

BLTP, JINR

Gauged Baby Skyrmions and Merons

Ya. Shnir

Thanks to my collaborators: I.Perapechka and A.Samoilenka PRD 93 (2016) 065018 PRD 95 (2017) 045002 PRD 97 (2018) 045004 PRD 97 (2018) 125014

SIS'18, Dubna, 13 August 2018

Outline

Baby Skyrme model and multisoliton solutions

Gauged baby Skyrmions

Gauged merons

Maxwell-Chern-Simons baby Skyrmions

Gauged Hopfions

Skyrme family

• (2+1)-dim: Baby Skyrme model

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} \left(\partial_{\mu} \phi \times \partial_{\nu} \phi \right)^{2} - V(\phi)$$
Standard choice: $V(\phi) = \mu^{2}(1-\phi_{3})$
 $Q \in \mathbb{Z} = \pi_{2}(S^{2})$
• (3+1)-dim: Skyrme model
 $\psi : S^{3} \to S^{3}; \quad \phi_{\infty} = (0, 0, 0, 1)$
 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} \left(\partial_{\mu} \phi \times \partial_{\nu} \phi \right)^{2} - V(\phi)$
 $\mathcal{L} = - \operatorname{Tr} \left\{ \frac{1}{2} (R_{\mu} R^{\mu}) + \frac{1}{16} ([R_{\mu}, R_{\nu}][R^{\mu}, R^{\nu}]) + \mu^{2}(U-\mathbb{I}) \right\}$
 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi^{a})^{2} - \frac{1}{4} [(\partial_{\mu} \phi^{a} \partial_{\nu} \phi^{a})^{2} - (\partial_{\mu} \phi^{a})^{4}] + \mu^{2} (1-\phi^{3})$
 $Q \in \mathbb{Z} = \pi_{3}(S^{3})$
 $Q = \frac{1}{24\pi^{2}} \operatorname{Tr} \int_{\mathbb{R}^{3}} \varepsilon_{ijk} R_{i} R_{j} R_{k} d^{3} x$

Baby Skyrme model: Applications

- A Heisenberg-type model of interacting spins
- A model of the topological quantum Hall effect
- Elementary excitations in quantum Hall magnets
- Chiral magnetic structures
- A model of ferromagnetic planar structures
- Applications in future development of data storage technologies
- Models of condensed matter systems with intrinsic and induced chirality

Baby Skyrmions bags

D. Foster et al arXiv:1806.02576 (2018)

400 nm

S(59)

S(S(3)S(3)S(3))

30 µm

O(3) sigma-model vs \mathbb{CP}^1 model

Belavin-Polyakov instantons

Simplest rotationally invariant ansatz:

$$\phi^{lpha} = n^{lpha} \sin f(r), \ \phi^3 = \cos f(r)$$

 $n^{lpha} = (\cos arphi; \ \sin arphi)$

$$Z_{ar{z}} = 0 \quad \Longrightarrow \quad f' = rac{1}{r} \sin f$$

$$f=2 \arctan rac{r}{r_0}$$

Toy model of the SU(2) Yang-Mills instantons

$$L = \frac{1}{2g^2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} \longrightarrow F_{\mu\nu} = \pm \tilde{F}_{\mu\nu} \qquad \qquad Q = \frac{1}{16\pi^2} \operatorname{Tr} \int d^4x \tilde{F}_{\mu\nu} F^{\mu\nu}$$

One instanton solution:

$$A^a_\mu = -\bar{\eta}^a_{\mu\nu}\partial^\nu \ln\left(1 + \frac{\rho^2}{(r-r_0)^2}\right)$$

 $Z = \frac{P(z)}{Q(z)}$

Rational map holomorphic solution of degree Q:

Q=2:
$$Z = \frac{(z-a)(z-c)}{(z-b)(z-d)}$$

Rational map holomorphic solution of degree 8:

Rational map holomorphic solution of degree 29: $Z = \frac{P(z)}{Q(z)}$

O(3) sigma-model: Merons

Singular solution:

$$\phi_1=rac{x}{r}, \hspace{1em} \phi_2=rac{y}{r}, \hspace{1em} \phi_3=0$$

D. J. Gross, *Nucl. Phys. B* 132, 439 (1978);
V. de Alfaro, S. Fubini, and G. Furlan, *Nuovo Cim. A* 48, 485 (1978).

$$E = rac{1}{2r^2}, \qquad Q = rac{1}{2}\int d^2x \,\, \delta^2(r) = rac{1}{2}$$

Yang-Mills merons – half-instanton solutions with finite energy and infinite action

Baby Skyrme model

(Bogolubskaya, Bogolubsky (1989) R.A. Leese et al (1990)

$$\phi = (\phi^1, \phi^2, \phi^3); \qquad \phi^a \cdot \phi^a = 1; \qquad \phi : \ S^2 \to S^2$$

$$Q=rac{1}{4\pi}\int d^2x\;arepsilon_{abc}arepsilon_{ij}\phi^a\partial_i\phi^b\partial_j\phi^c=1$$

Derrick's scaling theorem: Skyrme term provides a scale but cannot stabilise the soliton: potential term is necessary

$$\begin{split} L &= \frac{1}{4} (\partial_{\mu} \phi^{a})^{2} - \frac{\kappa}{8} \bigg[(\partial_{\mu} \phi^{a} \partial_{\mu} \phi^{a})^{2} - (\partial_{\mu} \phi^{a} \partial_{\nu} \phi^{a}) (\partial^{\mu} \phi^{a} \partial^{\nu} \phi^{a}) \bigg] + m^{2} (1 - \phi^{3}) \\ E &\geq \pm 4\pi Q \quad \text{equality is possible if} \quad \kappa = 0 \text{ and } m = 0 \end{split}$$

Axially symmetric ansatz:

$$egin{aligned} \phi^1 &= \sin f(r) \cos(Q arphi - \delta); \ \phi^1 &= \sin f(r) \sin(Q arphi - \delta); \ \phi^3 &= \cos f(r) \end{aligned}$$

Baby Skyrme model

Potential of the baby Skyrme model: potential term $U(\mathbf{\phi})$ may be chosen almost arbitrarily, however must vanish at infinity for a given vacuum field value in order to ensure existance of the finite energy solutions: $\phi_{(0)}^a = (0, 0, 1)$

Several potential terms have been studied in great detail:

- \bullet "Old" model, with $U(\phi)=m^2(1-\phi_3)$
- Holomorphic model, with $U(\phi)=m^2(1-\phi_3)^4$
- \bullet "Double vacuum" model, with $U(\phi)=m^2(1-\phi_3^2)$

Karliner, Hen (2007) $U(\phi) = m^{lpha}(1-\phi_3^{eta})$

• Easy plane potential $U(\phi) = \mu^2 \phi_1^2$

$$\begin{array}{l} \textbf{Gauged baby Skyrme model} \\ \mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} + \frac{1}{2}D_{\mu}\vec{\phi}\cdot D^{\mu}\vec{\phi} - \frac{1}{4}\left(D_{\mu}\vec{\phi}\times D_{\nu}\vec{\phi}\right)^{2} - V(\phi) \\ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}; \qquad D_{\mu}\vec{\phi} = \partial_{\mu}\vec{\phi} + gA_{\mu}\vec{\phi}\times\phi_{\infty} \\ \phi:S^{2} \rightarrow S^{2}; \ \phi_{\infty} = (0,0,1) \longrightarrow \text{SO}(2) \simeq U(1) \text{ unbroken symmetry group} \\ \hline (\phi_{1} + i\phi_{2}) = \phi_{\perp} \rightarrow \phi_{\perp}' = U\phi_{\perp}; \quad U = e^{ig\alpha} \qquad A_{\mu} \rightarrow A_{\mu}' = A_{\mu} + \frac{i}{g}U\partial_{\mu}U^{-1} \end{array}$$

• Field equations:
$$D_{\mu}\vec{J}^{\mu} = \frac{V}{\vec{\phi}} \times \vec{\phi}$$

 $\partial_{\mu}F^{\mu\nu} = g\vec{\phi}_{\infty} \cdot \vec{J}^{\nu}$

• Current: $\vec{J}^{\mu} = \vec{\phi} \times D^{\mu}\vec{\phi} - D_{\nu}\vec{\phi}(D^{\nu}\vec{\phi}\cdot\vec{\phi}\times D^{\mu}\vec{\phi})$

Weakly bounding potential: $U(\phi) = \mu^2 \left[lpha (1-\phi_3) + (1-lpha) (1-\phi_3)^4 \right]$

Weakly bounding potential: $U(\phi) = \mu^2 \left[\alpha (1 - \phi_3) + (1 - \alpha)(1 - \phi_3)^4 \right]$

Weakly bounding potential: $U(\phi) = \mu^2 \left[\alpha (1 - \phi_3) + (1 - \alpha)(1 - \phi_3)^4 \right]$

2 25 3 • There is no electric field in the usual gauged planar Skyrme model • In the strong coupling limit the total magnetic flux is quantized, $g\Phi=Q$ • The energy of the soliton is • As $g \to \infty$ the maxima of the energy density distribution are at

Q=1 Q=2 Q=5

0=8

 $\phi_3
ightarrow -1, \ \phi_\perp
ightarrow 0$

Maxwell term alone cannot stabilize

Chern-Simons-Maxwell baby Skyrme model

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{c}{4} \varepsilon^{\mu\nu\rho} F_{\mu\nu} A_{\rho} + \frac{1}{2} D_{\mu} \vec{\phi} \cdot D^{\mu} \vec{\phi} - \frac{1}{4} (D_{\mu} \vec{\phi} \times D_{\nu} \vec{\phi})^2 - V(\vec{\phi}) \\ & \\ \hline \mathbf{P}\text{-}, \mathbf{T}\text{- violating Chern-Simons term} \\ \end{split} \\ \begin{aligned} \mathcal{T}_{\mu\nu} &= -F_{\mu\lambda} F_{\nu}{}^{\lambda} + \frac{1}{4} g_{\mu\nu} F_{\lambda\rho} F^{\lambda\rho} + D_{\mu} \vec{\phi} \cdot D_{\nu} \vec{\phi} - (D_{\mu} \vec{\phi} \times D_{\rho} \vec{\phi}) \cdot (D_{\nu} \vec{\phi} \times D^{\rho} \vec{\phi}) \\ & - g_{\mu\nu} \begin{bmatrix} 1}{2} D_{\rho} \vec{\phi} \cdot D^{\rho} \vec{\phi} - \frac{1}{4} (D_{\rho} \vec{\phi} \times D_{\sigma} \vec{\phi}) \cdot (D^{\rho} \vec{\phi} \times D^{\sigma} \vec{\phi}) - V \end{bmatrix} \\ \hline \mathbf{Field equations:} \begin{cases} D_{\mu} \vec{J}^{\mu} = \frac{V}{\vec{\phi}} \times \vec{\phi} \\ \partial_{\mu} F^{\mu\nu} + \frac{c}{2} \varepsilon^{\nu\alpha\beta} F_{\alpha\beta} = g \vec{\phi}_{\infty} \cdot \vec{J}^{\nu} \\ \hline \mathbf{Gauss law:} & \nabla \vec{E} + cB = g\rho \end{cases} \qquad \Phi = \int d^2 x B \sim q \\ \hline \mathbf{Angular momentum:} & J = \int T_{\varphi 0} d^2 x \end{split}$$

Q=4, g=1.5

Double vacuum potential: $U(\phi) = \mu^2(1-\phi_3^2)$

Q=4, g=0.3, A₀=0.9

Q=4 , g=0.3, A_0 =-0.9

Double vacuum potential: $U(\phi) = \mu^2(1 - \phi_3^2)$

Q=4 , g=0.3, A_0 =-0.9

0.05

-10

-20

-30-30 -20 -1010 30

-30-30 -2010 20

-10

-20

-0.2

-0.2 -20 -30-30 -20 -1010

g=0.3

$$\begin{array}{l} \mathcal{G}auged \ merons\\ \mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} + \frac{1}{2}D_{\mu}\vec{\phi}\cdot D^{\mu}\vec{\phi} - \frac{1}{4}\left(D_{\mu}\vec{\phi}\times D_{\nu}\vec{\phi}\right)^{2} - V(\phi)\\ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}; \qquad D_{\mu}\vec{\phi} = \partial_{\mu}\vec{\phi} + gA_{\mu}\vec{\phi}\times\phi_{\infty}\\ \hline V(\phi) = m^{2}(\phi_{3} - c)^{2}\\ \phi: S^{2} \rightarrow S^{2}; \ \phi_{\infty} = (0, 0, c) \longrightarrow \mathrm{SO}(2) \simeq \mathrm{U}(1) \ \mathrm{unbroken\ symmetry\ group}\\ D_{i}\phi_{\perp} = \partial_{i}\phi_{\perp} - iA_{i}\phi_{\perp} \xrightarrow[r \rightarrow \infty]{} 0, \ \phi_{\perp} \xrightarrow[r \rightarrow \infty]{} \sqrt{1 - c^{2}}e^{i\Psi(\theta)}, A_{i} \xrightarrow[r \rightarrow \infty]{} \partial_{i}\alpha(\theta)\\ \hline \Phi = \oint_{S^{1}}A_{i}dx^{i} = 2\pi n\\ \hline \mathbf{Q} = -\frac{1}{4\pi}\int d^{2}x \ \vec{\phi} \cdot (\partial_{1}\vec{\phi}\times\partial_{2}\vec{\phi})\\ \hline \vec{\phi}(0) = (0, 0, -1) \longrightarrow Q = \frac{1+c}{2}\\ \hline \vec{\phi}(0) = (0, 0, 1) \longrightarrow Q = \frac{1-c}{2} \end{array}$$

Interaction between the gauged merons

Linearized field eqs:
$$(\Delta - m^2)\phi_3 = 0$$

 $(\Delta - g^2)\delta A_i = 0; \qquad \partial_i \delta A_i = 0$

$$\phi_3 \sim c_s K_0(mr), \qquad A_\theta \sim n + c_v r K_1(gr)$$

Interaction potential:

$$U(r) \sim c_v^{(1)} c_v^{(2)} K_0(gr) - c_s^{(1)} c_s^{(2)} K_0(mr)$$

Force between the merons:

$$F=\pm 2\pi\left[c_v^2gK_1\left(gR
ight)-c_s^2mK_1(mR)
ight]$$

There can be a stable equilibrium for the system of two merons of different types, N and S

Gauged merons

0.75

0.50

0.25

0

0.50

0.25

-0.25

-0.50 -0.75

Summary and Outlook

- Gauged planar Skyrmions are coupled to the magnetic fluxes, the quantization of the fluxes matches the topology of the scalar sector
- Rotational invariance of the multisoliton configurations is recovered in the strong coupling limit (without CS term)
- There is a compicated pattern of the P-, T- violating interactions between the CS-Maxwell baby Skyrmions
- Gauged multisolitons in the model with Dzyaloshinskii-Moriya interaction term?
- There is a new class of regular soliton solutions of the gauged planar Skyrme model – gauged merons
- Gauged CS BPS Skyrmions?
- Crystalline structures?