Deformed oscillators with so(3,4) symmetry

A. Provorov
in collaboration with S. Krivonos
BLTP JINR, Dubna, Russia
SIS'18, Dubna, 16.08.18

(1) Introduction
(2) Invariant oscillator construction
(3) Construction of the action

4 Another parametrisation
(5) Conclusion

5-graded decomposition

2Every simple Lie algebra \mathcal{F} (except for $s u(1,1)$) admits 5-graded decomposition with respect to a suitable generator $L_{0} \in \mathcal{F}$:

$$
\begin{gathered}
\mathcal{F}=\mathfrak{f}_{-1} \oplus \mathfrak{f}_{-\frac{1}{2}} \oplus \mathfrak{f}_{0} \oplus \mathfrak{f}_{\frac{1}{2}} \oplus \mathfrak{f}_{1} \\
{\left[\mathfrak{f}_{i}, \mathfrak{f}_{j}\right] \subseteq \mathfrak{f}_{i+j} \text { for } i, j \in\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1\right\},|i+j| \leq 1} \\
{\left[\mathfrak{f}_{i}, \mathfrak{f}_{j}\right]=0 \text { for }|i+j|>1}
\end{gathered}
$$

We can choose

$$
\mathfrak{f}_{ \pm \mathbf{1}}=\mathbb{C} L_{ \pm \mathbf{1}}, \quad \mathfrak{f}_{0}=\mathcal{H} \oplus \mathbb{C} L_{0}
$$

where $\mathcal{H} \subset \mathcal{F}$ is a Lie subalgebra and L_{0} commutes with \mathcal{H}. A basis for $\mathrm{f}_{ \pm \frac{1}{2}}$ is given by generators $G_{ \pm \frac{1}{2}}^{A}$ which carry an irreducible representation of \mathcal{H}.
Here only real Lie algebras and groups are considered so a real forms of \mathcal{F} and \mathcal{H} have to be picked.
Compatibility with the 5 -grading requires this real form to be non-compact hence $\left(L_{-1}, L_{0}, L_{1}\right)$ generate the $s u(1,1)$ subalgebra of \mathcal{F}.

Coset building

Let $F, H, S U(1,1)$ be generated by $\mathcal{F}, \mathcal{H}, s u(1,1)$, then a symmetric space can be build as follows:

$$
W=\frac{F}{H \times S U(1,1)}
$$

The main idea of the construction is to enlarge the coset by reducing the stability subgroup:

$$
H \times S U(1,1) \rightarrow H \times \mathfrak{B}_{S U(\mathbf{1}, \mathbf{1})}
$$

where $\mathcal{B}_{S U(\mathbf{1}, \mathbf{1})}$ is generated by $\left(L_{0}, L_{1}\right)$. That gives

$$
\mathcal{W}=\frac{F}{H \times \mathfrak{B}_{S U(\mathbf{1 , 1}}}
$$

Coset parametrisation

\mathcal{W} can be parametrised as follows:

$$
g=e^{t\left(L_{-1}+\omega^{2} L_{1}\right)} e^{u(t) \cdot G_{-\frac{1}{2}}} e^{v(t) \cdot G_{\frac{1}{2}}}
$$

where - implies summation over A. The standard definition of the Cartan forms ($\left\{h_{s}\right\}$ form a basis of \mathcal{H}):

$$
g^{-1} d g=\sum_{i=-1,0,1} \omega_{i} L_{i}+\sum_{j= \pm \frac{1}{2}} \omega_{j} \cdot G_{j}+\sum_{s} \omega_{h}^{s} h_{s}
$$

One can see, that the equations

$$
\begin{equation*}
\omega_{-\frac{1}{2}}^{A}=0, \quad A=1, \ldots, d \tag{1}
\end{equation*}
$$

are invariant under the transformations of the coset, realised by left multiplication by the elements of F. Using this equation we can express the Goldstone fields $v(t)$ via the Goldstone fields $u(t)$ in a covariant fashion (inverse Higgs phenomenon).
After that one can impose additional constraints:

$$
\begin{equation*}
\omega_{\frac{1}{2}}^{A}=0 \quad A=1, \ldots, d \tag{2}
\end{equation*}
$$

which are invariant only when (1) are satisfied. Thus the equations (1) and (2) are invariant equations of motion.

The algebra

The algebra $S O(3,4)$ may be defined by the following commutation relations:

$$
\begin{array}{rlrl}
{\left[L_{n}, L_{m}\right]} & =(n-m) L_{n+m}, & & n, m=-1,0,1 \\
{\left[M_{n}, M_{m}\right]} & =(n-m) M_{n+m}, & & n, m=-1,0,1 \\
{\left[P_{n}, P_{m}\right]} & =(n-m) P_{n+m}, & & n, m=-1,0,1 \\
{\left[L_{n}, G_{r, a, b}\right]} & =(n-r) G_{n+r, a, b}, & & n, r=-1,0,1, \\
{\left[M_{n}, G_{r, a, b}\right]} & =\left(\frac{n}{2}-a\right) G_{r, n+a, b}, & & n, r=-1,0,1, \\
{\left[P_{n}, G_{r, a, b}\right]} & =\left(\frac{n}{2}-b\right) G_{n, a, n+b}, & n, r=-1,0,1, & a, b=-\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
{\left[G_{r, a, b}, G_{r^{\prime}, a^{\prime}, b^{\prime}}\right]=\delta_{r+r^{\prime}, 0} \delta_{b+b^{\prime}, 0} b\left(-1+3 r^{2}\right) M_{a+a^{\prime}}+} \\
+\delta_{r+r^{\prime}, 0} \delta_{a+a^{\prime}, 0} a\left(-1+3 r^{2}\right) P_{b+b^{\prime}}+2 \delta_{a+a^{\prime}, 0} \delta_{b+b^{\prime}, 0} a b\left(r-r^{\prime}\right) L_{r+r^{\prime}} \\
r, r^{\prime}=-1,0,1, a, a^{\prime}, b, b^{\prime}=-\frac{1}{2}, \frac{1}{2}
\end{array}
$$

The reason this algebra has been chosen for consideration is that it has $3 s u(1,1)$ subalgebras (generated by L_{n}, M_{n}, and P_{n}) which allows construction of different actions. Every $s u(1,1)$ generator rotates $G_{r, a, b}$ by the corresponding index.
In case of $\left[G_{r, a, b}, G_{r^{\prime}, a^{\prime}, b^{\prime}}\right]=0$ we get the Galilei algebra.

The coset

The coset is built as follows:

$$
\mathcal{W}=\frac{S O(3,4)}{S U(1,1) \times S U(1,1) \times \mathfrak{B}_{S U(1,1)}}
$$

One of the possible parametrisations is

$$
\begin{aligned}
& g=e^{t\left(M_{-1}+\omega^{2} M_{1}\right)}
\end{aligned}
$$

The Cartan forms:

$$
g^{-\mathbf{1}} d g=\sum_{n} \omega_{L_{n}} L_{n}+\sum_{a} \omega_{M_{a}} M_{a}+\sum_{b} \omega_{P_{b}} P_{b}+\sum_{r, a, b} \omega_{r, a, b} G_{r, a, b}
$$

Linearised Cartan forms

The linearised Cartan forms can be written as follows:

$$
\begin{aligned}
\left(g^{-1} d g\right)_{\text {lin }} & =\left(d u_{1}-d t v_{1}\right) G_{-1,-\frac{1}{2},-\frac{1}{2}}+\left(d u_{2}-d t v_{2}\right) G_{-1,-\frac{1}{2}, \frac{1}{2}}+ \\
& +\left(d u_{3}-d t v_{3}\right) G_{0,-\frac{1}{2},-\frac{1}{2}}+\left(d u_{4}-d t v_{4}\right) G_{0,-\frac{1}{2}, \frac{1}{2}}+ \\
& +\left(d u_{5}-d t v_{5}\right) G_{1,-\frac{1}{2},-\frac{1}{2}}+\left(d u_{6}-d t v_{6}\right) G_{1,-\frac{1}{2}, \frac{1}{2}}+ \\
& +\left(d v_{1}+d t \omega^{2} u_{1}\right) G_{-1, \frac{1}{2},-\frac{1}{2}}+\left(d v_{2}+d t \omega^{2} u_{2}\right) G_{-1, \frac{1}{2}, \frac{1}{2}}+ \\
& +\left(d v_{3}+d t \omega^{2} u_{3}\right) G_{0, \frac{1}{2},-\frac{1}{2}}+\left(d v_{4}+d t \omega^{2} u_{4}\right) G_{0, \frac{1}{2}, \frac{1}{2}}+ \\
& +\left(d v_{5}+d t \omega^{2} u_{5}\right) G_{1, \frac{1}{2},-\frac{1}{2}}+\left(d v_{6}+d t \omega^{2} u_{6}\right) G_{1, \frac{1}{2}, \frac{1}{2}}
\end{aligned}
$$

It corresponds to the Galilei algebra where $\left[G_{r, a, b}, G_{r^{\prime}, a^{\prime}, b^{\prime}}\right]=0$ for $r, r^{\prime}=-1,0,1$, $a, a^{\prime}, b, b^{\prime}=-\frac{1}{2}, \frac{1}{2}$.
The system

$$
\left\{\begin{array}{l}
d u_{i}-d t v_{i}=0 \\
d v_{i}+d t \omega^{2} u_{i}=0
\end{array}\right.
$$

transforms to

$$
\ddot{u}_{i}+\omega^{2} u_{i}=0
$$

where $i=1, \ldots, 6$.

Shortcuts

In order to shorten the following formulae, let us introduce the new variables

$$
\begin{array}{lllll}
U^{111}=u_{1}, & U^{112}=u_{2}, & U^{121}=u_{3}, & U^{122}=u_{4}, & U^{221}=u_{5},
\end{array} \quad U^{222}=u_{6} ~ 子 v_{6}, \quad V^{112}=v_{2}, \quad V^{121}=v_{3}, \quad V^{122}=v_{4}, \quad V^{221}=v_{5}, \quad V^{222}=v_{6}
$$

Also, the following shortcuts are used:

$$
\begin{aligned}
(\mathcal{A B}) & =\mathcal{A}^{i j \alpha} \mathcal{B}_{i j \alpha} \\
(\mathcal{A B C})^{i j \alpha} & =\mathcal{A}^{i j \beta} \mathcal{B}_{k \mid \beta} \mathcal{C}^{k \mid \alpha} \\
(\mathcal{A B C D}) & =\mathcal{A}^{i j \alpha} \mathcal{B}_{i j \beta} \mathcal{C}^{k \mid \beta} \mathcal{D}_{k l \alpha}
\end{aligned}
$$

Equations of motion

By nullifying Cartan forms $\omega_{r, a, b}$ we gain equations of motion:

$$
\begin{gathered}
\dot{V}^{i j \alpha}-\frac{1}{8}(\dot{U} V V)^{i j \alpha}-\frac{1}{4}(V \dot{U} V)^{i j \alpha}+ \\
+\frac{1}{8}\left(1+\frac{1}{8}(U \dot{U})-\frac{1}{128} \omega^{2}(U U U U)\right)(V V V)^{i j \alpha}+ \\
+\omega^{2}\left(U^{i j \alpha}+\frac{1}{8}(V U U)^{i j \alpha}+\frac{1}{4}(U U V)-\frac{1}{64}((U U U) V V)^{i j \alpha}-\frac{1}{32}(V(U U U) V)^{i j \alpha}\right)=0
\end{gathered}
$$

where

$$
V^{i j \alpha}=\frac{\dot{U}^{i j \alpha}+\frac{1}{8} \omega^{2}(U U U)^{i j \alpha}}{1+\frac{1}{8}(U \dot{U})-\frac{1}{128} \omega^{2}(U U U U)}
$$

In the $\omega=0$ the equations simplify to

$$
\begin{equation*}
\ddot{U}^{i j \alpha}\left(1+\frac{1}{8}(U \dot{U})\right)-\frac{1}{32}(U(\dot{U} \dot{U} \dot{U})) \dot{U}^{i j \alpha}-\frac{1}{4}(\dot{U} \dot{U} \dot{U})^{i j \alpha}=0 \tag{3}
\end{equation*}
$$

Transformations

The transformations are defined by the following expression:

$$
g_{0} \cdot g=\tilde{g} \cdot h
$$

where h is from the stability subgroup, g and $\tilde{g} \in \mathcal{W}$.
In the case of $S O(3,4)$ under consideration the following transformations have been calculated

$$
\begin{gathered}
g^{a M_{-1}+b M_{0}+c M_{1}} e^{t\left(M_{-1}+\omega^{2} M_{1}\right)} e^{u \cdot G_{-\frac{1}{2}}} e^{v \cdot G_{1}}= \\
e^{(t+\delta t)\left(M_{-1}+\omega^{2} M_{1}\right)} e^{(u+\delta u) \cdot G}-\frac{1}{2}
\end{gathered} e^{(v+\delta v) \cdot G_{\frac{1}{2}}} h
$$

Transformations

We will use the function f :

$$
f(t)=\frac{1+\cos (2 \omega t)}{2} \cdot a+\frac{\sin (2 \omega t)}{2 \omega} \cdot b+\frac{1-\cos (2 \omega t)}{2 \omega^{2}} \cdot c
$$

which satisfies the equation $\frac{d}{d t}\left(\ddot{f}+4 \omega^{2} f\right)=0$.
Then

$$
\begin{aligned}
& \delta t=\frac{1}{64} \ddot{f} \frac{(U U U U)}{-4+\frac{1}{32} \omega^{2}(U U U U)}+f \\
& \delta U^{i j \alpha}=-\frac{4 \dot{f} U^{i j \alpha}+\ddot{f}(U U U)^{i j \alpha}-\frac{1}{16} \omega^{2} \dot{f}(U U(U U U))^{i j \alpha}}{2\left(-4+\frac{1}{32} \omega^{2}(U U U U)\right)} \\
& \delta V^{i j \alpha}=-\frac{1}{2\left(-4+\frac{1}{32} \omega^{2}(U U U U)\right)} \cdot\left(4 \ddot{f} U^{i j \alpha}-4 \dot{f} V^{i j \alpha}+\right. \\
&\left.\ddot{f}(U U V)^{i j \alpha}+\frac{1}{2} \ddot{f}(V U U)^{i j \alpha}-\frac{1}{16} \omega^{2} \dot{f}(V(U U U) U)^{i j \alpha}\right)
\end{aligned}
$$

Construction of the action

In order to construct an action let us expand the coset:

$$
\mathcal{W}=\frac{S O(3,4)}{S U(1,1) \times S U(1,1) \times \mathfrak{B}_{S U(1,1)}} \rightarrow \mathcal{W}_{\mathrm{imp}}=\frac{S O(3,4)}{S U(1,1) \times U(1) \times \mathfrak{B}_{S U(1,1)}}
$$

then a coset element changes to:

$$
g_{i m p}=g e^{\Lambda_{-1} P_{-1}+\Lambda_{1} P_{1}}
$$

The new Cartan forms are:

$$
\begin{gathered}
g_{\mathrm{imp}}^{-1} d g_{\mathrm{imp}}=\sum_{n} \Omega_{L_{n}} L_{n}+\sum_{a} \Omega_{M_{a}} M_{a}+\sum_{b} \Omega_{P_{b}} P_{b}+\sum_{i j \alpha} \Omega_{u}^{i j \alpha} G_{-\frac{1}{2}, i j \alpha}+\sum_{i j \alpha} \Omega_{v}^{i j \alpha} G_{\frac{1}{2}, i j \alpha} \\
\Omega_{u}^{i j \alpha}=\Omega_{u}^{i j \alpha}, \quad \Omega_{v}^{i j \alpha}=\Omega_{v}^{i j \alpha}
\end{gathered}
$$

and $\Omega_{M_{n}}=\omega_{M_{n}}$.

Construction of the action

As follows from this equation

$$
\begin{aligned}
\Omega_{u}^{i j \alpha} G_{-\frac{1}{2}, i j \alpha} & =e^{-\Lambda_{-1} P_{-1}-\Lambda_{1} P_{\mathbf{1}}} \omega_{u}^{i j \alpha} G_{-\frac{1}{2}, i j \alpha} e^{\Lambda_{-1} P_{-1}+\Lambda_{\mathbf{1}} P_{\mathbf{1}}} \\
\Omega_{v}^{i j \alpha} G_{\frac{1}{2}, i j \alpha} & =e^{-\Lambda_{-1} P_{-1}-\Lambda_{1} P_{1}} \omega_{v}^{i j \alpha} G_{\frac{1}{2}, i j \alpha} e^{\Lambda_{-1} P_{-1}+\Lambda_{1} P_{1}}
\end{aligned}
$$

we have

$$
\omega_{u}^{i j \alpha}=\omega_{v}^{i j \alpha}=0 \Rightarrow \Omega_{u}^{i j \alpha}=\Omega_{v}^{i j \alpha}=0
$$

The opposite statement, however, is not always true. Next let us introduce the new variables:

$$
\lambda_{-1}=\frac{\tan \sqrt{\Lambda_{-1} \Lambda_{1}}}{\sqrt{\Lambda_{-1} \Lambda_{1}}} \Lambda_{-1} \quad \lambda_{1}=\frac{\tan \sqrt{\Lambda_{-1} \Lambda_{1}}}{\sqrt{\Lambda_{-1} \Lambda_{1}}} \Lambda_{1}
$$

Construction of the action

Then equations for $\lambda_{ \pm 1}$ are:

$$
\begin{gathered}
\Omega_{P_{-1}}=\frac{1}{1+\lambda_{-1} \lambda_{1}}\left(\omega_{P_{-1}}+\lambda_{-1} \omega_{P_{0}}+\lambda_{-1}^{2} \omega_{P_{1}}+d \lambda_{-1}\right)=0 \\
\Omega_{P_{1}}=\frac{1}{1+\lambda_{-1} \lambda_{1}}\left(\omega_{P_{1}}-\lambda_{1} \omega_{P_{0}}+\lambda_{1}^{2} \omega_{P_{-1}}+d \lambda_{1}\right)=0
\end{gathered}
$$

They are needed to get rid of the λ terms in the previous equations to acquire the required ones.
One can build an invariant action using $\Omega_{P_{0}}$:

$$
\begin{aligned}
S & =-\int \Omega_{P_{0}}= \\
& -\int \frac{1}{1+\lambda_{-1} \lambda_{1}}\left(\lambda_{-1} \omega^{22}-\lambda_{1} \omega^{11}+\left(1-\lambda_{-1} \lambda_{1}\right) \omega^{12}+\left(\lambda_{-1} \mathrm{~d} \lambda_{1}-\lambda_{1} \mathrm{~d} \lambda_{-1}\right)\right)
\end{aligned}
$$

where

$$
\omega^{11}=2 \omega_{P_{-1}}, \quad \omega^{12}=\omega_{P_{0}}, \quad \omega^{22}=2 \omega_{P_{1}}
$$

Another parametrisation

Another possible coset parametrisation is built as follows:

$$
\begin{aligned}
& e^{t\left(M_{-1}+\omega^{2} M_{1}\right)} e^{u_{1} G_{-1,-\frac{1}{2}},-\frac{1}{2}+u_{2} G_{-1, \frac{1}{2},-\frac{1}{2}}} e^{v_{1} G_{-1,-\frac{1}{2}, \frac{1}{2}}+v_{2} G_{-1, \frac{1}{2}, \frac{1}{2}}} \\
& e^{r_{1} G_{0,-\frac{1}{2},-\frac{1}{2}}+r_{2} G_{0, \frac{1}{2},-\frac{1}{2}}} e^{s_{1} G_{0,-\frac{1}{2}, \frac{1}{2}}+s_{2} G_{0, \frac{1}{2}, \frac{1}{2}}} e^{x_{1} G_{1,-\frac{1}{2},-\frac{1}{2}}+x_{2} G_{1, \frac{1}{2},-\frac{1}{2}}} \\
& e^{y_{1} G_{1,-\frac{1}{2}, \frac{1}{2}}+y_{2} G_{1, \frac{1}{2}, \frac{1}{2}}}
\end{aligned}
$$

The Cartan forms:

$$
g^{-1} d g=\sum_{n} \hat{\omega}_{L_{n}} L_{n}+\sum_{a} \hat{\omega}_{M_{a}} M_{a}+\sum_{b} \hat{\omega}_{P_{b}} P_{b}+\sum_{r, a, b} \hat{\omega}_{r, a, b} G_{r, a, b}
$$

Nullifying all the forms $\hat{\omega}_{r, a, b}$ yields these equations for 6 non-interacting harmonic oscillators:

$$
\ddot{w}+\omega^{2} w=0
$$

where $w=u_{1}, v_{1}, r_{1}, s_{1}, x_{1}, y_{1}$.

Conclusion

The method of nonlinear realisations in application to the Lie algebra $S O(3,4)$ has been considered and equations of motion have been obtained. Also the transformation leaving the equations invariant have been gained and a corresponding action has been built. As it has been mentioned, the chosen algebra admits building of a second action which is left for the further research. It has also been acquired, that the system of 6 harmonic oscillators admits symmetry under the action of the so $(3,4)$ group.

