Spin Calogero-Moser integrable systems related with the cyclic quiver

Alexey Silantyev* Joint work with Oleg Chalykh*

\author{

* JINR, Dubna, Russia
 *University of Leeds, UK
}

> Supersymmetry in Integrable Systems (SIS'18)
> Dubna

13-16 August 2018

Rational Calogero-Moser system for A_{n-1} case

- Hamiltonian of Calogero-Moser system for $W_{A_{n-1}}=S_{n}$:

$$
\begin{aligned}
& H=\sum_{a=1}^{n} p_{a}^{2}-2 \sum_{a<b} \frac{1}{\left(x_{a}-x_{b}\right)^{2}} \in \mathcal{O}\left(T^{*} \mathfrak{h}_{\mathrm{reg}}\right)^{S_{n}}=\mathcal{O}\left(T^{*} \mathfrak{h}_{\mathrm{reg}} / S_{n}\right), \\
& \text { where } \mathfrak{h}_{\mathrm{reg}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{a} \neq x_{b} \text { if } a \neq b\right\} \text {. } \\
& \text { There exist } n \text { algebraically independent integrals of motion } \\
& H_{1}, \ldots H_{n} \in \mathcal{O}\left(T^{*} \mathfrak{h}_{\text {reg }}\right)^{S_{n}} \text { such that }
\end{aligned}
$$

- Commuting flows: $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$

Rational Calogero-Moser system for A_{n-1} case

- Hamiltonian of Calogero-Moser system for $W_{A_{n-1}}=S_{n}$:

$$
\begin{aligned}
& H=\sum_{a=1}^{n} p_{a}^{2}-2 \sum_{a<b} \frac{1}{\left(x_{a}-x_{b}\right)^{2}} \in \mathcal{O}\left(T^{*} \mathfrak{h}_{\mathrm{reg}}\right)^{S_{n}}=\mathcal{O}\left(T^{*} \mathfrak{h}_{\mathrm{reg}} / S_{n}\right), \\
& \text { where } \mathfrak{h}_{\mathrm{reg}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{a} \neq x_{b} \text { if } a \neq b\right\}
\end{aligned}
$$

- There exist n algebraically independent integrals of motion $H_{1}, \ldots, H_{n} \in \mathcal{O}\left(T^{*} \mathfrak{h}_{\text {reg }}\right)^{S_{n}}$ such that

$$
\left\{H_{k}, H_{\ell}\right\}=0, \quad H_{1}=\sum_{a=1}^{n} p_{a}, \quad H_{2}=H
$$

- Commuting flows: $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$

Rational Calogero-Moser system for A_{n-1} case

- Hamiltonian of Calogero-Moser system for $W_{A_{n-1}}=S_{n}$:

$$
\begin{aligned}
& H=\sum_{a=1}^{n} p_{a}^{2}-2 \sum_{a<b} \frac{1}{\left(x_{a}-x_{b}\right)^{2}} \in \mathcal{O}\left(T^{*} \mathfrak{h}_{\mathrm{reg}}\right)^{S_{n}}=\mathcal{O}\left(T^{*} \mathfrak{h}_{\mathrm{reg}} / S_{n}\right), \\
& \text { where } \mathfrak{h}_{\mathrm{reg}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{a} \neq x_{b} \text { if } a \neq b\right\}
\end{aligned}
$$

- There exist n algebraically independent integrals of motion $H_{1}, \ldots, H_{n} \in \mathcal{O}\left(T^{*} \mathfrak{h}_{\text {reg }}\right)^{S_{n}}$ such that

$$
\left\{H_{k}, H_{\ell}\right\}=0, \quad H_{1}=\sum_{a=1}^{n} p_{a}, \quad H_{2}=H
$$

- Commuting flows: $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$.

Calogero-Moser space

- Calogero-Moser space is a symplectic affine variety defined as

$$
\mathcal{C}_{n}=\{(X, Y, v, w) \mid[X, Y]=1-v w\} / \operatorname{GL}(n, \mathbb{C}),
$$

where $X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v \in \mathbb{C}^{n}, w \in\left(\mathbb{C}^{n}\right)^{*}$. The action of $g \in \operatorname{GL}(n, \mathbb{C})$ is $g \cdot(X, Y, v, w)=\left(g X g^{-1}, g Y g^{-1}, g v, w g^{-1}\right)$.

- In a generic point of \mathcal{C}_{n}

$v_{a}=1$,
$w_{a}=1$
- The local Darboux coordinates on C_{n} are $\left(p_{a}, x_{a}\right)_{a=1}^{n}$
- C_{n} is a completion of the symmetrised phase space $T^{*} \mathfrak{G}_{\mathrm{reg}} / S_{n}$

Calogero-Moser space

- Calogero-Moser space is a symplectic affine variety defined as

$$
\mathcal{C}_{n}=\{(X, Y, v, w) \mid[X, Y]=1-v w\} / \operatorname{GL}(n, \mathbb{C}),
$$

where $X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v \in \mathbb{C}^{n}, w \in\left(\mathbb{C}^{n}\right)^{*}$. The action of $g \in \mathrm{GL}(n, \mathbb{C})$ is $g \cdot(X, Y, v, w)=\left(g X g^{-1}, g Y g^{-1}, g v, w g^{-1}\right)$.

- In a generic point of \mathcal{C}_{n} :

$$
\begin{array}{ll}
X_{a b}=\delta_{a b} x_{a}, & Y_{a b}=\delta_{a b} p_{a}-\left(1-\delta_{a b}\right) \frac{1}{x_{a}-x_{b}} \\
v_{a}=1, & w_{a}=1
\end{array}
$$

- The local Darboux coordinates on \mathcal{C}_{n} are $\left(p_{a}, x_{a}\right)_{a=1}^{n}$
- \mathcal{C}_{n} is a completion of the symmetrised phase space $T^{*} \mathfrak{h}_{\mathrm{reg}} / S_{n}$.

Calogero-Moser space

- Calogero-Moser space is a symplectic affine variety defined as

$$
\mathcal{C}_{n}=\{(X, Y, v, w) \mid[X, Y]=1-v w\} / \operatorname{GL}(n, \mathbb{C}),
$$

where $X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v \in \mathbb{C}^{n}, w \in\left(\mathbb{C}^{n}\right)^{*}$. The action of $g \in \mathrm{GL}(n, \mathbb{C})$ is $g \cdot(X, Y, v, w)=\left(g X g^{-1}, g Y g^{-1}, g v, w g^{-1}\right)$.

- In a generic point of \mathcal{C}_{n} :

$$
\begin{array}{ll}
X_{a b}=\delta_{a b} x_{a}, & Y_{a b}=\delta_{a b} p_{a}-\left(1-\delta_{a b}\right) \frac{1}{x_{a}-x_{b}} \\
v_{a}=1, & w_{a}=1
\end{array}
$$

- The local Darboux coordinates on \mathcal{C}_{n} are $\left(p_{a}, x_{a}\right)_{a=1}^{n}$.
- C_{n} is a completion of the symmetrised phase space $T^{*} \mathfrak{G}_{\mathrm{reg}} / S_{n}$

Calogero-Moser space

- Calogero-Moser space is a symplectic affine variety defined as

$$
\mathcal{C}_{n}=\{(X, Y, v, w) \mid[X, Y]=1-v w\} / \operatorname{GL}(n, \mathbb{C}),
$$

where $X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v \in \mathbb{C}^{n}, w \in\left(\mathbb{C}^{n}\right)^{*}$. The action of $g \in \operatorname{GL}(n, \mathbb{C})$ is $g \cdot(X, Y, v, w)=\left(g X g^{-1}, g Y g^{-1}, g v, w g^{-1}\right)$.

- In a generic point of \mathcal{C}_{n} :

$$
\begin{array}{ll}
X_{a b}=\delta_{a b} x_{a}, & Y_{a b}=\delta_{a b} p_{a}-\left(1-\delta_{a b}\right) \frac{1}{x_{a}-x_{b}}, \\
v_{a}=1, & w_{a}=1
\end{array}
$$

- The local Darboux coordinates on \mathcal{C}_{n} are $\left(p_{a}, x_{a}\right)_{a=1}^{n}$.
- \mathcal{C}_{n} is a completion of the symmetrised phase space $T^{*} \mathfrak{h}_{\mathrm{reg}} / S_{n}$.

Dynamics on \mathcal{C}_{n}

- $X(t)=X+\sum_{k=1}^{n} k t_{k} Y^{k-1}, \quad Y, v, w=$ const,
where $t=\left(t_{1}, \ldots, t_{n}\right)$.
- Dynamics on \mathcal{C}_{n} in the local coordinates $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ gives solutions of the Calogero-Moser system: $x_{a}=x_{a}(t)$, $p_{a}=p_{a}(t)$.
- This dynamics can be given by the Poisson-commuting Hamiltonians

$$
H_{k}=\operatorname{tr}\left(Y^{k}\right) \in \mathcal{O}\left(\mathcal{C}_{n}\right),
$$

which extend the Hamiltonians of the Calogero-Moser system to the completed phase space \mathcal{C}_{n}.

Dynamics on \mathcal{C}_{n}

- $X(t)=X+\sum_{k=1}^{n} k t_{k} Y^{k-1}, \quad Y, v, w=$ const,
where $t=\left(t_{1}, \ldots, t_{n}\right)$.
- Dynamics on \mathcal{C}_{n} in the local coordinates $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ gives solutions of the Calogero-Moser system: $x_{a}=x_{a}(t)$, $p_{a}=p_{a}(t)$.
- This dynamics can be given by the Poisson-commuting Hamiltonians

$$
H_{k}=\operatorname{tr}\left(Y^{k}\right) \in \mathcal{O}\left(\mathcal{C}_{n}\right),
$$

which extend the Hamiltonians of the Calogero-Moser system to the completed phase space \mathcal{C}_{n}.

Dynamics on \mathcal{C}_{n}

- $X(t)=X+\sum_{k=1}^{n} k t_{k} Y^{k-1}, \quad Y, v, w=$ const,
where $t=\left(t_{1}, \ldots, t_{n}\right)$.
- Dynamics on \mathcal{C}_{n} in the local coordinates $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ gives solutions of the Calogero-Moser system: $x_{a}=x_{a}(t)$, $p_{a}=p_{a}(t)$.
- This dynamics can be given by the Poisson-commuting Hamiltonians

$$
H_{k}=\operatorname{tr}\left(Y^{k}\right) \in \mathcal{O}\left(\mathcal{C}_{n}\right)
$$

which extend the Hamiltonians of the Calogero-Moser system to the completed phase space \mathcal{C}_{n}.

Scheme of the CM correspondence

where $A_{1}(\mathbb{C})=\mathbb{C}\langle x, y\rangle /(x y-y x-1=0)$.

CM correspondence for the cyclic quiver (spherical case)

Spherical solutions of the generalised KP hierarchy

Quiver varieties $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)$
[Baranovsky, Ginzburg,
Kuznetsov]
Right ideals of the spherical
Cherednik algebra $B_{\lambda}\left(\mathbb{Z}_{m}\right)$
where $\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}, \alpha \in \mathbb{Z}^{m}, \lambda \in \mathbb{C}^{m}, \varepsilon_{0}=(1,0 \ldots, 0)$,
$\delta=(1, \ldots, 1)$.

CM correspondence for the cyclic quiver

More general solutions of the generalised KP hierarchy

CM systems for $G=S_{n} \ltimes \mathbb{Z}_{m}^{n}$ with some internal variables
if $\alpha=n \delta$
Quiver varieties $M_{\lambda}(\alpha, \delta)$

Gibbons-Hermsen system

- Hamiltonian of Gibbons-Hermsen system (spin A_{n-1} Calogero-Moser system):

$$
H=\sum_{a=1}^{n} p_{a}^{2}-2 \sum_{a<b} \frac{\left(\psi_{a} \varphi_{b}\right)\left(\psi_{b} \varphi_{a}\right)}{\left(x_{a}-x_{b}\right)^{2}}
$$

where $\varphi_{a} \in \mathbb{C}^{d}, \psi_{a} \in\left(\mathbb{C}^{d}\right)^{*}$ such that $\psi_{a} \varphi_{a}=1$ for any $a=1, \ldots, n$.

- There exist nd algebraically independent integrals of motion $H_{k, r}, k=1, \ldots, n, r=1, \ldots, d$:

A. Silantyev

Gibbons-Hermsen system

- Hamiltonian of Gibbons-Hermsen system (spin A_{n-1} Calogero-Moser system):

$$
H=\sum_{a=1}^{n} p_{a}^{2}-2 \sum_{a<b} \frac{\left(\psi_{a} \varphi_{b}\right)\left(\psi_{b} \varphi_{a}\right)}{\left(x_{a}-x_{b}\right)^{2}}
$$

where $\varphi_{a} \in \mathbb{C}^{d}, \psi_{a} \in\left(\mathbb{C}^{d}\right)^{*}$ such that $\psi_{a} \varphi_{a}=1$ for any $a=1, \ldots, n$.

- There exist nd algebraically independent integrals of motion $H_{k, r}, k=1, \ldots, n, r=1, \ldots, d$:

$$
\begin{aligned}
& \left\{H_{k, r}, H_{\ell, s}\right\}=0, \\
& \sum_{r=1}^{d} H_{1, r}=\sum_{a=1}^{n} p_{a}, \quad \sum_{r=1}^{d} H_{2, r}=H
\end{aligned}
$$

CM correspondence for the matrix KP hierarchy

Solutions of the $(d \times d)$ matrix KP hierarchy

Gibbons-Hermsen systems
(spin $A_{n-1} \mathrm{CM}$ system)

Quiver varieties $M_{\lambda}(n, d)$

$$
(m=1)
$$

CM correspondence for general $m, d \in \mathbb{Z} \geqslant 1$

Solutions of the generalised matrix KP hierarchy
[Chalykh
A.S.]

General spin CM systems for $G=S_{n} \ltimes \mathbb{Z}_{m}^{n}$ if $\alpha=n \delta$
Quiver varieties $M_{\lambda}(\alpha, d \cdot \delta)$

Quivers and their representations

- Quiver is a directed graph $Q=(I, E)$, where I and E are (finite) sets of vertices and edges. Let notation $X: i \rightarrow j$ mean that the edge $X \in E$ goes from the vertex $i \in I$ to the vertex $j \in I$.
- Representation of the quiver Q is a family $V=\left(V_{i}, V_{X}\right)_{i \in I, X \in E}$, where V_{i} are vector spaces and $V_{X}: V_{i} \rightarrow V_{i}$ are linear operators $(X: i \rightarrow j)$.

representations $V=\left(V_{i}, V_{X}\right)$ form the vector space $\operatorname{Rep}(Q, \boldsymbol{\alpha})$
- The group $\mathrm{GL}(\boldsymbol{\alpha})=\prod \mathrm{GL}\left(\alpha_{i}, \mathbb{C}\right)$ acts on $\operatorname{Rep}(Q, \alpha)$
- Two representations $V, V^{\prime} \in \operatorname{Rep}(Q, \boldsymbol{\alpha})$ are isomorphic if and only if they present the same equivalency class of $\operatorname{Rep}(Q, \alpha) / G L(\alpha)$

Quivers and their representations

- Quiver is a directed graph $Q=(I, E)$, where I and E are (finite) sets of vertices and edges. Let notation $X: i \rightarrow j$ mean that the edge $X \in E$ goes from the vertex $i \in I$ to the vertex $j \in I$.
- Representation of the quiver Q is a family $V=\left(V_{i}, V_{X}\right)_{i \in I, X \in E}$, where V_{i} are vector spaces and $V_{X}: V_{i} \rightarrow V_{j}$ are linear operators $(X: i \rightarrow j)$.
representations $V=\left(V_{i}, V_{X}\right)$ form the vector space $\operatorname{Rep}(Q, \boldsymbol{\alpha})$
- The group $\mathrm{GL}(\alpha)=\prod \mathrm{GL}\left(\alpha_{i}, \mathbb{C}\right)$ acts on $\operatorname{Rep}(Q, \alpha)$
- Two representations $V, V^{\prime} \in \operatorname{Rep}(Q, \boldsymbol{\alpha})$ are isomorphic if and only if they present the same equivalency class of $\operatorname{Rep}(Q, \alpha) / G L(\alpha)$

Quivers and their representations

- Quiver is a directed graph $Q=(I, E)$, where I and E are (finite) sets of vertices and edges. Let notation $X: i \rightarrow j$ mean that the edge $X \in E$ goes from the vertex $i \in I$ to the vertex $j \in I$.
- Representation of the quiver Q is a family $V=\left(V_{i}, V_{X}\right)_{i \in I, X \in E}$, where V_{i} are vector spaces and $V_{X}: V_{i} \rightarrow V_{j}$ are linear operators $(X: i \rightarrow j)$.
- Let $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i \in I} \in \mathbb{Z}_{\geqslant 0}^{\prime}$ and $V_{i}=\mathbb{C}^{\alpha_{i}}$. Then the representations $V=\left(V_{i}, V_{X}\right)$ form the vector space $\operatorname{Rep}(Q, \boldsymbol{\alpha})$.
- The group $\mathrm{GL}(\alpha)=\Pi \mathrm{GL}\left(\alpha_{i}, \mathbb{C}\right)$ acts on $\operatorname{Rep}(Q, \alpha)$
- Two representations $V, V^{\prime} \in \operatorname{Rep}(Q, \boldsymbol{\alpha})$ are isomorphic if and only if they present the same equivalency class of $\operatorname{Rep}(Q, \alpha) / G L(\alpha)$

Quivers and their representations

- Quiver is a directed graph $Q=(I, E)$, where I and E are (finite) sets of vertices and edges. Let notation $X: i \rightarrow j$ mean that the edge $X \in E$ goes from the vertex $i \in I$ to the vertex $j \in I$.
- Representation of the quiver Q is a family $V=\left(V_{i}, V_{X}\right)_{i \in I, X \in E}$, where V_{i} are vector spaces and $V_{X}: V_{i} \rightarrow V_{j}$ are linear operators $(X: i \rightarrow j)$.
- Let $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i \in I} \in \mathbb{Z}_{\geqslant 0}^{\prime}$ and $V_{i}=\mathbb{C}^{\alpha_{i}}$. Then the representations $V=\left(V_{i}, V_{X}\right)$ form the vector space $\operatorname{Rep}(Q, \boldsymbol{\alpha})$.
- The group $\operatorname{GL}(\boldsymbol{\alpha})=\prod_{i \in I} \operatorname{GL}\left(\alpha_{i}, \mathbb{C}\right)$ acts on $\operatorname{Rep}(Q, \boldsymbol{\alpha})$.
- Two representations $V, V^{\prime} \in \operatorname{Rep}(Q, \boldsymbol{\alpha})$ are isomorphic if and only if they present the same equivalency class of $\operatorname{Rep}(Q, \boldsymbol{\alpha}) / G L(\boldsymbol{\alpha})$

Quivers and their representations

- Quiver is a directed graph $Q=(I, E)$, where I and E are (finite) sets of vertices and edges. Let notation $X: i \rightarrow j$ mean that the edge $X \in E$ goes from the vertex $i \in I$ to the vertex $j \in I$.
- Representation of the quiver Q is a family $V=\left(V_{i}, V_{X}\right)_{i \in I, X \in E}$, where V_{i} are vector spaces and $V_{X}: V_{i} \rightarrow V_{j}$ are linear operators $(X: i \rightarrow j)$.
- Let $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i \in I} \in \mathbb{Z}_{\geqslant 0}^{\prime}$ and $V_{i}=\mathbb{C}^{\alpha_{i}}$. Then the representations $V=\left(V_{i}, V_{X}\right)$ form the vector space $\operatorname{Rep}(Q, \boldsymbol{\alpha})$.
- The group $\operatorname{GL}(\boldsymbol{\alpha})=\prod_{i \in I} \operatorname{GL}\left(\alpha_{i}, \mathbb{C}\right)$ acts on $\operatorname{Rep}(Q, \boldsymbol{\alpha})$.
- Two representations $V, V^{\prime} \in \operatorname{Rep}(Q, \boldsymbol{\alpha})$ are isomorphic if and only if they present the same equivalency class of $\operatorname{Rep}(Q, \boldsymbol{\alpha}) / \operatorname{GL}(\boldsymbol{\alpha})$.

Doubled quiver

- The doubled quiver for $Q=(I, E)$ is the quiver $\bar{Q}=(I, \bar{E})$, where $\bar{E}=E \sqcup\left\{X^{*}: j \rightarrow i \mid X \in E, X: i \rightarrow j\right\}$.
- For a vector $\lambda=\left(\lambda_{i}\right)_{i \in I} \in \mathbb{C}^{\prime}$ denote by $\mu_{\alpha}^{-1}(\lambda)$ the set of representations $V \in \operatorname{Rep}(\bar{Q}, \boldsymbol{\alpha})$ satisfying $\mu_{\boldsymbol{\alpha}, i}(V)=\lambda_{i} \mathbf{1}_{\alpha_{i}}$, where $\mathbf{1}_{n}$ is the $n \times n$ matrix unit and

- If the orbit space $\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda}) / \mathrm{GL}(\boldsymbol{\alpha})$ has a structure of variety, it is called symplectic quotient. It has a canonical Poisson brackets inherited from $\operatorname{Rep}(\bar{Q}, \boldsymbol{\alpha})=T^{*} \operatorname{Rep}(Q, \alpha)$.

Doubled quiver

- The doubled quiver for $Q=(I, E)$ is the quiver $\bar{Q}=(I, \bar{E})$, where $\bar{E}=E \sqcup\left\{X^{*}: j \rightarrow i \mid X \in E, X: i \rightarrow j\right\}$.
- For a vector $\boldsymbol{\lambda}=\left(\lambda_{i}\right)_{i \in I} \in \mathbb{C}^{\prime}$ denote by $\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda})$ the set of representations $V \in \operatorname{Rep}(\bar{Q}, \boldsymbol{\alpha})$ satisfying $\mu_{\boldsymbol{\alpha}, i}(V)=\lambda_{i} \mathbf{1}_{\alpha_{i}}$, where $\mathbf{1}_{n}$ is the $n \times n$ matrix unit and

$$
\mu_{\boldsymbol{\alpha}, i}(V)=\sum_{\substack{X \in E, j \in I \\ X: j \rightarrow i}} V_{X} V_{X *}-\sum_{\substack{X \in E, j \in I \\ X: i \rightarrow j}} V_{X} V_{X}
$$

- If the orbit space $\mu_{\alpha}^{-1}(\lambda) / G L(\alpha)$ has a structure of variety, it is called symplectic quotient. It has a canonical Poisson brackets inherited from $\operatorname{Rep}(\bar{Q}, \boldsymbol{\alpha})=T^{*} \operatorname{Rep}(Q, \boldsymbol{\alpha})$.

Doubled quiver

- The doubled quiver for $Q=(I, E)$ is the quiver $\bar{Q}=(I, \bar{E})$, where $\bar{E}=E \sqcup\left\{X^{*}: j \rightarrow i \mid X \in E, X: i \rightarrow j\right\}$.
- For a vector $\boldsymbol{\lambda}=\left(\lambda_{i}\right)_{i \in I} \in \mathbb{C}^{\prime}$ denote by $\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda})$ the set of representations $V \in \operatorname{Rep}(\bar{Q}, \boldsymbol{\alpha})$ satisfying $\mu_{\boldsymbol{\alpha}, i}(V)=\lambda_{i} \mathbf{1}_{\alpha_{i}}$, where $\mathbf{1}_{n}$ is the $n \times n$ matrix unit and

$$
\mu_{\boldsymbol{\alpha}, i}(V)=\sum_{\substack{X \in E, j \in I \\ X: j \rightarrow i}} V_{X} V_{X^{*}}-\sum_{\substack{X \in E, j \in I \\ X: i \rightarrow j}} V_{X^{*}} V_{X}
$$

- If the orbit space $\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda}) / \mathrm{GL}(\boldsymbol{\alpha})$ has a structure of variety, it is called symplectic quotient. It has a canonical Poisson brackets inherited from $\operatorname{Rep}(\bar{Q}, \boldsymbol{\alpha})=T^{*} \operatorname{Rep}(Q, \boldsymbol{\alpha})$.

Calogero-Moser spaces as symplectic quotients

- Example: $I=\{\infty, 0\}, E=\{X, v\}, Y=X^{*}, w=v^{*}$:

If $\boldsymbol{\alpha}=(1, n), \boldsymbol{\lambda}=(-n, 1)$ then $\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda}) / \mathrm{GL}(\boldsymbol{\alpha})=\mathcal{C}_{n}$.

Framing of a quiver

- Let $\zeta \in \mathbb{Z}_{\geqslant 0}^{\prime}$. Framing of Q is the quiver $Q_{\zeta}=\left(I_{\infty}, E_{\zeta}\right)$ where

$$
I_{\infty}=\{\infty\} \sqcup I, \quad E_{\zeta}=E \sqcup\left\{v_{i, r}: \infty \rightarrow i \mid i \in I, r=1, \ldots, \zeta_{i}\right\}
$$

For $\alpha \in \mathbb{Z}_{\geqslant 0}^{\prime}$ and $\lambda \in \mathbb{C}^{\prime}$ we extend them to

$$
\boldsymbol{\alpha}=(1, \alpha), \quad \boldsymbol{\lambda}=(-\lambda \cdot \alpha, \lambda)
$$

Consider the symplectic quotient for the framed quiver Q_{ζ} :

$$
M_{\lambda}(\alpha, \zeta)=\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda}) / \mathrm{GL}(\boldsymbol{\alpha})
$$

- For generic λ the quotient $M_{\lambda}(\alpha, \zeta)$ is a connected smooth affine variety and it is called quiver variety.

Framing of a quiver

- Let $\zeta \in \mathbb{Z}_{\geqslant 0}^{\prime}$. Framing of Q is the quiver $Q_{\zeta}=\left(I_{\infty}, E_{\zeta}\right)$ where

$$
I_{\infty}=\{\infty\} \sqcup I, \quad E_{\zeta}=E \sqcup\left\{v_{i, r}: \infty \rightarrow i \mid i \in I, r=1, \ldots, \zeta_{i}\right\}
$$

For $\alpha \in \mathbb{Z}_{\geqslant 0}^{\prime}$ and $\lambda \in \mathbb{C}^{\prime}$ we extend them to

$$
\boldsymbol{\alpha}=(1, \alpha), \quad \boldsymbol{\lambda}=(-\lambda \cdot \alpha, \lambda)
$$

Consider the symplectic quotient for the framed quiver Q_{ζ} :

$$
M_{\lambda}(\alpha, \zeta)=\mu_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{\lambda}) / \mathrm{GL}(\boldsymbol{\alpha})
$$

- For generic λ the quotient $M_{\lambda}(\alpha, \zeta)$ is a connected smooth affine variety and it is called quiver variety.

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Cyclic quiver

- Quiver Q :

Calogero-Moser systems
Quiver varieties
Quiver varieties for cyclic quivers

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Framing by $\zeta=\varepsilon_{0}=(1,0, \ldots, 0)$

- Quiver $Q_{\varepsilon_{0}}$, where $\varepsilon_{0}=(1,0, \ldots, 0)$:

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

Quiver $\bar{Q}_{\varepsilon_{0}}$

- Quiver $\bar{Q}_{\varepsilon_{0}}$, where $Y_{i}=X_{i}^{*}, w_{0}=v_{0}^{*}$:

Representations of the quiver $\bar{Q}_{8_{0}}$

- $V \in \operatorname{Rep}\left(\bar{Q}_{\varepsilon_{0}}, \boldsymbol{\alpha}\right), \boldsymbol{\alpha}=\left(1, \alpha_{0}, \ldots, \alpha_{m-1}\right), V_{i}=\mathbb{C}^{\alpha_{i}}$, $V_{\infty}=\mathbb{C}^{1}:$

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Quiver varieties $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)$

- Let $\lambda=\left(\lambda_{0}, \ldots, \lambda_{m-1}\right) \in \mathbb{C}^{m}$ such that $\sum_{i=0}^{m-1} \lambda_{i}=1$.
- Then $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)=\left\{\left(X_{i}, Y_{i}, v_{0}, w_{0}\right)\right\} / G L(\alpha)$, where matrices X_{i}, Y_{i}, vector v_{0} and covector w_{0} satisfy

- The hamiltonians $H_{k} \in \mathcal{O}\left(M_{\lambda}\left(\alpha, \varepsilon_{0}\right)\right)$

- The flow $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$ defined by the Hamiltonian H_{k} can be written explicitly:

$$
X_{i}\left(t_{k}\right)=X_{i}+k t_{k} Y_{i+1} Y_{i+2} \cdots Y_{i+m k-1}, \quad Y_{i}, v_{0}, w_{0}=\mathrm{const}
$$

Quiver varieties $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)$

- Let $\lambda=\left(\lambda_{0}, \ldots, \lambda_{m-1}\right) \in \mathbb{C}^{m}$ such that $\sum_{i=0}^{m-1} \lambda_{i}=1$.
- Then $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)=\left\{\left(X_{i}, Y_{i}, v_{0}, w_{0}\right)\right\} / \mathrm{GL}(\alpha)$, where matrices X_{i}, Y_{i}, vector v_{0} and covector w_{0} satisfy

$$
\begin{aligned}
X_{m-1} Y_{m-1}-Y_{0} X_{0}+v_{0} w_{0} & =\lambda_{0} \mathbf{1}_{\alpha_{0}}, \\
X_{i-1} Y_{i-1}-Y_{i} X_{i} & =\lambda_{i} \mathbf{1}_{\alpha_{i}}, \quad i=1, \ldots, m-1
\end{aligned}
$$

- The hamiltonians $H_{k} \in \mathcal{O}\left(M_{\lambda}\left(\alpha, \varepsilon_{0}\right)\right)$

- The flow $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$ defined by the Hamiltonian H_{k} can be written explicitly:
$X_{i}\left(t_{k}\right)=X_{i}+k t_{k} Y_{i+1} Y_{i+2} \cdots Y_{i+m k-1}, \quad Y_{i}, v_{0}, w_{0}=$ const

Quiver varieties $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)$

- Let $\lambda=\left(\lambda_{0}, \ldots, \lambda_{m-1}\right) \in \mathbb{C}^{m}$ such that $\sum_{i=0}^{m-1} \lambda_{i}=1$.
- Then $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)=\left\{\left(X_{i}, Y_{i}, v_{0}, w_{0}\right)\right\} / \operatorname{GL}(\alpha)$, where matrices X_{i}, Y_{i}, vector v_{0} and covector w_{0} satisfy

$$
\begin{aligned}
X_{m-1} Y_{m-1}-Y_{0} X_{0}+v_{0} w_{0} & =\lambda_{0} \mathbf{1}_{\alpha_{0}}, \\
X_{i-1} Y_{i-1}-Y_{i} X_{i} & =\lambda_{i} \mathbf{1}_{\alpha_{i}}, \quad i=1, \ldots, m-1
\end{aligned}
$$

- The hamiltonians $H_{k} \in \mathcal{O}\left(M_{\lambda}\left(\alpha, \varepsilon_{0}\right)\right)$:

$$
H_{k}=w_{0}\left(Y_{0} Y_{1} \cdots Y_{m-1}\right)^{k} v_{0}, \quad\left\{H_{k}, H_{\ell}\right\}=0
$$

- The flow $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$ defined by the Hamiltonian H_{k} can be written explicitly:

$$
Y_{i}\left(t_{k}\right)=Y_{i}+k t_{k} Y_{i+1} Y_{i+2} \cdots Y_{i+m k-1}, \quad Y_{i}, v_{0}, w_{0}=\mathrm{const}
$$

Quiver varieties $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)$

- Let $\lambda=\left(\lambda_{0}, \ldots, \lambda_{m-1}\right) \in \mathbb{C}^{m}$ such that $\sum_{i=0}^{m-1} \lambda_{i}=1$.
- Then $M_{\lambda}\left(\alpha, \varepsilon_{0}\right)=\left\{\left(X_{i}, Y_{i}, v_{0}, w_{0}\right)\right\} / \operatorname{GL}(\alpha)$, where matrices X_{i}, Y_{i}, vector v_{0} and covector w_{0} satisfy

$$
\begin{aligned}
X_{m-1} Y_{m-1}-Y_{0} X_{0}+v_{0} w_{0} & =\lambda_{0} \mathbf{1}_{\alpha_{0}}, \\
X_{i-1} Y_{i-1}-Y_{i} X_{i} & =\lambda_{i} \mathbf{1}_{\alpha_{i}}, \quad i=1, \ldots, m-1
\end{aligned}
$$

- The hamiltonians $H_{k} \in \mathcal{O}\left(M_{\lambda}\left(\alpha, \varepsilon_{0}\right)\right)$:

$$
H_{k}=w_{0}\left(Y_{0} Y_{1} \cdots Y_{m-1}\right)^{k} v_{0}, \quad\left\{H_{k}, H_{\ell}\right\}=0
$$

- The flow $\partial_{t_{k}} f=\left\{H_{k}, f\right\}$ defined by the Hamiltonian H_{k} can be written explicitly:

$$
X_{i}\left(t_{k}\right)=X_{i}+k t_{k} Y_{i+1} Y_{i+2} \cdots Y_{i+m k-1}, \quad Y_{i}, v_{0}, w_{0}=\mathrm{const}
$$

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Darboux coordinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$

- Let $\alpha_{1}=\ldots=\alpha_{m-1}=n$, i.e. $\alpha=n \delta$, where $\delta=(1, \ldots, 1)$. Then $X_{i}, Y_{i} \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v_{0} \in \mathbb{C}^{n}, w_{0} \in\left(\mathbb{C}^{n}\right)^{*}$.
- $\operatorname{dim} M_{\lambda}\left(n \delta, \varepsilon_{0}\right)=2 n$
- Generic point:

where $i=0, \ldots, m-1, \kappa(\lambda)=\sum_{j=0}^{m-1} \frac{j-m}{m} \lambda_{j}$
- The variables $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ are local Darboux coorclinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Darboux coordinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$

- Let $\alpha_{1}=\ldots=\alpha_{m-1}=n$, i.e. $\alpha=n \delta$, where $\delta=(1, \ldots, 1)$. Then $X_{i}, Y_{i} \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v_{0} \in \mathbb{C}^{n}, w_{0} \in\left(\mathbb{C}^{n}\right)^{*}$.
- $\operatorname{dim} M_{\lambda}\left(n \delta, \varepsilon_{0}\right)=2 n$.
- Generic point:

where $i=0, \ldots, m-1, \kappa(\lambda)=\sum_{j=0}^{m-1} \frac{j-m}{m} \lambda_{j}$
- The variables $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ are local Darboux coorclinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$

A. Silantyev

Darboux coordinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$

- Let $\alpha_{1}=\ldots=\alpha_{m-1}=n$, i.e. $\alpha=n \delta$, where $\delta=(1, \ldots, 1)$. Then $X_{i}, Y_{i} \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v_{0} \in \mathbb{C}^{n}, w_{0} \in\left(\mathbb{C}^{n}\right)^{*}$.
- $\operatorname{dim} M_{\lambda}\left(n \delta, \varepsilon_{0}\right)=2 n$.
- Generic point:

$$
\begin{aligned}
& \left(X_{i}\right)_{a b}=x_{a} \delta_{a b}, \quad\left(v_{0}\right)_{a}=1, \quad\left(w_{0}\right)_{a}=1, \\
& \left(Y_{i}\right)_{a a}=\frac{1}{m} p_{a}-\frac{1}{x_{a}}\left(\sum_{j=0}^{i} \lambda_{j}+\kappa(\lambda)\right), \quad\left(Y_{i}\right)_{a b}=-\frac{x_{a}^{m-1-i} x_{b}^{i}}{x_{a}^{m}-x_{b}^{m}},
\end{aligned}
$$

where $i=0, \ldots, m-1, \kappa(\lambda)=\sum_{j=0}^{m-1} \frac{j-m}{m} \lambda_{j}$.

- The variables $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ are local Darboux coordinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$.

Darboux coordinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$

- Let $\alpha_{1}=\ldots=\alpha_{m-1}=n$, i.e. $\alpha=n \delta$, where $\delta=(1, \ldots, 1)$. Then $X_{i}, Y_{i} \in \operatorname{Mat}_{n \times n}(\mathbb{C}), v_{0} \in \mathbb{C}^{n}, w_{0} \in\left(\mathbb{C}^{n}\right)^{*}$.
- $\operatorname{dim} M_{\lambda}\left(n \delta, \varepsilon_{0}\right)=2 n$.
- Generic point:

$$
\begin{aligned}
& \left(X_{i}\right)_{a b}=x_{a} \delta_{a b}, \quad\left(v_{0}\right)_{a}=1, \quad\left(w_{0}\right)_{a}=1, \\
& \left(Y_{i}\right)_{a a}=\frac{1}{m} p_{a}-\frac{1}{x_{a}}\left(\sum_{j=0}^{i} \lambda_{j}+\kappa(\lambda)\right), \quad\left(Y_{i}\right)_{a b}=-\frac{x_{a}^{m-1-i} x_{b}^{i}}{x_{a}^{m}-x_{b}^{m}},
\end{aligned}
$$

where $i=0, \ldots, m-1, \kappa(\lambda)=\sum_{j=0}^{m-1} \frac{j-m}{m} \lambda_{j}$.

- The variables $\left(p_{a}, x_{a}\right)_{a=1}^{n}$ are local Darboux coordinates on $M_{\lambda}\left(n \delta, \varepsilon_{0}\right)$.

Calogero-Moser systems for B_{n} and $S_{n} \ltimes \mathbb{Z}_{m}^{n}$

- For $m=2$ the quivers are

$Q: 0 \underset{X_{1}}{\stackrel{X_{0}}{\sim}} 1$

- The Hamiltonian is
- This is Calogero-Moser system of type B_{n}
- For general m : Calogero-Moser system for $S_{n} \times \mathbb{Z}_{m}^{n}$.

Calogero-Moser systems for B_{n} and $S_{n} \ltimes \mathbb{Z}_{m}^{n}$

- For $m=2$ the quivers are

$$
\begin{aligned}
& Q: 0 \underset{X_{1}}{\stackrel{x_{0}}{\sim}} 1 \\
& Q_{\varepsilon_{0}}: \infty \xrightarrow{v_{0}} 0 \underset{X_{1}}{\stackrel{x_{0}}{\sim}} 1
\end{aligned}
$$

- The Hamiltonian is

$$
H_{1}=w_{0} Y_{0} Y_{1} v_{0}=\frac{1}{4} \sum_{a=1}^{n}\left(p_{a}^{2}-\frac{\lambda_{1}^{2}}{x_{a}^{2}}\right)-\sum_{a<b} \frac{x_{a}^{2}+x_{b}^{2}}{\left(x_{a}^{2}-x_{b}^{2}\right)^{2}}
$$

- This is Calogero-Moser system of type B_{n}.
- For general m : Calogero-Moser system for $S_{n} \ltimes \mathbb{Z}_{m}^{n}$.

Calogero-Moser systems for B_{n} and $S_{n} \ltimes \mathbb{Z}_{m}^{n}$

- For $m=2$ the quivers are

$$
\begin{aligned}
& Q: 0 \underset{x_{1}}{\frac{x_{0}}{\sim}} 1 \\
& Q_{\varepsilon_{0}}: \infty \xrightarrow{v_{0}} 0 \underset{X_{1}}{\frac{X_{0}}{\sim}} 1
\end{aligned}
$$

- The Hamiltonian is

$$
H_{1}=w_{0} Y_{0} Y_{1} v_{0}=\frac{1}{4} \sum_{a=1}^{n}\left(p_{a}^{2}-\frac{\lambda_{1}^{2}}{x_{a}^{2}}\right)-\sum_{a<b} \frac{x_{a}^{2}+x_{b}^{2}}{\left(x_{a}^{2}-x_{b}^{2}\right)^{2}}
$$

- This is Calogero-Moser system of type B_{n}.
- For general m: Calogero-Moser system for $S_{n} \ltimes \mathbb{Z}_{m}^{n}$.

Calogero-Moser systems for B_{n} and $S_{n} \ltimes \mathbb{Z}_{m}^{n}$

- For $m=2$ the quivers are

$$
\begin{aligned}
& Q: 0 \underset{x_{1}}{\frac{x_{0}}{\sim}} 1 \\
& Q_{\varepsilon_{0}}: \infty \xrightarrow{v_{0}} 0 \underset{X_{1}}{\stackrel{x_{0}}{\sim}} 1
\end{aligned}
$$

- The Hamiltonian is

$$
H_{1}=w_{0} Y_{0} Y_{1} v_{0}=\frac{1}{4} \sum_{a=1}^{n}\left(p_{a}^{2}-\frac{\lambda_{1}^{2}}{x_{a}^{2}}\right)-\sum_{a<b} \frac{x_{a}^{2}+x_{b}^{2}}{\left(x_{a}^{2}-x_{b}^{2}\right)^{2}}
$$

- This is Calogero-Moser system of type B_{n}.
- For general m : Calogero-Moser system for $S_{n} \ltimes \mathbb{Z}_{m}^{n}$.

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Framing by $\zeta=d \varepsilon_{0}=(d, 0, \ldots, 0)$

- Quiver $Q_{d \varepsilon_{0}}$, where $d \varepsilon_{0}=(d, 0, \ldots, 0), d \in \mathbb{Z}_{\geqslant 1}$:

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

Quiver $\bar{Q}_{d \varepsilon_{0}}$

- Quiver $\bar{Q}_{d \varepsilon_{0}}$, where $Y_{i}=X_{i}^{*}, w_{0, r}=v_{0, r}^{*}$:

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Representations of the quiver $\bar{Q}_{d \varepsilon_{0}}$

- $V \in \operatorname{Rep}\left(\bar{Q}_{d \varepsilon_{0}}, \boldsymbol{\alpha}\right), \boldsymbol{\alpha}=(1, n, \ldots, n)$, i.e. $\alpha=n \delta$

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$

Quiver variety $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)$

- $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)=\left\{\left(X_{i}, Y_{i}, v_{0, r}, w_{0, r}\right)\right\} / \mathrm{GL}(n \delta)$, where

$$
\begin{aligned}
X_{m-1} Y_{m-1}-Y_{0} X_{0}+\sum_{r=1}^{d} v_{0, r} w_{0, r} & =\lambda_{0} \mathbf{1}_{n} \\
X_{i-1} Y_{i-1}-Y_{i} X_{i} & =\lambda_{i} \mathbf{1}_{n}, \quad i=1, \ldots, m-1
\end{aligned}
$$

- The hamiltonians $H_{k, r} \in \mathcal{O}\left(M_{\lambda}\left(\alpha, \varepsilon_{0}\right)\right)$

$$
H_{k, r}=w_{0, r}\left(Y_{0} Y_{1} \cdots Y_{m-1}\right)^{k} v_{0, r}, \quad\left\{H_{k, r}, H_{\ell, s}\right\}=0
$$

Quiver variety $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)$

- $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)=\left\{\left(X_{i}, Y_{i}, v_{0, r}, w_{0, r}\right)\right\} / \mathrm{GL}(n \delta)$, where

$$
\begin{aligned}
X_{m-1} Y_{m-1}-Y_{0} X_{0}+\sum_{r=1}^{d} v_{0, r} w_{0, r} & =\lambda_{0} \mathbf{1}_{n} \\
X_{i-1} Y_{i-1}-Y_{i} X_{i} & =\lambda_{i} \mathbf{1}_{n}, \quad i=1, \ldots, m-1
\end{aligned}
$$

- The hamiltonians $H_{k, r} \in \mathcal{O}\left(M_{\lambda}\left(\alpha, \varepsilon_{0}\right)\right)$:

$$
H_{k, r}=w_{0, r}\left(Y_{0} Y_{1} \cdots Y_{m-1}\right)^{k} v_{0, r}, \quad\left\{H_{k, r}, H_{\ell, s}\right\}=0
$$

Calogero-Moser systems
Quiver varieties
Quiver varieties for cyclic quivers

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

Darboux coordinates on $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)$

- $\operatorname{dim} M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)=2 n d$.
- Generic point:
 $\left(w_{0, r}\right)_{a}=\left(\psi_{a}\right)_{r}$

where $0 \leqslant i \leqslant m-1,1 \leqslant r \leqslant d, 1 \leqslant a, b \leqslant n$ and $\varphi_{a} \in \mathbb{C}^{d}$ $\psi_{a} \in\left(\mathbb{C}^{d}\right)^{*}$ are such that $\psi_{\mathrm{a}} \varphi_{\mathrm{a}}=1$ for any $a=1, \ldots, n$.
- One can choose $\left(\varphi_{a}\right)_{1}=1$ and $\left(\psi_{a}\right)_{1}=1-\sum_{r=2}^{d}\left(\varphi_{a}\right)_{r}\left(\psi_{a}\right)_{r}$ Then the variables

Darboux coordinates on $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)$

- $\operatorname{dim} M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)=2 n d$.
- Generic point:

$$
\begin{array}{ll}
\left(X_{i}\right)_{a b}=x_{a} \delta_{a b}, & \left(v_{0, r}\right)_{a}=\left(\varphi_{a}\right)_{r},
\end{array} \quad\left(w_{0, r}\right)_{a}=\left(\psi_{a}\right)_{r},
$$

where $0 \leqslant i \leqslant m-1,1 \leqslant r \leqslant d, 1 \leqslant a, b \leqslant n$ and $\varphi_{a} \in \mathbb{C}^{d}$, $\psi_{a} \in\left(\mathbb{C}^{d}\right)^{*}$ are such that $\psi_{a} \varphi_{a}=1$ for any $a=1, \ldots, n$.

Then the variables
$\left(p_{a},\left(\psi_{a}\right)_{2}, \ldots,\left(\psi_{a}\right)_{d} ; x_{a},\left(\varphi_{a}\right)_{2}, \ldots,\left(\varphi_{a}\right)_{d}\right)_{a=1}^{n}$ are local

Darboux coordinates on $M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)$

- $\operatorname{dim} M_{\lambda}\left(n \delta, d \varepsilon_{0}\right)=2 n d$.
- Generic point:

$$
\begin{array}{lll}
\left(X_{i}\right)_{a b}=x_{a} \delta_{a b}, & \left(v_{0, r}\right)_{a}=\left(\varphi_{a}\right)_{r}, & \left(w_{0, r}\right)_{a}=\left(\psi_{a}\right)_{r}, \\
\left(Y_{i}\right)_{a a}=\frac{1}{m} p_{a}-\frac{1}{x_{a}}\left(\sum_{j=0}^{i} \lambda_{j}+\kappa(\lambda)\right), & \left(Y_{i}\right)_{a b}=-\frac{x_{a}^{m-1-i} x_{b}^{i}}{x_{a}^{m}-x_{b}^{m}} \psi_{b} \varphi_{a},
\end{array}
$$

where $0 \leqslant i \leqslant m-1,1 \leqslant r \leqslant d, 1 \leqslant a, b \leqslant n$ and $\varphi_{a} \in \mathbb{C}^{d}$, $\psi_{a} \in\left(\mathbb{C}^{d}\right)^{*}$ are such that $\psi_{a} \varphi_{a}=1$ for any $a=1, \ldots, n$.

- One can choose $\left(\varphi_{a}\right)_{1}=1$ and $\left(\psi_{a}\right)_{1}=1-\sum_{r=2}^{d}\left(\varphi_{a}\right)_{r}\left(\psi_{a}\right)_{r}$. Then the variables
$\left(p_{a},\left(\psi_{a}\right)_{2}, \ldots,\left(\psi_{a}\right)_{d} ; x_{a},\left(\varphi_{a}\right)_{2}, \ldots,\left(\varphi_{a}\right)_{d}\right)_{a=1}^{n}$ are local
Darboux coordinates.

A_{n-1} case

- Let $m=1$:

- Then $H_{k, r}$ are integrals of motion for the Gibbons-Hermsen system:

A_{n-1} case

- Let $m=1$:

- Then $H_{k, r}$ are integrals of motion for the Gibbons-Hermsen system:

$$
\sum_{r=1}^{d} H_{2, r}=\sum_{a=1}^{n} p_{a}^{2}-2 \sum_{a<b} \frac{1}{\left(x_{a}-x_{b}\right)^{2}}\left(\psi_{a} \varphi_{b}\right)\left(\psi_{b} \varphi_{a}\right)
$$

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

B_{n} case

- Let $m=2$:

- Then the Poisson-commuting functions $H_{k, r}$ define the B_{n} analogue of the Gibbons-Hermsen system with the Hamiltonian

B_{n} case

- Let $m=2$:

- Then the Poisson-commuting functions $H_{k, r}$ define the B_{n} analogue of the Gibbons-Hermsen system with the Hamiltonian

$$
\sum_{r=1}^{d} H_{2, r}=\frac{1}{4} \sum_{a=1}^{n}\left(p_{a}^{2}-\frac{\lambda_{1}^{2}}{x_{a}^{2}}\right)-\sum_{a<b} \frac{x_{a}^{2}+x_{b}^{2}}{\left(x_{a}^{2}-x_{b}^{2}\right)^{2}}\left(\psi_{a} \varphi_{b}\right)\left(\psi_{b} \varphi_{a}\right)
$$

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

Framing by $\zeta=\delta=(1,1, \ldots, 1)$

- Quiver Q_{δ}, where $\delta=(1,1, \ldots, 1)$:

Calogero-Moser systems
Quiver varieties
Quiver varieties for cyclic quivers

The case $\zeta=\varepsilon_{0}$ The case $\zeta=d \cdot \varepsilon_{0}$

Framing by $\zeta=d \cdot \delta=(d, d, \ldots, d)$

- Quiver $Q_{d \delta}$, where $d \delta=(d, d, \ldots, d)$:

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

Representations of the quiver $\bar{Q}_{d \delta}$

- $V \in \operatorname{Rep}\left(\bar{Q}_{d \delta}, \boldsymbol{\alpha}\right), \boldsymbol{\alpha}=(1, n, \ldots, n)$:

The case $\zeta=\varepsilon_{0}$
The case $\zeta=d \cdot \varepsilon_{0}$
The case $\zeta=d \cdot \delta$

Integrable system on $M_{\lambda}(n \delta, d \delta)$

- $M_{\lambda}(n \delta, d \delta)=\left\{\left(X_{i}, Y_{i}, v_{i, r}, w_{i, r}\right)\right\} / \mathrm{GL}(n \delta)$, where

$$
X_{i-1} Y_{i-1}-Y_{i} X_{i}+\sum_{r=1}^{d} v_{i, r} w_{i, r}=\lambda_{i} \mathbf{1}_{n}, \quad i=0, \ldots, m-1
$$

- The integrals $H_{k, r} \in \mathcal{O}\left(M_{\lambda}(n \delta, d \delta)\right)$

- $\operatorname{dim} M_{\lambda}(n \delta, d \delta)=2 n m d$
- The functions $H_{k, r}, k=1, \ldots, n m, r=1, \ldots, d$, are algebraically independent. They define complete flows $\partial_{t_{k, r}} f=\left\{H_{k, r}, f\right\}$ on the variety $M_{\lambda}(n \delta, d \delta)$.

Integrable system on $M_{\lambda}(n \delta, d \delta)$

- $M_{\lambda}(n \delta, d \delta)=\left\{\left(X_{i}, Y_{i}, v_{i, r}, w_{i, r}\right)\right\} / \mathrm{GL}(n \delta)$, where

$$
X_{i-1} Y_{i-1}-Y_{i} X_{i}+\sum_{r=1}^{d} v_{i, r} w_{i, r}=\lambda_{i} \mathbf{1}_{n}, \quad i=0, \ldots, m-1
$$

- The integrals $H_{k, r} \in \mathcal{O}\left(M_{\lambda}(n \delta, d \delta)\right)$:

$$
H_{k, r}=\sum_{i=0}^{m-1} w_{i, r} Y_{i} Y_{i+1} \cdots Y_{i+k} v_{i+k, r}, \quad\left\{H_{k, r}, H_{\ell, r}\right\}=0
$$

- $\operatorname{dim} M_{\lambda}(n \delta, d \delta)=2 n m d$
- The functions $H_{k, r}, k=1, \ldots, n m, r=1, \ldots, d$, are algebraically independent. They define complete flows $\partial_{t_{k, r}} f=\left\{H_{k, r}, f\right\}$ on the variety $M_{\lambda}(n \delta, d \delta)$

Integrable system on $M_{\lambda}(n \delta, d \delta)$

- $M_{\lambda}(n \delta, d \delta)=\left\{\left(X_{i}, Y_{i}, v_{i, r}, w_{i, r}\right)\right\} / \mathrm{GL}(n \delta)$, where

$$
X_{i-1} Y_{i-1}-Y_{i} X_{i}+\sum_{r=1}^{d} v_{i, r} w_{i, r}=\lambda_{i} \mathbf{1}_{n}, \quad i=0, \ldots, m-1
$$

- The integrals $H_{k, r} \in \mathcal{O}\left(M_{\lambda}(n \delta, d \delta)\right)$:

$$
H_{k, r}=\sum_{i=0}^{m-1} w_{i, r} Y_{i} Y_{i+1} \cdots Y_{i+k} v_{i+k, r}, \quad\left\{H_{k, r}, H_{\ell, r}\right\}=0
$$

- $\operatorname{dim} M_{\lambda}(n \delta, d \delta)=2 n m d$.

The functions $H_{k, r}, k=1, \ldots, n m, r=1, \ldots, d$, are algebraically independent. They define complete flows $\partial_{t_{k, r}} f=\left\{H_{k, r}, f\right\}$ on the variety $M_{\lambda}(n \delta, d \delta)$.

Integrable system on $M_{\lambda}(n \delta, d \delta)$

- $M_{\lambda}(n \delta, d \delta)=\left\{\left(X_{i}, Y_{i}, v_{i, r}, w_{i, r}\right)\right\} / \mathrm{GL}(n \delta)$, where

$$
X_{i-1} Y_{i-1}-Y_{i} X_{i}+\sum_{r=1}^{d} v_{i, r} w_{i, r}=\lambda_{i} \mathbf{1}_{n}, \quad i=0, \ldots, m-1
$$

- The integrals $H_{k, r} \in \mathcal{O}\left(M_{\lambda}(n \delta, d \delta)\right)$:

$$
H_{k, r}=\sum_{i=0}^{m-1} w_{i, r} Y_{i} Y_{i+1} \cdots Y_{i+k} v_{i+k, r}, \quad\left\{H_{k, r}, H_{\ell, r}\right\}=0
$$

- $\operatorname{dim} M_{\lambda}(n \delta, d \delta)=2 n m d$.
- The functions $H_{k, r}, k=1, \ldots, n m, r=1, \ldots, d$, are algebraically independent. They define complete flows $\partial_{t_{k, r}} f=\left\{H_{k, r}, f\right\}$ on the variety $M_{\lambda}(n \delta, d \delta)$.

Thank you for your attention

