The moduli space of Special Bohr-Sommerfeld submanifolds

Nikolay Tyurin BLTPh JINR (Dubna) and NRU HSE (Moscow)

SIS'18, 16th of August 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Mirror Symmetry in the broadest context can be characterized (or even defined?) as a **duality** between

complex geometry | symplectic geometry

of Kahler manifolds: from \mathbb{R} - geometry point of view Kahler manifold = (M, I, ω) where I is a *complex structure* and ω is a Kahler form = *symplectic form*.

Thus every Kahler manifold carries two geometries — complex and symplectic — therefore must be studied from these two different viewpoints.

Main interest: compact algebraic variety, by the very definition admits Kahler form of the Hodge type $([\omega] \in H^2(M, \mathbb{Z}))$, which is not unique of course.

Duality means that for mirror partners M, W certain derivation from complex geometry of M is equivalent to the corresponding derivation from symplectic geometry of W and *vice versa*.

Example: Homological Mirror Symmetry by M. Kontsevich says that derived category of coheret sheaves $D^b(CohM)$ and Fukaya -Floer catogery FF(W) are equivalent.

But if we would like to study geometrical objects:

complex geometry|symplectic geometry↓|↓complex submanifolds|symplectic submanifoldsholomorphic vector bundles|lagrangian submanifolds↓|↓linear systems|?(semi) stable vector bundles?main difference?finitness|infinitness

Example: Special Lagrangian Geometry for Calabi - Yau manifolds, proposed by N. Hitchin and J. McLean: finite dimemsional moduli space formed by lagrangian submanifolds which satisfy some *speciality* condition.

Main Question: Is it possible to construct a finite dimensional moduli space of certain "special" lagrangian submanifolds for arbitrary Kahler (or algebraic) variety?

Possible Solution: Attach to a very ample divisor D_{α} the space of smooth compact homologically non trivial exact lagrangian submanifolds on the complement $X \setminus D_{\alpha}$ modulo Hamiltonian isotopies on $X \setminus D_{\alpha}$, and then globalizing the attachment over the projective space $|L_D|$ get modified moduli space $\tilde{\mathcal{M}}_{SBS}$.

Recall the definition of exact lagrangian submanifolds in the situation we are interested in:

Let (X, L_D) be a smooth compact simply connected algebraic variety, L_D - very ample line bundle. By the very definition there exists hermitian structure h on L_D s.t. for any $\alpha \in H^0(X, L_D)$ the form $\omega_h = d(I(d\Psi_\alpha))$ is non degenerated on $X \setminus D_\alpha$. Then ω_h is globally defined on X and doesn't depend on α . Lagrangian $S \subset X \setminus D_\alpha$ is **exact** iff $I(d\Psi_\alpha)|_S \equiv 0$. We present the following alternative

Def. Lagrangian $S \subset X \setminus D_{\alpha}$ is called D - exact w.r.t. $D_{\alpha} \in |L_D|$ iff for any loop $\gamma \subset S$ for generic disc $B_{\gamma} \subset X, \partial B_{\gamma} = \gamma$, one has $\operatorname{ind}(B_{\gamma} \cap D_{\alpha}) = \int_{B_{\gamma}} \omega_{h}$. **Theorem.** Exactness w.r.t. $I(d\Psi_{\alpha}) \cong D$ - exactness w.r.t. D_{α} .

Corollary. For any Hamiltonian deformation S_t of a given exact $S_0 \subset X \setminus D_\alpha$ such that $S_t \cap D_\alpha = \emptyset$, each S_t is exact.

On the other hand it was proved that any exact lagrangian $K \subset T^*S$ is smoothly homotopic to $S \Rightarrow$

Theorem. For any exact $S \subset X \setminus D_{\alpha}$ there exists Darboux -Weinstein neiborhood $\mathcal{O}_{DW}(S) \subset X \setminus D_{\alpha}$ which contains no exact lagrangian submanifolds, Hamiltonian non isotopic to S.

For a given D_{α} take the space $\mathcal{H}(D_{\alpha})$ which consists of all **smooth** compact homologically non trivial D - exact lagrangian submanifolds of $X \setminus D_{\alpha}$. Define the quotient space $\tilde{\mathcal{M}}_{SBS}(D_{\alpha}) = \mathcal{H}(D_{\alpha})/\text{HamIso}(X \setminus D_{\alpha})$. Then

Corollary. The quotient space is discrete for any $D_{\alpha} \in |L_D|$: $\tilde{\mathcal{M}}_{SBS}(D_{\alpha}) = \{ \langle S_1 \rangle, ..., \langle S_k \rangle, ... \}.$ **Globalize** the construction over projective space $|L_D|$: $p_2 : \tilde{\mathcal{M}}_{SBS}(L_D, h, \text{topS}) \rightarrow |L_D|, \quad p_2^{-1}(D_\alpha) = \tilde{\mathcal{M}}_{SBS}(D_\alpha).$ We call $\tilde{\mathcal{M}}_{SBS}(L_D, h, \text{topS})$ the modified moduli space of special Bohr - Sommerfeld cycles:

Theorem. The modified moduli space $\tilde{\mathcal{M}}_{SBS}(L_D, h, \text{topS})$ is smooth open Kahler manifold of dimension $h^0(X, L_D) - 1$.

Example: Consider the case $X = \mathbb{CP}^1$, $L_D = \mathcal{O}(3)$:

· if $D_{\alpha} = \{p_1, p_2, p_3\} \Rightarrow$ each p_i defines unique class $\langle S_i \rangle$: take small γ_i around p_i and blow it to have symplectic area 1; · if $D_{\alpha} = \{p_1, p_2 = p_3\} \Rightarrow$ it remains class $\langle S_1 \rangle$ only; · if $D_{\alpha} = \{p_1 = p_2 = p_3\} \Rightarrow$ no D - exact loops. Summing up, $\tilde{\mathcal{M}}_{SBS}(\mathcal{O}(3), S^1) = V \setminus R$, where $\mathbb{CP}^1 \times \mathbb{CP}^2 \supset V = \{a_0 z_0^3 + a_1 z_0^2 z_1 + a_2 z_0 z_1^2 + a_3 z_1^3 = 0\}$ and $R \subset V$ is the ramification divisor for $\pi : V \to \mathbb{CP}^3$. Again the answer = "algebraic variety \setminus ample divisor". **Dependence on hermitian structure.** Space of **appropriate** hermitian structures on L_D is isomorphic to infinite dimensional open ball: for each pair h_0 , h_1 it exists $f \in C^{\infty}(X, \mathbb{R})$ s.t. $|\alpha|_{h_1} = e^f |\alpha|_{h_0}$ for every $\alpha \in H^0(X, L_D)$ and therefore $\omega_{h_1} = \phi_{\text{gradf}}^{t=1} \omega_{h_0}$ - gradient flow transforms $\omega_{h_0} \mapsto \omega_{h_1}$ for small f. Then $\phi_{\text{gradf}}^{t=1} S_0 = S_1$ - lagrangian w.r.t. ω_{h_1} and still D - exact if $S_t = \phi_{\text{gradf}}^t S_0 \cap D_{\alpha} = \emptyset$ for each $t \in [0:1]$ (possible to manage). Therefore **geometry** of $\tilde{\mathcal{M}}_{SBS}(L_D, h, \text{topS})$ doesn't depend on h.

As a byproduct of the above construction one gets certain **lagrangian invariants** for our algebraic variety X in terms of L_D :

Def. For a generic appropriate hermitian connection h on very ample line bundle L_D and generic divisor $D_{\alpha} \in |L_D|$ let $\kappa_1 = \operatorname{Card}(\mathcal{H}(D_{\alpha}))$. At the same time it can be done for any positive tensor products L_D^k which gives $\kappa_k = \kappa_1(L_D^k)$.

These numbers (possible infinite) do not depend on the choice of h $\Rightarrow \mathcal{K}(L_D) = \sum_{k=1}^{\infty} \kappa_k q^k$ is a **lagrangian** invariant of X. **Example.** Again $X = \mathbb{CP}^1$, $L_D = \mathcal{O}(1)$. As we have seen $\kappa_1 = 0$, $\kappa_2 = 1$, $\kappa_3 = 3$,... and not hard to compute: $\mathcal{K}(\mathcal{O}(1)) = \sum_{k=1}^{\infty} (2^{k-1} - 1)q^k$

(not the same as just topological $rkH_1(X \setminus D_\alpha, \mathbb{Z}) = k - 1$). Of course, here we preassume the finitness of the numbers \approx the modified moduli space is **algebraic**, as it is in all our examples!

But if it is not the case?

Example. Riemann surface $\Sigma + I \mapsto algebraic curve$, $I \mapsto (G, \Omega), \int_{\Sigma} \Omega = 2g - 2 \Rightarrow$ hermitian structure on $T^*\Sigma$. Thus $\alpha \in H^0(T^*\Sigma) \mapsto \Psi_{\alpha} = -\ln|\alpha|$ on $\Sigma \setminus \{p_1, ..., p_l\}$ and the graph $\Gamma_{\alpha} = W(\Sigma \setminus \{p_1, ..., p_l\})$ is finite.

Proposition. Every primitive class from $H_1(\Sigma \setminus \{p_i\}, \mathbb{Z})$ is realized by smooth exact loop $\gamma \subset \Sigma \setminus \{p_i\}$ such that $\int_{\gamma} I(d\Psi_{\alpha}) = 0$. The realization is unique up to Hamiltonian isotopy.

In this case $\kappa = \infty$, but it is possible to cut off certain *finite* component from the modified moduli space:

To make the story **finite** we can **stabilize** the construction, taking the smooth exact loops which **approach compact closed components** of the **Weinstein skeleton**:

in the situation above for a holomorphic section α the function

 $\Psi_{\alpha} = -\ln|\alpha|_{h}$

is a Kahler potential on $X \setminus D_{\alpha}$.

The Morse properties of Ψ_{α} are well known:

the Morse index of any critical point is **less or equal** to *n*;

the Weinstein skeleton of $X \setminus D_{\alpha}$, defined as the union of all finite trajectories of the gradient flow of Ψ_{α} , is *homotopic* to $X \setminus D_{\alpha}$ and is *isotropic* at smooth points.

In particular any smooth part of compact n - dimensional component of the Weinstein skeleton $W(X \setminus D_{\alpha})$ must be lagrangian! \Rightarrow and we have finite number of such components!

SYNTHESIS. Cut from the modified moduli space $\tilde{\mathcal{M}}_{SBS}$ a stable component $\tilde{\mathcal{M}}_{SBS}^{st}$ consists of the classes $\langle S_i \rangle \in \mathcal{H}(D_{\alpha})$ which present Hamiltonian desingularizations of the compact closed components of the Weinstein skeleta $W(X \setminus D_{\alpha})$.

Def. A Hamiltonian desingularization of a cycle $\Delta \subset W(X \setminus D_{\alpha})$ is a homotopy $S_t \subset X \setminus D_{\alpha}, t \in [0:1]$ such that $S_0 = \Delta$, and for other $t \in (0;1]$ family $\{S_t\}$ is Hamiltonian isotopy of smooth B-S lagrangian submanifolds.

Note if Δ is smooth itself \Rightarrow one takes $S_t = \Delta$ for every $t \in [0; 1]$.

Main Conjecture. For arbitrary compact smooth simply connected algebraic variety X and a very ample line bundle $L_D \rightarrow X$ the stable component of the modified moduli space is algebraic: $\tilde{\mathcal{M}}_{SBS}^{st} \cong Y \setminus D$ where D is a compact algebraic variety and $D \subset Y$ is an ample divisor.

work in progress...