D-branes as a single object

Edvard Musaev

Moscow Inst. of Physics and Technology; Kazan Federal University

based on works with

Eric Bergshoeff (Groningen U.), Chris Blair (VUB), Axel Kleinschmidt (AEI MPG), Fabio Riccioni (Rome U.)

SIS Dubna, 2018

Web of (some) branes

Web of (some) branes

Why bother?

D-branes

- AdS/CFT correspondence: different limits of a single D-brane effective action;
- phenomenological constructions: braneworld models, interesection of branes;
- black hole entropy counting;

NS-branes

- Little String Theories: $\mathcal{N} = (2,0)$ (for IIA) and $\mathcal{N} = (1,1)$ (for IIB) 6D theories;
- non-conformal field theory holographies;
- cosmological moduli stabilization via (non-geometric) NS-NS fluxes;

(日)

The results

T-duality orbits

D0 - D1 - D2 - D3 - D4 - D5 - D6 - D7 - D8 - D9NS5(5⁰₂) - KK5(5¹₂) - Q(5²₂) - R(5³₂) - R'(5⁴₂)

Effective actions for these T-duality orbits has been constructed.

- Depending on orientation these project down to actions for normal branes.
- One observes non-geometric effects for D-branes

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

D-branes: geometry and dynamics

In supergravity D-branes

are RN black-hole-like solutions of SUGRA equations of motion,

• preserve $\frac{1}{2}$ SUSY

 \blacksquare are described by non-zero metric $G_{\mu\nu}$ and gauge field $C_{\mu_1\dots\mu_2}$

As fundamental objects D-branes

are described by effective action

$$S_{DBI} = \int_{\Sigma} d^{p+1} \xi \sqrt{\det \left(G_{\mu\nu} \partial_a x^{\mu} \partial_b x^{\nu} + \mathcal{F}_{ab} \right)} + \int_{\Sigma} \mathcal{C}_{p+1}$$
(1)

 \blacksquare carry worldvolume fields $x^{\mu}=x^{\mu}(\xi)$ and \mathcal{F}_{ab}

Edvard Musaev (Phystech)

(日)、(型)、(E)、(E)、(E)、(O)(C)

T-duality

 \blacksquare Mass spectrum of a string on a torus \mathbb{T}^d is invariant under O(d,d) group

SUGRA solutions transform into solutions

String does not feel the change in backgrounds

• T-duality is performed along isometries

T-duality orbit of NS branes

Edvard Musaev (Phystech)

T-duality orbit of D-branes

	0	1	2	3	4	5	6	7	8	9
D0 :	×	•	•	•	•	•	•	•	•	•
D1 :	×	×	•	•	•	•	•	•	•	•
D2 :	×	×	×	•	•	•	•	•	•	•
D3 :	×	×	×	×	•	•	•	•	•	•
D4 :	×	×	×	×	×	•	•	•	•	•
D5 :	×	×	×	×	×	×	•	•	•	•
D6 :	×	×	×	×	×	×	×	•	•	•
D7 :	×	×	×	×	×	×	×	×	•	•
D8 :	×	×	×	×	×	×	×	×	×	•
D9 :	×	×	×	×	×	×	×	×	×	×

! T-duality changes dimension of a D-brane

Edvard Musaev (Phystech)

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

(3)

T-duality orbit of D-branes

Boundary conditions for open string ends with $\omega^{\mu} = p_{L}^{\mu} - p_{R}^{\mu}$, $p^{\mu} = p_{L}^{\mu} + p_{R}^{\mu}$:

÷.

$$\begin{split} \mathbf{N} : & \left. \partial_{\sigma} X^{\mu} \right|_{\partial \Sigma} = 0, \quad \mathbf{D} : \left. \partial_{\tau} X^{\mu} \right|_{\partial \Sigma} = 0, \\ \mathbf{N} : & \left. \omega^{\mu} = 0, \right. \qquad \mathbf{D} : \left. p^{\mu} = 0, \right. \end{split}$$
(4)

ī.

Edvard Musaev (Phystech)

(日)

Covariant potentials

• D-brane potentials $C_{(p+1)}$ can be combined:

$$|\chi\rangle = \sum_{p=0}^{10} C_{m_1...m_p} \Gamma^{m_1...m_p} |0\rangle$$
 (5)

 \bullet O(10,10) algebra that includes GL(10) as $T^M=(T^m,T_m)\text{:}$

$$\begin{split} \{\Gamma_M,\Gamma_N\} &= 2\eta_{MN} &\Longrightarrow \quad \{\Gamma_m,\Gamma^n\} = \delta_m{}^n, \\ \text{Clifford vacuum:} & \Gamma_m |0\rangle = 0 \end{split}$$

 \bullet For each brane one defines a charge $\langle Q|$

Edvard Musaev (Phystech)

(6)

Covariant potentials

 $\label{eq:constraint} \begin{array}{l} \mbox{for say } \langle Q| = \langle 0| \\ \mbox{the only non-zero: } \langle Q|\Gamma_{m_1\dots m_{10}}|\chi\rangle = C_{m_1\dots m_{10}} \end{array}$

 $\label{eq:2.1} \begin{array}{l} \mbox{for say } \langle Q|=\langle 0|\Gamma_{\hat{m}}\\ \mbox{the only non-zero: } \langle Q|\Gamma_{m_1...m_9}{}^{\hat{m}}|\chi\rangle=C_{m_1...m_9}. \end{array}$

Invariant interaction

$$S_{wz} = \int d^{10}\xi \ \varepsilon^{a_1 \dots a_{10}} \langle Q | \Gamma_{M_1 \dots M_{10}} | \chi \rangle \partial_{a_1} X^{M_1} \cdots \partial_{a_{10}} X^{M_{10}}.$$
(8)

Upon choice of $\langle Q|$ this reproduces smth like

$$S_{wz}^{D} = \int C_{m_1...m_p} dX^{m_1} \wedge \dots \wedge dX^{m_p}$$
(9)

Edvard Musaev (Phystech)

10 / 18

(7)

Doubled geometry

- \blacksquare Doubled coordinates $X^M = (x^m, \tilde{x}_m)$
- section constraint for consistency of the theory, kills half of the coordinates
- T-duality: $T_x : x \longleftrightarrow \tilde{x}$

Generalized metric is a T-duality covariant object

$$\mathcal{H}_{MN} = \begin{bmatrix} g - Bg^{-1}B & Bg^{-1} \\ g^{-1}B & g^{-1} \end{bmatrix}, \text{ in analogy with } F_{\mu\nu} = \begin{bmatrix} 0 & \vec{E} \\ -\vec{E} & *_3 \vec{B} \end{bmatrix}$$
$$\mathcal{H}_{MN} \in \frac{O(10, 10)}{O(1, 9) \times O(1, 9)}$$
(10)

 \blacksquare There exists an action for \mathcal{H}_{MN}

[Berman, Cederwall, Coimbra, Godazgar², Grana, Hohm, Hull, EtM, Nicolai, Perry, Samtleben, Thompson, Waldram, Zwiebach ...]

Edvard Musaev (Phystech)

11 / 18

Dynamics

Dynamics is ruled by DBI action

$$\begin{split} S_p &= \int d^{p+1}\xi e^{-\varphi} \sqrt{-\det\left(G_{mn}\partial_a x^m \partial_b x^n + \dots\right)}, \end{split} \tag{11} \\ x^m &= x^m(\xi) \quad \text{scalar fields} \end{split}$$

A T-invariant version then would be

$$S_{D} = \int d^{10}\xi e^{-d} \sqrt{-\det\left(\mathcal{H}_{MN}\partial_{a}X^{M}\partial_{b}X^{N} + \dots\right)}, \qquad (12)$$

Dynamics

Dynamics is ruled by DBI action

$$\begin{split} S_p &= \int d^{p+1} \xi e^{-\varphi} \sqrt{-\det\left(G_{mn} \partial_a x^m \partial_b x^n + \dots\right)}, \end{split} \tag{11} \\ x^m &= x^m(\xi) \quad \text{scalar fields} \end{split}$$

A T-invariant version then would be

$$S_{D} = \int d^{10}\xi e^{-d} det \left|h_{\alpha\beta}\right|^{\frac{1}{4}} \sqrt{-\det\left(\mathcal{H}_{MN}\hat{\partial}_{a}X^{M}\hat{\partial}_{b}X^{N} + \dots\right)}, \qquad (12)$$

where one needs the projected derivatives

$$\hat{\partial}_{a} X^{M} = \partial_{a} X^{M} - (h^{-1})^{\alpha\beta} k_{\alpha}{}^{M} k_{\beta}{}^{N} \mathcal{H}_{NK} \partial_{a} X^{K},$$

$$h_{\alpha\beta} = k_{\alpha}{}^{M} k_{\beta}{}^{N} \mathcal{H}_{MN}.$$

$$(13)$$

Edvard Musaev (Phystech)

12 / 18

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Embedding of branes

	0	1	2	3	4	5	6	7	8	9	ĩ	2	ĩ	$\tilde{4}$	Ĩ	õ	$\tilde{7}$	$\tilde{8}$	9
D0	k	•	٠	٠	•	٠	٠	٠	٠	٠	k	k	k	k	k	k	k	k	k
D1	k	k	٠	٠	•	٠	٠	٠	٠	٠	٠	k	k	k	k	k	k	k	k
D2	k	k	k	•	٠	٠	٠	•	٠	٠	•	٠	k	k	k	k	k	k	k
D3	k	k	k	k	٠	٠	٠	٠	٠	٠	٠	٠	٠	k	k	k	k	k	k
D4	k	k	k	k	k	٠	٠	٠	٠	٠	٠	٠	٠	٠	k	k	k	k	k
D5	k	k	k	k	k	k	٠	٠	٠	٠	٠	٠	٠	٠	٠	k	k	k	k
D6	k	k	k	k	k	k	k	٠	٠	٠	•	٠	٠	٠	•	•	k	k	k
D7	k	k	k	k	k	k	k	k	٠	٠	•	٠	٠	٠	•	•	٠	k	k
D8	k	k	k	k	k	k	k	k	k	٠	•	٠	٠	٠	•	•	٠	٠	k
D9	k	k	k	k	k	k	k	k	k	k	٠	•	•	٠	•	•	٠	٠	•

- ! Depending on the choice of k's one gets different D-branes
- !? D-branes can localize in dual space

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Embedding of branes

NS5

KK5

Q

R

R'

NS five branes localize in dual space as well:

world-volume

• — localization direction, **k** — Killing direction

Non-perturbative instanton corrections on world-sheet of string localize KK-monopole in dual space. The same is true for 5^2_2 -branes. [Jensen, Tong, Harvey, Kimura

< ロ > < 同 > < 回 > < 回 >

The end

Other approaches

 1206.6964 Asakawa, Sasa, Watamura: generalized geometry approach. D-brane is a Dirac structure on the doubled tangent bundle

$$\mathbf{L} \oplus \mathbf{L}^* \subset \mathbf{T}\mathbf{M} \oplus \mathbf{T}^*\mathbf{M} \tag{15}$$

- 1107.0876 Albertsson, Dai, Kao, Lin: doubled formalism for open string ends. Dynamics of boundary terms ⇒ the doubled DBI action. Incapable to reproduce the conventional DBI action.
- unpublished Berman, Cederwall, Malek: DFT approach to a single D-brane. Worldvolume gauge fields are fluctuations along the winding coordinates.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー わんの

- One is able to construct a single action for several branes, related by T-duality
- For D-branes this suggests localization in dual space

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Discussion

- Prove microscopically, that D-branes localize in dual space, calculate instanton corrections
- Field theories on worldvolume (especially for D-branes)
- Generalize stuff for exceptional field theories and U-dualities

What's the use of all that?

- Tadpole cancellation conditions for flux compactifications (Bianchi identities), support for internal space
- String behavior on such backgrounds: non-commutativity and non-associativity
- Little string theories from NS five-branes
- New stuff for AdS/CFT correspondence?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで