$\mathrm{SU}(4 \mid 1)$ supersymmetric mechanics

Stepan Sidorov

Bogoliubov Laboratory of Theoretical Physics (BLTP) JINR, Dubna, Russia

Supersymmetry in Integrable Systems - SIS'18
13-16 August, 2018
BLTP JINR, Dubna, Russia

The talk is based on:
Evgeny Ivanov, Olaf Lechtenfeld, Stepan Sidorov, arXiv:1609.00490 [hep-th], arXiv:1807.11804 [hep-th].

Outline

(1) Introduction

- $\mathrm{SU}(2 \mid 1)$ supersymmetric mechanics
- $\mathrm{SU}(2 \mid 2)$ supersymmetric mechanics
- Deformed $\mathcal{N}=8$ supermultiplets
(2) $\mathrm{SU}(4 \mid 1)$ supersymmetric mechanics
- Relation to matrix models
(3) The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$
- Chiral superspace description
- Harmonic superspace description
- $\mathrm{SU}(2 \mid 1)$ superfield approach
- Superconformal Lagrangian
(4) The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$: "mirror" counterpart
- Harmonic superspace description
- $\mathrm{SU}(2 \mid 1)$ superfield approach
- Superconformal symmetry
(5) Summary

Introduction

- In the last decade, interest has grown in rigid supersymmetric theories invariant under some "curved" analogs of Poincaré supersymmetry in diverse dimensions (e.g., G. Festuccia, N. Seiberg, arXiv:1105.0689 [hep-th]), since the localization method V. Pestun, arXiv:0712.2824 [hep-th] for rigid supersymmetric theories is a powerful tool allowing to compute non-perturbatively quantum objects, such as partition function, etc.

Introduction

- In the last decade, interest has grown in rigid supersymmetric theories invariant under some "curved" analogs of Poincaré supersymmetry in diverse dimensions (e.g., G. Festuccia, N. Seiberg, arXiv:1105.0689 [hep-th]), since the localization method V. Pestun, arXiv:0712.2824 [hep-th] for rigid supersymmetric theories is a powerful tool allowing to compute non-perturbatively quantum objects, such as partition function, etc.
- Motivated by this interest, we proposed a new type of Supersymmeric Quantum Mechanics (SQM) based on the worldline realization of the supergroup $\mathrm{SU}(2 \mid 1)$ in the appropriate $\mathcal{N}=4, d=1$ superspace E. Ivanov, S. Sidorov, arXiv:1307.7690 [hep-th], 1312.6821 [hep-th].
- In the frame of $\mathrm{SU}(2 \mid 1)$ superfield approach, we reproduced "Weak Supersymmetry" models A. Smilga, arXiv:hep-th/0311023 based on the multiplet (1, 4, 3) and models based on two types of the chiral multiplet (2,4,2) (S. Bellucci, A. Nersessian, arXiv:hep-th/0211070, hep-th/0401232 and C. Römelsberger, arXiv:hep-th/0510060, 0707.3702 [hep-th]).
- The $\mathrm{SU}(2 \mid 1)$ superfield techniques not only reproduced these known models, but also revealed new models studied in the series of papers:
* E. Ivanov, S. Sidorov, F. Toppan, arXiv:1501.05622 [hep-th],
* E. Ivanov, S. Sidorov, arXiv:1507.00987 [hep-th],
* E. Ivanov, S. Sidorov, arXiv:1509.05561 [hep-th],
* S. Fedoruk, E. Ivanov, arXiv:1610.04202 [hep-th],
* S. Fedoruk, E. Ivanov, S. Sidorov, arXiv:1710.02130 [hep-th],
* S. Fedoruk, E. Ivanov, O. Lechtenfeld, S. Sidorov, arXiv:1801.00206 [hep-th].
- Some further studies of $\operatorname{SU}(2 \mid 1)$ mechanics were given in the component level:
* B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen, D. Martelli, arXiv:1503.05537 [hep-th],
* C.T. Asplund, F. Denef, E. Dzienkowski, arXiv:1510.04398 [hep-th],
* N. Kozyrev, S. Krivonos, O. Lechtenfeld, A. Sutulin, arXiv:1712.09898 [hep-th].

The superalgebra $s u(2 \mid 1)$

Our studies of $\mathrm{SU}(2 \mid 1)$ supersymmetric mechanics were based on a deformation

$$
\mathcal{N}=4, d=1 \text { Poincaré } \quad \Rightarrow \quad s u(2 \mid 1),
$$

where the superalgebra $s u(2 \mid 1)$ is given by

$$
\begin{aligned}
& \left\{Q^{i}, \bar{Q}_{j}\right\}=2 m I_{j}^{i}+2 \delta_{j}^{i} \tilde{H}, \quad\left[I_{j}^{i}, I_{l}^{k}\right]=\delta_{j}^{k} I_{l}^{i}-\delta_{l}^{i} I_{j}^{k} \\
& {\left[I_{j}^{i}, \bar{Q}_{l}\right]=\frac{1}{2} \delta_{j}^{i} \bar{Q}_{l}-\delta_{l}^{i} \bar{Q}_{j}, \quad\left[I_{j}^{i}, Q^{k}\right]=\delta_{j}^{k} Q^{i}-\frac{1}{2} \delta_{j}^{i} Q^{k},} \\
& {\left[\tilde{H}, \bar{Q}_{l}\right]=\frac{m}{2} \bar{Q}_{l}, \quad\left[\tilde{H}, Q^{k}\right]=-\frac{m}{2} Q^{k}}
\end{aligned}
$$

The generators I_{j}^{i} form $\mathrm{SU}(2)$ symmetry, while the mass-dimensional generator \tilde{H} is $\mathrm{U}(1)$ symmetry generator. In the limit $m=0$, the generators I_{j}^{i} become the $\mathrm{SU}(2)$ automorphism generators of the standard $\mathcal{N}=4, d=1$ superalgebra with Hamiltonian \tilde{H} becoming a central charge generator.

Deformations of $\mathcal{N}=8, d=1$ superalgebra

In case of $\mathcal{N}=8, d=1$ supersymmetry, we considered 2 possible deformations:

Deformations of $\mathcal{N}=8, d=1$ superalgebra

In case of $\mathcal{N}=8, d=1$ supersymmetry, we considered 2 possible deformations:
A. The first option is

$$
\mathcal{N}=8, d=1 \text { Poincaré } \Rightarrow s u(2 \mid 2) .
$$

Evgeny Ivanov, Olaf Lechtenfeld, Stepan Sidorov, arXiv:1609.00490 [hep-th].

Deformations of $\mathcal{N}=8, d=1$ superalgebra

In case of $\mathcal{N}=8, d=1$ supersymmetry, we considered 2 possible deformations:
A. The first option is

$$
\mathcal{N}=8, d=1 \text { Poincaré } \quad \Rightarrow \quad s u(2 \mid 2) .
$$

Evgeny Ivanov, Olaf Lechtenfeld, Stepan Sidorov, arXiv:1609.00490 [hep-th].
B. The second deformation is

$$
\mathcal{N}=8, d=1 \text { Poincaré } \Rightarrow s u(4 \mid 1) .
$$

Evgeny Ivanov, Olaf Lechtenfeld, Stepan Sidorov, arXiv:1807.11804 [hep-th].
$S U(2 \mid 2)$ supersymmetric mechanics

- The superalgebra $s u(2 \mid 2)$ in the complex basis is written as

$$
\begin{aligned}
& \left\{Q^{i a}, \bar{Q}^{j b}\right\}=-2 m\left(\varepsilon^{a b} L^{i j}-\varepsilon^{i j} R^{a b}\right)+2 \varepsilon^{a b} \varepsilon^{i j} H, \\
& {\left[L^{i j}, L^{k l}\right]=\varepsilon^{i l} L^{k j}+\varepsilon^{j k} L^{i l}, \quad\left[R^{a b}, R^{c d}\right]=\varepsilon^{a d} R^{b c}+\varepsilon^{b c} R^{a d}} \\
& {\left[L^{i j}, Q^{k a}\right]=\frac{1}{2}\left(\varepsilon^{i k} Q^{j a}+\varepsilon^{j k} Q^{i a}\right), \quad\left[R^{a b}, Q^{k c}\right]=\frac{1}{2}\left(\varepsilon^{a c} Q^{k b}+\varepsilon^{b c} Q^{k a}\right),} \\
& {\left[L^{i j}, \bar{Q}^{k a}\right]=\frac{1}{2}\left(\varepsilon^{i k} \bar{Q}^{j a}+\varepsilon^{j k} \bar{Q}^{i a}\right), \quad\left[R^{a b}, \bar{Q}^{k c}\right]=\frac{1}{2}\left(\varepsilon^{a c} \bar{Q}^{k b}+\varepsilon^{b c} \bar{Q}^{k a}\right) .}
\end{aligned}
$$

All other (anti)commutators are vanishing. Here the superalgebra su(2|2) contains the generators $L^{i j}=L^{j i}, R^{a b}=R^{b a}$ forming two mutually commuting $s u(2)$ algebras and the central charge generator H.

$S U(2 \mid 2)$ supersymmetric mechanics

- The superalgebra $s u(2 \mid 2)$ in the complex basis is written as

$$
\begin{aligned}
& \left\{Q^{i a}, \bar{Q}^{j b}\right\}=-2 m\left(\varepsilon^{a b} L^{i j}-\varepsilon^{i j} R^{a b}\right)+2 \varepsilon^{a b} \varepsilon^{i j} H, \\
& {\left[L^{i j}, L^{k l}\right]=\varepsilon^{i l} L^{k j}+\varepsilon^{j k} L^{i l}, \quad\left[R^{a b}, R^{c d}\right]=\varepsilon^{a d} R^{b c}+\varepsilon^{b c} R^{a d},} \\
& {\left[L^{i j}, Q^{k a}\right]=\frac{1}{2}\left(\varepsilon^{i k} Q^{j a}+\varepsilon^{j k} Q^{i a}\right), \quad\left[R^{a b}, Q^{k c}\right]=\frac{1}{2}\left(\varepsilon^{a c} Q^{k b}+\varepsilon^{b c} Q^{k a}\right),} \\
& {\left[L^{i j}, \bar{Q}^{k a}\right]=\frac{1}{2}\left(\varepsilon^{i k} \bar{Q}^{j a}+\varepsilon^{j k} \bar{Q}^{i a}\right), \quad\left[R^{a b}, \bar{Q}^{k c}\right]=\frac{1}{2}\left(\varepsilon^{a c} \bar{Q}^{k b}+\varepsilon^{b c} \bar{Q}^{k a}\right) .}
\end{aligned}
$$

All other (anti)commutators are vanishing. Here the superalgebra su(2|2) contains the generators $L^{i j}=L^{j i}, R^{a b}=R^{b a}$ forming two mutually commuting $s u(2)$ algebras and the central charge generator H.

- Employing the appropriate worldline superfield approach $\mathrm{SU}(2 \mid 2)$, we considered deformed analogs of $\mathcal{N}=8$ supersymmetric quantum mechanics (Evgeny Ivanov, Olaf Lechtenfeld, Stepan Sidorov, arXiv:1609.00490 [hep-th]). We studied models of $\mathrm{SU}(2 \mid 2)$ supersymmetric mechanics based on the off-shell multiplets $(3,8,5),(4,8,4)$ and $(5,8,3)$.

Deformed $\mathcal{N}=8$ supermultiplets

- Other multiplets $(\mathbf{k}, \mathbf{8}, \mathbf{8}-\mathbf{k}), \mathbf{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{6}, \mathbf{7}, \mathbf{8}$ of the standard $\mathcal{N}=8$ mechanics have no deformations to $\mathrm{SU}(2 \mid 2)$ supersymmetric mechanics.

Deformed $\mathcal{N}=8$ supermultiplets

- Other multiplets $(\mathbf{k}, \mathbf{8}, \mathbf{8}-\mathbf{k}), \mathbf{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{6}, \mathbf{7}, \mathbf{8}$ of the standard $\mathcal{N}=8$ mechanics have no deformations to $\mathrm{SU}(2 \mid 2)$ supersymmetric mechanics.
- There are four types of $\mathcal{N}=8$ superconformal algebras: $\operatorname{osp}(8 \mid 2), F(4), \operatorname{su}(4 \mid 1,1)$, $\operatorname{osp}\left(4^{*} \mid 4\right)$. According to S. Khodaee, F. Toppan, arXiv:1208.3612 [hep-th], the relevant superconformal transformations are realized on $\mathcal{N}=8$ multiplets as

1) $\operatorname{osp}(8 \mid 2)$ on $(\mathbf{0}, \mathbf{8}, \mathbf{8})$ and $(\mathbf{8}, \mathbf{8}, \mathbf{0})$,
2) $F(4)$ on $(\mathbf{1}, \mathbf{8}, \mathbf{7})$ and $(\mathbf{7}, \mathbf{8}, \mathbf{1})$,
3) $s u(4 \mid 1,1)$ on $(\mathbf{2}, \mathbf{8}, \mathbf{6})$ and $(\mathbf{6}, \mathbf{8}, \mathbf{2})$,
4) $\operatorname{osp}\left(4^{*} \mid 4\right)$ on $(\mathbf{3}, \mathbf{8}, \mathbf{5})$ and $(\mathbf{5}, \mathbf{8}, \mathbf{3})$.

The superalgebra $s u(2 \mid 2)$ can be embedded only into the superconformal algebra osp $\left(4^{*} \mid 4\right)$.

Deformed $\mathcal{N}=8$ supermultiplets

- Other multiplets $(\mathbf{k}, \mathbf{8}, \mathbf{8}-\mathbf{k}), \mathbf{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{6}, \mathbf{7}, \mathbf{8}$ of the standard $\mathcal{N}=8$ mechanics have no deformations to $\mathrm{SU}(2 \mid 2)$ supersymmetric mechanics.
- There are four types of $\mathcal{N}=8$ superconformal algebras: $\operatorname{osp}(8 \mid 2), F(4), \operatorname{su}(4 \mid 1,1)$, $\operatorname{osp}\left(4^{*} \mid 4\right)$. According to S. Khodaee, F. Toppan, arXiv:1208.3612 [hep-th], the relevant superconformal transformations are realized on $\mathcal{N}=8$ multiplets as

1) $\operatorname{osp}(8 \mid 2)$ on $(\mathbf{0}, \mathbf{8}, \mathbf{8})$ and $(\mathbf{8}, \mathbf{8}, \mathbf{0})$,
2) $F(4)$ on $(\mathbf{1}, \mathbf{8}, \mathbf{7})$ and $(\mathbf{7}, \mathbf{8}, \mathbf{1})$,
3) $s u(4 \mid 1,1)$ on $(\mathbf{2}, \mathbf{8}, \mathbf{6})$ and $(\mathbf{6}, \mathbf{8}, \mathbf{2})$,
4) $\operatorname{osp}\left(4^{*} \mid 4\right)$ on $(\mathbf{3}, \mathbf{8}, \mathbf{5})$ and $(\mathbf{5}, \mathbf{8}, \mathbf{3})$.

The superalgebra $s u(2 \mid 2)$ can be embedded only into the superconformal algebra osp $\left(4^{*} \mid 4\right)$.

- The multiplet $(\mathbf{4}, \mathbf{8}, \mathbf{4})$ is exceptional: none of $\mathcal{N}=8, d=1$ superconformal symmetries can act on it. However, one can realize on it an $\mathcal{N}=8$ extended Heisenberg superalgebra given by S. Bellucci, E. Ivanov, A. Sutulin, arXiv:hep-th/0504185. This extended superalgebra contains an $s u(2 \mid 2)$ superalgebra.

Deformed $\mathcal{N}=8$ supermultiplets

- Hence, the supergroup $\operatorname{SU}(2 \mid 2)$ admits an action only on the multiplets $(\mathbf{3}, \mathbf{8}, \mathbf{5})$, $(4,8,4)$ and ($5,8,3$).

Deformed $\mathcal{N}=8$ supermultiplets

- Hence, the supergroup $\operatorname{SU}(2 \mid 2)$ admits an action only on the multiplets $(\mathbf{3}, \mathbf{8}, \mathbf{5})$, $(4,8,4)$ and ($5,8,3$).
- The superalgebra $s u(4 \mid 1)$ can be embedded into the rest of superconformal algebras osp $(8 \mid 2), F(4), s u(4 \mid 1,1)$.

Deformed $\mathcal{N}=8$ supermultiplets

- Hence, the supergroup $\mathrm{SU}(2 \mid 2)$ admits an action only on the multiplets $(\mathbf{3}, \mathbf{8}, \mathbf{5})$, $(4,8,4)$ and $(5,8,3)$.
- The superalgebra $s u(4 \mid 1)$ can be embedded into the rest of superconformal algebras $\operatorname{osp}(8 \mid 2), F(4)$, su(4|1, 1).
- Thus, the rest of $\mathcal{N}=8$ multiplets $(\mathbf{0}, \mathbf{8}, \mathbf{8}),(\mathbf{1}, \mathbf{8}, \mathbf{7}),(\mathbf{2}, \mathbf{8}, \mathbf{6}),(\mathbf{6}, \mathbf{8}, \mathbf{2}),(\mathbf{7}, \mathbf{8}, \mathbf{1})$ and $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ have generalizations to $\mathrm{SU}(4 \mid 1)$ supersymmetric mechanics.

$\mathrm{SU}(4 \mid 1)$ supersymmetric mechanics

We consider the superalgebra $s u(4 \mid 1)$ as a deformation of the standard $\mathcal{N}=8, d=1$ superalgebra:

$$
\mathcal{N}=8, d=1 \quad \text { Poincaré } \quad \Rightarrow \quad s u(4 \mid 1) .
$$

It is given by the following (anti)commutators:

$$
\begin{aligned}
& \left\{Q^{I}, \bar{Q}_{J}\right\}=2 m L_{J}^{I}+2 \delta_{J}^{I} \mathcal{H}, \quad\left[L_{J}^{I}, L_{L}^{K}\right]=\delta_{J}^{K} L_{L}^{I}-\delta_{L}^{I} L_{J}^{K} \\
& {\left[L_{J}^{I}, Q^{K}\right]=\delta_{J}^{K} Q^{I}-\frac{1}{4} \delta_{J}^{I} Q^{K}, \quad\left[L_{J}^{I}, \bar{Q}_{L}\right]=\frac{1}{4} \delta_{J}^{I} \bar{Q}_{L}-\delta_{L}^{I} \bar{Q}_{J},} \\
& {\left[\mathcal{H}, Q^{K}\right]=-\frac{3 m}{4} Q^{K}, \quad\left[\mathcal{H}, \bar{Q}_{L}\right]=\frac{3 m}{4} \bar{Q}_{L} .}
\end{aligned}
$$

All other (anti)commutators are vanishing. Here, the superalgebra su(4|1) contains eight supercharges and $\mathrm{SU}(4) \times \mathrm{U}(1)$ generators L_{J}^{I}, \mathcal{H}. It can be viewed as a deformation of the standard $\mathcal{N}=8, d=1$ superalgebra.
$\mathrm{SU}(4 \mid 1), d=1$ superspace

The $\operatorname{SU}(4 \mid 1), d=1$ superspace is defined as the coset superspace

$$
\frac{\mathrm{SU}(4 \mid 1)}{\mathrm{SU}(4)} \sim \frac{\left\{Q^{I}, \bar{Q}_{J}, L_{J}^{I}, \mathcal{H}\right\}}{\left\{L_{J}^{I}\right\}}
$$

where its parameters define the superspace coordinates:

$$
\zeta=\left\{t, \theta_{I}, \bar{\theta}^{J}\right\}, \quad \overline{\left(\theta_{I}\right)}=\bar{\theta}^{I}
$$

Realization of the supergroup for the fermionic coset $\mathrm{SU}(n \mid 1) / \mathrm{U}(n)$ was studied by E. Ivanov, L. Mezincescu, A. Pashnev, P.K. Townsend, arXiv:hep-th/0301241. Extending this realization by time coordinate, we obtain the odd transformations:

$$
\delta \theta_{I}=\epsilon_{I}+2 m \bar{\epsilon}^{K} \theta_{K} \theta_{I}, \quad \delta \bar{\theta}^{J}=\bar{\epsilon}^{J}-2 m \epsilon_{K} \bar{\theta}^{K} \bar{\theta}^{J}, \quad \delta t=i\left(\bar{\epsilon}^{K} \theta_{K}+\epsilon_{K} \bar{\theta}^{K}\right)
$$

Relation to matrix models

- Berenstein, Maldacena and Nastase (BMN) proposed a matrix model associated with M-theory on pp-wave background D. Berenstein, J. Maldacena, H. Nastase, arXiv:hep-th/0202021 with 16 supersymmetries corresponding to the massdeformed world-line supersymmetry group $\mathrm{SU}(4 \mid 2)$. Their (on-shell) multiplet is given by

$$
\begin{aligned}
& \overline{\left(y^{I J}, v^{i j}, \chi^{I i}, \bar{\chi}_{I i}\right), \quad y^{I J} \equiv y^{[I J]}, \quad v^{i j} \equiv v^{(i j)}}, \\
& \overline{\left(y^{I J}\right)}=y_{I J}=\frac{1}{2} \varepsilon_{I J K L} y^{K L}, \quad \overline{\left(v^{i j}\right)}=v_{i j}, \quad \overline{\left(\chi^{I i}\right)}=\bar{\chi}_{I i},
\end{aligned}
$$

The indices $I=1,2,3,4$ and $i=1,2$ are indices of the subgroup $\mathrm{SU}(4) \times \mathrm{SU}(2)$, respectively.

Relation to matrix models

- Berenstein, Maldacena and Nastase (BMN) proposed a matrix model associated with M-theory on pp-wave background D. Berenstein, J. Maldacena, H. Nastase, arXiv:hep-th/0202021 with 16 supersymmetries corresponding to the massdeformed world-line supersymmetry group $\mathrm{SU}(4 \mid 2)$. Their (on-shell) multiplet is given by

$$
\begin{aligned}
& \overline{\left(y^{I J}, v^{i j}, \chi^{I i}, \bar{\chi}_{I i}\right), \quad y^{I J} \equiv y^{[I J]}, \quad v^{i j} \equiv v^{(i j)}}, \\
& \overline{\left(y^{I J}\right)}=y_{I J}=\frac{1}{2} \varepsilon_{I J K L} y^{K L}, \quad \overline{\left(v^{i j}\right)}=v_{i j}, \quad \overline{\left(\chi^{I i}\right)}=\bar{\chi}_{I i}
\end{aligned}
$$

The indices $I=1,2,3,4$ and $i=1,2$ are indices of the subgroup $\mathrm{SU}(4) \times \mathrm{SU}(2)$, respectively.

- It spurred investigations of massive matrix models of SQM with 8 supersymmetries corresponding to the groups $\mathrm{SU}(2 \mid 2), \mathrm{SU}(4 \mid 1)$ and with 4 supersymmetries corresponding to the group $\mathrm{SU}(2 \mid 1)$.

$\mathrm{SU}(4 \mid 1)$ multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$

- $\mathrm{SU}(4 \mid 1)$ supersymmetric model corresponding to the first multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ were obtained from BMN matrix model by L. Motl, A. Neitzke, M.M. Sheikh-Jabbari, arXiv:hep-th/0306051.

$\mathrm{SU}(4 \mid 1)$ multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$

- $\mathrm{SU}(4 \mid 1)$ supersymmetric model corresponding to the first multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ were obtained from BMN matrix model by L. Motl, A. Neitzke, M.M. Sheikh-Jabbari, arXiv:hep-th/0306051.
- Our aim here is to consider $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ multiplets of the deformed supersymmetric mechanics with respect to the appropriate worldline realization of the supergroup SU(4|1):

$$
\left(\phi, \bar{\phi}, y^{I J}, \chi^{I}, \bar{\chi}_{I}\right), \quad\left(z^{I}, \bar{z}_{I}, \chi, \bar{\chi}, \chi^{I J}\right)
$$

$\mathrm{SU}(4 \mid 1)$ multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$

- $\mathrm{SU}(4 \mid 1)$ supersymmetric model corresponding to the first multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ were obtained from BMN matrix model by L. Motl, A. Neitzke, M.M. Sheikh-Jabbari, arXiv:hep-th/0306051.
- Our aim here is to consider $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ multiplets of the deformed supersymmetric mechanics with respect to the appropriate worldline realization of the supergroup SU(4|1):

$$
\left(\phi, \bar{\phi}, y^{I J}, \chi^{I}, \bar{\chi}_{I}\right), \quad\left(z^{I}, \bar{z}_{I}, \chi, \bar{\chi}, \chi^{I J}\right)
$$

- Two $(\mathbf{8}, \boldsymbol{8}, \mathbf{0})$ multiplets have "inverted" $\mathrm{SU}(4)$ contents ("mirroring"): the contents of bosons and fermions of the first version coincide with those of fermions and bosons in the second one.

The multiplet $(8,8,0)$

The first version of the multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ is defined by the $\mathrm{SU}(4 \mid 1)$ covariant constraints

$$
\begin{aligned}
& \overline{\mathcal{D}}_{J} \Phi=0, \quad \mathcal{D}^{I} \bar{\Phi}=0, \quad \overline{\mathcal{D}}_{I} \overline{\mathcal{D}}_{J} \bar{\Phi}=\frac{1}{2} \varepsilon_{I J K L} \mathcal{D}^{K} \mathcal{D}^{L} \Phi \\
& \sqrt{2} \mathcal{D}^{I} Y^{J K}=-\varepsilon^{I J K L} \overline{\mathcal{D}}_{L} \bar{\Phi}, \quad \sqrt{2} \overline{\mathcal{D}}_{J} Y_{K L}=\varepsilon_{I J K L} \mathcal{D}^{I} \Phi \\
& \overline{\left(Y^{I J}\right)}=Y_{I J}=\frac{1}{2} \varepsilon_{I J K L} Y^{K L}, \\
& (\overline{(\Phi)}=\bar{\Phi}
\end{aligned}
$$

where Φ is a chiral superfield and $Y^{I J}$ is an antisymmetric tensor superfield. Note that in the flat limit, when $m \rightarrow 0$ and

$$
D^{I}=\frac{\partial}{\partial \theta_{I}}-i \bar{\theta}^{I} \partial_{t}, \quad \bar{D}_{J}=-\frac{\partial}{\partial \bar{\theta}^{J}}+i \theta_{J} \partial_{t}
$$

this set of constraints becomes the set of superfield constraints defining the standard $\mathcal{N}=8, d=1$ multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$, such that only $\mathrm{SU}(4) \subset \mathrm{SO}(8)$ is manifest.

Chiral superspace description

The supergroup $\mathrm{SU}(4 \mid 1)$ admits two mutually conjugated complex supercosets which can be identified with the left and right chiral subspaces:

$$
\zeta_{\mathrm{L}}=\left(t_{\mathrm{L}}, \theta_{I}\right), \quad \zeta_{\mathrm{R}}=\left(t_{\mathrm{R}}, \bar{\theta}^{J}\right)
$$

The left even coordinate t_{L} is related to the real time coordinate t via

$$
t_{\mathrm{L}}=t+\frac{i}{2 m} \log \left(1+2 m \bar{\theta}^{K} \theta_{K}\right)
$$

Then we obtain the left chiral space ζ_{L} closed under the supersymmetry transformations

$$
\delta \theta_{I}=\epsilon_{I}+2 m \bar{\epsilon}^{K} \theta_{K} \theta_{I}, \quad \delta t_{\mathrm{L}}=2 i \bar{\epsilon}^{K} \theta_{K}
$$

The left chiral measure is defined as

$$
\begin{aligned}
& d \zeta_{\mathrm{L}}:=d t_{\mathrm{L}} d^{4} \theta e^{-3 i m t_{\mathrm{L}}}, \quad \delta\left(d \zeta_{\mathrm{L}}\right)=0 \\
& \int d \zeta_{\mathrm{L}} \theta_{I} \theta_{J} \theta_{K} \theta_{L} e^{3 i m t_{\mathrm{L}}}=\varepsilon_{I J K L}
\end{aligned}
$$

Chiral superfield

We consider the chiral superfield Φ given by the general θ-expansion

$$
\begin{aligned}
\Phi\left(t_{\mathrm{L}}, \theta_{I}\right)= & \phi+\sqrt{2} \theta_{K} \chi^{K} e^{3 i m t_{\mathrm{L}} / 4}+\theta_{I} \theta_{J} A^{I J} e^{3 i m t_{\mathrm{L}} / 2}+\frac{\sqrt{2}}{3} \theta_{I} \theta_{J} \theta_{K} \xi^{I J K} e^{9 i m t_{\mathrm{L}} / 4} \\
& +\frac{1}{4} \varepsilon^{I J K L} \theta_{I} \theta_{J} \theta_{K} \theta_{L} B e^{3 i m t_{\mathrm{L}}}, \quad A^{I J} \equiv A^{[I J]}, \quad \xi^{I J K} \equiv \xi^{[I J K]}
\end{aligned}
$$

The superfield Φ transforms as a singlet of the stability subgroup $\mathrm{SU}(4)$, i.e. $\delta \Phi=0$. Its components transformations:

$$
\begin{aligned}
& \delta \phi=-\sqrt{2} \epsilon_{K} \chi^{K} e^{3 i m t / 4}, \\
& \delta \chi^{I}=\sqrt{2} \bar{\epsilon}^{I}(i \dot{\phi}) e^{-3 i m t / 4}-\sqrt{2} \epsilon_{K} A^{I K} e^{3 i m t / 4}, \\
& \delta A^{I J}=2 \sqrt{2} \bar{\epsilon}^{[I}\left(i \dot{\chi}^{J]}+\frac{m}{4} \chi^{J]}\right) e^{-3 i m t / 4}-\sqrt{2} \epsilon_{K} \xi^{I J K} e^{3 i m t / 4}, \\
& \frac{\sqrt{2}}{3} \delta \xi^{I J K}=2 \bar{\epsilon}^{[K}\left(i \dot{A}^{I J]}+\frac{m}{2} A^{I J]}\right) e^{-3 i m t / 4}-\varepsilon^{I J K L} \epsilon_{L} B e^{3 i m t / 4}, \\
& \varepsilon^{I J K L} \delta B=\frac{8 \sqrt{2}}{3} \bar{\epsilon}^{[L}\left(i \dot{\xi}^{I J K]}+\frac{3 m}{4} \xi^{I J K]}\right) e^{-3 i m t / 4}
\end{aligned}
$$

Additional constraints

As the next step, we give the rest of constraints in the component level requiring the field content to be $(\mathbf{8}, \mathbf{8}, \mathbf{0})$. Components of the chiral superfield Φ are subjected to the additional constraints

$$
\begin{aligned}
& A^{I J}=\sqrt{2}\left(i \dot{y}^{I J}-\frac{m}{2} y^{I J}\right), \quad \overline{\left(y^{I J}\right)}=y_{I J}=\frac{1}{2} \varepsilon_{I J K L} y^{K L} \\
& \xi^{I J K}=-\varepsilon^{I J K L}\left(i \dot{\bar{\chi}}_{L}-\frac{5 m}{4} \bar{\chi}_{L}\right), \quad \overline{\left(\chi^{I}\right)}=\bar{\chi}_{I} \\
& B=\frac{2}{3}(\ddot{\bar{\phi}}+2 i m \dot{\bar{\phi}}) .
\end{aligned}
$$

It gives the following transformations:

$$
\begin{aligned}
& \delta \phi=-\sqrt{2} \epsilon_{I} \chi^{I} e^{3 i m t / 4}, \quad \delta \bar{\phi}=\sqrt{2} \bar{\epsilon}^{I} \bar{\chi}_{I} e^{-3 i m t / 4} \\
& \delta y^{I J}=-2 \bar{\epsilon}^{[I} \chi^{J]} e^{-3 i m t / 4}+\varepsilon^{I J K L} \epsilon_{K} \bar{\chi}_{L} e^{3 i m t / 4} \\
& \delta \chi^{I}=\sqrt{2} \bar{\epsilon}^{I}(i \dot{\phi}) e^{-3 i m t / 4}-2 \epsilon_{J}\left(i \dot{y}^{I J}-\frac{m}{2} y^{I J}\right) e^{3 i m t / 4} \\
& \delta \bar{\chi}_{I}=-\sqrt{2} \epsilon_{I}(i \dot{\bar{\phi}}) e^{3 i m t / 4}+2 \bar{\epsilon}^{J}\left(i \dot{y}_{I J}+\frac{m}{2} y_{I J}\right) e^{-3 i m t / 4}
\end{aligned}
$$

The $S U(4 \mid 1)$ invariant superfield action of the multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ is written as

$$
S_{\mathrm{SK}}=\int d t \mathcal{L}_{\mathrm{SK}}=-\frac{1}{4}\left[\int d \zeta_{\mathrm{L}} K(\Phi)+\int d \zeta_{\mathrm{R}} \bar{K}(\bar{\Phi})\right]
$$

Its component Lagrangian reads

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SK}}= & g_{1}\left[\dot{\phi} \dot{\bar{\phi}}+\frac{1}{2} \dot{y}^{I J} \dot{y}_{I J}+\frac{i}{2}\left(\chi^{K} \dot{\bar{\chi}}_{K}-\dot{\chi}^{K} \bar{\chi}_{K}\right)-\frac{5 m}{4} \chi^{K} \bar{\chi}_{K}-\frac{m^{2}}{8} y^{I J} y_{I J}\right] \\
& -\frac{i m}{4}\left(\dot{\phi} \partial_{\phi} g_{1}-\dot{\bar{\phi}} \partial_{\bar{\phi}} g_{1}\right) y^{I J} y_{I J}+2 i m\left(\dot{\phi} \partial_{\bar{\phi}} \bar{K}-\dot{\bar{\phi}} \partial_{\phi} K\right) \\
& +\frac{1}{\sqrt{2}}\left(i \dot{y}_{I J}-\frac{m}{2} y_{I J}\right) \chi^{I} \chi^{J} \partial_{\phi} g_{1}+\frac{1}{\sqrt{2}}\left(i \dot{y}^{I J}+\frac{m}{2} y^{I J}\right) \bar{\chi}_{I} \bar{\chi}_{J} \partial_{\bar{\phi}} g_{1} \\
& -\frac{i}{2}\left(\dot{\phi} \partial_{\phi} g_{1}-\dot{\bar{\phi}} \partial_{\bar{\phi}} g_{1}\right) \chi^{K} \bar{\chi}_{K}-\frac{1}{24} \varepsilon^{I J K L} \bar{\chi}_{I} \bar{\chi}_{J} \bar{\chi}_{K} \bar{\chi}_{L} \partial_{\bar{\phi}} \partial_{\bar{\phi}} g_{1} \\
& -\frac{1}{24} \varepsilon_{I J K L} \chi^{I} \chi^{J} \chi^{K} \chi^{L} \partial_{\phi} \partial_{\phi} g_{1} .
\end{aligned}
$$

The complex fields ϕ is corresponding coordinate of Special Kähler manifold with the metric

$$
g_{1}(\phi, \bar{\phi})=\partial_{\phi} \partial_{\phi} K(\phi)+\partial_{\bar{\phi}} \partial_{\bar{\phi}} \bar{K}(\bar{\phi})
$$

Harmonic superspace description

- The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ has a description also in terms of the harmonic superfield $Y^{(+2)}$ defined on $\mathrm{SU}(4) /[\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)]$ type harmonic space (E. Ivanov, S. Kalitzin, A.V. Nguyen, V. Ogievetsky, J. Phys. A 18 (1985) 3433).

Harmonic superspace description

- The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ has a description also in terms of the harmonic superfield $Y^{(+2)}$ defined on $\mathrm{SU}(4) /[\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)]$ type harmonic space (E. Ivanov, S. Kalitzin, A.V. Nguyen, V. Ogievetsky, J. Phys. A 18 (1985) 3433).
- The analytic superspace

$$
\zeta_{\mathrm{A}}=\left\{t_{\mathrm{A}}, \theta_{a}^{(+)}, \bar{\theta}^{(+) i}, u_{a}^{(+) I}, u_{I}^{(+) i}, u_{I}^{(-) a}, u_{i}^{(-) I}\right\}
$$

Harmonic superspace description

- The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ has a description also in terms of the harmonic superfield $Y^{(+2)}$ defined on $\mathrm{SU}(4) /[\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)]$ type harmonic space (E. Ivanov, S. Kalitzin, A.V. Nguyen, V. Ogievetsky, J. Phys. A 18 (1985) 3433).
- The analytic superspace

$$
\zeta_{\mathrm{A}}=\left\{t_{\mathrm{A}}, \theta_{a}^{(+)}, \bar{\theta}^{(+) i}, u_{a}^{(+) I}, u_{I}^{(+) i}, u_{I}^{(-) a}, u_{i}^{(-) I}\right\}
$$

- The unitarity and unimodularity conditions are written as

$$
\begin{aligned}
& u_{K}^{(+) i} u_{j}^{(-) K}=\delta_{j}^{i}, \quad u_{K}^{(-) a} u_{b}^{(+) K}=\delta_{b}^{a}, \quad u_{J}^{(-) a} u_{a}^{(+) I}+u_{J}^{(+) i} u_{i}^{(-) I}=\delta_{J}^{I}, \\
& u_{K}^{(-) a} u_{j}^{(-) K}=u_{K}^{(+) i} u_{b}^{(+) K}=0, \quad \varepsilon^{I J K L} \varepsilon_{i j} u_{K}^{(+) i} u_{L}^{(+) j}+2 \varepsilon^{a b} u_{a}^{(+) I} u_{b}^{(+) J}=0 .
\end{aligned}
$$

Harmonic superspace description

- The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ has a description also in terms of the harmonic superfield $Y^{(+2)}$ defined on $\mathrm{SU}(4) /[\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)]$ type harmonic space (E. Ivanov, S. Kalitzin, A.V. Nguyen, V. Ogievetsky, J. Phys. A 18 (1985) 3433).
- The analytic superspace

$$
\zeta_{\mathrm{A}}=\left\{t_{\mathrm{A}}, \theta_{a}^{(+)}, \bar{\theta}^{(+) i}, u_{a}^{(+) I}, u_{I}^{(+) i}, u_{I}^{(-) a}, u_{i}^{(-) I}\right\}
$$

- The unitarity and unimodularity conditions are written as

$$
\begin{aligned}
& u_{K}^{(+) i} u_{j}^{(-) K}=\delta_{j}^{i}, \quad u_{K}^{(-) a} u_{b}^{(+) K}=\delta_{b}^{a}, \quad u_{J}^{(-) a} u_{a}^{(+) I}+u_{J}^{(+) i} u_{i}^{(-) I}=\delta_{J}^{I}, \\
& u_{K}^{(-) a} u_{j}^{(-) K}=u_{K}^{(+) i} u_{b}^{(+) K}=0, \quad \varepsilon^{I J K L} \varepsilon_{i j} u_{K}^{(+) i} u_{L}^{(+) j}+2 \varepsilon^{a b} u_{a}^{(+) I} u_{b}^{(+) J}=0 .
\end{aligned}
$$

- The relevant analytic harmonic superfield is defined as

$$
\mathcal{D}_{a}^{(+2) i} Y^{(+2)}=0, \quad \mathcal{D}_{j}^{i} Y^{(+2)}=\mathcal{D}_{b}^{a} Y^{(+2)}=0
$$

The rest of constraints can be given by requiring the field content to be $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ at the component level.

$\mathrm{SU}(2 \mid 1)$ superfield approach

- For more general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions, it is convenient to employ $\mathrm{SU}(2 \mid 1)$ superfield approach. So, we split the multiplet $(\mathbf{8}, \boldsymbol{8}, \mathbf{0})$ into $\mathrm{SU}(2 \mid 1)$ multiplets as a sum of the ordinary multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ and the "mirror" multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ (E. Ivanov, S. Sidorov, arXiv:1507.00987 [hep-th]).

$\mathrm{SU}(2 \mid 1)$ superfield approach

- For more general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions, it is convenient to employ $\mathrm{SU}(2 \mid 1)$ superfield approach. So, we split the multiplet $(\mathbf{8}, \boldsymbol{8}, \mathbf{0})$ into $\mathrm{SU}(2 \mid 1)$ multiplets as a sum of the ordinary multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ and the "mirror" multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ (E. Ivanov, S. Sidorov, arXiv:1507.00987 [hep-th]).
- One can consider reducing of the $\mathrm{SU}(4 \mid 1)$ superspace to the $\mathrm{SU}(2 \mid 1)$ one. The $\mathrm{SU}(2 \mid 1)$ superspace coordinates as

$$
\left\{t, \theta_{i}, \bar{\theta}^{i}\right\}, \quad \overline{\left(\theta_{i}\right)}=\bar{\theta}^{i}, \quad i=1,2
$$

$\mathrm{SU}(2 \mid 1)$ superfield approach

- For more general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions, it is convenient to employ $\mathrm{SU}(2 \mid 1)$ superfield approach. So, we split the multiplet $(\mathbf{8}, \boldsymbol{8}, \mathbf{0})$ into $\mathrm{SU}(2 \mid 1)$ multiplets as a sum of the ordinary multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ and the "mirror" multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ (E. Ivanov, S. Sidorov, arXiv:1507.00987 [hep-th]).
- One can consider reducing of the $\mathrm{SU}(4 \mid 1)$ superspace to the $\mathrm{SU}(2 \mid 1)$ one. The $\mathrm{SU}(2 \mid 1)$ superspace coordinates as

$$
\left\{t, \theta_{i}, \bar{\theta}^{i}\right\}, \quad \overline{\left(\theta_{i}\right)}=\bar{\theta}^{i}, \quad i=1,2
$$

- Choosing ϵ_{1} and ϵ_{2} transformations, we obtain the $\mathrm{SU}(2 \mid 1)$ supersymmetric transformations:

$$
\delta \theta_{i}=\epsilon_{i}+2 m \bar{\epsilon}^{k} \theta_{k} \theta_{i}, \quad \delta \bar{\theta}^{j}=\bar{\epsilon}^{j}-2 m \epsilon_{k} \bar{\theta}^{k} \bar{\theta}^{j}, \quad \delta t=i\left(\bar{\epsilon}^{k} \theta_{k}+\epsilon_{k} \bar{\theta}^{k}\right) .
$$

Subalgebra

The superalgebra $s u(4 \mid 1)$ contains as subalgebra the extended $s u(2 \mid 1) \ni u(1)$ superalgebra:

$$
\begin{aligned}
& \left\{Q^{i}, \bar{Q}_{j}\right\}=2 m I_{j}^{i}+m \delta_{j}^{i} F+2 \delta_{j}^{i} \mathcal{H}, \quad\left[I_{j}^{i}, I_{l}^{k}\right]=\delta_{j}^{k} I_{l}^{i}-\delta_{l}^{i} I_{j}^{k}, \\
& {\left[I_{j}^{i}, Q^{k}\right]=\delta_{k}^{k} Q^{i}-\frac{1}{2} \delta_{j}^{i} Q^{k}, \quad\left[I_{j}^{i}, \bar{Q}_{l}\right]=\frac{1}{2} \delta_{j}^{i} \bar{Q}_{l}-\delta_{l}^{i} \bar{Q}_{j},} \\
& {\left[\mathcal{H}, Q^{k}\right]=-\frac{3 m}{4} Q^{k}, \quad\left[\mathcal{H}, \bar{Q}_{l}\right]=\frac{3 m}{4} \bar{Q}_{l},} \\
& {\left[F, Q^{k}\right]=\frac{1}{2} Q^{k}, \quad\left[F, \bar{Q}_{l}\right]=-\frac{1}{2} \bar{Q}_{l} .}
\end{aligned}
$$

Here, $\mathrm{SU}(2)$ generators of $s u(2 \mid 1)$ are defined as

$$
I_{j}^{i}=L_{j}^{i}-\frac{1}{2} \delta_{j}^{i} F
$$

an internal $\mathrm{U}(1)$ generator of $s u(2 \mid 1)$ by the combination

$$
\tilde{H}=\mathcal{H}+\frac{m}{2} F
$$

where F is an external $\mathrm{U}(1)$ generator.

Splitting $(\mathbf{4}, \mathbf{4}, \mathbf{0}) \oplus(\mathbf{4}, \mathbf{4}, \mathbf{0})$

- The ordinary multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ is described the superfield $q^{i a}$ that obeys the $\mathrm{SU}(2 \mid 1)$ covariant constraints

$$
\mathcal{D}^{(k} q^{i) a}=\overline{\mathcal{D}}^{(k} q^{i) a}=0, \quad \tilde{F} q^{i a}=0, \quad \overline{\left(q^{i a}\right)}=q_{i a}
$$

Here, \mathcal{D}^{k} and $\overline{\mathcal{D}}^{k}$ are $\mathrm{SU}(2 \mid 1)$ covariant derivatives. The indices $i=1,2$ and $a=$ 1,2 correspond to the fundamental indices of the subgroup $\mathrm{SU}(2) \times \mathrm{SU}(2) \subset \mathrm{SU}(4)$, respectively.

- The ordinary multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ is described the superfield $q^{i a}$ that obeys the $\mathrm{SU}(2 \mid 1)$ covariant constraints

$$
\mathcal{D}^{(k} q^{i) a}=\overline{\mathcal{D}}^{(k} q^{i) a}=0, \quad \tilde{F} q^{i a}=0, \quad \overline{\left(q^{i a}\right)}=q_{i a} .
$$

Here, \mathcal{D}^{k} and $\overline{\mathcal{D}}^{k}$ are $\operatorname{SU}(2 \mid 1)$ covariant derivatives. The indices $i=1,2$ and $a=$ 1,2 correspond to the fundamental indices of the subgroup $\operatorname{SU}(2) \times \operatorname{SU}(2) \subset \operatorname{SU}(4)$, respectively.

- Corresponding $\operatorname{SU}(2 \mid 1)$ constraints defining the "mirror" $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ multiplet are written as

$$
\begin{aligned}
& \overline{\mathcal{D}}^{i} Z=\overline{\mathcal{D}}^{i} Y=0, \quad \mathcal{D}^{i} \bar{Z}=\mathcal{D}^{i} \bar{Y}=0, \\
& \mathcal{D}^{i} Z=-\overline{\mathcal{D}}^{i} \bar{Y}, \quad \mathcal{D}^{i} Y=\overline{\mathcal{D}}^{i} \bar{Z}, \quad \tilde{F} Z=0, \quad \tilde{F} Y=Y .
\end{aligned}
$$

$\mathrm{SU}(2 \mid 1)$ superfield approach

Alternatively, we can employ the construction of $\mathrm{SU}(4 \mid 1)$ invariant actions in the framework of the $\mathrm{SU}(2 \mid 1)$ superfields $q^{i a}, Y, Z$. The general $\mathrm{SU}(2 \mid 1)$ superfield action is given by

$$
S=\int d t d^{2} \theta d^{2} \bar{\theta}\left(1+2 m \bar{\theta}^{k} \theta_{k}\right) f\left(Z, \bar{Z}, Y \bar{Y}, q^{i a} q_{i a}\right)
$$

The metric g of target space is defined according to E. Ivanov, O. Lechtenfeld, A. Sutulin, arXiv:0705.3064 [hep-th] as

$$
\begin{array}{ll}
g=\Delta_{2} f=-\Delta_{1} f, & f=f\left(z, \bar{z}, y \bar{y}, x^{i a} x_{i a}\right), \quad g=g\left(z, \bar{z}, y \bar{y}, x^{i a} x_{i a}\right), \\
\Delta_{1} f+\Delta_{2} f=0 \Rightarrow \Delta_{1} g+\Delta_{2} g=0 \\
\Delta_{1}=\varepsilon^{i k} \varepsilon^{a b} \partial_{i a} \partial_{k b}, & \Delta_{2}=2\left(\partial_{z} \partial_{\bar{z}}+\partial_{y} \partial_{\bar{y}}\right) .
\end{array}
$$

Since $\operatorname{SU}(4)$ and $\mathrm{SU}(2 \mid 1)$ transformations are closed on $\mathrm{SU}(4 \mid 1)$ transformations , we require $\mathrm{SU}(4)$ invariance of the corresponding component action. Then we obtain the equation

$$
m\left(\bar{y} g+2 \partial_{y} f+x^{i a} \partial_{i a} \partial_{y} f\right)=0 \quad \Rightarrow \quad m\left(x_{i a} \partial_{y}-\bar{y} \partial_{i a}\right) g=0, \quad \text { c.c. }
$$

Solutions

The equation gives three solutions:

1) Special Kähler manifold metric (Chiral superfield solution)

$$
\begin{aligned}
& f_{1}=\frac{1}{2}\left[\bar{z} \partial_{z} K(z)+z \partial_{\bar{z}} \bar{K}(\bar{z})\right]-\left(\frac{x^{i a} x_{i a}}{16}+\frac{y \bar{y}}{4}\right)\left[\partial_{z} \partial_{z} K(z)+\partial_{\bar{z}} \partial_{\bar{z}} \bar{K}(\bar{z})\right], \\
& g_{1}=\frac{1}{2}\left[\partial_{z} \partial_{z} K(z)+\partial_{\bar{z}} \partial_{\bar{z}} \bar{K}(\bar{z})\right] \quad \Longrightarrow \quad g_{1}=\partial_{\phi} \partial_{\phi} K(\phi)+\partial_{\bar{\phi}} \partial_{\bar{\phi}} \bar{K}(\bar{\phi}) .
\end{aligned}
$$

Solutions

The equation gives three solutions:

1) Special Kähler manifold metric (Chiral superfield solution)

$$
\begin{aligned}
f_{1} & =\frac{1}{2}\left[\bar{z} \partial_{z} K(z)+z \partial_{\bar{z}} \bar{K}(\bar{z})\right]-\left(\frac{x^{i a} x_{i a}}{16}+\frac{y \bar{y}}{4}\right)\left[\partial_{z} \partial_{z} K(z)+\partial_{\bar{z}} \partial_{\bar{z}} \bar{K}(\bar{z})\right], \\
g_{1} & =\frac{1}{2}\left[\partial_{z} \partial_{z} K(z)+\partial_{\bar{z}} \partial_{\bar{z}} \bar{K}(\bar{z})\right] \quad \Longrightarrow \quad g_{1}=\partial_{\phi} \partial_{\phi} K(\phi)+\partial_{\bar{\phi}} \partial_{\bar{\phi}} \bar{K}(\bar{\phi}) .
\end{aligned}
$$

2) $\mathrm{SO}(6)$-invariant metric (Harmonic superfield solution)

$$
\begin{aligned}
& f_{2}=\frac{1}{4}\left(x^{i a} x_{i a}\right)^{-1} \log \left(2 y \bar{y}+x^{i a} x_{i a}\right) \\
& g_{2}=\left(2 y \bar{y}+x^{i a} x_{i a}\right)^{-2} \Longrightarrow g_{2}=\left[\frac{1}{2} y^{I J} y_{I J}\right]^{-2} .
\end{aligned}
$$

Solutions

The equation gives three solutions:

1) Special Kähler manifold metric (Chiral superfield solution)

$$
\begin{aligned}
f_{1} & =\frac{1}{2}\left[\bar{z} \partial_{z} K(z)+z \partial_{\bar{z}} \bar{K}(\bar{z})\right]-\left(\frac{x^{i a} x_{i a}}{16}+\frac{y \bar{y}}{4}\right)\left[\partial_{z} \partial_{z} K(z)+\partial_{\bar{z}} \partial_{\bar{z}} \bar{K}(\bar{z})\right], \\
g_{1} & =\frac{1}{2}\left[\partial_{z} \partial_{z} K(z)+\partial_{\bar{z}} \partial_{\bar{z}} \bar{K}(\bar{z})\right] \quad \Longrightarrow \quad g_{1}=\partial_{\phi} \partial_{\phi} K(\phi)+\partial_{\bar{\phi}} \partial_{\bar{\phi}} \bar{K}(\bar{\phi}) .
\end{aligned}
$$

2) $\mathrm{SO}(6)$-invariant metric (Harmonic superfield solution)

$$
\begin{aligned}
& f_{2}=\frac{1}{4}\left(x^{i a} x_{i a}\right)^{-1} \log \left(2 y \bar{y}+x^{i a} x_{i a}\right) \\
& g_{2}=\left(2 y \bar{y}+x^{i a} x_{i a}\right)^{-2} \Longrightarrow g_{2}=\left[\frac{1}{2} y^{I J} y_{I J}\right]^{-2} .
\end{aligned}
$$

3) $\mathrm{SO}(8)$-invariant metric $(\mathrm{OSp}(8 \mid 2)$ superconformal solution $)$

$$
\begin{aligned}
& f_{3}=-\frac{1}{8}\left(x^{i a} x_{i a}\right)^{-1}\left(2 z \bar{z}+2 y \bar{y}+x^{i a} x_{i a}\right)^{-1} \\
& g_{3}=\left(2 z \bar{z}+2 y \bar{y}+x^{i a} x_{i a}\right)^{-3} \Longrightarrow g_{3}=\left[\phi \bar{\phi}+\frac{1}{2} y^{I J} y_{I J}\right]^{-3}
\end{aligned}
$$

$\operatorname{OSp}(8 \mid 2)$ superconformal Lagrangian

$\operatorname{OSp}(8 \mid 2)$ superconformal Lagrangian of the trigonometric type contains only m^{2} deformed terms:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{con}}= & g_{3}\left[\dot{\phi} \dot{\bar{\phi}}+\frac{1}{2} \dot{y}^{I J} \dot{y}_{I J}+\frac{i}{2}\left(\chi^{K} \dot{\bar{\chi}}_{K}-\dot{\chi}^{K} \bar{\chi}_{K}\right)-\frac{m^{2}}{4}\left(\phi \bar{\phi}+\frac{1}{2} y^{I J} y_{I J}\right)\right] \\
& -\frac{i}{\sqrt{2}} \dot{\bar{\phi}} \partial_{I J} g_{3} \chi^{I} \chi^{J}-\frac{i}{\sqrt{2}} \dot{\phi} \partial^{I J} g_{3} \bar{\chi}_{I} \bar{\chi}_{J}-\frac{i}{2}\left(\dot{\phi} \partial_{\phi} g_{3}-\dot{\bar{\phi}} \partial_{\bar{\phi}} g_{3}\right) \chi^{K} \bar{\chi}_{K} \\
& +\frac{i}{\sqrt{2}}\left(\dot{y}_{I J} \chi^{I} \chi^{J} \partial_{\phi} g_{3}+\dot{y}^{I J} \bar{\chi}_{I} \bar{\chi}_{J} \partial_{\bar{\phi}} g_{3}\right) \\
& +i\left(\dot{y}_{I K} \partial^{J K} g_{3}-\dot{y}^{J K} \partial_{I K} g_{3}\right) \chi^{I} \bar{\chi}_{J}-\frac{1}{2} \partial_{I J} \partial^{K L} g_{3} \chi^{I} \chi^{J} \bar{\chi}_{K} \bar{\chi}_{L} \\
& -\frac{1}{24}\left(\varepsilon_{I J K L} \chi^{I} \chi^{J} \chi^{K} \chi^{L} \partial_{\phi} \partial_{\phi} g_{3}+\varepsilon^{I J K L} \bar{\chi}_{I} \bar{\chi}_{J} \bar{\chi}_{K} \bar{\chi}_{L} \partial_{\bar{\phi}} \partial_{\bar{\phi}} g_{3}\right) \\
& -\frac{1}{\sqrt{2}}\left(\chi^{I} \chi^{J} \partial_{I J} \partial_{\phi} g_{3}+\bar{\chi}_{I} \bar{\chi}_{J} \partial^{I J} \partial_{\bar{\phi}} g_{3}\right) \chi^{K} \bar{\chi}_{K}+\frac{1}{2} \partial_{\phi} \partial_{\bar{\phi}} g_{3} \chi^{I} \bar{\chi}_{I} \chi^{J} \bar{\chi}_{J} .
\end{aligned}
$$

We have eliminated all deformed terms proportional to m in Lagrangian of the third solution by redefining the component fields as

$$
\phi \rightarrow \phi e^{-i m t / 2}, \quad \chi^{I} \rightarrow \chi^{I} e^{-i m t / 4}, \quad \bar{\phi} \rightarrow \bar{\phi} e^{i m t / 2}, \quad \bar{\chi}_{I} \rightarrow \bar{\chi}_{I} e^{i m t / 4}
$$

Superconformal transformations

Since this Lagrangian is an even function of m, it is invariant under two types of $\mathrm{SU}(4 \mid 1)$ transformations with the deformation parameters m and $-m$:

$$
\begin{array}{ll}
m \quad & \delta \phi=-\sqrt{2} \epsilon_{I} \chi^{I} e^{i m t}, \quad \delta \bar{\phi}=\sqrt{2} \bar{\epsilon}^{I} \bar{\chi}_{I} e^{-i m t}, \\
& \delta y^{I J}=-2 \bar{\epsilon}^{I} \chi^{J]} e^{-i m t}+\varepsilon^{I J K L} \epsilon_{K} \bar{\chi}_{L} e^{i m t}, \\
& \delta \chi^{I}=\sqrt{2} \bar{\epsilon}^{I}\left(i \dot{\phi}+\frac{m}{2} \phi\right) e^{-i m t}-2 \epsilon_{J}\left(i y^{I J}-\frac{m}{2} y^{I J}\right) e^{i m t}, \\
& \delta \bar{\chi}_{I}=-\sqrt{2} \epsilon_{I}\left(i \dot{\bar{\phi}}-\frac{m}{2} \bar{\phi}\right) e^{i m t}+2 \bar{\epsilon}^{J}\left(i \dot{y}_{I J}+\frac{m}{2} y_{I J}\right) e^{-i m t}, \\
-m \quad & \delta \phi=-\sqrt{2} \eta_{I} \chi^{I} e^{-i m t}, \quad \delta \bar{\phi}=\sqrt{2} \bar{\eta}^{I} \bar{\chi}_{I} e^{i m t}, \\
& \delta y^{I J}=-2 \bar{\eta}^{I I} \chi^{J]} e^{i m t}+\varepsilon^{I J K L} \eta_{K} \bar{\chi}_{L} e^{-i m t}, \\
& \delta \chi^{I}=\sqrt{2} \bar{\eta}^{I}\left(i \dot{\phi}-\frac{m}{2} \phi\right) e^{i m t}-2 \eta_{J}\left(i \dot{y}^{I J}+\frac{m}{2} y^{I J}\right) e^{-i m t}, \\
& \delta \bar{\chi}_{I}=-\sqrt{2} \eta_{I}\left(i \dot{\bar{\phi}}+\frac{m}{2} \bar{\phi}\right) e^{-i m t}+2 \bar{\eta}^{J}\left(i \dot{y}_{I J}-\frac{m}{2} y_{I J}\right) e^{i m t} .
\end{array}
$$

In the closure of these transformations, we obtain superconformal algebra $\operatorname{osp}(8 \mid 2)$ composed of 16 supercharges and 31 bosonic generators. This property with respect to the deformed $s u(2 \mid 1)$ and superconformal $d(2,1 ; \alpha)$ algebras was marked in E. Ivanov, S. Sidorov, F. Toppan, arXiv:1501.05622 [hep-th].

The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$: "mirror" counterpart

- The mirror version of the multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ is described by a complex bosonic superfield V^{I} satisfying

$$
\begin{array}{lll}
\mathcal{D}^{I} V^{J}=\frac{1}{2} \varepsilon^{I J K L} \overline{\mathcal{D}}_{K} \bar{V}_{L}, \quad \mathcal{D}^{(I} V^{J)}=0, & \overline{\mathcal{D}}_{(K} \bar{V}_{L)}=0, \\
\mathcal{D}^{I} \bar{V}_{J}=\frac{1}{4} \delta_{J}^{I} \mathcal{D}^{K} \bar{V}_{K} \quad \overline{\mathcal{D}}_{J} V^{I}=\frac{1}{4} \delta_{J}^{I} \overline{\mathcal{D}}_{K} V^{K} & \overline{\left(V^{I}\right)}=\bar{V}_{I}
\end{array}
$$

In the flat limit $m \rightarrow 0$, these constraints correspond to the $\mathrm{SU}(4)$ covariant constraints defining another form of the standard $\mathcal{N}=8, d=1$ multiplet ($\mathbf{8}, \mathbf{8}, \mathbf{0}$).

The multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$: "mirror" counterpart

- The mirror version of the multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ is described by a complex bosonic superfield V^{I} satisfying

$$
\begin{array}{ll}
\mathcal{D}^{I} V^{J}=\frac{1}{2} \varepsilon^{I J K L} \overline{\mathcal{D}}_{K} \bar{V}_{L}, \quad \mathcal{D}^{(I} V^{J)}=0, & \overline{\mathcal{D}}_{(K} \bar{V}_{L)}=0, \\
\mathcal{D}^{I} \bar{V}_{J}=\frac{1}{4} \delta_{J}^{I} \mathcal{D}^{K} \bar{V}_{K} \quad \overline{\mathcal{D}}_{J} V^{I}=\frac{1}{4} \delta_{J}^{I} \overline{\mathcal{D}}_{K} V^{K} & \overline{\left(V^{I}\right)}=\bar{V}_{I}
\end{array}
$$

In the flat limit $m \rightarrow 0$, these constraints correspond to the $\mathrm{SU}(4)$ covariant constraints defining another form of the standard $\mathcal{N}=8, d=1$ multiplet ($\mathbf{8}, \mathbf{8}, \mathbf{0}$).

- Avoiding calculation of the deformed covariant derivatives \mathcal{D}^{I} and $\overline{\mathcal{D}}_{J}$, we consider instead harmonization of these constraints corresponding to the harmonic space $\mathrm{SU}(4) /[\mathrm{SU}(3) \times \mathrm{U}(1)]$ (E. Ivanov, S. Kalitzin, A.V. Nguyen, V. Ogievetsky, J. Phys. A 18 (1985) 3433) with additional constraints given in the component level. The relevant harmonic superfield $\bar{V}^{(+3)}$ is defined on the analytic harmonic subspace

$$
\left\{t_{\mathrm{A}}, \theta^{(+3)}, \bar{\theta}^{(+) \alpha}, u_{I}^{(+) \alpha}, u^{(+3) I}, u_{\beta}^{(-) I}, u_{I}^{(-3)}\right\}
$$

Harmonic superspace description

The superfield $\bar{V}^{(+3)}$ satisfies the harmonic constraints

$$
\mathcal{D}^{(+4) \alpha} \bar{V}^{(+3)}=0, \quad \mathcal{D}_{\beta}^{\alpha} \bar{V}^{(+3)}=0, \quad \mathcal{D}^{0} \bar{V}^{(+3)}=3 \bar{V}^{(+3)}
$$

Here, $\bar{V}^{(+3)}$ is considered as an unconstrained deformed harmonic superfield. The rest of constraints can be given in the component level requiring the field content to be $(\mathbf{8}, \mathbf{8}, \mathbf{0})$. Skipping details, the deformed transformations are written as

$$
\begin{aligned}
& \delta z^{I}=2 \epsilon_{K} \chi^{I K} e^{3 i m t / 4}+\sqrt{2} \bar{\epsilon}^{I} \bar{\chi} e^{-3 i m t / 4} \\
& \delta \bar{z}_{J}=-2 \bar{\epsilon}^{K} \chi_{J K} e^{-3 i m t / 4}-\sqrt{2} \epsilon_{J} \chi e^{3 i m t / 4} \\
& \delta \chi=\sqrt{2} \bar{\epsilon}^{K}\left(i \dot{\bar{z}}_{K}+\frac{3 m}{4} \bar{z}_{K}\right) e^{-3 i m t / 4}, \\
& \delta \bar{\chi}=-\sqrt{2} \epsilon_{K}\left(i \dot{z}^{K}-\frac{3 m}{4} z^{K}\right) e^{3 i m t / 4}, \\
& \delta \chi^{I J}=2 \bar{\epsilon}^{[I}\left(i \dot{z}^{J]}+\frac{m}{4} z^{J]}\right) e^{-3 i m t / 4}-\varepsilon^{I J K L} \epsilon_{K}\left(i \dot{\bar{z}}_{L}-\frac{m}{4} \bar{z}_{L}\right) e^{3 i m t / 4},
\end{aligned}
$$

where

$$
\overline{\left(z^{I}\right)}=\bar{z}_{I}, \quad \overline{(\chi)}=\bar{\chi}, \quad \overline{\left(\chi^{I J}\right)}=\chi_{I J}=\frac{1}{2} \varepsilon_{I J K L} \chi^{K L} .
$$

$\mathrm{SU}(2 \mid 1)$ superfields

- Again, we split the given multiplet into $\mathrm{SU}(2 \mid 1)$ multiplets as $(\mathbf{4}, \mathbf{4}, \mathbf{0}) \oplus(\mathbf{4}, \mathbf{4}, \mathbf{0})$. The first multiplet is described by the superfield $q^{i A}$ satisfying the $\mathrm{SU}(2 \mid 1)$ covariant constraints

$$
\mathcal{D}^{(k} q^{i) A}=0, \quad \overline{\mathcal{D}}^{(k} q^{i) A}=0, \quad \tilde{F} q^{i A}=-\frac{1}{2}\left(\sigma_{3}\right)_{B}^{A} q^{i B}, \quad \overline{\left(q^{i A}\right)}=q_{i A}
$$

$\mathrm{SU}(2 \mid 1)$ superfields

- Again, we split the given multiplet into $\mathrm{SU}(2 \mid 1)$ multiplets as $(\mathbf{4}, \mathbf{4}, \mathbf{0}) \oplus(\mathbf{4}, \mathbf{4}, \mathbf{0})$. The first multiplet is described by the superfield $q^{i A}$ satisfying the $\operatorname{SU}(2 \mid 1)$ covariant constraints

$$
\mathcal{D}^{(k} q^{i) A}=0, \quad \overline{\mathcal{D}}^{(k} q^{i) A}=0, \quad \tilde{F} q^{i A}=-\frac{1}{2}\left(\sigma_{3}\right)_{B}^{A} q^{i B}, \quad \overline{\left(q^{i A}\right)}=q_{i A}
$$

- $\mathrm{SU}(2 \mid 1)$ constraints defining the mirror $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ multiplet are written as

$$
\begin{aligned}
& \overline{\mathcal{D}}^{i} Y^{a}=\mathcal{D}^{i} \bar{Y}^{a}=0, \quad \mathcal{D}^{i} Y^{a}=\overline{\mathcal{D}}^{i} \bar{Y}^{a}, \\
& \tilde{F} Y^{a}=\frac{1}{2} Y^{a}, \quad \tilde{F} \bar{Y}^{a}=-\frac{1}{2} \bar{Y}^{a}, \quad \overline{\left(Y^{a}\right)}=\bar{Y}_{a}
\end{aligned}
$$

Invariant action

The general $\operatorname{SU}(2 \mid 1)$ invariant action is written as

$$
S=\int d t \mathcal{L}=\frac{1}{2} \int d t d^{2} \theta d^{2} \bar{\theta}\left(1+2 m \bar{\theta}^{k} \theta_{k}\right) f\left(Y^{a} \bar{Y}_{a}, q^{i A} q_{i A}\right)
$$

where the target metric G is defined as

$$
\begin{aligned}
& \Delta_{y}=-2 \varepsilon^{a b} \partial_{a} \bar{\partial}_{b}, \quad \Delta_{x}=\varepsilon^{i j} \varepsilon^{A B} \partial_{i A} \partial_{j B} \\
& G:=\Delta_{y} f=-\Delta_{x} f \quad \Rightarrow \quad\left(\Delta_{y}+\Delta_{x}\right) G=0
\end{aligned}
$$

Then we require $\mathrm{SU}(4)$ invariance of this action that gives the following conditions:

$$
m\left(2 \partial_{a} f+\bar{y}_{a} G+x^{i A} \partial_{i A} \partial_{a} f\right)=0 \Rightarrow m\left(\bar{y}_{a} \partial_{i A}-x_{i A} \partial_{a}\right) G=0, \quad \text { c.c. }
$$

The only solution of these equations is given by

$$
\begin{aligned}
& f=\frac{1}{4}\left(y^{a} \bar{y}_{a}\right)^{-1}\left(y^{a} \bar{y}_{a}+\frac{1}{2} x^{i A} x_{i A}\right)^{-1} \Rightarrow \\
& \Rightarrow G=\left(y^{a} \bar{y}_{a}+\frac{1}{2} x^{i A} x_{i A}\right)^{-3}=\left(z^{I} \bar{z}_{I}\right)^{-3}
\end{aligned}
$$

Superconformal symmetry

- The metric is $\mathrm{SO}(8)$-invariant and corresponds to $\operatorname{OSp}(8 \mid 2)$ superconformal solution. Indeed, this solution gives the same $\operatorname{OSp}(8 \mid 2)$ superconformal Lagrangian and superconformal transformations are equivalent for both multiplets.

Superconformal symmetry

- The metric is $\mathrm{SO}(8)$-invariant and corresponds to $\operatorname{OSp}(8 \mid 2)$ superconformal solution. Indeed, this solution gives the same $\operatorname{OSp}(8 \mid 2)$ superconformal Lagrangian and superconformal transformations are equivalent for both multiplets.
- One can see that $\operatorname{OSp}(8 \mid 2)$ superconformal Lagrangians have conformally flat metrics

$$
\begin{aligned}
g_{3} & =\left[\phi \bar{\phi}+\frac{1}{2} y^{I J} y_{I J}\right]^{-3} \\
G & =\left(z^{I} \bar{z}_{I}\right)^{-3}
\end{aligned}
$$

both depending on quadratic $\mathrm{SO}(8)$ invariants of the same power -3 .

Superconformal symmetry

- It can be shown that the fields z^{I} and $\bar{z}_{J^{\prime}}$ can be reexpressed, by a linear transformation, through the bosonic fields $y^{I^{\prime} J^{\prime}}, \phi$ and $\bar{\phi}$ of the first multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$, where I^{\prime} and J^{\prime} are indices of the fundamental representation of a different $\mathrm{SU}(4)^{\prime}$ subgroup of $\mathrm{SO}(8)$ symmetry.

Superconformal symmetry

- It can be shown that the fields z^{I} and \bar{z}_{J} can be reexpressed, by a linear transformation, through the bosonic fields $y^{I^{\prime} J^{\prime}}, \phi$ and $\bar{\phi}$ of the first multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$, where I^{\prime} and J^{\prime} are indices of the fundamental representation of a different $\mathrm{SU}(4)^{\prime}$ subgroup of $\mathrm{SO}(8)$ symmetry.
- Quadratic $\mathrm{SO}(8)$ invariants are related as

$$
\phi \bar{\phi}+\frac{1}{2} y^{I^{\prime} J^{\prime}} y_{I^{\prime} J^{\prime}}=z^{I} \bar{z}_{I}=\mathrm{inv}
$$

Superconformal symmetry

- It can be shown that the fields z^{I} and \bar{z}_{J} can be reexpressed, by a linear transformation, through the bosonic fields $y^{I^{\prime} J^{\prime}}, \phi$ and $\bar{\phi}$ of the first multiplet $(\mathbf{8}, \mathbf{8}, \mathbf{0})$, where I^{\prime} and J^{\prime} are indices of the fundamental representation of a different $\mathrm{SU}(4)^{\prime}$ subgroup of $\mathrm{SO}(8)$ symmetry.
- Quadratic $\mathrm{SO}(8)$ invariants are related as

$$
\phi \bar{\phi}+\frac{1}{2} y^{I^{\prime} J^{\prime}} y_{I^{\prime} J^{\prime}}=z^{I} \bar{z}_{I}=\mathrm{inv}
$$

- It means that superconformal Lagrangian of the $\mathrm{SU}(4 \mid 1)$ "mirror" multiplet is equivalent to superconformal Lagrangian of the first multiplet for another $\mathrm{SU}(4 \mid 1)^{\prime}$ superfield approach. Both supergroups are subgroups of $\operatorname{OSp}(8 \mid 2)$.

Summary

- We have shown the existence of two non-equivalent "root" multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ of the deformed $\mathcal{N}=8$ supersymmetry associated with the supergroup $\mathrm{SU}(4 \mid 1)$.

Summary

- We have shown the existence of two non-equivalent "root" multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ of the deformed $\mathcal{N}=8$ supersymmetry associated with the supergroup $\mathrm{SU}(4 \mid 1)$.
- We presented their various world-line superfield and component descriptions, as well as the corresponding invariant actions.

Summary

- We have shown the existence of two non-equivalent "root" multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ of the deformed $\mathcal{N}=8$ supersymmetry associated with the supergroup $\mathrm{SU}(4 \mid 1)$.
- We presented their various world-line superfield and component descriptions, as well as the corresponding invariant actions.
- $\operatorname{SU}(2 \mid 1)$ superfield approach provides a general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions.

Summary

- We have shown the existence of two non-equivalent "root" multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ of the deformed $\mathcal{N}=8$ supersymmetry associated with the supergroup $\mathrm{SU}(4 \mid 1)$.
- We presented their various world-line superfield and component descriptions, as well as the corresponding invariant actions.
- $\operatorname{SU}(2 \mid 1)$ superfield approach provides a general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions.
- From the standpoint of $\mathrm{SO}(8) R$-symmetry both $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ multiplets can be considered to be equivalent.

Summary

- We have shown the existence of two non-equivalent "root" multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ of the deformed $\mathcal{N}=8$ supersymmetry associated with the supergroup $\mathrm{SU}(4 \mid 1)$.
- We presented their various world-line superfield and component descriptions, as well as the corresponding invariant actions.
- $\operatorname{SU}(2 \mid 1)$ superfield approach provides a general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions.
- From the standpoint of $\mathrm{SO}(8) R$-symmetry both $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ multiplets can be considered to be equivalent.
- We constructed $\operatorname{OSp}(8 \mid 2)$ superconformal action with an R-symmetry enhanced to $\mathrm{SO}(8)$.

Summary

- We have shown the existence of two non-equivalent "root" multiplets $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ of the deformed $\mathcal{N}=8$ supersymmetry associated with the supergroup $\mathrm{SU}(4 \mid 1)$.
- We presented their various world-line superfield and component descriptions, as well as the corresponding invariant actions.
- $\operatorname{SU}(2 \mid 1)$ superfield approach provides a general construction of $\mathrm{SU}(4 \mid 1)$ invariant actions.
- From the standpoint of $\mathrm{SO}(8) R$-symmetry both $(\mathbf{8}, \mathbf{8}, \mathbf{0})$ multiplets can be considered to be equivalent.
- We constructed $\operatorname{OSp}(8 \mid 2)$ superconformal action with an R-symmetry enhanced to $\mathrm{SO}(8)$.

Thank you for your attention!

