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Some of the ideas have already been presented at other workshops
(Teryaev and PGR, 2008a,b; PGR and Teryaev, 2009b).
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The concept of a single-spin asymmetry (SSA) in high-energy
hadronic physics has long been an enigma.

Before being first observed experimentally, hadronic SSA’s were
predicted to be very small—for a variety of reasons.

Experimentally, however, SSA’s turn out to be very large indeed in
many hadronic processes.

It was also long held that SSA’s should eventually vanish with
growing CoM energy and/or pT .

Again, however, many large SSA’s observed so far show no signs of
any particular high-energy or pT suppression.
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(

p⃗∧k⃗
)

where

s⃗ is some particle polarisation vector, while

p⃗ and k⃗ are initial/final particle/jet momenta.

(Such a combination is dictated by parity conservation.)

A typical example might be

p⃗ = beam direction

s⃗ = target polarisation (transverse w.r.t. p⃗)

k⃗ = final-state particle direction
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Transforming the spin basis from transversity to helicity
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2

[

∣+⟩ ± i ∣−⟩
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any such asymmetry (schematically) takes on the form
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⟨↑∣↑⟩+ ⟨↓∣↓⟩
∼

2 Im ⟨+∣−⟩

⟨+∣+⟩+ ⟨−∣−⟩

The appearance of both ∣+⟩ and ∣−⟩ in the numerator indicates the
presence of a helicity-flip amplitude.

The imaginary phase implies naïvely T-odd processes.
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∗ Kane, Pumplin and Repko (1978) realised that in the high-energy
or massless limit and the Born approximation a gauge theory (such
as QCD) cannot furnish either requirement:

massless fermion helicity is conserved

tree diagram amplitudes are always real

∗ “. . . observation of significant polarizations in the above reactions

would contradict either QCD or its applicability.”

The existence of transverse polarisation itself does not depend on
particle masses—cf., the natural (∼ 9%) LEP beam polarisation.

The problem of the (small) quark masses does arise when we seek
measurable transverse-spin effects, which usually require spin flip.
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As we know, large asymmetries were found . . . but QCD survived!

In 1985 Efremov and Teryaev discovered one way out:

Consideration of the three-parton correlators involved in, e.g., g2,
leads to the following observations:

the relevant mass scale here is not that of the current quark,
but of the hadron;

the pseudo-two-loop nature of the diagrams leads to an
imaginary part in certain regions of partonic phase space.

However, it took some years before progress was made and the
richness of the available structure was fully exploited—see Qiu and
Sterman (1991; 1992).
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It turns out that there are many ways to produce SSA’s.

Twist-3, three-parton correlators: transverse-spin dependent
(cf., g2) – the pseudo two-loop nature provides effective spin
flip and imaginary part via pole terms.

Internal quark motion: correlation between the transverse
polarisation of a quark and its own transverse momentum.
Requires orbital angular momentum and soft-gluon exchange.
The Sivers function.

Transversity: hadron helicity flip – correlated with quark flip.
Chirality conservation requires it be combined with another
T-odd (distribution or fragmentation) function.

The first and second mechanisms turn out to be related . . .
Philip G. Ratcliffe & Oleg Teryaev Colour Modification of Factorisation in SSA 7/35
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Single-Spin Asymmetries

There are various types of distribution and fragmentation functions
that can be active in producing SSA’s:

higher-twist distribution and fragmentation functions,

kT -dependent distribution and fragmentation functions,

interference fragmentation functions,

higher-spin functions, e.g., vector-meson fragmentation
functions.

. . .

We shall examine the first two here and only for distribution
functions.
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Single-Hadron Production

Single-hadron production (in hadron–hadron scattering) with a
single transversely polarised hadron:

A↑(PA) + B(PB) → h(Ph) + X

A is transversely polarised. B is not polarised.

The unpolarised (or even spinless) hadron h is produced with large
transverse momentum PhT .

PQCD is therefore applicable.

Typically, A and B are protons while h may be a pion or kaon etc.
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Single-Hadron Production

Single-hadron production (in hadron–hadron scattering) with a
single transversely polarised hadron:

A↑(PA) + B(PB) → h(Ph) + X

A is transversely polarised. B is not polarised.

The unpolarised (or even spinless) hadron h is produced with large
transverse momentum PhT .

PQCD is therefore applicable.

Typically, A and B are protons while h may be a pion or kaon etc.

One measures the following SSA:

Ah
T =

d�(ST )− d�(−ST )

d�(ST ) + d�(−ST )

Philip G. Ratcliffe & Oleg Teryaev Colour Modification of Factorisation in SSA 9/35



Single-Spin Asymmetries
More on Multiparton Correlators

Single-Hadron Production
Intrinsic Transverse Motion
Higher Twist
Phenomenology
Pole Factorisation

Single-Hadron Production

A
↑(PA)

B(PB)

X

X

a

b d

c

X

h(Ph)
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Single-Hadron Production

According to the factorisation theorem, the differential cross-section
for the reaction may be written formally as

d� =
∑

abc

∑

��′′

�a
�′� fa(xa)⊗ fb(xb)⊗ d�̂��′′ ⊗D′

h/c (z),
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Single-Hadron Production

According to the factorisation theorem, the differential cross-section
for the reaction may be written formally as

d� =
∑

abc

∑

��′′

�a
�′� fa(xa)⊗ fb(xb)⊗ d�̂��′′ ⊗D′

h/c (z),

where fa (fb) is the density of parton type a (b) in hadron A (B),
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According to the factorisation theorem, the differential cross-section
for the reaction may be written formally as

d� =
∑

abc

∑

��′′

�a
�′� fa(xa)⊗ fb(xb)⊗ d�̂��′′ ⊗D′

h/c (z),

where fa (fb) is the density of parton type a (b) in hadron A (B),
�a
��′ is the spin density matrix for parton a,
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Single-Hadron Production

According to the factorisation theorem, the differential cross-section
for the reaction may be written formally as

d� =
∑

abc

∑

��′′

�a
�′� fa(xa)⊗ fb(xb)⊗ d�̂��′′ ⊗D′

h/c (z),

where fa (fb) is the density of parton type a (b) in hadron A (B),
�a
��′ is the spin density matrix for parton a,

D′

h/c is the fragmentation matrix of parton c into final hadron h
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Single-Hadron Production

According to the factorisation theorem, the differential cross-section
for the reaction may be written formally as

d� =
∑

abc

∑

��′′

�a
�′� fa(xa)⊗ fb(xb)⊗ d�̂��′′ ⊗D′

h/c (z),

where fa (fb) is the density of parton type a (b) in hadron A (B),
�a
��′ is the spin density matrix for parton a,

D′

h/c is the fragmentation matrix of parton c into final hadron h

and d�̂��′′ is the elementary cross-section:
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Single-Hadron Production

According to the factorisation theorem, the differential cross-section
for the reaction may be written formally as

d� =
∑

abc

∑

��′′

�a
�′� fa(xa)⊗ fb(xb)⊗ d�̂��′′ ⊗D′

h/c (z),

where fa (fb) is the density of parton type a (b) in hadron A (B),
�a
��′ is the spin density matrix for parton a,

D′

h/c is the fragmentation matrix of parton c into final hadron h

and d�̂��′′ is the elementary cross-section:

(

d�̂

dt̂

)

��′′

=
1

16�ŝ2

1

2

∑

��

ℳ��� ℳ
∗
�′�′�

where ℳ��� is the amplitude for the hard partonic process.
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Single-Hadron Production

ℳ���, ℳ�′�′� =

α, α′ γ, γ′

β δ
kb

ka kc

kd

Philip G. Ratcliffe & Oleg Teryaev Colour Modification of Factorisation in SSA 12/35



Single-Spin Asymmetries
More on Multiparton Correlators

Single-Hadron Production
Intrinsic Transverse Motion
Higher Twist
Phenomenology
Pole Factorisation

Single-Hadron Production

ℳ���, ℳ�′�′� =

α, α′ γ, γ′

β δ
kb

ka kc

kd

For an unpolarised (or spinless) collinearly produced hadron, the

off-diagonal elements of D′

h/c vanish; i.e., D′

h/c ∝ �′ .
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Single-Hadron Production

ℳ���, ℳ�′�′� =

α, α′ γ, γ′

β δ
kb

ka kc

kd

For an unpolarised (or spinless) collinearly produced hadron, the

off-diagonal elements of D′

h/c vanish; i.e., D′

h/c ∝ �′ .

Then (schematically) helicity conservation implies � = �′ and there
is no dependence on the spin of hadron A, so all SSA’s are zero.
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Single-Hadron Production

ℳ���, ℳ�′�′� =

α, α′ γ, γ′

β δ
kb

ka kc

kd

For an unpolarised (or spinless) collinearly produced hadron, the

off-diagonal elements of D′

h/c vanish; i.e., D′

h/c ∝ �′ .

Then (schematically) helicity conservation implies � = �′ and there
is no dependence on the spin of hadron A, so all SSA’s are zero.

To avoid this conclusion, either intrinsic quark transverse motion or
higher-twist effects must be considered . . .
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Transverse Motion and SSA

Intrinsic quark transverse motion can generate SSA’s in three
essentially different ways (a necessarily T -odd effect):
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Transverse Motion and SSA

Intrinsic quark transverse motion can generate SSA’s in three
essentially different ways (a necessarily T -odd effect):

1. kT in hadron A requires fa(xa) to be replaced by Pa(xa, kT ),
which may depend on the spin of A

(distribution level).
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Transverse Motion and SSA

Intrinsic quark transverse motion can generate SSA’s in three
essentially different ways (a necessarily T -odd effect):

1. kT in hadron A requires fa(xa) to be replaced by Pa(xa, kT ),
which may depend on the spin of A

(distribution level).

2. �T in hadron h allows D′

h/c to be non-diagonal

(fragmentation level).
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Transverse Motion and SSA

Intrinsic quark transverse motion can generate SSA’s in three
essentially different ways (a necessarily T -odd effect):

1. kT in hadron A requires fa(xa) to be replaced by Pa(xa, kT ),
which may depend on the spin of A

(distribution level).

2. �T in hadron h allows D′

h/c to be non-diagonal

(fragmentation level).

3. k ′
T in hadron B requires fb(xb) to be replaced by Pb(xb, k

′
T ).

The transverse spin of parton b in the unpolarised B may then
couple both to the transverse spin of a and k ′

T )
(distribution level).
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Transverse Motion and SSA

The three corresponding mechanisms are:

1. the Sivers effect (1990)
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Transverse Motion and SSA

The three corresponding mechanisms are:

1. the Sivers effect (1990)

2. the Collins effect (1993)
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Transverse Motion and SSA

The three corresponding mechanisms are:

1. the Sivers effect (1990)

2. the Collins effect (1993)

3. an effect studied by Boer (1999) in Drell–Yan
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Transverse Motion and SSA

The three corresponding mechanisms are:

1. the Sivers effect (1990)

2. the Collins effect (1993)

3. an effect studied by Boer (1999) in Drell–Yan

Note:

All such intrinsic-kT , -�T or -k ′
T effects are T -odd; they require

initial- or final-state interactions.
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Transverse Motion and SSA

The three corresponding mechanisms are:

1. the Sivers effect (1990)

2. the Collins effect (1993)

3. an effect studied by Boer (1999) in Drell–Yan

Note:

All such intrinsic-kT , -�T or -k ′
T effects are T -odd; they require

initial- or final-state interactions.

When quark transverse motion is included, the QCD factorisation
theorem is not completely proven (but see Ji, Ma and Yuan, 2005).
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Transverse Motion and SSA

The Sivers effect relies on T -odd kT -dependent distribution
functions and predicts SSA’s of the form

Eh

d3�(ST )

d3Ph

− Eh

d3�(−ST )

d3Ph

= ∣ST ∣
∑

abc

∫

dxa

∫

dxb

∫

d2kT

1

�z

×ΔT
0 fa(xa, kT ) fb(xb)

d�̂(xa, xb , kT )

dt̂
Dh/c (z)

where ΔT
0 f (related to f ⊥1T ) is a T -odd distribution.
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Higher-Twist and SSA

Efremov and Teryaev (1985) first pointed out that non-vanishing
SSA’s can also be obtained in PQCD by resorting to higher twist
and the so-called gluonic poles present in diagrams involving qqg

correlators.
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Higher-Twist and SSA

Efremov and Teryaev (1985) first pointed out that non-vanishing
SSA’s can also be obtained in PQCD by resorting to higher twist
and the so-called gluonic poles present in diagrams involving qqg

correlators.

Such asymmetries were later evaluated in the context of QCD
factorisation by Qiu and Sterman, who studied direct photon
production (1991; 1992) and later hadron production (1998).
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Higher-Twist and SSA

Efremov and Teryaev (1985) first pointed out that non-vanishing
SSA’s can also be obtained in PQCD by resorting to higher twist
and the so-called gluonic poles present in diagrams involving qqg

correlators.

Such asymmetries were later evaluated in the context of QCD
factorisation by Qiu and Sterman, who studied direct photon
production (1991; 1992) and later hadron production (1998).

This program has also been extended to cover the chirally-odd
contributions by Kanazawa and Koike (2000a; 2000b).
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Higher-Twist and SSA

Efremov and Teryaev (1985) first pointed out that non-vanishing
SSA’s can also be obtained in PQCD by resorting to higher twist
and the so-called gluonic poles present in diagrams involving qqg

correlators.

Such asymmetries were later evaluated in the context of QCD
factorisation by Qiu and Sterman, who studied direct photon
production (1991; 1992) and later hadron production (1998).

This program has also been extended to cover the chirally-odd
contributions by Kanazawa and Koike (2000a; 2000b).

And more has been done by others since.
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Higher-Twist and SSA

There are three different possible higher-twist contributions:

d� =
∑

abc

{

G a
F (xa, ya)⊗ fb(xb)⊗ d�̂ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ E b
F (xb, yb)⊗ d�̂′ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ fb(xb)⊗ d�̂′′ ⊗ D
(3)
h/c

(z)
}
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Higher-Twist and SSA

There are three different possible higher-twist contributions:

d� =
∑

abc

{

G a
F (xa, ya)⊗ fb(xb)⊗ d�̂ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ E b
F (xb, yb)⊗ d�̂′ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ fb(xb)⊗ d�̂′′ ⊗ D
(3)
h/c

(z)
}

The 1st. term is the chirally-even mechanism proposed by Efremov
and Teryaev and developed by Qiu and Sterman.
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Higher-Twist and SSA

There are three different possible higher-twist contributions:

d� =
∑

abc

{

G a
F (xa, ya)⊗ fb(xb)⊗ d�̂ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ E b
F (xb, yb)⊗ d�̂′ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ fb(xb)⊗ d�̂′′ ⊗ D
(3)
h/c

(z)
}

The 1st. term is the chirally-even mechanism proposed by Efremov
and Teryaev and developed by Qiu and Sterman.

The 2nd. contains transversity and is the chirally-odd contribution
analysed by Kanazawa and Koike.
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Higher-Twist and SSA

There are three different possible higher-twist contributions:

d� =
∑

abc

{

G a
F (xa, ya)⊗ fb(xb)⊗ d�̂ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ E b
F (xb, yb)⊗ d�̂′ ⊗ Dh/c (z)

+ ΔTfa(xa)⊗ fb(xb)⊗ d�̂′′ ⊗ D
(3)
h/c

(z)
}

The 1st. term is the chirally-even mechanism proposed by Efremov
and Teryaev and developed by Qiu and Sterman.

The 2nd. contains transversity and is the chirally-odd contribution
analysed by Kanazawa and Koike.

The 3rd. also contains transversity but additionally requires a

twist-3 fragmentation function D
(3)
h/c .
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Phenomenology

Anselmino et al. (2003a) have compared the data with different
models inspired by the various possible kT -dependent mechanisms
described earlier and find good descriptions.
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Phenomenology

Anselmino et al. (2003a) have compared the data with different
models inspired by the various possible kT -dependent mechanisms
described earlier and find good descriptions.

They cannot, however, differentiate between types of contributions.

Philip G. Ratcliffe & Oleg Teryaev Colour Modification of Factorisation in SSA 18/35



Single-Spin Asymmetries
More on Multiparton Correlators

Single-Hadron Production
Intrinsic Transverse Motion
Higher Twist
Phenomenology
Pole Factorisation

Phenomenology

Anselmino et al. (2003a) have compared the data with different
models inspired by the various possible kT -dependent mechanisms
described earlier and find good descriptions.

They cannot, however, differentiate between types of contributions.

The Qiu–Sterman calculations (based on three-parton correlators)
are somewhat opaque, involving many diagrams, complicated
momentum flow, colour and spin structure.
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Phenomenology

Anselmino et al. (2003a) have compared the data with different
models inspired by the various possible kT -dependent mechanisms
described earlier and find good descriptions.

They cannot, however, differentiate between types of contributions.

The Qiu–Sterman calculations (based on three-parton correlators)
are somewhat opaque, involving many diagrams, complicated
momentum flow, colour and spin structure.

They also compare well with the data.
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Phenomenology

Anselmino et al. (2003a) have compared the data with different
models inspired by the various possible kT -dependent mechanisms
described earlier and find good descriptions.

They cannot, however, differentiate between types of contributions.

The Qiu–Sterman calculations (based on three-parton correlators)
are somewhat opaque, involving many diagrams, complicated
momentum flow, colour and spin structure.

They also compare well with the data.

However, the twist-3 correlators (as in g2) obey constraining
relations with kT -dependent densities—so, are they equivalent?
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Phenomenology

Anselmino et al. (2003a) have compared the data with different
models inspired by the various possible kT -dependent mechanisms
described earlier and find good descriptions.

They cannot, however, differentiate between types of contributions.

The Qiu–Sterman calculations (based on three-parton correlators)
are somewhat opaque, involving many diagrams, complicated
momentum flow, colour and spin structure.

They also compare well with the data.

However, the twist-3 correlators (as in g2) obey constraining
relations with kT -dependent densities—so, are they equivalent?

They also exhibit a special convenient factorisation property.
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Pole Factorisation

Efremov and Teryaev noticed that twist-3
diagrams involving three-parton correlators can
supply the necessary imaginary part via a pole
term; spin-flip is implicit (related to the gluon).
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Pole Factorisation

Efremov and Teryaev noticed that twist-3
diagrams involving three-parton correlators can
supply the necessary imaginary part via a pole
term; spin-flip is implicit (related to the gluon).

The standard i" propagator prescription

1

k2 ± i"
= IP

1

k2
∓ i��(k2)

leads to an imaginary contribution for k2 → 0.
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Pole Factorisation

Efremov and Teryaev noticed that twist-3
diagrams involving three-parton correlators can
supply the necessary imaginary part via a pole
term; spin-flip is implicit (related to the gluon).

The standard i" propagator prescription (in −∙−),

1

k2 ± i"
= IP

1

k2
∓ i��(k2)

leads to an imaginary contribution for k2 → 0.
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Pole Factorisation

Efremov and Teryaev noticed that twist-3
diagrams involving three-parton correlators can
supply the necessary imaginary part via a pole
term; spin-flip is implicit (related to the gluon).

The standard i" propagator prescription (in −∙−),

1

k2 ± i"
= IP

1

k2
∓ i��(k2)

leads to an imaginary contribution for k2 → 0.

A gluon with xgp inserted into an (initial or final) external line p′

sets k = p′ − xgp and thus xg → 0 ⇔ k2 → 0.
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= −iπ
p′.ξ

p′.p
×

p is the incoming proton momentum, p′ the outgoing hadron and
� is the gluon polarisation vector (lying in the transverse plane).
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xg xg → 0

= −iπ
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p′.p
×

p is the incoming proton momentum, p′ the outgoing hadron and
� is the gluon polarisation vector (lying in the transverse plane).

This can be performed systematically for all soft poles (gluon and
fermion): i.e., on all external legs with all insertions (PGR, 1999).
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This can be performed systematically for all soft poles (gluon and
fermion): i.e., on all external legs with all insertions (PGR, 1999).
The case of so-called hard poles has not yet been examined.

Philip G. Ratcliffe & Oleg Teryaev Colour Modification of Factorisation in SSA 20/35



Single-Spin Asymmetries
More on Multiparton Correlators

Single-Hadron Production
Intrinsic Transverse Motion
Higher Twist
Phenomenology
Pole Factorisation
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Pole

Part

p′

xg xg → 0

= −iπ
p′.ξ

p′.p
×

p is the incoming proton momentum, p′ the outgoing hadron and
� is the gluon polarisation vector (lying in the transverse plane).

This can be performed systematically for all soft poles (gluon and
fermion): i.e., on all external legs with all insertions (PGR, 1999).
The case of so-called hard poles has not yet been examined.

The structures are still complex: for a given correlator there are
many insertions, with different signs and momentum dependence.
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The colour structure of the various diagrams
(with the different soft insertions) is also very
different . . .
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In all cases (examined) it turns out that just
one diagram dominates in the large-Nc limit.
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The colour structure of the various diagrams
(with the different soft insertions) is also very
different . . . I shall return to this . . .

In all cases (examined) it turns out that just
one diagram dominates in the large-Nc limit.

All other insertions into external (on-shell) legs
are relatively suppressed by 1/Nc

2.
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(with the different soft insertions) is also very
different . . . I shall return to this . . .

In all cases (examined) it turns out that just
one diagram dominates in the large-Nc limit.

All other insertions into external (on-shell) legs
are relatively suppressed by 1/Nc

2.

This has been examined in detail by Ramilli (Insubria U. Masters
thesis, 2007): the leading diagrams provide a good approximation.
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Large Nc

The colour structure of the various diagrams
(with the different soft insertions) is also very
different . . . I shall return to this . . .

In all cases (examined) it turns out that just
one diagram dominates in the large-Nc limit.

All other insertions into external (on-shell) legs
are relatively suppressed by 1/Nc

2.

This has been examined in detail by Ramilli (Insubria U. Masters
thesis, 2007): the leading diagrams provide a good approximation.

It still needs to be repeated for the other twist-3 contributions
(e.g., also in fragmentation).
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The question now arises: what is the relationship between twist-3
and kT -dependent mechanisms?
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The question now arises: what is the relationship between twist-3
and kT -dependent mechanisms?

It might be hoped that, via the equations of motion etc., by linking
the (Efremov–Teryaev) higher-twist (three-parton) mechanisms to
the (e.g., Sivers-like) kT -dependent mechanisms, one could arrive
at unique predictions for SSA’s.
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the (Efremov–Teryaev) higher-twist (three-parton) mechanisms to
the (e.g., Sivers-like) kT -dependent mechanisms, one could arrive
at unique predictions for SSA’s.

Ma and Wang (2003) made a first attempt for DY processes, but
the predictions were found not to be unique.
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The question now arises: what is the relationship between twist-3
and kT -dependent mechanisms?

It might be hoped that, via the equations of motion etc., by linking
the (Efremov–Teryaev) higher-twist (three-parton) mechanisms to
the (e.g., Sivers-like) kT -dependent mechanisms, one could arrive
at unique predictions for SSA’s.

Ma and Wang (2003) made a first attempt for DY processes, but
the predictions were found not to be unique.

Ji et al. (2006a,b) have also examined the relationships between
kT -dependent and higher-twist mechanisms by matching in the
common intermediate kT region—their results are positive.
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PGR and Teryaev (2007) provide an a posteriori proof of the
relation between twist three and the Sivers function.
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PGR and Teryaev (2007) provide an a posteriori proof of the
relation between twist three and the Sivers function.

The starting point is the Sivers function factorised formula:

dΔ� ∼

∫

d2kT dx fS(x , kT ) Tr
[

� H(xP , kT )
]

��sPkT
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PGR and Teryaev (2007) provide an a posteriori proof of the
relation between twist three and the Sivers function.

The starting point is the Sivers function factorised formula:

dΔ� ∼

∫

d2kT dx fS(x , kT ) Tr
[

� H(xP , kT )
]

��sPkT

We expand the subprocess coefficient function H in powers of kT :

∼

∫

d2kT dx fS(x , kT ) Tr

[

�
∂H(xP , kT )

∂k�
T

]

k
T

=0

k�
T �

�sPkT ,

keeping the first non-vanishing term.
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Using various identities and the fact that there are other momenta
involved, this can be rearranged into the following form:

dΔ� ∼ M

∫

dx f
(1)
S (x) Tr

[

/P
∂H(xP , kT )

∂k�
T

]

k
T
=0

��sPn
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involved, this can be rearranged into the following form:

dΔ� ∼ M

∫

dx f
(1)
S (x) Tr

[

/P
∂H(xP , kT )

∂k�
T

]

k
T
=0

��sPn

where

f
(1)
S (x) =

∫

d2kT fS(x , kT )
k2
T

2M2
.
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involved, this can be rearranged into the following form:

dΔ� ∼ M

∫

dx f
(1)
S (x) Tr

[

/P
∂H(xP , kT )

∂k�
T

]

k
T
=0

��sPn

where

f
(1)
S (x) =

∫

d2kT fS(x , kT )
k2
T

2M2
.

This coincides with the master formula of Koike et al. (2007b,a) for
twist-3 gluonic poles in high-pT processes.
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Using various identities and the fact that there are other momenta
involved, this can be rearranged into the following form:

dΔ� ∼ M

∫

dx f
(1)
S (x) Tr

[

/P
∂H(xP , kT )

∂k�
T

]

k
T
=0

��sPn

where

f
(1)
S (x) =

∫

d2kT fS(x , kT )
k2
T

2M2
.

This coincides with the master formula of Koike et al. (2007b,a) for
twist-3 gluonic poles in high-pT processes.

The Sivers function can thus be identified with the gluonic-pole
strength T (x , x) multiplied by a process-dependent colour factor.
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The sign of the Sivers function is determined by whether ISI or FSI
is relevant:

f
(1)
S (x) =

∑

i

Ci
1

2M
T (x , x)
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The sign of the Sivers function is determined by whether ISI or FSI
is relevant:

f
(1)
S (x) =

∑

i

Ci
1

2M
T (x , x)

Ci is a relative colour factor defined w.r.t. an Abelian subprocess.
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The sign of the Sivers function is determined by whether ISI or FSI
is relevant:

f
(1)
S (x) =

∑

i

Ci
1

2M
T (x , x)

Ci is a relative colour factor defined w.r.t. an Abelian subprocess.

Now, to generate high pT , the emission of an extra hard gluon is
necessary.
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The sign of the Sivers function is determined by whether ISI or FSI
is relevant:

f
(1)
S (x) =

∑

i

Ci
1

2M
T (x , x)

Ci is a relative colour factor defined w.r.t. an Abelian subprocess.

Now, to generate high pT , the emission of an extra hard gluon is
necessary.

According to the process under consideration, the FSI may occur
before or after emission of this extra gluon, again leading to
different colour factors.
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The sign of the Sivers function is determined by whether ISI or FSI
is relevant:

f
(1)
S (x) =

∑

i

Ci
1

2M
T (x , x)

Ci is a relative colour factor defined w.r.t. an Abelian subprocess.

Now, to generate high pT , the emission of an extra hard gluon is
necessary.

According to the process under consideration, the FSI may occur
before or after emission of this extra gluon, again leading to
different colour factors.

In this sense, factorisation is broken in SIDIS, although in a simple
and accountable manner.
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Consider the particular application of this relation to high-pT SIDIS:
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Consider the particular application of this relation to high-pT SIDIS:

�

�

Twist-3 SIDIS � production via quark and gluon fragmentation.
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The relation between gluonic poles (e.g., the Sivers function) and
T-even transverse-spin effects (e.g., g2—Shuryak et al. 1982;
Bukhvostov et al. 1983; Efremov et al. 1984; PGR 1986; Balitsky et

al. 1989) remains unclear.
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There are model-based estimates and approximate sum rules.
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Bukhvostov et al. 1983; Efremov et al. 1984; PGR 1986; Balitsky et

al. 1989) remains unclear.

There are model-based estimates and approximate sum rules.

The compatibility of twist-3 evolution with dedicated studies of
gluonic-pole evolution (Kang et al. 2009; Zhou et al. 2009 and at
NLO Vogelsang et al. 2009) is however still unproven.
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Bukhvostov et al. 1983; Efremov et al. 1984; PGR 1986; Balitsky et

al. 1989) remains unclear.

There are model-based estimates and approximate sum rules.

The compatibility of twist-3 evolution with dedicated studies of
gluonic-pole evolution (Kang et al. 2009; Zhou et al. 2009 and at
NLO Vogelsang et al. 2009) is however still unproven.

For large-x the g2 evolution equations simplify: they diagonalise in
the double-moment arguments (Ali et al., 1991).
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Large x

The relation between gluonic poles (e.g., the Sivers function) and
T-even transverse-spin effects (e.g., g2—Shuryak et al. 1982;
Bukhvostov et al. 1983; Efremov et al. 1984; PGR 1986; Balitsky et

al. 1989) remains unclear.

There are model-based estimates and approximate sum rules.

The compatibility of twist-3 evolution with dedicated studies of
gluonic-pole evolution (Kang et al. 2009; Zhou et al. 2009 and at
NLO Vogelsang et al. 2009) is however still unproven.

For large-x the g2 evolution equations simplify: they diagonalise in
the double-moment arguments (Ali et al., 1991).

For the Sivers function and gluonic poles, this is the important
kinematical region: SSA’s grow (Qiu et al., 1991).

Philip G. Ratcliffe & Oleg Teryaev Colour Modification of Factorisation in SSA 27/35



Single-Spin Asymmetries
More on Multiparton Correlators

Colour Modification
Asymptotic Behaviour

Large x

The gluonic-pole strength T (x), corresponds to a specific matrix
element (Qiu et al., 1991).
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Large x

The gluonic-pole strength T (x), corresponds to a specific matrix
element (Qiu et al., 1991).

It is also the residue of a general qqg vector correlator bV (x1, x2)
(Teryaev, 1995; Korotkiian et al., 1995):

bV (x1, x2) =
T (x1+x2

2
)

x1 − x2

+ regular part
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Large x

The gluonic-pole strength T (x), corresponds to a specific matrix
element (Qiu et al., 1991).

It is also the residue of a general qqg vector correlator bV (x1, x2)
(Teryaev, 1995; Korotkiian et al., 1995):

bV (x1, x2) =
T (x1+x2

2
)

x1 − x2

+ regular part

defined as

bV (x1, x2) =
i

M

∫

d�1d�2

2�
e i�1(x1−x2)+i�2x2

× ��sp1n ⟨p1,s∣ ̄(0)/nD�(�1) (�2)∣p1,s⟩
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Large x

There also exists another correlator, projected onto an axial rather
than vector Dirac matrix:

bA(x1, x2) =
1

M

∫

d�1d�2

�
e i�1(x1−x2)+i�2x2

× ⟨p1,s∣ ̄(0)/n
5s ⋅D(�1) (�2)∣p1,s⟩,
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There also exists another correlator, projected onto an axial rather
than vector Dirac matrix:

bA(x1, x2) =
1

M

∫

d�1d�2

�
e i�1(x1−x2)+i�2x2

× ⟨p1,s∣ ̄(0)/n
5s ⋅D(�1) (�2)∣p1,s⟩,

which is required for the complete description of transverse-spin
asymmetries—both SSA’s and g2.
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Large x

There also exists another correlator, projected onto an axial rather
than vector Dirac matrix:

bA(x1, x2) =
1

M

∫

d�1d�2

�
e i�1(x1−x2)+i�2x2

× ⟨p1,s∣ ̄(0)/n
5s ⋅D(�1) (�2)∣p1,s⟩,

which is required for the complete description of transverse-spin
asymmetries—both SSA’s and g2.

The two correlators have opposite symmetry properties for x1 ↔ x2

(determined by T invariance):

bA(x1, x2) = bA(x2, x1), bV (x1, x2) = −bV (x2, x1).
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Large x

In DIS and SSA’s only a particular combination appears
(Efremov et al., 1984):

b−(x1, x2) = bA(x2, x1)− bV (x1, x2).
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In DIS and SSA’s only a particular combination appears
(Efremov et al., 1984):

b−(x1, x2) = bA(x2, x1)− bV (x1, x2).

The evolution equations (Bukhvostov et al., 1983; PGR, 1986;
Balitsky et al., 1989) are written in terms of another quantity,
which is expressed as matrix elements of the gluon field strength:

Y (x1, x2) = (x1 − x2) b−(x1, x2).
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Large x

In DIS and SSA’s only a particular combination appears
(Efremov et al., 1984):

b−(x1, x2) = bA(x2, x1)− bV (x1, x2).

The evolution equations (Bukhvostov et al., 1983; PGR, 1986;
Balitsky et al., 1989) are written in terms of another quantity,
which is expressed as matrix elements of the gluon field strength:

Y (x1, x2) = (x1 − x2) b−(x1, x2).

Thus, since it should be safe to assume that b−(x1, x2) has no
double pole, we see

T (x) = Y (x , x).
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Large x

The evolution is easiest to study in Mellin-moment form and for
Y (x , y) these become double moments:

Y mn =

∫

dx dy xm yn Y (x , y),
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The evolution is easiest to study in Mellin-moment form and for
Y (x , y) these become double moments:

Y mn =

∫

dx dy xm yn Y (x , y),

where the variables are restricted to ∣x ∣, ∣y ∣ & ∣x − y ∣ < 1.
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Large x

The evolution is easiest to study in Mellin-moment form and for
Y (x , y) these become double moments:

Y mn =

∫

dx dy xm yn Y (x , y),

where the variables are restricted to ∣x ∣, ∣y ∣ & ∣x − y ∣ < 1.

We wish to examine the behaviour for x and y both close to unity
and therefore close to each other.

Thus, the gluonic pole provides the dominant contribution:

lim
x ,y→1

Y (x , y) = T (x+y
2

) + O(x − y).
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Large x

In this approximation (which now becomes large m = n) the LO
evolution equations simplify:

Ẏ nn = 4

(

CF +
CA

2

)

ln n Y nn,
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2

)

ln n Y nn,

where the derivative (dot) is w.r.t. s = �−1
0 ln ln Q2.
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Ẏ nn = 4

(

CF +
CA

2

)

ln n Y nn,

where the derivative (dot) is w.r.t. s = �−1
0 ln ln Q2.

In terms of T (x) this translates back into

Ṫ (x) = 4

(

CF +
CA

2

)
∫ 1

x

dz
(1 − z)

(1 − x)

1

(z − x)+
T (z),
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Large x

In this approximation (which now becomes large m = n) the LO
evolution equations simplify:

Ẏ nn = 4

(

CF +
CA

2

)

ln n Y nn,

where the derivative (dot) is w.r.t. s = �−1
0 ln ln Q2.

In terms of T (x) this translates back into

Ṫ (x) = 4

(

CF +
CA

2

)
∫ 1

x

dz
(1 − z)

(1 − x)

1

(z − x)+
T (z),

which is very similar to the unpolarised case, but differs by

a colour factor (CF + CA/2),

a softening factor (1 − z)/(1 − x).
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Thus, w.r.t. unpolarised evolution, the three-parton kernel pole
structure is identical, but the effective colour charge of the extra
gluon reflects in an extra piece in the colour factor: CA/2.
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Thus, w.r.t. unpolarised evolution, the three-parton kernel pole
structure is identical, but the effective colour charge of the extra
gluon reflects in an extra piece in the colour factor: CA/2.

The softening factor is inessential to the asymptotic solution: it
just implies standard evolution for the function (1 − x)T (x).
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Thus, w.r.t. unpolarised evolution, the three-parton kernel pole
structure is identical, but the effective colour charge of the extra
gluon reflects in an extra piece in the colour factor: CA/2.

The softening factor is inessential to the asymptotic solution: it
just implies standard evolution for the function (1 − x)T (x).

The asymptotic solution for an initial f (x ,Q2
0 ) ∝ (1 − x)a has the

same form (Gross, 1974) but modified with a → a(s):

a(s) = a + 4 (CF + CA/2) s
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The asymptotic solution for an initial f (x ,Q2
0 ) ∝ (1 − x)a has the

same form (Gross, 1974) but modified with a → a(s):

a(s) = a + 4 (CF + CA/2) s

and for T (x), a is shifted to a − 1; also in the evolution.
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just implies standard evolution for the function (1 − x)T (x).

The asymptotic solution for an initial f (x ,Q2
0 ) ∝ (1 − x)a has the

same form (Gross, 1974) but modified with a → a(s):

a(s) = a + 4 (CF + CA/2) s

and for T (x), a is shifted to a − 1; also in the evolution.

So, the unpolarised NS asymptotic solutions are valid for T (x) too.
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Large x

Thus, w.r.t. unpolarised evolution, the three-parton kernel pole
structure is identical, but the effective colour charge of the extra
gluon reflects in an extra piece in the colour factor: CA/2.

The softening factor is inessential to the asymptotic solution: it
just implies standard evolution for the function (1 − x)T (x).

The asymptotic solution for an initial f (x ,Q2
0 ) ∝ (1 − x)a has the

same form (Gross, 1974) but modified with a → a(s):

a(s) = a + 4 (CF + CA/2) s

and for T (x), a is shifted to a − 1; also in the evolution.

So, the unpolarised NS asymptotic solutions are valid for T (x) too.

This large-x limit coincides with recent studies of gluonic-pole
evolution (Kang et al.; Zhou et al.; Vogelsang et al., 2009).
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Viewing the Sivers function as a twist-3 gluonic-pole contribution,
we see that it is process dependent: besides a sign (ISI vs. FSI),
there is a process-dependent colour factor.
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Viewing the Sivers function as a twist-3 gluonic-pole contribution,
we see that it is process dependent: besides a sign (ISI vs. FSI),
there is a process-dependent colour factor.

This colour factor is defined by the colour charge of the initial and
final partons. It gives the sign difference between SIDIS and DY at
low pT , but at high pT in hadronic reactions it is more complicated.

Such a picture is complementary to the matching in the region of
common validity. Such matching between various pT regions now
takes the form of a pT -dependent colour factor.

It does, however, also lend some justification to the feasibility of
global Sivers-function fits (Teryaev, 2006).
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governed by generic twist-3 evolution equations.
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We have also shown that the evolution of such a Sivers function is
governed by generic twist-3 evolution equations.

Its effective nature, allows us to relate the PQCD evolution of
T-odd (Sivers function) and T-even (gluonic pole) quantities.

An important ingredient here is the large-x approximation, in which
gluonic-poles dominate and the evolution simplifies.

We have found that the Sivers function evolution is multiplicative
and described by the usual twist-2 spin-averaged kernel, modified
by a specific colour factor.
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Summary & Conclusions

Thank you!
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