CLASSICAL AND QUANTUM DYNAMICS OF HIGHER-DERIVATIVE SYSTEMS or LIVING WITH GHOSTS

SIS-18, Dubna, August 14

based on
A.S., Int. J. Mod. Phys. A32 (2017) no.33, 1730025 [arXiv:1710.11538]

MOTIVATION:

... To myself, I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary whilst the great ocean of truth lay all undiscovered before me.

Isaac Newton

- The ocean is now charted up to $E \lesssim 10^{3} \mathrm{GeV}, l \gtrsim 10^{-17} \mathrm{~cm}$.
- But it extends up to $M_{P} \approx 10^{19} \mathrm{GeV}$. We have now explored its 10^{-16}-th part.

PROBLEMS IN QUANTUM (AND CLASSICAL) GRAVITY:

- Nonrenormalizability
- Non-causality. Closed time loops. Paradoxes.

TOE $=$ strings?

- No fundamental quantum string theory
- No phenomenological successes.

An alternative (dream) solution: [A.S., 2005]
Our Universe as a soap film in a flat higher dimensional bulk. The TOE is a field theory in this bulk. Gravity etc is an effective theory living on the film, like

$$
H_{\text {soap }}=\sigma \mathcal{A}=\sigma \int d^{2} x \sqrt{g}
$$

TRY

$$
\begin{aligned}
& \quad S=-\frac{1}{2 h^{2}} \int \operatorname{Tr}\left\{F_{M N} F_{M N}\right\} d^{6} x, \\
& \text { in } D=6, M, N=0,1,2,3,4,5 .
\end{aligned}
$$

- Dimensionful coupling constant, nonrenormalizable

A SECOND TRY

$\mathcal{L}^{D=6}=\alpha \operatorname{Tr}\left\{F_{\mu \nu} \square F_{\mu \nu}\right\}+\beta \operatorname{Tr}\left\{F_{\mu \nu} F_{\nu \alpha} F_{\alpha \mu}\right\}$

- α, β are dimensionless, renormalizability
- Includes higher derivatives

But GHOSTS appear

- In a ghost system the Hamiltonian has no ground state. No vacuum in field theory. It is inherent for all higher-derivative theories.

OSTROGRADSKY HAMILTONIAN

M. Ostrogradsky [1801-1862] is known by

- Ostrogradsky theorem from vector analysis
- Ostrogradsky method for calculating $\int P(x) / Q(x) d x$.
- Ostrogradsky Hamiltonian

In the paper
[M. Ostrogradsky, Mémoire sur les équations différentielles relatives au problème des isopérimètres, Mem. Ac. St. Petersbourg VI 4 (1850) 385.]
he reinvented the Hamiltonian formalism and applied it to higher-derivative theories.

- Consider $L(x, \dot{x}, \ddot{x})$.
- Equation of motion:

$$
\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{x}}\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)+\frac{\partial L}{\partial x}=0
$$

- Conserved energy:

$$
E=\ddot{x} \frac{\partial L}{\partial \ddot{x}}+\dot{x}\left(\frac{\partial L}{\partial \dot{x}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{x}}\right)-L
$$

- Treat $v=\dot{x}$ as an independent variable and define

$$
\begin{gathered}
p_{v}=\frac{\partial L}{\partial \dot{v}}=\frac{\partial L}{\partial \ddot{x}}, \\
p_{x}=\frac{\partial L}{\partial \dot{x}}-\dot{p}_{v},
\end{gathered}
$$

- Canonical Hamiltonian:

$$
\begin{gathered}
H\left(p_{v}, p_{x} ; v, x\right)=p_{v} \dot{v}+p_{x} \dot{x}-L= \\
p_{v} a\left(p_{v}, x, v\right)+p_{x} v-L\left[a\left(p_{v}, x, v\right), x, v\right]
\end{gathered}
$$

where $a\left(p_{v}, x, v\right)$ is the solution of the equation $\partial L(x, v, a) / \partial a=p_{v}$.

- Linear term $p_{x} v \longrightarrow$

Theorem 1: [Woodard, 2015] The classical energy of a nondegenerate higher-derivative system can acquire an arbitrary positive ot negative value. also
Theorem 2: [Raidal + Veermae, 2017] The spectrum of a Hamiltonian of a higher-derivative system is not bounded neither from below, nor from above.

- This phenomenon is sometimes called "Ostrogradsky instability", but:
- It is not an instability,
- was noticed first not by Ostrogradsky.

Arnold's principle: If a notion bears a personal name, then this name is not the name of the discoverer.
(self-referential).

PAIS-UHLENBECK OSCILLATOR [1950]

Consider

$$
L=\frac{1}{2}\left[\ddot{x}^{2}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \dot{x}^{2}+\omega_{1}^{2} \omega_{2}^{2} x^{2}\right]
$$

- Ostrogradsky Hamiltonian:

$$
H=p_{x} v+\frac{p_{v}^{2}}{2}+\frac{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) v^{2}}{2}-\frac{\omega_{1}^{2} \omega_{2}^{2} x^{2}}{2}
$$

- Canonical transformation:

$$
\begin{array}{ll}
X_{1}=\frac{1}{\omega_{1}} \frac{\hat{p}_{x}+\omega_{1}^{2} v}{\sqrt{\omega_{1}^{2}-\omega_{2}^{2}}}, & \hat{P}_{1} \equiv-i \frac{\partial}{\partial X_{1}}=\omega_{1} \frac{\hat{p}_{v}+\omega_{2}^{2} x}{\sqrt{\omega_{1}^{2}-\omega_{2}^{2}}}, \\
X_{2}=\frac{\hat{p}_{v}+\omega_{1}^{2} x}{\sqrt{\omega_{1}^{2}-\omega_{2}^{2}}}, & \hat{P}_{2} \equiv-i \frac{\partial}{\partial X_{2}}=\frac{\hat{p}_{x}+\omega_{2}^{2} v}{\sqrt{\omega_{1}^{2}-\omega_{2}^{2}}} .
\end{array}
$$

($\omega_{1}>\omega_{2}$ was assumed).

- In these variables,

$$
H=\frac{\hat{P}_{1}^{2}+\omega_{1}^{2} X_{1}^{2}}{2}-\frac{\hat{P}_{2}^{2}+\omega_{2}^{2} X_{2}^{2}}{2} .
$$

The spectrum is

$$
E_{n m}=\left(n+\frac{1}{2}\right) \omega_{1}-\left(m+\frac{1}{2}\right) \omega_{2}
$$

with positive integer n, m.

- All states are normalizable ("pure point"). Infinite degeneracy if ω_{1} / ω_{2} is rational. Everywhere dense if ω_{1} / ω_{2} is irrational.

UNUSUAL BUT NOT SICK!

UNITARITY CONFUSION

Consider

$$
\hat{H}=\omega_{1} a_{1}^{\dagger} a_{1}-\omega_{2} a_{2} a_{2}^{\dagger} .
$$

- Ordinary "vacuum" $|\Phi\rangle$ with $a_{1}|\Phi\rangle=a_{2}|\Phi\rangle=$ 0 is in the middle of the spectrum.
- Introduce the state $|\tilde{\Phi}\rangle$ satisfying

$$
a_{1}|\tilde{\Phi}\rangle=a_{2}^{\dagger}|\tilde{\Phi}\rangle=0
$$

and consider the tower of states

$$
|n\rangle=\frac{a_{2}^{n}}{n!}|\tilde{\Phi}\rangle
$$

Then $\hat{H}|\tilde{\Phi}\rangle=0$,
$\hat{H}|1\rangle=\hat{H}\left(a_{2} \mid \tilde{\Phi}\right)=-\omega_{2} a_{2} a_{2}^{\dagger} a_{2}=\omega_{2} a_{2}|\tilde{\Phi}\rangle=\omega_{2}|1\rangle$ and $\hat{H}|n\rangle=n \omega_{2}|n\rangle$.

- The spectrum is positive definite. One can rename $a_{2} \rightarrow b_{2}^{\dagger}, a_{2}^{\dagger} \rightarrow b_{2}$.

THE PRICE

- $\left[b_{2}, b_{2}^{\dagger}\right]=-1$ and hence $|1\rangle=b_{2}^{\dagger}|\tilde{\Phi}\rangle$ has a negative norm:

$$
\langle 1 \mid 1\rangle=-\langle\tilde{\Phi}| b_{2} b_{2}^{\dagger}|\tilde{\Phi}\rangle=-\langle\tilde{\Phi} \mid \tilde{\Phi}\rangle=-1 .
$$

$$
|\tilde{\Phi}\rangle=\exp \left\{-\frac{\omega_{1}}{2} X_{1}^{2}\right\} \exp \left\{\frac{\omega_{2}}{2} X_{2}^{2}\right\}
$$

and the whole tower $|n\rangle$ are not in \mathcal{L}_{2}.

IT IS BETTER NOT TO THINK IN THESE TERMS!

BENDER AND MANNHEIM PROPOSAL

 Consider$$
H=\frac{\hat{P}_{1}^{2}+\omega_{1}^{2} X_{1}^{2}}{2}-\frac{\hat{P}_{2}^{2}+\omega_{2}^{2} X_{2}^{2}}{2}
$$

and assume X_{1} to be real and X_{2} purely imaginary.
Then the normalizable wave functions involve a factor

$$
\exp \left\{-\frac{\omega_{1}}{2} X_{1}^{2}\right\} \exp \left\{\frac{\omega_{2}}{2} X_{2}^{2}\right\}
$$

and the spectrum is positive definite.

- This is a different spectral problem.
- Just no need to do this.

PATH INTEGRAL CONFUSION [Hawking + Hertog, 2002]

- The Minkowski Lagrangian path integral

$$
\begin{equation*}
\sim \int \prod_{t} d x(t) \exp \left\{i \int d t L(\ddot{x}, \dot{x}, x)\right\} \tag{1}
\end{equation*}
$$

- The corresponding Hamiltonian path integral

$$
\sim \int \prod_{t} d x(t) d v(t) d p_{x}(t) d p_{v}(t)
$$

$$
\begin{equation*}
\exp \left\{i \int d t\left[p_{v} \dot{v}+p_{x} \dot{x}-H\left(p_{v}, p_{x} ; v, x\right)\right]\right\} . \tag{2}
\end{equation*}
$$

Substitute here the Ostrogradsky Hamiltonian and integrate over $\prod_{t} d p_{x}(t)$. We obtain the factor

$$
\prod \delta[v(t)-\dot{x}(t)]
$$

Integrating further over $\prod_{t} d v(t) d p_{v}(t)$, we derive (??).

- The Euclidean rotation $t \rightarrow-i \tau$ in the Hamiltonian integral (??) is impossible. The integral
$\prod_{\tau} \int_{-\infty}^{\infty} d p_{x}(\tau) \exp \left\{\int d \tau p_{x}(\tau)\left[i \frac{d x(\tau)}{d \tau}-v(\tau)\right]\right\}$ diverges.
- Euclidean rotation $t \rightarrow-i \tau$ in the Lagrangian integral (??) is possible, the integral may converge, but its analytic continuation into Minkowski space does not give a unitary evolution.

CONCLUSION:

Euclidean path integrals (in constrast to Minkowski ones) are not defined for higher-derivative systems.

INCLUDING INTERACTIONS

Consider the Lagrangian [A.S., 2005]

$$
L=\frac{1}{2}\left[\ddot{x}^{2}-2 \omega^{2} \dot{x}^{2}+\omega^{4} x^{2}\right]-\frac{1}{4} \alpha x^{4} .
$$

Equation of motion:

$$
\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right)^{2} x-\alpha x^{3}=0 .
$$

fixed point:

$$
x(0)=\dot{x}(0)=\ddot{x}(0)=x^{(3)}(0)=0 .
$$

- Stable trajectories for small deviations (the island of stability).
- Collapse (the system runs to the infinity at finite time) for large enough deviations.

ON THE SHORE OF THE STABILITY ISLAND

A similar stability island for another HD system in
[S.N. Carrol, M. Hoffman, and M. Trodden, PR D68 (2003) 023509]

AN EXAMPLE OF COLLAPSE: FALLING TO THE CENTER

Consider

$$
V(r)=-\frac{\kappa}{r^{2}}
$$

with $m \kappa>1 / 8$.

- Spectrum is not bounded from below.
- Schrödinger problem is not well defined.

If one smoothes the singularity,

$$
\begin{aligned}
& V(r)=-\frac{\kappa}{r^{2}}, \\
& V(r)=-\frac{\kappa}{a^{2}}, \quad r \leq a \\
& V
\end{aligned}
$$

the spectrum is bounded, but depends on a.

- Violation of unitarity (probability "leaks" into the singularity).

AN OBSERVATION:

- If quantum theory is sick, so is its classical counterpart. If classical theory is benign, so is its quantum counterpart.

$$
0-16
$$

INTERACTING SYSTEMS WITH BENIGN GHOSTS
 [D. Robert + A.S., 2006]

$$
S=\int d t d \bar{\theta} d \theta\left[\frac{i}{2} \overline{\mathcal{D}} \Phi \frac{d}{d t} \mathcal{D} \Phi+V(\Phi)\right],
$$

with the real $(0+1)$-dimensional superfield

$$
\Phi=\phi+\theta \bar{\psi}+\psi \bar{\theta}+D \theta \bar{\theta}
$$

- An extra time derivative.

The Hamiltonian

$$
H=p P-D V^{\prime}(\phi)+\text { fermion term }
$$ is not positive definite.

- 4-dimensional phase space $(p, \phi),(P, D)$.
- Two integrals of motion: H and

$$
N=\frac{P^{2}}{2}+V(\phi) .
$$

- Exactly solvable.
- Take

$$
V=\frac{\omega^{2} \phi^{2}}{2}+\frac{\lambda \phi^{4}}{4}
$$

- The solutions to the classical equations of motion are expressed via elliptic functions.

- Linear growth for $D(t) ; \phi(t)$ is bounded. No collapse.
- Other benign ghost systems:
[Pavšič, 2013; Ilhan+Kovner, 2013]

QUANTUM PROBLEM
 is also exactly solvable.

Spectrum of the Hamiltonian $H=p P+D V^{\prime}(\phi)$.

0-20

Mixed model

$$
L=\int d \bar{\theta} d \theta\left[\frac{i}{2}(\overline{\mathcal{D}} \Phi) \frac{d}{d t}(\mathcal{D} \Phi)+\frac{\gamma}{2} \overline{\mathcal{D}} \Phi \mathcal{D} \Phi+V(\Phi)\right] .
$$

Physics is similar to the model with $\gamma=0$, but

- Not integrable anymore.
- No linear growth for $D(t)$.

Figure 1: The function $D(t)$ for a deformed system $(\omega=0, \lambda=1, \gamma=.1)$.

UNUSUAL ALGEBRAIC STRUCTURES
 - canonical Nöther supercharges

$$
\begin{aligned}
Q & =\psi\left[p+i V^{\prime}(x)\right]-\left(\bar{\chi}+\frac{\gamma}{2} \psi\right)(P-i D), \\
\bar{Q} & =\left(\bar{\psi}-\frac{\gamma}{2} \chi\right)(P+i D)-\chi\left[p-i V^{\prime}(x)\right] .
\end{aligned}
$$

- and the extra pair

$$
\begin{aligned}
T & =\psi\left[p-i V^{\prime}(x)\right]+\left(\bar{\chi}+\frac{\gamma}{2} \psi\right)(P+i D), \\
\bar{T} & =\left(\bar{\psi}+\frac{\gamma}{2} \chi\right)(P-i D)+\chi\left[p+i V^{\prime}(x)\right] .
\end{aligned}
$$

- When $\gamma=0$, we have a semidirect product of the standard $\mathcal{N}=4 \mathrm{SUSY}$ algebra

$$
\{Q, \bar{Q}\}=\{T, \bar{T}\}=2 H
$$

(but $\bar{Q} \neq Q^{\dagger}, \bar{T} \neq T^{\dagger}!$)
and the Abelian Lie algebra generated by

$$
\begin{aligned}
N & =\frac{P^{2}}{2}-V(\phi) \\
F & =\psi \bar{\psi}-\chi \bar{\chi}
\end{aligned}
$$

Nonvanishing commutators

$$
\begin{array}{r}
\{Q, \bar{Q}\}=\{T, \bar{T}\}=2 H ; \\
{[\bar{Q}, F]=\bar{Q},[Q, F]=-Q,[T, F]=-T,[\bar{T}, F]=\bar{T} ;} \\
{[Q, N]=[T, N]=\frac{Q-T}{2}, \quad-[\bar{Q}, N]=[\bar{T}, N]=\frac{\bar{Q}+\bar{T}}{2} .}
\end{array}
$$

- When $\gamma \neq 0$, the algebra is deformed:
- Let $H=H_{0}-\gamma F / 2$ and introduce $F_{+}=$ $\bar{\chi} \psi, \quad F_{-}=\bar{\psi} \chi$ then

$$
\begin{array}{r}
{\left[F_{ \pm}, F\right]=\mp 2 F_{ \pm}, \quad\left[F_{+}, F_{-}\right]=F} \\
{\left[Q, H_{0}\right]=-\frac{\gamma}{2} Q, \quad\left[\bar{Q}, H_{0}\right]=\frac{\gamma}{2} \bar{Q}} \\
{\left[T, H_{0}\right]=\frac{\gamma}{2} T, \quad\left[\bar{T}, H_{0}\right]=-\frac{\gamma}{2} \bar{T}} \\
{[Q, F]=-Q, \quad[\bar{Q}, F]=\bar{Q}} \\
{[T, F]=T, \quad[\bar{T}, F]=-\bar{T}} \\
{\left[Q, F_{-}\right]=\bar{T}, \quad\left[\bar{Q}, F_{+}\right]=-T} \\
{\left[T, F_{-}\right]=-\bar{Q}, \quad\left[\bar{T}, F_{+}\right]=Q} \\
\{Q, \bar{Q}\}=2 H_{0}-\gamma F, \quad\{T, \bar{T}\}=2 H_{0}+\gamma F \\
\{Q, T\}=2 \gamma F_{+}, \quad\{\bar{Q}, \bar{T}\}=2 \gamma F_{-}
\end{array}
$$

- This is $\operatorname{osp}(2,2)$ algebra.
- a close relative of weak supersymmetry algebra [A.S., PLB 585 (2004) 173].

(1+1) FIELD THEORY

- Let Φ depend on t and x. Choose

$$
S=\int d t d x d \bar{\theta} d \theta\left[-2 i \mathcal{D} \Phi \partial_{+} \mathcal{D} \Phi+V(\Phi)\right]
$$

where $\partial_{ \pm}=\left(\partial_{t} \pm \partial_{x}\right) / 2$ and

$$
\mathcal{D}=\frac{\partial}{\partial \theta}+i \theta \partial_{-}, \quad \overline{\mathcal{D}}=\frac{\partial}{\partial \bar{\theta}}-i \bar{\theta} \partial_{+}
$$

Bosonic Lagrangian

$$
\mathcal{L}_{B}=\partial_{\mu} \phi \partial_{\mu} D+D V^{\prime}(\phi)
$$

with

$$
V(\phi)=\frac{\omega^{2} \phi^{2}}{2}+\frac{\lambda \phi^{4}}{4}, \quad \lambda>0 .
$$

Equations of motion:

$$
\begin{align*}
\square \phi+\omega^{2} \phi+\lambda \phi^{3} & =0 \\
\square D+D\left(\omega^{2}+3 \lambda \phi^{2}\right) & =0 . \tag{3}
\end{align*}
$$

- Only two integrals of motion: the energy and

$$
N=\int d x\left\{\frac{1}{2}\left[\dot{\phi}^{2}+\left(\partial_{x} \phi\right)^{2}\right]+\frac{\omega^{2} \phi^{2}}{2}+\frac{\lambda \phi^{4}}{4}\right\} .
$$

- Not exactly solvable.
- Stochasticity. Solved numerically.
- Finite spatial box. Different initial conditions.

TYPICAL BEHAVIOR:

Dispersion $d=\sqrt{\left\langle D^{2}\right\rangle_{x}}$ as a function of time.

SWEET DREAM

The TOE is a higher-derivative field theory with benign ghosts living in a higher-dimensional flat space-time. Our Universe represents a 3-brane a solitonic solution extended in three spatial and the time directions and localized in the extra dimensions. Gravity arises as effective theory on the world volume of this brane.

