [1] was greatly improved in Ref. [2].
More recently, new tests against experimental (unpolarized and polarized) data turned
out to be very satisfactory, in particular in hadronic collisions, as reported in Refs. [3,4].

Figure 1: The ratio d(x)/u(x) as func-
tion of x for Q2 = 4GeV2 (solid line) and
Q2 = 100GeV2 (dashed-dotted line).

Figure 2: Comparison of the data on d̄/ū(x,Q2) from
E866/NuSea at Q2 = 54GeV2 [6], with the prediction
of the statistical model (solid curve) and the set 1 of the
parametrization proposed in Ref. [7] (dashed curve).

An interesting point concerns the behavior of the ratio d(x)/u(x), which depends on
the mathematical properties of the ratio of two Fermi-Dirac factors, outside the region
dominated by the diffractive contribution. So for x > 0.1, this ratio is expected to decrease
faster for X+

0d − x̄ < x < X+
0u + x̄ and then above, for x > 0.6, it flattens out.

This change of slope is clearly visible in Fig. 1 , with a very little Q2 dependence. Note
that our prediction for the large x behavior, differs from most of the current literature,
namely d(x)/u(x) → 0 for x → 1, but we find d(x)/u(x) → 0.16 near the value 1/5, a
prediction originally formulated in Ref. [5]. This is a very challenging question, since the
very high-x region remains poorly known. To continue our tests of the unpolarized parton
distributions, we must come back to the important question of the flavor asymmetry of
the light antiquarks. Our determination of ū(x,Q2) and d̄(x,Q2) is perfectly consistent
with the violation of the Gottfried sum rule, for which we found the value IG = 0.2493
for Q2 = 4GeV2. Nevertheless there remains an open problem with the x distribution of
the ratio d̄(x)/ū(x) for x ≥ 0.2. According to the Pauli principle, this ratio is expected
to remain above 1 for any value of x. However, the E866/NuSea Collaboration [6] has

2In Ref. [1] we were assuming that, for very small x, xG(x,Q2
0) has the same behavior as xq̄(x,Q2

0),
so we took bG = 1 + b̃. However this choice leads to a too much rapid rise of the gluon distribution,
compared to its recent determination from HERA data, which requires bG = 0.90.
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Figure 3: Quark and antiquark helicity distribu-
tions as a function of x for Q2 = 3GeV2. Data from
COMPASS [16]. The curves are predictions from the
statistical approach.

Figure 4: Ratios (∆u + ∆ū)/(u + ū) and (∆d +
∆d̄)/(d+ d̄) as a function of x. Data from Hermes
for Q2 = 2.5GeV2 [11] and a JLab Hall A exper-
iment [12]. The curves are predictions from the
statistical approach..

released the final results corresponding to the analysis of their full data set of Drell-Yan
yields from an 800 GeV/c proton beam on hydrogen and deuterium targets and they
obtain the ratio, for Q2 = 54GeV2, d̄(x)/ū(x) shown in Fig. 2. Although the errors are
rather large in the high-x region, the statistical approach disagrees with the trend of the
data. Clearly by increasing the number of free parameters, it is possible to build up
a scenario which leads to the drop off of this ratio for x ≥ 0.2. For example this was
achieved in Ref. [7], as shown by the dashed curve in Fig. 2. There is no such freedom
in the statistical approach, since quark and antiquark distributions are strongly related.
On the experimental side, there are now new opportunities for extending the d̄(x)/ū(x)
measurement to larger x up to x = 0.7, with the upcoming E906 experiment at the 120
GeV Main Injector at Fermilab [8] and a proposed experiment at the new 30-50 GeV
proton accelerator at J-PARC [9].

Analogous considerations can be made for the corresponding helicity distributions,
whose most recent determinations are shown in Fig. 3. By using a similar argument as
above, the ratio ∆u(x)/u(x) is predicted to have a rather fast increase in the x range
(X−

0u− x̄, X+
0u + x̄) and a smoother behaviour above, while ∆d(x)/d(x), which is negative,

has a fast decrease in the x range (X+
0d − x̄, X−

0d + x̄) and a smooth one above. This is
exactly the trends displayed in Fig. 4 and our predictions are in perfect agreement with
the accurate high-x data. We note the behavior near x = 1, another typical property of
the statistical approach, is also at variance with predictions of the current literature. The
fact that ∆u(x) is more concentrated in the higher x region than ∆d(x), accounts for the
change of sign of gn

1 (x), which becomes positive for x > 0.5, as first observed at Jefferson
Lab [12].

Concerning the light antiquark helicity distributions, the statistical approach imposes
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a strong relationship to the corresponding quark helicity distributions. In particular, it
predicts ∆ū(x) > 0 and ∆d̄(x) < 0, with almost the same magnitude, in contrast with
the simplifying assumption ∆ū(x) = ∆d̄(x), often adopted in the literature. According
to the COMPASS experiment at CERN [13], ∆ū(x) + ∆d̄(x) ' 0, in agreement with our
prediction.

2 The TMD extension

Figure 5: The double longitudinal-spin asym-
metry A1 for π+ production on a proton target,
versus the π+ momentum pT , compared to the
JLab data Ref. [17]. The solid lines are the re-
sults from the TMD statistical distributions [15]
and the dashed lines correspond to the relativistic
covariant distributions [16].

Figure 6: The double longitudinal-spin asym-
metry A1 for π− production on a proton target,
versus the π− momentum pT , compared to the
JLab data Ref. [17]. The solid lines are the re-
sults from the TMD statistical distributions [15]
and the dashed lines correspond to the relativistic
covariant distributions [16].

We now turn to another important aspect of the statistical PDF and very briefly dis-
cuss a new version of the extension to the transverse momentum dependence (TMD).
In Eqs. (1,2) the multiplicative factors Xh

0q and (X−h
0q )−1 in the numerators of the non-

diffractive parts of q’s and q̄’s distributions, imply a modification of the quantum statistical
form, we were led to propose in order to agree with experimental data. The presence of
these multiplicative factors was justified in our earlier attempt to generate the TMD [14],
but it was not properly done and a considerable improvement was achieved recently [15].
We have introduced some thermodynamical potentials Y h

0q, associated to the quark trans-
verse momentum kT , and related to Xh

0q by the simple relation ln(1 + exp[Y h
0q]) = kXh

0q.
We were led to choose k = 3.05 and this method involves another parameter µ2, which
plays the role of the temperature for the transverse degrees of freedom and whose value
was determined by the transverse energy sum rule. We have calculated the pT dependence
of semiinclusive DIS cross sections and double longitudinal spin asymmetries, taking into
account the effects of the Melosh-Wigner rotation, for π± production by using this set
of TMD statistical parton distributions and another set coming from the relativistic co-
variant approach [16]. Both sets do not satisfy the usual factorization assumption of the
dependence in x and kT and they lead to different results, which can be compared to
recent experimental data from CLAS at JLab, as shown on Figs. 5-6.
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3 Positivity bounds

Spin observables for any particle reaction, contain some unique information which allow a
deeper understanding of the nature of the underlying dynamics and this is very useful to
check the validity of theoretical assumptions. We emphasize the relevance of positivity in
spin physics, which puts non-trivial model independent constraints on spin observables.
If one, two or several observables are measured, the constraints can help to decide which
new observable will provide the best improvement of knowledge. Different methods can
be used to establish these constraints and they have been presented together with many
interesting cases in a review article [18]. For lack of space, here we will only briefly discuss
some new results obtained very recently [19,20].
Let us consider the inclusive reaction of the type A(spin 1/2) + B(spin 1/2) → C + X,
where both initial spin 1/2 particles can be in any possible directions and no polarization
is observed in the final state. The spin-dependent corresponding cross section σ (Pa, Pb) =
Tr (Mρ), can be defined through the 4 × 4 cross section matrix M and the spin density
matrix ρ, where Pa, Pb are the spin unit vectors of A and B, ρ = ρa ⊗ ρb is the spin
density matrix with ρa = (I2 + Pa · ~σa)/2, and similar for ρb. Here I2 is the 2 × 2 unit
matrix, and σ = (σx, σy, σz) stands for the 2× 2 Pauli matrices. M can be parametrized
in terms of 8 parity-conserving asymmetries and 8 parity-violating asymmetries. The
crucial point is that M is a Hermitian and positive matrix and this allows to derive some
positivity conditions. Since one of the necessary conditions for a Hermitian matrix to be
positive definite is that all the diagonal matrix elements has to be positive Mii ≥ 0, we
thus derive 1 ± ANN ≥ |AaN ± AbN |, valid in full generality, for both parity-conserving
and parity-violating processes, where AN denotes the single transverse spin asymmetry
and ANN the double transverse spin asymmetry. In the case p↑ + p↑ → C + X where
the initial particles are identical, we have AaN(y) = −AbN(−y). Using this relation , one
obtains, 1 ± ANN(y) ≥ |AN(y)∓ AN(−y)|. This is an interesting result which, can be
used, in principle, with available data on AN for π±, K±, π0, η production, to put some
non trivial constrain on ANN(y).
Let us now study the implications of the above relation for the parity-violating process
p↑ + p↑ → W± + X. Since ANN ≈ 0, to a very good approximation, it reduces to
1/2 ≥ |AN(y = 0)|, to be compared with the usual trivial bound 1 ≥ |AN(y = 0)|.

The TMD quark distribution in a transversely polarized hadron can be expanded as

fq/h↑(x,k⊥, ~S) ≡ fq/h(x, k⊥) + 1
2
∆Nfq/h↑(x, k⊥) ~S ·

(
p̂× k̂⊥

)
, where p̂ and k̂⊥ are the unit

vectors of ~p and k⊥, respectively. fq/h(x, k⊥) is the spin-averaged TMD distribution, and
∆Nfq/h↑(x, k⊥) is the Sivers function. There is a trivial positivity bound for the Sivers
functions which reads |∆Nfq/h↑(x, k⊥)| ≤ 2fq/h(x, k⊥). Since AN is directly expressed in
terms of ∆Nfq/h↑(x, k⊥), this trivial bound can be improved as shown in Ref. [20].

In the helicity basis it is easy to obtain the explicit form of M and now from Mii ≥ 0,
we have 1±ALL(y) ≥ |AaL(y)±AbL(y)|, where AL denotes the single helicity asymmetry
and ALL the double double asymmetry. It is important to note that for identical initial
particles scattering, one has AaL(y) = AbL(−y), so one gets 1 ± ALL(y) ≥ |AL(y) ±
AL(−y)|. These bounds should be tested in RHIC experiments for W± or Z0 production
in longitudinal pp collisions, ~p~p → W±/Z0 + X. In perturbative QCD formalism, at
leading-order and restricting to only up and down quarks, one has simple expressions for
the single and double helicity asymmetries, involving only quark helicity distributions.
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The statistical PDF satisfy the positivity bound. Finally at y = 0, since ALL(0) is
expected to be very small, the bound implies AL(0) ≤ 1/2, a remarquable simple result
which must be satisfied by future experimental data.

Acknowledgments. I am grateful to the organizers of DSPIN2011 for their warm hos-
pitality at JINR and for their invitation to present this talk. My special thanks go to
Prof. A.V. Efremov for providing a full financial support and for making, once more, this
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Abstract

We review our previous studies of the truncated Mellin moments of the parton
distributions. We apply the truncated moments formalism to QCD analysis of the
spin structure functions of the nucleon, g1 and g2. We present the generalization
of the Wandzura-Wilczek relation in terms of the truncated moments and new sum
rules. We show the evolution equation for the twist-2 part of g2. We present also
useful relations between the truncated and untruncated moments. Higher-twist
corrections in the truncated moments approach are discussed.

Truncated Mellin moments (TMM) of the parton distributions were introduced and
developed in the QCD analysis by S. Forte, J. Latorre, L. Magnea, A. Piccione and
G. Ridolfi [1]- [4]. The authors obtained the non-diagonal evolution equations, where each
n-th truncated moment couples to all higher ones. Then, the idea of TMM was successfully
applied in the leading ln2x approximation, where we found diagonal solutions [5]. Also
A. Sissakian, O. Shevchenko and O. Ivanov used the TMM technique in their NLO analysis
of SIDIS data, incorporating polynomial expansion [6]. Several years ago, we derived the
DGLAP-type diagonal, exact evolution equations for the TMM in a case of a single
truncation [7] and then also for double truncated moments [8], [9]. The latter were also
found and discussed by A. Psaker, W. Melnitchouk, M. E. Christy and C. Keppel in a
context of the quark-hadron duality [10].

The evolution equations for the truncated Mellin moments of the parton distributions
can be an additional tool in the perturbative QCD analysis of the structure functions.
In [11] we have utilized this approach to the determination of the parton distribution
functions. Here, we present useful relations between the truncated and untruncated Mellin
moments and also applications of the TMM approach in analysis of the polarized structure
function g2.

1 The evolution equations for the truncated Mellin

moments of the parton densities

In the standard PQCD formalism, a central role play the parton densities, which depend
on the kinematic variables Q2 and x. Then the truncated or untruncated Mellin moments,
which are e.g. contributions to the sum rules, can be obtained by integrating of the parton
distribution q(x,Q2) over the Bjorken-x. Alternatively, one can study directly the Q2
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evolution of the moments. The TMM approach allows one to avoid the problem of the
unphysical region x → 0 with infinite energy s. Furthermore, this approach refers directly
to the physical values - moments (rather than to the parton distributions), what enables
one to use a wide range of deep-inelastic scattering data in terms of a smaller number of
parameters. The evolution equations for the truncated moments are universal - they can
be used in each order of the approximation (LO, NLO etc.) and for unpolarized, as well
as polarized parton densities.

Double truncated moments

q̄ n(xmin, xmax, Q
2) =

xmax∫

xmin

dx xn−1 q(x,Q2) (1)

satisfy the DGLAP-type evolution

dq̄ n(xmin, xmax, Q
2)

d ln Q2
=

αs(Q
2)

2π

1∫

xmin

dz

z
P ′(n, z) q̄ n

(xmin

z
,
xmax

z
,Q2

)
(2)

with splitting function P ′ given by

P ′(n, z) = zn P (z). (3)

The above equations are a generalization of those for the single truncated (xmax = 1) and
untruncated moments (xmin = 0, xmax = 1):

dq̄ n(xmin, Q
2)

d ln Q2
=

αs(Q
2)

2π

1∫

xmin

dz

z
P ′(n, z) q̄ n

(xmin

z
,Q2

)
, (4)

dq̄ n(Q2)

d ln Q2
=

αs(Q
2)

2π

1∫

0

dz

z
P ′(n, z) q̄ n(Q2) =

αs(Q
2)

2π
γn q̄ n(Q2). (5)

One can solve the evolution equations for truncated moments with use of standard meth-
ods of solving the DGLAP equations. Analysis performed in moment space implies dealing
with ‘Moment of Moment’

M s, n =

1∫

0

dx xs−1

1∫

x

dz zn−1q(z). (6)

We have found useful relations between truncated and untruncated moments, which allow
to replace this unphysical value M s, n:

M s, n =
1

s
q̄ s+n, (7)

q̄ n(x, Q2) =
1

2πi

c+i∞∫

c−i∞

ds
x−s

s
q̄ s+n(Q2) (8)

152



and

q̄ s(Q2) = (s− n)

1∫

0

dx xs−n−1 q̄ n(x,Q2). (9)

Particularly Eq. (8) seems to have a large practical meaning and could be applied when
the untruncated moments are known e.g. from lattice calculations.

2 Applications to spin structure functions

The experimental value of the function g2, measured in the small to intermediate Q2

region, consists of two parts: the twist-2 (leading) and the higher twist term:

g2(x,Q2) = gLT
2 (x,Q2) + gHT

2 (x,Q2). (10)

The leading-twist term gLT
2 can be determined from the other structure function - g1 via

the Wandzura-Wilczek (WW) relation [12]

gLT
2 (x,Q2) = gWW

2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

dy

y
g1(y,Q2). (11)

Then, from the measurements of g1 and g2, using the WW approximation, one is able to
extract the higher-twist term gHT

2 .
We found a generalization of the WW relation, which in terms of the truncated mo-

ments has a form

ḡ n
2 (x0, Q

2) =
1− n

n
ḡ n
1 (x0, Q

2)− xn
0

n
ḡ 0
1 (x0, Q

2), (12)

where ḡ n
i (x0, Q

2) is the single truncated moment of the structure function gi:

ḡ n
i (x0, Q

2) =

1∫

x0

dx xn−1 gi(x,Q2). (13)

Basing on the TMM approach, one can also find the partial twist-2 contribution to the
BC sum rule

x2∫

x1

dx gWW
2 (x,Q2) = (x2 − x1)

1∫

x2

dx

x
g1(x,Q2)− x1

x2∫

x1

dx

x
g1(x,Q2), (14)

which can be helpful in determination of the HT effects.
Since, according to Eq. (3), the n = 0-th truncated moment of the parton distribution q

evolves in the same way as q itself (P ′(0, z) = P (z)), one can obtain from WW relation
evolution equation for the leading twist of g2:

dgWW
2 (x,Q2)

d ln Q2
=

αs(Q
2)

2π

1∫

x

dz

z
P

(x

z

)
gWW
2 (z, Q2). (15)

This, together with the evolution equation for the twist-3 component [13], offers unified
description of g2 behavior.

D. S.-K. thanks the organizers for the opportunity to participate in this interesting
Workshop and for financial support.
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Abstract
Generalized Parton Distributions (GPDs) offer a new way to access the quark

and gluon nucleon structure. We advocate the need to supplement the experimental
study of deeply virtual Compton scattering by its crossed version, timelike Compton
scattering. We review recent progress in this domain, emphasizing the need to
include NLO corrections to any phenomenological program to extract GPDs from
experimental data.

The study of the internal structure of the nucleon has been the subject of many
developments in the past decades and the concept of generalized parton distributions has
allowed a breakthrough in the 3 dimensional description of the quark and gluon content
of hadrons. Hard exclusive reactions have been demonstrated to allow to probe the quark
and gluon content of protons and heavier nuclei.

In this short review, we concentrate on the complementarity of timelike and spacelike
studies of hard exclusive processes, taking as an example the case of timelike Comp-
ton scattering (TCS) [1] where data at medium energy should be available at JLab@12
GeV and COMPASS, supplemented by higher energy data thanks both to the study of
ultraperipheral collisions at RHIC and the LHC [2] and to a forthcoming electron-ion
collider [3].

A considerable amount of theoretical and experimental work has been devoted to the
study of deeply virtual Compton scattering (DVCS), i.e., γ∗p → γp, an exclusive reaction
where generalized parton distributions (GPDs) factorize from perturbatively calculable
coefficient functions, when the virtuality of the incoming photon is large enough. An
extended research program for DVCS at JLab@12 GeV and Compass is now proposed
to go beyond this first set of analysis. This will involve taking into account next to
leading order in αs and next to leading twist contributions. We advocate that it should
be supplemented by the experimental study of its crossed version, TCS, or even double
DVCS [4] where both photons are off-shell.

The physical process where to observe the inverse reaction, TCS [1],

γ(q)N(p) → γ∗(q′)N(p′) (1)

is the exclusive photoproduction of a heavy lepton pair, γN → µ+µ− N or γN → e+e− N ,
at small t = (p′ − p)2 and large timelike final state lepton pair squared mass q′2 = Q′2;
TCS shares many features with DVCS. The generalized Bjorken variable in that case is
τ = Q′2/s with s = (p + q)2. One also defines ∆ = p′ − p (t = ∆2) and the skewness
variables η and ξ , as

ξ =
(q + q′)2

2(p + p′) · (q + q′)
; η = −(q − q′) · (q + q′)

(p + p′) · (q + q′)
.
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For DVCS, η = ξ while for TCS, η = −ξ ≈ Q′2
2s−Q′2 . At the Born order, both DVCS and

TCS amplitudes are described by the handbag diagram of Fig. 1 and its crossed version.
They both interfere with a Bethe-Heitler QED process where the hadron structure enters
through the well known nucleon form factors F1(t) and F2(t). The interference signal is
a precise way to get an access to the DVCS and TCS amplitudes.

−η+η

1+η

−ξ−η

x x

1−η

−ξ+η

Figure 1: The handbag mecha-
nism controls both DVCS (where
ξ = η) and TCS (where ξ = −η).

The cross section for photoproduction in hadron colli-
sions is given by:

σpp = 2

∫
dn(k)

dk
σγp(k)dk , (2)

where σγp(k) is the cross section for the γp → pl+l− process

and k is the photon energy. dn(k)
dk

is an equivalent photon
flux. The relationship between γp energy squared s and k is
given by s ≈ 2

√
sppk, where spp is the proton-proton energy

squared. Figure 2 shows the interference contribution to
the cross section in comparison to the Bethe Heitler and Compton processes, for various
values of γN c.m. energy squared s = 107 GeV2 and 105 GeV2. We restrict the phase space
integral to θ = [π/4, 3π/4] in order to avoid the overdominance of the QED process at
forward angles. We observe [2] that for large energies the Compton process dominates in
these kinematics, whereas for s = 105 GeV2 all contributions are comparable. This lowest
order estimate shows that indeed TCS can be measured in ultraperipheral collisions at
hadron colliders. For instance, we anticipate a rate of the order of 105 TCS events per
year at LHC with its nominal luminosity. This is mainly due to the large sea quark GPDs
at very small x. It also calls for NLO corrections where gluon GPDs start to contribute.
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Figure 2: The differential cross sections (solid lines) for t = −0.2GeV2, Q′2 = 5 GeV2 and integrated
over θ = [π/4, 3π/4], as a function of ϕ, for s = 107 GeV2 (a), s = 105 GeV2(b), with µ2

F = 5GeV2. We
also display the Compton (dotted), Bethe-Heitler (dash-dotted) and Interference (dashed) contributions.

Our calculations [5] of NLO corrections show important differences between the co-
efficient functions describing the TCS case and those describing DVCS. One defines the
quark and gluon coefficient functions as

T q = Cq
0 + Cq

1 +
1

2
log(

|Q2|
2µ2

F

)Cq
coll ; T g = Cg

1 +
1

2
log(

|Q2|
2µ2

F

)Cg
coll ,

where Cq
0 is the Born order coefficient function, Cq

coll and Cg
coll are directly related to the

evolution equation kernels and µF is the factorization scale..
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Figure 3: Real (solid line) and imaginary (dashed line) part of the ratio Rq of the NLO quark coefficient
function to the Born term in TCS (up) and DVCS(down) as a function of x in the ERBL (left) and DGLAP
(right) region for η = 0.3, for µ2

F = |Q2|/2.

On Fig. 3 we show the real and imaginary parts of the ratio Rq = Cq
1/C

q
0 in timelike

and spacelike Compton Scattering. We fix αs = 0.25 and restrict the plots to the positive
x region, as the coefficient functions are antisymmetric in that variable. We see that in the
TCS case, the imaginary part of the amplitude is present in both the ERBL and DGLAP
regions, contrarily to the DVCS case, where it exists only in the DGLAP region. The
magnitudes of these NLO coefficient functions are not small and neither is the difference
of the coefficient functions Cq

1(TCS)
∗ − Cq

1(DV CS). The conclusion is that extracting the
universal GPDs from both TCS and DVCS reactions requires much care.

0.2 0.4 0.6 0.8
x

-4

-2

2

Figure 4: Ratio of the
real (solid line) and imaginary
(dashed line) part of the NLO
gluon coefficient function in TCS
to the same quantity in DVCS in
the DGLAP region.

An important part of NLO corrections to dVCS and
TCS, especially at high energy, come from the gluon GPDs
Let us summarize our findings on the gluon coefficient func-
tions. The real parts of the gluon contribution are equal for
DVCS and TCS in the ERBL region. The differences be-
tween TCS and DVCS emerges in the ERBL region through
the imaginary part of the coefficient function which is non
zero only for the TCS case and is of the order of the real

part. In Fig. 4 we plot the ratio
Cg

1(TCS)

Cg
1(DV CS)

of the NLO gluon

correction to the hard scattering amplitude in TCS to the
one in DVCS in the DGLAP region for η = 0.05.

To quantify the effects of this NLO calculations, we need to parameterize the quark
and gluon GPDs and convolute them with the coefficient functions to get the Compton
form factors that enter observable quantities, defined as

H = −
∫ 1

−1

dx [
∑

T q(x, ξ, η)Hq(x, ξ, η) + T g(x, ξ, η)Hg(x, ξ, η)],

for the case of the GPD H, and corresponding definitions for other GPDs. Using the G-K

157



0.01 0.02 0.05 0.10 0.20 0.50 1.00
-8

-6

-4

-2

0

2

4

10-4 10-3 10-2 10-1
10-1

1

101

102

103

104

Figure 5: Real part (left) and imaginary part (right) of the DVCS Compton form factor H at LO
(dashed) and NLO (solid) as a function of ξ for µ2

F = Q2 = 4 GeV2.

model [6], we get, in the DVCS case, the results shown on Fig. 5 which may be compared
to earlier calculations [7] . At small ξ, the imaginary part overdominates the real part,
but the inclusion of NLO significantly diminishes its size. Note that the inclusion of
NLO changes the sign of the real part in the valence region. We are now calculating the
corresponding Compton form factors for the timelike case.

We acknowledge useful discussions with Franck Sabatié and Hervé Moutarde and the
partial support by the Polish Grant NCN No DEC-2011/01/D/ST2 /02069 and by the
French-Polish Collaboration Agreement Polonium.
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ANGULAR DISTRIBUTIONS OF DILEPTONS IN HADRONIC AND
HEAVY ION COLLISIONS

O.V. Teryaev 1,†

(1) Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
† E-mail: teryaev@theor.jinr.ry

Abstract

I discuss several consequences of the inequalities for the coefficients of decay an-
gular distributions of the dileptons produced in hadronic and and nuclear collisions.
They allow one to bound from below the twist-4 contributions to Drell-Yan process,
to derive the new bound(s) relating the T-even and T-odd transverse momentum de-
pendent distributions and provide the new measure of transverse momentum. One
may also constrain the action of magnetic field generated in heavy-ion collisions to
the angular distribution of soft dileptons.

Introduction. Positivity constraints play a prominent role [1] in high energy physics
providing important model-independent inequalities for various non-perturbative inputs.
Here we address the applications of such inequalities for angular distributions of dilepton
pairs, in particular, in Drell-Yan process [2]. These angular asymmetries, from one side,
may be relatively easy studied experimentally, and from the other side, are directly related
to the virtual photon tensor polarization and serve as a probe for the production dynamics.

Angular ditributions, positivity and transverse momentum. The angular distri-
bution of dileptons in any inclusive hadronic or nuclear process has the following form [4]

dσ ∝ 1 + λ cos2 θ + µ sin 2θ cos φ +
ν

2
sin2 θ cos 2φ + ρ sin 2θ sin φ + σ sin2 θ sin 2φ (1)

where θ and φ are polar and azimuthal angles of one of leptons in their c.m. frame, while
λ, µ, ν, ρ, σ are angle independent coefficients encoding the information on tensor po-
larization of virtual photon. In unpolarized or longitudinally polarized Drell-Yan process
ρ = σ = 0 if azimuthal angle is measures w.r.t. scattering plane.

The (symmetric) hadronic tensor in the rest frame can be expressed in terms of these
coefficients (for negligibly small lepton mass) as follows

Wij =




Wzz Wzy Wzx

Wyz Wyy Wyx

Wxz Wxy Wxx


 = N




1−λ
2

µ ρ
µ 1+λ−ν

2
σ

ρ σ 1+λ+ν
2


 , (2)

where N is the angles independent factor. The coordinate axes z, x, y may be chosen in
such a way that the beams in the dilepton rest frame are in the plane (z, x), with respect
to which the azimuthal angle is measured, while the polar one is measured, as usual, with
respect to the axis z. At the same time, the direction of axes can be chosen in some

159



other way, say, using the direction of transverse polarization for x or y. Let us stress that
there are no further restrictions for the orientation of axes. Not also that if the tensor
component has at least one time index, it is zero

Wµ0 = W0µ = 0

because of electromagnetic gauge invariance. The positivity constraints can be easily
obtained [4] from the positivity of this matrix and read:

|λ| ≤ 1, |ν| ≤ 1 + λ, µ2 ≤ (1− λ)(1 + λ− ν)

4
(3)

ρ2 ≤ (1− λ)(1 + λ + ν)

4
, σ2 ≤ (1 + λ)2 − ν2

4
det(M0) ≥ 0 (4)

The bounds (2) coincide with the obtained earlier by structure functions method [2].
The special role in the analysis of azimuthal asymmetries is played by Lam-Tung (LT)

relation [2].

λ + 2ν = 1 (5)

It was shown [4] , that LT relations describes the azimuthal asymmetry belonging to the
class of kinematical ones. Namely, the azimuthal asymmetry is absent at all in the natural
reference frame, defined by the collision kinematics, and emerges solely as a kinematical
effect when passing to the actual reference frame. To show that one should start with the
following expression with respect to some (partonic) axis m

dσ ∝ 1 + λ0(~n~m)2 = 1 + λ0 cos2 θ2
nm (6)

where

cos θnm = cos θ cos θ0 + sin θ sin θ0 cos φ.. (7)

Note that θ0 and θ are the angles formed by the axis m and lepton direction n with
coordinate axis z, while φ is their relative azimuthal angle. As a result one gets the
azimuthal dependence with respect to this coordinate axis, so that

λ = λ0
2− 3 sin2 θ0

2 + λ0 sin2 θ0

, ν = λ0
2sin2θ0

2 + λ0 sin2 θ0

. (8)

One may exclude θ0 and get

λ0 =
λ + 3

2
ν

1− 1
2
ν

. (9)

This relation [4] is reduced to the standard LT relation in the case of transverse virtual
photon when λ0 = 1. Note that if λ0 = 1, kinematical equations for λ and ν coincide
with the ones derived long ago in pQCD [5], provided the transverse momentum of the
pair pT satisfies the relation

tan2 θ0 = ρ2 ≡ p2
T

Q2
. (10)
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At the same time, while no simple expressions for µ were found in [5], the kinematical
relation (6) immediately leads to the obvious expression for µ which happens to saturate
the positivity bound (2) with λ and ν from (8). Thus, µ provides the complementary
probe of transverse momentum, linear in its value and therefore sensitive to its sign as
well. The analysis of the data presented here [6] shows that this positivity bound is indeed
often close to saturation.

One may also combine [4] the positivity bound for ν with the kinematic relation.
As a result, the total positivity region being the triangle in λ, ν plane with the vertices
(1, 2), (−1, 0), (1,−2) is reduced to two triangles with the vertices (1, 0), (−1/3, 2/3), (0, 0)
and (−1, 0), (1,−2), (0, 0)) for positive and negative λ0, respectively.

Bounding the TMDs. The simplest way to get the bounds for T-odd TMDs is to
use their relations to particular twist-3 correlators (gluonic poles). In the case of the
first moment of Sivers function the correspondent pole leads to the specific single spin
asymmetry in Drell-Yan process [7]. One may rewrite the equation (21) from that Ref. in
terms of λ = 1 and µ = 2T (x, x)/Qq(x) (recall that the azimuthal angle is measured with
respect to the plane containing the transverse polarization). Considering the external
(”lepton”) currents coupled to each quark flavour separately one may derive the bound

1− λ ≥ µ2 = 4
T 2(x, x)

Q2q2(x)
, (11)

showing that the denominator of SSA must be corrected by the twist four term bounded
from below, which represents the particular case of general situation(see [1]).

To get the bounds for TMDs themselves rather than for their moments one may
consider the bound ν ≤ 1 + λ for the particular case of pp̄ DY process in the central
region (y = 0). As a result, the contributions of two hadrons participating in DY process
will be described by the same functions depending on the same longitudinal momentum
fraction x. As to transverse momentum, one may use [4] the second theorem on averages
allowing to substitute the ratio of integrals defining ν by the ratio of integrands, in which
the functions from different hadrons should depend on the same transverse momentum
for symmetry reason. Taking into account contributions of transversity h1(x, kT ), Boer-
Mulders function h1⊥(x, kT ) and pretzelosity hT1⊥(x, kT ) to ν and choosing the signs of
polarizations and transverse momentum to maximize ν one get:

f(x, kT ) ≥ |h1(x, kT )− k2
T

2M2
hT1⊥(x, kT )|+ kT

M
|h1⊥(x, kT )|. (12)

This bound differs 1 (and maybe stronger in some cases) from the one obtained by helicity
or Cartesian amplitudes method (see eq. (4.87) in [1] and Ref. therein). One may
consider as a some advantage of method proposed here that it relies on the expression
used to calculate the observables (without addressing the issue whether it can be proved
rigorously). It remains to be studied whether the bounds [1] can be obtained by, say,
choice of reference frames. The possibility to obtain other bounds is also interesting.

1I am indebted to Jacques Soffer for illuminating discussions of these issues.
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Dilepton angular distributions in heavy-ion collisions. The analog of hadronic
tensor in heavy-ion collsions describes the dilepton production rate [8] and angular asym-
metries [9]. Let us stress that the general bounds (2,4) are also valid for heavy-ion
collisions.

Let us mention only one application of these bounds, corresponding to the action
of strong magnetic field generated in heavy-ion collisions. The lattice calculation [10]
of conductivity tensor which is the direct counterpart of hadronic tensor W results in
the dominance of its zz component (z being the direction of magnetic field) for low
mass dileptons. One can immediately see from (2) that this corresponds to longitudinal
polarization λ = −1 with respect to this axis. Note that positivity bounds lead to
nullification of all other components of W , if only diagonal are found to be equal to zero.

Discussion. We found that the positivity bounds provide the important constraints
for angular distributions of dileptons. They may be used to get the valuable infirmation
about partonic transverse momentum, higher twist and dynamics of heavy-ion collisions.

This work was supported in part by the RFBR (Grants No. 11-02-01538, No. 12-02-
91526, No. 11-02-01454 and 12-02-00613)

References

[1] X. Artru, M. Elchikh, J. M. Richard, J. Soffer and O. V. Teryaev, Phys. Rept. 470,
1 (2009) [arXiv:0802.0164 [hep-ph]].

[2] C. S. Lam and W. K. Tung, Phys. Rev. D 21, 2712 (1980).

[3] O. Teryaev, Nucl. Phys. Proc. Suppl. 214 (2011) 118.

[4] O.V. Teryaev, Kinematical azimuthal asymmetries and Lam-Tung relation, Proceed-
ings of X1 Advanced Research Workshop on High Ebergy Spin Physics, Dubna, 2005,
pp. 171-175.

[5] J. C. Collins, Phys. Rev. Lett. 42, 291 (1979).

[6] J-C.Peng, J. Roloff and O.V. Teryaev, These Proceedings

[7] I.V. Anikin and O.V. Teryaev, These Proceedings

[8] L. D. McLerran and T. Toimela, Phys. Rev. D 31 (1985) 545.

[9] E. L. Bratkovskaya, O. V. Teryaev and V. D. Toneev, Phys. Lett. B 348, 283 (1995).

[10] P. V. Buividovich, M. N. Chernodub, D. E. Kharzeev, T. Kalaydzhyan,
E. V. Luschevskaya and M. I. Polikarpov, Phys. Rev. Lett. 105 (2010) 132001
[arXiv:1003.2180 [hep-lat]].

162



POSITIVITY BOUNDS FOR ANGULAR DISTRIBUTIONS OF
DILEPTONS IN HADRONIC COLLISIONS
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Abstract

We study an inequality for the coefficients of decay angular distributions of the
Drell-Yan process. This relation is checked against existing π− + W and p + p and
p + d Drell-Yan data. It is found that this inequality relation is satisfied by most
of the data, although a significant violation is observed for a small fraction of the
data.

Introduction. Positivity constraints play a prominent role [1] in high energy physics
providing important model-independent inequalities for various non-perturbative inputs.
Here we address the applications of such inequalities for angular distributions of Drell-Yan
dilepton pairs [2]. These azimuthal asymmetries, from one side, may be relatively easy
studied experimentally, and from the other side, are directly related to the virtual photon
tensor polarization and serve as a probe for the production dynamics.

Here we test the particular inequality against the available data and find it quite close
to saturation. The reason can be [3] that it emerges due to transverse momentum of
quarks and provides therefore its complementary probe.

Angular ditributions and positivity. The angular distribution of dileptons in (un-
polarized) Drell-Yan process has the following form

dσ ∝ 1 + λ cos2 θ + µ sin 2θ cos φ +
ν

2
sin2 θ cos 2φ (1)

where θ and φ are polar and azimuthal angles of one of leptons in their c.m. frame, while
λ, µ, ν are angle independent coefficients encoding the information on tensor polarization
of virtual photon. The positivity of its density matrix leads to the bounds for the angular
coefficients [4].

|λ| ≤ 1, |ν| ≤ 1 + λ, µ2 ≤ (1− λ)(1 + λ− ν)

4
(2)

These bounds (2) coincide with the obtained earlier by structure functions method [2].
We are going to test them paying the special role to the bound for µ.
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Figure 1: The quantity δ versus pT for the NA10
π− + W data at three beam energies.
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Figure 2: The quantity δ versus pT for the E615
π− + W data at 252 GeV/c in the CS, GJ, and UC
frames.
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Figure 3: The quantity δ versus pT for the E866
p + p and p + d data at 800 GeV/c.

Comparison with existing data. Mea-
surements of the azimuthal angular distri-
butions for Drell-Yan process have been re-
ported by the NA10 [5] and E615 [6] Col-
laborations for the π−+W interaction and
by the E866 Collaboration for the p + d [7]
and p + p [8] reactions. The inequality
(1 − λ)(1 + λ − ν)/4 > µ2 is checked by
evaluating the quantity

δ = (1− λ)(1 + λ− ν)/4− µ2,

which is positive if the inequality is satis-
fied. The uncertainty of this quantity is
evaluated by assuming that the errors in
λ, ν, and µ are uncorrelated.

Figure 1 shows the comparison of the
inequality relation with the NA10 π− + W
data [5]. The NA10 data consist of mea-
surements performed at three beam en-
ergies with the highest statistics at 184
GeV/c. The data at 184 GeV/c clearly sat-
isfy the inequality relation (being not too
far from saturating it) with the values of
δ all positive. The data at 140 and 286
GeV/c are also consistent with the inequal-
ity within the experimental uncertainties.

Figure 2 shows the Drell-Yan data from
the Fermilab E615 on π− + W at 252
GeV/c [6]. The inequality relation was
checked using the values of λ, µ, and ν
evaluated in three different dimuon rest
frames: the Collins-Soper (CS) frame [9],
the Gottfried-Jackson (GJ) frame [10], and
the u-channel (UC) frame. The values
(1−λ)(1+λ−ν)/4−µ2 tend to be slightly
negative, indicating that the inequality re-
lation is barely satisfied. It is not clear how
the E615 data, taken at a slight higher en-
ergy than the NA10 data, appear to be sig-
nificantly different from the NA10 data.

Figure 3 shows the comparison between
the inequality relation and the recent data
from Fermilab E866 [7,8]. With the excep-
tion of the data at the lowest pT bin, the
inequality relation is quite well satisfied by
the proton-induced Drell-Yan data.
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Table 1: Mean values of the λ, µ, ν parameters and the quantity 〈δ〉 ≡ (1− 〈λ〉)(1 + 〈λ〉 − 〈ν〉)/4− 〈µ〉2
for the π− + W , p + p, and p + d DY measurements.

π− + W π− + W π− + W p + p p + d
140 GeV/c 184 GeV/c 286 GeV/c 800 GeV/c 800 GeV/c

〈λ〉 1.01± 0.08 0.83± 0.04 0.99± 0.06 0.85± 0.10 0.83± 0.04
〈µ〉 0.002± 0.02 0.008± 0.01 −0.027± 0.01 0.026± 0.02 0.008± 0.01
〈ν〉 0.082± 0.016 0.091± 0.009 0.09± 0.012 0.04± 0.015 0.09± 0.009
〈δ〉 −0.0048± 0.04 0.074± 0.016 0.004± 0.028 0.067± 0.04 0.074± 0.016

Table I shows the comparison of the quantity (1 − 〈λ〉)(1 + 〈λ〉 − 〈ν〉)/4 − 〈µ〉2 with
the NA10 and E866 data, where 〈λ〉, 〈µ〉, and 〈ν〉 refer to the averaged values of the λ,
µ, and ν, respectively. Table I shows that the inequality relation is well satisfied by the
NA10 and E866 data. For the Fermilab E615 data, these averaged quantities were not
available. Nevertheless, Fig. 2 suggests that the inequality would not be satisfied by the
averaged values of λ, µ, and ν measured in E615.

ρ
0 0.1 0.2 0.3 0.4 0.5

2 µ
)/

4)
-

ν-λ
)(

1+
λ

((
1-

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15
0.2

+w  140 GeV/c-π

ρ
0 0.1 0.2 0.3 0.4 0.5

2 µ
)/

4)
-

ν-λ
)(

1+
λ

((
1-

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15
0.2

+w  184 GeV/c-π

ρ
0 0.1 0.2 0.3 0.4 0.5

2 µ
)/

4)
-

ν-λ
)(

1+
λ

((
1-

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15
0.2

+w  286 GeV/c-π

Figure 4: The quantity δ versus ρ for the NA10 π− + W
data at three beam energies.

Figure 4 shows the comparison of
the inequality relation with the NA10
π−+W data [5] plotted as a function
of ρ, where ρ = pT /Q.

Discussion. We found that the
positivity bound for µ is often close
to saturation. The reason can be
the kinematical nature of azimuthal
asymmetries. The parameter µ is
than a complementary probe of par-
ton transverse momenta, both intrin-
sic and generated by gluon emission.
At the same time, the violation of
the bound may likely signal on the
necessity to reconsider the interpre-
tation and errors of the data. Only
after such a reconsideration the more
exotic sources of positivity violation
like the contributions of coloured states [1, 11] may be discussed.

This work was supported in part by the RFBR (Grants No. 11-02-01538, 11-02-01454
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Abstract

Many new physics models predict the existence of very heavy resonances with
mass above 1 TeV that can possibly be observed at the CERN LHC. These reso-
nances, predicted by different nonstandard models can generate peaks with the same
mass and same number of events under the peak. In this case, spin determination of
a peak becomes crucial in order to identify the relevant new physics model. Here we
focus on using a center-edge asymmetry, applied to Drell-Yan dilepton and dipho-
ton events at the LHC, for spin identification of spin-2 Randall-Sundrum graviton
excitations against spin-1 heavy neutral gauge bosons Z’ and spin-0 SUSY R-parity
violating sneutrinos.

Numerous new physics (NP) scenarios (models with extra spatial dimensions, E6 GUT
and LR models of Z’-bosons, SUSY with R-parity violating), widely presented in the
literature [1–3], predict narrow resonant peaks in dilepton and diphoton invariant mass
distributions in proton-proton collisions at the CERN Large Hadron Collider (LHC). Once
a heavy resonance is discovered in the processes:

p + p → l+l− + X (l = e, µ) and p + p → γγ + X, (1)

its observables can be used in the attempt to identify the theoretical framework to which
it belongs. The measurement of the total number of events, the angular distribution
and the center-edge asymmetry ACE of lepton/photon decay products at the resonance
peak is a powerful tool [4–7] to disentangle the spin of the resonance in the processes (1).
We will here discuss the identification of the spin-2 graviton excitation predicted by the
Randall-Sundrum (RS) model with one warped extra dimension [1], against the spin-1 and
the spin-0 hypotheses for a heavy neutral resonance discovered in dilepton and diphoton
inclusive production (1) at the LHC. As an example of the spin-1 hypothesis we assume the
Z ′s predicted by extended electroweak gauge symmetries [2], for the spin-0 – sneutrinos
(ν̃) envisaged by R-parity violating SUSY extensions of the SM [3]. Signature spaces of
considered here models has a confusion regions of their respective parameters allowed by
current experimental limits, in which s-channel exchanges of the above mentioned particles
can in the process (1) produce narrow peaks in the dilepton and diphoton invariant
mass with the same values of mass and event rates. Therefore, for the spin-2 hypothesis
discrimination against the spin-1 and spin-0 we will use the difference in the characteristic
angular distributions of the different scenarios.
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The total cross section for a heavy resonance discovery in events (1) at an invari-
ant dilepton or diphoton mass M = MR (with R = G,Z ′, ν̃ denoting graviton, Z ′ and
sneutrino, respectively) is:

σ(pp → R) · BR(R → l+l−, or γγ) =

∫ zcut

−zcut

dz

∫ MR+∆M/2

MR−∆M/2

dM

∫ ymax

ymin

dy
dσ

dM dy dz
. (2)

For determination of our basic observable – center edge asymmetry – we will use the
differential angular distributions:

dσ

dz
=

∫ MR+∆M/2

MR−∆M/2

dM

∫ ymax

ymin

dσ

dM dy dz
dy. (3)

The correspondence between spin and angular distributions is quite sharp: a spin-0 res-
onance determines a flat angular distribution, spin-1 corresponds to a parabolic shape,
and spin-2 yields a quartic distribution. In Eqs. (2) and (3), z = cos θcm and y are the
lepton-quark (or photon-quark) angle in the dilepton (or diphoton) center-of-mass and
the dilepton rapidity, respectively, and cuts on phase space due to detector acceptance
are indicated, ∆M is an invariant mass bin around MR, reflecting the detector energy
resolution [9]. To evaluate the number NS of resonant signal events we assume LHC
energy of 14 TeV, time-integrated luminosity of 100 fb−1 and reconstruction efficiencies
of 90% for both electrons and muons and 80% for photons. Typical experimental cuts
are: p⊥ > 20 GeV and pseudorapidity |η| < 2.5 for both leptons; p⊥ > 40 GeV and
|η| < 2.4 for photons. To evaluate Eqs. (2) and (3) the parton subprocesses cross sections
will be convoluted with the PDFs. NLO QCD effects can be accounted for by K-factor
equal to 1.3 for all considered processes. More detailed study on NLO QCD in diphoton
channel has been done recently in [8]. The completely symmetric pp initial state at the
LHC lead to some unambiguity of the sign of z. One can avoid this difficulty by using
as the basic observable for angular analysis the z-evenly integrated center-edge angular
asymmetry [10,4, 6, 7]:

ACE =
σCE

σ
with σCE ≡

[∫ z∗

−z∗
−

(∫ −z∗

−zcut

+

∫ zcut

z∗

)]
dσ

dz
dz. (4)

In Eq. (4), 0 < z∗ < zcut defines the separation between the “center” and the “edge”
kinematical regions (here we use z∗ = 0.5). Another advantage of using ACE is that it
much less sensitive to systematic uncertainties than the absolute angular distributions.

RS model with one compactified extra dimension in the simplest version [1], originally
proposed as a rationale for the gauge hierarchy problem MEW ¿ MPl, consists of one
warped extra spatial coordinate y with exponential warp factor exp (−kπ|y|) (with k > 0
the 5D curvature assumed of order MPl), and two three-dimensional branes placed at a
compactification distance Rc in y. The SM fields are localized to the so-called TeV brane,
while gravity originates on the other, so-called Planck-brane, but is allowed to propagate
everywhere in the full 5D space. These consist of a tower of spin-2 graviton excitations
that can be exchanged in processes (1) at the LHC and show up as narrow peaks in M with
a specific mass spectrum. The model can be conveniently parametrized in terms of MG,
the mass of the lowest graviton excitation, and of the universal dimensionless coupling
c = k/M̄Pl. Theoretically, 0.01 < c < 0.1. Current 95% CL experimental limits [11] are
in the range MG > 700 GeV (c ∼= 0.01) up to MG > 1.8 TeV (c ∼= 0.1).
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The spin-1 hypothesis in process (1) can be realized by qq̄ annihilation into lepton pairs
through Z ′ intermediate state. Such bosons are generally predicted by electroweak models
beyond the SM, based on extended gauge symmetries. Generally, Z ′ models depend on
MZ′ and on the left- and right-handed couplings to SM fermions. In the sequel, results
will be given for a popular class of models for which the values of these couplings are
fixed theoretically, so that only MZ′ is a free parameter. These are the Z ′

χ, Z ′
ψ, Z ′

η, Z ′
LR,

Z ′
ALR models, and the “sequential” Z ′

SSM model with Z ′ couplings identical to the Z ones.
Current experimental lower limits (95% CL) on MZ′ depend on models, for Z ′

SSM it is
MZ′ > 1.8 TeV [11].

R-parity is defined as Rp = (−1)(2S+3B+L), and distinguishes particles from their su-
perpartners. In scenarios where this symmetry can be violated, supersymmetric particles
can be singly produced from ordinary matter. In the dilepton process (1) of interest here,
a spin-0 sneutrino can be exchanged through the subprocess d̄d → ν̃ → l+l− and manifest
itself as a peak at M = Mν̃ with a flat angular distribution. Besides Mν̃ , the cross section
is proportional to the R-parity violating product X = (λ′)2Bl where Bl is the sneutrino
leptonic branching ratio and λ′ the relevant sneutrino coupling to the d̄d quarks. Current
limits on the relevant λ′s are of the order of 10−2 [12], and the experimental 95% CL lower
limits on Mν̃ range from 397 GeV (for X = 10−4) to 866 GeV (for X = 10−2) [13]. We
take for X, presently not really constrained for sneutrino masses of order 1 TeV or higher,
the interval 10−5 < X < 10−1.

The nonstandard models briefly described above can mimic each other as sources of an
observed peak in M , for values of the parameters included in so-called “confusion regions”,
where they can give same numbers of signal events NS. In such confusion regions, one
can try to discriminate models from one another by means of the angular distributions
of the events, directly reflecting the different spins of the exchanged particles. We start
from the assumption that an observed peak at M = MR is the lightest spin-2 graviton
(MR = MG). We define a “distance” among models accordingly:

∆AZ′
CE = AG

CE − AZ′
CE and ∆Aν̃

CE = AG
CE − Aν̃

CE. (5)

To assess the domain in the (MG, c) plane where the competitor spin-1 and spin-0 models
giving the same NS under the peak can be excluded by the starting RS graviton hypoth-
esis, a χ2 criterion can be applied, which compares the deviations (5) with the statistical
uncertainty δAG

CE relevant to the RS model. We impose the two conditions

χ2 ≡ |∆AZ′,ν̃
CE /δAG

CE|2 > χ2
CL. (6)

Eq. (6) contains the definition of χ2, and the χ2
CL specifies a desired confidence level (3.84

for 95% CL). This condition determines the minimum number of events, Nmin
S , needed to

exclude the spin-1 and spin-0 hypotheses (hence to establish the graviton spin-2), and this
in turn will determine the RS graviton identification domain in the (MG, c) plane which is
shown in Fig. 1. One should note that for the diphoton channel, due to spin-1 6→ γγ, the
viable hypotheses reduce to spin-2 and spin-0 exchanges only. An analogous procedure
can be applied to the identification of Z ′ and ν̃ exchanges against the two competing ones
as sources of a peak in process (1).

Figure 1 shows the expected 5σ discovery reaches on lowest lying graviton and its
95% CL identification range in the (MG, c) plane from dilepton (l = e, µ combined) and
diphoton events with time-integrated luminosity of 100 fb−1.
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Figure 1: Discovery and identification reaches on RS graviton in
the processes (1) at the LHC with

√
s = 14 TeV and Lint =100 fb−1.

Figure 1 also shows that,
for the graviton coupling
constants of 0.01 and 0.1,
the graviton 5σ discovery
reaches are, respectively, 2.4
(2.5) and 4.3 (4.6) TeV for
diphotons (dileptons), while
the graviton identification
reaches are, respectively, 1.6
(2.0) and 3.2 (3.4) TeV at
a 95% C.L. for dileptons
(diphotons).
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Abstract
We study the kinematics of deep inelastic scattering corresponding to the ro-

tationally symmetric distribution of quark momenta in the nucleon rest frame. It
is shown that rotational symmetry together with Lorentz invariance can in leading
order impose constraints on the quark intrinsic momenta. Obtained constraints are
discussed and compared with the available experimental data.

1. Introduction. The motion of quarks inside the nucleons plays an important role
in some effects which are at present intensively investigated both experimentally and
theoretically. Actual goal of this effort is to obtain a more consistent 3-D picture of
the quark-gluon structure of nucleons. For example the quark transversal momentum
creates the asymmetries in particle production in polarized (SIDIS) or in unpolarized
(Cahn effect) experiments on deep inelastic scattering (DIS). Relevant tool for the study
of these effects is the set of the transverse momentum dependent distributions (TMDs).
Apparently, a better understanding of the quark intrinsic motion is also a necessary
condition to clarify the role of quark orbital angular momenta in generating nucleon
spin.

We have paid attention to these topics in our recent studies, see [1] and citations
therein. In particular we have shown that the requirements of Lorentz invariance (LI)
and the nucleon rotational symmetry in its rest frame (RS), if applied in the framework of
the 3-D covariant quark-parton model (QPM), generate a set of relations between parton
distribution functions. Recently we obtained within this approach relations between usual
parton distribution functions and the TMDs. The Wanzura-Wilczek approximate relation
(WW) and some other known relations between the g1 and g2 structure functions were
similarly obtained in the same model before [2]. Let us remark that the WW relation has
been obtained independently also in another approaches [7, 6] in which the LI represents
a basic input.

The aim of the present report is to consistently apply the assumption LI&RS to the
kinematics of DIS and to obtain the constraints on related kinematical variables. That
is a complementary task to the study of above mentioned relations between distribution
functions, which depend on these variables. So, the report can be considered as an
addendum to our former papers related to the covariant QPM [1–3].

Since the present discussion is motivated and based on our earlier study of a covariant
version of QPM, obtained results correspond only to the leading order of a more consistent
QCD treatment. In this sense it would be interesting to compare our results with the
leading order of a real QCD approach, like e.g. the recent study of perturbative QCD
evolution of TMDs [4]. However such task would go beyond the scope of this short report.
Anyway, in general a comparison between the experimental data and the leading order
predictions can be important and instructive.

171



2. The Bjorken variable and light-cone coordinates. First, let us shortly remind
the properties of the Bjorken variable

xB =
Q2

2Pq
, (1)

which plays a crucial role in phenomenology of lepton – nucleon scattering. Regardless of
mechanism of the process, this invariant parameter satisfies

0 ≤ xB ≤ 1. (2)

Now let us consider a QPM approach, where the process of lepton – nucleon scattering is
initiated by the lepton interaction with a quark (see Fig. 1), which obeys

p′ = p + q, p′2 = p2 + 2pq −Q2; Q2 = −q2. (3)

P

q

k k'

p

p'

Figure 1: Diagram describing
DIS as a one photon exchange
between the charged lepton and
quark. Lepton and quark momenta
are denoted by k, p (k′, p′) in initial
(final) state, P is initial nucleon
momentum.

The second equality implies

Q2 = 2pq − δm2; δm2 = p′2 − p2, (4)

which with the use of relation (1) gives

pq

Pq
= xB

(
1 +

δm2

Q2

)
. (5)

The basic input for the construction of QPM is the as-
sumption

Q2 À δm2, (6)

which allows us to identify

xB =
Q2

2Pq
=

pq

Pq
(7)

and to directly relate the quark momentum to the parameters of scattered lepton. More-
over, if one assumes

Q2 À 4M2x2
B, (8)

where M is the nucleon mass, then one can identify

xB = x ≡ p0 − p1

P0 − P1

(9)

in any reference frame in which the first axis orientation is defined by the vector q. This
relation can be proved as follows. Let us consider Eq. (7) in the same frame:

xB =
p0q

0 − p1 |q|
P0q0 − P1 |q| . (10)

In the nucleon rest frame we denote the vector components by subscript R and use the
usual symbol ν = q0

R so we have

|qR|2 = ν2 + Q2, (11)

172



which with the use of Eq. (1) gives

|qR|2
ν2

= 1 +
4M2x2

B

Q2
. (12)

It means that for Q2 À 4M2x2
B we obtain

|qR|
ν

= 1 + O

(
4M2x2

B

Q2

)
. (13)

(Since for Q2 →∞ we have also |qR| , ν →∞, so the ratio |qR| /ν → 1 does not contradict
Eq. (11).) In a reference frame connected with the rest frame by the Lorentz boost in
the direction opposite to qR we have the corresponding ratio

q1

q0
=
|qR|+ βν

ν + β |qR| . (14)

Now one can easily check that Eq. (7) with the use of this ratio and Eq. (13) imply

xB =
p0q

0 − p1q
1

P0q0 − P1q1
=

p0 − p1

P0 − P1

(
1 + O

(
4M2x2

B

Q2

))
. (15)

In this way we have proved that replacement of Bjorken variable by the invariant light-
cone ratio in Eq. (9) is valid provided the inequality (8) is satisfied.

The relation (9) expressed in the nucleon rest frame reads

x =
p0 − p1

M
, (16)

which after inserting into (2) gives

0 ≤ p0 − p1

M
≤ 1. (17)

However the most important reason why we require large Q2 is in physics. If we
accept scenario when a probing photon interact with a quark, we need sufficiently large
momentum transfer Q2 at which the quarks can be considered as effectively free due to
asymptotic freedom. At small Q2 the picture of quarks (with their momenta and other
quantum numbers) inside the nucleon disappear.

3. Rotational symmetry. The RS means that the probability distribution of the
quark momenta p = (p1, p2, p3) in the nucleon rest frame depends, apart from Q2, on |p|.
It follows that also −p is allowed, so together with the inequality (17) we have

0 ≤ p0 + p1

M
≤ 1. (18)

The combinations of (17),(18) imply

0 ≤ |p1| ≤ p0 ≤ M, |p1| ≤ M

2
. (19)
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And if we again refer to RS, then further inequalities are obtained:

0 ≤ |p| ≤ p0 ≤ M, |p| ≤ M

2
, 0 ≤ pT ≤ p0 ≤ M (20)

and

pT ≤ M

2
, (21)

where

|p| =
√

p2
1 + p2

2 + p2
3, pT =

√
p2

2 + p2
3.

Obviously inequality (21) is satisfied also in any reference frame boosted in the direc-
tions ±q. Further, the above inequalities are apparently valid also for average values
〈p0〉 , 〈p1〉 , 〈|p|〉 and 〈pT 〉. In addition, if one assumes that pT− distribution is a decreas-
ing function, then necessarily

〈pT 〉 ≤ M

4
. (22)

The above relations are valid for sufficiently high Q2 suggested by Eqs. (6) and (8).
Let us note that the on-mass-shell assumption has not been applied for obtaining these
relations.

These inequalities can be compared with relations obtained in [2], where the additional
on-mass-shell condition m2 = p2 = p2

0−p2 had been applied. Corresponding relations are
more strict:

m2

M2
≤ x ≤ 1, p0 ≤ M2 + m2

2M
, |p| ≤ M2 −m2

2M
(23)

and

p2
T ≤ M2

(
x− m2

M2

)
(1− x) . (24)

However, it is clear that in general the on-mass-shell assumption is not realistic. In the
next we will assume only the off-mass-shell approach.

4. Discussion. First let us summarize more accurately what we have done in the
previous section. We assumed:

a) Lorentz invariance
It means that the theoretical description in terms of the standard kinematical variables
(see Fig. 1)

q, xB, x, p = (p0, p1, p2, p3), P = (P0, P1, P2, P3)

can be boosted also to the nucleon rest frame.
b) Inequality 0 ≤ x ≤ 1

It means that the light-cone ratio x satisfies the same bound (2) as the Bjorken variable
xB.

c) Rotational symmetry
The kinematical region R3 of the quark intrinsic momenta p = (p1, p2, p3) in the nucleon
rest frame has rotational symmetry (i.e. p ∈R3 ⇒ p′ = Rp ∈ R3, where R is any
rotation in R3). For example, in terms of the covariant QPM it means that probabilistic
distribution of the quark momenta is controlled by some function G (pP/M, Q2).
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We proved these assumptions imply bounds (17)–(21). Now we will shortly comment
on the obtained results:

i) The ratio x of light-cone variables (9) has a simple interpretation in a frame,
where the proton momentum is large - x is the fraction of this momentum carried by
the quark. However an interpretation of the same variable in the nucleon rest frame is
more complicated. In this frame the quark transversal momentum cannot be neglected
and x depends on the both, longitudinal and transversal quark momenta components. In
the limit of massless quarks the connection between the variable x in (16) and the quark
momenta components is given by the relations:

x =
p0 − p1

M
; p0 =

√
p2

1 + p2
T , p1 = −Mx

2

(
1− p2

T

M2x2

)
, p0 =

Mx

2

(
1 +

p2
T

M2x2

)
.

These variables were used in our recent papers on TMDs [1, 2]. Simply the value of
invariant variable x does not depend on the reference frame, but its interpretation e.g. in
the rest frame differs from that in the infinite momentum frame.

ii) The relations (20), (21), which follow from RS, can be confronted with the ex-
perimental data on 〈pT 〉 or 〈|p|〉. We have discussed the available data in the papers
cited above and apparently relation (21) is compatible with the set of lower values 〈pT 〉
corresponding to the ’leptonic data’. On the other hand the second set giving substan-
tially greater 〈pT 〉 and denoted as the ’hadronic data’, seems to contradict this relation.
Actually the conflict with the relation (21) would mean either the conflict with some of
the assumptions a)–c) or simply it can be due to absence of the higher order QCD correc-
tions. However, for possible comparison with the perturbative QCD approach [4] let us
remark the following. This approach generate evolved TMDs using as input the existing
phenomenological parametrizations extracted from the experimental data. For example,
one of the inputs is the scale-independent Gaussian fit [5]

Ff/P (x, pT ) = ff/P (x)
exp [−p2

T / 〈p2
T 〉]

π 〈p2
T 〉

, (25)

where 〈p2
T 〉 = (0.38± 0.06) GeV2. Obviously our concept RS defined above is hardly

compatible with this distribution. In fact in the rest frame this distribution gives much
greater 〈p2

T 〉 than the corresponding longitudinal term 〈p2
1〉. However RS requires 〈p2

T 〉 =
2 〈p2

1〉 only. Let us remark that this imbalance is of the same order as a difference between
the two data sets mentioned above.

In the most recent paper [2] we explained why the RS, if applied on the level of
QPM, follows from the covariant description. In fact it means the assumptions a)–c) are
common for our QPM and for the approaches like [6, 7] where only Lorentz invariance is
explicitly required. The predictions of all these models are compatible with the bound
(21). This is just a consequence of the fact that general conditions a)–c) are satisfied in
these approaches. Another theoretical reasons for RS have been suggested in [2]. Let us
remark that the rotational-symmetry properties of the nucleon state in its rest frame play
an important role also in the recent studies [9].

iii) The relation (24) is obtained for the quarks on-mass-shell. In a more general case,
where only inequalities (20), (21) hold, this relation is replaced by

p2
T ≤ M2

(
x− µ2

M2

)
(1− x) ; µ2 ≡ p2

0 − p2, (26)
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where the term µ2 is not a parameter corresponding to the fixed mass, but it is only a
number varying in the limits defined by (20). The last relation implies for any µ2:

p2
T ≤ M2x (1− x) , (27)

which is equivalent to the on-mass-shell relation (24) for m = 0. This general upper
limit for p2

T depending on x is displayed in Fig. 2. Let us remark that results on 〈p2
T (x)〉

obtained in [7, 6] are compatible also with the bound (27). An equivalent form of this
inequality was probably for the first time presented in [10].

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20
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0.30

HpT,max�M L
2

Figure 2: Upper limit of the
quark transversal momentum as
a function of x for µ = 0 (solid
line), 0.1 (dashed line), 0.2 (dot-
ted line) and 0.3 (dash-dotted
line).

To conclude, in the present report we studied the kine-
matic constraints due to the rotational symmetry of the
quark momenta distribution inside the nucleon in the lead-
ing order approach. In particular, we have shown that
the light-cone formalism combined with the assumption on
the rotational symmetry in the nucleon rest frame imply
pT ≤ M/2. Only part of existing experimental data on 〈pT 〉
satisfies this bound, but the another part does not. In gen-
eral, the existing methods for reconstruction of 〈pT 〉 from
the DIS data are rather model-dependent. These are the
reasons why more studies are needed to clarify these incon-
sistencies, since the phenomenological distributions in the
x− pT plane at present serve also as an input for a more fundamental calculation of the
QCD evolution and other effects.
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Abstract
COMPASS is a fixed target experiment at CERN where the nucleon spin struc-

ture is investigated using a 160 GeV/c polarized µ+ beam and polarized solid state
targets. After taking data in the years 2002–2004 using a transversely polarized 6LiD
(deuteron) target, in 2007 and 2010 data were collected on a transversely polarized
NH3 (proton) target. The measurements of single spin asymmetries in semi-inclusive
deep inelastic scattering (SIDIS) on a transversely polarized target are an important
part of the COMPASS physics program. They allow to investigate the transversity
distribution functions, e.g. coupled to the Collins fragmentation function, as well
as transverse momentum dependent distribution functions, like the Sivers distribu-
tion function, by measuring azimuthal asymmetries in hadron production. In this
contribution we present the results from the 2010 data for the Collins and Sivers
asymmetries.

1 Introduction

The spin structure of the nucleon at twist-two level in the collinear case can be fully
characterized by three independent parton distribution functions (PDF) for each quark
flavour: the unpolarized distribution function f1(x), the helicity distribution function
g1(x) and the transverse spin distribution function h1(x). The latter, also called transver-
sity, is chiral odd and decouples from inclusive deep inelastic scattering (DIS). In com-
bination with another chirally odd function like the Collins fragmentation function (FF)
Hh

1 (z, p2
T ) [1] it is possible to measure transversity in semi inclusive DIS (SIDIS) in single

hadron production. At the COMPASS experiment transversity can also be measured in
Λ hyperon polarization and in two-hadron inclusive production [2], where it is coupled to
the interference fragmentation function H^

1 .

When the intrinsic transverse momentum of the quarks ~kT is taken into account, the
nucleon structure at leading twist can be described by eight PDFs, which are all measured
at COMPASS. This contribution will concentrate on the Collins function as well as on
the Sivers function [3], which is correlated to the Sivers distribution function f⊥1T (x, ~kT ).

COMPASS is a fixed target experiment at the CERN M2 beamline where the nucleon
spin structure is investigated using a 160 GeV/c polarized µ+ beam and polarized solid
state targets. For measuring transverse spin effects a transversely polarized 6LiD (deu-
terium) target (years 2002–2004) [4] and a transversely polarized NH3 (proton) target
(years 2007 and 2010) [5] were used. The proton target consists of three target cells,
where the outer ones are polarised oppositely to the inner one. The achieved polarisation
is up to 95% with a dilution factor of 0.15.
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2 The Collins asymmetry

The Collins mechanism leads to an azimuthal modulation in the distribution of the un-
polarized hadrons produced in the fragmentation of a transversely polarized quark. The
number of produced hadrons is then given by Nh(φC) = N0

h [1 + f PT DNN AColl sin(φC)],

where f is the target dilution factor, PT is the target polarization and DNN = (1−y)
(1−y+y2/2)

is the spin transfer coeffizient from the initial to the struck quark. The Collins angle
φC = φh + φs − π is the sum of the azimuthal angle of the produced hadron and the
azimuthal angle of the nucleon spin with respect to the scattering plane. The Collins
asymmetry AColl is given by

AColl =

∑
q e2

q · h1(x)⊗Hh
1 (z, p2

T )∑
q e2

q · f1(x)⊗Dh
q (z, ph

T )

with the convolution of the transversity distribution h1(x) and the Collins fragmentation
function Hh

1 (z, p2
T )) in the nominator. Here z = Eh/(Eµ − Eµ′) is the fraction of the

virtual photon energy energy carried by the hadron and ph
T is the transverse momentum

of the hadron with respect to the photon direction.
To select events in the DIS region, kinematic cuts on the photon virtuality Q2 >

1 (GeV/c)2, on the fractional energy transfer of the muon 0.1 < y < 0.9 and on the
invariant hadronic mass W > 5 GeV/c2 are applied. Furthermore z > 0.2 and ph

T >
0.1 GeV/c are required for the selection of the hadrons. In the following this selection will
be referred to as the standard sample.
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Figure 1: Collins asymmetries of 2010 proton data as a function of x, z and ph
T for positive and negative

hadrons. The bands correspond to the systematical error.

The preliminary results for the Collins asymmetry from the 2010 measurement on
the proton target are shown in Fig. 1 as a function of x, z and ph

T for positive and
negative hadrons. For x > 0.1 the asymmetries are clearly different from zero and of
opposite sign for positive and negative hadrons. At lower values of x the asymmetries
are compatible with zero. In bins of z and pT , the asymmetries show no clear trend but
are different from zero in average. The 2010 results are in perfect agreement with the
measurements on the Collins asymmetries of 2007, but with smaller error bars due to
the higher statistics gained in 2010. The HERMES experiment [6] at DESY has also
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measured the Collins asymmetries on a proton target using a polarized electron beam at
a lower Q2. In comparison the results from both experiments are in very good agreement.
This indicates a weak Q2 dependence of the Collins FF.
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Figure 2: Collins asymmetries of 2010 proton data as a function of x, z and ph
T for 0.1 < y < 0.9 and

0.05 < y < 0.1 with x > 0.032. Upper row shows positive hadrons, lower row negative hadrons.

With the higher statistics achieved during the 2010 measurment it is now possible to
explore kinematical regions different from the standard sample described above. In one
of the new analyses y was restricted to the region of 0.05 < y < 0.1. The cut on W
was dropped and the remaining cuts on z and pT were kept the same as for the standard
sample. Since there is no data for x < 0.032 at this low-y selection, for comparison an
additional cut x > 0.032 was applied on the standard sample. Fig. 2 shows the results
of the 0.05 < y < 0.1 analysis in comparison with the standard sample. The upper
row shows the asymmetries for positve hadrons and the lower row for negative hadrons.
For positive hadrons the trend of the asymmetries stays the same but the absolute value
increases in all bins of x, z and pT . For negative hadrons no effect is visible. In a third
analysis the sample corresponding to 0.1 < z < 0.2 (low-z sample) was choosen while all
other cuts were like the ones for the standard sample. The results are shown in Fig. 3 for
the standard sample and the 0.1 < z < 0.2 sample. The upper row shows the asymmetries
for positve hadrons and the lower row for negative hadrons. In bins of x the low-z sample
follows the standard sample but with slightly decreased values for large x values, both for
positive and negative hadrons. In bins of pT no difference can be seen.

3 The Sivers asymmtery

The Sivers function f⊥1T (x, ~kT ) gives the correlation between the transverse spin of a
nucleon and the intrinsic transverse momentum of unpolarized quarks. The number of
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Figure 3: Collins asymmetries of 2010 proton data as a function of x, z and ph
T for z > 0.2 and

0.1 < z < 0.2. Upper row shows positive hadrons, lower row negative hadrons.

produced hadrons Nh(φS) = N0
h [1 + f PT AS sin(φS)] depends on the Sivers angle φS =

φh − φs, the difference of the azimuthal angle of the produced hadron and the azimuthal
angle of the nucleon spin in the gamma-nucleon system. The Sivers asymmetry AS is given
by the convolution of the Sivers function and the unpolarised fragmentation function:

AS =

∑
q e2

q · f⊥1T (x, ~kT )⊗Dh
q (z, ph

T )∑
q e2

q · f1(x)⊗Dh
q (z, ph

T )

The preliminary Sivers asymmetries of the 2010 measurement on the proton target at
COMPASS are shown in Fig. 4 in bins of x, z and pT . For positive hadrons the asym-
metries show a positive signal in all three kinematic variables, even at small values of x,
whereas for negative hadrons (triangles) the asymmetries are compatible with zero within
the error bars. There is again a very good agreement with the published results from
the 2007 data taken at COMPASS. Compared to the HERMES results [7] on the proton
target the asymmetries measured at COMPASS show the same trend but are smaller in
absolute value.

Fig. 5 shows the Sivers asymmetries for the low-y (0.05 < y < 0.1) selection in bins of
x, z and pT for positive hadrons in comparison to the standard sample (0.1 < y < 0.9).
Here a clear increase of the Sivers asymmetries is visible for the low-y sample, which could
be explained by the smaller values of Q2 and W in this selection. A Q2 dependance is
expected and has been calculated [8], but no dependece on W is foreseen. The asymmetries
for negative hadrons (not shown) are again compatible with zero. In Fig. 6 the measured
Sivers asymmetries from the low-z sample and the standard sample are shown for positive
hadrons. As it can be seen from the plot, the Sivers asymmetries become much smaller in
size for low-z. The asymmetries for negative hadrons (not shown) stay compatible with
zero also for the low-z sample.
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COMPASS 2010 proton data
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Figure 4: Sivers asymmetries of 2010 proton data as a function of x, z and ph
T for positive and negative

hadrons. The bands correspond to the systematical error.
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Figure 5: Sivers asymmetries of 2010 proton data as a function of x, z and ph
T for 0.1 < y < 0.9 and

0.05 < y < 0.1 with x > 0.032, positve hadrons only.
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Figure 6: Sivers asymmetries of 2010 proton data as a function of x, z and ph
T for z > 0.2 and

0.1 < z < 0.2, positve hadrons only.

4 Conclusion

The present results from the 2010 measurement on the proton target at COMPASS show
non-zero asymmetries for Collins and Sivers which are in very good agreement with the
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published results from the 2007 run. In contrast in the measurement on a deuterium
target 2002–2004 the asymmetries were compatible with zero [4]. Dedicating the whole
data taking period 2010 to measure on a transversely polarized proton target led to a
decrease of the statistical error by a factor of about 1.7 compared to the 2007 measure-
ment. This also allows the investigation of different kinematical regions which show very
interesting results, expecially for the Sivers asymmetries. Work is ongoing to extract
the asymmetries for identified hadrons as well as the other six transverse spin dependent
asymmetries which are present in the expression of the SIDIS cross-section.
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Abstract
At high energies and small momentum transfer (0.001 < −t < 0.1) (GeV/c)2

proton-proton elastic scattering of transversely polarized protons is described by the
interference of the Coulomb amplitude and pomeron exchange amplitude. These
mechanisms can not induce double spin flip amplitudes and therefore can only pro-
duce small double spin asymmetries. A measurement of non-zero transverse double
spin analyzing power (ANN ) would provide an evidence in favor of contribution of
other Reggeons, including a hypothetical Odderon, to the scattering amplitude.

Preliminary results on the double spin asymmetries ANN and ASS from the
analysis of 20 million of elastic events collected with transversely polarized p+p
collisions at

√
s = 200 GeV in the STAR experiment at RHIC are discussed. The

data covers −t range 0.003 < −t < 0.035 (GeV/c)2.

This contribution is dedicated to the measurements of double spin asymmetries ANN

and ASS at STAR using the same dataset as our measurements of the single spin asym-
metry AN [1]. The detector, experimental conditions and elastic event selection is the
same as in our single spin asymmetry AN measurement. Here we will concentrate only
on the aspects specific to the double spin asymmetries.

Transverse double spin asymmetries ANN and ASS for the elastic scattering of the two
identical spin 1/2 fermions can be described by the amplitudes as [2–4]:

ANN
dσ

dt
=

4π

s2
{2|φ5|2 + Re(φ∗1φ2 − φ∗3φ4)} (1)

ASS
dσ

dt
=

4π

s2
{Re(φ1φ

∗
2 + φ3φ

∗
4)} (2)

Each amplitude is a sum of hadron and Coulomb amplitudes φi = φem
i +φh

i . The Coulomb
amplitude is strictly calculable from QED, while the hadron amplitude is usually calcu-
lated using Regge theory. At ultra relativistic energies the main contribution to the hadron
amplitude comes from pomeron or, in modern terms, multigluon exchange [5]. Particu-
lar interest to measurements of the transverse double spin asymmetries comes from their
sensitivity to the hypotetical charge conjugation partner to the pomeron - odderon [6].
The effect is illustrated by the simple picture (fig. 1) in which ANN is calculated for the
pomeron and odderon contributions to the double spin flip amplitude |φpom,odd

2 | = 0.05|φ1|.
In the later work by T.L. Trueman [7] it was shown, based on the analysis of single spin
asymmetry experimental data in the CNI region, that pomeron contribution was small
and sizable double spin asymmetries could be found only if the odderon coupling to double
spin flip amplitudes was strong.
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Figure 1: Illustration of odderon contribution to
ANN from [6].

Precise measurements of ANN were per-
formed recently using RHIC polarized hy-
drogen jet target (HJET) at

√
s = 6.8 and

13.7 GeV [8]. The result was compatible
with sero within errors. The only experi-
ment in the collider energy range was per-
formed by pp2pp collaboration at

√
s =

200 GeV [9], but it had a limited statistics.
The results reported here are based on the
preliminary analysis of of 20 millions events
of proton-proton elastic scattering at

√
s = 200 GeV [1].

The double spin raw asymmetry is given by the equation:

εNN(φ) = PBPY (ANN cos2(φ) + ASS sin2(φ)) =
(N++

L++ + N−−
L−− )− (N+−

L+− + N−+

L−+ )

(N++

L++ + N−−
L−− ) + (N+−

L+− + N−+

L−+ )
, (3)

where N ij(φ) - number of events with bunch polarization pattern ij at the azimuthal
angle φ. PB/Y are polarizations of blue and yellow beams, measured by HJET and pCar-
bon polarimeters [10]. The event weighted beam polarization for this measurement was
PBPY = 0.372 ± 0.023. Lij are relative luminosities for the corresponding polarization
pattern. For the preliminary results we used relative luminosities obtained from counts
of inelastic triggers produced by the vertex position detector (VPD) and beam-beam
counters (BBC). Normalization coefficients are given in the Tab. 1.

Table 1: Normalization

Counts L++ L+− L−+ L−− σstat/L
±±

VPD 38246243 0.24544 0.24676 0.24940 0.25839 0.00028
BBC 449686340 0.24512 0.24595 0.25028 0.25864 0.00008
average 0.24528 0.24636 0.24984 0.25852

The systematic uncertainty in the normalization can be estimated by the average
square of the difference between VPD and BBC normalizations which turned out to
be 0.25%. The statistical uncertainty of both methods is much smaller. The averaged
coefficients were used in the further analysis. A careful normalization analysis, including
data from zero degree calorimeter (ZDC) and wall current monitors (WCM), is under
way.

Another check of the normalization quality was performed by the extraction of the
single spin asymmetry AN using normalized counts and comparison of the result with the
analysis preformed using square root formula [1]. The single spin raw asymmetry can be
written as:

εN(φ) =
(PB + PY )AN

1 + δ(φ)
cos(φ) =

N++

L++ − N−−
L−−

N++

L++ + N−−
L−−

(4)

The plot for the -t range 0.005 < −t < 0.010 (GeV/c)2 is shown in fig. 2a. The value of
(PB + PY )AN = 0.03404 ± 0.00095 is well within statistical error from the result of the
analysis used square root formula (PB + PY )AN = 0.03435± 0.00096.
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The preliminary result on the raw double spin asymmetry is shown in fig. 2b for the
whole t-range. The t-dependence of ANN and ASS is shown in fig. 3. Though some effects
of the order of 10−3 could be seen, they are small and comparable with the normalization
uncertainty. A careful study of systematic effects produced by normalization should be
done before making any conclusions.

a) b)

Figure 2: The preliminary result on the raw single spin asymmetry εN (φ) from the normalized counts
for the -t range 0.005 < −t < 0.010 (GeV/c)2 (a) and the preliminary result on the raw double spin
asymmetry εNN (φ) for the whole t-range (b).

a) b)

Figure 3: The preliminary result on t-dependence of ANN (a) and ASS (b). Only statistical errors are
shown.

Our preliminary results agree with the hypothesis that only Pomeron exchange, which
contributes only to non-spin flip amplitudes φ1 and φ3, survives at high energies. Along
with other cited measurements of the proton-proton elastic scattering with

√
s > 10 GeV

we see no evidence of contribution of other amplitudes. Our future plans include mea-
surement of ALL in the same kinematics and getting data at

√
s = 500 GeV in order to
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measure the cross section and the slope parameter of the elastic peak B.
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Abstract

We present recent results from RHIC Spin measurements related to gluon and
(anti-)quark polarizations in the proton. We discuss plans for future measurements
along with machine and experimental upgrade programs to further improve con-
straints for polarized parton distribution functions.

1 Introduction

The spin structure of the proton has been measured since 1980s in polarized lepton-
nucleon deep-inelastic scattering (DIS) experiments, which revealed that only 20–30% of
the proton spin can be attributed to the spins of the quarks and anti-quarks [1] indicating
that the proton spin must be largely carried by the spin of the gluons and/or orbital
angular momentum of the quarks and gluons. Since then, the main goal of spin physics
has been to elucidate the role of gluon spin (∆g) as well as flavor separated contribution of
quark and anti-quark spin (∆q and ∆q̄) in the proton spin. Getting access to the orbital
angular momentum remains a challenging task from both theoretical and experimental
point of view, which will be a major part of the new 12 GeV program at Jefferson Lab
and at future Electron-Ion Collider (EIC).

DIS experiments have been providing data to constrain ∆g from the scaling violation in
inclusive polarized scattering [2] and from semi-inclusive measurements of high transverse
momentum (pT ) hadron pairs [3] and heavy flavor production [4] to utilize the photon-
gluon process. The flavor separated contribution of quarks and anti-quarks to the proton
spin is determined in semi-inclusive DIS using fragmentation processes, which correlate
final state hadron with quark flavor.

Polarized proton-proton collisions at the Relativistic Heavy-Ion Collider (RHIC) pro-
vide complementary approach to study proton spin structure. Gluon-spin contribution is
accessed through the hard scattering directly involving gluons. Flavor decomposition of
quark and anti-quark polarization can elegantly be obtained from the measurements of
W bosons, which couple left-handed quarks and right-handed anti-quarks: uLd̄R → W+

and dLūR → W−. This approach is free of uncertainties in fragmentation functions, if
W s are measured through their leptonic decays.

2 Spin Measurements at RHIC

The measured quantities in spin physics experiments at RHIC are spin asymmetries, which
are defined as an asymmetry in production cross section between different beam spin
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configurations. Experimentally they are measured as a difference in the production rates
for different bunch pair spin configurations divided by the sum, and normalized by beam
polarization for single spin measurements or by a product of two beam polarizations for
double spin measurements. Production rate is defined from the measured yield normalized
by the luminosity, for each colliding bunch pair spin configuration.

RHIC provides polarized proton collisions in wide center of mass energy range up
to
√

s =500 GeV. Since the first polarized proton run in 2002 RHIC experiments have
collected data at

√
s =62.4, 200 and 500 GeV with both longitudinally and transversely

polarized proton beams. From year to year RHIC has been improving its performance in
terms of both luminosity and polarization. The store average beam polarization of more
than 60% (50%) has been achieved at

√
s =200 GeV (500 GeV).

The stable direction of the proton spin in RHIC is vertical, but the regions around two
RHIC experimental areas, PHENIX and STAR, include sets of magnets (spin rotators)
to rotate the spin to the longitudinal direction at a collision point, and then back to
vertical after the collision point. The RHIC polarimeters [5] measure the transverse beam
polarization away from the experimental areas, independent of the operation of the spin
rotators. Bunches with alternating spin direction collide every 106 ns, so that all four two-
bunch spin configurations occur in sequences of four bunch crossings. This significantly
reduces false asymmetries and systematic uncertainties in spin asymmetry measurements
due to slow variations in luminosity and detector acceptances and efficiencies.

Two large experiments, PHENIX [6] and STAR [7] have been used to carry on longitu-
dinal spin program at RHIC. PHENIX detector utilizes a variety of detector technologies.
A pair of central arms, each with acceptance of π/2 in azimuth and |η| <0.35 in pseu-
dorapidity, have excellent energy and momentum resolution and particle identification
capabilities and are used to measure electrons, hadrons and photons. A pair of forward
spectrometers with full azimuthal acceptance and 1.2 < |η| < 2.4 are used to measure
muons. STAR detector was designed to do measurements over a large solid angle with full
azimuthal acceptance, providing high precision tracking, momentum analysis and particle
identification, which makes it particularly well suited for jet detection.

Each of RHIC experiments is equipped with local polarimeters [5] to control the resid-
ual transverse spin polarization when spin rotators are on, and by that to measure the
degree of longitudinal beam polarization. The transverse spin component PT /P in lon-
gitudinal spin runs usually was 5–15%, which translates to longitudinal spin component
PL/P of ∼ 99%.

3 ∆g Measurements

Polarized proton-proton collisions at RHIC provide a laboratory to study the gluon-spin
contribution to the proton spin structure, ∆g, with strongly interacting probes via mea-
surements of double helicity asymmetries (ALL) [8]. Experimentally, for example for
inclusive π0 or jet production, it is determined from the measured yields as:

ALL =
1

|PB · P Y | ·
N++ −R ·N+−
N++ + R ·N+−

; R =
L++

L+−
, (1)

where N is the number of π0’s or jets measured from the colliding bunches with the same
(++) and opposite (+−) helicities, R is the relative luminosity between bunches with

190



(a) (b)

Figure 1: (a) Double helicity asymmetry in inclusive π0 production as a function of pT from RHIC
runs of 2005, 2006 and 2009, combined, measured by PHENIX; dashed line corresponds to DSSV global
fit [10] (b) Double helicity asymmetry in inclusive jet production as a function of pT from RHIC runs
of 2006 and 2009, measured by STAR; theoretical curves are from GRSV parametrization of polarized
PDFs [11] and from DSSV global fit [10].

the same and opposite helicities, and PB and P Y are the polarizations of the two RHIC
beams.

Extraction of ∆g is based on a next-to-leading order (NLO) perturbative Quantum
Chromodynamics (pQCD) framework, which was proved to well describe RHIC unpolar-
ized cross section data [9]. RHIC ALL results at mid-rapidity in inclusive π0 production
(by PHENIX) and jet production (by STAR) have been used in NLO global fit (DSSV)
of polarized parton densities and played the dominant role in determining the polarized
gluon distribution in the proton [10]. In the accessed range of the gluon momentum
fraction ∆g was found to be consistent with zero.

Since then, both PHENIX and STAR have considerably decreased the uncertainties in
their measurements (by a factor of ∼ 1.5 in PHENIX and by a factor of 3–4 in STAR) by
collecting more data in 2009 RHIC run and by improving systematic uncertainties. The
results are shown in Fig. 1. Data points from both data sets tend to be above the curve
corresponding to DSSV fit, which may indicate the non-zero ∆g in the range of probed
gluon momentum fraction 0.02 < x < 0.3. Inclusion of these data to the global fit would
help to derive a more precise quantitative statement on gluon spin contribution in the
proton spin.

The main limitations of the presented results are the limited gluon x range they probe,
and a poor sensitivity to the shape of ∆g as a function of x, due to inclusive nature of the
presented measurements and due to that several processes contribute to inclusive jet or
hadron production at mid-rapidity (effectively gg and qg scattering). Both PHENIX and
STAR plan to measure asymmetries at forward rapidities, which give sensitivity to lower x.
Correlation measurements, di-jets or di-hadrons, will help to better constrain the partonic
kinematics and hence determine the shape of ∆g vs x. With planned RHIC upgrades to
considerably improve luminosity, the direct photon measurements will become of great
interest, because they provide a theoretically clean access to ∆g through quark-gluon
Compton scattering qg → qγ, the dominant mechanism for direct photon production in
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(a) (b)

Figure 2: (a) Double helicity asymmetry in direct photon production as a function of pT from RHIC runs
of 2005 and 2006, measured by PHENIX; theoretical curves are from GRSV parametrization of polarized
PDFs [11]. (b) Double helicity asymmetry in di-jet production as a function of jet-pair invariant mass
from RHIC run 2009, measured by STAR; theoretical curves (from lower to upper one) are from GS-C [12],
DSSV [10] and GRSV-std [11].

high energy pp collisions. The preliminary results on these are already available from
RHIC experiments, see Fig. 2.

Measuring different probes (e.g. η, charged hadrons, heavy flavor mesons) is important
to study systematic uncertainties in ∆g constraint. Some of them require larger luminosity
to get good statistical sensitivity to gluon polarization. They will start contributing to
∆g constraint with increasing integrated luminosity delivered to RHIC experiments.

4 Flavor Separated Helicity Distributions

Production of W bosons in pp collisions is uniquely suited for testing symmetry of the light
anti-quark sea in both unpolarized and polarized collisions. W boson production selects
the quark flavors through their charge and, due to the maximally parity-violating weak
interaction, it also selects only one helicity of nearly massless quarks: left-handed helicity
for quarks and right-handed helicity for anti-quarks. Hence the asymmetry of the W
yield from flipping the helicity of a polarized proton is sensitive to the flavor dependence
of light quark and anti-quark helicity distribution in the proton.

At leading order, the single helicity asymmetry in W+ production is proportional to
light quark and anti-quark helicity distribution in the proton:

AW+

L = −∆u(x1)∆d̄(x2)−∆d̄(x1)∆u(x2)

u(x1)d̄(x2) + d̄(x1)u(x2)
, (2)

and similarly for W− by exchanging u → d and d̄ → ū. These asymmetries are generally
more sensitive to the quark polarizations for forward W rapidities with respect to the
polarized proton, while the anti-quark polarizations are probed in the backward direction.
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(a) (b)

Figure 3: (a) Inclusive cross sections for W leptonic decay channel of PHENIX measurements along
with p̄p measurements, in comparison to theory calculations ( [14] and the references therein). (b)
Longitudinal single-spin asymmetry for W± production as a function of the decay lepton pseudorapidity
in comparison to theory predictions ( [15] and the references therein).

Central rapidity W+ (W−) production asymmetry is basically a linear combination of
∆ū/ū and ∆d/d (∆d̄/d̄ and ∆u/u).

Measurements of W bosons at RHIC are done by detecting their decay leptons, either
electrons/positrons or muons (in PHENIX forward spectrometers). A theoretical frame-
work has been developed to describe decay lepton production [13] to be compared with
data to eventually get constraint on light quark and anti-quark helicity distribution in
the proton. First RHIC results on cross section and helicity asymmetry in W production
at mid-rapidity in polarized pp collisions at

√
s =500 GeV have been already published

by PHENIX [14] and STAR [15] collaborations, see Fig. 3. Results were found to be con-
sistent with theoretical expectations. The first observation of non-zero parity-violating
asymmetry in W production has been reported by both collaborations, which due to
limited statistics didn’t yet allow to distinguish between different scenarios of anti-quark
polarization in the proton. In the next a few years, RHIC increased luminosity and higher
proton beam polarizations along with PHENIX and STAR detector upgrades in progress
will make it possible to significantly reduce the uncertainties in AL measurements and
to extend the measurements to forward rapidities, which will significantly improve our
knowledge of flavor-separated quark and anti-quark helicity distributions.

PHENIX upgrade includes high momentum muon trigger in forward spectrometers.
It consists of fast front end electronics (FEE) for the existing muon trackers and three
planes of resistive plate counters (RPCs) in each arm. FEE electronics was installed and
checked in 2009. One plane of RPCs in each arm was installed in 2010. This system has
already been commissioned and used to collect high pT muon data in RHIC run of 2011
and demonstrated good efficiency and expected rejection power. In 2012 after installation
of another plane of RPCs we hope to further improve the performance of the new muon
trigger system.

STAR plans to extend the measurements of electrons/positrons from W boson decays
from central rapidity (|η| < 1) to forward rapidity region (1 < η < 2). A new tracking
upgrade is needed to determine the charge of highly energetic electrons/positrons. The
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(a) (b) (c)

Figure 4: (a) Expected uncertainties of PHENIX AW
L measurements in forward (muon) spectrometers

for assumed integrated luminosity of 300 pb−1 and 55% polarization. (b) Expected uncertainties of
PHENIX AW

L measurements in central spectrometers for assumed integrated luminosity of 300 pb−1

and 55% polarization. (c) Expected uncertainties of STAR AW
L measurements for assumed integrated

luminosity of 300 pb−1 and 70% polarization.

forward GEM Tracker (FGT) will be installed and commissioned in the coming RHIC run
of 2012.

Fig. 4 shows the projected uncertainties for the AW
L measurements as a function of

lepton rapidity along with different model expectations. These will allow to considerably
constrain the ∆ū and ∆d̄ for momentum fraction x > 0.1 [13].

5 Summary and Longer Term Plans

RHIC as the only polarized proton collider in the world continues improving its perfor-
mance gradually improving luminosity and beam polarizations. Two main goals of longi-
tudinal spin measurements at RHIC are to constrain gluon and anti-quark polarizations
inside the proton.

Double helicity asymmetry measurements in inclusive π0 production by PHENIX and
inclusive jet production by STAR have been playing the dominant role in constraining the
∆g in the range of gluon momentum fraction 0.02 < x < 0.3. The recent data from RHIC
run of 2009 tend to indicate the non-zero gluon polarization in this x range. Inclusion
of these data in the global NLO fit is important to make more quantitative statement.
To extend the probed x range both experiments plan to perform ALL measurements in
forward region. Di-jet, di-hadron and direct photon-jet (at higher RHIC luminosities)
channels will be used to get access to parton kinematics and hence to measure the shape
of ∆g versus x.

First W boson measurements at RHIC showed good consistency with theoretical ex-
pectations. Larger statistics from collisions with higher beam polarizations to be collected
by PHENIX and STAR at both mid- and forward-rapidities in the next 2–3 years will
considerably improve our knowledge on quark and anti-quark polarizations in the proton
at x > 0.1.

RHIC upgrade plans include increasing the center of mass energy from
√

s =500 GeV
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to 650 GeV, and the possibility to accelerate polarized 3He. The former is important for
W measurements, for which the production cross section will increase twice; the latter is
important for full flavor separation in polarized parton distribution functions.
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Abstract

Single hadron fragmentation functions, FFs, play an important role in several
aspects of hadronic spin physics. In particular, they are crucial for the determination
of flavour separated polarized parton distribution functions (polarized PDFs) from
Semi-Inclusive DIS data.

The COMPASS collaboration at CERN is undertaking a programme of measure-
ments of pion and kaon multiplicities in SIDIS for the purpose of extracting these
FFs. Preliminary results, derived from muon-nucleon scattering data collected on
an LiD target, are presented.

The dependence of the multiplicities upon transverse momentum, pT , is also
investigated, having in view, this time, the dependence of the PDFs and FFs
upon the parton intrinsic motion. Preliminary findings, obtained for unidentified
charged hadrons, are reported.

1 Introduction

FFs are universal non perturbative objects appearing in the observables of many hard
reactions. In the presence of the hard scale, and within the collinear factorization frame-
work, the cross-section can be written as a convolution of the hard partonic cross-section,
PDFs and FFs. In the frame of hadronic spin physics, the FFs are needed for e.g., the
analysis of the production of hadrons with high pT , in high energy proton-proton collisions
at RHIC or in photoproduction at COMPASS [1], and in SIDIS.

The latter plays an important role in the spin sector, because in inclusive polarized
DIS, only electromagnetic currents can be used (neutrino scattering from polarized targets
being impractical) and therefore quarks and anti-quarks enter symmetrically and cannot
be disentangled. SIDIS breaks this symmetry: at LO in pQCD, e.g., the cross-section for
the production of hadron h reads:

σh(x, z) =
∑

e2
q q(x) Dh

q (z) ,

where the summation runs on all quark flavours, x and z are the momentum fractions
of quark q and hadron h and Dh

q is the FF of q into h. It is therefore able to achieve a
complete flavour separation of the polarized PDFs, in the fixed target realm.

Such an exercise was performed by HERMES [2]. It yielded the surprising result
that the strange polarized PDF , ∆s, is compatible with zero (in the measured x range)
contrary to expectations based on QCD fits of inclusive data. COMPASS has confirmed
this result [3], over an extended x range and with improved precision, cf. Fig. 1, which
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makes it now challenging for global fits to reconcile inclusive and semi-inclusive data.
COMPASS showed, though, that the magnitude of the discrepancy is very sensitive to the
choice of FFs, in particular to the magnitude of the kaon fragmentation, DK−

s = DK+
s̄ [3].

SIDIS can also be analyzed, in the low pT domain, in terms of unintegrated PDFs and
FFs where the transverse distributions are modeled by a Gaussian ansatz [5]. Such models
can then be used to extract transverse momentum dependent distributions TMDs [6].
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Figure 1: The quark PDF s at Q2 = 3 GeV2 as a function of x. The values are derived from LO
analyses of SIDIS asymmetries. The curves are from the DNS fit [4], i.e. an NLO QCD fit of both
DIS and SIDIS data, using FF s from [7].

2 Multiplicity measurement

FF have been initially extracted from mostly high energy e+e− collider data [7] [8]. Such
extractions suffer from two limitations. They can only separate quarks from anti-quarks
based on model assumptions. Their evolution to the Q2 accessible to fixed target SIDIS,√

s ' 17 GeV in our case, relies heavily on the poorly constrained gluon distributions,
Dh

g . More reliable and versatile FFs can be obtained form a global fit of data comprising,
in addition to e+e−, pp and SIDIS data, such as the DSS fit [9].

In SIDIS, one studies the fragmentation process by determining multiplicity distri-
butions for the detected hadrons. At COMPASS, we identify the hadrons with a RICH
detector which places strict constraints on the measured momenta. The range retained for
the kaon momenta in the present analysis, is [10,50] GeV/c. In order for the acceptance
of our spectrometer to remain sizable over the measured domain, we impose a cut on the
mass of the hadronic system, W > 7 GeV. For the other kinematic variables, we follow a
standard DIS selection scheme, viz.: Q2 >1 GeV2, 0.1< y <0.9. The measured multiplic-
ities are shown on Fig. 2. They agree with DSS for the pions at low z, but significantly
depart from it at high z and for the kaons.

Our intent is now to repeat the analysis on 2006 data, which were acquired with an
experimental apparatus differing in several aspects from that of 2004 ones, in order to
better understand our systematics.

The analysis of K0
S along similar lines is under way. An interesting application of

this work is that, combined with the K±, it gives access to the non-singlet combination
(Du −Dd)

K++K−
in a model independent way, following the approach described in [10].
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Figure 2: Multiplicities of pions and kaons at COMPASS as a function of x for various bins in z
compared to a LO pQCD calculation based on MRST04 PDFs and DSS FFs

.

The presently discussed data were acquired on our polarized deuterium target, which
is a mixture of LiD and He, i.e. an isoscalar target for which nuclear medium effects are
expected to be small. We plan to take SIDIS data on a liquid H2 target in 2012.

3 pT dependent hadron multiplicities

We also analyze our LiD data as a function of the transverse momentum with respect to
the virtual photon, pT , following the model approach described in [5]. The multiplicities
distributions along pT lend themselves to a good Gaussian fit, provided the fitted domain
is restricted to low pT in order to avoid the region where pQCD effects become dominant.
We perform such a fit for pT <0.85 GeV/c, in z intervals, for a series of two-dimensional
(x,Q2) bins.

The z dependence of the resulting Gaussian widths, 〈p2
T 〉, is of particular interest

because of its relation to the intrinsic transverse momenta k⊥ and p⊥; p⊥ representing the
motion of the detected hadron with respect to the fragmenting parton and k⊥, the motion
of the parton inside the initial nucleon. The authors of [5] approximate this dependence
by a simple 〈p2

⊥〉 + z2 〈k2
⊥〉 expression. Such a linear relation fails to describe our data

over the wide z range (0.2< z <0.8) they cover. Instead, inspired by a similar ansatz for
the FFs in [7], we assume a z dependence for the fragmentation such that:

〈p2
T 〉 = zα(1− z)β 〈p2

⊥〉 + z2 〈k2
⊥〉 (1)

where α and β are constants which best-fit values are α = 0.5, β = 1.5. It must be noted
that this non-linear behavior is reproduced qualitatively by an update of the model of [5]
published recently [11].

Using equation (1), the intrinsic average square momenta 〈k2
⊥〉 and 〈p2

⊥〉 are extracted
for each of our (x,Q2) bins. As an example, the extracted 〈k2

⊥〉 are plotted vs. Q2 in
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Fig. 3. They clearly exhibit a strong Q2 dependence. When plotted vs. x instead (figure
not shown), they display only a weak trend at low Q2, which vanishes as Q2 increases.
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Figure 3: 〈k2
⊥〉 vs. Q2 for positive and negative hadrons. Each data point corresponds to a two-

dimensional (x,Q2) bin. The dotted line is the result of a global fit to data from many experiments [5].

Also, 〈k2
⊥〉 is systematically higher for positive hadrons than for negative ones, sug-

gesting a flavour dependence. We plan to further investigate this hypothesis by extending
the present pT analysis to identified hadrons. Kaon identification could provide access to
characteristics of the strange quark TMDs.
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Abstract

The survey of the experimental measurements of different types of the spin
transfer tensors is given. These tensors relate the polarization of the secondary
baryons and hyperons to the polarization of the primary beam or target. They
depend on the type of the primary and secondary particles, on the energy of the
initial interacting particles, the energy and production angle of a secondary particle
as well as on the orientations of the initial and final polarizations. In case of the
elastic scattering of baryons there are five tensors: D, R, R′, A and A′, so called the
Wolfenstein parameters (four of them are independent). According to Ann Arbor
convention, for the case when beam is polarized, the target is not polarized and
the scattered particle polarization is measured they correspond to the notations:
D = An0;n0, R = As0;s′0, A = Ak0;s′0, R′ = As0;k′0, A′ = Ak0;k′0. For the case when
the target is polarized and beam is not, the smaller letter notations for Wolfenstein’s
parameters were proposed in [3] (in this paper the asymmetry definition is different
from Ann Arbor Convention: Ascattered,recoil;beam,target). So they are d = A0n;0n,
r = A0s;0s′ , a = A0k;0s′ ,r′ = A0s;0k′ , a′ = A0k;0k′ . For inclusive production of spin
1/2 baryons and hyperons by the polarized beam or target the similar tensors are
applicable.

The review covers the experimental data on the above listed spin tensors in elas-
tic hadron-proton scattering in momentum range from approximately 1 GeV/c up
to 45 GeV/c, in inclusive neutron production at momentum 1.1 GeV/c,in inclusive
Λ production at

√
s = 20 GeV and 200 GeV . There is an indication that some of

the spin transfer tensors decrease with energy (for example D), while other ones
seem to be weakly depending on energy (for example R). The highest values close
to one may have the parameter A which reaches almost 1 in elastic scattering of
the polarized protons on the target with spin zero. At inclusive lepto-production
of Λ the tensor A′ reaches 0.3 at pT = 1.2 Gev/c (COMPASS). There is the model
prediction for this parameter at RHIC. It should be around 10%.

The data are scarce at high energies especially for stable baryons. No measure-
ment was done for inclusive antiproton production. One needs to put more effort
on such measurements.

Introduction. The polarization transfer tensors of the second rank or so called
Wolfenstein parameters D, R, A, R′ and A′ were defined for the NN - elastic scattering [1].
They relate the polarization of the secondary baryons and hyperons to the polarization
of the primary beam or target protons. Four of them are independent, since there is
one relation between them R′+A

A′−R
= tan θ1, where θ1 is the angle of the scattered particle
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in lab. system. Measurements of these parameters are necessary for getting the unique
phase shift solution, for direct reconstructions of scattering amplitudes; these parameters
are sensitive to the spin structure functions and Regge poles. Besides, their asymptotics
deserves a special study since they would serve as a source of polarized particles like
neutrons, antiprotons, antineutrons, hyperons, etc. The goal of the present work is to
survey the status of such measurements and to study the asymptotic behavior of these
parameters.

Before proceeding further, the notations should be defined. The measured asymmetry
is denoted as Abeam,target;scattered,recoil [2]. The sub-indices present the status of the po-
larization direction of the corresponding particles. For the case when beam is polarized,
the target is not polarized and the scattered particle polarization is measured, they cor-
respond to the notations: D = An0;n0, R = As0;s′0, A = Ak0;s′0, R′ = As0;k′0, A′ = Ak0;k′0.
Unit vectors are: k - along the particle momentum, n - normal to the production plane,
−→s = [−→n×−→k ]

|[−→n×−→k ]| ; the prime in superscript - for scattered, double primes - for recoil and no

prime - for initial particles. For the case when the target is polarized and beam is not,
the small letter notations for Wolfenstein parameters were proposed [3]. There is again
one relation between Wolfenstein parameters, namely, a+r′

r−a′ = tan θ2, where θ2 is the an-
gle of the recoil particle in lab. system. The superscript labels r and s are introduced
when the parameters connect the polarized beam particle to the recoil and the polarized
target particle to the scattered particle, respectively. In the following sections we survey
the parameters measured in elastic pion-nucleon and elastic nucleon-nucleon scattering,
in inclusive neutron production, and in inclusive Lambda production. We formulate the
helicity conservation hypothesis for binary reactions. Some predictions of such hypothesis
are tested using the experimental data. The importance of the further testing of this
hypothesis, e.g. at RHIC, is emphasized.

Figure 1: Results for R in elastic π−p - scattering at 40 GeV/c.
The predictions of refs [5] and [6] are presented by the dashed
and the dot-dashed lines respectively. The solid line represents
the function R = − cosΘp, where θp is the recoiled proton
angle.

Elastic pion-nucleon scat-
tering. Pion-nucleon elastic scat-
tering is described by 3 indepen-
dent observables. There are the
unique data on spin rotation pa-
rameter r for pion-nucleon elas-
tic scattering at 6, 16, and 40
GeV/c. Fig. 1 presents data on
r at 40 GeV/c [4] (this figure was
obtained before the small-letter
notation was introduced. Using
the new notations, this would be
r(−t) dependence).

These data give some indi-
cations that the prediction r =
− cos θ2, following from the he-
licity conservation hypothesis (see

below), from the model of rotating hadronic matter, and from Regge Pomeron pole, might
be almost reached at

√
s ∼ 10 GeV . It’s important to check this statement more pre-

cisely including the measurements of the other spin transfer tensors too. For example,
one expects a = sin θ2 in asymptotics.
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Elastic nucleon-nucleon scattering. Fig. 2 shows angular dependence (in c.m.s.)
of D, R and A in pp-scattering around 1 GeV (kinetic energy).

(a) (b) (c)

Figure 2: Angular dependence of parameters D (a), R (b) and A(c) in pp-scattering around 1 GeV
(kinetic energy). ∇ - 640 MeV (JINR), × - 800 MeV (LAMPF), ◦ - 1 GeV (SPNPI). Solid line is PSA
results for pp - scattering [7].

Analyzing these figures one could make the following conclusions: D is close to 1 at
small angles, it drastically changes around 90◦ and it is not in asymptotic regime (D 6= 1).
R is large enough at small angles, it drastically changes around 90◦, it is not in asymptotic
regime (R 6= − cos θ1). A is negligible at small angles, it might be oscillating around 90◦,
it is not in asymptotic regime (A 6= sin θ1).

The experimental data on parameter R at momentum 45 GeV/c for elastic pp - scat-
tering are shown in the Fig. 3 [8]. These data are consistent with asymptotic expectation
R = − cos θ2 following from several models like the rotating hadron matter, the helicity
conservation model, the leading Pomeron exchange.

Figure 3: Spin rotation parameter R in elastic pp
- scattering at momentum of 45 GeV/c vs. −t in
(GeV/c)2. The solid line is the dependence R =
− cos θp, where θp is the recoiled proton angle.

Therefore the elastic scattering data
give some hints to the energy where the he-
licity conservation hypothesis becomes im-
portant: this is the energy

√
s > 10 GeV .

Today this conclusion may be experimen-
tally checked at the polarized RHIC.

Inclusive neutron production. The
reaction C(p, n)X with longitudinally po-
larized proton beam of 590 MeV (beam
polarization P = 75%, pc = 1.205 GeV
± 0.1%, beam intensity 10 µA) was used
for production of the longitudinally polar-
ized neutron beam. It was found experi-
mentally that the transfer of polarization
from longitudinally polarized protons was
the most effective method. Neutrons emit-
ted at the angle of 0◦ with respect to the proton beam at the target were selected by a
collimator and travelled into the experimental area. The absolute neutron beam intensity
was about 108 n/s for neutron energies from 100 to 590 MeV [9]. Neutron polarization
is presented as a function of the neutron kinetic energy in Fig. 4. As seen from this figure
the polarization transfer tensor (analogous to A′) is practically constant and is equal to
60% for xF > 0.7. It’s important to repeat such measurements at the polarized RHIC.
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Figure 4: Inclusive neutron polarization as a function of
the neutron kinetic energy.

Inclusive lambda-production.
Fig. 5 presents the depolarization D
as a function of xF at 200 GeV/c [10].
Data from BNL at 18.5 GeV/c and
pT ∼ 1 GeV/c are presented as
well [11]. The figure shows that D
depends on pT and xF . D = 0.37 ±
0.11 (< xF >= 0.79,< pT >= 0.84
GeV/c) at 200 GeV/c, while at 6
GeV/c (ZGS) D = 0.27± 0.29 [12]).

Figure 5: Depolarization D as a function
of xF at 200 GeV/c. ∗ - data from BNL at
18.5 GeV/c and pT ∼ 1 GeV/c.

Figure 6: Comparison of Λ and Λ spin transfer DLL

in polarized proton-proton collisions at
√

s = 200 GeV
for (a) positive and (b) negative pseudorapidity η versus
pT , respectively.

The sizable spin transfer effect has been inferred in Ω− - production at Tevatron by
high- energy neutral beam containing transversal polarized Λ◦ and Ξ◦ [13]. We are not
aware of any theoretical explanation of these effects.

Fig. 6 [14] gives the comparison of Λ and Λ spin transfer DLL in longitudinally polarized
proton-proton collisions at

√
s = 200 GeV for (a) positive and (b) negative pseudorapidity

η versus pT . The vertical bars and bands indicate the sizes of the statistical and systematic
uncertainties, respectively. The Λ data points have been shifted slightly in pT for clarity.
The dotted vertical lines indicate the pT intervals in analysis of HT and JP data. The
horizontal lines show model predictions. According to Fig. 6, the longitudinally polarized
protons do not transfer their polarizations to the Λ and Λ at

√
s = 200 GeV at the central

region. According to the theorem of Abarbanel-Gross [15] it should be expected that non-
zero transfer of polarization occurs when the rapidity gap between the initial protons and
final baryons (hyperons) is small. Therefore it is very important to measure such processes
in the fragmentation region of initial polarized protons. STAR Collaboration is preparing
such an experiment.

Helicity conservation hypothesis for NN-scattering. We assume that the helic-
ity conserves at sufficiently high energies in s-channel. In this case the only two helicity
non flip amplitudes M1 and M3 survive. If we take M1 = M3 therefore, using formulae
from [3], we obtain the asymptotic behavior of Wolfenstein parameters when we study
the spin transfer from the beam to the scattered nucleon (Table 1); from the target to
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the recoil nucleon (Table 2).

Table 1. Spin transfer from the beam to the scattered nucleon
D R A R′ A′

1 − cos θ1 sin θ1 sin θ1 cos θ1
R′+A
A′−R

= tan θ1

Table 2. Spin transfer from the target to the recoil nucleon
d r a r′ a′

1 − cos θ2 − sin θ2 − sin θ2 cos θ2
a+r′
r−a′ = tan θ2

Wolfenstein parameters R and A′ are significant at the angle θ1 close to 0◦, while A
and R′ are significant when θ1 is close to 90◦.

Again, if we take M1 = M3, the Wolfenstein parameters transferring the spin from the
beam to the recoil nucleon and from the target to the scattered nucleon are zero. The pre-
dictions of the helicity conservation hypothesis for parameter r = − cos θ2 are confirmed
by the experimental results on elastic π−p - scattering at momentum of 40 GeV/c and
elastic pp - scattering at momentum of 45 GeV/c. The other predictions of the helicity
conservation hypothesis may be tested at existing experimental facilities. The main goal
of this paper was to study the Wolfenstein parameters surviving at the asymptotics. For
this the helicity conservation hypothesis, which predicts the values of Wolfenstein param-
eters in asymptotics, was proposed. The experimental confirmation of the hypothesis was
found in reactions: π−p at 40 GeV and pp at 45 GeV , namely, r = − cos θ2. However
the data exist for parameter r only, the other parameters are not measured at these and
higher energies. There is a tendency that in pp - elastic scattering Dr and Rr → 0 at
large angles (see Fig. 2) as it is predicted by helicity conservation hypothesis. Why DLL

is small in inclusive Λ production? Unfortunately, there is no model for inclusive reaction
analogues to the helicity conservation model for elastic scattering. If elastic models were
valid in this case, then DLL could behave like a′ = cos θ2 and be zero at large angles.
At STAR it was measured at 90◦. To check the asymptotics, the measurements at small
angles should be done.

Conclusions.
1) The Wolfenstein parameters D, R and A were studied in details experimentally

at the kinetic energy region 100 − 3000 MeV and were used in the phase shift analysis
and in the direct reconstruction of the NN - elastic scattering amplitudes. The data on
parameters R′ and A′ are scarce.

2) There are the unique data on parameter r: for pion-nucleon elastic scattering at 6,
16, and 40 GeV/c and on pp - elastic scattering at 45 GeV/c. They give some indications
that the predictions r = − cos θ2 following from the helicity conservation hypothesis might
be almost reached at

√
s ∼ 10 GeV . It’s important to check this statement more precisely

including the measurements of other spin transfer tensors too. The special attention
should be devoted to the measurement of the depolarization parameter D, since it is
expected to be equal to one.
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3) E-704 experiment clearly showed that the depolarization parameter D survives for
inclusively produced Λ up to momentum 200 GeV/c. We hope to see soon the similar
data from STAR in the polarized proton beam fragmentation region.

4) The spin transfer observables are very important tool for understanding the spin
structure of nucleons. The theoretical development of the formalism for inclusive reactions
similar to one for the elastic scattering is needed. The concrete predictions for the spin
transfer in reactions pp → hX, where h - antiproton, nucleon, hyperons, are required.

5) Practical application: if the spin transfer parameter ”survives” and becomes large
(> 0.5) it could be a source of polarized particles. p ↑ A → h ↑ X (h ↑= n ↑, p ↑, Λ ↑
, n− ↑, p− ↑, Λ− ↑, etc).

6) For study the spin transfer tensors in production of the stable baryons at high
energy one needs to develop the efficient polarimeters with high factor of merit.
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ration of this presentation to F. Lehar , M.B. Nurusheva, S.S. Nurushev, M.F. Runtso
and M.G. Ryskin.
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Abstract

The QWeak experiment, which started in May 2010 and will run until May
2012 in Hall C at Jefferson Lab, aims to determine the weak charge of the proton,
Qp

W = 1 − 4 sin2 θW , to a precision of 4%, and the weak mixing angle sin2 θW to
a precision of 0.3%. With this precision the experiment will be sensitive to parity-
violating new physics at the TeV scale. We access the weak charge by measuring
the small parity-violating asymmetry in the elastic scattering of polarized electrons
with positive and negative helicity on unpolarized protons in a liquid hydrogen
target. Due to the interference of the photon and Z-boson exchange diagrams, this
asymmetry is proportional to the weak charge of the proton. To achieve the high
precision, we scatter the 150 to 180µA polarized electron beam on a 35 cm long
liquid hydrogen target with 2.5 kW of cryogenic cooling power. The signals of the
scattered electrons in eight fused silica detectors are integrated in custom electronics
modules. During the first running period, the QWeak experiment has collected 25%
of the total expected data volume.

1 Introduction

The Standard Model of particle physics has been very successful in describing a wide
range of phenomena in nuclear and particle physics. Proposed four decades ago, the
Standard Model combines the strong interaction between quarks and gluons described
by Quantum Chromodynamics, and the unified electroweak interaction between fermions
by the exchange of photons and weak bosons. However, despite its successes there are
compelling experimental and theoretical reasons to search for effects which would require
an extension to the current Standard Model: there is no dark matter candidate, the
expected mass of the Higgs boson is unnatural, etc.

In the Standard Model, quarks do not just possess an electric charge given by their
coupling strength under the electromagnetic exchange of photons. They also possess weak
charges under the exchange of the weak bosons. An overview of the electromagnetic and
weak vector charges is giving in table 1. The weak charge for the proton is given by Qp

W =
1 − 4 sin2 θW , with θW the Weinberg angle describing the mixing of the electromagnetic
and weak sectors. The value of sin2 θW ≈ 1/4 results in a small value for the weak charge
of the proton, Qp

W ≈ 0.07, which makes a measurement of the weak charge of the proton
very sensitive to sin2 θW . Notice that in contrast to the small weak charge for the proton
the weak charge of the neutron is larger, Qn

W = −1.

206



Table 1: Electromagnetic and weak vector couplings of the light quarks and nucleons.

Particle Electromagnetic charge Weak vector charge

u +2
3

−2C1u = 1− 8
3
sin2 θW ≈ 1

3

d −1
3

−2C1d = −1 + 4
3
sin2 θW ≈ −2

3

p(uud) +1 Qp
W = 1− 4 sin2 θW ≈ 0.07

n(udd) 0 Qn
W = −1

APV(Cs)

SLAC E158

ν-DIS

Z-pole

CDF

D0

Møller [JLab]

Qweak [JLab]

PV-DIS [JLab]

Standard Model
Completed Experiments
Future Experiments

Figure 1: Running of the electroweak mixing angle sin2 θW

with momentum tranfer Q2 as calculated in the Standard Model
(blue line) [3]. The available experimental data points are
shown in black. Projected data points for the QWeak and other
experiments are shown in red.

Figure 2: Model-independent analysis of the sensitivity to
physics beyond Standard Model [4]. The long-dashed red curve
indicates the limits without results from parity-violating elec-
tron scattering experiments. The solid blue curve includes
results from parity-violating electron scattering experiments
without the QWeak experiment. The short-dashed green curve
shows the projected constraints including the QWeak experi-
ment, assuming agreement with the Standard Model.

The QWeak experiment will
measure for the first time the
weak charge of the proton Qp

W .
By measuring the weak charge
of the proton Qp

W and the elec-
troweak mixing angle sin2 θW to
a high precision, we are sensitive
the indirect effects from particles
beyond the Standard Model that
are out of reach of present accel-
erators. The prediction for the
running of sin2 θW with momen-
tum transfer Q2 is indicated by
the solid line in figure 1. Signifi-
cant deviations from the predicted
values would indicate that exten-
sions or modifications to the Stan-
dard Model are required [1, 2].

The sensitivity of the weak
charge to new physics (lepto-
quarks, R-parity violating super-
symmetry) can be estimated in a
model-independent way [4]. As-
suming an interaction with cou-
pling constant g and mass scale
Λ and effective charges hu

V =
cos θh and hd

V = sin θh, we can
write the interaction Lagrangian
for electron-quark scattering as
L = g2

4Λ2 eγµγ5e
∑

q hV
q qγµq. The

sensitivity of the QWeak experi-
ment as a function of the inter-
action mixing angle θh is shown
as the short-dashed green line in
figure 2. The QWeak experiment
will increase the reach beyond the

207



1TeV scale at 95% confidence.

2 Parity-Violating Electron Scattering

The QWeak experiment uses the technique of parity-violating electron scattering to access
the weak charge of the proton. A longitudinally polarized electron beam with quickly
alternating helicity strikes a cryogenic liquid hydrogen target. Elastically scattered elec-
trons are detected in quartz Čerenkov detectors, and custom-built data acquisition elec-
tronics measures the integrated photomultiplier current generated by the rapid succession
of electron pulses.

A helicity asymmetry can be constructed from the integrated detector response in
consecutive helicity intervals. Although the total scattering cross section from protons or
electrons in hydrogen is dominated by the parity-conserving exchange of photons, inde-
pendent of the incoming electron helicity, a small parity-violating asymmetry is introduced
by the interference of the photon exchange and Z-boson exchange diagrams. Based on the
propagators of the interactions the size of the parity-violating asymmetry can be easily
estimated as

APV =
σR − σL

σR + σL

∝ Q2

M2
Z

, (1)

where Q2 is the squared momentum transfer, and MZ = 91.2GeV is the mass of the
Z-boson. At momentum transfers common at Jefferson Lab (Q2 values up to a few GeV),
the small asymmetry is usually expressed in parts per million (ppm) or parts per billion
(ppb).

For elastic scattering the parity-violating asymmetry on the proton can more accu-
rately be written as

APV (p) =
−GF Q2

4πα
√

2

[
εGγ

EGZ
E + τGγ

MGZ
M − (1− 4 sin2 θW )ε′Gγ

MGZ
A

ε(Gγ
E)2 + τ(Gγ

M)2

]
, (2)

Figure 3: Normalized parity-violating asymmetry Ap
PV =

Qp
W + Q2 · B(Q2) measured by other parity-violating experi-

ments on a proton target and extrapolated to the forward-angle
limit [4]. The extrapolation to Q2 = 0 of the fit to the data
represents the weak charge of the proton. The prediction of the
Standard Model is shown with the red star.

with GF the Fermi coupling
constant, Q2 the squared four-
momentum transfer, and α the
fine structure constant. The
dimensionless kinematic factors
τ = Q2/4M2, ε = (1 +
2(1 + τ) tan2 θ/2)−1, and ε′ =√

τ(1 + τ)(1− ε2) combine with
the electric and magnetic form
factors Gγ

E, GZ
E, Gγ

M , GZ
M under γ

and Z exchange and the electron
axial form factor Ge

A to complete
the expression.

In the forward-angle limit θ →
0, where the momentum transfer
Q2 is small, the expression for the
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Table 2: Summary of projected uncertainties on the asymmetry APV for the QWeak experiment.

Source of uncertainty δAPV /APV δQp
W /Qp

W

Statistical uncertainty 2.1% 3.2

Hadronic structure N/A 1.5%
Beam polarization 1.0% 1.5%
Absolute value of Q2 0.5% 1.0%
Inelastic ep scattering 0.5% 0.7%
First order beam properties 0.5% 0.7%
Systematic uncertainty 1.3% 2.5%
Total uncertainty 2.5% 4.1%

asymmetry simplifies to

APV (p)
Q2→0−−−→ −GF Q2

4πα
√

2

[
Qp

W + Q2 ·B(Q2)
]
. (3)

In this expression the function B(Q2) contains corrections due to the hadronic substruc-

ture of the proton. The normalized parity-violating asymmetry Ap
PV = Qp

W + Q2 ·B(Q2)
measured by other parity-violating experiments and extrapolated to the forward-angle
limit is shown in figure 3. By extrapolating the expression for the asymmetry to Q2 = 0,
we obtain the weak charge of the proton.

3 Experimental Apparatus

The QWeak experiment is located in Hall C at the Thomas Jefferson National Accelerator
Facility or Jefferson Lab. The experiment started in May 2010 and will collect data until
May 2012, with a six month long break between May 2011 and November 2011 separating
the experiment in two data taking phases. The experiments consists of three major com-
ponents: the longitudinally polarized electron beam, the liquid hydrogen target, and the
spectrometer and detector system. A summary of the projected systematic uncertainties
in the experiment is presented in table 2.

Polarized Electron Beam Polarized electrons are generated in a strained GaAs super-
lattice photocathode. Left or right circularly polarized laser strikes the surface of the GaAs
crystal and electrons of the corresponding helicity are photo-emitted and pre-accelerated
in the injector. Beam currents after the injector of 180 µA and beam polarizations ex-
ceeding 85% are routinely achieved.

The circular polarization of the laser light is determined by the polarity of the high
voltage on a Pockels cell. The polarity is changed at a rate of 960Hz, corresponding to a
settling time of 70 µ and an integration time of 971 µs. To reduce the sensitivity to low
frequency noise components and drifts in the beam parameters we do not simply toggle
the helicity states (e.g. +−+−+−) but we use a pseudo-random sequence of quartets of
the form +−−+ or −++−. Electronic cross-talk between the helicity signal and detector
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signals is avoided by reporting the actual helicity state with a delay of eight quartets. To
remove the effects of helicity correlated beam properties, the circular polarization of the
laser is inverted every eight hours by inserting or removing a half-wave plate, and every
week by performing a Wien rotation of the electron polarization in the injector.

The beam transport line from the polarized electron source and injector to the liquid
hydrogen target in the experimental hall is instrumented with beam intensity and beam
position monitors. The measurements of several beam position monitors are combined to
determine the beam position and beam direction at the target itself. The beam position
monitors in dispersive regions are used to measure the beam energy.

Liquid Hydrogen Target The target consists of a 35 cm long aluminum cell filled with
liquid hydrogen (LH2). To maintain a temperature of 20K while operating with electron
beam currents up to 180 µA a cryogenic cooling system requires 2500W of cooling power,
provided by liquid helium coolant at 4K and 15K in a heat exchanger with three layers
of coils. An important design criterion for the target was to minimize pressure and
temperature fluctuations. This was achieved by extensive computational fluid dynamics
simulations to determine the optimal shape of the target and the flow velocity transverse
to the beam. During short intervals without beam a high-power heater in the LH2 loop
compensates for the lost beam heating to stabilize the loop and to prevent the LH2 from
freezing. Observed pressure variations are substantially slower than the helicity reversal
rate.

Figure 4: Schematic view of the QWeak experiment in Hall C
at Jefferson Lab.

Spectrometer and Detector
System. The spectrometer and
detector system are shown schemat-
ically in figure 4. Electrons scat-
ter off the protons in the liquid hy-
drogen target, and the scattered
electrons in the angular region of
interest pass through the octago-
nally symmetric holes of the three
collimators. The toroidal magnet
coils bend the scattered electrons
outwards, as indicated by the en-
velope in the top octant. Behind
the 8m tall shield wall all eight
octants have quartz bar Čerenkov detectors with custom-built integrating data acquisi-
tion electronics.

Two opposite octants are instrumented with tilted particle tracking detectors, hori-
zontal drift chambers before and vertical drift chambers after the toroidal magnet. The
horizontal and vertical drift chamber packages can be rotated independently for measure-
ments of the momentum transfer Q2 in each octant. For both types of drift chambers there
is one pair of octants can be reached by both positive and negative rotations, providing
us with redundancy that aids in determining systematic effects.
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Polarimetry Two beam polarimetry techniques are used to reach the required 1% sys-
tematic uncertainty on the measurement of the electron beam polarization. In the existing
Møller polarimeter the electron beam is scattered from the polarized outer-shell electrons
in an iron foil that has been magnetized to saturation in a large external magnetic field.
The Møller measurements are invasive to the QWeak experiment and have to be con-
ducted at beam currents below 10 µA to avoid depolarization due to foil heating. There
is therefore an uncertainty associated with extrapolating to the experimental conditions.

To measure the beam polarization non-invasively and continuously, a new Compton
polarimeter was commissioned for the QWeak experiment. The polarized electron beam is
collided nearly head-on with a high-intensity circularly polarized laser beam in a low-gain
Fabry-Pérot cavity in the center of a magnetic chicane. The scattered photons (with
energies up to 50 MeV) are detected in a PbWO4 calorimeter. The scattered electrons are
bent away from the primary beam by the dipole field of the chicane and their separation,
measured in four diamond strip detector planes, is used to deduce their momentum.
An asymmetry in the cross section for left and right circularly polarized laser light is
proportional to the polarization of the electron beam.

Analysis The measured asymmetry Ameas of the signal yields Y in the quartz bars is
related to the physical asymmetry APV by

Ameas =
Y+ − Y−
Y+ + Y−

= Pe(1− f)APV + fAbkg + Afalse, (4)

where Pe is the electron polarization, f is the dilution factor determined by the fraction
of background over signal plus background, Abkg is the background asymmetry, and Afalse

is the false asymmetry due to helicity-correlated beam properties.
The integrated yields in the detectors depend on the beam intensity, beam energy,

bean position, and beam direction. During data taking we measure the beam intensity
and feed this information back to the high voltage of the Pockels cell in the polarized
electron source to reduce the helicity-correlated beam intensity asymmetry.

Because these beam properties Xi are generally correlated with the helicity, they
result in a false asymmetry. Using the measured helicity-correlated differences ∆Xi we
can correct the measured asymmetry for this false asymmetry given knowledge of the
correlation sensitivities αi:

Afalse =
∑

i

αi∆Xi. (5)

Using natural beam motion the helicity-correlated beam properties are correlated, and
the sensitivities require a diagonalization of their correlation matrix. We also use an
active beam modulation system that drives the beam energy and the horizontal and
vertical beam position and direction separately, largely removing the internal correlations
between the beam properties.

Backgrounds The two largest sources of background events are the aluminum walls of
the target cell and inelastic scattering off the protons. Because the experiment integrates
the detector response for all tracks, it is impossible to remove these background events
individually and their collective effect has to be corrected for.
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Figure 5: Uncorrected and blinded “raw” experimental asymmetries, averaged over all eight main
detector octants, for a selection of “slugs” (periods of constant insertable half-wave plate settings). Each
slug corresponds to approximately eight hours of data taking. Slugs with the insertable half-wave plate
inserted are shown as blue disks, slugs with the insertable half-wave plate out are show as red squares. The
corresponding blue and red lines show the average asymmetry for this subset of slugs. All asymmetries
are blinded by an unknown additional asymmetry to avoid biases during the analysis.

Neutrons have a larger weak charge than protons (Qn
W = −1 versus Qp

W ≈ 0.07).
The parity-violating asymmetry for aluminum is therefore significantly larger than the
asymmetry for liquid hydrogen. The approximately 100 µm thin target cell windows lead
to a correction to the asymmetry of approximately 20%. To reduce the uncertainty present
in this correction, a substantial amount of data has been collected on aluminum dummy
targets to measure the parity-violating asymmetry in aluminum.

4 Preliminary Results

4.1 Integrating Mode Data

The width of the measured parity-violating asymmetry distribution at a beam current
of 165µA is 236 ppb. This value is in agreement with the expectation from counting
statistics (215 ppm), when taking into account detector resolution, current normalization,
and target density fluctuations.

The measured asymmetry is expected to change sign when the helicity is reversed at
the polarized electron source by inserting a half-wave plate in the laser path. Each period
during which this half-wave plate remains in the same state is called a “slug.” In figure 5
the average asymmetry for a series of slugs is shown, and the expected sign change for
alternating half-wave plate states is clearly visible. The asymmetries shown in figure 5
are uncorrected and blinded asymmetries, and therefore not amenable to interpretation
in terms of Qp

W .
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Figure 6: Projection of the electron tracks reconstructed in the vertical drift chambers to the main
detector quartz bars. The figure corresponds to one 2 m × 18 cm large quartz bar.

4.2 Event Mode Data

During dedicated tracking runs at low currents from 50 nA to a few µA the tracking detec-
tors were commissioned, and are being used to measure the distribution of the momentum
transfer Q2.

The horizontal drift chambers are functioning well, and the shape and mean value
of the scattering angle distribution is in agreement with predictions from Monte Carlo
simulations. The corresponding mean momentum transfer of tracks reaching the main
detector is also consistent with simulations.

The performance of the vertical drift chamber has been excellent. As a qualitative
demonstration of their performance, figure 6 shows the projection of the electron tracks
reconstructed in the vertical drift chambers to the surface of the main detector quartz
bars. The characteristic “mustache” shape of the event distribution is in agreement with
the predictions from Monte Carlo simulations.

5 Conclusion

The QWeak experiment has successfully completed the first phase of data taking in May
2011, and accumulated approximately 25% of the total data volume necessary to achieve
the 4% uncertainty on the weak charge of the proton. The second phase of the experiment
will start in November 2011 and continue until May 2012.
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Abstract

The nucleonic structure is far to be completely understood, in particular when
considering those degrees of freedom related to the partons’ transverse momentum, a
main goal for several forthcoming studies in a wide range of experimental scenarios.
The physics program of the future PANDA experiment includes the investigation
of the non-perturbative region of the QCD by mean of antiproton beams, with a
beam momentum up to 15 GeV/c. The current layout of the PANDA spectrome-
ter includes detectors specifically devoted to the muon identification, allowing the
background rejection that is needed to investigate the Drell-Yan (DY) production
of muon pairs. Such reactions, in an experimental scenario characterized by a high
luminosity as foreseen for PANDA at FAIR, represent an unique tool to access the
spin depending properties of the nucleon, and in particular its transverse degrees of
freedom, by means of experimental asymmetries leading to Transverse Momentum
Dependent Parton Distribution Functions (TMD PDF’s). In later stages of FAIR
single- and double-spin asymmetries could be investigated making use of polarized
protons and eventually of polarized antiprotons as well. The spin physics program
that could be addressed in the different phases of FAIR will be discussed in details,
with a particular focus on the PANDA experiment.

In the last decade, the difficult interpretation of several experimental polarized cross
sections data suggests that other factors have to be taken into account when describ-
ing the nucleonic structure [1]. The latter being the final goal, a worldwide investigation
performed in different experimental scenarios has focused on the role of the intrinsic trans-
verse momentum of the partons (kT ). A leading twist Transverse Momentum Dependent
(TMD) description of the nucleon requires eight independent Parton Distribution Func-
tions (PDF), functions of the longitudinal momentum fraction x and kT . Those functions
have been and will be investigated with different beam-target configurations and in a wide
energy range. In Semi-Inclusive Deep Inelastic Scattering (SIDIS) the TMD PDF’s are
convoluted with the Fragmentation Functions (FF), posing hence experimental and the-
oretical challenges to their extraction. On the contrary, in Drell-Yan (DY) processes the
TMD PDF’s could be directly accessed, since one can define experimental asymmetries
depending on the TMD PDF’s only.

The DY process is an electromagnetic interaction in which a quark and antiquark
annihilation proceeds through a virtual photon into a final state containing a lepton pair:
h1h2 → γ∗ → l+l−X. In order to study the DY process, the Collins-Soper frame [2],
the virtual photon rest frame, is used. In this frame, a hadron plane and a lepton plane
are defined. If one defines the angle between the two planes as ϕ, then ϕS1,2 is the angle
between the nucleon spin (S1,2) with respect to the lepton plane.
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The differential cross sections of the completely unpolarised and single-polarised DY
processes [3] show dependences on h⊥1 , and on h⊥1 , f⊥1T and h1T , respectively. h⊥1 is the
so called Boer-Mulders (BM) function, which describes the distribution of transversely
polarised quarks in an unpolarised hadron. The Sivers function f⊥1T describes how the
distribution of unpolarised quarks depends on the transverse polarisation of the parent
hadron. The Transversity function h1T describes the density of transversely polarised
quarks into a transversely polarised hadron. As described in details in [4], these functions
can be obtained from experimental asymmetries weighted by the following azimuthal
angular terms: cos 2ϕ, sin(ϕ−ϕS2) and sin(ϕ+ϕS2), respectively. In the double-polarized
DY process, the differential cross section, after integrating upon dqT , shows a dependence
on h1T convoluted with itself. The corresponding experimental asymmetry is in this case
weighted by the azimuthal term cos(2ϕ− ϕS1 − ϕS2).

The comparison of the Sivers distribution function obtained in SIDIS and DY processes
could also provide an effective test of QCD Universality. The different role in the two
processes of the Wilson-lines, which ensure the colour gauge invariance, is in fact expected
to lead to opposite signs for the Sivers function (f⊥1T ) when extracted from DY data or
from SIDIS data: f⊥1T |DY = −f⊥1T |SIDIS [5].

The center of mass energy (s) which should be available at FAIR should grant access
to an unique kinematic region. At larger s (as for example the

√
s = 200 GeV of the

RHIC scenario) one can access TMD PDF’s mostly related to the sea quarks, and hence
the above described asymmetries are expected to be remarkably small and experimentally
hard to be determined. On the contrary, the FAIR scenario is characterized by a lower
center of mass energy range and by the availability of antiproton beams: each valence
quark can take part to the DY diagram and hence the contributions of the valence quarks
to the TMD PDF’s could be directly accessed free of any convolution with sea-quark
PDF’s. Two experiments focusing on the TMD challenge have been proposed for the
different stages of the FAIR lifetime: the PANDA experiment [4, 6] will investigate an
energy range up to s ≈ 30 GeV2, while the PAX experiment should focus on much larger
energies, up to s ≈ 200 GeV2 [7].

The PANDA Collaboration is planning to investigate the unpolarized and, possibly, the
single-polarized processes. The PAX experiment will focus first on the single-polarized
processes and later, if antiprotons could be significantly polarized, on double-polarized
processes, the real golden scenario.

The present FAIR facility layout foresees different storage rings: among the others the
High Energy Storage Ring (HESR) is designed to host and accumulate the antiprotons.
The PANDA spectrometer, optimized for a fixed-target HESR mode and shown in Fig. 1,
is divided into two parts: the Target Spectrometer (TS) and the Forward Spectrometer
(FS), both equipped with different detectors providing tracking of charged particles in
magnetic fields, particle identification and calorimetry [4, 6]. The two further rings that
have been proposed in a later FAIR stage, the Antiproton Polarizer Ring (APR) to polarize
p̄ and the Cooler Synchrotron Ring (CSR) to accelerate them inside the HESR, should al-
low the PAX Collaboration to investigate processes involving polarized antiprotons; which
one can be the experimental technique most suitable to polarize antiprotons is currently
the main focus of the investigation that the PAX people should soon start at CERN. The
PAX spectrometer, shown in Fig. 2, is optimized to detect electromagnetic final states in
an HESR asymmetric collider mode. Its detectors will provide particle tracking inside a
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toroidal magnetic field, PID, triggering, and energy deposit measurements [7].
The variable τ , defined as the product between the momentum fractions (x1 and x2)

of the two partons taking part to the annihilation vertex, is normally used to describe the
kinematic range that can be accessed in the phase space by DY processes. Constant values
of τ indicate a constant available center of mass energy transferred to the γ∗. The DY
safe region (4 ≤ Mγ∗ ≤ 9 GeV/c2), so called because selecting those DY events produced
in a kinematic region free from resonances, would correspond in the PANDA scenario to
the top-right corner of Fig. 3, i.e. to τ values larger than 0.5. Since in such a case the
kinematic region that could be access would be too small to infer the PDF’s from the
experimental data, PANDA will investigate also another region, 1.5 ≤ Mγ∗ ≤ 2.5 GeV/c2

(0.05 < τ ≤ 0.2), not-resonant as well and characterized by a much larger (almost three
order of magnitude) cross section [4].

Figure 1: Setup of the PANDA detector (3D view).

Figure 2: Setup of the PAX detector (3D view).
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The investigation of electromagnetic processes is a relevant goal of the PANDA Col-
laboration physics program. The foreseen luminosity (up to 2·1032 cm−2s−1) should
give access to processes like the Drell-Yan production of muon pairs in annihilations
as p̄p → γ∗X → µ+µ−X. At the maximum foreseen beam energy (s = 30 GeV2) the
expected DY cross section is σ ∼ 1 nb [4]. The background to the DY signal should be
mostly composed of events of the type p̄p → n(π+π−)X, n being the number of pion
pairs; their extimated cross section σ ∼ 20 ÷ 30 mb [4] leads to a required background
rejection factor ∼ 107.

In order to obtain a better signal to background ratio, the PANDA Collaboration poses
a particular attention to the muon detection. In fact, the design of the spectrometer [4,8]
includes in both the TS and FS several planes of muon detector stations. The muon
counters (MUO), located within the segmented iron yoke, will be composed of Iarocci
tubes [9] (Mini Drift Tubes, or MDT), operating in proportional mode. In the MDT,
the stainless steel cover is replaced by fiberglass strip boards (STRIP), which allow for
the read out of the second coordinate by collecting the induced charge. A mixture of
Ar+CO2 is used to fill the MDT volumes. A full scale prototype (3912 × 2116 × 32 mm3)
of the muon counters has already been constructed and then transported to CERN for
test purposes. To clearly understand the PANDA layout, also a “Range System” (RS)
prototype has been prepared. The RS is a segmented iron block with the dimensions
1530 × 1060 × 1000 mm3 which reproduces the exact PANDA layout with the MUO
planes in between the segmented iron volumes [8].

We simulated the production of DY muon pairs using the generator provided by A.
Bianconi [10]: making use of the data available in the literature in can provide final states
containing muon pairs produced in p̄ and π− interactions with unpolarized or polarized

Figure 3: Phase space regions covered by the PANDA experiment: τ ≥ 0.5 corresponds to
4 ≤ Mγ∗ ≤ 9 GeV/c2, and 0.05 < τ ≤ 0.2 to 1.5 ≤ Mγ∗ ≤ 2.5 GeV/c2.

217



(a) (b) (c)

Figure 4: Simulated experimental asymmetries related respectively to the cos 2ϕ term (a), the
sin (ϕ + ϕS2) term (b), and the sin (ϕ− ϕS2) term (c), plotted as a function of xp, longitudinal mo-
mentum fraction of the hadronic probe.

nuclear targets.
500000 DY events were simulated, and the above described asymmetries are shown in

Fig. 4a, 4b, and 4c, as functions of the longitudinal momentum fraction of the hadronic
probe (xp) for the unpolarised and single-polarised cases. Different transverse momenta
range of the muon pair (qT ) were selected: 1 ≤ qT ≤ 2 GeV/c (square dots), and
2 ≤ qT ≤ 3 GeV/c (triangular dots). Efficiencies and acceptance corrections are still
under investigation. Those plots are not intended to reflect a detailed expectation of the
asymmetry itself, because the parton dynamics is roughly extimated and questionable;
the key point is the size of the error bars, that allows to probe the feasibility of such a
measurement. In the unpolarised case, it should be possible to investigate the asymme-
try dependency on the lepton pair transverse momentum. A complete scan on the full
transverse momentum range should allow an investigation on a possible inversion of such
dependence probing, thus, the balance between soft and hard processes for the DY pro-
duction in the PANDA energy range. The single-polarised case is more complex, and the
dependence of the considered TMD PDF’s could be probably only partially determined.
Further studies on the evaluation of the expected experimental errors from asymmetry
measurements have been performed, and are reported in details in [11]. A rough esti-
mation of the material budget, of the geometrical acceptance, and of the reconstruction
efficiency leads to an overall factor ε = 0.33; assuming the design higher HESR luminosity
mode, we expect 130 Kev/month. One year of data taking should hence be enough to
reproduce the error bars quoted in the simulations.

Further efforts have been devoted to optimize the background substraction, the cor-
responding needed kinematic cuts and their effects [12]. In order to countercheck the
achieved rejection factors, and to develope a complete kinematic event selection scheme,
those investigations will be soon performed with a larger statistic (108 simulated events).

This work was supported in part by Università degli Studi di Torino, Regione Piemonte,
and INFN Torino.
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Abstract

The transversity distribution function can be studied in semi-inclusive deep in-
elastic scattering (SIDIS) off transversely polarized targets by measuring the az-
imuthal distributions of single hadrons or hadron-pairs in the final state. The mea-
surement of the spin asymmetries in the azimuthal distribution of the hadron pairs
and the measurement of the two-hadrons fragmentation functions, allow to access
the transversity distribution function without involving the partonic transverse mo-
menta. The COMPASS collaboration has measured these asymmetries using po-
larised deuteron (6LiD) and proton (NH3) targets and the results are reviewed in
this talk. More space is given to the very new measurements from the 2010 pro-
ton data, which reduces the statistical error by a factor of 1.7 with respect to the
previous measurement from the 2007 proton data.

1 Theoretical motivations

Three independent parton distribution function (PDF) are necessary to describe the nu-
cleon structure at leading-twist in the collinear case [1]: the unpolarized PDF (f q

1 or q),
the helicity PDF (gq

1 or ∆q) and the transversity PDF (hq
1 or ∆T q) [2]. The f q

1 PDF
gives the probability of finding a quark with a fraction x of the longitudinal momentum
of parent nucleon; gq

1 is the difference of the quark density for quark spin antiparallel and
parallel to the spin of the longitudinally polarized parent nucleon; hq

1 is the analogous
distribution for transversely polarized quark in a transversely polarized nucleon. While
the first and second PDFs are well known from DIS experiments, the third one is a new
object, still poorly known. The transversity PDF is chiral-odd and it cannot be accessed
in inclusive DIS because in this process the chirality is conserved. It can, however, be
observed in SIDIS reactions where it can appear coupled with another chiral-odd func-
tion. In COMPASS three different channels are measured to access transversity: the
one-hadron production in which hq

1 is coupled with the Collins fragmentation function [3],
a Λ production in which hq

1 is coupled with the fragmentation function of a quark in a
Λ [4] and the two-hadron production in which hq

1 is coupled with the ”di-hadron” frag-
mentation function [5,6]. The di-hadron fragmentation function describes the correlation
between the transverse polarization of the fragmenting quark and the azimuthal orienta-
tion of the plain containing the momenta of the detected hadron pair. The published and
the new results for the Collins asymmetry can be found in [7,8]. Here only the two-hadron
production lN → l′h1h2X will be discussed. In this reaction a lepton with 4-momentum

220



l

lÕ 
!
S
"

!"

#"

$"

%"

&"
z1P2

z2P1T

z1P2T

z2P1

z1P2T

z2P1T

RT(z1+z2)

!
R
"

y

x

Figure 1: Left: definition of momenta and azimuthal angles in two hadrons production in SIDIS.
Right: definition of the ϕR azimuthal angle

l exchanges a virtual photon with 4-momentum q with a quark and at least two final
state hadrons with momenta P1 and P2 are detected. A graphical representation of the
two-hadron production is given in Fig.1 where P1TP1TP1T and P2TP2TP2T are the transverse compo-
nents of the momenta of the hadrons with respect to the direction q̂̂q̂q of the virtual photon,
zi = Ei/ν is the fraction of the total energy carried by the hadron i, ϕS is the azimuthal
angle of the spin of the nucleon. Introducing the vector RTRTRT = (z2P1TP1TP1T − z1P2TP2TP2T )/(z1 + z2),
ϕR is the azimuthal angle of RTRTRT given by:

ϕR =
(qqq × lll) ·RTRTRT

|(qqq × lll) ·RTRTRT | arccos

(
(qqq × lll) · (qqq ×RTRTRT )

|qqq × lll||qqq ×RTRTRT |

)
(1)

The two-hadron cross-section at leading twist for a trasversely polarized target is given
by [5]:

d6σ

dξdM2
hdϕRSdzdxdy

=
2α2

4πsxy2

∑
q

e2
q

{
A(y)f q

1 (x)Dq→h+h−
1 (z, ξ,M2

h)+

B(y)|S⊥| |RT |
Mh

hq
1(x)H

^q→h+h−1
1 (z, ξ, M2

h) sin(ϕRS)

} (2)

where Dq→h+h−
1 is the unpolarized fragmentation function which gives the probability for

an unpolarized quark to fragment into the unpolarized hadron pair and H^q→h+h−
1 is the

di-hadron spin dependent fragmentation function which has been measured at Belle [9].
In Eq. 2 ϕRS = ϕR + ϕS − π and z = z1 + z2. The variable ξ is defined as z1/z and Mh

is the invariant mass of the hadron pair. The quantities A(y) and B(y) are kinematical
quantities depending on the relative energy lost by the incoming lepton y and their ratio
DNN = B(y)/A(y) = (1− y)/(1− y + y2/2) is the spin transfer coefficient from the initial
to the struck quark.

If we introduce the quantity:

A2h =

∑
q e2

q
|RT |
Mh

hq
1(x)H^q→h+h−

1 (z, ξ, M2
h)∑

q e2
qf

q
1 (x)Dq→h+h−(z, ξ, M2

h)
(3)

the number of final state hadron pairs as a function of ϕRS is given by:

N±
2h(ϕRS) ∝ (1± |S⊥|DNNA2h sin ϕRS) (4)
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where ± is the nucleon spin orientation and ST = fPT with PT nucleon polarization
and f the fraction of polarized material in the target. From the measurement of the
azimuthal distributions it is thus possible to extract the A2h spin asymmetry and access
the transversity distribution.

2 Data selection

Standard kinematical cuts have been applied to select DIS events: we ask for a squared
four momentum transfer Q2 > 1, the hadronic invariant mass W > 5 (GeV/c)2 and
0.1 < y < 0.9.

)2(GeV/cinvM
0 0.5 1 1.5 2 2.5

in
v

dN
/d

M

0

50

100

150

200

250

310×
COMPASS 2010 proton data

Preliminary

Figure 2: Invariant mass spectrum

The selection of the hadrons
to be used in the analysis has
been done requiring zi > 0.1
and xF > 0.1. A cut on RT

has been applied to improve
the resolution in the ϕR. Fi-
nally a cut on the missing en-
ergy Emiss > 3 GeV has been
applied to exclude the exclu-
sively produced ρ0 in the 2010
data analyisys. The invariant
mass spectrum after all cuts for
all the combinations of oppo-
sitely charged hadrons originat-
ing from the primary vertex is
shown in Fig. 2. It has been obtained from the 2010 data, assuming the charged particles
to be pions.

3 Results

In 2002, 2003 and 2004 COMPASS has collected data with a transversely polarized
deuteron target. Preliminary results have been shown at several conferences [10–14].
The asymmetries have been measured for all opposite charge hadron pairs, for identified
charged hadrons, ordering the hadron by increasing zi and PTi. As an example the results
for all opposite charge hadron pairs as function of x, z and Mh are shown in Fig. 3.
All the measured asymmetries turned out to be compatible with zero within few percent
statistical errors. The small asymmetries on the deuteron can be explained as cancellation
between the u and d quark contributions.

In 2007 COMPASS has collected the first data with the transversely polarized proton
target. The preliminary results for the two hadron asymmetries extracted from these data
are shown in Fig.4 [15]. As in the case of the Collins asymmetry a large range (from 0.004
to 0.7) in x is covered and the invariant mass region investigated in our measurement goes
from 0.3 up to 1.7 (Gev/c2)2 A large asymmetry up to 5-10% in the valence x-region has
been measured, as large as the Collins asymmetry [16]. The z dependence is smooth and
the dependence on the invariant mass is not clear.
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Figure 3: Two-hadron asymmetries from the 2002, 2003 and 2004 deuteron data for charged particles
as a function of x,z and Mh. The error bars are the statistical errors and the band show the systematic
errors
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Figure 4: Two-hadron asymmetries from the 2007 proton data for charged particles as a function of x,z
and Mh. The error bars are the statistical errors and the band show the systematic errors

The results are in good agreement with the HERMES results [17] in the overlapping
x region (the kinematical range of the our measurement is considerably larger), once the
HERMES data are rescaled by the DNN factor.

New proton data have been collected in COMPASS in 2010 and preliminary results
have been very recently produced [7,18]. The two-hadrons asymmetries as a functions of
x,z and Mh are shown in Fig. 5.

The results confirm the results obtained from the 2007 proton data with almost a
factor two smaller statistical errors. With respect to the previous results there is a clearer
and interesting dependence on the invariant mass which is even more clear when the
x > 0.032 region is selected, as shown in Fig 6.

This dependence on the invariant mass is somehow at variance with the present pre-
dictions [19, 20], as can be seen in Fig. 7, where our new data are compared with the
calculations of [19] rescaled by a factor of three [21]. While the x and z dependences agree
with the data, the description of the asymmetries as function of the invariant mass is not
satisfactory and there is room for improvements.
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Figure 5: Two-hadron asymmetries from 2010 proton data for charged particles as a function of x,z
and Mh. The error bars are the statistical errors and the band show the systematic errors

Figure 6: Two-hadron asymmetries from the 2010 proton data for charged particles and for x > 0.032
as a function of x,z and Mh. The error bars are the statistical errors and the band show the systematic
errors

Figure 7: Two-hadron asymmetries from 2010 proton data for charged particles as a function of x,z
and Mh compared with the theoretical predictions of [19]. The error bars are the statistical errors and
the band show the systematic errors
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4 Conclusions

The new measurement of the two-hadron asymmetry in SIDIS from the 2010 COMPASS
proton data improves considerably the existing data set. The large signal measured in
the valence region confirms that transversity can be accessed in this channel too.

These new data, together with the previous COMPASS and HERMES results and
the recent measurement of the di-hadron fragmentation function performed at Belle [9]
constitute a quite complete data set which which will allow for a significant increase of the
knowledge of both the spin structure of the nucleon and the fragmentation mechanism.
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Abstract

The PHENIX experiment has measured transverse single spin asymmetries at
center-of-mass energies

√
s=62.4 GeV and 200 GeV. Observed asymmetries in for-

ward direction are of significant size and consistent with previous measurements of
different species and at lower energies. Mid-rapidity and backward asymmetries are
consistent with zero. The statistical accuracy of the mid-rapidity result supersedes
our previously published measurement by more than a factor of 20 which will lead
to a significant improvement on the constraint of the gluon Sivers function.

1 Introduction & formalism

The nucleon structure can be described in the probabilistic terms of parton distribu-
tion functions. Here, the unpolarized qi(x,Q2) and the longitudinally polarized helicity
distributions ∆qi(x,Q2) for quark flavors i are complemented by transversely polarized
distribution functions δqi(x,Q2) (also called transversities). They are described as func-
tions of the partonic momentum fraction x and a momentum transfer scale Q2. Generally,
transversity and helicity distributions are not the same since in the relativistic regime ro-
tations do not commute with Lorentz boosts. In the formalism of the scattering matrix,
the measurement of transverse asymmetries can relate to the transverse structure of the
initial state of the investigated scattering process. A transverse single spin asymmetry
(SSA) is defined as the ratio of the difference and the sum of cross sections dσ when the
projectile’s spin direction is flipped:

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓
. (1)

Here, the spin quantization is in the direction normal to the scattering plane. For a
spin-1/2 particle we distinguish spin up (↑) and spin down (↓).

Transversity is special in the way that it is chirally odd, i.e., a spin flip is required in the
scattering process in order to make it measurable. This renders it completely unobserv-
able in inclusive deep inelastic electron-proton scattering (DIS), and in the hard scattering
part of high energy proton-proton collisions the helicity flip can only be achieved by the
exchange of additional gluons in higher-twist effects. Therefore, transverse SSA have been
expected to be very small at high energies where the hard scattering part can adequately
be described by perturbative quantum-chromodynamics (pQCD). Surprisingly, asymme-
tries of up to ≈ 40% have been measured in meson production of hadronic collisions at
medium energies in the past [2, 3, 1]. These asymmetries are largest in the forward di-
rection of the projectile and persist to the high center-of-mass energies of

√
s=62.4 GeV
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and 200 GeV in p+p collisions at RHIC [4,5]. Furthermore, transverse asymmetries have
been measured in semi-inclusive DIS experiments over a broad kinematic range [6–11].

This apparent contradiction has been relaxed by large theoretical progress in recent
years that led to the inclusion of equally important initial and final state interactions in
the process description. In the initial state the chiral-odd part needed for a transverse
asymmetry can be provided by the quark’s transverse momentum if it is correlated to the
nucleon polarization (Sivers effect [12]). The quark does not have to be polarized in this
case. Also, the Sivers function is non-universal and depends on the form of the gauge links
in different processes when we compare hadronic collisions to electron-proton scattering.
In this context, transverse single spin asymmetries are a powerful tool to test the validity
of the fundamental concepts of pQCD when we compare the initial-state interaction of
lepton-pair production via a virtual photon (Drell-Yan) to the final-state effects in semi-
inclusive DIS [13]. For the Drell-Yan process it has been shown that this framework of
transverse momentum dependent (TMD) parton distribution functions and the mecha-
nism of spin-dependent higher-twist quark-gluon correlations [14, 15] describe the same
type of physics in an intermediate transverse momentum range ΛQCD ¿ q⊥ ¿ Q where
both methods can be applied [16]. From this comparison we expect the initially rising
SSA to reach a maximum followed by a slow decline with increasing transverse momenta,
qualitatively described by 1/q⊥. Observation of this behavior is still outstanding as it is
experimentally challenging to reach the required kinematic range q⊥, Q À ΛQCD in the
forward direction of large asymmetries.

On the other hand, in the final state a spin dependent fragmentation of the out-going
parton can similarly create a chiral-odd part within the scattering process (Collins effect
[17]). The asymmetric fragmentation, however, will only reveal itself in an experiment
if it is also correlated to the nucleon polarization through a non-vanishing transversity
distribution. Due to helicity conservation, the gluons with spin-1 exhibit no transversity
in leading order. Following the same argument the sea quark transverse polarization has
to be small and the quark transversity distribution should be dominated by valence quark
contributions at large partonic momenta. This behavior is exhibited by the longitudinal
momentum fraction of the produced meson in the final state, xF = 2 · pl/

√
s, where ~pl

points in the direction of the polarized projectile and xF is approximately the difference
between the momentum fractions of the projectile and target partons x1− x2. Using this
convention for xF , the positive xF is taken when the polarized beam is in the detector
direction, with the other beam averaged to be unpolarized. For the negative xF data,
the opposite is done; the beam heading toward the detector is averaged to be unpolarized
while the beam moving away from the detector is polarized.

In order to disentangle contributions from all possible sources of transverse asymme-
tries, measurements are needed over a wide kinematic range and with different probes.
Additionally, transversity and spin-dependent fragmentation will have to be separated by
either fragmentation free or transversity free experiments such as double spin asymme-
tries in Drell-Yan (ANN) or interference fragmentation functions in two-hadron production
from electron-positron annihilation.
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2 Experimental setup

The PHENIX detector has been described in detail elsewhere [18–20]. In addition to the
central arm calorimeters and tracking devices (|η| < 0.35), the results presented here rely
on two sets of electromagnetic calorimeters in forward rapidities (3.1 < |η| < 3.8). Each of
these calorimeters consists of 196 (220) PbWO4 crystals with a cross section of 2.25×2.25
cm2 and about 20 radiation lengths X0 sitting 220 cm from the nominal vertex position
in beam direction with full azimuthal coverage.

Situated in one of the collision points of the Relativistic Heavy Ion Collider, the
PHENIX experiment makes use of the proton beams with polarizations up to P ≈ 55% in
up to 120 separate bunches in each ring. The stable polarization direction is transverse to
the accelerator plane. Bunches are following a set of fill patterns with polarizations either
up or down in order to reduce false asymmetries and other systematic effects resulting from
correlations in detector and accelerator performances. As mentioned above, the forward
and backward directions for single spin asymmetries can be obtained by summing over
the different polarization directions in one beam, thereby effectively making this beam
unpolarized. The forward direction is then defined by the direction of the polarized beam.
Since we have two calorimeters at large rapidities and two polarized beams, we can use
each two out of these four independent combinations for consistency checks.

3 Results

Transversely polarized data was taken in the year 2008 at
√

s=200 GeV with a recorded
integrated luminosity of 5.2 pb−1 and beam polarizations of P = 55%. Figure 1 shows
the transverse single spin asymmetries for neutral pions and η-mesons as measured with
the PHENIX central arm calorimeter.

Figure 1: Transverse single spin asymmetries for π0 and η-mesons at mid-rapidity.

Compared to previously published results, the reach in the pion transverse momentum
has been extended from less than pT ≈ 5 GeV/c to over 10 GeV/c. At the same time, the
statistical uncertainties are reduced by a factor of over 20 at low pT ; results for η-mesons
have previously not been available. All mid-rapidity asymmetries are consistent with zero
so far, leading to an upper limit for the gluon Sivers function within certain assumptions
of the quark-induced part of the transverse asymmetries [21,22].
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Figure 2: Transverse single spin asymmetries for neutral pions at
√

s=62.4 GeV at forward rapidities.

The forward calorimeters were installed in a staged approach beginning in 2006. One
half was commissioned during a low energy run at

√
s= 62.4 GeV with an integrated

luminosity of 40 nb−1. Results are presented in Fig. 2 for neutral pions as function of xF .
The asymmetry scales directly with xF , which is consistent with earlier observations from
other experiments at lower center-of-mass energies [2,3,1,4,5]. The backward asymmetries
so far all agree well with zero.

Figure 3: Transverse single spin asymmetries for inclusive electro-magnetic clusters at forward rapidities.

Whereas the applicability of perturbative QCD might still be doubtful at
√

s= 62.4
GeV, it certainly is well shown to work at high energies of

√
s= 200 GeV. The spatial

constraints of the PHENIX forward calorimeters prevent the reconstruction of π0 → γγ at
Eπ ' 20 GeV. Instead, in Fig. 3 we present results for inclusive electro-magnetic clusters.
We can safely assume that these clusters are dominated by merged showers from the
di-photon decay of neutral pions, as has been shown in Monte-Carlo studies based on
PYTHIA generated events. Depending on the transverse momentum, about one in five
clusters contains contributions from other mesonic decays or direct photons.

The transverse asymmetries show the same typical rise in forward direction. They

229



appear to be slightly smaller compared to STAR measurements of π0 at the same collision
energy, which may be due to differences in the kinematic coverage of the detectors.

Figure 4: Transverse single spin asymmetry of η-mesons as function of rapidity.

PHENIX has also measured transverse asymmetries of η-mesons at large rapidities
with sizable non-zero values for xF > 0, see Fig. 4. They are comparable to the asym-
metries of the π0 in the same kinematic range, where we can expect variations from
the iso-spin dependence, the fragmentation process, and the different masses. Backward
asymmetries are close to being zero, although averaged over the whole xF < 0 range they
currently appear to be about 2 · σ positive at this time.

4 Outlook

In addition to disentangle initial and final state effects, PHENIX has laid out a plan to
measure asymmetries of different particles and particle correlations with greater precision
in the near future. Correlations between particles at mid- and forward rapidities will
access certain partonic momentum ranges. The measurements require large luminosities
and improved trigger capabilities. Also, as laid out in a new decadal plan [23], transverse
asymmetries in Drell-Yan production will help address questions of regarding the funda-
mental nature of QCD as well as universality breaking in the initial state in comparison
with semi-inclusive DIS experiments.
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SCATTERING AND SPIN PHYSICS
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Abstract

Based on the analogy with the ground-state deformation of nuclei we speculate
on the existence, origin and consequences of the proton deformation in high-energy
scattering experiments with unpolarized and polarized protons.

1 Introduction

Usually, the internal structure of particles is introduced when experimental indications
suggest it to be present. For the proton, deviations from the point-like structure have
been revealed by the pioneering measurements of Hofstadter [1]. In deep inelastic ex-
periments the partonic structure of proton has been revealed, and naturally, spherical
finite-size models of the proton (e.g. MIT bag model [2]) have been introduced. Since
then, size of the proton has been carefully studied and even nowadays, precise spectro-
scopic measurements of muonic hydrogen [3] suggest (together with the spin crisis) that
the internal structure of proton is still not well understood. In this contribution we insist
that proton can be intrinsically deformed and the consequences of this internal property
may be searched for in the present day experiments.

2 Deformation of proton

Proton is a spin 1/2 particle, with the internal partonic structure. From the formalism
of QED we know that only for particles with spin s ≥ 1 the quadrupole electromagnetic
form-factor can be introduced. Also in NMR experiments, zero spectroscopic quadrupole
moments are always observed for s = 1/2 nuclei (also protons). However, the nuclear
physics strongly suggests that many nuclei with spin s = 0 and s = 1/2 are intrinsically
deformed. Although having spin s = 1/2, the proton can also be deformed.

Theoretically, the appearance of quadrupole deformation in systems with Hamiltonians
exhibiting the rotational symmetry is a non-trivial phenomenon. The effect involves the
spontaneous symmetry breaking [4] and seems to be mathematically well understood. The
intrinsic coordinate system, is introduced when ”slow” and ”fast” degrees of freedom are
separated and adiabatic approximation is used. Self-deformation of the ground-state wave
function in the intrinsic coordinate system is generated as a consequence of the quantum-
mechanical interplay between the ”slow” - vibrational degrees of system and a degeneracy
of the energy levels of the fast constituents of the system. The energy decreases while the
system gets deformed.
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In mollecular physics fast degrees of freedom are the electrons and ”slow” degrees
of freedom are given by vibrations of nuclei in a given molecule. Similar situation is
encountered also in the case of nuclei, where slow degrees of freedom are the vibrations of
nuclear volume as a whole and fast degrees of freedom are the individual nucleons in the
nucleus, with degenerated energy levels. Typical nuclei with spin s = 0 or s = 1/2 which
are known to be deformed in their ground state are e.g. 154Sm and 169Tm.

The proton, a finite-size composite system containing virtual partons and three con-
stituent quarks, can also be considered as a system with the fast and slow degrees of
freedom. The fast degrees of freedom are the partons, bound together by strong gluonic
forces. What kind of ”slow” degrees of freedom can proton have ?

Within the framework of MIT bag model [2] one can consider surface vibrations of
the spherical bag of partons (subjected to the external pressure of confining vacuum) as
a prototype of slow vibrational degrees of freedom in the proton. One might suggest e.g.
Roper resonance of the nucleon N(1440) to be a vibrational state. Considering the proton
to be a bound state of di-quark and quark constituent clusters also allows one to introduce
slow vibrational degrees of freedom.

For the applicability of Jahn-Teller theorem, degeneracy of the energy levels is a nec-
essary condition, but we do not intend to proceed so far here. Our intention is merely to
claim that proton can have an intrinsic quadrupole deformation, which is not observable
via standard QED scattering and NMR measurements. (Let us remind here the formula
for the spectroscopic quadrupole moment Qs = Qo[3m

2
z−s(s+1)]/[(s+1)(2s+3)], which

hides the intrinsic deformation of nuclei with spin s=3 in quantum state mz=±2, valid
also in the case s = 1/2 and mz = ±1/2; here Qo is the intrinsic quadrupole moment).

3 Experimental signs of proton deformation

We have discussed whether proton can be deformed while having zero spectroscopic
quadrupole moment and how this deformation can be generated. Let us mention now
some indications that the proton is really deformed:
a) based on the similarity of Regge trajectories of mesons and baryons a deformation of
proton has been anticipated many years ago by Migdal [5],
b) the existence of color hyperfine interaction among quarks suggests [6] a significant D-
wave component in the wave function of proton,
c) very small gluonic contribution to the spin of the proton ∆g ≈ 0 seems to require a
non-zero orbital momentum of quarks in the proton,
d) measured transition form factors of proton [7] also give the evidence for the intrinsic
ground-state deformation of the proton,
e) significant difference between the proton radius measured from hyperfine muonic and
electron hydrogen spectra has been found recently [3]. Surprising result obtained in PSI
muonic measurements [3] might be related to the proton deformation, since the intrinsic
quadrupole deformation increases the effective size of the charge distribution [8]:

〈r2〉 = 〈r2〉Sph + 〈r2〉β2 (1)

A decrease of the deformation of prolate nuclei has been predicted and observed for the
muonic atoms many years ago [9] and the charge radius of proton from the muonic PSI
measurements [3] is smaller than the established CODATA value rp = 0.8768(69) fm.
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Following the above arguments one can assume that proton is intrinsically deformed
and search for the possible effects of deformation in high-energy proton-proton experi-
ments and also in deep-inelastic e− p scattering with unpolarized and polarized protons.

4 Double-parton scattering and DIS experiments

 

 j

j

j

j e

γ

e

γ

Figure 1: Double-parton p − p interaction
in non-spherical parts of colliding protons and
double-parton deep inelastic e− p event.

In heavy ion collision experiments with de-
formed nuclei, the effect of deformation gener-
ates the increased energy density in some con-
figurations and modifies the initial excentricity
(and its fluctuations) [10]. The effect is most
pronounced in central collisions, where the ef-
fective self-orientation of (unpolarized) nuclei
is anticipated. For prolate nuclei, longitudi-
nal self-orientation is expected in collisions with
the highest multiplicity due to the increased
number of binary nucleon-nucleon interactions
in this case. Selecting very high multiplicity
events enhances the probability of collisions of
longitudinally oriented nuclei in the sample.

Based on the analogy with the number of bi-
nary nucleon-nucleon interactions in collisions
of deformed nuclei [10] one can study a prob-
ability of double-parton interactions in ultra-
relativistic p − p and p − p̄ experiments. In Fig.1 (upper panel) we show double-parton
interaction in the non-spherical part of colliding deformed protons. Using the partonic
version of the optical Glauber model simulation, it has been found [11] that a probability
of multi-parton interaction depends on the mutual orientation of colliding deformed pro-
tons (see Fig.2). This might have an influence on the estimate of background processes
while searching for the signature of new physics [12] in ultra-relativistic interactions of
protons. In deep inelastic e − p interactions (DIS), the lepton participating in the reac-
tion can interact with more partons from the same proton. The possibility of two-photon
exchange has been considered long time ago, however, the fact that a probability of such
process can depend on the spatial orientation of deformed proton relative to the beam
has not been considered.

In the case of spin physics, the enhanced probability of DIS interaction of protons
oriented e.g. longitudinally relative to the lepton beam (see Fig.1) would introduce an
effective increase/decrease of polarization which is not accounted for nowadays.

The result of the partonic version of the optical Glauber simulation of deformed proton-
proton collisions is shown in Fig.2. A more detailed description of the simulation can be
found in [11].
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5 Summary and conclusions

The mechanism and indications of the anticipated proton deformation have been dis-
cussed. We suggest that the intrinsic proton deformation may influence the probability of
double-parton interactions in p-p and e-p collisions. A double-parton interaction probabil-
ity can depend on the geometrical orientation of the colliding (deformed) protons relative
to the beam axis. This may increase/decrease the effective proton polarization in the
sample of events obtained.
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Figure 2: Distribution of polar angles of
colliding deformed protons in parton-parton,
double-parton and triple-parton p− p events.

We have speculated that proton charge ra-
dius obtained in the PSI measurements [3] with
muonic hydrogen may deviate from the previ-
ously established values as a consequence of the
intrinsic proton deformation, as has been ob-
served in the case of muonic nuclei [9].

We also suggest, that models of the proton
exhibiting spherical symmetry (e.g. [13] or [14])
could be modified in such a way, that in the in-
trinsic coordinate system a distribution of par-
tons exhibits spatial quadrupole deformation.
If the internal energy decreases when deviation
from the spherical symmetry of the intrinsic
proton charge distribution happens, the wave function of the precessing proton should
contain an intrinsic spatial deformation, even though the spectroscopic quadrupole mo-
ment Qs is nullified due to the precession at angle θ = 54.7 degrees (cos2 θ = 1/3) relative
to the magnetic field axis.
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COMPASS RESULTS ON THE GLUON POLARISATION FROM THE
OPEN-CHARM ANALYSIS

Celso Franco 1 † on behalf of the COMPASS collaboration
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Abstract

One of the main goals of the COMPASS experiment at CERN is the determina-
tion of the gluon contribution to the nucleon spin. To achieve this goal COMPASS
uses a naturally polarised muon beam with an energy of 160 GeV and a fixed po-
larised target. Two types of materials were used for the latter: 6LiD (polarised
deuterons) during the years of 2002-2006 and NH3 (polarised protons) in 2007. The
gluons in the nucleon can be accessed directly via the Photon Gluon Fusion (PGF)
process. Among the channels studied by COMPASS, the production of charmed
mesons is the one that tags a PGF interaction in the most clean and efficient way.
This talk presents a result for the gluon polarisation, ∆g/g, which is based on a
measurement of the spin asymmetry for the production of D0 mesons. These mesons
are reconstructed through the invariant mass of their decay products. The purity
of the D0 spectra has been improved significantly using a new method based on
Neural Networks. The ∆g/g result is also presented using a next-to-leading order
(NLO-QCD) analysis of the PGF process. Such correction is relevant and was for
the first time applied to an experimental measurement of the gluon polarisation.

1 Introduction

Over the last decade, the quark contribution to the nucleon spin was determined with a
very good precision [1]:

∆Σ = 0.30± 0.02± 0.01 (at Q2 = 3 (GeV/c)2). (1)

This result is significantly smaller than the value of 60% expected from the Ellis-
Jaffe sum rule [2]. Relativistic quark motion is responsible for the reduction from the
value of 100%, expected in the naive quark-parton model. Taking into account the orbital
momenta, L, of quarks and gluons, and the first moment of the gluon helicity contribution,
∆G =

∫ 1

0
∆g(x)dx, the nucleon spin projection can be decomposed into the following sum:

Sz =
1

2
=

1

2
∆Σ + ∆G + Lz. (2)

Therefore, since all the spin contributions must sum to 1/2, the big question we need
to answer is: where is the remaining part of the nucleon spin? Knowing that the gluons
were the solution to the missing momentum in the nucleon, the obvious approach to solve
this spin puzzle would be the determination of the gluon helicity ∆G.
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2 Event selection

In order to be sensitive to the gluon polarisation one must tag a process involving a
polarised lepton-gluon interaction. In COMPASS, one of the possibilities to do it is to
reconstruct charmed mesons (see Fig. 1). This method provides a clean signature of PGF

Figure 1: Open-Charm produc-
tion via a polarised Photon-Gluon
Fusion process (PGF in LO).

events, because in LO (leading order) QCD approxima-
tion the intrinsic charm mechanism was found to be non-
important in the COMPASS kinematic domain (see, e.g.
Ref. [3]). In this analysis the PGF process is tagged us-
ing D0 meson production. This production is practically
limited to a range of small xBj (xBj < 0.1), because at
COMPASS kinematics the cross section for the PGF pro-
cess decreases rapidly with xBj.

The COMPASS spectrometer [4] was designed to re-
construct the D0 mesons through the invariant mass of
their decay products, Kπ pairs, and for that purpose
the RICH detector plays an extremely important role:
the requirement of proper identification of kaon and pion
candidates reduces significantly the combinatorial back-
ground underlying the resonance, which is centered on the D0 mass (cf. Fig. 2). In
addition, the following kinematic cuts are applied: on the fraction of the virtual photon
energy carried by the D0, 0.2 < zD0 < 0.85, and on the angle between the charmed meson
direction and the resulting kaon in the D0 center-of-mass, |cosθ∗| < 0.65. They are impor-
tant to reduce the contamination of the PGF sample by events coming from processes that
involve the fragmentation of a struck quark, because most of these events are collinear
with the virtual photon direction or have a zD0 values close to zero. The combinato-
rial background can be further reduced using the following channel: D∗ → D0πslow with
D0 → Kπ (D0 tagged with a D∗). By applying a cut on the difference of the reconstructed
masses for the D∗ and D0, 3.2 MeV/c2 < M rec

D∗ −M rec
D0 −Mπ < 8.9 MeV/c2, one can check

that there is not much room left for the slow pion momentum. Due to this cut the purity
of the D0 signal is significantly improved, and as a consequence three new channels of
lower purity can also be studied: D0 → Kππ0, D0 → Ksubπ, and D0 → Kπππ. The
resonance observed in the first channel emerges from the combinatorial background as a
’bump’, centered around -250 MeV/c2 in the D0 → Kπ spectra, due to the fact that the
extra π0 is not directly reconstructed for this analysis. The second channel represents the
D0 candidates without RICH identification for the kaon mass hypothesis (sub-threshold
kaons with p(K) < 9 GeV/c), and the last one involves another D0 decay mode which
helps to improve the statistical precision of the ∆g/g measurement. The final D0 samples
used in this analysis are shown in Fig. 2. Separate contributions from the COMPASS
data on deuteron and proton targets can be seen in Ref. [4].

3 Method to extract the gluon polarisation

The number of D0 candidates collected in a given target cell and time interval is:

dkn

dmdX
= aφη(s + b)[1 + PtPµf(

s

s + b
AµN→µ′D0X +

b

s + b
AB)]. (3)
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Figure 2: Invariant mass spectra for the D∗
Kπ, D∗

Kππ0 , D∗
Kπππ, D∗

Ksubπ and D0
Kπ samples. The symbol

D∗ denotes a D0 meson tagged with a D∗. The subscript notation indicates the final state of a D0 decay.
Both deuteron and proton data are included in these samples.

AµN→µ′D0X is the longitudinal double spin asymmetry of the differential cross-section
for events with a D0 or D̄0 in the final state, and AB is the corresponding asymmetry
originating from combinatorial background events. Furthermore, m = MKπ and the
symbol X denotes a set of k − 1 kinematic variables describing an event (pD0

T , ED0 ,
Q2, y, z, ...), whereas a, φ and η are the spectrometer acceptance, the incident muon
flux integrated over the time interval, and the number of target nucleons respectively.
The differential unpolarised cross-sections for signal and background events folded with
the experimental resolution as a function of m and X are represented by s = s(m,X)
and b = b(m,X) respectively. The ratio s/(s + b) represents the signal purity of the
reconstructed D0 spectra. The information on the gluon polarisation is contained in the
muon-nucleon asymmetry AµN . The latter is defined in LO QCD as a convolution between
the ratio of polarised/unpolarised partonic cross-sections, (∆σ̂/σ̂)µg→µ′cc̄, and the ratio of
polarised/unpolarised gluon structure functions (∆g/g):

AµN = 〈âLL〉∆g

g
with âLL ≡ ∆σ̂µg

σ̂µg

=

(
σ̂
←−⇒
µg − σ̂

←−⇐
µg

σ̂
←−⇒
µg + σ̂

←−⇐
µg

)
. (4)

Four equations like eq. (3) are defined, i.e. one equation for each cell and spin configu-
ration of the target. Since the factors s/(s + b) and aLL(≡ 〈âLL〉) have a large disper-
sion, a weighting method was used to minimize the statistical error. The signal weight,
ωS = PµfaLL[s/(s + b)], and the background weight, ωB = PµfD[b/(s + b)], were used,
where D is the polarisation transfer from the muon to the virtual photon. By weighting
events corresponding to each of four equations like eq. (3) with ωS, and then similarly
with ωB, it becomes possible to solve the system of 8 equations in order to extract ∆g/g
(see Ref. [5]). To solve the system, however, one needs aLL and s/(s + b) for every event.
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In the next-to-leading order, the physical asymmetry is decomposed as follows:

AµN = aPGF
LL

∆g

g
+ aq

LLA1, (5)

where in aPGF
LL all the soft, virtual and gluon bremstrahlung corrections to the LO-PGF

process are included (cf. diagrams in Ref. [4]). The asymmetry aq
LL accounts for the

presence of physical background inside the D0 resonance. It corresponds to an interaction
between the virtual photon and a light quark, which subsequently emits a gluon that
produces a cc̄ pair. One of these charmed quarks may fragment into a non-PGF D0.
Finally, A1 represents the inclusive asymmetry which is experimentally well known [6].
The contamination described by the second term of eq. (5) is negligible and it appears
only in NLO or higher orders accuracy.

Using eqs. (3) and (4) or eqs. (3) and (5) one is able to determine ∆g/g at the LO or
NLO accuracies. In order to make possible to use COMPASS results in global analyses,
a set of virtual photon asymmetries, Aγ∗N→µ′D0X = AµN/D, was determined in bins of
pD0

T and ED0 . They are obtained from eq. (3) using as a signal weight the factor ω
′
S =

PµfD[s/(s+b)]. Note that determined values of Aγ∗N are independent of aLL and therefore
their determination does not depend on a theoretical interpretation. The criterium for the
choice of the binning was to provide asymmetries which are independent of the COMPASS
acceptance for the PGF process. A table containing values of Aγ∗N(pD0

T , ED0) can be found
in Ref. [4, 5].

4 Analysing power

The analysing power for the Open-Charm production, aLL, is dependent on the full knowl-
edge of partonic kinematics. Consequently, this asymmetry is not experimentally acces-
sible because only one D0 meson is reconstructed per event; the information associated
with the second charm quark is lost. Nevertheless, aLL can be obtained from a dedicated
Monte Carlo generator for production of heavy flavours (AROMA).

4.1 The analysing power in LO QCD

The AROMA generator is used without parton showers in order to generate D0 events
from LO-PGF processes. After a full Monte Carlo chain, where the generated events are
constrained to the COMPASS acceptance, all D0 mesons are reconstructed in the simu-
lated spectrometer. The polarised and unpolarised partonic cross-sections are calculated
using the information from the generator, and then the kinematic dependencies of aLL

are parameterised [4] with the help of a Neural Network [7]. Finally, the Monte Carlo
parameterisation is used to obtain aLL for each real data event.

4.2 The analysing power in NLO QCD

The phase space needed for NLO real gluon emission processes, γ∗g → cc̄g, is simulated
through parton showers included in the AROMA generator. For every simulated event,
the energy of parton showers (if present in the event) defines the upper limit of the
integration over the energy of the unobserved gluon in the NLO emission process. This
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integration reduces a differential cross-section for a three-body final state (cc̄g) to a two-
body one (cc̄), which can be combined with the LO cross-section (cc̄, PGF) and the
two-body virtual and soft NLO corrections. The procedure guarantees a correct infra-red
divergence cancellation. In this way, the total partonic cross-section at NLO accuracy
is calculated on an event-by-event basis for the spin averaged as well as spin dependent
case, and consequently aPGF

LL at NLO accuracy is obtained. The same procedure is applied
for the correction originating from aq

LL. In NLO, ∆g/g is estimated from Aγ∗N(pD0

T , ED0)
using 〈aPGF

LL 〉 and 〈aq
LL〉 in bins of (pD0

T , ED0). For details see [5].

5 The signal purity

The Neural Network (NN) described in Ref. [7] is also used to parameterise s/(s + b) on
real data. Here, the goal is to obtain D0 probabilities for every event. In Ref. [4] one can
see the outcome of this parameterisation: the D0 spectrum reveals a probability behavior
in bins of [s/(s + b)]NN, i.e. its purity increases towards [s/(s + b)]NN = 1. Consequently,
the statistical precision of ∆g/g is significantly improved due to a good separation of the
physical events from the combinatorial background. To accomplish this, two data sets are
used as inputs to the network. The first one contains the D0 signal and the combinatorial

Figure 3: Example of the
gcc and wcc distributions of
|cos θ∗| in the D0 center-of-
mass. Top/bottom: region of
the D0 signal/sidebands.

background events. These events are called ’good charge
combination’ ones (gcc) reffering to the charges of particles
from D0 decays, and they are selected as described in Sec.
2. The second set, the ’wrong charge combination’ events
(wcc), is selected in a similar way except that the sum of
charges of corresponding particles should not be zero. It con-
tains only background events and is used as a background
model. The NN performs a multi-dimensional comparison of
gcc and wcc events in a ±40 MeV/c2 mass window around
the D0 mass. Within the gcc set, signal events are distin-
guished from combinatorial background by exploiting differ-
ences between the gcc and wcc sets in the shapes of distri-
butions of kinematic variables as well as multi-dimensional
correlations between them. An example of a properly chosen
variable for the network is the kaon angular distribution in
the D0 center-of-mass, as shown in Fig. 3. The distributions
in the side band bins, shown in the bottom plot of Fig. 3,
illustrate the good quality of the background model.

The purity [s/(s + b)]NN is obtained from a simple func-
tion applied to the NN output (see Ref. [5]). Thereafter, the mass dependence is added
as a correction from a fit to the spectra in bins of [s/(s+ b)]NN. By respecting the correct
D0 kinematic dependencies, this parameterisation allows us to use s/(s + b) inside ωS in
an unbiased way.
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6 Results and Conclusions

The LO and NLO results on the gluon polarisation are the following:

〈
∆g

g

〉LO

NLO

=



−0.08± 0.21(stat)± 0.09(syst) @〈xg〉 = 0.11+0.11

−0.05

−0.20± 0.21(stat)± 0.09(syst) @〈xg〉 = 0.28+0.19
−0.10


 . (6)

Both results are obtained at a scale of 〈µ2 〉 = 13 (GeV/c)2. The theoretical uncertainties
associated with the NLO determination of aPGF

LL and aq
LL are still under study. There-

fore, the systematic uncertainty is given as a preliminary value for the NLO result. Eq.
(6) indicates that small values of ∆g/g are clearly favored in the xg range of both mea-
surements. These results are compatible with all the world measurements of the gluon
polarisation, as shown in the left plot of Fig 4. In the right plot of Fig. 4 the two open
charm results for x∆g are compared to the global fits, which prefere small values of gluon
helicity contribution, ∆G =

∫ 1

0
∆g(x)dx, to the nucleon spin. In conclusion, the spin

puzzle of the nucleon is still unresolved.
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Figure 4: Left: world measurements on ∆g/g. Right: parameterisations of x∆g(x,Q2) together with
the LO and NLO results obtained from the Open-Charm analysis.
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Abstract

The COMPASS experiment at CERN is a universal facility which can oper-
ate with both muon and hadron beams as well as with unpolarized or longitudi-
nally/transversely polarized liquid and solid targets. The availability of pion beam
provides an access to the Drell-Yan physics, i.e. to the process where quark (target)-
antiquark (beam) pair annihilates electromagnetically with a production of dilepton
pair. The possibility to use in a future COMPASS Drell-Yan measurements a trans-
versely polarized target together with negative pion beam will provide us unique
opportunity to access a number of convolutions of transverse momentum dependent
parton distribution functions (TMDs), which can not be measured with unpolarized
targets.

1 Transverse momentum dependent PDFs

At leading twist, the quark structure of the hadron is completely described by three
PDFs: the unpolarized distribution function f1(x), the helicity distribution g1(x) and
transversity function h1(x). But there are several experimental observations of large
azimuthal and spin asymmetries which perturbative QCD at leading twist in collinear
approximation can not explain. In particular, large asymmetric azimuthal distributions of
final-state leptons measured in high-energy collisions of pions and protons with nuclei [1]
– [3] show a striking deviation from the so-called Lam-Tung sum rule [4], [5] that is
based on collinear perturbative QCD, and seem to indicate the need to go beyond the
collinear approximation. When considering non-zero quark transverse momentum kT

with respect to the hadron momentum, the nucleon structure is described at leading
twist by eight PDFs. Two of five new functions: the Boer-Mulders function h⊥1 (x, k2

T )
describing the correlation between transverse spin and transverse momentum of the quark
in an unpolarized nucleon and the Sivers function f⊥1T (x, k2

T ) describing the influence of
the transverse spin of the nucleon into the quark transverse momentum distribution, as
well as transversity function h1 are of great interest to further reveal the partonic (spin)
structure of hadrons (see [6] for a review).

The Drell-Yan quark-antiquark annihilation process is an excellent tool to study
transversity and kT -dependent PDFs. In the DY process (Fig. 1) quark and antiquark
annihilate into a lepton pair. Other kinds of hard processes can also access chirally odd
PDFs, like semi-inclusive deep-inelastic scattering (SIDIS) where chirality is conserved
through the convolution of PDFs with polarized quark fragmentation functions. There
exist no fragmentation process in DY. In order to access spin structure information a
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high-intensity hadron beam and a large-acceptance setup as well as a high-performance
polarized target are required. These features are provided by the multipurpose large-
acceptance COMPASS spectrometer.

2 Future Drell-Yan measurement at COMPASS

Figure 1: Feynman diagram of the Drell-Yan process.

COMPASS is a fixed target experi-
ment at the secondary beams of Su-
per Proton Synchrotron at CERN
[7]. The purpose of the experiment
is the study of hadron structure and
hadron spectroscopy with high inten-
sity muon and hadron beams [8]. The
COMPASS detector consists of two
spectrometers built around two dipole magnets in order to detect particles scattered at
large and small angles, respectively. It is equipped with a large number of precise tracking
detectors, two electromagnetic calorimeters, two hadron calorimeters and particle iden-
tification system including RICH and two muon walls. Layout of a target region of the
experiment can be optimized for a particular measurement. COMPASS operates with
muon and hadron beams with momentum up to 200 GeV/c. During the first phase
(2002-2011) of the experiment the longitudinal and transverse nucleon spin structures
were studied via deep inelastic scattering with muon beam of high intensity. Production
of hadron resonances via diffractive scattering, central production and photon exchange
using pion and proton beams and hydrogen, tungsten, lead and nickel targets were also
studied.

(a) (b)

Figure 2: (a) Kinematic range in xπ vs. xp, covered by COMPASS (in grey) for 4 GeV/c < Mµµ <
9 GeV/c (Monte-Carlo simulation).(b) Expected error of the Sivers asymmetry for a measurement in
three bins of xF = xp − xπ. Two years of data taking (280 days) is assumed.

Possible extension of COMPASS physic program is described in the COMPASS-II
Proposal [10] which was approved by the CERN Research Board for the period of three
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Figure 3: (a) The measured µ+µ− invariant mass distribution. The number of events is obtained from
the fit in the J/ψ region. (b) PT distribution for dileptons with Mµ+µ− > 2.7 GeV

years starting since 2012. It consists of three general directions: tests of chiral perturbative
theory, GPD program and Drell-Yan program.

Convolutions of PDFs of incoming pion and target proton can be accessed via the mea-
surement of the lepton pair angular distributions in the final state. The Sivers and Boer-
Mulders functions are T-odd objects. QCD predicts that the f⊥1T and the h⊥1 functions
extracted from DrellYan processes and those obtained from semi-inclusive DIS should
have opposite sign [11], i.e.

f⊥1T

∣∣
DY

= − f⊥1T

∣∣
DIS

, h⊥1T

∣∣
DY

= − h⊥1T

∣∣
DIS

. (1)

COMPASS provides unique opportunity to test this QCD prediction because SIDIS and
DY measurements can be done at the same setup and in overlapping kinematic ranges.

For Drell-Yan studies COMPASS will operate with 190 GeV/c π− beam of high
intensity (up to 108 s−1 ) and transversely polarized NH3 target. Hadron absorber will
be installed just downstream the target to stop both secondary hadrons and unscattered
beam pions to prevent their decay into muons and reduce the combinatorial background
and occupancy of tracking detectors . Construction of the absorber will be optimized to
minimize multiple scattering in material for muons. Dedicated trigger for the selection
of a pair of oppositely charged muons will be provided. A safe range for dimuon masses,
separated from J/ψ and Υ peaks, is 4-9 GeV/c2. Kinematic range of xπ and xp variables
which are the fractions of the momentum carried by the interacting parton in the incoming
pion and proton respectively, covered by COMPASS is shown on Fig. 2(a). Main part of
potentially observed DY events correspond to annihilation of valence quarks (xπ, xp >
0.1). According to the performed Monte Carlo study the average value of the dilepton
transverse momentum PT will stay at about 1 GeV. In this range the TMD-induced
effects are expected to be dominant. Two years of data taking with the beam intensity
of 6 × 107 s−1 will allow to collect enough statistics (more than 200 000 DY events) to
extract TMD PDFs. Expected error of the Sivers asymmetry for a measurement in three
bins of xF = xp − xπ is shown on Fig. 2(b).

Feasibility of Drell-Yan measurements at COMPASS was studied during three short
beam tests. The most important three-day-long test was performed in 2009. The po-
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larized target was simulated by two cylinders of polyethylene. A prototype hadron ab-
sorber was installed downstream of the target. The beam intensity of 8× 107 pions/spill
(spill length of 9.6 s) was used except for two runs when the beam intensity was in-
creased up to 1.5 × 108/spill (integrated beam flux was equal to 3.7 × 1011 pions). J/ψ
peak was used as a monitoring signal (see Fig. 3(a)). The number of expected J/ψ
events based on the cross section, accumulated luminosity, apparatus acceptance and
trigger/reconstruction performance is 3600 ± 600, the number of expected DY events in
the mass range 4 GeV/c2 < Mµµ < 9 GeV/c2 is 110±22. The number of registered J/ψ’s
(3170±70) is in a good agreement with the expected from MC yield as well as the number
of registered DY events (84 ± 10). Events with dimuon mass below J/ψ peak were also
studied. Distribution of PT of dimuon with Mµµ > 2.7 GeV is shown of Fig. 3(b) and it
corresponds to our expectations from the Monte Carlo.

3 Conclusion

Polarized Drell-Yan measurement is a part of COMPASS-II proposal. This proposal was
approved by CERN SPSC for a first period of 3 years (1 year of Drell-Yan data taking).
Three DY beam test were performed so far and the feasibility of the measurement with
the COMPASS spectrometer was demonstrated. According to our estimations 2 years of
data taking with the beam intensity of 2×108 s−1 will allow to collect enough statistics for
test theory predictions and extract TMD PDFs. After one year of data taking with the
beam intensity up to 108 s−1 we aim to measure the Sivers asymmetry with a statistical
accuracy of 1-2%. Comparison of Sivers and Boer-Mulders functions measured in DY and
SIDIS also can be performed.
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A. Ivanilov (on behalf of the HERMES collaboration)

IHEP, Protvino
† E-mail: ivanilov@mail.desy.de

Abstract

The measurement of the spin-structure function g2(x,Q2) and of the virtual-
photon asymmetry A2(x,Q2) of the proton is presented for the kinematic range
0.023 < x < 0.7 and 1 < Q2 < 15 GeV2. The data were collected by the HER-
MES experiment at the HERA storage ring at DESY while studying inclusive deep-
inelastic scattering of 27.6 GeV longitudinally polarized leptons off a transversely
polarized hydrogen gas target. The results are consistent with previous experimen-
tal data from CERN and SLAC.

The description of inclusive deep-inelastic scattering of longitudinally polarized charged
leptons off polarized nucleons requires two nucleon spin-structure functions g1(x,Q2) and
g2(x,Q2) in addition to the well-known structure functions F1(x,Q2) and F2(x,Q2). Here,
−Q2 is the squared four-momentum of the exchanged virtual photon with laboratory en-
ergy ν, x = Q2/2Mν is the Bjorken scaling variable, and M is the nucleon mass. Ignoring
quark mass effects, g2(x,Q2) can be written as a sum of two terms

g2(x,Q2) = gWW
2 (x,Q2) + ḡ2(x,Q2) . (1)

Here, gWW
2 (x,Q2) is the twist-2 part derived by Wandzura and Wilczek [1]:

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

g1(y,Q2)
d y

y
. (2)

The second term in Eq. (1), ḡ2(x,Q2), is the twist-3 part of g2(x, Q2). It arises from
quark-gluon correlations in the nucleon and is the most interesting part of the function.

The spin-structure functions g1(x, Q2) and g2(x,Q2) can be related to the virtual
photon-absorption asymmetries A1(x,Q2) and A2(x,Q2) (see e.g. Ref. [2]):

A1 =
g1 − γ2g2

F1
, A2 = γ

g1 + g2

F1

, (3)

where γ = 2Mx/
√

Q2.
The measurement of the structure function g2 requires a longitudinally polarized beam

and a transversely polarized target. The inclusive differential cross section can be rep-
resented as a sum of two terms, the polarization-averaged part σUU , and the polariza-
tion-dependent part σLT . Here, the subscript UU indicates that both the beam and the
target are unpolarized, while the subscript LT indicates a longitudinally polarized beam
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and a transversely polarized target. The polarization-dependent part of the cross section
at Born level, i.e. in the one-photon approximation, is given by [3]:

d3σLT

dxdydφ
= −hl cos φ

4α2

Q2
γ

√
1− y − γ2y2

4
·
(y

2
g1(x,Q2) + g2(x,Q2)

)
. (4)

Here, hl = +1 (−1) for a lepton beam with positive (negative) helicity, α is the fine-
structure constant, and y = ν/E, where E is the incident lepton energy. The angle φ is
the azimuthal angle about the beam direction between the lepton scattering plane and
the “upwards” target spin direction.

A measurement of the inclusive cross sections (4) at angles φ and φ + π allows one to
construct the asymmetry ALT :

ALT (x,Q2, φ) = hl
σ(x,Q2, φ)− σ(x,Q2, φ + π)

σ(x, Q2, φ) + σ(x,Q2, φ + π)
= hl

σLT (x,Q2, φ)

σUU(x,Q2, φ)
= − cos φ AT (x,Q2) , (5)

which defines the asymmetry amplitude AT (x, Q2). The amplitude provides an access
to g2 and A2 using world data on the cross-section σUU and g1. The cross-section σUU

depends on the structure functions F1,2, or, equivalently, on the function F2 and the ratio
of longitudinal to transverse virtual photon-absorption cross sections R(x,Q2). Finally,
the function g2(x,Q2) and the asymmetry A2(x,Q2) can be evaluated from the amplitude
AT using functions g1 and F1 through the following relations:

g2 =
F1

γ(1 + γξ)

(
AT

d
− (γ − ξ)

g1

F1

)
, (6)

A2 =
1

1 + γξ

(
AT

d
+ ξ(1 + γ2)

g1

F1

)
. (7)

Here, d = D
√

1− y − γ2y2/4/(1 − y/2), ξ = γ(1 − y/2)/(1 + γ2y/2), D = y(2 − y)(1 +
γ2y/2)/[y2(1 + γ2) + 2(1− y − γ2y2/4)(1 + R)].

We report a new measurement of the function g2 and the asymmetry A2. The data
were collected during the years 2003 – 2005 with the HERMES spectrometer [4] using
a longitudinally polarized positron or electron beam of energy 27.6 GeV scattered off a
transversely polarized target of pure hydrogen gas internal to the HERA lepton storage
ring at DESY. The nuclear polarization of the atoms was flipped at 1–3 minute time
intervals. The average value of the proton-polarization magnitude was 0.78 ± 0.04. The
lepton beam (positrons during 2003 – 2004 and electrons in 2005) was self-polarized in
the transverse direction. Longitudinal orientation of the beam polarization was obtained
by using a pair of spin rotators located before and after the HERMES spectrometer. The
sign of the beam helicity was reversed every few months. The average value of the beam-
polarization magnitude was found to be 0.34± 0.01. The scattered leptons were detected
by the HERMES spectrometer within an angular acceptance of ±170 mrad horizontally
and ±(40÷ 140) mrad vertically. The leptons were identified using the information from
an electromagnetic calorimeter, a transition-radiation detector, a preshower scintillating
counter and a dual-radiator ring-imaging C̆erenkov detector. The identification efficiency
for leptons with momentum larger than 2.5 GeV exceeds 98%, while the hadron contam-
ination is found to be less than 1%.
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The kinematic constraints imposed on the events were: 1 GeV2 < Q2 < 15 GeV2,
invariant mass of the virtual photon-nucleon system W > 2.0 GeV, 0.023 < x < 0.7, and
0.10 < y < 0.85. After applying data quality criteria, 6.9 × 106 events were available
for the asymmetry analysis. The kinematic region covered by the experiment in (x, Q2)-
space was divided into six bins in x. Each of the six x-bins was subdivided into three
logarithmically equidistant bins in Q2. The range in φ-space (2π) was divided into 10
bins.

The measurement of the asymmetry ALT (x,Q2, φ) defined in Eq. (5) was performed
by reversing the transverse target polarization and comparing the number of events in the
same part of the detector:

ALT (x,Q2, φ) = hl
Nhl⇑(x,Q2, φ)Lhl⇓ − Nhl⇓(x,Q2, φ)Lhl⇑

Nhl⇑(x,Q2, φ)Lhl⇓
p + Nhl⇓(x,Q2, φ)Lhl⇑

p

. (8)

Here, Nhl⇑(⇓) is the number of scattered leptons in one bin of the 3-dimensional space
(x,Q2, φ) for the case of the lepton beam with positive or negative helicity hl when the

direction of the proton spin points up (down). Lhl⇑(⇓) and Lhl⇑(⇓)
p are the corresponding

integrated luminosities and the integrated luminosities weighted with the absolute value
of the beam and target polarization product, respectively. The asymmetry evaluated
with Eq. (8) was unfolded for radiative QED and instrumental smearing effects to obtain
the asymmetry corresponding to single-photon exchange in the scattering process. The
unfolding procedure is described in [5]. It inflates the size of the statistical uncertainties
especially in the lowest Q2-bins at a given value of x. The magnitude of inflation reaches
almost a factor of two at low values of x. The subdivision of x-bins into three bins in Q2

decreases the error inflation by about a factor of 1.5 because at larger Q2 the amount of
smearing between x-bins is smaller and the pre-factors of AT in Eq. (6) and (7) are larger
in magnitude.

The asymmetry amplitude AT (x,Q2) was obtained by fitting the unfolded asymmetries
with the function f(φ) = − cos φAT (x,Q2). The function g2(x,Q2) and the asymmetry
A2(x,Q2) were evaluated (see Eq. 6) and (7)) from the amplitude AT (x,Q2), using a
world-data parameterization [6] for the g1(x,Q2) and parametrizations of the structure
function F2(x, Q2) [7] and the ratio R(x,Q2) [8]. The structure function F1 was calculated
from the F2 and R: F1(x,Q2) = F2(x,Q2)(1 + γ2)/[2x(1 + R(x,Q2))].

The uncertainties on the measurements of the beam and target polarizations produce
in total a 10% scale uncertainty on the value of AT . Other sources of systematic uncer-
tainties such as acceptance effects, beam and spectrometer misalignments, uncertainties in
the target polarization direction and the unfolding procedure were evaluated by Monte-
Carlo studies. Uncertainties stemming from parameterizations of g1(x, Q2), F2(x,Q2),
and R(x,Q2) were estimated also. The total systematic uncertainty is several times less
than the magnitude of the statistical uncertainty.

In order to study the x dependence, g2(x,Q2) and A2(x,Q2) in bins covering the same
x range but with various Q2 values were evolved to their mean value of Q2 and then
averaged. The results for the virtual-photon asymmetry A2 and the function xg2 as a
function of x are presented in Fig. 1 together with data from the experiments E155 [9],
E143 [10] and SMC [11]. The experiments have only slightly different values of average Q2

for a particular value of x. The results are within their uncertainties in good agreement
with each other. The solid curves represent values of A2 and xg2 evaluated with the
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Wandzura-Wilczek relation (2) using the g1(x,Q2) parameterization of Ref. [6]. The
values were calculated at the average Q2 of HERMES at each value of x.
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Figure 1: Left panel: The virtual-photon asymmetry A2 of the proton as a function of x. Right panel:
The spin-structure function xg2(x,Q2) of the proton as a function of x. Data from the experiments
E155 [9], E143 [10] and SMC [11] are presented also. The total error bars represent the quadratic sum of
the statistical and systematic uncertainties. The statistical uncertainties are indicated by the inner error
bars. The solid curve is the result of the Wandzura-Wilczek relation.

In conclusion, HERMES has measured the spin-structure function g2 and the virtual-
photon asymmetry A2 of the proton in the kinematic range 0.023 < x < 0.7 and 1 < Q2

< 15 GeV2. The results on A2 and g2 are overall in good agreement with measurements of
SMC at CERN, E143 and E155 at SLAC, but they are not statistically accurate enough
to detect a deviation of g2 from its Wandzura-Wilczek part.
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Abstract
An overview of recent selected HERMES results is presented. The review topics

include the study of the transverse momentum dependent distributions and the
study of the deeply virtual Compton scattering.

1 Introduction

The HERMES experiment at DESY was designed to investigate the spin structure of the
nucleon and, in particular, to measure the partonic composition of its spin projection:
Sz = 1

2
= 1

2
∆Σ + ∆g + Lq

z + Lg
z . Here 1

2
∆Σ(∆g) describes the net integrated contri-

bution of quark and antiquark (gluon) helicities to the nucleon helicity and Lq
z(L

g
z) is

the z component of the orbital angular momentum among all quarks (gluons). Measure-
ments of longitudinal double-spin asymmetries (DSAs) in deep-inelastic scattering (DIS)
of positrons off protons and deuterons [1] led to a value ∆Σ = 0.330 ± 0.011(theo) ±
0.025(exp) ± 0.028(evol). The gluon polarization was obtained from longitudinal DSAs
of charged hadrons with high transverse momentum [2]: ∆g

g
= 0.049 ± 0.034(stat) ±

0.010(sys-exp)+0.126
−0.099(sys-models) at 〈x〉 = 0.22 at a scale 〈µ2〉 = 1.35 GeV2. The both

numbers are relatively small and, therefore, the essential contribution from the parton
orbital angular momenta is required. In the last years the HERMES Collaboration in-
tensively is studying the Generalized Parton Distributions (GPDs) and the Transverse
Momentum Dependent distribution and fragmentation functions (TMDs), both of them
can provide a useful information on the magnitude of parton orbital angular momen-
tum. The GPDs can be measured by studying hard exclusive processes such as Deeply
Virtual Compton scattering (DVCS). The study of TMDs requires a measurement of
certain asymmetries in the semi-inclusive deep inelastic processes (SIDIS) of the hadron
production

HERMES used the longitudinally polarized lepton beam (e+ or e−) of 27.6 GeV scat-
tered off a transversely/longitudinally polarized or unpolarized gas target internal to the
HERA storage ring. Scattered leptons and coincident hadrons were detected by the
HERMES spectrometer [3]. Leptons were identified with an efficiency exceeding 98%
and a hadron contamination of less than 1%. The HERMES dual-radiator ring-imaging
Čerenkov detector allows full hadron identification in the momentum range 2÷ 15 GeV.
In the winter shutdown 2005/2006 the HERMES spectrometer was upgraded in the tar-
get region with a Recoil detector to improve the selection of exclusive processes. The
Recoil detector comprises a set of silicon strip detectors located inside the HERA beam
vacuum, surrounded by a scintillating-fiber tracker, a photon detector, and a 1 Tesla
superconducting magnet.
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2 TMDs

When the transverse momentum pT of the quarks is not integrated out, a variety of new
parton distribution functions (PDFs) arise, describing correlations between the quark
or the nucleon spin with the quark transverse momentum. These poorly known PDFs,
typically denoted as TMDs, encode information on the 3-dimensional structure of nucleons
in momentum space and are increasingly gaining theoretical and experimental interest.
At leading twist, eight TMDs, each with a specific probabilistic interpretation in terms of
quark number densities, enter the SIDIS cross section in conjunction with either the chiral-
odd Collins fragmentation function (FF) H⊥

1 (z,k2
T ), describing left-right asymmetries in

the fragmentation of transversely polarized quarks, or well known spin-independent chiral-
even D1(z,k

2
T ) FF. Here z and kT denote the fraction of the energy of the exchanged

virtual photon carried by the produced hadron and the transverse momentum of the
fragmenting quark with respect to the outgoing hadron direction, respectively. Three of
the eight TMDs survive the integration over pT and correspond to usual collinear PDFs:
f1(x), g1(x), and h1(x).

Generally, the differential SIDIS cross section can be represented as a superposition
of spin-averaged and spin-dependent terms with various polarization states of the target
and beam (see, e.g., [4] and referencies therein). Each of these terms is modulated by
the sines and the cosines of the specific combination of the azimuthal angles of the target
polarization, φS, and of the produced hadron, φ, both referred to the lepton scattering
plane. The coefficients of this Fourier series are represented as convolutions of proper
combinations of the TMDs and the FFs over the transverse momenta pT and kT .

In the studies at HERMES, these Fourier amplitudes were extracted through a maxi-
mum-likelihood fit of the SIDIS events, alternately binned in x, z and Ph⊥, but unbinned
in φ and φS. The events were selected subject to the kinematic requirements W 2 >
10 GeV, 0.1 < y < 0.95 and Q2 > 1 GeV. Coincident hadrons were accepted in the range
0.2 < z < 0.7 only.
A case of an unpolarized beam and a transversely polarized target. Three
leading-twist asymmetry amplitudes can be measured:
i) Sivers amplitude 2〈sin(φ − φS)〉hUT which is proportional to convolution of the Sivers
TMD, f⊥1T , and usual FF;
ii) Collins amplitude, 2〈sin(φ + φS)〉hUT , which is proportional to convolution of the
transversity TMD, h1, and the Collins FF;
iii) the 2〈sin(3φ − φS)〉hUT amplitude which is proprtional to convolution of the pretze-
locity TMD, h⊥1T , and the Collins FF. The pretzelocity describes the correlation between
the quark transverse momentum pT and the transverse polarization of the quarks in a
transversely polarized nucleon. In various models, such as the bag or spectator models,
it appears [5] as the difference between the helicity and the transversity distributions,
thus encoding pure relativistic effects in the quark motion within the nucleon. Final
HERMES data on the Sivers [6] and the Collins [7] amplitudes have been published
and will not considered in this review. The Collins and the Sivers amplitudes were ex-
tracted together with other four sine azimuthal asymmetry amplitudes (three of them are
subleading-twist), related to other terms of the SIDIS cross section. These amplitudes
are all consistent with zero for all hadron types, with the only exception of subleading-
twist 2〈sin(φS)〉hUT amplitude, which exhibits a large negative signal for π−, similar to
the corresponding Collins amplitude. Preliminary results for this amplitude and for the
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Figure 1: Asymmetry amplitudes 2〈sin(φS)〉hUT (left panel) and 2〈sin(3φ − φS)〉hUT (right panel) for
pions and charged kaons as a function of x, z, and Ph⊥. The shaded bands represent the systematic
uncertainty. A common scale uncertainty 7.3% arises from the target polarization measurement.

leading twist 2〈sin(3φ−φS)〉hUT amplitude, are presented at Fig. 1 in left and right panel,
respectively.
A case of a longitudinally polarized beam and a transversely polarized target.
One leading-twist asymmetry amplitude can be measured: the cos(φ − φS) amplitude
which is proportional to convolution of the worm-gear’ TMD g⊥1T and usual FF. This
TMD describes the probability of finding a longitudinally polarized quark inside a trans-
versely polarized nucleon. Fig. 2 presents the results for the 2〈cos(φ−φS)〉hLT asymmetry
amplitudes for pions and charged kaons as a function of x, z, and Ph⊥. The results show
a positive amplitude for π− and possibly also for π+ and K+ whereas for π0 and K−

they are found to be consistent with zero. The results for the sub-leading twist DSAs
2〈cos(φS)〉hLT and 2〈cos(2φ−φS)〉hLT , not shown here, are both consistent with zero for all
measured mesons.
A case of an unpolarized target. The azimuthal asymmetry for hadron production in
lepton DIS off unpolarized target was predicted to be non-zero many years ago due to the
fact that the kinematics is noncollinear when the quark intrinsic transverse momentum
is taken into account. Other possible sources of the asymmetry are perturbative gluon
radiation and Boer-Mulders mechanism, which is due to the correlation of the quark
intrinsic transverse momentum and intrinsic transverse spin. This correlation is described
by the Boer-Mulders distribution function h⊥1 (x, kT ), which represents the transverse-
polarization distribution of quarks inside an unpolarized nucleon. The corresponding
amplitude proportional to convolution of h⊥1 (x, kT ) and the Collins FF.

At HERMES, the extraction of the unpolarized modulations was performed using a
multi-dimensional unfolding procedure to correct for radiative and acceptance effects on
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hydrogen and deuterium data, separately for positive and negative hadrons.
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Figure 2: Double-spin asymmetry ampli-
tudes 2〈cos(φ− φS)〉hLT for pions and charged
kaons as a function of x, z, and Ph⊥. The
shaded bands represent the systematic un-
certainty. A common scale uncertainty 8.0%
arises from the beam and target polarization
measurement.

The 2〈cos 2φ〉UU amplitudes as a function of x,
y, z, and Ph⊥ for positive and negative hadrons
produced off hydrogen target are presented in
Fig. 3. The twist-3 2〈cos φ〉UU amplitudes are ex-
tracted also but not shown here. An important
feature shown by HERMES data is the different
behavior of the amplitudes for positive and neg-
ative hadrons. Such difference can be considered
as an evidence of a non-zero Boer-Mulders func-
tion. The extracted amplitudes for pions and
kaons show different sizes and kinematic depen-
dencies. This may be due to different features of
Collins fragmentation into kaons and pions.
Inclusive production of hadrons. Substan-
tial unexpected single-spin asymmetries have
been observed in inclusive hadron production in
hadron collisions (see, e.g., [8]). This stimulated
interest in looking at inclusive electroproduction
of hadrons, ep −→ hX, where only one hadron
of the final state is tagged. HERMES has col-
lected a rich data set on inclusive charged pion
and kaon production, allowing precise measure-
ments of single-spin asymmetries in the scatter-
ing from transversely polarized hydrogen target.
The scattered lepton is not considered in the
analysis and, therefore, the event sample is domi-
nated by low-Q2 quasi-real photoproduction. As

the scattered lepton escapes detection, the usual DIS kinematics can not be available.
Therefore, pT , xF = 2pL/

√
s with pL being the longitudinal component of the hadron mo-

mentum, and the azimuthal angle φ of the hadron’s transverse momentum with respect
to the polarization direction of the target proton are measured using the incoming lepton
beam as a reference.

In Fig. 4 preliminary results on the sin φ amplitude of the transverse single-spin asym-
metry in inclusive electroproduction of charged pions and kaons are shown as a function
of pT in three bins of xF . All except the K− exhibit significantly non-zero asymmetries,
substantially larger for π+ and K+ than for π−. The π− amplitude changes sign going
from low to large values of xF . In general, the amplitudes rise with increasing of pT and
start to decrease at a value in pT of about 1 GeV. As the origin of such asymmetries
is unknown, one can try to compare these results with similar single-spin asymmetries.
The SIDIS analogue presented in the previous section requires the presence of the lepton
scattering plane, except for the Sivers effect. The later is also a sin ψ amplitude of the
single-spin asymmetry with ψ = φ − φS. The ψ angle is approximately equal to the φ
angle in the case of small angles between the incoming beam and the virtual-photon di-
rections. The magnitude and behavior of the asymmetries in inclusive hadron production
as a function of pT resembles the one of the Sivers asymmetry versus Ph⊥. At the moment
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Figure 3: 2〈cos 2φ〉UU amplitudes for positive (top panel) and negative (bottom panel) hadrons, ex-
tracted from hydrogen data as a function of x, y, z, and Ph⊥.

it is difficult to judge if this coincidence is accidental or has a solid physical ground.

Figure 4: Asin φ
UT amplitudes for charged pions and kaons as a function of pT for three bins of xF .

3 DVCS

The DVCS process is one of the theoretically cleanest ways to study the GPDs. They
encompass usual PDFs and elastic nucleon form factors as limiting cases and moments,
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respectively, and provide correlated information on transverse spatial and longitudinal
momentum distributions of partons. For the proton, a spin-1

2
target, there are four lead-

ing twist GPDs: E, Ẽ, H, and Ẽ. The GPDs are functions of the longitudinal parton
momentum x, of the squared momentum transfer t and of the skewness parameter ξ. Mo-
ments of certain GPDS can be directly related to a value of the total angular momentum
carried by partons in the nucleon.

DVCS process is experimentally indistinguishable from the electromagnetic Bethe-
Heitler (BH) process as they have identical initial and final states. At HERMES energies,
the exclusive ep −→ epγ cross-section is dominated by the BH contribution whereas the
DVCS cross-section is very small. However, the interference term contributes significantly
and produces specific azimuthal asymmetries which can be used to access the DVCS
matrix elements at amplitude level.

Amplitude Value
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Figure 5: HERMES results for various
DVCS amplitudes.

The variety of experimental setups used by
HERMES (positive/negative lepton beam, pos-
itive/negative polarization of the beam, unpo-
larized or longitudinally/transversely polarized
target) enabled the extraction of many asymme-
try amplitudes. These are related to Compton
Form Factors which are convolutions of the cor-
responding GPDs with the hard scattering coef-
ficient functions (see, e.g., [9]). The asymmetries
can be written as Fourier series in linear combi-
nations of the angles φ and φS. The angle φ (φS)
is the azimuthal angle between the lepton scat-
tering plane and the plane defined by the real
and the virtual photon (the azimuthal angle of
the target polarization).

Figure 5 presents an overview of all azimuthal
asymmetry amplitudes integrated over the en-
tire HERMES kinematic range using the data
taken in the years 1996–2007. This includes
data on the unpolarized hydrogen [10] and deu-
terium [11] targets, the longitudinally polarized
hydrogen [12] and deuterium [13] and the trans-
versely polarized hydrogen [14,15] target.

For data without Recoil detector information, the selection of DVCS/BH events was
performed by requiring the missing mass, calculated using the lepton and the photon
kinematics, to be equal to the proton mass within the resolution of the spectrometer. For
such unresolved event sample, it is not possible to separate the pure DVCS/BH events
from the associated process, where the nucleon in the final state is excited to a resonant
state. Within the exclusive region, its contribution is estimated from a Monte Carlo
simulation to be about 12% of the signal.

For data with Recoil detector information, kinematic event fitting was performed for
every DVCS event candidate by using the measured kinematics of the electron, the photon
and the proton candidate detected in the Recoil detector under the hypothesis that the
process is pure DVCS/BH, i.e., ep → epγ. Detailed Monte Carlo studies showed that the
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contamination of the background from the associated process is below 0.1%. It should
be noted that the kinematic acceptance for this pure event sample is different from the
acceptance for the unresolved event sample, especially for small values of −t.

In order to compare results under similar kinematic conditions, a reference event sam-
ple was created. For the reference sample, in addition to the selection criteria used for the
unresolved sample, a hypothetical proton with 3-momenta calculated from the 3-momenta
of electron and photon was required to be in the Recoil detector acceptance. For this sub-
sample, background conditions are very similar to those for the unresolved sample. So
that it can be used to understand and to compare to the background-free measurement.
In Fig. 6, the sin(nφ)-amplitudes of the DVCS single-charge beam-helicity asymmetry
extracted from 2006 and 2007 hydrogen data taken with a positron beam and fully opera-
tional Recoil detector are shown in projections versus −t, xB, and Q2 and also integrated
over the entire acceptance. Results are shown for the pure elastic sample, the reference
sample, and the unresolved sample.
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Figure 6: Amplitudes of the single-charge beam-helicity asymmetry of the pure (squares), reference
(triangles) and unresolved (circles) samples extracted from 2006 and 2007 hydrogen data taken with fully
operational Recoil detector. The inner error bars denote the statistical uncertainties and the total error
bars the quadratic sum of the statistical and systematic uncertainties.

While the leading sin φ amplitude shows no dependence on xB and Q2 in either sample,
there is an indication for a non-flat tendency versus −t for the pure elastic sample. For low
values of −t, the pure elastic and the reference sample containing a mixture of processes
deliver results that are compatible within uncertainties. For higher values of −t, the pure
elastic amplitude shows a trend of a larger magnitude than that of the reference amplitude.
The overall value of the sub-leading sin(2φ)-amplitude is compatible with zero within its
statistical uncertainty for all samples.

There is no large difference of the results for the pure elastic sample with the results for
the reference and unresolved samples as well with previously published results [10]. There
is an indication that the pure elastic amplitude is larger in magnitude. Before drawing
any conclusions, the asymmetry of the associated process needs to be studied. This is a
subject of an ongoing dedicated analysis.

The systematic uncertainties are obtained from a Monte Carlo simulation estimating
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the effects of limited acceptance, smearing and finite bin width. There is an additional
scale uncertainty arising from the measurement of the beam polarization.

4 Summary
The HERMES Collaboration continued analysis of data which were collected in 1996-
2007. Due to a lack of space, two subjects only are presented in this review, studies of
the TMDs and the DVCS.

The studies of the various azimuthal asymmetries in SIDIS at HERMES allows to
make a number of conclusions on the TMDs: i) the transverity h1 and the Sivers f⊥1T

TMDs are different from zero (published); ii) the Collins FF H⊥
1 is different from zero

(published); iii) there is an indication that Boer-Mulders TMD h⊥1 may be non-zero;
iv) the worm-gear TMD g⊥1T is small but may be non-zero; v) the azimuthal asymmetries
induced due to the pretzelocity TMD and due to the worm-gear TMD are consistent with
zero within experimental uncertainties.

The variety of experimental setups used by HERMES (positive/negative lepton beam,
positive/negative polarization of the beam, unpolarized or longitudinally/transversely
polarized target) enabled the extraction of many asymmetry amplitudes.

First results with using of Recoil detector information were obtained. Basically, the
results are compatible with those obtained without Recoil detector information. There is,
however, an indication that the pure elastic amplitude is larger in magnitude with respect
to what was obtained without Recoil detector. This could be related to an asymmetry
from the associated DVCS process and is under study.
Acknowledgments. I wish to thank my colleagues in the HERMES collaboration. I
thank the DSPIN-2011 Organising Committee for the financial support.
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Abstract

Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS)
and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson
Lab. DVCS helicity–dependent and helicity–independent cross sections and beam
spin asymmetries have been measured, as well as cross sections and asymmetries for
the π0, η, ρ0, ρ+, ω and φ for exclusive electroproduction. The data were taken in
a wide kinematic range in Q2=1–4.5 GeV2, xB=0.1–0.5, and |t| up to 2 GeV2. The
presented results offer a unique opportunity to study the structure of the nucleon
at the parton level as one has access to Bjorken xB and momentum transfer to the
nucleon t at the same time.

1 Introduction

The mapping of the nucleon’s structure in terms of the Generalized Parton Distributions
(GPDs) is one of the major objectives of Jefferson Lab. The GPDs give access to the
complex internal structure of the nucleon, such as correlations between parton transverse
spatial and longitudinal momentum distributions. They provide a unified picture of the
nucleon form factors, polarized and unpolarized parton distributions, and provide access
to the contribution of the total parton angular momentum to the nucleon spin. There
are four chiral-even GPDs, denoted Hq, H̃q, Eq and Ẽq, and four chiral-odd GPDs, Hq

T ,
H̃q

T , Eq
T and Ẽq

T , which depend on three kinematic variables: x, ξ and t. x is the average
momentum fraction and ξ (skewness) is half the difference between the initial and final
fractions of the momentum carried by the struck parton. The skewness can be expressed
in terms of the Bjorken variable xB as ξ ' xB/(2−xB). t is the momentum transfer to the
nucleon, t = (p− p′)2, where p and p′ are the initial and final momentum of the nucleon.
The Hq and Eq conserve nucleon helicity, while H̃q and Ẽq are associated with a change
in nucleon helicity. In the forward limit, t → 0, Hq and H̃q are reduced to the parton
density distributions q(x) and parton helicity distributions ∆q(x). The forward limit of
Hq

T is the transversity hq
1. The first moments of the GPDs are related to the elastic form

factors of the nucleon: Dirac form factor F q
1 (t), Pauli form factor F q

2 (t), axial-vector form
factor gq

A(t) and pseudoscalar form factor hq
A(t) .

Schematic diagrams for Deeply Virtual Compton Scattering (DVCS) and Deeply Vir-
tual Meson Production (DVMP) in the GPD, or handbag, framework are illustrated in
Fig. 1. The cross section depends actually on the Compton form factors (CFF) and they
are the quantities that can be extracted from DVCS and DVMP experiments. In the lead-
ing twist, CFFs depend only on ξ (or xB) and momentum transfer t. Although DVCS is
the cleanest way of accessing GPDs there is no possibility to separate flavors using only
this process. The variety of DVMP channels allows one to separate flavor and have access
to the polarized quark/antiquark densities in the limit of momentum transfer t → 0.
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Figure 1: Schematic illustration of the GPD approach to DVCS (left) and DVMP (right).

2 Deeply virtual Compton scattering

CLAS has published DVCS beam-spin asymmetries (BSA) [1,2] and longitudinally polar-
ized target asymmetries [3]. By fitting CLAS data in a largely model-independent way,
the imaginary parts of the two Compton Form Factors Im(H̃) and Im(H) were extracted
with uncertainties on the order of 30% [4]. In the framework of the dominance of the
generalized parton distribution H and twist-2 accuracy, both real and imaginary parts of
the Compton Form Factor H were extracted [5]. In addition to the CLAS data, helicity-
independent and helicity-dependent DVCS cross sections were used in this analysis [6].
This is the first attempt to get access to the GPDs from experimental data. The CLAS
group is now working on the determination of the absolute DVCS cross sections in a wide
kinematic region. The preliminary data are shown in Fig. 2 for six kinematic points. Note
the clear signature of the DVCS contribution above the Bethe-Heitler background.

Figure 2: Preliminary DVCS cross section as a function of the angle φ for a few of the many kinematic
bins in Q2, xB ant t. The lower black curves are due to a pure BH calculation, the upper curves are fits
to the data – the differences are represented in green. Top: Q2 = 2.24 GeV2, xB = 0.25, −t =0.27, 0.35
and 0.45 GeV2. Bottom: Q2 = 2.94 GeV2, xB = 0.34, −t =0.35, 0.45 and 0.62 GeV2.
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3 Pseudoscalar π0 and η meson electroproduction

The reactions ep → e′p′π0 and ep → e′p′η were measured with the CLAS spectrometer
at a beam energy of about 6 GeV [7, 8]. The pions and etas are identified through
their 2γ decay channels. This has been made possible by constructing a high quality
electromagnetic calorimeter consisting of 424 lead-tungsten crystals covering an angular
range from 4.5◦ to 15◦, which was positioned into the existing CLAS large acceptance
detector.
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Figure 3: Extracted structure functions vs t for 4 of the 17 experimental kinematic bins (CLAS,
preliminary). The data and curves are noted for (dσT /dt+ εdσL/dt)-black, dσTT /dt - blue, and dσTL/dt
- red, as defined in the text. The shaded bands reflects the experimental systematic uncertainties. On
the left the data are compared with the model of Ref. [9] and on the right with that of [10].
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The virtual photon cross section can be written as

2π
dσ

dtdφ
= σT + εσL + εσTT cos 2φ +

√
2ε(1 + ε)σLT cos φπ + h

√
ε(1− ε)σLT ′ sin φ, (1)

where φ denotes the azimuthal angle between the hadronic and leptonic scattering planes
and h is the electron beam polarization.

The structure functions σT + εσL, σTT , and σLT as a function of −t were obtained
from fits to the differential cross section data for 17 intervals in Q2 and xB. Four out
of 17 bins are presented in Fig. 3. The results of two GPD-based models [9, 10] are also
superimposed in Fig. 3. For clarity, the data on the left in the figure is repeated on the
right in the respective ranges of the calculations.

The longitudinal cross section dσL/dt, which is helicity conserving, is:

dσL

dt
=

4παe

κQ2
[(1− ξ2)|〈H̃〉|2 − 2ξ2Re(〈H̃〉 · 〈Ẽ〉)− t′

4m2
ξ2|〈Ẽ〉|2], (2)

where κ is a phase space factor and the brackets 〈H̃〉 and 〈Ẽ〉 denote the convolution of
the hard kernel and GPDs H̃ and Ẽ

〈H̃〉 =
∑

λ

∫ 1

−1

dxH0λ,0λH̃ 〈Ẽ〉 =
∑

λ

∫ 1

−1

dxH0λ,0λẼ (3)

without the Q2 dependence which has been explicitly factored out for clarity.
The GPDs occur in the combination F = (euF

u−edF
d)/
√

2 for π0 [9] . Since GPDs H̃,
Ẽ and HT have opposite signs for u and d quarks there is a partial cancellation of the up
and down quark GPDs entering the leading twist structure function (σL). This is not the
case for ĒT which contributes to σT and σTT . In addition the transverse cross sections are
strongly enhanced by the chiral condensate through the parameter µπ = m2

π/(mu + md),
where mu and md are current quark masses [9].

Thus, the contribution dσL/dt in both calculations account for only a small fraction of
the combined dσT /dt+εdσL/dt in the kinematic regime under investigation. The inclusion
of the quark helicity non-conserving GPDs, which involve the transverse contributions,
primarily dσT /dt and dσTT /dt , and to a smaller extent dσLT /dt account rather well
for the data. The contributions from transverse polarized photons were calculated as a
twist-3 effect consisting of a twist-3 pion wave function and primarily the GPDs HT and
ĒT (= 2H̃T + ET ), as follows:

dσT

dt
=

4παe

2κ

µ2
π

Q4
[(1− ξ2)|〈HT 〉|2 − t′

8m2
|〈ĒT 〉|2] (4)

and
dσTT

dt
=

4παe

8κ

µ2
π

Q4

t′

4m2
|〈ĒT 〉|2 (5)

where

〈HT 〉 =

∫
dxH0−,++HT , 〈ĒT 〉 =

∫
dxH0−,++ĒT (6)
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For π0 electroproduction, Hµ′λ′,µλ is a convolution of a hard γq → πq process amplitude

FP
µ′λ′,µλ, with the pion wave function Ψ̂(τ,b) taking into account transverse spatial and

momentum fractions b, and τ respectively

Hµ′λ′,µλ =

∫
dbdτΨ̂(τ,b)Fµ′λ′,µλαse

−S(τ,b,Q2). (7)

A Sudakov form factor exp[−S(τ,b, Q2)] corrects for the soft gluon radiation from the
transverse quark momenta and positions.

The result, shown in Fig. 3 gives a very large increase in σT + εσL, primarily due to
ĒT and HT , which accounts rather well for the experimental data, the greatest difficulties
ocurring as one approaches smaller −t. The calculated interference structure functions
σTT and σLT also are in approximate accord with the data.

The presented results appear to provide compelling evidence for the the dominance of
quark helicity-flip processes in π0 electroproduction. Exclusive pseudoscalar meson elec-
troproduction appear to be unique process which are directly related with the transversity
GPDs ĒT and HT .

t-slopes and Transverse Spatial Structure

The electroproduction cross sections as a function of t can be expressed according to the
following form: dσ/dt ∝ eB(xB ,Q2)t. The t slope parameter B(xB, Q2) is plotted as a
function of xB for various values of Q2 in Fig. 4. The fact that the t-slope goes to zero
for large xB may be purely kinematical. However, even taking this into account, we note
that B⊥ falls with xB in the region xB from 0.1 to 0.5 where we have experimental data.
This implies that the impact parameter spatial distribution is broadest at lowest xB and
becomes narrower at increasing xB.
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Figure 4: Left panel: the experimental t-slope parameters (CLAS, preliminary) obtained from fits to
the data for various values of Q2 and xB . Right panel: the η/π0 cross section ratio as a function of −t.
Data points are from CLAS (preliminary) [7] and the curve is from the Ref. [9].
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The ratio of cross sections for η and π0

Even though current experiments are limited in Q2 and t, it has been argued [11] that
precocious factorization ratios of cross sections as a function of xB could be valid at
relatively lower Q2 than for the cross sections themselves. The ratio of cross sections for
π0 and η electroproduction from a proton, averaged over xB and Q2, is presented in Fig. 4
as a function of t. This ratio is almost independent of xB and Q2 and varies from 0.3 to 0.4
with increasing t [7]. The GPD model [9] is in rather good agreement with CLAS data,
which can be regarded as an indication of large contributions from the transverse GPDs.
We note that the GPD prediction [9] for the η/π0 ratio at very low t is in agreement with
an estimate presented in [11].

Taking into account the good description of CLAS data by GPD models we can make
a conclusion that pseudoscalar meson production provides a unique possibility to access
the transversity GPDs.

4 Vector mesons electroproduction

The CLAS collaboration has already published the cross sections for the vpk : ρ0 [12],
ω [13] and φ [14]. For the ρ+ channel, the first–ever measurement of its cross section was
recently obtained [15]. The total longitudinal cross section σL(γ∗p → pρ0) as a function
of W for fixed Q2 is successfully described by the Regge-based model [16] for almost all
of our (Q2,W ) range (see Ref. [17] for details).
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Figure 5: The t-slope parameter as a function of W (on the top) and as a function of Q2 (on the
bottom) for the ρ0, ω, φ and ρ+ channels.

The GPD models [18, 19] give a good description of the high and intermediate W
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region, down to W ∼ 5 GeV. At high W , the slow rise of the cross section is due to the
gluon and sea contributions, while the valence quarks contribute only at small W . At
lower W values, where the new CLAS data lie, both GPD models fail to reproduce the
data. This discrepancy can reach an order of magnitude at the lowest W values. The
trend of these particular GPD calculations is to decrease as W decreases, whereas the
data increase. The same behavior was observed in the low W region for the exclusive
electroproduction of the ρ+. An attempt to reconcile the GPD calculation with the low
W ρ0 cross sections is presented in Ref. [17].

Comparison of the t slopes for the ρ0, ω, φ and ρ+ channels

Fig. 5 shows the slope of the differential cross section dσ/dt for the ρ0, ω, φ and ρ+

channels as a function of W (on the top part) and as a function of Q2 (in the bottom
part). One can see the same trends of the slopes for all meson channels, which can be
interpreted in simple and intuitive terms in the following way:

• The slope increases with W : the size of the reaction region increases as one probes
the high W values (i.e. the sea quarks), which could mean that the sea quarks tend
to extend to the periphery of the nucleon.

• The slope decreases with Q2: as we go to large Q2, the resolution of the probe
increases and the reaction region becomes smaller and smaller.

5 Conclusion

Cross sections and asymmetries for γ, π0, η, ρ0, ρ+, ω and φ exclusive electroproduction
in a wide kinematic range of Q2, t and xB have been measured with CLAS and initial
analyses already are showing remarkable results. The successful description of the CLAS
pseudoscalar meson production data by GPD models opens a unique opportunity to access
the transversity in the deeply exclusive reactions. We view the work presented here as
leading into the program of the Jefferson Lab 12 GeV upgrade. The increased energy and
luminosity will allow us to extend the analysis presented here at much higher Q2 and xB,
as well as to perform Rosenbluth L/T separations.
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Divisions at Jefferson Lab that made this experiment possible. We also acknowledge
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Abstract

The one of the main goals of the COMPASS spin physics programme is the mea-
surement of the contribution of gluons to the nucleon spin. The gluon polarisation
is determined from the longitudinal spin asymmetry in production of hadrons by
160 GeV/c polarised muons scaterred off a polarised nucleon target. The gluon
polarisation is accessible by the selection of photon-gluon fusion events. The well-
known method to identify PGF is selecting high-pT hadron pairs in the final state.
The new ∆G/G result for the complete 2002 − 2006 COMPASS data set of high
transverse momentum hadron pairs with Q2 > 1(GeV/c)2 is presented. A weighted
method based on an Artificial Neural Network has been used. For the first time the
gluon polarisation in three bins of xG is shown.

1 Introduction

The COMPASS is a fixed target experiment at CERN laboratory. One of its goals is
the direct measurement of the gluon polarization, important for understanding the spin
structure of the nucleon. The experiment is using a 160 GeV polarised muon beam from
SPS at CERN scattered off a polarized 6LiD target [1].

In LO QCD approximation the only subprocess which probes gluons inside nucleon is
a Photon-Gluon Fusion (PGF). There are two ways allowing direct access to gluon polar-
isation via the PGF subprocess available in the COMPASS experiment: the open-charm
channel where the events with reconstructed D0 mesons are used and the production of
two hadrons with relatively high-pT in the final state. The estimation of the gluon po-
larisation in the open-charm channel is much less Monte-Carlo (MC) dependent than in
the high-pT hadrons method, where the complicated background requires very good MC
description of the data. On the other hand the statistical precision in high-pT hadrons
method is much higher than in the open charm channel. To increase statistical precision
the statistically weighting method has been used. The Artificial Neural Network approach
(ANN) was applied to built the statistical weights.

2 Gluon polarisation from events with high-pT hadrons

The idea that the selection of events with high-pT hadrons enhances the fraction of PGF
events in the sample has been first time discussed in [2] and then revised in [3]. An
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estimation of ∆G/G needs to know contributions from other processes and this makes
the analysis model (Monte Carlo) dependent. This kind of analysis has been already
performed before by the HERMES and the SMC experiments. Depending on the kine-
matic region covered by the data, two models based on Monte Carlo generators were used:
PYTHIA at low Q2 (HERMES [4] and COMPASS [5]), and LEPTO for Q2 > 1 (GeV/c)2

(SMC [6]). The new COMPASS result for large Q2 is presented in this article.
The helicity asymmetry for two high-pT hadrons can be expressed in the following

way:

A2h
LL = RPGF aLL

∆G

G
+ ABkg., (1)

where aLL and RPGF are the analyzing power and the fraction of the PGF subprocess (es-
timated from MC) and ABkg denotes the asymmetry from different background processes
which contribute to the observed two hadron final state. For large Q2 these background
processes are LO DIS and QCD-Compton. Taking into account that the inclusive asym-
metry can also be decomposed in the same way the final formula for the gluon polarization
can be schematically written as follows:

∆G/G =
A2h

LL + Acorr

β
, (2)

where Acorr is a combination of the inclusive asymmetry A1 with some coefficients which
together with β depend on the analyzing powers and the fractions of the background
processes in the high-pT as well as in the inclusive sample. The situation becomes more
complicated in the case of low Q2 region where additional background processes have to
be taken into account [5]. To increase the statistical precision of the gluon polarisation
measurement a weighting method of asymmetry extraction was used. The weight is
fDPbβ, where f and D are the dilution and the depolarization factors, respectively, Pb is
the beam polarisation. The weight has to be known on the event by event basis. Only f ,
D and Pb are calculated from data; β has to be obtained from MC. An ANN [7] trained on
MC samples was used for the parametrization of the quantities which define β (fractions
and aLL for different subprocesses). As an input to the ANN training for the inclusive
sample, xBj and Q2 were selected, while for the high-pT sample in addition transverse
and longitudinal momenta of the two hadrons were used. This method depends largely
on MC. Good data description with the MC as well as good ANN parameterizations are
”key points” of this analysis.

3 Data selection, MC and ANN parameterizations

The data used in the analysis were collected in 2002-2006 years. An incoming, a scattered
muon and an interaction vertex in the target were required for each event. The kinematic
cuts 0.1 < y < 0.9 and Q2 > 1 (GeV/c)2 were used. The latter cut ensures that the
scale of the hard process is high enough and pQCD can be used. At least two charged
hadrons in the interaction vertex with transverse momenta greater than 0.7 GeV/c and
0.4 GeV/c for leading and second hadrons respectively, are required. In addition the sum
of the energy fraction of the two hadrons z1 + z2 < 0.95 is required. The total number
of selected events is about 7.3 million. The LEPTO generator and the full simulation
of the COMPASS spectrometer were used. To improve the data and MC agreement
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some LEPTO parameters were tuned (kT and parameters of fragmentation). Standard
LEPTO tuning was used for systematic studies. In figure 1 examples of the data and MC
comparison are shown for the momenta, transverse momenta of the hadrons and hadron
multiplicity.

The comparison between standard and tuned LEPTO is also shown. We observe good
agreement between data and MC, also the necessity for LEPTO tuning is clearly visible.
An example of the quality of the ANN parametrization is given in figure. 2. It shows the
probability of the DIS, QCD-Compton and PGF processes as a function of

∑
p2

T for the
MC and for the parametrization given by the ANN. Good agreement is observed. While
the DIS probability reduces with pT (pT1 , pT2 and

∑
p2

T ), the QCD-Compton and PGF
become the more significant contributions.

4 Systematic studies

The main contribution to the systematic error comes from the MC. In total, seven MC
samples were generated with different combinations of fragmentation tuning. They con-
sisted in default LEPTO or COMPASS tuning, parton shower (PS) on and off options,
different choices of the PDFs and with different R = σL/σT parametrization. The un-
certainty of ∆G/G due to choice of Ad

1 parameterization and stability of the ANN re-
sults were found to be small, δ(∆G/G)Ad

1
= 0.015 and δ(∆G/G)NN = 0.010 respec-

tively. The uncertainties of f, Pb, and Pt have an even smaller impact on the final result:
δ(∆G/G)f,Pb,Pt = 0.004 . The experimental false asymmetries appear if the acceptance
ratio of the neighbouring cells is different for the data taken before and after the field
reversal. They were searched for in a sample in which cuts on transverse momenta of
the hadrons were lowered to pT1,2 > 0.35 GeV and Q2 > 0.7 GeV2. This lead to a large
increase in statistics and allowed more precise studies of the spectrometer stability. False
asymmetries exceeding the statistical error were not found. Taking this error as a limit
for the false asymmetries one obtains δ(∆G/G)false = 0.019 . Finally the simplifications
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Figure 1: Comparison between data (histogram) and MC simulations using COMPASS tuning (full
squares) and default LEPTO tuning (open circles), in terms of distributions and Data/MC ratios for the
hadronic variables: pT1 , pT2 , p1, p2 and the hadron multiplicity, normalized to the number of events.
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Figure 2: ANN parameterization and MC results comparison for fractions RPGF , RQCDC , RLP in bins
of

∑
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T .

and approximations used in the formula 2 leads to the error δ(∆G/G)form = 0.035 The

total bin 1 bin 2 bin 3
δ(∆G/G)MC 0.045 0.077 0.067 0.129
δ(∆G/G)A1d 0.015 0.021 0.014 0.017
δ(∆G/G)NN 0.010 0.010 0.010 0.010

δ(∆G/G)f,Pb,Pt 0.004 0.007 0.007 0.010
δ(∆G/G)false 0.019 0.023 0.016 0.012
δ(∆G/G)form 0.035 0.026 0.039 0.057

TOTAL 0.063 0.088 0.081 0.143

Table 1: Summary of the systematic contributions.

contributions to the systematic uncertainty and their quadratic sum are presented in Ta-
ble 1. They were also evaluated in three xG bins defined below (see Table 2). The total
systematic uncertainty of the ∆G/G results is estimated to be 0.063, which is slightly
larger than the statistical error.

5 Results

The preliminary result for ∆G/G from high transverse momentum hadron pairs for large
Q2 (Q2 > 1 (GeV/c)2) is:

∆G/G = 0.125± 0.060(stat.)± 0.063(syst.), (3)

at xG = 0.09 and hard scale µ2 = 3 GeV2 .
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The data cover the range 0.04 < xG < 0.27 and have been divided into three statis-
tically independent subsamples by cuts on the xG variable parameterised by the ANN. .
The correlation between the generated and the parameterised xG is about 62% As a con-
sequence, the division leads to three xG bins which have different mean values but a large
overlap. The results, listed in Table 2, provide no evidence for any signicant dependence
of ∆G/G on xG.

total bin 1 bin 2 bin 3
xG mean < xG >= 0.09 < xG >= 0.07 < xG >= 0.10 < xG >= 0.17
xG range 0.04 < xG < 0.27 0.04 < xG < 0.12 0.06 < xG < 0.17 0.11 < xG < 0.27
∆G/G 0.125± 0.060 0.147± 0.091 0.079± 0.096 0.185± 0.165

Table 2: Summary of the ∆G/G results.

The new result is also in very good agreement with ∆G/G obtained for the low Q2

high-pT analysis of 2002-2004 data: ∆G/G = 0.016± 0.058(stat.)± 0.055(syst.) at xG '
0.085+0.07

−0.035 and scale µ2 ' 3 (GeV/c)2.

6 Summary

In conclusion, a direct measurement of the gluon polarisation extracted in the LO ap-
proximation has been performed on all COMPASS data taken with longitudinal polarised
6LiD target. ∆G/G is extracted at from a large sample of DIS events with Q2 > 1 GeV2,
including a high-pT hadron pair, by a method based on the Neural Networks. This ap-
proach increased the statistical precision of the result by almost a factor two with respect
to the standard method in which a set of cuts is applied to pT1,2 to optimize δ(∆G/G).
For the first time the gluon polarisation was evaluated in three intervals of the fractional
gluon momentum.

This work was supported by Polish Ministry of Science and Higher Education grant
41/N-CERN/2007/0.
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Abstract

The investigation of the light nuclei spin structure has been performed at the
RIKEN (Japan) accelerator research facility and VBLHEP (JINR) using both po-
larized and unpolarized deuteron beams. The experimental results on the analyzing
powers studies in dp− elastic scattering, d(d,3H)p and d(d,3He)n reactions are pre-
sented. The result on the analyzing powers Ay, Ayy of the deuteron obtained at the
Nuclotron (VBLHEP) at 880 and 2000 MeV are compared with relativistic multi-
ple scattering model calculations. The data on the tensor analyzing powers for the
d(d,3H)p and d(d,3He)n reactions obtained at Ed = 200 and 270 MeV demonstrate
the sensitivity to the 3H, 3He and deuteron spin structure.

The wide experimental program on the study of the polarization effects in dp−
elastic scattering, dp−nonmesonic breakup, d(d,3He)n, d(d,3H)p and d(3He,4He)p
reactions using internal and extracted beam at Nuclotron-M is discussed.

Studies of few-nucleon systems offer a good opportunity to investigate the nature of
nuclear forces. Decades of intensive theoretical and experimental efforts led to a new
generation of realistic nucleon-nucleon(NN) potentials: CD-Bonn, AV18, Nijmegen I,II
and 93. They describe the rich set of experimental NN data up to 350 MeV. However,
these realistic two-nucleon forces(2NF) fail to reproduce experimental binding energies
for light nuclei, clearly showing underbinding. Natural candidates to fill the gaps are the

271



three-nucleon forces(3NFs). For 3N and 4N systems, one can achieve the correct binding
energies with the 2π- exchange forces such as Tucson-Melbourne or Urbana IX 3NFs.

In addition to the first signal on 3NF effects resulting from discrete states, strong 3NF
effects were observed in a study of the minimum of Nd elastic scattering cross-section at
incoming nucleon energies higher than about 60 MeV. This was a reason of a number
experiments all over the world at RIKEN, RCNP, KVI and IUCF. These studies shows
that the inclusion of the 3NF does not always improve the description of precise data
taken at intermediate deuteron energies. At higher energies both the cross-section and
spin observables indicate the deficiencies of the present 3NF models. This might indicate
that addition 3NF should be added to the 2π- exchange type forces. In addition, one
can expect relativistic effects with increasing energy. So a new data at high energies are
certainty required.

The program on the light nuclei structure investigation at the Nuclotron includes
experiments with the use both internal and extracted polarized deuteron beams.

The study of the energy dependence of polarization observables for the dp− elastic
scattering and deuteron breakup reaction are conducted at the internal target station(ITS)
setup. A detailed description of the experiment can be found in [1].

The analyzing powers measurements in dp-elastic scattering have been performed at
ITS using polarized deuteron beam from polarized ion source (PIS) POLARIS at the
energies 880 and 2000 MeV. The beam polarization measurement has been performed at
270 MeV where the precise data on the tensor and vector analyzing powers exist.

The results on the angular dependence of the vector Ay and tensor Ayy and Axx an-
alyzing powers in dp− elastic scattering obtained at 880 MeV are shown by the solid
symbols in Fig. 2. The solid, dash and dash-dotted lines are the results of the Faddeev
calculations [2] using CD-Bonn NN potential, of the relativistic multiple scattering calcu-
lation [3] with the use CD-Bonn deuteron wave function(DWF), and the optical potential
calculation [4] with the dibaryon DWF, respectively. One can see that Faddeev calculation
without inclusion 3NF give a good description all the analyzing powers within achieved
experimental accuracy. The multiple scattering model reproduces reasonably the angular
dependencies of Ay over the whole range of measurements and Ayy at backward angles,
while it fails to describe the behavior of Axx. The optical potential calculation reproduce
the behavior of Ayy only at the angles larger 100◦ in the c.m., while the analyzing powers
Ay and Axx are not described.

The results on the angular dependence of the vector Ay and tensor Ayy analyzing
powers in dp− elastic scattering at 2000 MeV are shown in Fig. 2. The data obtained
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Figure 1: Vector Ay and tensor Ayy and Axx analyzing powers in dp- elastic scattering at 880 MeV as
a function of scattering angle in center of mass system. The lines are described in the text.
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Figure 2: The angular dependencies of the vector Ay and tensor Ayy analyzing powers in dp- elastic
scattering at 2000 MeV. Black points are the world data [5]. Open circle and square are the data obtained
at LHE JINR at bubble chamber [7] and at Nuclotron, respectively. The lines are described in the text.

at Argonne National Laboratory (ANL) are presented by the solid symbols [5]. Open
squares and circles are the data obtained at the ITS and at hydrogen bubble chamber [7]
at JINR, respectively. The dashed and solid lines are the results of the relativistic multiple
scattering model calculations [6] with and without of the double scattering term. One
can see reasonable agreement with the data on the vector analyzing power and qualitative
agreement for tensor analyzing power for the full calculation.

Future plans of DSS (Deuteron spin structure) - collaborations in spin studies are
related with the construction of new polarized deuteron source. This source will provide
the intensity up to 2×1010 particles per pulse and larger variety of the spin modes than
POLARIS. Figure of merit of new source will be increased by a factor 103 compared with
POLARIS.

The energy scan of the dp−elastic scattering observables and measurements of the
analyzing powers in dp-nonmesonic breakup will be done using internal target and po-
larized deuteron beam from new PIS. As the first step the dp−elastic scattering and
dp-nonmesonic breakup cross section measurements can be done with the current unpo-
larized ion source. The dp-nonmesonic breakup reaction will be investigated at ITS at
the Nuclotron using ∆E − E techniques for the detection of two final protons. Fig. 3a
presents the correlation of the ∆E−E information from 2 proton detectors. A kinematic
relation are shown by the solid line. The preliminary results on the angular dependence
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Figure 3: (a) The correlation of the ∆E+E information from 2 proton detectors in case the dp-breakup
reaction investigation at 500 MeV. Θ1 = 34◦, Θ2 = 29.8◦, φ12 = 180◦. (b) The results on the angular
dependence of the dp-elastic cross section obtained at 880 MeV at Nuclotron in March 2011. World
data [8] at 850 MeV and 940 MeV are marked by the open triangles and circles, respectively.
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of the dp−elastic scattering cross section obtained at 880 MeV at the Nuclotron in March
2011 are presented in Fig. 3b by the solid symbols. They are compared with experimen-
tal data [8] obtained at 850 MeV and 940 MeV given by the open triangles and circles,
respectively. Solid line are the result multiple scattering model calculations [3].
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Figure 4: The analyzing powers data in d(d,3He)n
and d(d,3H)p at 200 and 270 MeV. The curves are
the calculation within one-nucleon-exchange approx-
imation.

The measurements of polarization ob-
servables in 3He(d, p)4He are planning at
Nuclotron-M using external deuteron beam
and polarized 3He target developed at
Center for Nuclear Study of Tokyo Univer-
sity. The main goal of project is the mea-
surements of the tensor analyzing power
T20 and spin correlation Cy,y in this reac-
tion at the energies 1.0-1.75 GeV, where
the contribution from the deuteron D-state
is expected to reach the maximum.

With the same magnetic spectrometer
we are planning to study short range cor-

relation from
−→
d d → 3Hp(3Hen) reactions.

Fig. 4 shows the behavior of the analyz-
ing powers obtained at 200 and 270 MeV
at RIKEN by our collaboration [9]. These
data are sensitive to the 3He or 3H spin structures at forward scattering angles and to
the deuteron spin structure at backward angles. The tensor analyzing power T20 can be
measured in a GeV region at Nuclotron-M.

New experimental data will ensure the important information about the light nuclei
spin structure at short internucleonic distances, where the relativistic effects and 3N forces
play an important role.

The work was supported in part by the RFBR under the Grant 10-02-00087a.
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Abstract
The concept of the deuteron beam polarimetry at Nuclotron-NICA is presented.

The calibration of the existing deuteron beam polarimeter at Internal Target in
the wide energy range will allow to obtain the accuracy of the vector and tensor
beam polarization values of about 3-5%. The possible solutions for low energy, high
energy and CNI polarimeters are discussed.

The problems of the proton beam polarimetry at NICA are briefly mentioned.

1 Introduction

New heavy ion and polarized particles collider NICA is planned for the energies
√

sNN ∼4–
13.8 GeV and up to

√
s ∼27 GeV for dd- and pp- collisions, respectively. The serious

advantage of this facility is the availability of polarized deuterons (neutrons).The main
topics of the spin studies at NICA is the spin content of nucleon, nuclear and color
transparency in spin observables, polarization effects in hyperon production, single and
double asymmetries in meson production, NN and light nuclei short-range spin structure
[1].

Spin studies at Nuclotron-NICA with polarized deuterons and protons require the high
precision polarimetry to obtain reliable values of beam polarization. This is especially
important for 2-nucleon and 3-nucleon short range correlation spin structure studies [1–3]
to reduce the systematic error due to beam polarization measurements for the comparison
of the results obtained at different facilities.

Future plans of the spin studies with polarized deuterons at Nuclotron-NICA are
related with the construction of new polarized deuteron source [4]. This source will
provide the intensity up to ∼ 2 · 1010 ppp and greater variety of the spin modes than
POLARIS [5]. Figure of merit of new source will be increased by a factor of ∼ 103

compared with POLARIS source [5]. Since deuteron is a spin-1 particle, the polarimeter
should have a capability to determine simultaneously both vector and tensor components
of the beam polarization. Moreover, the effective analyzing powers of the polarimeter
should be known with high precision to provide small systematic errors while determining
the beam polarization components.

The deuteron polarimetry at Nuclotron-NICA should satisfy to the following require-
ments [3].

• The effective analyzing powers for the reference polarimeter must be determined
with polarized beam which polarization had been obtained by the absolute cali-
bration method. This will significantly decrease the systematic error during the
measurements of the beam polarization.
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• The efficient polarimeters should be installed at different places of the accelerator,
namely, after LINAC, inside the booster and the Nuclotron rings, at the extracted
beam lines and inside the collider rings. Some of these polarimeters should be
calibrated simultaneosly to establish the polarization standard for Nuclotron-NICA.

• The permanent monitoring of the beam polarization during data taking should be
provided.

• The local polarimetry at each experimental setup is necessary for independent mon-
itoring of the beam polarization.

It should be noted that the absolute determination of the deuteron beam polarization
and, therefore, the obtaining of the analyzing powers with small systematic errors is very
complicated goal. Due to this the deuteron polarimetry at Nuclotron-NICA should be
based on the use of the precise data on the analyzing powers obtained at other facilities.

The requirements to the proton beam polarimetry is the same. However, the accel-
eration scheme for polarized protons and deuterons at NICA can be different [6]. The
scheme of the proton polarimetry is under discussion.

2 Deuteron beam polarimetry at Nuclotron

The polarimeter based on the use of dp- elastic scattering at large angles (θcm ≥ 60◦)
at 270 MeV [7], where precise data on analyzing powers [8, 9] exist, has been developed
at internal target station (ITS) at Nuclotron [10]. The accuracy of the determination of
the deuteron beam polarization achieved with this method is better than 2% because of
the values of the analyzing powers were obtained for the polarized deuteron beam, which
absolute polarization had been calibrated via the 12C(d, α)10B∗[2+] reaction [11].
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Figure 1: Tensor pyy and vector py polariza-
tions of the beam for ”2-6” and ”3-5” spin
modes of POLARIS [5] as a function of the
deuteron scattering angle in the cms.

0 100 200 300

0

0.5

1

yy
p

"2-6"

Time, hours
0 100 200 300

0

0.2

0.4

y
p "2-6"
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of POLARIS [5] versus the elapsed time in
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The asymmetry measurements at several scattering angles were used to increase the
polarimeter figure of merit. The values of the analyzing powers Ay, Ayy, Axx and Axz
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at these angles were obtained by the cubic spline interpolation of the data taken from
Refs. [8, 9]. Fig. 1 displays the values of the tensor pyy and vector py polarizations of
the beam for ”2-6” and ”3-5” spin modes of POLARIS [5] as a function of the deuteron
scattering angle in the cms. One can see good agreement of the polarization values
obtained at different scattering angles in the cms. The estimated figures of merit values for
ITS polarimeter [7] are comparable with the figures of merit for the deuteron polarimeter
used at the extracted beam at RIKEN [11]. Fig. 2 illustrates the polarization values for
the spin modes ”2-6” of POLARIS [5] as a function of the elapsed time in hours. One
can see rather good time stability of the beam polarization values during ∼220 hours of
the beam [7].
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tering at 2000 MeV [13].

The current polarimeter [7] is proposed as the reference deuteron polarimeter at
Nuclotron-NICA. The Figs.3 and 4 demonstrate that the dp- elastic [12, 13] and dCH2-
quasi-elastic [14] scattering analyzing powers obtained at 880 and 2000 MeV [13] are large
enough to provide the efficient beam polarization measurements. This polarimeter can
work in the counting mode in the energy range of 300–2000 MeV and, therefore, can be
used for permanent beam polarization monitoring [15].

One of the possible reactions for the tensor-vector deuteron polarimetry at high ener-
gies is dp- elastic scattering at small angles in the cms. Both tensor and vector analyzing
powers have large values [16,17]. The feasibility of the dp- elastic scattering events selec-
tion using information on the energy losses in the scintillator and timing information has
been demonstrated at θd

lab ∼ 8◦ at the energies 1600 and 2000 MeV [18]. Such polarimeter
can be installed at the Nuclotron extracted beam. It also can work in the counting mode
to provide fast on-line polarimetry.

In the first run with polarized deuterons from new PIS [4] the following program of
measurements will be realized.

• The measurements of the deuteron beam polarization will be performed at 270 MeV
at ITS polarimeter [7].
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• The ITS polarimeter will be calibrated in the energy domain of 300–2000 MeV [15].

• The external beam polarimeters based on dp- elastic [18] and pp- quasi-elastic [19]
scattering at forward angles will be calibrated at 1600 MeV.

• Low energy polarimeter based on the use of the dd → tp reaction at 10 MeV will
be calibrated also.

The goal of these calibrations is to establish the polarization standard for Nuclotron. This
procedure will provide the error in the beam polarization measurements of ∼3% at the
energies of 300–2000 MeV and better than ∼ 5% at higher energies. In this case the
permanent monitoring of the extracted beam polarization stability can be provided either
by the use of 2 flattops in the accelerator (one of them for ITS polarimeter) or by the
external beam polarimeters [18, 19].

The deuteron beam polarimetry at high energy (larger than 1000 MeV/nucleon) can
be provided either by the small angle dp- elastic scattering or by the measurements in the
CNI region.

3 Project for low energy polarimeter

The energies of the accelerated deuterons and protons after LINAC LU-20 are 10 MeV
and 20 MeV, respectively. Two different low energy deuteron polarimeters were used for
a long period [20]. The first one based on the d3He → p(0◦)4He reaction was used for the
measurements of the tensor component of the beam polarization. The second one utilized
the d4He- elastic scattering at backward angles was employed to measure the vector beam
polarization. However, they cannot be used simultaneously to measure both polarization
components. Also, the detection system is rather slow and, therefore, it is affected by the
dead-time effects. We propose to design new low energy deuteron polarimeter based on the
detection of the charged particles from the dd →3Hp reaction at 10 MeV. Both deuteron
vector and tensor analyzing powers at the scattering angle of ∼130◦ in the c.m. [21] are
large enough to provide the efficient polarimetry. The cross section of this reaction at 10
MeV around a proton scattering angle of 130◦-140◦ is about 2-3 mb/sr in the c.m. [21].

The dependencies of the proton and triton kinetic energies as the functions of the
proton scattering angle in the c.m. for the initial deuteron energy 10 MeV are shown in
Fig.5. The laboratory angles of the proton and triton versus the proton scattering angle
in the c.m. are presented in Fig.6. The proton and triton detectors should be placed at
∼20◦ and ∼110◦ in the laboratory, respectively. The corresponding energies of the proton
and triton are 3.5-4.0 MeV and 10.0-10.5 MeV, respectively.

The thin solid CD2 and carbon targets will be used to obtain the effect on deuterium
via CD2-C subtraction procedure. This will avoid the use of the gaseous targets. However,
the problem of the carbon background elimination appears.

The main option for the detection system is the double sided silicon strip detector
developed at LHEP JINR for α-particles detection [22]. The proton and triton will be
detected by two silicon microstrip detectors in coincidence. The strip size is 500 µm with
the number of strips 32 in the both X and Y directions. For the size of the detector
1.6×1.6 cm2 placed on the distance of 40 cm from the 50 mg/cm2 CD2 target, one can
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expect up to 3×4·104 useful events/sec for the beam intensity 5·1011 deuterons/sec. The
precision of the scattering angle determination in this case will be around 1-2 mrad.

The binary reaction dd → p3H will be selected by the proton and triton scattering
angles correlation and complanarity condition. These selection criteria will significantly
reduce the the contribution from the carbon content of the CD2 target. The additional
selection can be the energy depositions of the proton and triton in the silicon detector. The
correlations of the X and Y coordinates for the proton and triton detectors are presented
in Figs. 7 and 8, respectively. One can see the clean selection of the dd →3Hp events.
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Figure 7: The correlation of the X-
coordinates for protons and tritons registered
by the silicon microstrip detector.
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The second option for the detector is the use of scintillation fiber hodoscope with
16-anodes photomultiplier Hamamatsu H6568. This option can provide the same angular
determination.
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The same polarimeter can be used also for the polarimetry of polarized 20 MeV pro-
tons. The measurements of the vector beam polarization will be based on the analysis
of the left-right asymmetry of p− d elastic scattering at 20 MeV and a proton scattering
angle of 130◦-140◦ in the c.m. If the additional detection of the p − d elastic scattering
events will be provided in the vertical plane, it will possible to measure the direction of
the beam polarization vector. The p−d elastic scattering events selection will be provided
by the detection of the protons and deuterons by silicon microstrip detectors placed at
the kinematically conjugated angles.

4 Developments for polarimetry at NICA

Figure 9: The xF − pT acceptance for
the π0 production in the dd collisions at√

sNN=7.1 GeV.

Figure 10: The distribution of 2γ effec-
tive mass Meff obtained in dCu collisions
at ∼2 GeV/nucleon at Nuclotron in March
2010.

One of the reactions to measure and to monitor the vector component of the polarized
deuteron beam at NICA is quasi-elastic NN → π±,0X reaction with the spectator nucleon
tagging. The data on the single spin asymmetries (SSA) AN obtained in pp-collision for
π+, π◦ and π− inclusive production at 200 GeV [23] demonstrate the large values of SSA
with their signs following to the polarization of the valence quarks in the pions. This
regime occurs already at 22 GeV [1] corresponding to

√
sNN ∼7 GeV for the collider

option. The SSA for pp- and np-collisions is expected to have the opposite signs at large
xF . Therefore, it is necessary to identify the spectator nucleon to separate pp- and np-
interactions.

The results of the simulations for π0 production in the dd- collisions at
√

sNN= 7.1 GeV
presented in Fig.9 show that quite large statistics can be obtained at large xF to provide
a local polarimetry at SPD or MPD. The spectator nucleons can be easily detected since
their transverse momentum is below 200-300 MeV/c. The test run has been performed
with 2 photon detectors at ITS at Nuclotron at ∼2 GeV/n in March 2010. The results
on the 2γ effective mass presented in Fig.10 demonstrate the possibility to select π0-s for
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the polarimetry.
One of the possible reaction for the deuteron beam polarimetry at NICA is the dC-

elastic scattering in the CNI region. However, serious theoretical and experimental efforts
are required to use this method both at Nuclotron and at NICA.

The main option for high energy proton polarimetry is pp- elastic scattering [19] and
pC- elastic scattering in the CNI region [25].

5 Conclusions

• The conception for the deuteron beam polarimetry at Nuclotron-NICA is formu-
lated.

• In this conception the polarimeter at ITS [7] should play a key role being the refer-
ence deuteron polarimeter at Nuclotron-NICA.

• The proposed conception of the polarimetry will provide the precision in the deuteron
beam polarization ∼ 5% over the whole energy range of Nuclotron.

• Further serious work on the deuteron polarimetry scheme for Nuclotron-NICA with
new PIS [4] is required.

• The NICA proton polarimetry concept also requires further investigations.
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DEUTERON-PROTON AND DEUTERON-DEUTERON COLLISIONS AT
INTERMEDIATE ENERGIES

N.B.Ladygina 1

(1) LHEP JINR
E-mail: nladygina@jinr.ru

Abstract

The dp → dp and dd → 3He n reactions are considered in the energy range
from a few hundred MeV up to 2 GeV. The approach is based on the multiple-
scattering theory, where the few-body collisions are presented through two-body
ones. The high-energy nucleon-nucleon interactions are described by t-matrix, which
is parameterized in accordance with the modern phase-shift analysis data. The
special attention is given to investigation of the rescattering effects in these reactions.

The theoretical predictions are obtained for the differential cross sections, vector
and tensor analyzing powers. All results are presented in comparison with the
existing experimental data.

During a few decades hadronic reactions with a participation of the light nuclei were
extensively investigated at the energies of several hundred MeV. These processes are
the simplest examples of the hadron nucleus collision that is why the interest to this
reaction is justified. A number of experiments is aimed at getting some information
about the deuteron or helium wave functions as well as nucleon-nucleon amplitudes from
the scattering observables.

In this talk two reactions are considered. The first of them is the dp-elastic scattering
in the deuteron energy range between 500 MeV and 2 GeV. The second reaction is the
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Figure 1: (a) The vector,Ay, and (b) tensor, Ayy, analyzing powers of the deuteron in the dp → dp at
Td = 2GeV . The data taken from: • [8]; ◦ LHE JINR, hydrogen bubble chamber experiment, talk by
A.Terekhin given at this conference; ¤ LHE JINR Nuclotron [9].
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dd → 3He n at the energies from 200 MeV up to 520 MeV. The theoretical approach is
based on the AGS-equations both for the three-nucleon interaction [1]

Uβα(z) = (1− δβα)(z −Hα) +
∑

γ 6=β

Tγ(z)G0(z)Uγα(z) (1)

and for the four-nucleon case [2].

Uβα(z) = (1− δβα)(z −Hα) +
∑

ik*β

Tik(z)G0(z)Uik,α(z) +
∑

ik*β

Vαδα,ik , (2)

where α and β denote two-cluster partitions. As a consequence, the reaction ampli-
tudes are expressed via two-nucleon T -matrix and free-propagator G0. We iterate Eq.(1)
over the nucleon-nucleon T -matrix up to second order term. In such a way, the plane-
wave-impulse-approximations (PWIA), single scattering (SS) and double scattering (DS)
contributions are taken into account for the dp → dp process. We do not solve here
any equations in order to obtain nucleon-nucleon t-matrix. Instead the parameterized
T -matrix are used in our calculations. This parameterization was offered by Love and
Franey [3]. New model parameters were obtained [4] in accordance with the modern phase
shift analysis data [5]. The applied approach was presented in details in refs. [6], [7].

The results of the calculations for the dp-elastic scattering are given in Fig.1. All
calculation have been performed with the CD Bonn deuteron wave function. The angular
dependencies of the vector, Ay, and tensor, Ayy, analyzing powers are presented at the
deuteron energy of 2 GeV. Here, the solid curves correspond to the results of calculations
including both the single scattering and double scattering terms. The results taking only

Figure 2: The diagrams taken into consideration for the dd → 3He n reaction: (a),(b) one-nucleon-
exchange , (c) single scattering graphs.
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SS-contribution into account are given with dashed curves. One can see the inclusion of
the DS-term significantly improves the agreement between the theoretical predictions and
experimental data, especially, for the tensor analyzing power.

For the dd → 3He n reaction the one-nucleon-exchange (ONE) and single scattering
terms are included into consideration (Fig.2). Like it was done for the dp-elastic scattering,
we use the parameterized helium and deuteron wave functions. Also the nucleon-nucleon
T -matrix from refs. [3], [4] is applied in order to calculate rescattering diagram (Fig.2c).

The differential cross section of the dd → 3He n reaction is presented in Fig.3a at
laboratory momentum of 1.109 GeV/c [11]. In order to demonstrate the contribution of
the single scattering term, we have considered two cases. One of them corresponds to the
calculations including only ONE terms. The results of these calculations are given with
the dashed curves. The other case corresponds to the calculations taking into account
both ONE and single scattering contributions. These results are presented with the solid
curves. In our calculations we use the parameterized 3He wave function [10] given in the
separable form. As above, we use the CD Bonn deuteron wave function.

As expected, the contribution of the rescattering term is not large at small scattering
angles (θ < 300). It is in agreement with the results obtained in ref. [12]. However, the
difference between these two curves increases with the angle and reaches the maximal value
at 900. Taking the single scattering diagram into consideration significantly improves the
agreement between the experimental data and theoretical predictions.

The formalism presented here gives us an opportunity to calculate not only the differ-
ential cross sections but also polarization observables. In this paper we have considered
the energy dependence of tensor analyzing power T20 at the scattering angle equal to zero
in the energy range between 200 MeV and 520 MeV (Fig.3b). The experimental data
were obtained at RIKEN [13]. As it is mentioned above, the contribution of the single
scattering term is not large at small angles. Nevertheless, one can observe some improve-
ment of the agreement between the data and theory predictions. Unfortunately, we do
not have enough experimental data to confirm this tendency.
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Figure 3: (a)The differential cross section of the dd → 3He n. The data taken from [11]. (b) The
tensor analyzing power in the dd → 3He n. The data taken from [13].
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Abstract

In this presentation we discuss a number of experiments on the search for proton
or deuteron EDMs, which could be carried out at COSY-Jülich. Most promising
is the use of an radio-frequency radial electric field flipper that would lead to the
accumulation of a CP violating in-plane beam polarization by tiny spin rotations.
Most crucial for storage ring searches for EDMs is the spin-coherence time, and we
report on analytic evaluations which point at a much larger spin-coherence time for
deuterons by about a factor of 200 compared to the one for protons, and at COSY,
the spin coherence time for deuterons could amount to about 105 s.

1 Introduction

Electric dipole moments (EDM) are one of the keys to understand the origin of our
Universe. The Universe as we know it has a microscopic net baryon number – about
0.2 baryons per cubic meter, or ∼ 10−10 of the density of relic photons. In 1967 Andrei
Sakharov formulated three conditions for baryogenesis [1]:

1. Early in the evolution of the universe, the baryon number conservation must be
violated sufficiently strongly,

2. the C and CP invariances, and T invariance thereof, must be violated, and

3. at the moment when the baryon number is generated, the evolution of the universe
must be out of thermal equilibrium.

CP violation in kaon decays is known since 1964, it has been observed in B-decays
and charmed meson decays. The Standard Model (SM) accommodates CP violation via
the phase in the Cabibbo-Kobayashi-Maskawa matrix. CP and P violation entail non-
vanishing P and T violating electric dipole moments (EDMs) of elementary particles ~d =

d~S. Although extremely successful in many aspects, the SM has at least two weaknesses:

287



neutrino oscillations do require extensions of the SM and, most importantly, the SM
mechanisms fail miserably in the expected baryogenesis rate. Simultaneously, the SM
predicts an exceedingly small electric dipole moment of nucleons 10−33 < dn < 10−31

e·cm, way below the current upper bound for the neutron EDM, dn < 2.9 × 10−26 e·cm,
and also beyond the reach of future EDM searches [2]. In the quest for physics beyond the
SM one could follow either the high energy trail or look into new methods which offer very
high precision and sensitivity. Supersymmetry is one of the most attractive extensions of
the SM and S. Weinberg emphasized in 1992 [3]: ”Endemic in supersymmetric (SUSY)
theories are CP violations that go beyond the SM. For this reason it may be that the next
exciting thing to come along will be the discovery of a neutron electric dipole moment.”
The SUSY predictions span typically 10−29 < dn < 10−24 e·cm and precisely this range is
targeted in the new generation of EDM searches [2].

There is consensus among theorists that measuring the EDM of the proton, deuteron
and helion is as important as that of the neutron. Furthermore, it has been argued some 25
years ago that T -violating nuclear forces could substantially enhance nuclear EDMs [4,5].
At the moment, there are no significant direct upper bounds available on dp or dd.

Non-vanishing EDMs give rise to the precession of the spin of a particle in an electric
field. In the rest frame of a particle

d~S

dt∗
= µ~S × ~B∗ + ~d× ~E∗, (1)

where in terms of the lab frame fields

~E∗ = γ( ~E + ~β × ~B) ,

~B∗ = γ( ~B − ~β × ~E) . (2)

While ultra-cold electrically neutral atoms and neutrons can conveniently by stored in
traps, the EDM of charged particle can only be approached with storage rings [6]. EDM
searches of charged fundamental particles have hitherto been impossible, because of the
absence of the required new class of electrostatic storage rings. An ambitious quest
for a measurement of the EDM of the proton with envisioned sensitivity down to dp ∼
10−29 e·cm is under development at BNL [7]. The principal idea is to store protons with
longitudinal polarization in a purely electrostatic ring: the EDM would cause a precession
around the radial electric field and thus lead to a build-up of transverse polarization which
could be measured by standard polarimetry. Related ideas on dedicated storage rings for
the deuteron and helion EDM are being discussed at IKP of Forschungszentrum Jülich
within the newly found JEDI collaboration1.

Before jumping into construction of dedicated storage rings, it is imperative to test
technical issues at existing facilities. Here we review several ideas for precursor experi-
ments which could be performed at COSY subject to very modest additions to the existing
machine. In a magnetic ring like COSY, the stable polarization axis in the absence of
longitudinal magnetic fields is normal to the ring plane, and at the heart of the most
promising proposal is a radio-frequency electric field (RFE) spin flipper which would ro-
tate the spin into the ring plane. The resulting EDM-generated P and T non-invariant
in-plane polarization which can be determined from the up-down asymmetry of the scat-
tering of stored particles on the polarimeter. Unless show stoppers like false spin rotations

1Jülich Electric Dipole moment Investigations
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via the magnetic moment pop up, one could theoretically aim for an upper bound for the
deuteron of dd < 10−24 e·cm, which would be as valuable as the existing upper bounds on
dn [4, 5].

2 EDM searches: state of the art

The question of whether particles possess permanent electric dipole moments has a long-
standing history, starting from the first search by Smith, Purcell, and Ramsey [8] for a
neutron EDM, which, over the last 50 years or so, resulted in ever decreasing upper limits.
In Table 1, we give current and anticipated EDM bounds and sensitivities for nucleons,
atoms, and the deuteron and a rough measure of their probing power relative to the
neutron (dn). At this level, storage ring EDM measurements bear the potential of an order
of magnitude higher sensitivity than the currently planned neutron EDM experiments at
SNS (Oak Ridge), ILL (Grenoble-France), and PSI (Villigen, Switzerland) [9].

Particle Current Limit Goal dn equivalent reference
Neutron < 2.9× 10−26 ≈ 10−28 10−28 [10]
199Hg < 3.1× 10−29 10−29 10−26 [11]
129Xe < 6.0× 10−27 ≈ 10−30 − 10−33 ≈ 10−26 − 10−29 [12]
Proton < 7.9× 10−25 ≈ 10−29 10−29 [11]
Deuteron ≈ 10−29 3× 10−29 − 5× 10−31

Table 1: Current EDM limits in units of [e·cm], and long-term goals for the neutron, 199Hg, 129Xe,
proton, and deuteron are given here. Neutron equivalent values indicate the EDM value for the neutron
to provide the same physics reach as the indicated system.

3 Search for electric dipole moments of protons,

deuterons, and 3He at COSY

COSY has a history of highly successful operation of cooled polarized beams and targets
– in fact, COSY is a unique facility for spin physics with hadronic probes on a world-wide
scale. The IKP-COSY environment is ideally suited for a major (medium-sized) project
involving spin and storage rings as it will be required for the search for permanent EDMs
of charged fundamental particles (e.g., protons, deuterons, and other light nuclei). JEDI
is planning to search for EDMs of the proton and other charged particles in a storage
ring with a statistical sensitivity of ≈ 2.5× 10−29 e·cm per year, pushing the limits even
further and with the potential of an actual particle-EDM discovery.

The proposed new method employs radial electric fields (and magnetic fields) to steer
the particle beam in the ring, electric quadrupole magnets to form a weak focusing lattice,
and internal polarimeters to probe the particle spin state as a function of storage time.
An RF-cavity and sextupole magnets will be used to prolong the spin coherence time
(SCT) of the beam. For protons, it requires building a storage ring with a highly uniform
radial E-field with strength of approx. 17 MV/m between stainless steel plates about 2 cm
apart. The bending radius will be approx. 25m, and including the straight sections such
a machine would have a physical radius of approx. 30 m. The so-called magic momentum
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of 0.7GeV/c (232MeV), is the one where the (g − 2) precession frequency is zero (see
Table 2).

Particle p (GeV/c) E (MV/m) B (T)
Proton 0.701 16.8 0

Deuteron 1.000 -4.03 0.16
3He 1.285 17.0 -0.051

Table 2: Parameters for the transverse electric and magnetic fields required to freeze the spin in an
EDM storage ring of radius r = 30m.

4 Precursor experiments at COSY

The above cited tentative upper bound for the proton EDM as part of a nucleus in an
electrically neutral atom, |dp| < 7.9 × 10−25 e cm, derives from the theoretical reinterpre-
tation of the upper bound for the EDM of 199Hg [11]. We briefly review here possible
first direct measurements of an upper limit for the proton and deuteron EDM using a
normal magnetic storage ring like COSY. One needs to isolate a CP-violating precession
of the spin caused by an electric field. Such experiments are widely considered must-do
experiments, before embarking on the development and construction of storage rings with
electrostatic deflectors.

4.1 RFE spin rotator with Siberian snake

Making use of a Siberian snake in COSY yields a stable longitudinal spin-closed orbit
in a target section opposite the snake (see Fig. 1, top panel). Using two RF E-field
systems in front and behind the snake (middle and bottom panels) allows one to provide

a certain degree of depolarization in the beam due to the torque ~d× ~E, where d denotes
the proton electric dipole moment. When the RF E-field is reversed in polarity turn by
turn, this torque produces a small mismatch between the two stable spin axes, hence the
beam depolarizes. While the angle is exceedingly small (α ≈ 10−7 rad, see Fig. 1, bottom
panel), the number of turns n in the machine can be made very large (n ≈ 5 · 1010). The
sensitivity of this approach is rather limited to values of d ≈ 10−17 − 10−18 e cm, but a
measurement would nevertheless constitute a first direct measurement of an upper limit
for the proton EDM.

4.2 Dual beam method: protons and deuterons stored simulta-
neously

The dual beam method is equivalent to the g − 2 measurement of the muon EDM dµ,
reported in [13]. It seems possible to store coasting proton and deuteron beams in
COSY simultaneously. The way this would be achieved is by first injecting deuterons
from the injector cyclotron into COSY and accelerating them to highest energy, where
the beam lifetime reaches hundreds of hours. During the deuteron storage time, the
injector cyclotron is tuned for protons, the stored deuterons in COSY are decelerated to
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Figure 1: Concept of a proton EDM measure-
ment using a Siberian snake in COSY. Top panel:
Using the snake, the spin closed orbit is aligned
along the direction of motion of the proton beam
in the straight section opposite the snake. Mid-
dle panel: For odd turns in the machine, an elec-
tric RF E-field perpendicular to the ring plane in
front and behind the snake rotates the stable spin
axis by a small angle α away from the longitudi-
nal direction. Bottom panel: For even turns in
the machine where the RF E-field is reversed, the
spin closed orbit is then rotated by an angle 2α,
leading after n turns to a depolarization of the
beam, P (n) = P0 · cos(2α)n.

the injection momentum of approx. 300 MeV/c, electron cooled, and protons are injected.
In order to cool both beams, the electron cooler voltage is switched to match the velocities
of protons and deuterons for short time periods of about 10 s.

The search for the muon EDM made use of the fact that the magnetic fields in the g−2
experiment were well known, and one was able to relate the observed additional amount
of spin rotation to the muon EDM. In our scenario, we would compare the spin precession
due to the deuteron EDM using the protons as a means to determine the magnetic prop-
erties of the machine. Experimentally, the task boils down to the determination of the
invariant spin axes of the simultaneously stored protons and deuterons using a polarime-
ter. Assuming a value for the proton EDM, derived from the measurement on 199Hg (see
Table 1), any mismatch of the invariant spin axes for deuterons and protons would be
associated to an upper limit deuteron EDM. The sensitivity of this method to dd would
be similar to the one achieved in the g − 2 determination of dµ, i.e., amount to about
dd = 10−19 e · cm.

4.3 Morse-Orlov-Semertzidis resonance method for EDM mea-
surements in storage rings

This idea for a measurement using an all magnetic ring is described in [14]. One would
inject sideways polarization into a machine with a vertical invariant spin axis, the EDM
produces a growing vertical polarization Py, and using two sub-beams with different ma-
chine tunes that would be independently modulated, allows one to isolate the EDM of
the orbiting particles. The sensitivity of this method for protons is estimated to reach
dp = 10−29 e·cm/yr, but because of systematic errors, the idea is presently no longer
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pursued at BNL. For COSY, in terms of precursor EDM measurements, this idea is being
considered, although detailed evaluations have not been looked into yet.

4.4 The resonance EDM effect with RFE flipper

This is our favorite option and below we unfold its features in some more detail in the
following sections.

5 The resonance RF electric flipper at COSY

The idea is to supplement a COSY magnetic ring with a radiofrequency electric flipper
(RFE) which runs at a frequency tuned to the spin tune Gγ. Much of the discussion is
for deuterons at COSY but there emerges an interesting option also for protons.

5.1 Tipping the vertical polarization to the CP-violating in-
plane polarization

Hereafter we focus on pure vertical ring magnetic field ~B and pure radial flipper field ~E.
An RFE flipper is added in a section where ~B = 0. A non-vanishing EDM, ~d = ed~S, gives
rise to the precession of the spin ~S in an electric field ~E with ωEDM = edE. A single pass
through the flipper of length L with a radial electric field ~E would tilt the initial vertical
spin ~S ‖ Sy, and generate a longitudinal component Sz = Sy · α, where α = dEL/βc. To
appreciate the complexity of the task, for a beam of deuterons with T = 100 MeV, a RFE
flipper of length L = 1 m, a realistic electric field of E = 15 kV/cm, and d = 10−23 cm,
one finds α = 2.4 · 10−12.

5.2 The coherent buildup of the EDM effect: single spin prob-
lem

The so generated longitudinal spin would precess in the magnetic field of the ring with
respect to the momentum vector with frequency fS = γGfR, i.e., by an angle θS = 2πγG
per revolution, where G is the anomalous magnetic moment and fR is the ring frequency.
The tiny EDM spin rotations we are after do not disturb this precession. Compared to the
ring circumference, such a flipper can be treated as a point-like element. In view of the
minuscule α the change of the magnitude of the in plane polarization, S|| = (S2

x + S2
z )

1/2,
per pass is well approximated by S||(i + 1) = S||(i) + Syα cos θ(i). Upon summing over k
passes, one obtains

S|| = Sy

k∑

l=1

α cos(lθS) , (3)

which for a static electric field, α =const, would simply oscillate around zero. Evidently,
the electric field of the flipper must by modulated in sync with the precession of the
spin: E = E0 cos(lθF ) = E0 cos(θF fRt), i.e., α = αE cos(θF fRt), resulting in the Master
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Equation

S||(t) = Sy

k∑

l=1

αE cos(lθS) cos(lθF ) =
1

2

k∑

l=1

[cos(l(θS − θF )) + cos(l(θS + θF ))]�−, . (4)

Only the resonance condition
θF = ±θS (5)

furnishes the coherent build-up of the EDM signal (hereafter without loss of generality
θF = θS)

S||(t) =
1

2
SyαEνt. (6)

Swapping the harmonic modulation for the rectangular one would enhance the EDM
signal by a factor 4/π:

S||(t) = Sy

k∑

l=1

αE| cos(lθS)| = 2

π
SyαEνt. (7)

For the sake of analytic simplicity, we focus here on the harmonic RFE flipper, which
must run at a frequency fF = GγfR = fS. By a judicious choice of the particle energy
one could readily stay away of depolarizing resonances in the machine.

5.3 The RFE flipper disturbs the orbit and the spin tune

The presence in a ring of an RFE flipper with oscillating electric field would affect both
the particle orbit and spin tune. First, the RFE flipper would generate an oscillating
radial momentum ∆pr = eE0L cos(GγfRti)/βc per i-th pass, which is off-tune with the
ring frequency and betatron frequency. For the above specified RFE filter and 100 MeV
deuterons the bending angle is about ±2 · 10−3, well within the machine acceptance of
COSY. Second, the spin precession with respect to the momentum rotation also acquires
an oscillating correction

~ω = − e

m

[
G~B −

(
G− 1

γ2 − 1

)
~β × ~E

]
(8)

to Gγ familiar for a pure magnetic ring, where the electric term combines the changes of
the spin precession proper and of the cyclotron frequency. The net effect can be viewed
as a frequency modulation of the spin tune, Gγ → Gγ[1− yF cos(lθS)] where for energies
of the practical interest

yF ≈
(

1− 1

G(γ2 − 1)

)
βEL

2πBR
(9)

is numerically small (here R stands for the ring radius). Then our Master Equation entails
only a time-independent weak reduction of the accumulation rate:

S||(t) = Sy

k∑

l=1

αE cos(lθS) cos(lθS[1− yF cos(lθS)]) =

Sy

k∑

l=1

αE cos2(lθS)

[
(1− 1

2
y2

F cos2(lθS)

]
=

1

2
(1− 3

8
y2

F )SyαEνt . (10)
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The Farley pitch correction [15] to the spin tune would be important in the practical
experiment when the ring is run for a long time, but it does not effect a flow of our
principal arguments.

5.4 Polarimetry and bunched vs. coasting beam

Each individual particle for the first time enters the RFE flipper with a certain ~Sy(0),

which remains stable, and a certain in-plane component ~Sxz(0). Upon k revolutions, the

overall polarization vector can be decomposed as ~S(t) = ~Sy(0) + R̂y(k)~Sxz(0) + ~S‖(t),
where R̂y(k) is a matrix of spin rotation around the y-axis upon k revolutions and ~S‖(t) is
the in-plane polarization generated by the RFE flipper. Upon averaging over an ensemble
〈~Sxz(0)〉 = 0, we keep ~Sy(0) for 〈~Sy(0)〉. For a finite-length bunch and/or coasting beam
our earlier derivation holds for a particle which enters the flipper at t = 0. Particles which
are behind by a fraction 0 < z < 1 of the ring circumference enter the flipper at a different
field advanced by time ∆t = z/fR and the modified Master Equation reads

S||(z, t) = SyαE

k∑

l=1

cos(lθS) cos(lθS + zθS) =
1

2
SyαEfRt cos(zθS) . (11)

The bunch can be viewed as point-like and its polarization is uniform if the length of the
bunch zb satisfies the condition zbθS ¿ 1.

Figure 2: Left panel: Oscillating in-plane beam polarization components Px and Pz (Sx and Sz) for
the first 50 turns (revolutions) in the machine. Right panel: Evolution of the magnitude of the in-plane
polarization P‖ =

√
(P 2

x +P 2
z ) during a spin coherence time of 105 s, which, under the specified conditions

using 100 MeV deuterons in COSY corresponds to a total of 5× 1010 turns in COSY.

The longitudinal component Sz, and the radial one Sx would oscillate, leading to
Sz = S||(t) cos(θSfRt) and Sx = S||(t) sin(θSfRt), as shown in Fig. 2, where we show the
results of modeling with spin rotation matrices. One would readily extract S||(t) from the
relevant Fourier component of the up-down asymmetry

Au/d =

∫
dt[Nup(t)−Ndown(t)] sin(θSfRt)∫

dt[Nup(t) + Ndown(t)]
∝ ANS||(t) , (12)

where Nup/down(t) are the corresponding count rates — this is a familiar technique. A
simultaneous measurement of both Sx and Sz would have been an important cross check,
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but a word of caution is in order: the in-plane magnetic fields are forbidden as the
ordinary magnetic moment would cause a false precession of the vertical-to-in-plane spin.
This seems to preclude the Sz polarimetry on a longitudinally polarized internal target
with longitudinal holding magnetic field.

The use of a transversely polarized internal target, however, seems possible, although
during the spin-flip process, it must run with empty cell but vertical guide field switched
on, one would inject polarized particles into the cell only at the polarimetry stage, and,
since one does not want to change the holding field polarity during the measurement,
injection of different hyperfine states from the polarized source is necessary.

5.5 A null experiment

Complementing the radial electric field of the RFE flipper with the in-phase vertical
magnetic field one can realize an exact cancellation of the flipper E field by the motional
electric field, ~E∗ = 0, see Eq. (2). This would provide a null experiment for separation
of the genuine EDM signal from false effects. On the other hand, an oscillating motional
~B∗ only causes a weak frequency modulation of the spin tune and imposition of ~B∗ = 0
in the EDM run does not seem imperative.

5.6 Diffusion of the in-plane spin and spin coherence time

The extremely small single-pass rotation α0 in the RFE flipper can only be overcome by an
extremely large number of turns fRt. While the vertical polarization is preserved by the
holding field of the ring, the in-plane spins accumulated during the flipper process must
all rotate coherently at one and the same rotation angle θ = θSfRt rather than evolving
into a hedgehog. The spin coherency is one of the highest risk factors in all the EDM
projects [7]. There is an important distinction between the lifetime of the polarization
along the stable-spin axis, the spin coherence time (SCT) of the in-plane polarization
when the beam idly rotates in the storage ring and the SCT during the build-up of the
in-plane polarization.

5.6.1 Spin coherence time for an idle rotation

To a first approximation Sy is preserved irrespective of what happens to the rotating
in-plane component of the spin. The spin tune θS = 2πγG varies from revolution to
revolution and from stored particle to particle because of the momentum fluctuations,
θ = θS + 2πGδγ = θS + δθ. Hereafter θS = γ0G and γ0 is defined for the average beam
momentum ensured by cooling and RF bucket and by the very definition 〈δγ〉 = 0. For the
beginners, we swamp all imperfections, nonlinearities, betatron oscillations and whatever
else into a Black Box which generates δγ on the turn-by-turn basis, in the future all
these effects need to be studied in detail. The average in-plane spin 〈S‖〉 points at an
angle θ = θSfRt, while for an individual particle there is a cumulant spin precession slip
∆(k) =

∑k
1 δθl, so that

〈S‖〉 = S‖(0)〈cos ∆〉 = S‖(0)

{
1− 1

2
〈∆2〉

}
=

= S‖(0)
{
1− 2π2G2fRt〈δγ2〉} = S‖(0)(1− t/τSC,NF ) , (13)
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where the subscript NF stands for No Flipper. It decreases with time because of the
angular random walk (diffusion), which eventually shall evolve the spin arrow into a
hedgehog, and

τSC,NF ≈ 1

2π2fRG2γ2β4
·
〈(

δp

p

)2
〉−1

(14)

has a meaning of the SCT for an idle rotation in the absence of a spin flipper.
Admittedly, such a violent turn-by-turn randomization of the momentum fluctuations

leads to an excessive spin diffusion and arguably Eq. (14) gives a lower bound on SCT. A
discussion of more realstic scenarios with slow variations of the beam particle momenta
will be reported elsewhere.

5.6.2 Spin coherence time with a running spin flipper

Still another source of spin decoherence is the fluctuation of the revolution (transit) time
τ , described in terms of slip-factor, δτ/τ = ηδγ/γβ2, where

η =
1

γ2
tr

− 1

γ2
, (15)

and γtr is the transition gamma-factor [16]. It produces a slip of the phase of the RFE
flipper per pass δθ = 2πfF δτ . Then the Master Equation will take the form

S|| = SyαE

k∑

l=1

cos(lθS + ∆(l)) cos(lθS + η∆(l)i/β2) , (16)

where ∆i =
∑i

n=1 δθn is the cumulant precession slip before the i-th pass through the
RFE flipper. Following the derivation of Eq. (13), we readily find

S|| = SyαE

k∑

l=1

cos2(iθS)(1− l2π2G2C2
SD〈δ2γ〉) = SyαE

1

2
fRt

(
1− π2fRtG2C2

SD〈δγ2〉) ,

(17)
where

CSD = 1− η

β2
. (18)

The corresponding SCT equals

τSC =
2

C2
SD

τSC,NF ≈ 1

C2
SDπ2fRG2γ2β4

·
〈(

δp

p

)2
〉−1

. (19)

Small Gd = −0.143 strongly enhances the deuteron SCT compared to the proton SCT
(we ignore here a possible difference of CSD for protons and deuterons),

τ p
SC ∼ τ d

SC ·
(

Gd

Gp

)2

∼ 1

200
τ d
SC . (20)

For non-relativistic particles −η/β2 ≈ 1/β2 and the in-plane spin-diffusion is entirely
dominated by the flipper phase slip and large C2

SD strongly suppresses τSC . There are
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two strategies: either find a way to suppress CSD or eliminate the flipper phase slip, i.e.,
enforce η = 0. Strongly different Gp and Gd suggest the former strategy for protons and
the latter for deuterons.

The SCT considerations do obviously favor running COSY at non-relativistic energies.
For the reference case of 100 MeV deuterons, ν ≈ 511 kHz, and cooled beam with δp/p =
10−4, our estimate yields τ d

SC(η = 0) ∼ 3 · 105 s.
A purely electrostatic rings would share the above spin decoherence mechanisms, al-

though the analytic treatment would be substantially different from that for the point-like
RFE flipper.

5.7 Running RFE flipper at higher frequencies?

5.7.1 Bad news for nonrelativistic deuterons?

Short bunches offer the possibility of operating the RFE flipper at higher frequency. One
could run the flipper at any frequency fF = (γG + K)fR, where K = 0,±1,±2... is
integer. Indeed, short bunches probe the E-field only at discrete times ti = i/fR and
cos(2πlfF ) = cos(lθS + 2πlK) = cos(lθS). Evidently, for an ideal particle, the build-up
of the EDM signal wouldn’t depend on K. The limitation on the bunch length becomes
much more stringent, though:

zb(θS + 2πK) = xbθS

(
1 +

K

γG

)
¿ 1 . (21)

A similar bound is imposed on the length of the flipper, zF , in units of the ring circum-
ference: zF θS(1 + K/γG) ¿ 1.

Simultaneously, the troublesome flipper phase slip acquires the same factor (1+K/γG),
so that CSD in the diffusion rate will change to

CSD = 1−
(

1 +
K

γG

)
· η

β2
. (22)

For deuterons at COSY, K/|Gd| À 1 and running at higher frequencies invites an un-
wanted suppression of the SCT for nonrelativistic deuterons by still another small factor
∼ (Gd/K)2, i.e., by almost two orders in magnitude.

5.7.2 Good news for protons: suppression of spin diffusion at magic energies

A closer look at Eq. (22) suggests an intriguing possibility of a set of magic energies at
which the flipper phase slip would compensate the effect of the spin tune slip. We recall
that η is large and negative valued for non-relativistic particles. Then by a judicious
choice of K = −N and γ such that

K + γG < 0 (23)

one could arrange for CSD = 0, i.e., for a vanishing spin diffusion rate. These magic
energies are roots of an equation

γ3 = −K

G
+

γ3

γ2
tr

(
K

γGp

+ 1

)
. (24)
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For protons Gp = 1.793 and solutions do exist for −K = N = 2, 3, .... Because the
transition energy is high, γ2

tr >> 1 (in one of regimes at COSY γ2
tr ≈ 3.3), for a quick

estimate of lowest roots one can resort to an iterative solution

γN−1 =

(
N

Gp

)1/3
(

1− 1

3γ2
tr

[(
N

Gp

)2/3

− 1

])
. (25)

With the above specified γtr, the lowest magic energy at N = 2 equals Tp ≈ 29 MeV,
which is too low. The second root at N = 3 corresponds to Tp ≈ 133 MeV, which is within
the range of the existing COSY electron cooler. Besides a possibility of cooling, this magic
energy is preferred because of longer beam lifetime. The third root gives Tp ≈ 210 MeV.
An asymptotic convergence of large-N magic energies to transition energy, i.e., to an
isochronous ring, is noteworthy:

γ2
N = γ2

tr − β2
trγ

5
trGp · 1

N
. (26)

This finding of spin-decoherence-free magic energies lifts the pessimism of Eq. (20) and
paves the way to a high sensitivity searches for the proton EDM at COSY.

We strongly emphasize that the existence of magic energies only depends on the fact
that the spin precession and flipper phase slips are locked to each other and does not
depend on the exact model for the phase slip and for the momentum fluctuations.

5.7.3 Magic energies for deuterons at COSY

Deuterons also possess a sequence of magic energies albeit at higher energies. Since
Gd < 0, here we look for K = +1, 2, . . . . To a first approximation, deuterons and protons
do share the same γtr. Assuming above γtr, the lowest magic energy at K = 1 equals
Td ≈ 0.9 GeV, while at K = 2 our estimate is Td ≈ 1.15 GeV, which are accessible at
COSY. Transition energy is tunable, for instance at γ2

tr = 4 we find the deuteron magic
energies Td(K = 1) ≈ 1.03 GeV and Td(K = 1) ≈ 1.33 GeV.

Magic energies vindicate the harmonic modulated RFE flippers but leave open an
issue of dynamic magnetic fields generated by dE/dt. For deuterons this menace, which
deserves a separate treatment, can be circumvented by a flat-top RFE flipper.

5.8 Advantages of a rectangular (flat-top) modulated RFE flip-
per for deuterons

5.8.1 Even mode flat-top flipper

If running COSY with deuterons at magic energy would prove impractical, then the
phase-slip of the flipper E-field emerges as a potential show-stopper for deuterons. Here
we notice that this phase-slip can be entirely eliminated by employing a rectangular (flat-
top) modulation of the RFE flipper,

E(t) = E0(−1)NF , NF = int(γGfRt/π) . (27)

which does not depend on the phase slip. The exact rectangular modulation is not im-
perative, what we are asking for is a flat top when the bunch passes through the flipper.
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In order to avoid the effects of dynamical magnetic fields generated by dE/dt, the E-field
must be inverted when the bunch is at 180 degree, the opposite side of the ring. The
simplest solution is to lock the RFE flipper frequency to the ring frequency

fF =
1

2N
fR . (28)

For deuterons N = 3, i.e., γ|Gd| = 1/2N = 1/6 is a convenient option: here the flipper
field is inverted once per N = 3 revolutions of the beam. However, that demands for
somewhat higher kinetic energy: γd = 1.169, Td = 317 MeV, β = 0.52, fR = 0.98 MHz,
and νF = 163 kHz. The price tag for the higher energy of deuterons is a somewhat shorter
spin coherence time: our Eq. (19) for η = 0 gives τSC ∼ 6 · 103 s.

5.8.2 Odd-mode flat-top flipper: dedicated low-energy ring for the deuteron
EDM?

Curiously enough, for the reason that 1/|Gd| = 7.0145, the condition γ|Gd| = 1/7 is met
at γ = 1.00207, i.e., Td = 3.88 MeV. Such deuterons will make 7 revolutions and pass the
flipper 7 times per single spin turn. Then the flat-top cycle can be organized as follows:

Switch the flipper on when the bunch is on the opposite side of the ring. After 3
revolutions at E > 0 switch the field off so that the 4-th revolution is at E = 0, and
then switch the flipper on again at inverted polarity, E < 0, when the bunch is opposite
the flipper. The second inversion of the E-field is after the 7th revolution with a bunch
opposite the flipper. This way we managed to exclude the 4th revolution which would
have crossed a flipper at exactly the time when the E-field is inverted.

Low energy enhances both the single-pass tilt of the spin and spin coherence time but
decreases the beam lifetime — the latter might prove a show stopper. Whether one can
gain or not in sensitivity to EDM with such a curious option is worth of further scrutiny.

5.8.3 Half-integer-mode flat-top flipper

Still another interesting option is 1/γ|Gd| = 6.5, when γ = 1.07915 and Td = 148.5 MeV.
The flipper period would comprise two spin turns and 13 revolutions of the beam and the
sought for cycle must be organized as follows:

The flipper field E > 0 is switched on when the bunch is at 180 degree from the flipper,
kept constant for revolutions 1, 2 and 3, inverted to E < 0 for revolutions 4, 5 and 6,
switched off, E = 0, during the 7-th revolution, inverted to E > 0 for revolutions 8, 9 and
10, and E < 0 for revolutions 11, 12 and 13.

Running the flipper in such a mode is a challenging task, but an obvious benefit is the
smaller Td and the larger spin coherence time of τSC ∼ 3 · 104s.

5.8.4 One-third-integer-mode flat-top flipper

A still more interesting option is 1/|Gd| = 20/3, when the flipper period comprises 3 spin
turns and 20 revolutions of the beam. The flipper field inversion pattern is as follows:
E > 0 for revolutions 1, 2 and 3; E < 0 for revolutions 4, 5, 6 and 7; E > 0 for revolutions
8, 9 and 10; E < 0 for revolutions 11, 12 and 13 E > 0 for revolutions 14, 15, 16 and 17,
and E < 0 for revolutions 18, 19 and 20. In this mode γ = 1.0522 and Td = 98 MeV, and
as we evaluated above, τSC ∼ 105s.
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6 RF magnetic flipper

6.1 A proof of the principle at COSY

Remarkably, much of the spin dynamics in the suggested EDM experiment at COSY
can be tested by swapping the RF electric flipper for an RF magnetic flipper (RFB)
with a radial RF magnetic field. In such an RFB flipper the magnetic moment of the
deuteron would do exactly the same job as the sought for EDM in the RFE flipper.
The anomalous magnetic moment of the deuteron is ∼ 3 · 10−15 e cm, while we speak of
EDM of ∼ 10−24 e cm, consequently a single-pass magnetic tilt αB can be made gigantic
compared to the above estimated αE for the expected EDM. This adds an entirely new
dimension: while we dream of accumulation of a several per mill to several per cent in-
plane polarization running RFE flipper for 105s, employing an RFB one could readily
have single-pass tip angles αB ∼ 10−6. The net result will be that within seconds the
accumulation of the in-plane polarization will end up in total consumption of the initial
vertical polarization Sy(0) = +1, i.e., ideally we get S‖ = 1 at Sy = 0, which then will
be followed by the accumulation of the vertical polarization from the in-plane one down
to Sy = −1 at S‖ = 0 and so forth. If the in-plane spin decoheres, the restoration of the
vertical spin will be imperfect and the decay time of oscillations can be related to the spin
coherence time.

However, an RFB flipper with a longitudinal magnetic field, tangential to the orbit, is
doing exactly the same job! Indeed, the RFB flipper with radial field generates resonance
forward and backward tips of the spin, which then precesses in the ring magnetic field..
The effects of the longitudinal vs. radial B-fields only differ by swapping Sz and Sy, i.e., by
a π/2 shift of the spin precession angle, otherwise the buildup of the in-plane polarization
is exactly the same.

Remarkably, such a proof of principle with longitudinal RFB flipper has already been
achieved at COSY in January 2011, the analysis is in progress and preliminary results
have been reported at several meetings [17, 18]. The period of oscillations is obviously
∝ 1/αB, i.e., inversely proportional to RFB flipper magnetic field, which has indeed been
seen in the COSY experiment [17,18].

6.2 Systematics and ring imperfections with RFB flipper

The beauty of the COSY experiment with gigantic αB is that one could have resorted
to a conventional polarimetry of the oscillating vertical polarization Sy. In the EDM
experiments with S‖ in at most per mill range a variation of Sy can not be detected,
which makes mandatory the polarimetry of the precessing in-plane polarizations Sx and
Sz. Various sequels to the COSY experiment could distinguish the spin decoherence
caused by RFE and RFB flippers and the one from the ring imperfections.

The former has been our major concern, the latter is for the most part an uncharted
territory. We notice that running at magic energy one would eliminate the flipper effects
and the remaining spin decoherence is a direct measure of the systematic effects driven
by the ring imperfections. A second option has already been tried at COSY [17, 18]:
rotate the vertical polarization to pure horizonal one, let S‖ precess for a long time and
rotate it back to the vertical one. This requires a perfect timing when the RFB flipper is
turned on again: as we discussed in Section 5.4., a slip of the flipper phase by θslip with
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respect to spin precession could suppress the recovered vertical polarization ∝ cos(θslip),
which would imitate a spin decoherence. Much more advantageous is to look at a decay of
oscillating Sx, which would measure spin decoherence in idle precession and give τSC,NF

compounded by the possible decoherence from the ring imperfections.
The RFB flipper of the COSY experiment was run in a harmonic mode at a frequency

fF = (1 + γ|Gd|)fR. For a better insight into spin decoherence mechanisms one needs to
repeat the experiment at lower frequency fF = γGdfR and test the predicted suppression
of decoherence with flat-top modulated RFB. The experiments with protons are equally
important to test the predicted change of τSC from deuterons to protons and to test the
predicted existence of magic energies, as well as a search for a predicted magic energy of
deuterons in the vicinity of Td ∼ 1 GeV. At last but not the least, decreasing the RFB
field from micro- to nano- to pico-tesla range one could explore the systematics of the
COSY ring down to the anticipated sensitivity of the EDM-experiments at COSY.

7 Summary and Conclusions

We reported on the first look into the potential of all-magnetic rings as EDM machines.
The emerging strategy of the proton and deuteron EDM searches at COSY is as follows:

Running the COSY ring, supplemented with the above specified 20/3-mode flattop-
modulated RFE flipper (for 98 MeV deuterons, νF = γ|Gd|ν ∼ 77 kHz), for τ d

SC = 105

and assuming dd = 10−23 e·cm, the accumulated CP violating in-plane polarization of
the deuteron could be as large as S|| = 0.08. To reach an upper bound of dd = 10−24

e·cm polarizations of S|| = 0.008 need to be determined, which is within the reach of state
of the art polarimetry. Such an upper bound on the deuteron EDM of dd < 10−24 e·cm
would be comparable to the results from the model-dependent reinterpretation of upper
bounds on atomic EDMs [2], and size-wise is close to the ball-park neutron EDM bounds.

Magic energies at which the in-plane spin decoherence is strongly suppressed open
entirely new perspectives for the proton (and perhaps the deuteron) EDM at COSY. The
existence of magic energies is a model-independent feature of the rotation of the spin by
a radiofrequency flipper.

True, regarding the systematics, we have presently touched only the tip of the iceberg
in a very crude analytic approach and much more scrutiny of the ring lattice and im-
perfections which will affect polarization lifetime and also somewhat limit the sensitivity
is in order. Specifically, one badly needs spin tracking tools capable of handling with
controlled precision up to ∼ 1011 turns in a realistically modeled machine. A special care
must be taken of false rotations via the magnetic moment in the RFE flipper - these might
prove a main systematics and has to be thoroughly investigated. With all reservations,
the RFE flipper experiment at COSY looks like a promising one. We especially emphasize
again here the importance of extending further in-situ studies at COSY using very slow
RF magnetic flippers to study systematic effects for both deuterons and protons. In the
case of protons a confirmation of the existence of magic energies, and how well the spin
decoherence is eliminated at these energies, need to be studied in dedicated RF magnetic
flipper experiments — this chance of making COSY the proton EDM machine need not
be overlooked.
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Abstract
Large transverse single spin asymmetries (SSA) were measured for pions pro-

duced in p↑p-collisions up to RHIC energies. Sizeable SSA were also found in semi-
inclusive deep inelastic scattering (SIDIS). Theory can explain such spin effects by
going beyond collinear leading-twist perturbative QCD (pQCD) to include trans-
verse momentum dependent (TMD) distribution and fragmentation functions. One
of the most interesting TMDs is the Sivers function, which provides information
on the correlation between the transverse spin of the nucleon and the transverse
momentum distributions of the partons in the nucleon. It is particularly intriguing
that theory predicts the Sivers function will change sign from SIDIS to Drell-Yan
(DY) production. ANDY is aiming to test that prediction and to establish re-
quirements for future upgrades at RHIC to study DY production. The experiment
configuration, achievements to date, status and plans are discussed.

1 A feasibility experiment to measure Drell-Yan

RHIC remains a unique machine that can accelerate and collide polarized proton beams
at center-of-mass-energies 62 ≤ √

s ≤ 500 GeV . The goal of the RHIC spin program is to
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identify how the proton gets its spin from the quark and gluon constituents. Transverse
SSA play an important role in understanding the spin structure of the proton because in
the simple picture of collinear leading-twist perturbative QCD, they are expected to be
small. Contrary to these expectations, significant spin effects in inclusive pion production
in pp-collisions were first found at low energies (

√
s ≤ 20 GeV ) [1, 2] and then measured

at RHIC [3, 4]. Non-zero SSA were also observed in SIDIS from transversely polarized
proton targets [5,6]. The experimental results have stimulated theory development which
led to extensions of the collinear parton model by introducing spin-correlated transverse
momentum (kT ) to parton distribution and fragmentation functions.

The Sivers mechanism attributes the transverse spin effects to a correlation between
the parton kT and spin of the proton [7]. To give a non-zero effect, it requires a final-
state interaction in SIDIS. Theory predicts that the attractive final-state interaction in
SIDIS becomes a repulsive initial-state interaction in DY process thereby resulting in
a sign change for the Sivers function between the two processes [8]. New theoretical
development and attempts of a global analysis of SIDIS and inclusive pion production at
RHIC [9, 10] lead to the conclusion that it is essential to test the predicted sign change
for DY in the xF region that overlaps with SIDIS kinematics.

Figure 1: Top view of ANDY configuration
for RHIC 2011 run. The Blue beam travels in
the positive z direction, and the Yellow beam
in the opposite direction. IR indicates the cen-
ter of the collision region.

A feasibility experiment at RHIC, ANDY,
was proposed to test that prediction and to es-
tablish basic requirements for future upgrades at
RHIC for DY measurements. Forward DY pro-
duction is of interest not just for the analyzing
power, it is also the most robust observable sen-
sitive to low-x parton distributions for intercom-
parison to results in dAu pion production and to
a future electron-ion collider. ANDY is located
at RHIC 2 o’clock Interaction Point (IP2), where
beam polarization is always transverse. It thus
can run in parallel with the RHIC W program
at IP6 and IP8. ANDY goals are: 1) to establish
that large-xF low-mass e+e−-pairs from the DY
process can be discriminated from background
in pp-collisions at

√
s = 500 GeV ; 2) to provide

sufficient statistical precision for the DY analyz-
ing power measurement to test the theoretical prediction of a sign change compared to
SSA for SIDIS. Yet another objective is to determine whether tracking for the charge sign
discrimination is necessary for DY measurements or calorimetry alone would be sufficient.

2 2011 test run

A schematic view of the ANDY setup for the 2011 run is shown in Fig. 1. The setup
included: two beam-beam counters (BBC), located on both sides of the IR (BBC-Yellow
is not shown), for minimum-bias triggering and luminosity measurement; two zero-degree
calorimeters with shower maximum detectors (ZDC, not shown) for luminosity measure-
ment and verifying that ANDY can measure a known analyzing power; hadron calorimeter
(HCal) — two modules of 9×12 lead-scintillating fiber cells placed symmetrically left and
right of the beam pipe, to assess hadronic background and for jet reconstruction; small
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electromagnetic calorimeter (ECal) — two 7×7 matrices of (4 cm)2×40 cm lead glass
cells, for photon/electron/π0-reconstruction; preshower detector (two planes, 2.5 cm and
10 cm scintillating strips) to assist in photon/electron/hadron separation.

Figure 2: ZDC coincidence rate at three interac-
tion points versus time for one RHIC store. Col-
lisions at IP2 were initiated after bunch intensity
had decreased to 1.5×1011 ions per bunch.

The primary goals for the 2011 run were:
1) to establish the impact of collisions at IP2
on IP6 (STAR) and IP8 (PHENIX) operation;
2) to demonstrate a means of HCal calibra-
tion; 3) to measure the hadronic background
for comparison with simulations. Fig. 2 shows
luminosities at three interaction points for
a RHIC fill. Collisions at IP2 began when
the bunch intensity had decreased to a preset
value (in this case, 1.5×1011 ions per bunch).
There is no noticeable effect from adding col-
lisions at IP2 for this fill. The Collider-
Accelerator Department (CAD) developed an
automated procedure for bringing ANDY into
collisions, and repeatedly demonstrated that
it can be done without significant impact on
beam life time and luminosities at the other
two interaction points. Along with these tests, ANDY was taking data using a set of trig-
gers: minimum bias (a condition on the time difference between the earliest hits in the
BBC-Yellow and BBC-Blue to define a collision at IP2), energy sum in ECal, jets in HCal
for physics, LED and cosmic-rays for monitoring. Integrated luminosity of 6.5 pb−1 was ac-
quired. DY measurements set the goal of ≥ 100 pb−1. CAD stated that ∼ 10 pb−1/week
could be delivered to IP2, but would require decreasing β∗ from 3 m to 1.5 m. With
100 pb−1 of integrated luminosity and 50% beam polarization expected uncertainty for
the DY analyzing power measurements is ∼ 0.03.

About 7.5×108 jet triggered events were collected during 2011 run. First step in the
data analysis was to define the absolute energy scale of HCal. This was done using π0-
reconstruction [11]. An attempt at full jet reconstruction using this calibration is shown

(a) (b) (c)

Figure 3: (a) Distribution of summed energy in HCal modules from the jet trigger.
(b) Distribution of energy in the jet as a function of distance in η-φ space from the jet center (jet shape).
(c) Jet energy from simulations versus reconstructed response in ECal+HCal.
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in Fig. 3. There is a reasonable agreement between data and PYTHIA (version 6.222)
+ GEANT simulations for jet energy (Fig. 3a). The data show a somewhat broader jet
shape than the simulations (Fig. 3b). Flattening of the jet shape at larger R is caused by
an underlying event contribution, which appears to be smaller than a few percents. The
jet energy scale was checked with the association analysis of the simulations: primaries
from PYTHIA were projected to HCal, the energy of those in the acceptance was summed
and correlated with the reconstructed energy in ECal+HCal. This correlation is shown
in Fig. 3c, and it proves that the jet energy scale is quite well defined using the photon
(neutral pion) calibration. The next step would be the more sophisticated algorithm for
jet reconstruction and a look at the jet analyzing power.

3 Future plans

The ANDY proposal that was endorsed by the Program Advisory Committee at BNL in
May 2011, supposed two years of data taking for DY measurements: a 2012 run with the
full calorimetry and a 2013 run with the magnet and tracking added. The initial approach
was to build modular, left-right symmetric detectors for ANDY. To reduce the luminosity
requirements and taking into account that for the most robust measurement of the sign
change the xF region would overlap with SIDIS kinematics, the ANDY acceptance was
optimized. ECal, HCal and preshower detector will be stacked around the beam pipe to
provide full azimuthal coverage. Electromagnetic calorimetry required for the complete
ANDY setup was loaned from JLab and delivered to BNL. The staging of the apparatus
awaits a funding review. The first attempt at a transverse spin DY measurement will be
in the RHIC 2013 run.
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Abstract

It is shown that the possibility exists for production and formation of the polar-
ized proton beam from Λ0 - decays using the internal target of the U-70 accelerator.
Description of the beam channel and the calculated parameters of the beam for the
SPASCHARM experiment are presented.

1. Introduction.

The main goal of the new polarization experiment SPASCHARM at U-70 accelerator
consists of :

1) The accurate measurements of single spin asymmetries in the exclusive and inclusive
productions of charged and neutral hadrons in reactions p ↑ p → hX, p ↑ A → hX.

2) The measurements of double-spin asymmetries in reactions p ↑ p ↑→ hX.
Performing these experiments in the existing channel of a polarized proton beam

(PPB) [1] is practically impossible due to difficulties in relocation of the set-up to another
place (the area’s limitation, the full disassembling and new assembling). For preservation
of the set-up’s position it was suggested in papers [2, 3] to create the new PPB using an
internal production target (IPT) of the U-70 accelerator. This target is used as a source
of neutral Λ - hyperons produced by the primary accelerated protons. In this case also as
in the realized PPBs with an external target [1,4] polarized protons are produced from Λ0

- decays. The results of detailed study of production and tracing of the polarized protons
in the accelerator, optics of the new beam channel for formation and transportation of
the PPB to the target of the experimental set-up are presented in this report. Also the
preliminary analysis of optimal conditions for obtaining polarized antiprotons using the
IPT is given.

2. Production and tracing the polarized protons in accelerator ring.

The choice of the IPT position was defined by the following requirements: necessity
of the optimum use of the accelerator magnetic structure, presence of the free area for
insertion of the new beam equipments and a zero Λ0 – hyperon production angle. Layout
of all systems is shown on Fig. 1. The IPT made of Al or Be is placed in the vacuum
chamber at the middle of the magnetic block 23. The IPT has the cylindrical shape
with length l = 30 mm (along the beam line) and the diameter of 3 mm. The IPT has
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Figure 1: Joint layout of the accelerator’s magnetic blocks 23 - 25, the internal production target
(IPT), the beam channel equipment (Q1-Q6 – magnetic quadrupoles; M1, M2 - magnetic dipoles; IC,
MC - intermediate and momentum collimators) and the set-up SPASCHARM with the experiment’s
target (ET).

the radial position of 40 mm outside of the equilibrium proton orbit in the accelerator.
In this case the magnetic field of the second half (∼ 5 m) of the block 23 separates
neutral and unwonted charged particles immediately after the IPT. Then Λ0 - hyperons
decaying in the straight section of length 4.8 m (Λ0 - life path is approximately 4 m
at γΛ ∼ 50) between magnetic blocks 23 and 24 of the accelerator ring generate the
polarized protons via weak decay. These protons travel in the block 24 through the
area with screened magnetic field and leave the accelerator ring. The magnetic screen
represents a ferromagnetic pipe with internal diameter of 35 mm at the input and 70
mm at the output of the block 24, respectively [5]. The tracking of the polarized protons
was done using the code TRAEK [6]. The energy of the accelerated protons is 60 GeV
and the duration of pulse is 1 s on the IPT. The polarized proton beam with momentum
40 GeV/c and momentum band ±5% is accepted by the doublet of the quadrupole lens
(Q1,Q2) of the PPB channel.

3. The beam optics and beam parameters

The optical scheme of the new beam channel (K-14/p) is given in Fig. 2. The cal-
culations of beam parameters were done using code TRANSPORT [7] and the modified
version of the code Decay Turtle [8]. The channel K-14/p consists of the 3 quadrupole
doublets (Q1, Q2), (Q3,Q4), (Q5, Q6), two bending dipoles (M1, M2), intermediate colli-
mator (IC) and the momentum collimator (MC). Unfortunately the chosen scheme of the
channel K-14/p does not allow to satisfy completely to the well established requirements
to the PPB channels [9–13]. In particular, in the horizontal plane the optics becomes
neither unit nor achromatic after the dipole M2. The magnification coefficient is 1.7 in
the vertical plane at the intermediate focus (IF). At this place may be installed the colli-
mator IC for selection the fraction of the beam with average polarization ±η or the beam
tagging detectors which permits to use the full flux of polarized protons [4, 11].

The momentum dispersion is created by the dipole M1 (bent angle α=45 mrad ).This
condition allows confidently to provide the momentum band ≤ ±5% (∆p/p) of the PPB.
At the collimator MC the momentum dispersion is equal to 14 mm per 1 % (∆p/p). The
PPB characteristics along the channel K-14/p and on the ET are calculated using the
Monte-Carlo method (the processes of nuclear interaction of the accelerated protons with
the IPT, the production of Λ0-hyperons and their decays with production of the polarized
protons are simulated). In particular, it has allowed making an estimation of the beam
intensity on the ET: at the primary proton beam intensity of 1012 p/pulse and the energy
60 GeV on the Al target, the intensity of the PPB would approximately be 8·105 p/pulse.
This number was confirmed by independent analytical calculation using the Hagedorn’s
table [13, 14].
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Figure 2: Beam optics of the channel K14/p. Upper half of the
figure (OX): the side- ray ( ) of the PPB and the momentum
dispersion ( ) of protons at 1%(∆P/P) for the horizontal axis
(x). Lower half of the figure (OY): the side- ray ( ) of the PPB
for vertical axis (y).

Fig. 3a presents the pro-
file and the polarization distri-
bution (η) of the protons in the
vertical plane at the sectional
view of the IF for the momen-
tum band ∆p/p = ±5%. Both
these curves are given for the
polarized protons reaching the
target ET. On this and other
figures the values of all param-
eters are normalized to the 1012

accelerated protons interacting
with the IPT. Fig. 3b shows the
profiles for x (horizontal) and
y (vertical) distributions for the

total PPB with a polarization interval from -60% to +60% focused at the ET. On Fig.
3c momentum spectrum of the total PPB at the ET is presented.

(a) (b) (c)

Figure 3: The calculated parameters of the total PPB (with polarizations from -60% to +60% ).
(a) The distributions of intensity (Ipp) and averege polarization (η) versus Y at the intermediate focus
(IF); (b) the distributions of intensity for X and Y axes with the double focus at the experimental target
(ET); (c) the momentum spectra at the ET.

(a) (b)

Figure 4: The calculated parameters for two fractions of the chosen PPBs (with average polarizations
of η−=-40% and η+=+40%): (a) the distributions of intensity (Ipp) versus the polarization (η) of the
beams with η− and η+ at the ET; (b) the distributions of intensity versus Y axis for the beams with η−
am η+ at the ET.
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Table 1: The PPB parameters produced on the EPT and calculated for the IPT at U-70 accelerator for
the primary protons with intensity of 1013 p/ pulse and 1012 p/pulse respectively.
Parameters EPT

(Al, l=300mm)
IPT
(Al, l=30 mm)

Momentum, GeV/c 40 ∼40
Momentum dispersion at MC,
mm/1%(∆p/p)

15.6 14.0

Momentum band, % ±4.5 ±5.0
Magnification in the vertical plane at the
IF

-2.68 -1.7

Sizes at the ET (σx/σy), mm 10.5/8.1 25/12.5
Divergences at the ET (σ′x/σ′y), mrad 6.5/6.0 3.5/4.0
Total intensity, p/pulse 8.1.107 8.0.105

Intensity with mean η = ±40% p/pulse 2.6.107 2.5.105

Background from K0
s → π+π−, % ∼1 ∼1

Fig. 4a presents the intensities of polarized protons versus the polarization at the
position of the ET: left line is for the average polarization η− = −40%; right line is for
the average polarization η+ = +40%. The intensity of each of two polarized beams is
equal to 3·105 polarized protons at the indicated above normalization. Fig. 4b presents
the vertical profiles for two fractions of the polarized beams with average polarizations
η− = −40% and η+ = +40% focused at the ET. The horizontal profiles of these two beams
are similar to the shape of the total flux in the Fig. 3b but scaled by factor approximately
1/3. The momentum spectra for positive and negative polarizations are similar to that
for the total PPB.

4. Discussions

The main parameters of the proposed PPB produced on the IPT are summarized in
Table 1 and compared to the PPB obtained by the same method on the EPT [1]. Several
features should be noted. First of all, the PPB intensity produced on the IPT is by two
orders of magnitude smaller than that of the PPB produced on the EPT. The restriction
comes out from the limit imposed on the primary intensity by the radiation conditions
and small angular acceptance of the channel K-14/p. Another point is the size of the
total beam at the ET. It is very large. This was caused by the chosen beam optics which
is not optimal and limited by shortage of space. As result such beam may be used mostly
in single spin asymmetry measurements by using the liquid hydrogen target. Such beam
cannot be used with available polarized target having only 20 mm in diameter.

The two PPB with signs of polarization ± are separated by ∼40 mm and one needs
to use two correcting magnets as it was done at the set-up FODS [1] in order to put both
beams on the axis of the experimental set up SPASCHARM. In our case it is reasonable
to place these magnets in the first part of channel K-14/p close to collimator IC.

5. Tagging detectors.

For effective use of accelerator time one needs the polarization and momentum tagging
systems. As follows from Table 1 in order to get the momentum resolution of 0.5 % it is
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enough to use the scintillation hodoscopes with 7 mm width of scintillating bars placed
at the focal plane. Such hodoscope was successfully used earlier [4]. This should be done,
since there is no space for putting the magnetic spectrometer. The hodoscope for tagging
the polarization has 5 mm wide scintillating bars and should be placed at position PF.

Polarimeter. For an absolute calibration of the beam’s polarization the elastic
proton-proton scattering may be used. There are two options. First, one can use the ex-
isting polarized proton target and detect the pp-elastic scattering in the four-momentum
transfer region 0.1 < |t|(GeV/c)2 < 0.5, where the analyzing power was already mea-
sured [15]. The scintillating hodoscopes in combination with GEM detectors may be used
as tracking detectors. Second, one can detect the pp-scattering in the Coulomb-Nuclear
Interference interval. In this case the liquid hydrogen target and a magnetic spectrometer
should be used. The detailed description of such polarimeters one can find in paper [16].

6. Conclusions.

We studied the possibility of producing, accepting and transporting the polarized
proton beam from the IPT. The Λ0-s are produced on the internal production target of
the U-70 accelerator. Our main goal was to bring such useful polarized beam to the
experimental set-up installed on the beam channel K-14/p at the distance of 115 m from
the IPT. The beam consists of three components with almost equal fluxes. Two parts have
40% polarization of opposite signs, while the third part has the zero average transverse
polarization (but in principle the polarization has non zero longitudinal component. This
fact may facilitate the use of the spin rotator). The total flux of the PPB is equal to
∼ 1 · 106 per pulse, the momentum is 40 GeV/c. The possibility of forming the beams
with the transverse polarization - 40% or + 40% makes such beams very useful for the
polarization experiments. Such beam may work in parallel with other ones under use
by the internal and external target experiments. Nevertheless several problems are left
unsolved: the large beam size, the reverse of the beam polarization, the polarized beam
axes are not coinciding with the axis of the experimental set-up. We hope that these
problems will be solved in time.

Described above scheme for PPB production is not suitable for getting the polarized
antiprotons for several reasons. First of all the maximum yield of antilambdas occurs
at its momentum ∼20 GeV/c. Second the negative charge of antiproton makes easier to
extract it. In this case the magnetic block 24 extracts completely antiprotons without
any field screening. The IPT for antiprotons may be inserted at the exit of the block
23. All antilambda decays in the straight section will be accepted. Assume also that
the angular acceptance of the beam channel will be increased. In such conditions the
preliminary estimation shows that intensity of antiprotons can be of order 5·103 – 5·104

polarized antiprotons per pulse at the energy of 14 GeV.
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Abstract

There has been much activity in the measurement of the elastic electromagnetic
proton and neutron form factors in the last decade, and the quality of the data has
been greatly improved by performing double polarization experiments, in compar-
ison with previous unpolarized data. Here we review the experimental data base
in view of the new results for the proton, and neutron, obtained at MIT-Bates,
MAMI, and JLab. The rapid evolution of phenomenological models triggered by
these high-precision experiments will be discussed.

1 Introduction

One of the fundamental goals of nuclear physics is to understand the structure and be-
havior of strongly interacting matter in terms of its basic constituents, quarks and gluons.
An important step towards this goal is the characterization of the internal structure of
the nucleon; the four Sachs elastic electric and magnetic form factors of the proton and
neutron, GEp, GMp, GEn and GMn, are key ingredients of this characterization. The
elastic electromagnetic form factors are directly related to the charge and current distri-
butions inside the nucleon; these form factors are among the most basic observables of
the nucleon.

The electromagnetic interaction provides a unique tool to investigate the internal
structure of the nucleon. The measurements of electromagnetic form factors in elastic as
well as inelastic scattering, and the measurements of structure functions in deep inelastic
scattering of electrons, have been a rich source of information on the structure of the
nucleon.

2 Recoil Polarization Method

The relationship between the Sachs electromagnetic form factors and the degree of polar-
ization transfer in 1H(~e, e′~p ) scattering was first developed by Akhiezer and Rekalo [1],
and later discussed in more detail by Arnold, Carlson, and Gross [2].

For single photon exchange, the transferred polarization can be written in terms of
the Sachs form factors:
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where τ = Q2

4m2
p
, ε is the longitudinal virtual photon polarization, and the ± stands for the

two possible orientations of the electron beam helicity.
For each Q2, a single measurement of the azimuthal angular distribution of the proton

scattered in a secondary target (described later) gives both the longitudinal and transverse
polarizations. Combining Eqs. 2 and 3 give:

GEp

GMp

= −Pt

Pl

(Ee + E ′
e)

2M
tan

θe

2
; (4)

thus the ratio of electric to magnetic form factors of the proton is obtained directly from
a simultaneous measurement of the two recoil polarization components. The kinematic
factors in Eq. 4 are typically known to a precision far greater than the statistical precision
of the recoil polarization components.

3 Results and Discussion

The unexpected results from JLab shown in Fig. 1, using the polarization transfer tech-
nique to measure the proton electric over magnetic form factor ratio, GEp/GMp [3–7], has
been the revelation that the form factors obtained using the polarization and Rosenbluth
cross section separation methods [8], were incompatible with each other, starting around
Q2 = 3 GeV2 [9–11]. The form factors obtained from cross section data had suggested
that GEp ∼ GMp/µp, where µp is the proton magnetic moment; the results obtained from
recoil polarization data clearly show that the ratio GEp/GMp decreases linearly with in-
creasing momentum transfer Q2. It is well known by now that GEp is difficult to obtain
from Rosenbluth separation, a technique which is also especially sensitive to systematics
errors and subject to large, ε-dependent radiative corrections. The two-photon exchange
contribution, neglected in the past, has been shown to be an important term to add to
the standard radiative corrections for cross section data; it has a strong ε-dependence and
brings the Rosenbluth form factor ratio closer to the recoil polarization results [12, 13].
Two-photon contributions are expected to affect the recoil polarization results only very
weakly [13].

The neutron form factor ratios displayed in Fig. 2 show a very different behavior
versus Q2, explained in part by the neutron’s neutrality: GEn=0 at Q2=0. The most
recent data from the GEn(I) JLab experiment extended the Q2 range to 3.4 GeV2 [14].
In Fig. 1 and Fig. 2 the vector dominance model (VMD) results of Refs. [15, 16] are
shown, as well as a polynomial fit without asymptotic constrain, labeled as “my fit”.
More extensive information can be obtained from [17–19]
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These striking results for the proton electromagnetic form factor ratio as well as high
precision measurements of the neutron electric form factor shown in Fig. 2, all obtained
through double polarization experiments, have put the field of nucleon elastic electromag-
netic form factors into the limelight, giving it a new life.

Figure 1: All recoil polarization results for
µpGEp/GMp; also included are selected Rosen-
bluth results (empty symbols). The solid and
dashed lines are the results of the VMD calcu-
lations of Lomon and Bijker, Refs. [15, 16].

Figure 2: All polarization results for
µnGEn/GMn; also included are older Rosen-
bluth separation results. The solid and dashed
lines are same as in Figure 1.

Figures 3 and 4 demonstrate a strikingly different behavior for the proton and neutron
Dirac and Pauli form factor ratio multiplied by a Q2 weighting factor; these form factors,
F1p,n and F2p,n are obtained directly from the Sachs form factor ratios, as:

F1(Q
2) = 1

1+τ
(τ + GE

GM
) and F2(Q

2) = 1
1+τ

(1− GE

GM
)

The proton data are not yet close to the pQCD scaling prediction of Brodsky and
Farrar [20], Q2F2/F1 ∼ constant, but the neutron data might display the expected pQCD
behavior, albeit over a much smaller range of Q2 than for the proton. The three curves
shown in Fig. 3 and Fig. 4 are the same as in Figures 1 and 2.

The ratio data for proton and neutron can be used to obtain F1p and F1n and F2p and F2n

(to be written here as F1p,n and F2p,n) separately, with the help of fits to GMp and GMn,
which are better defined experimentally than GEp and GEn. Using the fits of Kelly [21]
for GMp and GMn, the separated values of F1p,n and F2p,n, are shown in Fig. 5. Noticeable
is the almost identical behavior of F2p/κp and F2n/κn. The difference between F1p and
F1n at small Q2 is dominated by the neutrality of the neutron; at the largest Q2, their
slope become very similar.

If one assumes that the matrix element of the hadronic current in elastic ep scattering
is of the form < N |euūγµu+edd̄γµd|N >, where N stands for a nucleon, and eu and ed are
the charge of the u and d “dressed” quarks, respectively; and with the further assumption
of isospin symmetry for the corresponding u and d quark F u,d

1p,n and F u,d
2p,n form factors,

implying:
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Figure 3: The perturbative QCD behavior
of the Fermi and Dirac form factor ratio for
proton, a slow down of the rise is visible.

Figure 4: The perturbative QCD behavior of the
Fermi and Dirac form factor ratio for neutron, the
data is too limited to decide the behaviour.

F d
1n = F u

1p and F u
1n = F d

1p,

and similar relations for F2, the flavor separated u and d quark form factors in the nucleons
are linear combinations of the measured form factors F1p,n and F2p,n :

F u
1 = 2F1p + F1n and F d

1 = F1p + 2F1n,

and similar relations for F u,d
2 .

Figure 5: The Dirac and Pauli form fac-
tors of proton and neutron, as obtained from
µGE/GM with the help of the Kelly [21]
parametrization of GMp and GMn.

A similar flavor separation was recently pub-
lished by Cates et al [22]. Here we use the
VMD models cited and our own fit to get a more
general view of these flavor separated form fac-
tors, as in Fig. 5. Remarkable is the similar
Q2-dependence of three of these form factors,
The exception is F u

1 , which is twice as large as
the others at Q2=0, as expected, but may be-
come 10 times larger than the three others at
10 GeV2. The neutron data base stops at 3.4
GeV2, so these curves are to be taken as a pos-
sibility, supported by the smooth behavior and
excellent agreement of the Dirac and Pauli form
factor demonstrated in Fig. 5 over the region of
Q2 where data exist.

Predicting nucleon form factors in the non-
perturbative regime, where soft scattering pro-
cesses are dominant, is very difficult. As a conse-
quence there are many phenomenological models
which attempt to explain the data in this domain; precise measurements of the nucleon
form factors are necessary to constrain and test these models.
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Figure 6: The separated u and d quark
form factors corresponding to the three
curves on the left, and assuming isospin
symmetry.

Figure 7: Predictions of form factor ratio with VMD
models from Ref. [15, 16], with RCQM models of [23–25]
and in Ref. [26] a parameter-free Faddeev equation for
the nucleon is constructed to calculate the nucleon form
factors. These predictions are compared to the data from
GEp-I (filled circles), GEp-II (filled squares), and GEp-III
(filled triangles) experiments.

There are several approaches to calculate nucleon form factors in the non-perturbative
regime. The list includes vector meson dominance (VMD) models, relativistic con-
stituent quark models (rCQM), the cloudy bag model, the di-quark model and the Dyson-
Schwinger equation (DSE) model and more. In the VMD approach, the photon couples to
the nucleon via vector mesons, whereas in QCD models the photon couples to the quarks
directly. The generalized parton distributions (GPD) represent a framework within which
hadrons are described in terms of quarks and gluons. Perturbative QCD predicts form
factor values for large Q2. We show results from some of these calculations here in Fig.
7.

Extended VMD fits, which provide a relatively good parametrization of all nucleon
electromagnetic form factors, have been obtained. An example is the fit of Lomon [15],
containing 11 parameters. Another VMD parametrization by Bijker and Iachello [16]
achieves a good fit by adding a phenomenological contribution attributed to a quark-
like intrinsic qqq structure (of rms radius ∼ 0.34 fm) besides the vector-meson exchange
terms.

Among the theoretical efforts to understand the structure of the nucleon in terms of
quark and gluon degrees of freedom, constituent quark models have a long history too. In
these models, the nucleon consists of three constituent quarks, which are thought to be
valence quarks dressed with gluons and quark-antiquark pairs, and are much heavier than
the QCD Lagrangian quarks. All other degrees of freedom are absorbed into the masses
of these quarks. To describe the data presented here in terms of constituent quarks, it is
necessary to include relativistic effects because the momentum transfers involved are up
to 10 times larger than the constituent quark mass. Several RCQM calculations [23–25]
are shown in Fig. 7.

A different approach is illustrated by deriving solutions to the Dyson-Schwinger equa-
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tions to calculate form factors, a quantum field theoretical approach to hadron struc-
ture [26]. The mechanism for mass acquisition of the QCD quark to the dressed quark
mass is related to the dynamical chiral symmetry breaking; it explains the mass growth
with momentum as accumulation of a gluon cloud. By solving a Poincaré covariant Fad-
deev equation describing two dressed quarks, Cloët and Roberts [26] obtain nucleon form
factors in a model in which two quarks are always correlated, and binding results from the
exchange between the di-quark and the third quark. In Ref. [26] a parameter-free Faddeev
equation for the nucleon is constructed, which describes the core of dressed quarks in the
nucleon.

4 Form Factors with 11 GeV

Let us first state that GEp/GMp should be measured to as high a Q2 as possible, and so
should GEn and GMn; furthermore GMp should also be remeasured. The higher design
energy of JLab 12 GeV will give access to higher momentum transfers in all form factor
measurements, in the Q2 range 10 to 20 GeV2.

Figure 8: Maximum value of the an-
alyzing power Amax

y versus the inverse of
the proton momentum. The values from
GEp(III) (black circles) are systematically
larger than those in Azhgirey et al. [28]. The
difference is thought to be due to the strict
selection of single track events in the latter.

A large collaboration in Hall A will assemble
a large solid angle detector, up to 70 msr for spe-
cific applications. The core of this project is a
120x120 cm2 (48”x48”) dipole magnet currently at
BNL, which will be modified to allow positioning
at angles as small as 120; the associated detector
package will include GEM chambers for tracking,
a large hadron calorimeter, and in a later phase a
double polarimeter using GEMs also. This project
is called the Super Bigbite Spectrometer [27],
or SBS for short. Currently approved experiments
requiring all or parts of the SBS include neutron
and proton form factor measurements.

The motivation for a detector with uncom-
monly large solid angle is the rapid decrease of
elastic form factors with Q2, and therefore the
precipitous decrease of all elastic cross sections,
as follows:

form factor: FF ∼ 1

Q4
(5)

cross section: dσMott × FF 2 ∼ E2

Q4

1

Q8
(6)

Furthermore, double polarization e xperiments require either measurements of the polar-
ization of the final state nucleon (p in ~ep → e~p, or ~n), or a polarized target (3He) in
(~e~n → en). Both methods have their limitations. For the series of proton form factor
measurements reported in the first part of this paper, recoil polarization has been the
method of choice. In this case another difficulty arises from the decrease of the analyz-
ing power of the reaction used to determine the longitudinal and transverse polarization
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components. In good approximation, the analyzing power decreases like the inverse of
the proton momentum, as illustrated in Fig. 8, Amax

y ∼ 1
p
∼ 1

Q2 .

4.0.1 GEp(V) and GEn(II) Experiments

An illustration of the setup for the approved GEp(V) experiment is seen in Fig. 9; it
shows the proton side, on the left from the beam, with the tracking GEM downstream
from the dipole which are followed by a double polarimeter and a hadron calorimeter. On
the electron side, right of the beam, a large leadglass calorimeter is preceded by GEM
planes to further improve the position resolution. The dipole is followed by a set of 6
GEM planes, each made of 3 chambers side-by-side in the vertical direction; these will
provide the tracking capability to reconstruct the location of the interaction vertex and
the momentum vector of the proton. They will identify tracks originating from the target
and in coincidence with an electron detected in the electromagnetic calorimeter BigCal.
All individual GEMs are 40 times 50 cm in size. The trigger will in addition require signal
from the hadron calorimeter HCal.

Figure 9: Schematic floor plan arrangement for
the GEp(V) experiment using the SBS.

Figure 10: The GEM principle. Figure from the
RD51 collaboration at CERN.

The choice of GEM detectors, rather than drift wire chambers for GEp(V), is dictated
by the high fluxes of soft photons and charged particles expected because the detectors
will be in direct view of the target.

The great strength of the GEM principle is that the amplification of the primary
ionization electron produced in the drift region, occurs in between the copper foils on
either side of a typically 50 µm thick kapton foils, with a potential difference of several
hundred volts; this is illustrated in Fig. 10.

The device will be built around a BNL dipole, deflecting protons vertically by about
70 for favorable precession of the longitudinal polarization at Q2 14.5 GeV2. A cut on
the side of the magnet will allow for placing the dipole at ∼ 120 to the beam, 140 cm
from the target center.

The expected error bars for GEp(V) [29] are shown in Fig.11. For the neutron elec-
tric form factor measurements (GEn(II)), the LH2 target will be replaced by a gaseous,
pressurized 50 cm long polarized 3He target [30] with proven performance (see [14]). The
neutron will be detected in the hadron calorimeter (HCal) required for the trigger in
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Figure 11: The anticipated results of GEp(V). A
wide range of phenomenological model predictions
are shown, underlining the potential ability of these
two experiments, to narrow the range of models able
to reproduce the future data.

Figure 12: Current data for GEn/GMn; all
data are from double polarization experiments;
the empty squares on the zero line show the an-
ticipated statistical uncertainty for the GEn(II)
experiment.

GEp(V), preceded by planes of GEMs to veto charged particles and improve the position
resolution; protons will be swept out by the SBS dipole. The scattered electrons will be
detected in the permanent facility BigBite, a simple dipole with vertical bending, equipped
with drift chambers, and a calorimeter. Fig.12 shows current data for GEn/GMn; all data
are from double polarization experiments; the empty squares on the zero line show the
anticipated statistical uncertainty for the GEn(II) experiment (E09-019). The Dyson-
Schwinger calculation of Cloët et al predicts a zero crossing for GEn/GMn; the proposed
data may definitively exclude many of the current model predictions. The possibility of
detecting a zero crossing of the neutron electric form factor, as predicted by Cloët and
Roberts, is within reach.

5 Conclusions

The increasingly common use of the double-polarization technique to measure the nu-
cleon form factors, in the last 15 years, has resulted in a dramatic improvement of the
quality of all four nucleon electromagnetic form factors, GEp, GMp, GEn and GMn. It
has also completely changed our understanding of the proton structure, having resulted
in a distinctly different Q2- dependence for GEp and GMp, contradicting the prevailing
wisdom of the 1990’s based on cross section measurements and the Rosenbluth separation
method, namely that GEp and GMp obey a “scaling” relation µGEp ∼ GMp. A direct
consequence of the faster decrease of GEp revealed by the JLab polarization experiments
was the disappearance of the early scaling F2/F1 ∼ 1/Q2 predicted by perturbative QCD.

The main origin of this abrupt change in results is now understood in simple terms.
The faster decrease of GEp reduces its contribution to the cross section significantly below
the natural ratio prevailing at small Q2, namely G2

Ep/G
2
Mp ∼ 1/µ2

p. At the highest Q2

for which we now have polarization data, 8.5 GeV2, the contribution from the electric
FF to the cross section is less than 1%. It has been realized in recent years, that to
extract GEp from Rosenbluth separations at larger Q2 requires a much better quantitative
understanding of several of the radiative corrections contributions, including in particular
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the one due two hard photon exchange. There are currently differences of order several
%’s between the results of various radiative correction calculations. The two-hard-photon
correction by itself might explain the whole discrepancy between Rosenbluth and recoil
polarization results, but it does not affect recoil polarization results measurably, because
these are measurements of ratios of form factors and both form factors are, in first order,
modified similarly. Until the origin of the difference between cross section and polarization
results is understood in full quantitative detail, it is safest to take the polarization results
as the closest to the real, Born approximation, proton form factors.

The use of the polarization technique has also resulted in a constant progress in the
measurement of GEn, which is intrinsically more difficult to obtain because of the smallness
of this form factor, due to the overall zero charge of the neutron. Recent times have seen
the maximum Q2 for which we have polarization form factors grow to 1.5 GeV2, with new
data up to 3.4 GeV2, and several experiments planned or proposed to significantly higher
Q2 values. Important progress has been made for GMn too, with new data with much
improved error bars up to 4.8 GeV2.

There is a well defined and ambitious program to continue form factor measurements
for the nucleon, to the highest possible Q2 once the ongoing 12 GeV upgrade of JLab is
completed; as well as strong physics motivation to do so.

The future form factor program at JLab involves large collaborations of Universities
and National Laboratories. It includes two Russian Laboratories: JINR in Dubna for
a new hadron calorimeter (I. Savin), and ITEP in Protvino (A. Vasiliev) for parts of
the electromagnetic calorimeter BigCal. LHP Dubna is committed to analyzing power
measurements with the Nuclotron (N. Piskunov)
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Body Syst. 46, 1 (2009)

[27] http://hallaweb.jlab.org/12GeV/SuperBigBite/

[28] L.S. Azhgirey et al., Nucl. Inst. Meth. A 538, 431 (2005).

[29] http://hallaweb.jlab.org/collab/PAC/PAC32/PR12-07-109-Ratio.pdf

[30] http://hallaweb.jlab.org/collab/PAC/PAC34/PR-09-016-gen.pdf

322



SPIN PHYSICS WITH CLAS

Y. Prok 1 2,†

(1) Christopher Newport University
(2) Thomas Jefferson National Accelerator Facility

† E-mail: yprok@jlab.org

Abstract
Inelastic scattering using polarized nucleon targets and polarized charged lepton

beams allows the extraction of double and single spin asymmetries that provide
information about the helicity structure of the nucleon. A program designed to
study such processes at low and intermediate Q2 for the proton and deuteron has
been pursued by the CLAS Collaboration at Jefferson Lab since 1998. Our inclusive
data with high statistical precision and extensive kinematic coverage allow us to
better constrain the polarized parton distributions and to accurately determine
various moments of spin structure function g1 as a function of Q2. The latest
results are shown, illustrating our contribution to the world data, with comparisons
of the data with NLO global fits, phenomenological models, chiral perturbation
theory and the GDH and Bjorken sum rules. The semi-inclusive measurements of
single and double spin asymmetries for charged and neutral pions are also shown,
indicating the importance of the orbital motion of quarks in understanding of the
spin structure of the nucleon.

1 Introduction

One fundamental goal of Nuclear Physics is the description of the structure and proper-
ties of hadrons, and especially nucleons, in terms of the underlying degrees of freedom,
namely quarks and the color forces between them. Much progress has been made over
the last decades towards this goal, both experimentally (e.g., through structure function
and form factor measurements) and theoretically (effective theories like the quark model,
chiral perturbation theory as well as complete solutions of QCD on the lattice). At the
same time, there are many important questions that require further investigation, such as:
What is the quark structure of nucleons in the valence region, in particular in the limit of
large momentum fraction carried by a single quark, x → 1? How can we describe the tran-
sition from hadronic degrees of freedom to quark degrees of freedom for the nucleon? How
can we describe the nucleon in three dimensions and what are the correlations between
transverse momentum and spin? How does quark orbital angular momentum contribute
to the spin of the nucleon? A program designed to study these questions, and utilizing the
CLAS detector, 6 GeV polarized electron beam, and longitudinally polarized solid am-
monia targets (NH3 and ND3) has been pursued by the CLAS Collaboration at Jefferson
Lab since 1998. This program entails both inclusive measurements of inelastic electron
scattering as well as coincident detection of leading hadrons (pions etc.) produced in
such events. Due to the large acceptance of CLAS, a large kinematical region is accessed
simultaneously. Both the scattered electrons and leading hadrons from the hadronization
of the struck quark are detected, allowing us to gain information on its flavor.
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1.1 Nucleon Helicity Structure at large x

The photon-nucleon asymmetry A1(x,Q2) reflects the valence spin structure of the nu-
cleon. Valence quarks are the irreducible kernel of each hadron, responsible for its charge,
baryon number and other macroscopic properties. The region x → 1 is a relatively clean
region to study the valence structure of the nucleon since this region is dominated by
valence quarks while the small x region is dominated by gluon and sea densities. Due to
its relative Q2-independence in the DIS region, the virtual photon asymmetry A1, which is
approximately given by the ratio of spin-dependent to spin averaged structure functions,

A1(x) ≈ g1(x)

F1(x)
, (1)

is one of the best physics observables to study the valence spin structure of the nucleon.
At leading order,

A1(x,Q2) :=

∑
e2

i ∆qi(x,Q2)∑
e2

i qi(x,Q2)
, (2)

where q = q ↑ +q ↓ and ∆q = q ↑ −q ↓ are the sum and difference between quark
distributions with spin aligned and anti-aligned with the spin of the nucleon. The x
dependence of the parton distributions provide a wealth of information about the quark-
gluon dynamics of the nucleon. in particular spin degrees of freedom allow access to
information about the structure of hadrons not available through unpolarized processes.
Furthermore, the spin dependent distributions are more sensitive than the spin-averaged
ones to the quark-gluon dynamics responsible for spin-flavor symmetry breaking. Several
models make specific predictions for the large x behavior of quark distributions.

1.2 Moments and Sum Rules

The spin structure function g1 is important in understanding the quark and gluon spin
components of the nucleon spin, and their relative contributions in different kinematic
regions. At high Q2, g1 provides information on how the nucleon spin is composed of
the spin of its constituent quarks and gluons. At low Q2, hadronic degrees of freedom
become more important and dominate the measurements. There is particular interest
in the first moment of g1, Γ1(Q

2) =
∫ 1−
0

g1(x,Q2)dx, which is constrained at low Q2

by the Gerasimov-Drell-Hearn sum rule [1] and at high Q2 by the Bjorken sum rule [2]
and previous DIS experiments. In our definition the upper limit of the integral does not
include the elastic peak. Ji and Osborne [3] have shown that the GDH sum rule can be
generalized to all Q2 via

S1(ν = 0, Q2) =
8

Q2

[
Γ1(Q

2) + Γel
1 (Q2)

]
, (3)

where S1(ν,Q
2) is the spin-dependent virtual photon Compton amplitude. S1 can be

calculated in Chiral Perturbation Theory (χPT) at low Q2 and with perturbative QCD
(pQCD) at high Q2. Therefore, Γ1 represents a calculable observable that spans the entire
energy range from hadronic to partonic descriptions of the nucleon. Higher moments are
also of interest: generalized spin polarizabilities, γ0 and δLT , are linked to higher moments
of spin structure functions by sum rules based on similar grounds as the GDH sum rule.
Higher moments are less sensitive to the unmeasured low-x part since they are more
weighted at high-x.
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1.3 Flavor Decomposition of the Helicity Structure

If we want to understand the three-dimensional structure of the nucleon, we have to go
beyond inclusive measurements that are only sensitive to the longitudinal momentum
fraction x carried by the quarks. The large acceptance of CLAS allows us to collect data
on semi-inclusive (SIDIS) reactions simultaneously. In these reactions, a second particle,
typically a meson, is detected along with the scattered lepton. By making use of the
additional information given by the identification of this meson, one can learn more about
the polarized partons inside the nucleon than from DIS alone. The asymmetry measured
by DIS experiments is sensitive to combinations of quark and anti-quark polarized parton
distribution functions (∆q+∆q̄), as well as (via NLO analyses) the gluon PDF ∆G. SIDIS
experiments exploit the statistical correlation between the flavor of the struck quark and
the type of hadron produced to extract information on quark and antiquark PDFs of all
flavors separately. Combined NLO analyses of DIS and SIDIS data can therefore give a
more detailed picture of the contribution of all quark flavors and both valence and sea
quarks to the total nucleon helicity. Beyond the determination of the polarized PDFs,
SIDIS data can also yield a plethora of new insights into the internal structure of the
nucleon as well as the dynamics of quark fragmentation. For instance, looking at the
z- and pT -dependence of the various meson asymmetries (both double spin asymmetries
and single spin target or beam asymmetries), one can learn about the intrinsic transverse
momentum of quarks and their orbital angular momentum.

2 Measurements and Data Analysis

A1 and g1 were extracted from measurements of the double spin asymmetry A‖ in inclusive
ep scattering:

g1 =
F1

1 + γ2
[A‖/D + (γ − η)A2], (4)

where F1 is the unpolarized structure function, A2 is the virtual photon asymmetry, and
γ, D and η are kinematic factors. F1 and A2 are calculated using a parametrization of
the world data, and A‖ is measured. The spin asymmetry for ep scattering is given by:

A‖ =
N− −N+

N− + N+

CN

fPbPtfRC

+ ARC , (5)

where N−(N+) is the number of scattered electrons normalized to the incident charge
with negative (positive) beam helicity, f is the dilution factor needed to correct for the
electrons scattering off the unpolarized background, fRC and ARC correct for radiative
effects, and CN is the correction factor associated with polarized 15N nuclei in the target.
A‖ was measured by scattering polarized electrons off polarized nucleons using a cryogenic
solid polarized target and CLAS in Hall B. The raw asymmetries were corrected for the
beam charge asymmetry, the dilution factor and radiative effects. Since the elastic peak is
within the acceptance range, the product of beam and target polarization was determined
from the known ep elastic asymmetry.

The longitudinally polarized electrons were produced by a strained GaAs electron
source with a typical beam polarization of ∼ 70%. Two solid polarized targets were used:
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15ND3 for polarized deuterons and 15NH3 for polarized protons. The targets were po-
larized using the method of Dynamic Nuclear Polarization, with the typical polarization
of 70-90% for protons, and 10-35% for deuterons. Besides the polarized targets, three
unpolarized targets (12C, 15N , liquid 4He) were used for background measurements. The
scattered electrons were identified using the CLAS package [4], consisting of drift cham-
bers, Cherenkov detector, time-of-flight counters and electromagnetic calorimeters. Data
were taken with beam energies of 1.6, 2.4, 4.2 and 5.7 GeV, covering a kinematic range
of of 0.05 < Q2 < 4.5 GeV2 and 0.8 < W < 3.0 GeV. The data include multi-particle
final states,making it possible to investigate exclusive and semi-inclusive pion production,
deeply virtual Compton scattering and other exclusive channels.

3 Results

3.1 Large x behavior of A1(x,Q2)

The photon-nucleon asymmetry Ap
1 is shown in Figure 1. Along with the recent CLAS

data, the plot shows results from previous experiments, and predictions from several
models.

Figure 1: Asymmetry Ap
1 plotted vs x could

differentiate between the different models of
valence spin structure of the nucleons.

The models [5] include the suppression of
transitions to states in the lowest even and odd
parity multiplets with combined quark spin S =
3
2
, the suppression of transitions to states with

helicity h = 3
2
, and the suppression of transitions

to the states which couple only through symmet-
ric components of the spin-flavor wavefunction.
Also shown is the prediction of the hyperfine-
perturbed quark model, which involves spin-spin
interaction between quarks, mediated by one
gluon or pion exchange [6]. Our data show a
preference for the pQCD limit as x → 1, and
are also consistent with the hyperfine-perturbed
quark model.

3.2 Moments of g1(x,Q2)

The first moments of gp
1 and gd

1 are shown in Figure 2. The parametrization of world
data is used to include the unmeasured contribution to the integral down to x = 0.001.
Only the Q2 bins is which the measured part constitutes at least 50% of the total integral
are included. For the proton, the parametrization at high x (1.09 < W < 1.14 (1.15)
GeV is used for the low (high) energy data). For the deuteron, the integration is carried
out up to the nucleon pion production threshold at high x, excluding the quasi-elastic
and electro- disintegration contributions. The integral is observed to turn over at low
Q2, consistent with the slope predicted by the GDH sum rule. In general the data are
well described by the phenomenological models of Burkert and Ioffe [10] and Soffer and
Teryaev [11]. The low Q2 Γ1 data are shown in more detail in the right-hand panels of
Figs. 2. It is possible to make a quantitative comparison between our results for Γp

1 and
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Figure 2: (a) Γp
1 as a function of Q2. (b) Γd

1 as a function of Q2. The EG1a [7], SLAC [8] and
Hermes data [9] are shown for comparison. The filled circles represent the present data, including an
extrapolation over the unmeasured part of the x spectrum using a model of world data.

Γd
1 at low Q2 and the next-to-leading order χPT calculation by Ji, Kao and Osborne [12],

who find Γp
1(Q

2) = − κ2
p

8M2 Q
2 + 3.89Q4 + ... and Γn

1 (Q2) = − κ2
n

8M2 Q
2 + 3.15Q4 + ....

Treating the deuteron as the incoherent sum of a proton and a neutron and correcting
for the D-state,

Γd
1(Q

2) =
1

2
(1− 1.5ωD)

{
Γp

1(Q
2) + Γn

1 (Q2)
}

, (6)
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Figure 3: Generalized forward spin polariz-
ability γp

0 as a function of Q2 for the full inte-
gral (closed circles) and the measured portion
of the integral (open circles)

one finds that Γd
1(Q

2) = −0.451Q2+3.26Q4. The
low Q2 results for Γp

1 and Γd
1 have been fit to

a function of the form aQ2 + bQ4 + cQ6 + dQ8

where a is fixed at −0.455 (proton) and −0.451
(deuteron) by the GDH sum rule. For the pro-
ton, b = 3.81± 0.31 (stat) +0.44− 0.57 (syst) is
extracted and for the deuteron, b = 2.91 ± 0.52
(stat) ±0.69 (syst) was obtained, both consistent
with the Q4 term predicted by Ji et.al. Our fit is
shown in the right-hand panel of plots in Figs. 2
along with Ji’s prediction. We find that the Q6

term becomes important even below Q2 = 0.1
GeV2 and that this term needs to be included
in the χPT calculations in order to extend the
range of their validity.

Higher moments of g1 are interesting as well.
In our kinematic domain these moments empha-
size the resonance region over DIS kinematics
because of extra factors of x in the integrand. The generalized forward spin polarizability
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of the nucleon is given by [13]

γ0(Q
2) =

16αM2

Q6

∫ x0

0

x2

{
g1(x,Q2)− Q2x2

4M2
g2(x,Q2)

}
dx, (7)

where α is the fine structure constant. First results for the generalized forward spin
polarizability of the proton for a range of Q2 from 0.05 to 4 GeV2 are shown in Fig. 3
Our data lie closest to the MAID 2003 [14] model, which is a phenomenological fit to
single pion production data and includes only the resonance region. However, since γ0 is
weighted by an additional factor of x2 compared to Γ1, the contribution to the integral
from the DIS part of the spectrum is rather small. The MAID model follows the trend of
the data but significantly underpredicts them numerically.

The 4th order Heavy Baryon Chiral Perturbation calculation by Kao, Spitzenberg and
Vanderhaeghen [15], shown by the dashed line in Fig. 3, also underpredicts the data. The
authors note that the O(p4) correction term is of opposite sign to the O(p3) term and
shows no sign of convergence. A leading order correction to account for ∆(1232) degrees
of freedom, not shown, is also negative. By contrast, the χPT calculation of Bernard,
Hemmert and Meissner [16], indicated by the grey band, including the resonance contri-
bution, overpredicts the data. The ∆(1232) and vector meson contribution is negative
(around −2 × 10−4 fm4) but the discrepancy with the data suggests that this has been
underestimated.

3.3 Quark-Hadron Duality
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Figure 4: The Q2 dependence of Q2g1(x,Q2)
averaged over a region in x corresponding to
1.08 < W < 2.00 GeV for the proton.

It is interesting to investigate a kinematic region
in which both the hadronic and partonic descrip-
tions of spin structure can be successfully used.
Such ’dual’ description has been successful in the
case of unpolarized structure functions [18], but
it is unclear whether it would hold in the polar-
ized case, since at low Q2 and W , g1 is dominated
by the ∆(1230) resonance, which has a negative
spin asymmetry, but in the DIS region this asym-
metry is positive. To test global ’duality’, we
average g1 over x in the 1.08 < W < 2.00 GeV
region, and plot it as shown in Fig. 4. In this plot
we also show the effect of including elastic con-
tribution. An NLO DIS calculation [19] evolved
to our kinematics is also shown as a band.
We see a rather good agreement between our
data and the NLO DIS fit down to Q2 ∼ 1.5
GeV2.

3.4 Factorization tests

The semi-inclusive measurements of double spin asymmetries allow us to study factor-
ization of x, z = Eh/ν and pT dependency for charged and neutral pions. We study the
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quantity g1/F1 as a function of kinematic variables for all three pion flavors [17]. The
z-dependence of semi-inclusive g1/F1 is examined in Fig. 5. We compare the data with LO
pQCD predictions obtained from the GRSV2000 [19] parametrization. The ratio should
be approximately independent of z, broken by the different weights given to the polarized
u and d quarks by the favored and unfavored fragmentation functions. This is indeed
observed in the data, which are in good agreement with the model in both magnitude and
z-dependence up to z = 0.7. The observed drop-off at high z for π− is also expected due to
increased importance of d(x) with increasing z. The x-dependence of g1/F1 for π+, π−, π0

are consistent with each other and follow the same trend as the inclusive result, which
is expected if factorization works. The trend is for the ratio to increase with x, due to
increasing dominance of polarized u(x) at high x. The ratio g1/F1 has also been studied
as a function of transverse component of the hadron momentum pT . The data suggest
that at small pT , g1/F1 tends to decrease for π+ and to decrease for π−. This result
indicates that quarks aligned and anti-aligned with the nucleon spin might have different
transverse momentum distributions, but more data is needed to study this behavior.

4 Summary and Outlook
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Figure 5: z-dependence of semi-inclusive
g1/F1 for the proton target

In conclusion, the spin asymmetries for the pro-
ton and the deuteron have been measured over a
vast kinematic region, allowing systematic stud-
ies of various aspects of the nucleon spin struc-
ture at low and intermediate energies. Our data
are consistent with an approach to A1 = 1 as
x → 1 as required by pQCD. The first extrac-
tion of generalized forward spin polarizability γp

0

was shown to be poorly described by the chiral
perturbation theory even at our lowest Q2 = 0.05
GeV2/c2. The semi-inclusive studies have shown
interesting pT dependence suggesting that the
transverse momentum distributions may have
non-trivial dependency on the flavor and helicity of quarks. These studies have led to
several new proposals with 6 and 11 GeV beams. A recently completed run with 6 GeV
beam will provide us with an order of magnitude more π+, π−, π0 for g1/F1 on the proton.

The upcoming energy upgrade of Jefferson Lab will allow us to begin a next generation
of spin structure studies and will provide a significant increase in kinematic coverage and
statistical accuracy in inclusive and semi-inclusive measurements.
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Abstract

A new polarimeter for absolute proton beam polarization measurements at 200
MeV to accuracy better than ± 0.5% has been developed as a part of the RHIC
polarized source upgrade. The polarimeter is based on the elastic proton-carbon
scattering at 16.20 angle, where the analyzing power is close to 100% and was mea-
sured with high accuracy. The elastically and in-elastically scattered protons are
clearly discriminated by the difference in the propagation length through copper
absorber of precisely calculated thickness and energy deposition of the protons in
the scintillator telescope detectors. The analyzing power of elastic scattering po-
larimeter was calibrated with the help of inclusive 120 polarimeter and have shown
good agreement with simulation results. This technique can be used for accurate
polarization measurements in the energy range of at least 160-250 MeV.

I. Polarization measurements technique. The polarized beam for RHIC spin physics
experimental program is produced in the optically-pumped polarized H- ion source (OP-
PIS) and then accelerated in linear accelerator (Linac) to 200 MeV beam energy for
strip-injection to Booster and further acceleration to 24.3 GeV in AGS for injection in
RHIC [1].

The polarimetry is an essential component of the polarized collider facility. A com-
plete set of polarimeters includes: Lamb-shift polarimeter at the source energy, a 200
MeV polarimeter after the Linac, and polarimeters in AGS and RHIC based on proton-
Carbon scattering in Coulomb-Nuclear Interference region [2]. A polarized hydrogen jet
polarimeter was used for the absolute polarization measurements in RHIC [3].

A 200 MeV polarimeter is based on proton-Carbon inclusive scattering at 120 angle
and was calibrated to ± 5% absolute accuracy in calibration experiment by comparison
with proton-Deutron elastic scattering. The ongoing program of the polarized source
upgrade to 10 mA H-intensity and 85% polarization [4] requires more accurate absolute
polarization measurements at very high peak intensity.

The precision absolute measurements at injection to Booster and AGS are also essential
for depolarization studies in Booster and AGS.

The 200 MeV inclusive polarimeter was upgraded and calibrated to absolute accu-
racy better than ± 0.5% by using the proton-Carbon elastic scattering measurements in
additional 16.20 arms. The analyzing power Ay for proton-Carbon elastic scattering at
200 MeV has been precisely measured in experiments at IUCF. The cross section and
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analyzing power for the ground and 4.44-MeV states in 12C has been reported in [7]. The
results are presented in Fig. 1. Curve 1 (2) corresponds to protons in the ground state
and exiting from the ground (4.44-MeV) state. The curve 3 represents the sum of the
two data sets. The analyzing power for elastic scattering is: Ay= 99.35± 0.1% at 16.20

scattering angle. When Ay is close to 1, it improves the statistical precision at the fixed
counting rate. Since the Ay is reaching maximum at this angle, the systematic error
contribution to Ay will be minimal.

Figure 1: Measurements of the cross section (a)
and analyzing power (b) for proton scattering from
12C at 200 MeV.

Without separation the Ay for inclusive
scattering at 16.20 angle is diluted by in-
elastic processes to about 52% [5]. The
well known first exited state in Carbon is
at 4.44 MeV energy. The elastic scattering
was selected by using the copper absorber
with the variable thickness. The simulated
number of elastically (198.5 MeV) and in-
elastically (194.1 MeV) scattered protons
detected after absorber (vs the absorber
thickness) have shown the significant dif-
ference.

2. Experimental setup. A new detec-
tor telescope arms were installed at 16.20 [4]. The telescope includes three scintillator
detectors, with fast photomultipliers. A variable copper absorber is situated in between
first and second detector. The absorber consists of three Cu blocks of a 12.7 mm thick-
ness. For precise absorber thickness adjustment two variable step shaped copper ladders,
arranged before the first detector were used. The first ladder is made with 1.0 mm step,
the second with 0.1 mm step. This layout allowed the measurement in the absorber thick-
ness range from zero to 49 mm (total absorption length for 198.4 MeV protons is about
43 mm).

With the thickness of the copper absorber chosen to be 41.5 mm thick, the elastic
protons passed through the absorber and absorbed into the second scintillator, depositing
20.0 MeV of energy. The energy thresholds for the second and third detectors were set
at 15 MeV, which further suppress the background. For the same configuration, inelastic
protons from the formation of the 4.44-MeV state had a range in the copper absorber of
40.4 mm and came to a stop before entering the second detector.

3. Experimental results. a) Energy calibration. The energy of the proton beam out
of the Linac can be varied by the RF-cavity phase tune. The energy measurements and
calibration to at least ±0.5 MeV accuracy were done by using the magnetic spectrometer
and cross-checked at injection to Booster. The experimental results of the counting rate
measurements (S1S2 coincidence) at different beam energies are presented in Fig. 2.

At the absorber thickness 41.5 mm the suppression factor for 194.1 MeV scattered
beam energy (which corresponds to a 4.4 MeV state excitation) is about 20 times in
agreement with GEANT simulations. These measurements directly confirm the feasibility
of elastic scattering separation by the absorber of properly fine tuned thickness.
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Figure 2: S2/S1 rate ratio after absorber vs. the
absorber thickness at different primary beam ener-
gies . S1, S2 are the counting rates in the first and
second telescope detectors.

Figure 3: Ay (16.20) measurement vs. copper ab-
sorber thickness. The scale is normalized for Ay sat-
uration at 0.9935 value extrapolated from precision
measurements [5].

The Linac beam energy can drift in
time. The S2/S1 rate ratio is then used
for the beam energy monitoring and tun-
ing to improve polarization measurement
accuracy.

b) Ay vs. copper absorber thickness. The
measurements of Ay vs. absorber thick-
ness are presented in Fig. 3. Since at
41.5 mm absorber thickness the analyzing
power is completely determined by elastic
scattering (as demonstrated above) the Ay

should be saturated at 99.35% value, as
precisely measured in experiments at IUCF
[5]. Then the beam polarization of about
80-82% was calculated back from experi-
mentally measured asymmetries. The an-
alyzing power for inclusive 120 polarimeter
was also calculated and then beam polar-
ization measured by 120 polarimeter was
used for 16.20 analyzing power measure-
ments vs. absorber thickness (see Fig. 3.
At zero thickness the Ay (16.20 ) = 52% in
agreement with old calibrations [6].

To understand the behavior of Ay vs ab-
sorber thickness dependence we must take
into the consideration all excitation levels
of carbon [8].

For Monte-Carlo simulation we took
the spectrum of carbon excitation levels
with elastic peak, 4.44 excitation level peak
and the flat distribution of particle energy
from zero to 194.1 MeV.

The combined analyzing power AΣ for
the mixture of three beams (elastic, 4.44 excitation level and average beam with dis-
tributed energy) with different analyzing power (A1, A2, A3 ) can be expressed by the
equation:

AΣ =
A1 + A2k2 + A3k3

1 + k2 + k3

Here k2 = n2

n1
, k3 = n3

n1
, n1, n2, n3 are beam intensities.

We took the cross section ratio k2 and the values of A1 and A2 from Fig. 1 (a) and
(b).

If we had only elastic events and 4.44 excitation level events (k3=0), we should get
0.98 analyzing power for rising absorber thickness until excitation beam will be absorbed.

Taking into account low energy particles, using k3 value from Carbon excitation spec-
trum [8] and getting the A3 value from the normalization for to have at zero absorber
thickness we have got Monte-Carlo simulation results, shown by squares in the Fig. 3
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with good agreement with experimental points. The reason of steps on the borders of
changing of solid blocks of absorber is the additional scattering of particles in the step
shaped copper ladders, arranged before the first counter. The circles in the Fig. 3 show
the simulated analyzing power, when all the absorbers are arranged only between S1 and
S2 detectors.

c). Systematic errors. The small cross-section and additional strong suppression of
inelastic (4.4 MeV state) by absorber reduce the elastic Aydilution by inelastic component
admixture to less than 0.1%. The beam energy and scattering angle errors are minimal
for the analyzing power measurements near maximum value and do not exceed 0.1%.
The estimate of the extrapolation error for 200 MeV beam energy and 16.20 angle was
estimated at about 0.2%.

4. Summary. A new polarimeter for absolute proton beam polarization measurements
at 200 MeV to accuracy better than ±0.5% has been developed as a part of the RHIC
polarized source upgrade. The polarimeter is based on the elastic proton-carbon scatter-
ing at 16.20 angle, where the analyzing power is as large as 99.35% and was measured
with high accuracy. The elastically and in-elastically scattered protons are clearly iden-
tified by the difference in the propagation through variable copper absorber and energy
deposition of the stopped protons in the detectors. The rate difference in the subsequent
detectors of telescope arms was used for the beam energy monitoring and tuning to im-
prove polarization measurement accuracy. The 16.20 elastic scattering polarimeter was
used for calibration of a high rate inclusive 120 polarimter, which was used for the on-line
polarization tuning and monitoring and will be used as main polarimeter at higher lumi-
nosities.The rise of luminosity can be compensated simply by introducing the additional
thickness of absorber.
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Abstract

The high energy polarised muon beam available at CERN, with positive or
negative charge, make COMPASS a unique place for GPD studies. The COMPASS
program of GPD studies is reviewed and various observables for this program and
expected accuracies are discussed. The necessary developements of the experimental
setup and the first results of the test runs are also presented.

1 Introduction

Generalised Parton Distributions (GPDs) [1–3] contain a wealth of information on the
partonic structure of the nucleon. In particular, they allow a novel description of the
nucleon as an extended object, sometimes referred to as 3-dimensional ’nucleon tomogra-
phy’ [4]. GPDs also allow access to such a fundamental property of the nucleon as the
orbital angular momentum of quarks [2]. For reviews of the GPDs see Refs [5–7].

The mapping of the nucleon GPDs requires comprehensive experimental studies of
hard processes, Deeply Virual Compton Scattering and Hard Exclusive Meson Production,
in a broad kinematic range. In the future program [8] we propose to measure both DVCS
and HEMP using an unpolarised proton target during a first period, in order to constrain
mainly GPD H, and a transversely polarised ammonia target during another period in
order to constrain the GPD E.

2 The proposed setup

The COMPASS apparatus is located at the high-energy (100-200 GeV) and highly-
polarized µ± beam line of the CERN SPS. At present it consists of a two-stage spec-
trometer comprising various tracking detectors, electromagnetic and hadron calorimeters,
and particle identification detectors grouped around 2 dipole magnets SM1 and SM2 in
conjunction with a longitudinally or transversely polarized target. By installing a recoil
proton detector (RPD) around the target to ensure exclusivity of the DVCS and HEMP
events, COMPASS could be converted into a facility measuring exclusive reactions within
a kinematic domain from x ∼ 0.01 to ∼ 0.1, which cannot be explored at any other exist-
ing or planned facility in the near future. Thus COMPASS could explore the uncharted
x domain between the HERA collider experiments and the fixed-target experiments as
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HERMES and the planned 12 GeV extension of the JLAB accelerator. For values of x
below 10−1, the outgoing photon (or meson) is emitted at an angle below 10◦ which cor-
responds for the photon to the acceptance of the two existing COMPASS electromagnetic
calorimeters ECAL1 and ECAL2. For charged particles such an angular range is within
the acceptance of the tracking devices and the RICH detector. To access higher x values
a large angular acceptance calorimeter ECAL0 is needed, which is presently under study.

The data will be collected with polarized µ+ and µ− beams. Assuming in total 280
days of data taking, µ+ beam flux of 4.6 · 108 µ per SPS spill and three times smaller
flux for µ− beam, a reasonable statistics for the DVCS process can be accumulated for
Q2 values up to 8 GeV2. It is worth noting that an increase of the number of muons per
spill by a factor 4 could result in an increase in the range in Q2 up to about 12 GeV2.

3 Planned measurements

The complete GPD program at COMPASS will comprise the measurements of the
DVCS cross section with polarized positive and negative muon beams and at the same
time the measurements of a large set of mesons (ρ, ω, φ, π, η, ...).

3.1 Deeply Virtual Compton Scattering

DVCS is considered to be the theoretically cleanest of the experimentally accessible
processes because effects of next-to-leading order and higher twist contributions are under
theoretical control [9]. The competing Bethe-Heitler (BH) process,which is elastic lepton-
nucleon scattering with a hard photon emitted by either the incoming or outgoing lepton,
has a final state identical to that of DVCS so that both processes interfere at the level of
amplitudes.

COMPASS offers the advantage to provide various kinematic domains where either
BH or DVCS dominates. The collection of almost pure BH events at small x allows one
to get an excellent reference yield and to control accurately the global efficiency of the
apparatus. In contrast, the collection of an almost pure DVCS sample at larger x will
allow the measurement of the x dependence of the t-slope of the cross section, which is
related to the tomographic partonic image of the nucleon. In the intermediate domain,
the DVCS contribution will be boosted by the BH process through the interference term.
The dependence on φ, the azimuthal angle between lepton scattering plane and photon
production plane, is a characteristic feature of the cross section [9].

COMPASS is presently the only facility to provide polarized leptons with either charge:
polarized µ+ and µ− beams. Note that with muon beams one naturally reverses both
charge and helicity at once. Practically µ+ are selected with a polarisation of −0.8 and
µ− with a polarization of +0.8. The difference and sum of cross sections for µ+ and µ−

combined with the analysis of φ dependence allow us to isolate the real and imaginary
parts of the leading twist-2 DVCS amplitude, and of higher twist contributions.

In the following sections we show projections for DVCS measurements with an unpo-
larised proton target (3.1.1 and 3.1.2) and with a transversely polarised ammonia target
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(3.1.3). For each target the integrated muon flux was taken the same as described in Sect.
2 and the value of the global efficiency was assumed to be equal to 0.1.

3.1.1 x-dependence of the t-slope of DVCS

Figure 1: The x dependence of the fitted t-slope
parameter B of the DVCS cross section. COM-
PASS projections are calculated for 1 < Q2 < 8
GeV2 and compared to HERA results for which
the mean value < Q2 > is in this range.

The t-slope parameter B(x) of the DVCS
cross section dσ

dt
(x) ∝ exp(−B(x) |t|) can be

obtained from the beam charge and spin sum
of the cross sections after integration over φ
and BH subtraction. The expected statisti-
cal accuracy of the measurements of B(x) at
COMPASS is shown in Fig. 1. The upper
plot corresponds to the acceptance of the ex-
isting electromagnetic calorimeters, while the
lower one is obtained assuming that in addi-
tion the new calorimeter ECAL0 will be also
available. The systematic errors are mainly
due to uncertainties involved in the subtrac-
tion of the BH contribution. At x > 0.02
they are small compared to the statistical er-
rors. For the simulations the simple ansatz
B(x) = B0+2 α′ log(x0

x
) was used. As neither

B0 nor α′ are known in the COMPASS kine-
matics, for the simulations shown in Fig. 1 we
chose the values B0 = 5.83 GeV2, α′ = 0.125
and x0 = 0.0012. The precise value of the t-slope parameter B(x) in the COMPASS
x-range will yield new and significant information in the context of ‘nucleon tomography’
as it is expected in Ref. [10].

3.1.2 Beam charge and spin difference of cross sections

Fig. 2 shows the projected statistical accuracy for the beam charge and spin difference of
cross section DCS,U measured as a function of φ in a selected (x,Q2) bin. The difference
is defined as

DCS,U = dσ
+←− dσ

−→ , (1)

with arrows indicating the orientations of the longitudinal polarisation of the beams. The
difference DCS,U is sensitive to the real part of the DVCS amplitude which is a convolution
of GPDs with the hard scattering kernel over the whole range of longitudinal momenta of
exchanged quarks. Therefore measurements of this asymmetry provide strong constrains
on the models of GPD. Two of the curves shown in the figure are calculated using the
’VGG’ GPD model [11]. As this model is meant to be applied mostly in the valence region,
typically the value α′ = 0.8 is used in the ’reggeized’ parameterization of the correlated
x, t dependence of GPDs. For comparison also the model result for the ’factorized’ x, t
dependence is shown, which corresponds to α′ ≈ 0.1 in the reggeized ansatz. A recent
theoretical development [12] exploiting dispersion relations for Compton form factors was
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successfully applied to describe DVCS observables at very small values of x typical for the
HERA and extended to include DVCS data from HERMES and JLAB. The prediction
for COMPASS from this analysis are shown as additional curves.

Figure 2: Projections for the beam charge and spin difference of cross sections measured at COMPASS
for 0.03 ≤ x ≤ 0.07 and 1 ≤ Q2 ≤ 4 GeV2. The red and blue curves correspond to two variants of the
VGG model [11] while the green curves show predictions based on the first fits to the world data [12].

As the overall expected data set from the GPD program for COMPASS will allow 9
bins in x vs. Q2, each of them expected to contain statistics sufficient for stable fits of
the φ dependence, a determination of the 2-dimensional x, Q2 (or x, t) dependence will
be possible for the various Fourier expansion coefficients cn and sn [9], thereby yielding
information on the nucleon structure in terms of GPDs over a range in x. These data
are expected to be very useful for future developments of reliable GPD models able to
simultaneously describe the full x-range.

3.1.3 Predictions for the transverse target spin asymmetry

Transverse target spin asymmetries for exclusive photon production are important ob-
servables for studies of the GPD E, and for the determination of the role of the orbital
momentum of quarks in the spin budget of the nucleon. The sensitivity of these asymme-
tries to the total angular momentum of u quarks, Ju, was estimated for the transversely
polarised protons in a model dependent way in Ref. [13].

The transverse target spin asymmetries for the proton will be measured with the
transversely polarised ammonia target, similar to the one used at present by COMPASS.
Two options are considered for the configuration of the target magnet and the RPD, each
with a different impact on the range of measurable energy of the recoil proton.

The transverse spin dependent part of the cross sections will be obtained by subtracting
the data with opposite values of the azimuthal angle φs, which is the angle between the
lepton scattering plane and the target spin vector. In order to disentangle the |DV CS|2
and the interference terms with the same azimuthal dependence, it is necessary to take
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data with both µ+ and µ− beams, because only in the difference and the sum of µ+ and
µ− cross sections these terms become separated. Both asymmetries for the difference and
the sum of µ+ and µ− of transverse spin dependent cross sections will be analysed. The
difference (sum) asymmetry AD

CS,T (AS
CS,T ) is defined as the ratio of the µ+ and µ− cross

section difference (sum) divided by the lepton charge-averaged, unpolarised cross section.
Here CS indicates that both lepton charge and lepton spin are reversed between µ+ and
µ−, and T is for the transverse target polarisation.
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Figure 3: The expected statistical accuracy of A
D,sin(φ−φs)cosφ
CS,T as a function of −t, x and Q2. Solid

and open circles correspond to the simulations for the two considered configurations of the target region.
Also shown is the asymmetry A

sin(φ−φs)cosφ
U,T measured by HERMES [13] with its statistical errors.

As an example, the results from the simulations of the expected statistical accuracy
of the asymmetry A

D,sin(φ−φs)cosφ
CS,T are shown in Fig. 3 as a function of −t, x and Q2 for

the two considered configurations of the target region. Here sin(φ − φs)cosφ indicates
the type of azimuthal modulations. This asymmetry is an analogue of the asymmetry
A

sin(φ−φs)cosφ
UT measured by HERMES with unpolarised electrons, also shown in the figure.

Typical values of the statistical errors of A
D,sin(φ−φs)cosφ
CS,T , as well as of the seven remaining

asymmetries related to the twist-2 terms in the cross section, are expected to be ≈ 0.03.

3.2 Hard Exclusive Meson Production

Hard exclusive vector meson production is complementary to DVCS as it provides
access to various other combinations of GPDs. For vector meson production only GPDs
H and E contribute, while for pseudoscalar mesons GPDs H̃ and Ẽ play a role. We
recall that DVCS depends on the four GPDs. Also in contrast to DVCS, where gluon
contributions enter only beyond leading order in αs, in HEMP both quark and gluon
GPDs contribute at the same order. For example

Hρ0 =
1√
2
(
2

3
Hu +

1

3
Hd +

3

8
Hg), Hω =

1√
2
(
2

3
Hu − 1

3
Hd +

1

8
Hg), Hφ = −1

3
Hs − 1

8
Hg.

Therefore by combining the results for various mesons the GPDs for various quark flavours
and for gluons could be disentangled.

Data on exclusive production of vector mesons production, which will be recorded
simultaneously to the DVCS measurements, will be used to determine corresponding
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Figure 4: Projections for measuring the t-slope parameter B in exclusive ρ0 production, calculated for
1 ≥ Q2 ≥ 20 GeV2 compared to ZUES results with similar < Q2 >. Only statistical erros are shown.

cross sections and t-slope parameters B(x). As an example, in Fig. 4 we show projections
for the ρ0 meson. The simulations are based on a model developed for COMPASS, where
the Q2 and ν dependences are taken from the parameterisation of the NMC data and the
absolute normalisation is obtained using predictions of Ref. [14]. The statistical precision
expected for 280 days at 160 GeV muon beam energy is shown for different bins of x and
Q2. The data from ZEUS, which cover a lower x range are also shown for comparison.
The projections for COMPASS include a dependence of the slope B on Q2, as observed
in both ZEUS and H1 experiments, but no correlation between the slope value and x was
assumed here.

It was pointed out that vector meson production on a transversely polarised target is
sensitive to the nucleon helicity-flip GPD E [5,15]. This GPD offers unique views on the
orbital angular momentum carried by partons in the proton [2] and on the correlation
between polarisation and spatial distribution of partons [4]. The azimuthal asymmetry

A
sin(φ−φs)
UT for exclusive production of a vector meson off a transversely polarised nucleon

depends linearly on the GPD E and at COMPASS kinematic domain it can be expressed
as

A
sin(φ−φs)
UT ∼ √

t0 − t
Im(EMH∗

M)

|HM |2 , (2)

where t0 is the minimal momentum transfer. The quantities HM and EM are weighted
sums of convolutions of the GPD Hq,g and Eq,g, respectively, with the generalised distri-
bution amplitude (GDA) of the produced meson and a hard scattering kernel [5]. The
weights depend on the contributions of quarks of various flavours and of gluons to the
production of meson M .

We note that the production of ρ, ω, φ vector mesons is already being investigated
at COMPASS [16]. The preliminary results from COMPASS on the transverse target
spin asymmetries for ρ0 production off transversely polarised protons and deuterons were
presented at this conference [17].
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4 Validation tests and outlook

The setup used in 2008 and 2009 for the meson spectroscopy measurements with hadron
beams happens to be an excellent prototype to perform validation measurements for DVCS.
A first measurements of exclusive γ production on a 40 cm long LH target, with detection
of the slow recoiling proton in the RPD have been performed during short test runs in
2008 and 2009 using 160 GeV µ+ and µ− beams. They were performed with the present
hadron setup, all the standard COMPASS tracking detectors, the ECAL1 and ECAL2
electromagnetic calorimeters for photon detection and appropriate triggers. An efficient
selection of single photon events, and suppression of the background is possible by using
the combined information from the forward COMPASS detectors and the RPD.

Figure 5: The distribution of the azimuthal angle φ for observed exclusive single photon production
measured in the 2009 DVCS test run at COMPASS. The lines represent the expected BH event yield.

A way to identify the observed process, µ + p → µ′ + γ + p′, to which both the DVCS
and Bethe-Heitler process contribute, is to look at the angle φ between the leptonic and
hadronic planes. The observed distributions, after applying all cuts and selections and
for Q2 > 1 (GeV/c)2, are displayed in Fig. 5 and compared to the predictions from the
Monte Carlo simulations for the BH event yield. The Bethe-Heitler contribution shows
a characteristic peak at φ ' 0. The overall detection efficiency can be deduced from the
relative normalization of the two distributions for the low x-region dominated by BH. The
global efficiency is equal to 0.14 ± 0.05 in agreement with the value 0.1 assumed for the
proposal [8].

The proposal to extend the physics program of COMPASS, including the GPD studies,
was approved at CERN in 2010. A possible start of the GPD program, first with a 2.5 m
long liquid hydrogen target, is planned for 2012. A few weeks run with the muon beam
will be devoted to the comissioning of a 4 m long RPD being presently constructed, and
of a central part (20%) of ECAL0, which will be available in 2012. It will be followed by
a short physics run with an objective to measure t-slope for DVCS.
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Abstract

At the Relativistic Heavy Ion Collider the measurement of the proton beam
polarization is based on the observation of the azimuthal asymmetry of recoil prod-
ucts in elastic proton-proton and proton-carbon scattering processes. For the high
energy beams (E = 24–250 GeV) scattered on a fixed target the asymmetry is
maximal when induced by the coulomb-nuclear interference at a small momentum
transfer squared −t. Fast measurements of the beam polarization are carried out
few times during an accelerator store by the p-Carbon polarimeters utilizing a car-
bon filament as a target while the absolute polarization is provided by the H-jet
polarimeter with a polarized hydrogen jet target. Recoil particles are detected by
microstrip silicon detectors. For the 2011 run the readout system of the p-Carbon
polarimeters was upgraded to cope with the increased beam intensity. We report
the average beam polarization and discuss the systematic uncertainties associated
with the measurement.

1 Introduction

At the Relativistic Heavy Ion Collider (RHIC) the polarization of the proton beams is
measured by detecting recoil products from the elastic proton-proton (pp → pp) and
proton-Carbon (pC → pC) scattering reactions on a fixed target. The beam polariza-
tion P is a statistical quantity defined as a fraction of the expected spin-dependent asym-
metry AN =

σ↑−σ↓
σ↑+σ↓

measured in the experiment, i.e. P = ε/AN where ε and AN are the

observed and predicted asymmetries respectively. In general, the scattering cross section
of particles with determined spin orientation σ↑/↓ can be described by five independent
helicity amplitudes corresponding to double-, single-, or no-spin flips between the initial
and final states [1]. Each of the helicity amplitudes has an electromagnetic and hadronic
part hence, making AN dependent on contributions from both electromagnetic and strong
interactions as well as their superposition. The asymmetry AN , also known as the analyz-
ing power, cannot be calculated exactly due to lack of precise theoretical framework for
the strong force at smaller values of momentum transfer squared −t. However, with the
assumption of negligible contribution from the hadronic spin-flip amplitude the analyzing
power can be calculated exactly for a wide range of −t. It has been shown [2] that AN

has a maximum value of approximately 4–5% at −t ≈ 0.003 GeV2 and decreases with
increasing −t. The kinematic region around the maximum is called the Coulomb Nuclear
Interference (CNI) region, and corresponds to where the electromagnetic and strong forces
become similar in strength and interfere with each other.
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The measurements over the last decade demonstrated that the assumption of a small
contribution of the hadronic spin-flip amplitude holds true within experimental uncertain-
ties for the pp interactions at

√
s & 10 GeV [3] whereas the same contribution at lower

energies and in pC interactions may be non-zero [4, 5].

2 Experimental Setup

Precise knowledge of the beam polarization is essential for the spin physics program at
BNL. To meet the program goals the RHIC utilizes two kinds of polarimeters. The first
type includes the H-jet polarimeter that consists of a polarized atomic hydrogen jet target
with a known polarization measured by a Breit-Rabi polarimeter [3]. It is located at one of
the collision points and measures the kinematics of the protons recoiled from the vertical
jet target. Both RHIC beams traverse the target simultaneously but do not interact with
each other as they are vertically separated by ≈ 4 mm. The transverse size of the hydrogen
jet is ≈ 6 mm which is wide enough to probe the entire cross section of the beam. The
second type includes the p-Carbon polarimeters which operate by inserting an ultra-thin
carbon ribbon target into the beam. A typical target size is 2.5 cm×10 µm×25 nm. The
high event rate and the small width of the targets allows one to measure polarization at
different positions across the beam, i.e. a polarization profile. Since 2009 the RHIC has
two independent p-Carbon polarimeters installed in each ring. Each polarimeter of this
kind employs a set of six vertical and horizontal targets.

Figure 1: Schematic view of the RHIC
polarimeters experimental setup. The
shown direction of the silicon strips is typ-
ical for the H-jet polarimeter.

Figure 1 schematically illustrates the basic idea
of the experimental setup for the RHIC polarime-
ters. A high energy polarized proton kicks a par-
ticle from the target which is then registered by a
silicon strip detector. In the elastic CNI interac-
tion the direction of the scattered proton does not
change significantly while the recoil particle tends
to stay in the plane perpendicular to the beam di-
rection. In this optimal plane six detectors with 12
strips parallel to the beam line are installed as far as
≈ 18− 19 cm from the target at ±45◦, ±90◦, ±135◦

w.r.t. the proton’s spin direction in each of the p-
Carbon polarimeters. Another set of six detectors
is installed close to ±90◦ at ≈ 80 cm from the jet target in the H-jet. All the detec-
tors are mounted inside the vacuum chamber with readout preamplifier boards directly
attached to the feed-through connector on the detector ports. The RHIC polarimeters
employ a similar readout system based on the waveform digitizer modules. The data
acquisition system provides timing and energy information for each event detected in the
silicon detectors.

For the 2011 run the charge-sensitive preamplifiers in the p-Carbon polarimeters were
replaced with current-sensitive ones. Due to this effort a significant reduction in the
output signal length to ≈ 10 ns was achieved. The event pileup effects seen previously
were minimized.
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Figure 2: Average polarization in a accelerator store as measured by the H-jet polarimeter in the blue
(a) and yellow (b) rings.

3 Analysis and Results

The energy response of the silicon detectors is calibrated with α-sources installed inside
the vacuum polarimeter chambers. Emitted α particles have energy of ∼ 5 MeV and
completely stop in the detectors. While most of the recoil protons and carbon ions are
also stopped in the detectors the latter travel much shorter distance in silicon. The
region close to the surface of a silicon detector is known to be under-depleted when
a bias voltage applied. The energy lost in this dead region cannot be measured. To
account for these extra energy losses Eloss we calibrate each channel by fitting elastic
events with a non-relativistic equation relating the measured time of flight tmeas and the
measured energy Emeas as: Emeas + Eloss = m

2
× L2/(tmeas + t0)

2, where m is the mass
and L is the distance traveled by a recoil particle. An additional time of flight offset
t0 is also individually adjusted for each strip using the same data. Once the calibration
parameters are identified the signal events are selected by applying a 3σ cut on the mass
distribution. To further suppress the background we also constrain the kinematic energy
range of recoil particles to be within a certain window. For thus defined elastic event
dataset we define the yields according to the expected spin state of the incident beam
particle and the left or right direction of the recoil particle with respect to the spin.
These yields are plugged into the square root formula to calculate the asymmetry as:

ε =

(√
N↑

LN↓
R −

√
N↓

LN↑
R

)/ (√
N↑

LN↓
R +

√
N↓

LN↑
R

)
.

In order to take advantage of the higher statistics for the final polarization P = ε/AN

we use the yields provided by the p-Carbon polarimeters. However, we choose not to
rely on loose theoretical predictions for the pC analyzing power AN but instead scale on
average the final results to the polarization measured by the H-jet. The H-jet polarimeter
provides an absolute measurement of the beam polarization. In fact, no knowledge about
the pp AN is required because the beam and the target are both protons, and the beam
polarization is given by Pbeam = −(εbeam/εtarget) × Ptarget. The beam polarization as
measured by the H-jet is shown in Figure 2.

The strategy outlined above benefits from lower final statistical errors without intro-
ducing an additional systematic uncertainty due to poorly known AN for pC interactions.
However, the systematic uncertainties now include effects from both the p-Carbon and
H-jet polarimeters. The global store-to-store correlated uncertainties include the normal-
ization uncertainty (1.1–1.5%) and the uncertainty due to molecular background in the
jet target (∼ 2%). The store-to-store uncorrelated uncertainties decrease with the num-
ber of stores combined as 1/

√
N and are mainly defined by unstatistical fluctuations in
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the p-Carbon measurements. These are believed to be induced by unaccounted energy
losses of the recoil carbon ions in the target due to presumably unstable angle between
the target ribbon and the beam. The results for run 2011 are available online at [6, 7].

4 Summary

Figure 3: Analyzing power AN for pp → pp scat-
tering as a function of the momentum transfer −t.
The 2011 and 2009 data is shown with black and red
circles respectively.

The RHIC polarimeters performed well
during the 2011 run. In this run we mea-
sured the average beam polarization of
about 48% in both collider rings with the
total uncertainty consistent with the re-
quirements set by the RHIC spin physics
program. The higher than in the preced-
ing run average beam polarization is due to
a better control of the beam orbit achieved
by the accelerator group and other tune-
up of the accelerator complex [8]. A care-
ful offline analysis showed that the store-
to-store correlated systematic uncertain-
ties reduced with respect to the previous
run. The improvement is attributed to a
number of reasons including the reduction
of the event pile-up effects, thanks to shortened signal pulses from the current-sensitive
preamplifiers, and the use of thinner carbon targets in the p-Carbon polarimeters. The
stable performance of the H-jet during 2011 has assured a higher acquired statistics which,
in turn, decreased the global uncertainty due to the overall normalization. We confirmed
the good performance of the absolute polarimeter by comparing the asymmetry AN in
the pp interactions with the same measured in the 2009 run (Figure 3) and found them
to be in a good agreement. The details and results of the offline analysis can be found
online at [6, 7].
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Abstract

Elastic scattering of polarized protons at low momentum transfer is described
by the interference of Coulomb and hadronic amplitudes. The presence of a spin
flip part in the hadronic amplitude may indicate the contribution of exchanges
other than the dominant Pomeron, or manifestation of hypothetic Pomeron spin
flip component. The Coulomb term is well defined by QED.

This talk presents preliminary results on single spin asymmetries of transversely
polarized proton-proton scattering at

√
s = 200 GeV. About 20 million elastic events

were used to obtain the result in the −t range of 0.005 − 0.035 (GeV/c)2. The fit
of −t dependence of the asymmetry does not indicate the presence of any spin flip
hadronic amplitude.

Elastic pp-scattering at very small angles provides a unique tool to study dynamics of
the strong interaction in the nonperturbative region. The total cross section was measured
up to high energy and is in good agreement with a description using Regge pole exchange.
At ultra-relativistic energies the main contribution comes from Pomeron or, in terms of
perturbative QCD, multigluon exchange [1]. Most of the previous experiments were done
with unpolarized beams and targets. The first measurement with polarized protons at high
energies in the Coulomb nuclear interference (CNI) region at

√
s = 19.4 GeV was done

by the E704 experiment [2] with moderate precision. RHIC with its polarized beams [3]
published a number of more accurate measurements in the range

√
s = 6.8−21.7 GeV [4,5]

over the last few years, however, only one measurement with limited statistics exists so
far in the collider energy range [6].

Elastic scattering of two identical particles with spin 1/2 is described by 5 helic-
ity amplitudes [7, 8]. Two amplitudes φ1(s, t)=<++|M |++> and φ3(s, t)=<+–|M |+–>
produce no spin flip and give the main contribution to the total and differential cross
sections. Single spin flip amplitude φ5(s, t)=<++|M |+–> gives rise to the single spin
asymmetry AN through interference with dominant terms φ1(s, t) and φ3(s, t):

σtot =
4π

s
Im(φ1 + φ3)|t=0 , (1)

dσ

dt
=

2π

s2
(|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2) , (2)

AN
dσ

dt
= −4π

s2
Im{φ∗5(φ1 + φ2 + φ3 − φ4)} . (3)

The other two amplitudes φ2(s, t) and φ4(s, t) relate to double spin effects and are dis-
cussed in more details in another talk at this conference [9].
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Figure 1: Layout of the setup for small-t measurements with the STAR detector.

Each of the amplitudes has hadron and Coulomb terms: φi = φem
i + φhad

i , and the
electromagnetic part is calculable from QED. The main contribution to AN is given by:

AN
dσ

dt
= −8π

s2
Im(φem∗

5 φhad
+ + φhad∗

5 φem
+ ) , (4)

where φ+ = (φ1 + φ3)/2. Parametrisation of small φhad
5 is usually done in terms of φ+:

φ5 = (
√−t/m) · r5 · Imφ+.

The layout of the experiment at RHIC for the measurements of the observables in
elastic proton-proton collisions at small momentum transfer is shown in Fig. 1. Protons
scattered at very small angles at the interaction point (IP) travel close to the beams
within the beam pipe until they reach Roman Pots (RP) located in the RHIC tunnel on
both sides of the STAR detector. Each RP contains four silicon microstrip detectors, two
for each of the orthogonal coordinates, and a trigger scintillation counter. The Roman
Pot design allows to insert detectors very close to the beam without violation of the high
accelerator vacuum. Two RP stations with detectors inserted horizontally (at 55.5 m
from IP) and vertically (at 58.5 m) were used at each side of IP. More details of the
detectors can be found in [10]. The trigger for elastic events requires hits in the matching
counters on both sides of the IP and no simultaneous hits in the scintillators of the same
RP station. The coordinates measured by the detectors relate to the scattering angles at
the IP by the transport matrix TRP :

(
x

y

)

RP

= TRP ·
(

θx

θy

)

IP

(5)

where index RP denotes particular Roman Pot. The position of the RPs was selected so
that the error introduced by unknown position of the interaction point was minimal.

Reconstruction of elastic events was performed in the following steps. Adjacent strips
with charge values above 5σ from their pedestal averages were found and combined into
clusters. Very noisy and dead strips were rejected (total 5 out of ∼14000 in the active
detector area). A threshold depending on the cluster width was applied to the total charge
of the cluster. Clusters on each side of the IP were combined into track candidates; if
there was more than one track candidate on a side, only those contributed by 4 or more
planes were selected. Exactly one track candidate was required on each side with at least
6 silicon planes contributing to the whole event. Transport equation (5) was solved for
each side. The corresponding distributions of angle differences between east and west
sides are presented in Fig. 2. The strongest criterion for the elastic event selection is
the strict kinematic correlation: the scattering angles are equal for both protons after
interaction. The implementation of the selection was based on χ2 = (θwest

x − θeast
x )2/σ2

x +
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Figure 2: Elastic correlation — difference in scattering angles at IP for particles scattered to east and
west in x (left) and y (right).

(θwest
y −θeast

y )2/σ2
y, where σx = σy = 0.057 mrad, and a strong cut χ2 < 5 was used for this

preliminary analysis (8.2% candidate elastic event loss). As a result of all cuts 19.3·106

events out of 32.9·106 elastic triggers recorded during the run were selected for asymmetry
calculations.

Single spin asymmetry AN was calculated in 5 t-bins using the square root formula
[11, 6] individually for each fill and then averaged. The raw asymmetry as function of
azimuthal angle φ for only ++ and −− bunch polarizations can be written as:

εN(φ) =
(PB + PY )AN cos(φ)

1 + δ(φ)
=

√
N++(φ)N−−(π + φ)−

√
N−−(φ)N++(π + φ)√

N++(φ)N−−(π + φ) +
√

N−−(φ)N++(π + φ)
, (6)

where N ij(φ) - number of events with bunch polarization pattern ij at the azimuthal angle
φ. PB/Y are polarizations of blue and yellow beams, measured by RHIC polarimeters. The
averaged polarization values were: PB + PY = 1.221± 0.038, PB − PY = −0.016± 0.038.
From double spin asymmetries measured by [6] we know that δ(φ) = PBPY (ANN cos2(φ)+
ASS sin2(φ)) is less than 0.01. Using different bunch polarization combinations, more raw
asymmetries can be introduced similar to (6): εB(φ) ∼ PB · AN , εY (φ) ∼ PY · AN and
ε′N(φ) ∼ (PB − PY ) · AN . εN(φ) and ε′N(φ) are presented in Fig. 3 for 0.005 < |t| <
0.010 (GeV/c)2 and all 4 fills.

The preliminary results on the single spin asymmetry are shown in Fig. 4a in com-
parison with a theoretical curve without hadron spin-flip and with the best fit allowing

Figure 3: Raw single spin asymmetries εN (left) and ε′N (right) for 0.005 < |t| < 0.010 (GeV/c)2.
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Figure 4: Single spin asymmetry AN (left) and complex plane of parameter r5 with contours of confi-
dence level 1, 2 and 3-σ (right)

non-zero hadron spin-flip (see [12] for formula). Fig. 4b shows the fitted complex value of
r5. No evidence for a contribution from the hadron spin-flip amplitude φ5 is observed.

Our preliminary results agree with the hypothesis that only Pomeron exchange, which
contributes only to spin-nonflip amplitudes φ1 and φ3, survives at high energies. In
agreement with other cited measurements of the proton-proton elastic scattering with√

s > 10 GeV, we see no evidence of contributions from other amplitudes.
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Abstract

The measurement of the transverse target spin asymmetry Asin(φ−φs)
UT for exclusive

production of ρ0 mesons at the COMPASS experiment is discussed. The measure-
ment of the asymmetry is done both for the protons and the deuterons. The asym-
metry gives an access to the Generalized Parton Distribution function E, which is
sensitive to the orbital angular momentum of quarks in the nucleon. The measured
asymmetry is compatible with zero in the kinematic range: 1 < Q2 < 12 (GeV/c)2,
0.003 < xBj < 0.35 and 0.05 < p2

t < 0.5 (GeV/c)2 for protons or 0.01 < p2
t <

0.5 (GeV/c)2 for deuterons.

1. Introduction. In this analysis the transverse target spin asymmetry Asin(φ−φs)

UT for
exclusive production of ρ0 mesons is measured. The asymmetry is measured at the
COMPASS experiment [1] both for the polarized protons and deuterons. The asym-
metry gives an access to the Generalized Parton Distribution function E, which is sen-
sitive to the orbital angular momentum of quarks in the nucleon. The selected samples
cover a broad kinematic region: 1 < Q2 < 12 (GeV/c)2, 0.003 < xBj < 0.35 and
0.05 < p2

t < 0.5 (GeV/c)2 for protons or 0.01 < p2
t < 0.5 (GeV/c)2 for deuterons.

The precise study of the spin structure of the nucleon is one of the main aims of the
COMPASS experiment. It is now well established, that the spin of quarks accounts only
for about 30% of the nucleon spin (the nucleon spin crisis). The direct measurements
of the gluon polarization and pQCD fits to the spin dependent cross-sections and spin
asymmetries indicate, that the gluon contribution is not large, consistent with zero. It
is expected, that the missing part of the nucleon spin could be related to the orbital
angular momentum of partons. The angular momentum of partons can be evaluated in
the Generalized Parton Distribution formalism (GPD) [2].

2. The GPD formalism. The simplest reaction described by the GPD formalism is
the Deeply Virtual Coulomb Scattering (DVCS). In this process a parton from the target
nucleon interacts with the virtual photon and a real photon is produced. After interaction
the parton is absorbed by the target nucleon. It was proven, that for longitudinal virtual
photons with high virtuality Q2 and the small momentum transfer to the nucleon t the
amplitude for this process factories into two terms. The interaction between photons and
partons is described by the perturbative theory, while the non-perturbative correlation
between the emitted and the absorbed partons is described by the GPDs. For the Deeply
Virtual Meson Production (DVMP), the description of the reaction is more complicated.
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The formation of the meson is described by another non-perturbative part, the Generalized
Distribution Amplitude (GDA) [2].

There are four parton helicity-conserving GPDs, Hq,g, H̃q,g, Eq,g, Ẽq,g, defined for the
specific quark flavour and for gluons. The GPDs Hq,g and H̃q,g are defined in the case
where the target nucleon retains its helicity, while the GPDs Eq,g and Ẽq,g are defined if
the target nucleon changes its helicity. Each GPD depends on three kinematic variables,
x, ξ and t, where x is the average longitudinal momentum fraction of the interacting
parton, ξ is the half of the longitudinal momentum transferred to the target nucleon and
t is the four-momentum transfer squared.

Depending on the type of the meson, its quark content and quantum numbers, there
exists sensitivity to various types of GPDs and different quark flavours. The vector meson
production is sensitive only to GPDs Hq,g and Eq,g, while the scalar meson production
is sensitive only to the GPDs H̃q,g and Ẽq,g. The GPD E is of a special interest, as
it is related to the orbital angular momentum of quarks. Due to angular momentum
conservation, orbital angular momentum must be involved if the proton helicity is changed,
i.e. when E 6= 0.

One of the most interesting properties of the GPDs is the Ji’s sum rule

∫ 1

−1

dxx [Hq (x, ξ, t = 0) + Eq (x, ξ, t = 0)] = 2Jq, (1)

where the total angular momentum Jq = Lq + Sq is the sum of the orbital angular
momentum Lq and the spin Sq. These relation can be used to estimate a role of the quark
orbital angular momentum in the nucleon spin puzzle.

3. Access to the GPDs through the exclusive ρ0 production. The cross-section
of exclusive meson production was obtained by M. Diehl and S. Sapeta in Ref. [3]. For
a transversely polarized target the cross section in the COMPASS kinematics can be
expressed in the following way

[
αem

8π3

y2

1− ε

1− xBj

xBj

1

Q2

]−1
dσ

dxBjdQ2dφdφs

'
1

2

(
σ++

++ + σ−−++

)
+ εσ++

00 − ST sin (φ− φs) Im
(
σ+−

++ + εσ+−
00

)
+ . . . , (2)

where only terms relevant for this analysis are shown explicitly. Here ST is the target
polarization and ε is a kinematic-dependent virtual photon polarization parameter. The
angle φ is the angle between the lepton plane, defined by the momenta of incoming and
scattered leptons, and the hadron plane, defined by the momenta of virtual photon and
produced meson. The angle φs is the angle between the lepton plane and the direction of
the target spin. The spin-dependent photoabsorption cross sections and the interference
terms σij

mn are proportional to bilinear combinations of amplitudes for subprocess γ∗p →
V p with the photon helicity m and the target nucleon helicity i

σij
mn ∝

∑
spins

(
Ai

m

)∗
Aj

n. (3)
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For vector mesons, the two terms in Eq. 2 give the access to the GPDs Hq,g and Eq,g

1

Γ′
σ++

00

dt
=

(
1− ξ2

) |HV |2 −
(

ξ2 +
t

4M2
p

)
|EV |2 − 2ξ2 Re (E∗VHV ) , (4)

1

Γ′
Im

σ+−
00

dt
= −

√
1− ξ2

√
t0 − t

Mp

Im (E∗VHV ) , (5)

where HV , EV are weighted sums of the convolutions of the GPDs Hq,g and Eq,g with
the GDA of the meson V and with the hard scattering kernel, t0 is a minimal value of t
depending on the event kinematics and Γ′ = (αemxBj)/(Q

6(1− xBj)).
The cross section σ++

00 is equivalent to the cross section for longitudinal virtual photons
σL, which can be calculated from the unpolarized cross section σ0. The interference term
σ+−

00 is related to the transverse target spin asymmetry

A
sin(φ−φs)
UT = −Im

(
σ+−

++ + εσ+−
00

)

σ0

. (6)

Both leading twist terms σ++
00 and σ+−

00 can be extracted using measured decay angular
distributions of the meson.

4. COMPASS experiment. In the COMPASS experiment the muon beam scatters
off the lithium deuteride (6LiD) or the ammonia target (NH3), with polarized deuterons
or protons, respectively. The target can be polarized transversely or longitudinally. The
polarization is obtained by the Dynamic Nuclear Polarization method and is about 50%
for 6LiD and about 90% for NH3. The dilution factor, i.e. the fraction of events originating
from polarized deuterons or protons, for incoherent exclusive ρ0 production is about 45%
for 6LiD and about 25% for NH3. To minimise systematic effects due to a possible
spectrometer instability and the acceptance variation, the target was divided into two
cells in 2002-2004 and into three cells since 2006. The consecutive cells have opposite
polarization. The polarization in each cell is reversed periodically.

The COMPASS setup is a 50 m long two stage spectrometer with excellent capability
for tracking and particle identification. It is equipped with about 300 tracking detectors
planes, which provide high redundancy for the reconstruction. The first stage, grouped
around the first magnet, is dedicated to provide reconstruction of particles produced
with small momenta. It is equipped with the electromagnetic and hadron calorimeters,
the muon filter, providing reconstruction of scattered muons, and the large ring imaging
Cerenkov detector. The second stage, grouped around the second magnet, is able to
reconstruct particles produced with high momenta. This stage is equipped with the
second set of calorimeters and the second muon filter.

5. Event selection. The data used in this analysis were taken in 2002-2004 and in 2007,
for the transversely polarized deuteron and proton target, respectively. Each selected
event contains a primary vertex with only one incoming and one outgoing muon track
and with only two outgoing hadron tracks with opposite charges. It is assumed, that the
outgoing hadron tracks come from the ρ0 decay and they are pions. The ρ0 resonance is
selected by the cut on the reconstructed invariant mass −0.3 < Mππ−Mρ0 < 0.3 GeV/c2,
where Mρ0 is the nominal (PDG) mass of the ρ0 resonance. Because recoiled target particle
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Figure 1: Distributions of Mππ, Emiss and p2
t for the NH3 target with indicated cuts.

in unmeasured, the exclusivity is checked by the missing energy Emiss = (M2
x −M2

p )/2Mp,
where Mp is the mass of the proton and Mx is the missing mass in the event. For exclusive
events the reconstructed values of Emiss are close to zero. To select these events the cut
−2.5 < Emiss < 2.5 GeV is used. The cuts 0.05 < p2

t < 0.5 (GeV/c)2 for the proton target
and 0.01 < p2

t < 0.5 (GeV/c)2 for the deuteron target are also used. The upper cuts on
p2

t provide a further reduction of non-exclusive background. The lower cut on p2
t for the

proton target suppresses a contribution from the coherent production on the target nuclei,
while for the deuteron target it is applied to remove events with a large smearing of the
azimuthal angle. Distributions of Mππ, Emiss and p2

t for the NH3 target, with indicated
cuts, are shown in Fig. 1.

For the selected sample the kinematic region 1 < Q2 < 12 (GeV/c)2, 0.1 < y < 0.9
(the fraction of incoming muon energy lost in the laboratory system), 0.003 < xBj < 0.35,
W > 5 GeV (the total energy in the virtual photon - nucleon center of mass system) and
p2

t ranges indicated above is used.

6. Extraction of A
sin(φ−φs)
UT asymmetry. The number of observed events as a function

of the φ− φs angle can be expressed in the following way

N (φ− φs) ' Fna (φ− φs) σ0

(
1± fPT A

sin(φ−φs)
UT sin (φ− φs)

)
, (7)

where F is the muon flux, n the number of target nucleons, a the acceptance, f the
dilution factor, PT the target polarization and the Asin(φ−φs)

UT asymmetry is defined by Eq.
6.

Extraction of the Asin(φ−φs)

UT asymmetry is based on the double ratio method. For
instance, for the three-cell target used in 2007, the double ratio method is defined as

DR (φ− φs) =
N↑

u/d(φ− φs)

N↓
c (φ− φs)

N↑
c (φ− φs)

N↓
u/d(φ− φs)

, (8)

where the number of observed events Nc corresponds to the central cell and Nu/d corre-
sponds to the sum of events from the upstream and downstream cells. The polarization
of cells is indicated by the arrows. With Eq. 7, the formula for the double ratio can be
expressed as

DR (φ− φs) =

(
1 + fPT A

sin(φ−φs)
UT sin(φ− φs)

1− fPT A
sin(φ−φs)
UT sin(φ− φs)

)2

, (9)
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Figure 2: The A
sin(φ−φs)
UT asymmetry for protons as a function of Q2, xBj and p2
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Figure 3: The A
sin(φ−φs)
UT asymmetry for deuterons as a function of Q2, xBj and pt.

where the flux, the number of target nucleons and the unpolarized cross section cancel.
The acceptance also cancels provided the ratio of acceptances in different cells is constant
before and after reversal of the target polarization, i.e. a↑u/d/a

↓
c = a↓u/d/a

↑
c . Values of the

Asin(φ−φs)

UT asymmetry are extracted from fits to the measured DR(φ− φs) distributions.

7. Results. The extracted Asin(φ−φs)

UT asymmetry for the protons as a function of Q2, xBj

and p2
t is shown in Fig. 2. In the covered kinematic range the asymmetry is small and

compatible with zero. The results are in good agreement with the results obtained at the
HERMES experiment [4] and with the GPD model of S. V. Goloskokov and P. Kroll [5],
which predicts the asymmetry to be ≈ −0.02.

The results for the deuterons are shown in Fig. 3. In this case, however, the cut on p2
t

does not eliminate the coherent production completely. In the covered kinematic range
the asymmetry is also compatible with zero.

8. Recent developments of the analysis. The work on the estimation of an influence
of the background on the Asin(φ−φs)

UT asymmetry extraction as well as detailed systematic
studies are in progress. Release of new results and dedicated paper are expected soon.

In the new analysis background asymmetry is calculated analysing fraction of back-
ground events as a function of φ−φs angle. The fraction in a given φ−φs bin is estimated
analysing missing energy distribution, Emiss, for this bin. Shape of Emiss distribution for
semi-inclusive events is parametrized from MC studies and normalized to the data in large
Emiss region (cf. Fig. 1).

The most important sources of possible systematic uncertainties checked in the new
analysis are false asymmetries, data stability, method of background subtraction and
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sensitivity to the MC. To suppress uncertainty of asymmetry extraction double ratio
method is replaced by the binned likelihood method.

9. Summary and outlook. The transverse target spin asymmetry Asin(φ−φs)

UT for exclu-
sive production of ρ0 mesons was measured for the protons and the deuterons. The results
for both targets are compatible with zero in the broad kinematic range. The results are
in good agreement with the results obtained at the HERMES experiment and with the
predictions of the GPD model [5].

Data taken in 2010 at the COMPASS experiment will allow to increase about three
times the present statistics of ρ0 sample for transversely polarized protons. These data will
be used to study exclusive channels with small cross-sections, e.g. the production of φ or
ω mesons. The ω channel seems particularly interesting, as the Asin(φ−φs)

UT asymmetry is ex-
pected to be large, about −0.1 [5]. Moreover separation of contributions of longitudinally
and transversely polarized virtual photons and extraction of non-leading asymmetries are
considered.

A new proposal for the COMPASS-II experiment has been approved [6]. Future GPD
studies are a substantial part of this proposal. The use of a new detector, a large Recoil
Proton Detector, will allow a clean selection of the sample of exclusive events for the
studies of the DVCS and DVMP processes. The measurements with the unpolarized
liquid hydrogen target are foreseen first, while the measurements with the transversely
polarized NH3 target are considered for the future.
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Abstract

The results on the experimental data for the d-p elastic scattering at Td = 2
GeV are reported. The measurements of the angular dependence of the vector
analyzing powers Ay and differential cross section for the angles 12o < θ∗ < 14o

in the c.m.s. were performed. The obtained data are in good agreement with the
existing data and theoretical calculations made in the framework of the relativistic
multiple scattering model.

The interest to the simple nuclear reactions has increased significantly in the latter
days. It connected with the active research of nuclear forces and effects of non-nucleonic
degrees of freedom. The study of polarizations effects is necessary to solve many modern
problems of nuclear and the particle physics. Large number of experimental data for
short-range spin structure of light nucleus has been accumulated.

Deuteron has relatively simple structure. It has spin equal 1. This feature allows to
perform the various polarization experiments and to test the theory of scattering pro-
cesses. The investigations of polarization observables for dp-elastic scattering have been
performed at intermediate and high energies. For instance, the differential cross sections,
the spin transfer coefficients Kij, vector and tensor analyzing powers Ay, Ayy, Axx and
Axz, as well as polarization Py, has been obtained at Elab

d = 270 MeV [1]. The differential
cross section and the vector analyzing power are well reproduced by Faddeev calculations
with modern nucleon-nucleon potentials and Tucson-Melbourne three-nucleon force [2].
On the other hand, Aij, Kij and Py are not described by such calculations.

Relativistic effects and non-nucleonic degrees of freedom play an increasing role with
the energy increasing. The main goal of the investigations at high energies is to search for
such effects. Recently, the analyzing powers Ay and Aij have been obtained at T = 880
MeV for the angular range of 60o < θ∗ < 140o in the c.m.s [3].

In connection with the modernization of Nuclotron and anticipation of the putting into
operation of a new source of polarized deuterons, we turned to a database of deuteron-
proton research on a hydrogen bubble chamber [4], exposed at Synchrophasotron. Some
of these data were obtained with 3.35 GeV/c vector- polarized deuterons beam provided
by the polarized ion source POLARIS.

The dp-elastic scattering reaction has the greatest losses in the region of small mo-
mentum transfers due to a number of methodical features. They are related both with
the impossibility to observe the tracks with the momentum less than 80 MeV/c and the
tracks orientation along the optical axis of photocamera.
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Figure 1: The correlation of
the scattering angle θ∗ and the
azimutal angle ϕ for dp-elastic
scattering events.

These effects are demonstrated in Fig. 1, where the cor-
relation of the scattering angle θ∗ and azimutal angle ϕ
is presented. Losses in another reactions were negligible.
The millibarn-equivalent of the events was estimated as
C = 0.0003342± 0.0000007 mb/event.

Evaluation of the vector polarization of an accelerated
beam of deuterons beam was performed with the same
data using the events from the reaction dp −→ ppn [5].
The deuteron beam polarization was estimated as py =
0.488±0.061 [5], knowing the data for analyzing powers for
elastic np- and pp-scattering [6,7] at the corresponding en-
ergy, by measuring the azimuthally asymmetry of quasielas-
tic scattering.

Values for the vector analyzing power Ay were obtained by processing the events that
correspond to different spin states of the deuteron beam (such states correspond to the
polarization mode 1 and 2).

Figure 2: Distribution of events
on scattering angle θ.

The distribution of the scattering angle in the center
of mass is shown in Fig. 2. The scattering angle spec-
trum was divided into consecutive intervals. The number
of events in each interval was normalized to the width of
the latter. The distribution on the azimuthal angle ϕ was
constructed for each interval. For small scattering angles
θ∗ , intervals outside the region bounded by dotted lines in
Fig. 3 corresponding to the lost events was excluded. The
lost events was excluded symmetrically with respect to the
values of 0o and 180o. The remaining events were used to
calculate the differential cross section and analyzing power.

Figure 3: Distributions on az-
imutal angles ϕ for different θ.

The R value for each choosen interval of θ∗ was calcu-
lated as:

R =
N1 −N2

N1 + N2

(1)

Here N1 and N2 - numbers of events for spin modes 1 and
2, respectively. In Fig. 4 an example of R distribution on
an azimuthal angle for interval 12o < θ∗ < 14o is resulted.

For each angular interval parameters of the function
p0 + p1sin(ϕ) were determined and analyzing power was
calculated as:

Ay =
2

3

p1

py

(2)

Here py is the vector polarization of the beam.
The events obtained both from polarized and unpolar-

ized deuterons beams were used for calculation of the differ-
ential cross section. The analysis of the distribution of the
scattering angle cosine in c.m.s was made. The correspond-
ing interval ∆cosθ∗ was taken for each ∆θ∗. Then normalization to the intervals width
∆cosθ∗ was made.
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Figure 4: Example distribution of the value
of R for the angular interval 12o < θ∗ < 14o .

The cross section calculate using the formula:

dσ

dΩ
=

1

2π
N(cosθ∗)

C

∆cosθ∗
(3)

where C - is the millibarn-equivalent of the
events, ∆cosθ∗ - is the interval width of the dis-
tribution of the scattering angle cosine θ∗ in the
c.m.s.

The theoretical predictions for differential
cross section and analyzing power Ay have been
obtained in the multiple-scattering-theory frame
[8]. The single scattering and double scattering
contributions into the reaction amplitude were
taken into account. Since one-nucleon exchange (ONE) term gives considerable contribu-
tion only at backward angles, this term was not included into consideration.

Figure 5: a) - single scattering. b) - double
scattering.

Diagrams for single scattering (SS) and dou-
ble scattering (DS) are presented in Fig. 5. All
calculations were performed with the CD Bonn
deuteron wave function [9]. The details of the
theoretical description are given in the talk of
N.B. Ladygina [10].

The differential cross section as a function of
the deuteron scattering angle in the c.m.s. in the
domain of our measurements is presented in Fig. 6 The experimental data and calculations
are presented in Fig. 7 in the wider angular range. One can see that the DS-term plays

Figure 6: Solid squares – this work.
Empty triangles – data from ref. [11].

Figure 7: Empty boxes represent the results of
this work. The solid circles are the data from ref.
[11]. The dotted and solid lines are the calculations
without and with DS term, respectively.

a significant role at θ∗ < 35o, while SS dominates at small angels. Our experimental
data on vector Analyzing Power Ay are compared with the predictions of the relativistic
multiple scattering theory as well as with the ANL data (See Fig. 8). The data are in
good agreement with each anther and with the calculation. The importance of the double
scattering is demonstrated in Fig. 9 Also one can see that the single scattering dominates
in the domain of our measurements.
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Figure 8: Solid triangles – this work.
Empty squares – data obtained at ANL [12].

Figure 9: Empty circles represent the results of
this work. The solid circles are the data from
ref. [12]. Empty squares are the data taken from
ref. [13].

The results on the differential cross-section and vector analyzing power Ay for dp-
elastic scattering from the database of the deuteron-proton interactions in a hydrogen
bubble chamber at Ed = 2 GeV have been obtained . The results agree well with the
data obtained earlier at ANL (Argonne) [12]. The experimental data agree qualitatively
with the calculations of relativistic multiple scattering theory [8] taking into account the
double scattering.

The work has been supported in part by RFBF grant No. 10-02 -00087a.
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Abstract

Antiproton scattering off 3He and 4He targets is considered at beam energies
below 300 MeV within the Glauber-Sitenko approach, utilizing the N̄N amplitudes
of the Jülich model as input. Good agreement with available data on differential
p̄ 4He cross sections and on p̄ 3He and p̄ 4He reaction cross sections is obtained.
Predictions for polarized total p̄ 3He cross sections are presented, calculated within
the single-scattering approximation and including Coulomb-nuclear interference.

The antinucleon-nucleon (N̄N) interaction has been studied quite extensively over the
last three decades or so mainly in view of the wealth of data collected at the LEAR facility
at CERN, cf. the review [1]. Recently the PAX collaboration suggested [2] to use scat-
tering of antiprotons off a polarized hydrogen target (1H) as polarization buildup process
based on the spin-filtering mechanism for producing a polarized antiproton beam. How-
ever, in contrast to the NN case, up to now the spin dependence of the N̄N interaction is
still fairly poorly known. Therefore, it is an open question whether any sizeable polariza-
tion buildup can be achieved in p̄ 1H scattering. Several theoretical studies were performed
with the aim to estimate the expected polarization buildup for antiprotons, employing
different p̄p interactions [3–5]. Besides of using polarized protons as target one could also
use light nuclei as possible source for the antiproton polarization buildup. Correspond-
ing investigations for antiproton scattering on a polarized deuteron target were presented
in Refs. [4, 6, 7]. As was shown in Refs. [4, 6] on the basis of the Glauber-Sitenko the-
ory [9,10] with elementary p̄N amplitudes taken from the Jülich N̄N models [11,12,8,13],
the p̄d interaction could provide a comparable or even more effective way than the p̄p
interaction to obtain polarized antiprotons. This conjecture can be checked at a planned
experiment [14] at the AD (Antiproton Decelerator) facility at CERN.

Yet another option could be the scattering of antiprotons off a polarized 3He target.
Since the polarization of the 3He nucleus is carried mainly by the neutron, the p̄n am-
plitudes are expected to dominate the spin observables of this reaction. We present here
the results [15] of calculatiuons of spin-dependent cross sections for the p̄ 3He interaction
on the basis of an approach similar to that developed in Ref. [4]. Experimental informa-
tion on p̄ 3He scattering is rather sparse. Thus, in order to examine the validity of the
employed Glauber-Sitenko approach [10,17] at low and intermediate energies we consider
also the p̄ 4He system where several measurements were performed at the LEAR facility
at CERN (see Refs. [19,20] and references therein). Though a few investigations of p̄ 3He
and p̄ 4He scattering have been performed before [21, 22] based on the Glauber-Sitenko
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Figure 1: Differential cross section for p̄ 4He versus the c.m. scattering angle at Tlab = 19.6 MeV and
179.6 MeV, obtained within the approach of Ref. [17]. The solid and dashed lines are results based on
the N̄N amplitudes of the Jülich models D and A, respectively. Data are taken from Refs. [20] (19.6
MeV) and [19] (179.6 MeV).

theory, none of them connects directly with amplitudes generated from potential models
that are fitted to N̄N data. Using the approach of Ref. [17] and a parametrization of the
elementary p̄N amplitudes of the Jülich models, given in Ref. [4], we calculated differ-
ential cross sections for elastic p̄ 4He scattering. The comparison with data available at
beam momenta of 200 MeV/c [20] and 600 MeV/c [19] in Fig. 1 reveals that there is a
rather good agreement [15] between experiment and theory. Furthermore, the calculated
reaction cross sections for p̄ 3He and p̄ 4He, shown in Fig. 2, are also in good agreement
with the data. Note that at p ∼ 600 MeV/c the reaction cross sections for p̄ 3He and
p̄ 4He are almost the same despite of the different number of nucleons in the 3He and 4He
nuclei and this fact is well reproduced by theory, indicating for different shadowing effects
for these nuclei. The total cross sections of p̄ 3He scattering can be written as

σ = σ0 + σ1Pp̄ ·Pτ + σ2(Pp̄ · k̂)(Pτ · k̂), (1)

where Pp̄ (Pτ ) is the polarization vector for antiproton (3He) and k̂ is the unit vector in the
beam direction. The purely hadronic total cross sections σ0, σ1, σ2, were calculated here
by the optical theorem. For the unpolarized cross section σ0 the Glauber-Sitenko multistep
scattering theory was used, whereas the polarized cross sections σ1 and σ2 were estimated
within the single-scattering approximation [15]. The Coulomb-nuclear interference cross
sections σint

i (i = 0, 1, 2) and the Coulomb cross section are calculated along the lines of
Ref. [4] and shown in Fig. 3. These results depend on the beam acceptance angle θacc.

Our results suggest that the magnitude of the spin-dependent cross sections σ1 and
σ2 for p̄ 3He are comparable to those for p̄p and p̄d, at least as far as the hadronic part is
concerned. However, due to the larger charge of 3He, Coulomb-nuclear interference effects
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Figure 2: Integrated elastic (σel, lower curves) and total reaction (σR, upper curves) cross sections for
p̄ 3He (a) and p̄ 4He (b) versus the beam kinetic energy Tlab. The solid and dashed lines are results for
the N̄N models D and A, respectively, obtained on the basis of the Glauber-Sitenko approach [17]. Data
for p̄ 4He are taken from Refs. [18] (filled circles), [19] (squares), and [20] (open circles). The data point
for p̄ 3He is taken from Ref. [16].
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Figure 3: Total cross sections σ0, σ1 and σ2 versus the antiproton laboratory energy Tlab for p̄ 3He
scattering. Results based on the purely hadronic amplitude, σh

i , (model D: solid line, model A: dashed
line) and for the Coulomb-nuclear interference term, σint

i , (D: dash-dotted line, A: dotted line), are
presented. In case of σ0 the Coulomb cross section is shown too (dash-double-dotted line). The employed
acceptance angle is θacc = 10 mrad.
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turn out to be more important. Furthermore, since the total cross section is larger in case
of 3He the resulting efficiency of the polarization buildup tend to be somewhat smaller
than those for p̄p and p̄d.

This work was supported in part by the Heisenberg-Landau program.

References

[1] E. Klempt et al., Phys. Rept. 368 (2002) 119.

[2] V. Barone et al., arXiv:hep-ex/0505054.

[3] V.F. Dmitriev et al., Nucl. Instrum. Meth. B 266 (2008) 1122.

[4] Yu.N. Uzikov and J. Haidenbauer, Phys. Rev. C 79 (2009) 024617.

[5] V.F. Dmitriev, A.I. Milstein and S.G. Salnikov, Phys. Lett. B 690 (2010) 427.

[6] Yu. N. Uzikov and J. Haidenbauer, J. Phys. Conf. Ser. 295 (2011) 012087.

[7] S.G. Salnikov, arXiv:1106.4887 [hep-ph].

[8] V. Mull and K. Holinde, Phys. Rev. C 51 (1995) 2360.

[9] V. Franco and R.J. Glauber, Phys. Rev. 142 (1966) 1195.

[10] A.G. Sitenko, Fiz. Elem. Chastits. At. Yadra 4 (1973) 546.

[11] T. Hippchen, J. Haidenbauer, K. Holinde and V. Mull, Phys. Rev. C 44 (1991) 1323.

[12] V. Mull, J. Haidenbauer, T. Hippchen and K. Holinde, Phys. Rev. C 44 (1991) 1337.

[13] J. Haidenbauer, J. Phys. Conf. Ser. 295 (2011) 012094.

[14] C. Barschel et al., arXiv:0904.2325 [nucl-ex].

[15] Yu.N. Uzikov, J. Haidenbauer and B.A. Prmantayeva, Phys. Rev. C 84 (2011)
054011.

[16] F. Balestra et al., Phys. Lett. B 215 (1988) 247.
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Abstract

In 2011 Run polarized proton beam collisions of a total energy
√

s = 500 GeV
and peak luminosity up to 1.6 × 1032 cm−2sec−1 was delivered to experiments for
intermediate boson W production studies with the longitudinally polarized beams.
The average beam polarization of a 48% was measured with the H-jet polarimeter.
Apparently, there are no visible polarization losses during acceleration up to 100
GeV energy, where a 55-60% polarization was measured in Run 2009. Polarization
losses at further acceleration to 250 GeV are caused by the presence of depolariz-
ing resonances. As a result, significant polarization profiles of the beams are also
generated. Polarization profiles were measured by the p-Carbon CNI polarimeters
in the scanning mode of operation. Polarized beam luminosity is weighted by the
polarization profiles and “effective” polarization, as seen in collisions was about 53%
in Run 2011.

1 Introduction

The RHIC, heavy ion collider, is the first high-energy machine, where polarized proton
acceleration was included in the primary design. RHIC is the first collider where the
“Siberian snake” technique was successfully implemented to avoid the resonance depolar-
ization during beam acceleration in AGS and RHIC [1] (see Fig. 1). It is also for the first
time the intensity of the polarized beams produced in an Optically Pumped Polarized
H− Ion Source (OPPIS) was sufficient to charge RHIC to the maximum intensity limited
by the beam-beam interaction. Every source pulse is eventually converted to the RHIC
bunch. The source routinely produces about 1012 polarized H− ions per pulse, about half
of this intensity (5× 1011 H−/pulse) is accelerated in Linac to 200 MeV beam energy for
the strip injection to the Booster. The maximum beam intensity in RHIC was limited to
about 2× 1011 protons/bunch, therefore excessive beam intensity was scraped at extrac-
tion from Booster. This allowed beam emittance reduction at injection to AGS, which
reduces depolarization and increases RHIC luminosity.
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There are two “Siberian snakes” in the each ring to meet the conditions that the
“snake” rotation is much larger than the total rotation from all other resonances up
to highest 250 GeV beam energy. The RHIC “full Siberian snake”, which rotates spin
direction for 180 ◦ is super-conducting helical magnet system of about 10 m long. Up to
120 beam bunches can be accelerated and were stored in each ring.

The polarization direction of every RHIC bunch is determined by the spin-flip control
system in the polarized ion source. Every single source pulse is accelerated and becomes
the RHIC bunch of the requested polarity. By loading selected patters of spin direction
sequences in the rings the experiments have all possible spin directions combinations for
colliding bunches which greatly enhance the systematic error control. Two 90 ◦ helical
spin rotators in each ring produce the longitudinal polarization for experiments in STAR
and PHENIX detectors. The rotators are tuned using “local polarimeters” based on
asymmetry in neutron production for pp collisions. The STAR and PHENIX detectors
provide complimentary coverage of the different polarization processes [2].

2 Polarimetry at RHIC

Precision, absolute polarization measurements in the wide energy range from a few keV
(in the source) to 250 GeV (top RHIC energy) are required for accelerator tuning to
minimize depolarization and finally for experimental data normalization. Therefore, the
polarimetry is an essential component of the polarized collider facility. A complete set
of polarimeters includes: Faraday rotation polarimeter for optical pumpng tuning and
monitoring in the OPPIS, Lamb-shift polarimeter at the source energy of a 3–35 keV, a 200
MeV proton-Carbon polarimeter after the linac [3], and polarimeters in AGS and RHIC
based on proton-Carbon scattering in Coulomb-Nuclear Interference (CNI) region [4]. A
polarized hydrogen-jet polarimeter was used for the absolute polarization measurements
in RHIC [5].

Recently a new polarimeter for absolute proton beam polarization measurements at
200 MeV to accuracy better than ±0.5% has been developed as a part of the RHIC

Figure 1: Accelerator-Collider complex RHIC polarization hardware layout.
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polarized source upgrade. The polarimeter is based on the elastic proton-carbon scattering
at 16.2 ◦ angle, where the analyzing power is close to 100% and was measured with high
accuracy. The elastically and in-elastically scattered protons are clearly identified by the
difference in the propagation through variable copper absorber and energy deposition
of the protons in the detectors. This polarimeter T was used for calibration of a high
rate inclusive 12T-polarimeter for the on-line polarization tuning and monitoring. This
technique can be used for accurate polarization measurements in energy range of 160–250
MeV.

The proton-Carbon CNI polarimeters in AGS and RHIC are based on elastic pro-
ton scattering with low momentum transfer (Coulomb Nuclear Interference region) and
measurement of asymmetry in recoil carbon nuclei production as described in detail else-
where [6]. A very thin and narrow (30 nm thick 5 µm wide) carbon strip target placed
in the high intensity circulating beam produces very high collision rate and an efficient
DAQ system acquires up to 107 carbon events/sec. The polarization measurement during
the beam energy ramp was implemented in AGS and RHIC, which provides an insight of
polarization losses pattern. The carbon target width is much smaller than the beam size
and polarization profile can be also measured.

The AGS proton-Carbon CNI polarimeter was upgraded for the 2011 Run with the
new silicon detectors, amplifiers and new carbon-strip target drives. This upgrade im-
proved the accuracy and reproducibility of polarization measurements and polarization
profiles measurements in both vertical and horizontal planes. The polarization profile
measurements with the “Jump-Quads” operation confirmed the expected reduction of
horizontal polarization profile, which contributed to beam average polarization increase
from AGS for about 5% [7]. The polarimeter can be also operated in a fast continuous
sweep mode, while beam is stored in the AGS at 23.7 GeV. This measurement produces
horizontal and vertical beam intensity profile measurements for the single AGS bunch.
These measurements are used for cross-checking of the AGS IPMs measurements and
machine set-up to minimize beam emittances.

The RHIC proton-Carbon CNI polarimeters is operated in scanning mode, giving po-
larization profiles and transverse beam intensity profile (beam emittance) measurements.
The polarimeters function as wire scanners, providing a very good signal/noise ratio and
high counting rate. This allows accurate bunch-by-bunch emittance measurements during
fast target sweeps (< 1 s) through the beam. Very thin carbon strip targets make these
measurements practically non-destructive. Bunch by bunch emittance measurements are a
powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances
can only be measured by CNI polarimeter scans.

The use of thin targets in a polarimeter is essential to reduce multiple scattering for
recoil carbon ions and keep the event rate within detector and DAQ capabilities. Carbon
strips used in polarimeter are 5–15 µm wide (∼ 5 µg/cm2 thickness), and contain about
1013 carbon atoms per mm of target length. The target length is 25 mm. High intensity
circulating beam knocks out about 107 ÷ 108 carbon nuclei/s, which cause the eventual
target destruction. It was experimentally demonstrated that targets survive in the RHIC
beam for at least 100–200 measurements at the full beam intensity, which corresponds
to the one target lifetime of about one-to-two weeks. Multiple targets (six vertical and
six horizontal) are attached to a target ladder to extend the time between maintenances.
The precision procedure was developed to provide about ±0.1 mm target alignment accu-
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racy on the ladder, therefore the target positioning accuracy is limited only by the target
straightness. A combination of linear and rotational motion in the target mechanism pro-
vides the target replacement and polarization scans operation. Using of precision linear
stages and rotational vacuum feed-through gives target position accuracy of ±0.2 mm.
Time-of-flight and recoil carbon energy measurements are required for elastic scattering
identification. Silicon-strip detectors are used in the polarimeters, which allow measure-
ments of energy and arrival time of recoil Carbons in the RHIC ring vacuum environment.
At full RHIC design intensity, the bunch width is about 8 ns and bunch spacing is 106
ns. To avoid prompt background, carbon nuclei should arrive at the detectors in the time
window between two bunches.

Polarization and beam intensity profile measurements. The carbon target width of 5–
15 µm is much smaller than the beam size. Therefore intensity and polarization profiles
can be measured by the target scan. In scanning mode the counting rate dependence on
the target position can be used for the beam intensity profile measurements in addition
to polarization measurements. With high event rates, large statistics are accumulated in
a very short time for fast target scans.

Figure 2: H-jet polarization measurements in
RHIC in Run 2011.

The absolute (average) beam polariza-
tion at 100–250 GeV beam energy was
measured with a polarized H-jet polarime-
ter, which is also based on elastic proton-
proton scattering in the CNI region. Due
to particle identity, polarization of the ac-
celerated proton beam can be directly ex-
pressed in terms of proton target polariza-
tion, which can be precisely measured by
Breit-Rabi polarimeter. With the record
beam intensity of a 12.4×1016 atoms/s ob-
tained in this atomic beam source [4], and
with increased bunch intensities in Run
2011 a statistical error of about 6–7% was
obtained for polarization measurement in each RHIC store (see Fig. 2). There is a plan
for the H-jet polarimeter silicon detectors upgrade for larger solid angle, energy range and
better resolution. The goal of upgrade is 2–3 times event rate increase, which will reduce
statistical error to about 5% in a single 8 hours store.

The simultaneous measurements in p-Carbon and H-jet polarimeters provide the cali-
bration for p-Carbon analyzing power. Fast pC polarimeter measures possible polarization
losses during the store duration. Analyzing power of pp elastic scattering in CNI region
has been accurately measured in experiments with H-jet polarimeter in energy range 24–
250 GeV. This accuracy can be further improved after studies of molecular H2 background
and other systematic errors contributions. The statistical accuracy of the polarized H-
jet polarimeter cannot be significantly improved because of strong intensity and density
limitations for the polarized atomic beam target. But the accurately measured analyzing
power can be used in the polarimeter with higher thickness un-polarized H2-jet target and
100 times higher counting rate. It can be achieved with the un-polarized hydrogen jet
target of a moderate about 1013 H2/cm

2 thickness and increase of solid angle for recoil
proton detection. This will result in less than 1% statistical accuracy for each fill.
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3 Polarized beam in AGS and RHIC in Run 2011

In 2009 polarized Run the average polarization of about 55% was measured at 100 GeV
beam energy. This polarization is equal to measured value at injection energy (within
the systematic error of calibrations). It is expected, from spin dynamics simulations, that
polarization losses from intrinsic resonances crossing at the energy ramp are higher at edge
of beam, which should produce polarization distribution across the beam the polarization
profile. These polarization profiles in RHIC were measured at injection energy, at 100
GeV and 250 GeV energies. The polarization profile values at 100 GeV were very close to
the profile measurements at injection. This is another confirmation of small polarization
losses at acceleration up to 100 GeV. In 2009 Run polarized protons was also for the first
time successfully accelerated to 250 GeV beam energy and average polarization of a 36%
was measured by the H-jet polarimeter. Significantly larger polarization profiles were also
measured at 250 GeV beam energy.

Figure 3: The polarized beam luminosity and po-
larization in Runs 2003-2011.

A number of significant improvements
in machine operation were implemented for
2011 Run. A “Jump-Quads” technique for
polarization preservation during the pas-
sage of the week intrinsic resonances in
AGS increased the beam polarization out
of AGS for about 5–10% especially at the
highest (2× 1011 protons/bunch) beam in-
tensity (see Fig. 3).

A new 9 MHz RF-cavity in RHIC im-
proved the longitudinal matching in be-
tween AGS and RHIC and reduced the
beam losses at the RHIC energy ramp.
Spin tune stability was greatly improved
with the implementation of the “tune feed-
back” system. This allowed the optimal
choice of spin tune value to minimize de-
polarization and still keeping the stable
machine operation. The beam position
control system was also greatly improved,
which reduced the vertical beam position
motion to less than 0.1 mm, which is re-
quired for depolarization reduction [8]. As a result, the average polarization at 250 GeV
was increased to 48% (see Fig. 2) and polarization profiles were reduced too accordingly.
Another indicator of the improved machine control are the very close numbers for average
polarization in Blue (47.98 ± 0.53%) and Yellow (47.95 ± 0.53%) rings, as measured by
the H-jet polarimeter.

For colliding beams, the polarization profile is weighted with a product of two beam
intensity profiles in transverse plane, therefore an “effective” polarization for colliding
beams is somewhat higher than average polarization measured by the H-jet polarimeter [4].
In 2009 Run at 250 GeV beam energy these corrections were about 15% and “effective”
polarization (as seen by colliding beams) was about 41%. In Run 2011 with the reduced
polarization profiles the corrections were about 10% and “effective” polarization about
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53%.
The RHIC upgrades allowed increase of the bunch intensity at injection to RHIC up to

2.0×1011 protons/bunch. The peak beam intensity accelerated to 250 GeV was increased
to about 180×1011 protons in 109 bunches and peak beam luminosity 1.5×1032 cm−2sec−1.
Average luminosity for the 8 hrs store was about 0.9 × 1032 cm−2sec−1. The RHIC
performances in polarized Runs are shown in Fig. 3. In spite of 2 weeks downtime caused
by technical problems (electrical power distribution system failure) the significant increase
of integrated luminosity and polarization was achieved in Run 2011.

4 Summary and outlook

The RHIC spin program is a beneficiary of the latest development in the polarized ion
source and polarized internal target technology. For the first time the polarized proton
beam intensity in the high-energy accelerator is not limited by the polarized source in-
tensity. In 2009-11 Runs polarized proton beam was successfully accelerated to 250 GeV
energy. The beam polarization of a 55–60% at 100 GeV beam energy and 48% (53% as
seen in collisions) at 250 GeV energy was measured with the polarized H-jet and p-Carbon
CNI polarimeters. The plans for further polarization increase rely on polarized source up-
grade to higher intensity and polarization [9]. Smaller beam emittance can be produced
by strong beam scraping of the high-intensity beam after the Booster. This should reduce
beam depolarization in AGS and RHIC and contribute to further luminosity increase.
There is also a plan to eliminate a polarization decay (of about 10% during 8 hours store)
which was observed in Run 11 by better choice of the operational tune value.

The depolarization studies and experimental data normalization are based on absolute
polarization and polarization profiles measurement accuracy and ongoing program on
polarimetry development and upgrades is an essential part of the RHIC spin program.
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Abstract

If the magnetic properties of electrons and nuclear spins are widely used in ap-
plications, to our knowledge, the mechanical resonance of nuclear spins has not been
observed yet. Almost hundred years later the [E-de H] experiment with a freely sus-
pended magnet [1] we are looking for a way to detect the nuclear magnetomechanical
effect using Dynamic Nuclear Polarization method, the nuclear demagnetization at
superlow temperature and the world largest polarized target at CERN.

1. Idea and Numeric estimations

”The physical fact underlined all gyromagnetic effects is that the nuclear spin and the
electron spin, as well as their orbital angular moments, generate a magnetic moment
parallel to the angular momentum with a magnitude fixed through a characteristic constant
...” [2]. The first magnetomechanical experiment by A. Einstein and W.J. de Haas [E-
de H] was published in 1915 [1]. It was shown that a freely suspended magnet, placed
in a solenoid field, has a mechanical resonant oscillations at a specific frequency of a
weak magnetizing field. There was a proof that the law of conservation of electron orbital
magnetic moment allows ”...the occurrence of compensating angular momentum of another
kind; the latter will be a crude mechanical angular moment” [1].

The concept of ”Nuclear Spin” was elaborated much later in 1925÷1927. Assuming
the equal numbers of protons and orbital electrons in the samples, one can see that, in
an analogical to [E-de H] experiment, nuclear spins should be cooled down from room
temperature (≈ 300 K) to about 300 K/(µe/µP )2 ≈ 7 · 10−4 K, where µe/µP is the ratio
of electron to proton magnetic moments. This spin temperature could be reached in solid
dielectrics in two steps: by Dynamic Nuclear Polarization (DNP) method and then by
demagnetization of spins in reduced field. The problem comes from the relaxation of
the spin energy which goes mainly through the interaction of nuclear spins with electron
impurities because an amount of lattice phonons with nuclear frequencies is extremely
small at low temperatures. In irradiated ammonia (NH3) [3], investigated below, these
relaxation time reaches thousands hours at 2.5 T and of the order of a few minutes at
zero field and at about of 60 mK in both cases. Obviously, to identify the nuclear mag-
netomechanical effect, the nuclear spin-lattice relaxation must be faster than relaxation
caused by electron impurities to avoid ambiguous interpretation of the effect.
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R. Pound showed [4] that, under certain conditions, the relaxation rate of quadrupole
nuclei interacting with an electric field gradient can largely exceed the relaxation rate
through paramagnetic impurities. If it is so in ammonia at super low temperatures, then
the quadrupole nitrogen spins (IN=1) could generate mechanical vibrations of a lattice.
The effect may be enhanced during the cross-relaxation between proton and nitrogen
spins because the proton moment (µP ), and the energy, are an order of magnitude larger
than for nitrogen (µN). The comparison of relaxation times of polarized proton through
impurities and quadrupole spins can be estimated as follows [4]. The energy of dipolar
interactions (Ed−d) between spins in NH3 at a distance 〈rPN〉d−d equals to

Ed−d =
µP · µN

〈r3
PN〉d−d

≈ 1.4 · 10−23 · 2.0 · 10−24

〈r3
PN〉d−d

≈ 3.0 · 10−47

〈r3
PN〉d−d

, (c.g.s.) (1)

which is considerably less than the interaction energy (Wq) between nitrogen quadrupole
moment (eQ) and the averaged gradient of electric field in a lattice [5]

Wq =
e2Q

4 · 〈r3
N〉q

〈(3 cos2 θ − 1)2)〉θ ≈
(4.8 · 10−10)2 · 2.0 · 10−26

4 · 〈r3
N〉q

· 4

5
≈ 9.0 · 10−46

〈r3
N〉q

, (2)

where 〈rN〉q is the average distance between nucleus and electron charges (e), θ is the
angle between the principal axis of the field gradient tensor and the direction of the
magnetic field. Assuming that in the same material 〈r3

PN〉d−d ≈ 〈r3
N〉q we obtain the ratio

of quadrupole to dipolar relaxation times Tq/Td−d as [4]

Tq

Td−d

≈ (Ed−d/Wq)
2 ≈ (3.0 · 10−47/9.0 · 10−46)2 ≈ 0.001 , (3)

If, for example, the relaxation time through the electron impurities is of about 1 hour, as
it is in irradiated ammonia at about of 0.03 T and 60 mK, then the quadrupole relaxation
from Eq. 3 yields the seconds. We use this feature of quadrupole relaxation to extract
the nuclear magnetomechanical effect from relaxation through the electron impurities.

The conversion of nuclear moment into lattice vibrations must change both the energy
〈Hq〉 and the alignment A(N) of nitrogen spin system. At a low magnetic field we have

〈Hq〉 = hνq(3 cos2 θ − 1)〈3Iz
2 − I(I + 1)〉 = hνq(3 cos2 θ − 1)A(N) , (4)

where h is Plank’s constant, νQ = 1/8(e2qQ/h), (eq) is the value of the electric field
gradient along the principal axis of the field gradient tensor, I is the spin and 〈Iz〉 is
z-component of angular moment. It is clear from Eq. 4 that the lattice vibrations should
come from varying angular moment 〈Iz〉 in alignment.

2. Experimental Results

The data were obtained with the Compass polarized target at CERN. It uses a powerful
dilution refrigerator, a solenoid with a homogeneous longitudinal field of 2.5±4 · 10−5 T
and a dipole magnet producing a transverse field of 0.6 T. The dilution chamber consists
of three cells (30+60+30) cm long and 4 cm in diameter (see Fig. 1), filled with irradiated
and granulated ammonia [3]. Microwave (MW) cavity is also subdivided in three cells
made of copper and electrically isolated from each other by MW-stoppers. It operates in
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λ=4 mm wavelength range. Operating temperatures range is from 0.06 to 0.25 K. The
nuclear polarization is measured by ten commercial “Liverpool” Q-meters connected to
probing coils equally distributed along the target material [3]. The receiver circuits were
permanently tuned to ν0=106.42 MHz and fed by a RF-synthesizer. The frequency was
scanned by 1000 steps within 600 kHz bandwidth.

Figure 1: Up, Middle and Down microwave cells,
powered through the waveguides. Electrical isolation
between cells is performed with Stoppers 1,2,3; its
design allows the free helium flow.

Detailed investigation of the cross-
relaxation in the ammonia at positive po-
larizations was done in [3], starting with
high proton polarization of +89% and ni-
trogen polarization of +16%. The mag-
netic field was reduced to 0.045 T and
raised back to 2.5 T several times. As a re-
sult the nitrogen polarization was increased
up to +40%. It was also studied the line
shape of both nuclear species but the re-
laxation processes were not considered.

In this study, at field of 2.5 T, the proton spins in ammonia were polarized by the
DNP method to ±80% then tests were performed in frozen mode without use of external
alternative MW and RF-fields. With the positive polarization, sweeping up and down
of the static magnetic field up to 0.03 T did not affect thermometers located near the
ammonia. This means that at positive polarization the nuclear cross-relaxation is an
adiabatic process which goes without any visible lattice effects. The cross-relaxation
produces only a partial exchange between polarizations of spin species.

Nuclear magnetomechanical effect was only observed at negative polarizations. Fig. 2
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Figure 2: Magnetomechanical spectra obtained with RuO-thermometers. Dotted line shows the dipole
field. Left and right percentages show the proton polarization before and after cross-relaxation. All
spectral lines appear only during cross-relaxation and during the sweeping field.
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Figure 3: Magnetomechanical spectra of high resolution obtained in the uniform solenoid field (dotted
line). Thermal pulses have characteristical durations of the order of 10 seconds in good agreement with
estimation from Eq.3. This time the magnetic field went to zero for a minute to demonstrate an absence
of relaxation through electron impurities during this short exposure.
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shows thermal spectra recorded during double sweep through cross-relaxation field nearby
0.03 T. Since cells are electrically isolated from each other, we conclude that the obtained
spectra comes from the mechanical vibrations of the lattice. Such the explanation also
confirms and almost identical shapes of spectral lines in different cells, seen in Fig. 2; it is
clear that vibrations are generated in the Middle-cell which had the highest and negative
initial polarizations and then excitations are spread to the nearby cells due to the free
helium flow through Stoppers (see Fig. 1). Fig. 3 shows the high resolution vibration
spectra obtained in homogeneous solenoid field. Typical duration of relaxation processes
is of the order of ten seconds which confirms the estimation from Eq. 3 and the proposition
by Pound [4] about the important role of quadrupole nuclei in the spin lattice relaxation.

The fast relaxation observed here may clarify the shorter relaxation time of negatively
polarized spin species when interacting with quadrupole nuclei through a weak dipo-
lar interaction. Magnetomechanical effect may also influence the reachable polarization
which is usually higher at negative than at positive polarization, if the material contains
quadrupole nuclei. In this case DNP-method can ”polarize” at lower temperatures.

3. Conclusion

1. Nuclear magnetomechanical effect was observed in the ammonia at super low tem-
peratures and at negative nuclear polarizations. Effect consists in the transformation
of nuclear magnetic moment into the mechanical vibration of the lattice.

2. Nitrogen spins in NH3 produce the lattice vibrations when their alignment is varied
during the proton-nitrogen cross-relaxatio at about of 0.03 T field.

3. Lattice vibrations were recorded with RuO-thermometers; they are spread along
liquid helium and they cause the fast nuclear relaxation also in the nearby cells.

4. Evidence was produced, that, owing to a weak dipole-dipole coupling with quadruple
spins, the magnetomechanical effect may produce a faster relaxation for negative
compare to positive polarized spin species.

5. From the same reason, the negative reachable polarization should be higher than the
positive one because, in this case, DNP-method can polarize at lower temperatures.
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Abstract

This paper identifies the conditions providing stable multiple beam polarization
reversals by small magnetic fields at the interaction points in a collider. We in-
vestigate the spin flipping schemes for the longitudinal and transverse polarization
orientations. Such schemes are discussed for different types of storage rings, namely,
for conventional storage rings, storage rings with Siberian snakes and figure-8 stor-
age rings. The spin reversals are accomplished by rf magnetic fields oscillating at
frequencies near a spin resonance. The proposed schemes are of interest for the
beams of deuterons, protons and other particles.

Development of Spin-Flipping systems (SF systems) for storage rings, which allow for
a controlled reversal of polarization direction at the interaction points, is an important
problem of experimental physics. In principle, a spin reversal can be accomplished every
particle turn without distorting the orbit at the interaction points. There are many papers
on spin-flipping systems (see, for instance, [1–5]).

When choosing the devices producing the beam polarization reversal, the main prob-
lem is stability for multiple beam polarization reversals in the storage ring’s experimental
straight. This paper considers the problem of developing stable SF systems using small
magnetic fields. We first state the general requirements towards the development of stable
SF systems and then give examples of stable SF systems for a conventional storage ring,
a storage ring with Siberian snakes and a figure-8 storage ring.

General requirements on SF systems

From the general point of view, development of SF systems using stationary fields is
incompatible with stability of the spin motion. In a stationary case, the general spin
motion is described by a periodic spin precession axis ~n and a generalized spin tune ν.
The spin component along the ~n axis is repeated from turn to turn of a particle while the
transverse spin component rotates every particle turn in the storage ring by an angle 2πν
about this axis. With the exception of spin resonance points, the stable beam polarization
direction points along the ~n axis. The particle spins transverse to the ~n axis are mixing
due to the spin tune spread.

Let us illustrate the above using the example of spin motion in a conventional storage
ring. In a conventional storage ring with vertical guiding field, the stable polarization
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direction is vertical ~n = ~ey. The spin precession frequency in such a storage ring in
units of the circulation frequency ν = γG is determined by the anomalous part of the
gyromagnetic ratio G and is proportional to the particle energy. The polarization lying
in the orbit plane is unstable and is lost within the time determined by the spread of
particle parameters in the beam. It is convenient to depict the spin motion in the plane
perpendicular to the ~n axis using a circular diagram shown in Fig. 1 where the grey arrows
indicate the spin positions after every particle turn (the ~n axis direction is perpendicular
to the plane of the figure).

0 1 2 3 turns

Y=2ΠΝ

Y
2Y 3Y

Y

0

1
2

3

4

z

x

Figure 1: Circular diagrams of the spin motion in the stationary case

Figure 2 shows examples of circular diagrams of the spin motion in the place transverse
to the ~n axis for different values of the spin tune. The case of ν = k corresponds to a
spin resonance. In a spin resonance region, there is no preferred periodic axis ~n, since
all solutions become periodic. The stable polarization orientation is then determined by
small spin perturbations, which set the new direction of the periodic axis ~n in the spin
resonance region itself. In the case of ν = k+1/2, there are sequential spin vector reversals
occurring in the plane transverse to the ~n axis. When ν = k+1/4, one can simultaneously
organize subsequent spin reversals along both the radial and longitudinal directions with
respect to the particle motion.
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Figure 2: Examples of circular diagrams of the spin motion in the stationary case

In the stationary case, a spin direction reversal at a given azimuthal angle can only
occur in the plane transverse to the ~n axis; therefore, the spin motion in SF systems with
stationary fields cannot be stable. Typically, at the existing orbit spreads in storage rings,
such a system depolarizes the beam during about 103 − 104 particle turns.
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Thus, for an SF system to provide stable polarization reversals during an extended
period of time, it must employ non-stationary periodic fields. The spin field will then be
periodic in the phases of these fields:

~W (Ψrf) = ~W (Ψrf + 2π).

There then must exist a precession axis ~n with the property

~n(Ψrf) = ~n(Ψrf + 2π).

Using small non-stationary fields is especially effective in the regions of spin resonances,
when it becomes possible to stabilize a new polarization orientation with the frequency
of the non-stationary field alternation.

The SF systems can be subdivided into two types: multi-turn and single-turn SF
systems. In the former, the spin reversal is produced by a small time-varying field during
a large number of particle turns in a storage ring. In the latter, the spin reversal is done
by strong stationary fields of the storage ring while a time-varying field is used to stabilize
the multiple spin reversals. It then becomes possible to do a reversal every particle turn.

When investigating stability of the spin motion in the SF systems of interest, it is also
necessary to consider the accompanying effects arising due to the time-varying fields. Such
effects include the effect of the synchrotron oscillations of particle energies, in particular,
oscillations of particle phases inside a bunch, the effect of the accompanying electric fields
induced by the time-varying magnetic fields. It is necessary to investigate excursions of
the particle orbits and their stability in storage rings with SF systems. The introduced
fields should not distort the orbit in the experimental straights. One has to account for
the effect of the nearest natural spin resonances and, at least, of the 2nd-order corrections
to the spin motion, the effect of imperfections of the storage ring’s magnetic lattice etc.
For electron rings, radiation effects must be evaluated.

Multi-turn SF systems in conventional storage rings

Multi-turn SF systems can be realized in the beam energy regions near integer resonances.
At an integer resonance point, any solution is repeated from turn to turn and is unstable.
Introduction of an even small field (exceeding the strength of this resonance) singles out
a new stable polarization direction. Let us illustrate how a multi-turn SF system can be
organized using time-varying fields.

Three rotators placed in the experimental straight rotate the spin sequentially about
the radial, vertical, and longitudinal directions on each particle turn by small angles ϕx,
ϕy, ϕz, respectively. For simplicity, we assume that the particle orbits are not distorted
outside of the rotator region. In a real situation, the particle orbit distortions organized
in a special way can significantly reduce the required pulsed-field integrals in the rotators.
Such rotators can be realized using dipoles and solenoids. Using these rotators, the
polarization can be flipped along any of the indicated directions. For instance, to reverse
the spin along the particle velocity (the SF system is working in the longitudinal direction),
the radial and vertical rotators have to be turned on sequentially according to the time
diagram shown in Fig. 3.

The pulse duration τ is chosen to be a multiple of the particle circulation period
(τ = pT0) in the storage ring in such a way that the rotator turn angles during the time
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Figure 3: Time diagram of rotator operation in a multi-turn SF system

τ are equal to pϕx = π and pϕy = π. The generalized spin tune in such a scheme is equal
to a half ν = 1/2 in the units of the induced field frequency 2π/T . Thus, this scheme is
optimal from the point of view of stability. The induced field period T is limited by the
integer resonance strength wk and by the spin tune spread ∆ν = G∆γ:

T ¿ min(π/wk, π/∆ν) .

To flip the polarization along the radial or vertical direction with this SF system, the
rotator pair ϕy, ϕz or ϕz, ϕx, respectively, is used. One can easily see that this scheme is
analogous to a storage ring with two Siberian snakes over a longer period T À T0.

Many-turn SF systems based on spin resonance cross-

ing

The development of SF systems based on adiabatic spin resonance crossing using rf fields
was reported in many papers (see, for instance, [1–4]). Such schemes belong to the
multi-turn SF systems’ category and provide spin reversal along the direction of stable
polarization. For cyclic adiabatic crossings, to support a stable spin motion, the phase
difference between consecutive resonance crossings must not be an integer multiple of π:
∆Ψ 6= kπ. Since this phase difference for adiabatic crossings is large (∆Ψ À 1), to ensure
stability of the polarization reversals in such schemes, stricter conditions must be satisfied
than in other schemes described in this paper.

However, even high precision of parameters does not guarantee stability of multiple
polarization reversals. In the case of adiabatic crossings, one should also account for
the accompanying slow oscillations such as synchrotron oscillations and those caused by
nearby resonances. The synchrotron oscillations in a storage ring can lead to a series
of modulation resonances separated from the central resonance by the frequency of the
synchrotron oscillations. These schemes require careful analysis of the stability of the spin
motion.

In principle, a many-turn SF system can be organized using the transparent crossing
technique [6, 7]. The requirements on the beam parameter spreads and on the crossing
parameters in this case are somewhat reduced in comparison with the case of adiabatic
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crossings but, even in this case, they are still more demanding than in other SF systems
considered in this paper.

Single-turn SF systems in conventional storage rings

Single-turn SF systems were proposed and described in the paper [5]. For the energy
values, when the fractional part of the spin tune is equal to a half γG = k + 1/2, the
polarization orientation lying in the orbit plane flips every turn in the storage ring’s
experimental straight. As pointed out above, such polarization dynamics is unstable.
However, this dynamics can be made stable using a spin resonance γG = k + νrf induced
by an rf field at a frequency νrf = 1/2.

Figure 4 shows schematic of a single-turn SF system with pulsed longitudinal field.
The field is turned on at the time of bunch passing and changes sign on the next turn.
The induced field period is equal to the time of two particle turns in the storage ring. Here
ϕz denotes the small angle of spin rotation in the solenoid during each bunch passing,
Ψy = 2πγG = 2πk + π is the angle of spin rotation about the guiding field during one
particle turn in the storage ring.
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Figure 4: Schematic of a single-turn SF system with longitudinal field

The stable polarization orientation in the experimental straight is computed using
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Approaching a half-integer resonance Ψy → 2πk + π, one gets
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π
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Thus, for stable polarization reversal, the following condition has to be satisfied

ϕz À 2π|∆γ G| , (1)

where ∆γ is determined by the particle energy spread in the beam.
In a similar way, an SF system can be constructed for the energy values determined

by the relation γG = k + 1/4. The induced field period becomes equal to four particle
revolution periods. Longitudinal and radial field then have to be turned on alternately
during bunch passing of the experimental straight as illustrated in Fig. 5.
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Figure 5: Schematic of a single-turn SF system with four-turn period

In such a scheme, in the induced resonance region γG = k ± νrf = k ± 1/4, the stable
polarization in the experimental straight changes from turn to turn during a complete
period of the induced field in the following way:

~n(0) = −~n(4π) = ~ez , ~n(2π) = −~n(8π) = ~ex .

The stability condition in this case is analogous to condition (1) for the SF system
with a two-turn period:

ϕx, z À 2π|∆γG|
In a similar way, one can construct any structure with the induced field period equal

to q particle revolution periods in the storage ring.

SF systems in storage rings with Siberian snakes

As an example, let us consider a storage ring with one radial Siberian snake. One can
show that in such a storage ring the stable polarization direction lies in the orbit plane
and points along the radial direction in the straight (experimental straight) opposite to
the snake. The generalized spin tune is independent of energy and is equal to a half.
In such a storage ring, the relevant single-turn SF system is that based on the induced
resonance νrf = 1/2. Since the stable polarization is radial directed along the axis ~ex, spin
reversals can be organized along the directions lying in the (zy) plane.

To organize spin flipping along the velocity direction, the scheme shown in Fig. 2
can be used. The reversal stability condition can be obtained from (1) by replacing the
spread ∆γG with the spin tune spread in a storage ring with a snake ∆ν: ϕz À 2π∆ν.

382



Note that the spin tune spread in a storage ring with a snake is significantly smaller than
that in conventional storage rings and much lower magnetic field integrals are required to
stabilize the reversals.

In a storage ring with two snakes, the stable polarization is vertical. Therefore, spin
flipping can be organized along the directions lying in the (zx) plane. SF systems for a
storage ring with two snakes are analogous to those for a storage ring with one snake.

SF systems for “figure-8” storage rings

Such a storage ring is being developed at Thomas Jefferson National Accelerator Facility,
Newport News, VA, USA [8]. In this new type of storage ring under design, there is con-
ceptually no need to introduce large field integrals, such as Siberian snakes, to control the
beam polarization. A characteristic feature of such a storage ring is that the generalized
spin tune does not depend on the energy and is equal to zero. The particles are at the
ν = 0 resonance. This means that any polarization orientation is repeated from turn to
turn and there is no preferred polarization direction. Even small fields allow control of
the beam polarization in the experimental straight by stabilizing the required polariza-
tion orientation. It becomes possible to efficiently control the polarization of a beam of
particles with any anomalous magnetic moment including particles with small anomalous
moments, such as deuterons.

For this kind of storage rings, a suitable SF system is a many-turn one considered
above for conventional storage rings. For the spin reversals to be stable, the induced field
period should not exceed the value T ¿ π/w0 determined by the strength of the ν = 0
resonance.

Transformable storage ring types for SF systems

It was noted above that, for conventional storage rings, one can use both multi-turn and
single-turn SF systems corresponding to integer and half-integer values of the spin tune:

γG = k , γG = k + 1/2 .

To achieve stable spin reversals in a conventional storage ring at any energy, one can
produce additional spin rotation to reach the nearest spin tune value. This can be done,
for instance, using the scheme described in [9].

Single-turn SF systems are more suitable for storage rings with Siberian snakes (ν =
1/2) while many-turn SF systems are more suitable for “figure-8” storage rings (ν = 0).
It should be pointed out that, by using large-integral stationary fields, one type of storage
ring can be converted into the other. Thus, using two snakes with the same axes in
opposite straights, the spin tune instead of being a half becomes a zero for any energy. This
allows application of multi-turn SF systems in such storage rings. Inversely, introducing
one Siberian snake in a “figure-8” storage ring changes the spin tune to one half, which
allows usage of single-turn SF systems.
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Abstract

A proposal concerning ion polarization via pick-up of polarized ferromagnetic
electrons was made by Zavoiskii in 1957, but the first experiment was carried out
by Kaminsky in 1969. We reconsidered his results, corrected mistakes and propose
to produce with use of this method a polarized neutron beam with an energy of
14 Mev through the reaction T(d,n)α. If we apply the zero field transition (Sona’s
method), the polarization of the deuterons reaches ≈ 2/3. As a result, we can
expect the beam of polarized neutrons (P ≤ 2/3) with an intensity up to 1.5× 107

neutrons per steradian, per µA of the deuteron beam. We show as the method may
be used for producing polarized radioactive beams.

1 Introduction

A proposal concerning ion polarization via pick-up of polarized ferromagnetic electrons
was made by Zavoiskii in 1957 [1]. The idea consists in passing a beam of protons
(deuterons, tritons, helions, etc.) through a ferromagnetic foil magnetized to saturation.
The transmitted neutralized component with captured polarized electrons is selected by
electrostatically removing the remained charged beam. The foil should be in a strong
magnetic field (higher than the ”critical field” of hyperfine separation, which is propor-
tional to Z3). The method supposes an adiabatic transition of the atoms from a high
magnetic field to a low field where the nuclei get polarized through hyperfine interaction.
In this case ionization also should be in a low field.

But it seems possible to follow an another way suitable for heavy nuclei with use
relatively low magnetic fields. If nuclei with spin 1/2 capture polarized electrons, the
atoms (or hydrogenous ions) exit from the foil in two states ψ+

e ψ+
N and ψ+

e ψ−N . The atoms
in the state ψ+

e ψ−N evolve as follows:
1/
√

2(Ψ(1, 0) + Ψ(0, 0) ⇒ 1/2(ψ+
e ψ−N + ψ−e ψ+

N) exp(−iω1t) +
1/2(ψ+

e ψ−N − ψ−e ψ+
N) exp(−iω2t) = exp(−iω1t)[1/2(1 + exp(i∆ωt))ψ+

e ψ−N +
1/2(1− exp(i∆ωt))ψ−e ψ+

N ].
In the course of time, the probabilities to detect these atoms in states ψ+

e ψ−N and ψ−e ψ+
N

are respectively:

W− = |[1 + cos(∆ωt) + i sin(∆ωt)]/2|2 = [1 + cos(∆ωt)]/2, (1)

W+ = |[1− cos(∆ωt)− i sin(∆ωt)]/2|2 = [1− cos(∆ωt)]/2. (2)

Then, the nuclear polarization is P = W+ −W− = − cos(∆ωt).
If a width of the atom velocity distribution δ(∆ωL/v) > 2π (or δv/v > 2πv/∆ωL),

averaging with time gives zero polarization for the atoms in the initial state ψ+
e ψ−N . As
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the 2nd half of the beam has the polarization +1, the resulting nuclear polarization of all
the beam is Pfin = +1/2.

We note that for nuclear spin 1, P3 = 8/27 and P33 = 0, for nuclear spin 3/2, also
only vector polarization is different from zero, P3 = 10/48.

2 Polarized deuterons

The first successful experiment was carried out in 1969 by Kaminsky [2,3] and his results
were partly confirmed by Feldman et al. [4]. The success was connected with use of
channeling through a single crystal foil.

A beam of D+ with a half angle of 0.01◦was incident on a Ni(110) foil within 0.1◦ of
the [110] direction (the critical acceptance angle (1.6 − 1.8)◦). Two Ni(110) foils used
were ≈ 2µ thick. Two polycrystalline Ni foils with a thickness of (1 − 2)µm were also
used but for them no polarization was detected. Rest gas pressure was (1 − 2) × 10−7

Torr. Inside the target holder the foils were kept in the magnetic field ≈ 160 G. Atoms
emerging from the foil spent (1 − 2) × 10−7 sec in traversing a homogeneous magnetic
field of ∼ 10 G. After passing the weak field region the nuclear tensor polarization of the
channeled deuterium atoms was determined [5] by measuring the angular distribution of

α-particles emitted in the reaction T(~d, n)α. Theoretically, the tensor polarization should
be P33 = −1/3 (vector polarization P3 = 1/3). The measured value is P33 = −0.32±0.01.

Kaminsky’s results were strongly criticized (see the discussion in ref. [3]). In the used
him configuration with a weak magnetic field of the transition region in the direction
perpendicular to the field in the nickel film, electron spin can not follow the field. As our
calculations show, this can be done only in a strong magnetic field.

The results of Feldman [4] are in a qualitative agreement (P33 = −0.14 ± 0.06) with
the polarization first observed by Kaminsky.

According to theoretical considerations, the spin polarization in the neutrals of the
deuteron beam emerging from the foil is now attributed to the electrons captured in
the tail of the surface electron distribution (Brandt and Sizmann [6]). One must accept
that in the Kaminsky’s experiments, the electrons are captured into the ground state of
deuterium atoms.

3 Polarized neutrons

Our final goal is:
the measurement of the total cross-section differences ∆σL(nd) and ∆σT (nd) for n-d

scattering (spins of neutrons and deuterons are parallel or antiparallel) with use a 14
MeV polarized neutron beam and polarized deuteron target. This experiment continues
the preceding measurement of the ∆σL(np) and ∆σT (np) for n-p scattering at the Van
de Graaff accelerator of Charles University in Prague.

Earlier, to produce polarized neutrons the reaction T(d, ~n)α was used [7], the polar-
ization was transversal (perpendicular to the scattering plane).

We think that single-crystal nickel foils of thickness up to 2 µm will be grown epitax-
ially on NaCl crystals cleaved to expose the (110) plane. With use Sona’s transitions we
may get the vector polarization of deuterons and, respectively, neutrons up to P3 = 2/3.
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Figure 1: A scheme of the polarized deuteron source; 1 – a nickel foil, 2 – a permanent
magnet (0.1 T), 3 – a solid state detector, 4 – a goniometer, 5 – polarizing permanent
magnets (for Sona’s transitions), 6 – electrostatic plates, 7 – a deuterated foil for the
polarization measurement.

If target material TiTN contains N = 1.5 tritium atoms/titanium atom, then the den-
sity ρTiTN

of the target material is ρTiTN
= 0.85ρTi(47.88 + 3.015N)/47.88 = 4.19 g/cm3,

where ρTi = 4.505 g/cm3. The factor 0.85 arises from 15% expansion which the titanium
lattice undergoes during tritiation.

If thickness of a target τ is measured in g/cm2, the best approximation to use for the
value of dEd/dτ for deuterons incident in TiTN is the value obtained by assuming Bragg’s
law: for N=1.5 [8]

dEd/dτ = 0.914(dEd/dτ)Ti + 0.0863(dEd/dτ)T2 . (3)

The total yield of neutrons per an incident deuteron with an energy of Ed(0) is given
by

Y =
nT

ρTiTN

Ed(0)∫

0

σ(Ed)

dEd/dτ
dEd, (4)

where nT is the number of tritium atoms/cm3, dEd/dτ is the rate of the deuteron energy
losses in a titanium tritide target, σ(Ed) is the cross section of the T(d,n)4He reaction.

The number nT of tritium atoms/cm3 equals nT = 1, 5ρTiTN
6, 022 · 1023/ATiTN

=
7.22× 1022, where ATiTN

= 52.4.
The deuteron range in cm is equals

R =

(
1

ρTiTN

) Ed(0)∫

0

dEd

dEd/dτ
dEd. (5)

As a result, the yield is Y = 3× 10−5 neutrons per a deuteron, or 1.5× 107 neutrons
per steradian per µA of deuterons, the deuteron range is R ≈ 1.3 µm.
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The activity of the TiT target is ≈ 0.45 Ci/cm2.
If the TiT target is mounted in a strong magnetic field of an order 0.1 T, the 14-Mev

neutrons produced at the angle 90◦ (CM) have the same value of vector polarization as
deuterons, Pn ≤ 2/3.The neutrons will be transversally polarized in the vertical plane,
but with reversed direction compared to the deuteron beam polarization [9].

The deuteron polarization can be measured with the reaction D(~d, p)T. At the deuteron
energy 200 keV Ay = 0.224± 0.017 (Naqvi and Clausnitzer [10]).

4 Conclusion

It seems possible to get the nuclear polarized deuterium beam with an energy of about
150 keV with vector polarization up to 2/3 and zero tensor polarization via pick-up of
electrons in a magnetized single crystal nickel foil.

The method now is being tested at the Laboratory of Nuclear Problems JINR and
Czech Technical University in Prague.

The final aim is to produce the 14-MeV polarized neutron beam with polarization up
to 2/3 for measuring the neutron-deuteron total cross section differences ∆σL(nd) and
∆σT (nd).

There is a possibility to apply this method for polarized heavy ion production.
The technology of fabrication of the single crystal Ni foils is known, but some additional

work is necessary.
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KERR-NEWMAN GRAVITY BEYOND QUANTUM THEORY:
ELECTRON AS A SYSTEM OF CLOSED HETEROTIC STRINGS

A. Burinskii 1 †
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Abstract

The observable gravitational and electromagnetic parameters of an electron:
mass m, spin J = ~/2, charge e and magnetic moment ea = e~/(2m) indicate
that electron should have the Kerr-Newman (KN) background geometry of the ro-
tating black hole (BH) solutions. Due to the extremely high spin of the electron, the
BH horizons disappear and the KN metric opens a topological defect in the form
of a closed singular ring of the Compton radius a = ~/(2m), [1]. This string is a
closed heterotic string of the low energy string theory [2], and we identify it with a
quark, q0. On the other hand, the related with the KN string traveling waves form
also a coupled pair of the opposite oriented heterotic strings (quark-antiquark pair
(qq̄)), which perform a lightlike circular zitterbewegung and determine the wave
properties of the electron in agreement with the Dirac equation. This stringy-quark
structure of the electron indicates that electron is not pointlike, but forms a system
of closed heterotic strings of the Compton radius. Experimental exhibition of the
electron as a pointlike particle is related with the lightlike character of the Kerr
heterotic strings, which results in the Lorentz contraction of the observable size of
electron. We suggest that the stringlike structure of the electron and its Comp-
ton size should be experimentally observable by the novel methods of the ”Deeply
Virtual (nonforward) Compton scattering”, [3].

One of the principal contradictions between Quantum theory and Gravity is the ques-
tion on the shape and size of the electron. Quantum theory states that electron is pointlike
and structureless, which is experimentally supported by the high energy scattering. In the
same time, gravity based on the Kerr-Newman (KN) solution indicates unambiguously
that electron should form a closed string of the Compton size. Reason of that is a specific
structure of the KN gravitational field, which is concentrated near the Kerr singular ring,
forming a type of a closed string. In 1968 Carter obtained that the KN solution for the
charged and rotating black holes has g = 2 as that of the Dirac electron, which allowed
one to consider KN solution as a consistent with gravity electron model. Mass of the
electron in the units G = ~ = c = 1 is m ≈ 10−22, while a = J/m ≈ 1022. Therefore,
a >> m, and the black hole horizons disappear, opening a nontrivial topological defect
and twosheeted spacetime generated by the naked Kerr singular ring. Gravitational field
of the KN solution, concentrating near the Kerr singular ring, forms a closed gravitational
waveguide – an analog of the closed gravitational strings [1], while the stringy traveling
waves determine zitterbewegung and the wave properties of the electron.

The Kerr string takes the Compton radius, corresponding to the size of a ”dressed”
electron in QED and to the limit of localization of the electron in the Dirac theory.
Structure of the KN string is very close to that of the fundamental heterotic string,
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fundamental solution to the low-energy string theory. The heterotic strings carry the
lightlike circular current and the lightlike traveling waves, which is similar to the lightlike
structure of the Kerr singular ring. In [2] we started from the massless spinor equation
and obtained the usual massive Dirac theory in which the mass is generated from an
internal vortex dynamics by the Kaluza-Klein mechanism. However, contrary to the
superstring constructions, we deal with four-dimensional space-time, in which the role of
a compact manifold is played by the Kerr ring, performing a ”compactification without
compactification”.
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Figure 1: Vortex of the Kerr
congruence. Twistor null lines
are focused on the Kerr singular
ring, forming a circular gravita-
tional waveguide, or string with
lightlike excitations.

The Kerr-Newman solution in the Kerr-Schild form has
the metric

gµν = ηµν + 2Hkµkν , H =
mr − e2/2

r2 + a2 cos2 θ
, (1)

where ηµν is metric of auxiliary Minkowski space in the
Cartesian coordinates (t, x, y, z), and the Kerr coordinates
r and θ are the spheroidal oblate coordinates. The function
H is singular at r = 0, cos θ = 0, corresponding to the Kerr
singular ring. The KN electromagnetic potential

Aµ
KN = Re

e

r + ia cos θ
kµ, (2)

is aligned with null direction kµ and is singular at the Kerr
ring which forms a branch line of the Kerr spacetime in two sheets, corresponding to
r > 0 and r < 0 in the Kerr oblate coordinate system. Vector field kµ forms Principal
Null Congruence (PNC) of KN space. The Kerr PNC is smoothly propagated via the Kerr
disk r = 0 from the ‘negative’ sheet (r < 0) of spacetime to the ‘positive’ one (r > 0)
(see Fig.1), and therefore, it covers the KN space twice: kµ(+) for r > 0 and kµ(−) for
r < 0, leading to different metrics and different electromagnetic field on the ‘positive’ and
‘negative’ sheets [4]. Therefore, the Kerr ring creates a twosheeted background topology
(see Fig. 1). This twosheetedness was principal puzzle of the Kerr geometry over a period
of four decades and there appear two lines of investigation.

(A) In 1968 Israel truncated negative KN sheet, r < 0, and replaced it by the rotating
disklike source at r = 0, spanned by the Kerr singular ring at the disk boundary. López
regularized this source, forming a vacuum bubble which covers the Kerr singular ring
by a disklike ellipsoidal surface r = re = e2/(2m). The KN string is retained, taking a
regularized form. This bubble source was realized as a regular soliton-like model (see refs.
in [5]), formed by a domain wall interpolating between the external KN solution and a
flat pseudovacuum state inside the bubble. Interior of the bubble is filled by Higgs field,
forming a superconducting state, and the string represents the Nielsen-Olesen vortex on
the rim of the bubble.

(B) In alternative approach, there were considered the stringlike models of the KN
source, in which the KN twosheeted topology is retained and the KN singularity forms a
closed twovalued ’Alice’ string [1, 2].

Exact solutions for electromagnetic excitations on the Kerr-Schild background, [4],
showed that there are no smooth harmonic solutions on the KN background. Excitations
of the KN background have a ‘paired’ character: the lightlike ‘circular’ traveling waves
appear coupled with the propagating outward ‘axial’ traveling waves (see Fig.2.1). Axial
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waves are singular and tend asymptotically to the well known pp-wave (plane fronted)
solutions, for which kµ is asymptotically a covariantly constant Killing direction.

The pp-waves take very important role in superstring theory, forming singular classical
solutions to a low-energy string theory. They form the massless field around the lightlike
fundamental strings. The pp-waves may carry traveling electromagnetic and gravitational
waves which represent propagating modes of the fundamental strings. It has been obtained
that the field structure of the Kerr singular ring is very similar to that of the closed
heterotic string [6]. The both are charged and contain the lightlike currents and traveling
modes of one (say left) direction. The Kerr lightlike congruence kµ is tangent to the KN
closed string in the KN equatorial plane θ = π/2, indicating that the cylindrical world-
sheet (t, φ), 0 ≤ φ ≤ 2π of the KN closed string is lightlike, and corresponds to a half of
the period of the heterotic string 0 ≤ σ ≤ π. Traveling waves of the heterotic string may be
generated by dual rotations of the vector field (which corresponds to generalization of the
low energy string theory to the F-theory), which is controlled by a complex axion-dilaton
field. The lightlike heterotic strings form the principal elements of the quark electron
structure, incorporating the both models of the KN source.

(A)In the bubble model , the regular stationary KN electromagnetic field forms a closed
heterotic string positioned on the disklike boundary of the vacuum bubble near the Kerr
ring (quark-string q0). The twisted KN potential (2) forms a non-trivial closed Wilson
line which interacts with the Higgs field, resulting in the quantum contribution to the
soliton spin ~/2, [5].

(B)In the stringy models, the traveling waves along the KN string may be identified
with the circulating qq̄ pairs, described by the Dirac equation. They are also obtained
from the heterotic strings by an orientifold projection, as it is shown in the Figures 2.2-2.3.

Therefore, the schematic structure of KN electron model consists of three stringy
quarks: q0 - the closed heterotic string of the stationary KN field and the qq̄ pair from
traveling waves. The qq̄ pair forms the Wilson loop with zero area and does not give a
contribution to spin. However, the external electromagnetic field has to polarize the qq̄
pair.

Summarizing, we conclude that the KN gravity predicts the existence of the closed
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Figure 2: (2.1) Skeleton of Kerr geometry: the ‘circular’ and the lightlike ‘axial’ strings are coupled
topologically. (2.2a) Half-period of an infinite lightlike (heterotic) string. (2.2b) Full period of the
string, extended by mirror map. (2.2c) Orientifold projection of the heterotic string identified as a
quark-antiquark pair. (2.3) Closed lightlike string formed as a circular projection of the heterotic quark-
antiquark string.
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Kerr string of the Compton size on the boundary of the disklike vacuum bubble of the
Compton radius. Such a string should be experimentally observable, and there appears the
question while it was not obtained earlier by the high energy scattering. Explanation of
this fact is related with the lightlike character of the closed heterotic strings. The Lorentz
effect for the relativistically rotating closed strings shall shrink their length, resulting in
the observable pointlike image of the particle. Meanwhile, observation of the relativistic
objects is a nontrivial process, which depends on the method of observation. For example,
as it was shown by Penrose, the momentary photo-image of a relativistic sphere shouldn’t
display the Lorentz contraction.

We argue in [2] that the KN closed relativistic string, being probed by a real photon of
high energy, shall display a pointlike structure. However, the situation should be different
by the scattering of the deeply virtual photons with a low energy momentum transfer.
Specifically, to visualize the KN relativistic string of the Compton size, there are necessary
two special conditions:

a) the scattering should be deeply virtual, which means very large Q2 = q2
12, and p ·q12,

b) the momentum transfer should be relatively low to provide a coherent diffractive
scattering with the wavelengths comparable with the Compton extension of the string.

Both these conditions are satisfied in the novel approach, the Deeply Virtual Compton
Scattering (DVCS), or a “non-forward Compton scattering”, [3] which represents a new
regime for probing the transverse shape and tomography of the particles [7].

Author is thankful to Organizing Committee for invitation and financial support, and
also to many participants of the conference for useful discussions, and especially to A.
Efremov, Yu. Obukhov, A. Radyushkin, O. Selyugin and O. Teryaev.
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Abstract

An axisymmetric space-localized solution of nonlinear electrodynamics is consid-
ered as massive charged particle with spin and magnetic moment. The appropriate
solution for nonlinear electrodynamics with ring singularity is investigated. In view
of this problem the system of toroidal waves in linear electrodynamics is consid-
ered. The problem with boundary conditions on the singular ring of the toroidal
coordinate system is investigated. The boundary conditions are taken taking into
account the conformity between the toroidal and cylindrical waves on the ring. In
this case the singular ring looks like convolute axis of cylindrical system. The ap-
propriate system of wave modes are obtained in an integral form with the help of
source function.

The present work is the part of the work on the construction of the field model for
massive charged elementary particle with spin and magnetic moment as a soliton solution
of nonlinear electrodynamics. This theme was discussed in my articles. See for example
[1–5]

In this approach we have mass and spin of the particle as three dimensional space
integral from the energy and angular momentum densities for electromagnetic field:

m =

∫

V

E dv , s =

∣∣∣∣
∫

V

r×PPP dv

∣∣∣∣ , (1)

where E = E(D,B) is the energy density, D and B are electric and magnetic inductions,

PPP =
1

4π
D×B is the Poynting vector. The function E(D,B) defines the concrete model

of nonlinear electrodynamics.
Here we consider the field configuration with ring singularity.
In general case the appropriate soliton solution in own coordinate system has a static

part and quickly-oscillating part. The static part gives mass, spin, charge, and magnetic
moment of the particle. The oscillating part gives the wave behavior of the particle.

The finding of the appropriate exact solution of nonlinear electrodynamics is the very
difficult problem. But we can use approximate methods. The short report on the inves-
tigation of static solution with ring singularity for Born-Infeld nonlinear electrodynamics
is contained in my article [6].

Now we investigate the oscillating part of the soliton solution with ring singularity. The
present work is dedicated to construction the system of undistorted (standing) toroidal
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waves in linear electrodynamics. The linear waves can be used in perturbation schemes
for finding the soliton solution under consideration with the oscillating part.

It should be noted that the linear problem considered here is not trivial because the
variables are not separated in Helmholtz equation for toroidal coordinates.

Here we will use the hypercomplex form for electrodynamics (see [7]). In this case the
Clifford algebra with noncommutative product is used.

The hypercomplex form for representation of electromagnetic bivector is used: F =
E + ıB, where ı is hyperimaginary unit.

According to my paper [8] we can write

F(x) = − 1

4π

∫

Σ′

S(x′ − x)dΣΣΣ′F(x′) , (2)

where S(x) is the source function, Σ′ is the three-dimensional hypersurface bounding the
four-volume, and dΣΣΣ′ is its inside oriented element.

Let us consider that the field F is harmonic wave. Thus we can write

F = Fω e−ı ω x0

. (3)

where Fω = Fω(x), x ≡ {x1, x2, x3}.
Let us consider the known toroidal coordinate system in three-dimensional space

{u, v, ϕ} with the following transformation formulas to cylindrical coordinates {ρ, ϕ, z}:

ρ =
ρ◦ sinh v

cosh v − cos u
, z =

ρ◦ sin u

cosh v − cos u
, (4)

where ρ◦ is the radius of the singular ring,
−π < u 6 π, 0 6 v < ∞, 0 6 ϕ < 2π.

We will use the modified toroidal coordinate system {τ, η, ϕ}, where

τ = sech v , 0 6 τ 6 1 ,
η = −u , −π < η < π .

(5)

The coordinate τ ranges from 0 to 1 when the coordinate v ranges from ∞ to 0.
We have the following transformation formulas from the modified toroidal coordinates

{τ, η, ϕ} to cylindrical ones

ρ =
ρ◦
√

1− τ 2

1− τ cos η
, z = − ρ◦ sin η

1− τ cos η
, (6)

As we can easy obtain the behavior of the modified toroidal coordinates near the
singular ring (τ → 0) is the following:

bbτ ∼ 1

ρ◦
(− sin η bbz + cos η bbρ) , (7a)

bbη ∼ − 1

ρ◦ τ
(cos η bbz + sin η bbρ) , (7b)

bbϕ ∼ 1

ρ◦
(− sin ϕbb1 + cos ϕbb2) , (7c)

mττ ∼ ρ2
◦ , mηη ∼ ρ2

◦ τ 2 , mϕϕ ∼ ρ2
◦ , (7d)

d4V ∼ ρ3
◦ τ dτ dη dϕ , (7e)
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where bbi are the basis bivectors, mij are the components of metric tensor, d4V is the
three-dimensional volume element.

Let us introduce the following curvilinear coordinates:

ρ̆ + ρ◦ τ , ϕ̆ + η , z̆ + ρ◦ ϕ , (8a)

bbρ̆ + ρ◦ bb
τ , bbϕ̆ + bbη , bbz̆ + ρ◦ bb

ϕ . (8b)

As we can see in (8) with (7) the coordinates {ρ̆, ϕ̆, z̆} (8) near the ring looks locally
like the cylindrical coordinates.

Thus we will consider that the toroidal wave solutions near ring is close to the radial-
undistorted cylindrical waves propagating along the z axis. These cylindrical waves ob-
tained in [8] have the following form:

l ‖≈Cm
ωkz

e−ı ω x0

, (9)

where l ‖≈Cm
ωkz

= l ‖≈Cm
ωkz

(ρ, ϕ, z) are cylindrical bivector eigenfunctions of operator (−ı ·∂)
corresponding undistorted waves (“Bessel beams”, see my paper [8])

−ı ·∂ l ‖≈Cm
ωkz

= ω l ‖≈Cm
ωkz

, ·∂ ≡ bbi ∂i , (10)

m is the index of the angle cylindrical function, kz is the wavenumber corresponding to
the propagation along the z axis.

The ring play a part of z axis for the toroidal system. In this case the appropriate
wave number kϕ (instead of kz for cylindrical waves) is quantized because of continuity
condition for the field near the ring. Thus we have

2π ρ◦ = |m| λϕ

|kϕ| = 2π

λϕ



 =⇒ kϕ =

m

ρ◦
, (11)

where m is integer (as positive as negative values is used), λϕ is the wave-length at the
ring.

Thus we consider that the toroidal wave near ring has the following form:

l G≈Clm
ω e−ı ω x0 ∼ ˘l ‖≈Cl

ωkϕ
e−ı ω x0

for τ → 0 , (12)

where l G≈Clm
ω = l G≈Clm

ω (τ, η, ϕ) are toroidal bivector eigenfunctions of operator (−ı ·∂) corre-
sponding undistorted waves, ˘l ‖≈Cl

ωkϕ
= ˘l ‖≈Cl

ωkϕ
(ρ̆, ϕ̆, z̆) = ˘l ‖≈Cl

ω m
ρ◦

(ρ◦τ, η, ρ◦ϕ) (see (11) and

(8a)).
We consider the solutions in the form of some kind of standing toroidal waves but

which can contain closed traveling waves. These closed traveling waves propagate along
the ring and around the ring. The power flow through any closed surface containing the
singular ring is absent. We will search these waves in the form

l G≈Clm
ω e−ı ω x0

. (13)

To obtain the functions l G≈Clm
ω we use formula (2) and boundary condition on the

toroidal surface near the singular ring according to relation (12).
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Let us consider the toroidal surface {τ = τ◦, −π < η 6 π, 0 6 ϕ < 2π}. This
surface will play the role of two-dimensional part of hypersurface Σ′ in (2) such that the
appropriate primed coordinates is {τ ′ = τ◦, −π < η′ 6 π, 0 6 ϕ′ < 2π}.

After necessary substitutions we obtain

l G≈Clm
ω (τ, η, ϕ) = − 1

8π
lim
τ◦→0

∫

σ′

[(
e−ı ω x̃ + eı ω x̃

) ω

x̃
˘l ‖≈Cl

ω m
ρ◦
× dσσσdσσσ′

+

(
1

x̃3

(
e−ı ω x̃ + eı ω x̃

)
+

ω

x̃2
ı
(
e−ı ω x̃ − eı ω x̃

))

·
(

x̃x
(

˘l ‖≈Cl
ω m

ρ◦
· dσσσdσσσ′

)
+ x̃x×

(
˘l ‖≈Cl

ω m
ρ◦
× dσσσdσσσ′

))]
, (14)

where σ′ is the toroidal surface bounding the singular ring such that ρ◦ is its big radius
and τ◦ is its small radius, dσσσ′ is its outside oriented element, ˘l ‖≈Cl

ω m
ρ◦

= ˘l ‖≈Cl
ω m

ρ◦
(ρ◦τ◦, η′, ρ◦ϕ′)

is the appropriate cylindrical functions on the surface σ′, x̃ is the distance from the point
{τ, η, ϕ} to the point {τ◦, η′, ϕ′}, x̃x is the appropriate radius bivector.

Thus here we have the integral representation for toroidal undistorted linear electro-
magnetic waves. This representation can be sufficient for the using of these functions.

References

[1] A. A. Chernitskii, J. High Energy Phys. 1999, 12 (1999) Paper 10,
arXiv:hep-th/9911093.

[2] A. A. Chernitskii, Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge, New
York and London, 2004, 67–69, arXiv:hep-th/0509087.

[3] A. A. Chernitskii, Adv. appl. Clifford algebras, 15 (2005) 27–53,
arXiv:hep-th/0501161.

[4] A. A. Chernitskii, Proc. of the 17th. Int. Spin Physics Symposium, SPIN2006, AIP
Conf. Proc. V.915 (2007) 264–267, arXiv:hep-th/0611342.

[5] A. A. Chernitskii, Proc. of XII Adv. Res. Workshop on High Energy Spin Physics,
DSPIN-07, JINR (2008) 433–436, arXiv:0711.2499.

[6] A. A. Chernitskii, Proc. of XIII Adv. Res. Workshop on High Energy Spin Physics,
DSPIN-09, JINR (2010) 443–446, arXiv:0911.3230.

[7] A. A. Chernitskii, Int. J. Math. & Math. Sci. 31 (2002) 77–84, arXiv:hep-th/0009121.

[8] A. A. Chernitskii, Adv. appl. Clifford algebras, 13 (2003) 219–230,
arXiv:hep-th/0401122.

[9] A. A. Chernitskii, Proc. of XI Adv. Res. Workshop on High Energy Spin Physics,
DSPIN-05, JINR (2006) 234–239, arXiv:hep-th/0603040.

398



SPINNING PARTICLES IN DE SITTER SPACETIME

Yu.N. Obukhov 1 † and D. Puetzfeld 2 ‡

(1) Inst. Theoretical Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany
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Abstract

We report on the multipolar equations of motion for spinning test bodies in
the de Sitter spacetime of constant positive curvature. The dynamics of spinning
particles is discussed for the two supplementary conditions of Frenkel and Tulczyjew.
Furthermore, the 4-momentum and the spin are explicitly expressed in terms of the
spacetime coordinates with the help of the 10 Killing vectors available in de Sitter
spacetime.

The multipolar equations of motion, commonly termed Mathisson-Papapetrou equa-
tions [1–11]

ṗα = − 1

2
Sµνuβ Rµνβ

α, Ṡαβ = 2p[α uβ], (1)

represent a self-consistent set of equations, which is widely used for description of spin-
ning test bodies in General Relativity. Here “ ˙ ” = D/ds = uα∇α, and a test particle
is described in terms of the 4-momentum pα, the 4-velocity uα, and the tensor of spin
Sαβ. We report on the solution of the equations of motion (1) in a maximally symmetric
4-dimensional space represented by de Sitter spacetime. Our analysis extends well-known
results from flat spacetime – in which the dynamics of spinning test bodies already be-
comes nontrivial [12–14] – to a manifold with non-vanishing curvature. In particular we
make use of the two frequently used supplementary conditions [3, 12,15]

Sαβuβ = 0, (∗), Sαβpβ = 0. (∗∗) (2)

and are able to obtain analytic results. This is in contrast to the analysis in most other
spacetimes in which the lack of symmetry – compared to de Sitter space – complicates the
situation and usually necessitates to make additional simplifying assumptions. We should
stress that our analysis is valid for both interpretations of the Mathisson-Papapetrou
equations which can be found in the literature, i.e. it applies to point particles as well
as to extended test bodies. One should keep in mind though, that there are preferences
regarding the supplementary condition [16–19], depending on the system which is sup-
posed to be described by the equations of motion. In the following our conventions and
notation follows that of [20].

Spacetime with maximal symmetry. The curvature of de Sitter spacetime is given
by Rµνα

β = 1
`2

(
gαµδ

β
ν − gανδ

β
µ

)
, where ` is a real constant. The first equation of motion

from (1) then reduces to

ṗα =
1

`2
Sαβuβ. (3)
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Tulczyjew condition. Assuming (∗∗) from (2), we introduce the 4-vector of spin via
Šα := ηαβµνpβSµν . The inverse formula yields the spin tensor in terms of the spin vector:
Sαβ = 1

2M2 η
αβµνpµŠν , with M2 := pαpα. As a result, the equations of motion of a spinning

test body in the de Sitter spacetime under the Tulczyjew condition reduce to

ṗα (∗∗)
= 0, ˙̌Sα (∗∗)

= 0, pα (∗∗)
= muα, (4)

where we introduced m := pαuα, or, equivalently

u̇α (∗∗)
= 0, ηαβγδuβṠγδ

(∗∗)
= 0. (5)

The first equation actually means that the trajectories of the spinning bodies are the
geodesics in the de Sitter space. The second equation describes the precession of the spin
vector, or tensor, of a body during its motion along a geodesic curve.

Frenkel condition. The dynamics for (∗) from (2) have a certain similarity to the above
case, however there are important differences. In particular, from (3) we immediately infer
that, like in the previous case, the momentum is covariantly constant, ṗα = 0. Following
the same line of reasoning, we define the 4-vector of spin by Sα := ηαβµνuβSµν . The
inverse formula yields the spin tensor in terms of the spin vector: Sαβ = 1

2
ηαβµνuµSν (we

use the normalization u2 = 1). Directly from the definition of the spin vector, we derive
that the spin vector is Fermi-Walker transported. We thus have the system

ṗα = 0, ρα
β Ṡβ = 0. (6)

Here ρα
β := δα

β −uαuβ. Although this looks formally similar to (4), the actual dynamics is
very different. In particular, the trajectories are no longer geodesics because the momen-
tum does not coincide with the velocity. The above system can be simplified even further
and we end up with the final system:

ṗα (∗)
= 0, Ṡα (∗)

= 0, pα (∗)
= muα − Sαβu̇β. (7)

Hence, in de Sitter space the spin is also parallely transported under the Frenkel condition.
Equivalently, one may look for solutions of the system

Sαβüβ −mu̇α (∗)
= 0, Ṡαβ + 2u[αSβ]γu̇γ

(∗)
= 0. (8)

Geodetic motion plus parallel transport of the spin (u̇α = 0, Ṡα = 0) is a solution of (7).
However, in general the motion of a spinning body described by (7) is more complicated.
We introduce a new vector variable Qα := 1

M2 Sαβpβ, which has constant length and is
orthogonal to the velocity – i.e. Qα is spacelike. One can then show, that the second
derivative of Qa is actually the force which pushes the body away from the geodesic, i.e.
in general one has u̇α = − Q̈α. Furthermore the “Q-force” fulfills an oscillator equation

Q̈α + ω2 Qα = 0, (9)

with the frequency ω := 2M/
√−SαSα = M/

√
1
2
SαβSαβ. Qualitatively, the dynamics of

spinning bodies subject to the Frenkel condition in the de Sitter spacetime is similar to
that in flat space [14]. Everything is determined by the initial conditions. If initially (at
the proper time s = 0) spin is parallel to the momentum, i.e. Sαβpβ = 0 (hence Qα = 0),
then this is true on the whole trajectory that turns out to be geodesic. Otherwise,
the trajectory is a geodesic curve, perturbed by the oscillatory motion of Qα with the
frequency ω.
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Integrals of motion. The de Sitter spacetime has exactly the same number of Killing
vectors as the total number of the “gravitational charges”, that is, 10. Hence, we can try
to find the momentum pµ and the spin Sµν without solving differential equations by just
making use of the 10 conservation laws. This task is most straightforwardly treated in
the conformally flat representation, i.e.

ds2 = ϕ2ηαβdxαdxβ, ηαβ = diag(+1,−1,−1,−1). (10)

The conformal factor depends only on the 4-dimensional “radius” σ = ηαβxαxβ, namely,

ϕ =
1

1− σ
4`2

=
1

1− ηαβxαxβ

4`2

. (11)

In this representation, the Killing vectors [21] are as follows:

ξ
(α)

=
(
1 +

σ

4`2

)
∂α − xαxβ

2`2
∂β, (12)

ξ
[αβ]

= xα∂β − xβ∂α. (13)

Furthermore, we make use of the fact that the scalar

2ξαpα + Sαβ∇αξβ = const (14)

is an integral of motion of the system (1) for any Killing vector ξα. By substituting (12)
and (13) into (14), we have the algebraic system

2 ξ
(α)

µp
µ + Sµν∇µ ξ

(α)
ν = 2Πα, (15)

2 ξ
[αβ]

µp
µ + Sµν∇µ ξ

[αβ]
ν = 2Σαβ. (16)

Here Πα and Σαβ = −Σβα are the 4 + 6 = 10 constants of motion. This system is solved
by

pµ =
1

`2
ηµαΣαβxβ + η̌µν Πν , (17)

Sµν = η̂µαη̂νβ Σαβ + η̂µαΠα xν − η̂ναΠα xµ, (18)

where we introduced η̂µν :=
(
1− σ

4`2

)
ηµν + xµxν

2`2
and η̌µν :=

(
1 + σ

4`2

)
ηµν − xµxν

2`2
, i.e. we

are able to express the momentum and the spin as functions of the constants of motion.
Remarkably, the dependence on the spacetime coordinates is merely polynomial.

Summary. Qualitatively, the dynamics of spinning test bodies in de Sitter spacetime
is similar to the one obtained in flat spacetime. For the Tulczyjew condition (∗∗), the
body moves along a geodesic curve, whereas the spin vector is parallelly transported
along the trajectory. In the Frenkel case (∗), the spin is still parallelly transported,
but geodesic motion is just one special solution of the equations of motion. When the
initial value of Qα is nontrivial, then the body is affected by the spin-dependent force,
the acceleration u̇α is nontrivial, and the trajectory oscillates around a geodesic with the
frequency ω. Furthermore, the high symmetry of de Sitter spacetime allows for polynomial
expressions – w.r.t. the spacetime coordinates – of the momentum and spin as functions
of the constants of motion.
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Abstract
Dynamics of the Dirac particle spins in the general strong gravitational and elec-

tromagnetic fields is discussed. The general Hermitian Dirac Hamiltonian is derived.
For the spatially isotropic metric, it is transformed to the Foldy-Wouthuysen rep-
resentation. The quantum mechanical equations of motion are obtained and their
semiclassical limit is analyzed. The agreement between the quantum mechanical
and classical equations is shown. The helicity dynamics is calculated. Squaring the
covariant Dirac equation explicitly shows a similarity of the interactions of electro-
magnetic and gravitational fields with a charged and spinning particle.

We analyze the dynamics of the Dirac particle spins in the general strong gravitational
and electromagnetic fields. All denotations correspond to Ref. [1]. The spinor covariant
derivatives are given by

Dα = ei
αDi, Di = ∂i +

iq

~c
Ai +

i

4
σαβΓi αβ. (1)

The Dirac particle is characterized by the electric charge q, and Ai is the 4-potential of
the electromagnetic field.

In our previous works, the Dirac particles in static and stationary spacetimes have
been investigated in the weak field approximation [1–4]. Here we use the isotropic spatial
coordinates, derive the general Hermitian Dirac Hamiltonian and then transform it to the
Foldy-Wouthuysen (FW) representation.

The general form of the line element of an arbitrary gravitational field is given by

ds2 = V 2c2dt2 − δâb̂W
â
cW

b̂
d (dxc −Kccdt) (dxd −Kdcdt). (2)

The functions V and Ka, as well as the components of the 3× 3 matrix W â
b may depend

arbitrarily on t, xa. The off-diagonal metric components g0a are related to the effects of
rotation. For the spatially isotropic coordinates,

V = V (x), W â
b = δa

b W (x), Ka =
1

c
εabcωb(x)xc. (3)

The Kerr metric in these coordinates is defined by

V =
(
1− µ

2r

)(
1 +

µ

2r

)−1

− µa2 − 3µ(a · n)2

2r3
+O(a2r−4),

W =
(
1 +

µ

2r

)2

+
µa2 − 3µ(a · n)2

2r3
+O(a2r−4),

ω =
2µc

r3
a

(
1− 3µ

r
+

21µ2

4r2

)
+O(a3r−5). (4)
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Here r :=
√

x · x and n = r/r. The expansion in powers of a/r is used. The constant
vector a = (0, 0, a) is the rotation parameter of the Kerr solution and a ·n = az/r. Also,
µ = GM/c2; the total mass M and the total angular momentum J = Mca define the
Kerr black hole uniquely. These equations are obtained from the Arnowitt-Deser-Misner
form [6] of the Kerr solution found earlier by Hergt and Schäfer [7] after dropping the
terms violating the isotropy. In the weak field approximation, the Kerr metric reduces to
the Lense-Thirring one. We have studied the dynamics of quantum and classical spin in
this approximation in Ref. [1].

In order to discuss the Dirac spinors, we need the orthonormal frames. The preferable
choice [1] is the Schwinger gauge:

e 0̂
i = V δ 0

i , eâ
i = W â

b

(
δb
i − cKb δ 0

i

)
, a = 1, 2, 3. (5)

Tetrad (5) is characterized by the condition e 0̂
a = 0, a = 1, 2, 3.

The Hermitian Hamiltonian corresponding to the Dirac equation reads

H = βmc2V + qΦ +
c

2

(
πbF b

aα
a + αaF b

aπb

)
+

c

2
(K · π + π ·K) +

~c
4

(Υγ5 + Ξ·Σ) , (6)

where V = e0̂
0, F b

a =
√−geb

â = V W b
â, πi = i~∂i − q

c
Ai, and

Υ = −V εâb̂ĉΓâb̂ĉ = −V εâb̂ĉCâb̂ĉ, Ξâ =
V

c
εâb̂ĉ Γ0̂

b̂ĉ = εâb̂ĉQb̂ĉ. (7)

For the static and stationary rotating configurations, the pseudoscalar invariant van-

ishes (εâb̂ĉCâb̂ĉ = 0), and thus the corresponding term was absent in the special cases
considered earlier [1]. But in general this term contributes to the Dirac Hamiltonian.
Hamiltonian (6) is one of our central results and covers the general case of a spin-1/2
particle in an arbitrary curved spacetime.

We perform the FW transformation of the Dirac Hamiltonian with the help of the
method developed in Ref. [8]. For the spatially isotropic metric (2),(3) with the Schwinger
gauge, the FW Hamiltonian reads

HFW = H(1)
FW +H(2)

FW , (8)

where

H(1)
FW = βε′ − β ~mc4

4

{
1

2ε′2+mc2{ε′,V } , [Σ · (Φ× p)−Σ · (p×Φ) + ~∇ ·Φ]
}

+β ~c
2

16

{
1
ε′ , [Σ · (G × p)−Σ · (p× G) + ~∇ · G]

}
,

H(2)
FW = c

2
(K ·p + p ·K) + ~c

4
Σ · (∇×K)− ~c3

16

{
1

2ε′2+mc2{ε′,V } , {F2,Σ ·Q}
}

,

ε′ =
√

m2c4V 2 + 1
2
c2{F2,p2}, G = ∇(F2), Φ = F2∇V, Q = p×∇ (K ·p

+p ·K)−∇ (K ·p + p ·K)× p− p× (p× (∇×K))− ((∇×K)× p)× p.

(9)

The dynamical equation for the spin is obtained from the commutator of the FW
Hamiltonian with the polarization operator Π = βΣ and is given by

dΠ

dt
=

i

~
[HFW ,Π] = Ω(1) ×Σ + Ω(2) ×Π, (10)
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where Ω(1) is the operator of angular velocity of the spin rotation in the static gravitational
field,

Ω(1) = −mc4

2

{
1

2ε′2 + mc2{ε′, V } , (Φ× p− p×Φ)

}
+

c2

8

{
1

ε′
, (G × p− p× G)

}
, (11)

and the contribution from the nondiagonal part of the metric is equal to

Ω(2) =
c

2
∇×K − c3

8

{
1

2ε′2 + mc2{ε′, V } ,
{F2, Q

}}
. (12)

It can be proved that quantum mechanical equations (10)–(12) agree with the cor-
responding classical ones derived from the general Pomeransky-Khriplovich formula [9]
with the Schwinger gauge.

It is important to describe the semiclassical evolution of the helicity of a particle prop-
agating in a strong gravitation field. The particle motion can be correctly characterized
by the evolution of the contravariant world velocity or the unit vector in its direction. As
a result, one can unambiguously define the helicity as a projection of the 3-component
spin (pseudo)vector in the particle rest frame onto the direction of the unit vector along
the contravariant velocity in the world frame. Thus, the helicity should be defined as

ζ = (s/s) · (U/U) = (s/s) · V/V ,

where U = {U1, U2, U3} and V = U/U0. The investigation of the helicity is simplified
when the particle trajectory is infinite. In this case, one can apply the fact that the
vector N = U/U coincides with the vectors v/v and p/p at the initial and final parts
of such a trajectory of the particle because of the very large distance to the field source.
Here v = {v1̂, v2̂, v3̂} is the velocity in the anholonomic coframe and p = {−p1,−p2,−p3}
is the covariant momentum entering the classical and quantum Hamiltonians. For the
spatially isotropic metric, the change of the helicity on the whole trajectory can be given
by ∆ζ ′ = ∆ζ, where ζ ′ = (s/s) · n, n = v/v = p/p. Evidently, ζ ′ = cos χ, where χ is an
angle between the s and n vectors.

In the semiclassical approximation, the angular velocity of the spin rotation with re-
spect to the momentum direction is

o =
c2

FV γv
n×Φ +

c

2γ
[n×∇(n ·K) + n× (n ·∇)K] . (13)

This formula coincides with the corresponding classical one. However, Eq. (13) cannot
be applied for the particle moving on a finite trajectory because the replacement of ζ by
ζ ′ is incorrect in this case.

The electromagnetic and gravitational contributions to the covariant derivative (1)
manifest an obvious similarity of the electromagnetic and gravitational effects. We further
clarify this similarity by analyzing the squared Dirac equation.

Acting with the conjugate Dirac operator (i~γαDα + mc) on the Dirac equation, we
find the squared equation which can be reduced to the form

(
−~2gijDiDj − ~q

2c
σαβFαβ +

~2

4
R−m2c2

)
ψ = 0, (14)
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where Fαβ = ei
αej

βFij are the tensor-like electromagnetic field coefficients. The special
form of Eq. (14) for the Dirac particle in a gravitational field has been obtained in
Ref. [10].

Explicit computation yields

[
πiπi − ~

2
σαβ

(
q
c
Fαβ + mΦαβ

)
+ ~2

4
R + ~2

16
T −m2c2

]
ψ = 0,

T = 2Γi
αβΓi

αβ + iεαβµνΓi
αβΓi µνγ5, Φαβ = 1

2m
{πi, Γi αβ} , γ5 = −iγ 0̂γ 1̂γ 2̂γ 3̂.

(15)

In the semiclassical approximation, πi = mU i, and Φαβ coincides with the spin (and
momentum) transport matrix in a gravitational field (see Ref. [1]) and with the tensor-like
coefficients γαβλu

λ [9]. Φαβ is analogous to the electromagnetic field tensor and leads to
the Dirac gyro-gravitomagnetic ratio ggrav = 2 in perfect agreement with the equivalence
principle which is also manifested in the interaction of spin with gravity [11]. This means
[12] the absence of both the anomalous gravitomagnetic moment and the gravitoelectric
dipole moment which are gravitational analogs of the anomalous magnetic moment and
the electric dipole moment, respectively. Eq. (15) explicitly shows a similarity of the
Dirac particle interactions with electromagnetic and gravitational fields caused by the
similarity of the motion of spinning particles in any external classical fields (see Ref. [1]).
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Abstract

A short analytical review of the main results of the DSPIN-11 Workshop is given

The XIV-Workshop on high energy spin physics (DSPIN-11) continued a series of
similar conferences, the first of which took place 30 years ago in 1981 on the initiative
of the outstanding theoretical physicist L.I.Lapidus. Since then each odd year (in even
years large International Symposia in spin physics take place) similar conferences have
been organized in Protvino or in Dubna. They give a possibility to present and discuss
the news accumulated during the year. Another important specific feature was always
an opportunity for a large number of physicists from the former USSR and other East
European countries for whom distant trips were difficult for the financial (earlier also for
bureaucratic) reasons to participate to the conference.

The special feature of this conference was a wider geography and a larger number
of participants (113 persons and among them only 12 women) from the countries they
represented: Algeria -1, Belarus-4, Belgium -1, Bulgaria -2, China -2, Czech Republic
-5, Estonia -1, France -5, Germany -4, Holland -1, India -2, Iran -1, Italy -2, Poland -5,
Portugal -1, Russia -25, Slovakia -1, Sweden -1, Switzerland -1, the UK -1, Ukraine -2, the
USA -11, Uzbekistan -1, Vietnam -1. As always, many physicists from JINR (about 35)
participated to the conference. The reason for the increasing popularity of the conference
became, apparently, the fact that this year brought many new experimental results. Some
of them were for the first time presented in Dubna.

X.Artru in his work, together with Z. Belghobsi, proposed a simple explanation of the
Collins effect and the effect of jet handedness in the model of sequential fragmentation of
quark and proposed the program of realization of the model in the Monte Carlo method.
Also preliminary results of the new measurements of the structure function g2 by the
HERMES collaboration (A.Ivanilov) were reported for the first time.

Classical experiments on the study of the nucleon spin structure at high energies use
both scattering leptons on polarized nucleons (HERMES, JLab, COMPASS) and colli-
sions of the polarized protons (RHIC, IHEP, JINR). The joint description of such different
high-energy processes becomes possible due to the application of the fundamental theory
of strong interactions, quantum chromodynamics (QCD), and remarkable properties of
factorization, local quark-hadron duality and asymptotic freedom, which allow one to cal-
culate the characteristics of a process within the framework of perturbation theory (PT).
At the same time, parton distribution functions, correlation and fragmentation functions,
which are not calculable and therefore require modeling methods, are universal and do
not depend on the process. A number of reports at the conference were dedicated to
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the development and application of this type of models (P.Zavada - the original covari-
ant model of nucleon, J.Soffer - quantum statistical model, N.Sharma - chiral model of
constituent quarks and others).

The theoretical description of processes with the participation of spin and especially an
internal transverse parton motion proves to be, as always, more complicated, so that the
number of such functions increases and the picture connected with them loses to a consid-
erable degree the simplicity of a parton model with its probabilistic interpretation. One
of the difficulties here is the evolution of these functions with a change in the wavelength
of a tester. An approach to its solution was presented in the talk of I.Cherednikov.

The quark helicity distributions in a nucleon are the most well studied so far. The
results of their more accurate measurements by the COMPASS (Y. Bedfer) and CLAS
(Y.Prok) collaborations were presented. Contemporary experimental data are sufficiently
precise to include in their QCD-analysis not only the correction of perturbation the-
ory but also contributions of higher twists (A.Sidorov, O.Shevchenko, V.Khandramay,
E.Christova, G.Ramsey, H.Dahiya, D.Strózik-Kotlorz, F.Arbabifar). In this case, the
positive polarization of strange quarks is excluded with high probability. However, the
polarization of gluons agrees with the results of their direct measurement (although, with
large uncertainty thus far) by the COMPASS (K. Kurek, C.Franco) and PHENIX+STAR
(A.Bazilevsky, D.Svirida, I.Alekseev) collaborations, and its low value seems insufficient
for resolving the so-called nucleon spin crisis.

Hope for its overcoming is now on the contributions of the orbital angular momenta
of quarks and gluons which can be determined by measuring the so-called Generalized
Parton Distributions (GPD). The 15-year history of their appearance and current sit-
uation was dwelled upon in the talk by A.Radyushkin - one of the founders of this
direction in QCD. Different theoretical aspects of GPDs were considered in the talks
by S.Goloskokov, S.Manaenkov, L.Szimanovski and K.Semenov-Tyan-Shanskiy. Different
experimental aspects of their measurements and preparation for new ones were presented
in the talks of A.Sandacz, A.Morreale and P.Sznajder (COMPASS), V.Korotkov (HER-
MES) and V.Kubarovsky (JLab).

Other important spin distribution functions manifest themselves in scattering of trans-
versely polarized particles. The processes in which the polarization of only one particle
(initial or final) is known are especially interesting and complicated from the theoretical
point of view (and relatively simple from the point of view of experiment – such com-
plementarities frequently occur). Such single spin asymmetries are related to the T-odd
effects, i.e. they seemingly break invariance under time reversal. Here, however, we deal
with an effective breaking connected not with the true noninvariance of fundamental (in
our case, strong, described by QCD) interaction under time reversal, but with its simula-
tions by thin effects of rescattering in the final or initial state.

The effects of single asymmetry have been studied by theorists (including Dubna the-
orists who have priority in a number of directions) for more than 20 years, but their study
received a new impetus in recent years in connection with new experimental data on the
single spin asymmetry in the semi-inclusive electro-production of hadrons off a longitu-
dinally and transversely polarized targets (HERMES - V.Korotkov, CLAS - Y.Prok and
COMPASS - C.Adolph, S.Elia). In particular, HERMES data on the so-called ”Sivers
distribution function” for secondary pions, related to the left-right asymmetry of parton
distribution in transversely polarized hadron, are described by the existing theory. How-
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ever, the data for positive kaons in the region of small x approximately 2,5 times larger
than its predictions, which could testify to an essential role of a antiquark Sivers function.
However, the new measurements of this asymmetry by the COMPASS collaboration do
not confirm this deviation, which favors of another possibility – the influence of higher
twist contributions.

New data on the single spin asymmetries of secondary pions and η-mesons in polarized
proton-proton collisions with the energies RHIC (200x200 GeV) were presented by the
PHENIX (O.Eyser) collaboration. They confirm amazingly large asymmetries in the
region of the fragmentation of the polarized proton and their drop to zero in the central
region of rapidities and the region of the nonpolarized proton beam obtained earlier at
lower energies. This confirms their energy independence. However, PHENIX does not see
a large difference in the asymmetries of η- and π0-mesons obtained earlier by STAR. At
the same time particular mechanisms of the origin of these asymmetries remain a riddle
so far.

Thus, although single spin asymmetries on the whole are described by the existing the-
ory, their development continues (I.Anikin). The T-odd distribution functions appearing
here lose key properties of universality and become “effective”, dependent on the process
in which they are observed. In particular, the most fundamental QCD prediction is the
change of the sign of the Sivers function in passing from the pion electro-production pro-
cess to the Drell-Yan pair production on a transversely polarized target. This conclusion
is planned to be checked in the COMPASS experiment (A.Guskov) and at colliders RHIC
(L.Nogach), NICA and PANDA-PAX (M.Destefanis).

Significant interest and discussions were caused by new JLab data presented at the
conference on measurements of the ratio of proton electric and magnetic form factors
performed by the ”technique of the recoil polarization” (Ch.Perdrisat). The previous
JLab measurements showed that this relation was not constant, as it was considered for
a long time, but linearly decreases with increase of momentum transfer Q2 (the so-called
”form factor crisis”). New data obtained in the past year (experiment GEp(III) with
JINR participation) indicate flattening of this ratio in the Q2=6-8 [GeV]2 region. A
question whether this behavior is due to incomplete calculation of radiative corrections,
in particular, two-photon exchange, remains open yet.

As always, the sources of polarized particles (M.Chetvertkov, Yu.Plis, D.Karlovets),
physics of the acceleration of polarized beams (Yu.Kondratenko), physics of polarime-
ters (V.Ladygin, A.Zelenskiy, M.Runtso, D.Smirnov), and the polarized target technique
(Yu.Kiselev) were discussed at the conference.

Great interest was generated by the first results of experiments at the Large Hadron
Collider (LHC) in CERN relating to spin physics (C. Buszello). In particular, the de-
termination of spin and quantum numbers of Higgs- and Z-bosons, polarization of W,
and also the spin phenomena in heavy quark physics. A number of talks were devoted
to theoretical possibilities of Z’ search and other exotics at LHC and future International
Linear Collider (ILC) of electrons (V.Andreev, A.Tsitrinov, J.Körner).

Finally, considerable attention was given to the projects of further development of
polarization studies. A large and detailed report about the project of eRHIC (collider of
polarized protons of 250 GeV and nuclei with polarized electrons of 20 GeV) at BNL made
by E.Aschenauer. Having a large luminosity (1034), it will make it possible to increase
the accuracy in measurement of gluon and quark spin distribution functions in a proton,
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as well as GPDs by an order of magnitude. The plans of further studies at the modified
accelerator at JLab (Y.Prok, V.Kubarovsky) were also discussed. The program of po-
larized proton beam formation from decay of Lambda-particles at the IHEP accelerator
U-70 in Protvino for spin studies at the installation SPASCHARM under construction
was presented by S.Nurushev. He emphasized the importance of the comparative study
of the spin effects induced by particles and antiparticles. However special interest was
caused by the plans of creation at IKP (Jüulich) of a unique European complex for de-
termining the electric dipole moment (EDM) of a proton and nuclei (very detailed talk
of N.Nikolaev). The matter is that the dipole moment of fundamental particles violates
both space and time parity and its detection would indicate violation of the Standard
Model and, in particular, a possibility of approach to the problem of understanding of
baryon asymmetry of the Universe. The projected complex will make it possible to lower
the limit of deuteron EDM measurement up to 10−24.

The reports relate on the development at LHEP accelerating complex of JINR were
also presented in the program of the conference (R.Kurilkin, N.Ladygina). The newest
methods and the results of calculations of specific features of spin dynamics under accel-
eration at the Nuclotron of polarized protons and the lightest nuclei were also reflected
(Yu.Kondratenko). Some new proposals for conducting polarization studies on the basis
of the modernized complex Nuclotron-M and at the complex NICA projected at JINR
were presented (O.Teryaev, O.Selyugin). Within the framework of DSPIN-11 two work-
ing discussions (leader A.Kovalenko) of vital problems of the infrastructure development
for further studies in spin physics at the complex Nuclotron/NICA took place in which
specialists of JINR, BNL, MEPI, ITEP and INR participated. Participants heard informa-
tion about the project “SPRINT” (Spin Physics Research of Infrastructure at Nuclotron)
being developed at LHEP, about polarimetry at the complex AGS/RHIC at BNL, in par-
ticular, problems of development and use of CNI-polarimeters and possibility of their use
at the NICA collider, and other questions.

The spin community represented at the conference supported these plans to create
new unique possibilities for conducting polarization studies at the accelerating complex
of LHEP at JINR. The accelerating complex with such potentialities will not have com-
petitions from other centers carrying out polarization studies, and the obtained data will
help to solve the riddles of the spin effects which have not been solved since the 70s of
the past century.

The summary of the meeting was made in the final report by J.Soffer.
The success of the conference was due to the support by the Russian Foundation for Ba-

sic Research, International Committee for Spin Physics, “Dynasty” Foundation, European
Physical Society and the JINR programs of for international collaboration: Heisenberg-
Landau, Bogoliyubov-Infeld and Blokhintsev-Votruba ones. This made it possible to
provide noticeable financial support to participants from Russia and other JINR Member
States. The materials of the conference, including all presented talks, are available on the
site: http://theor.jinr.ru/∼spin/2011/.
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