EXTENDED GALILEAN SUSY WITH ALL CENTRAL CHARGES AND N=4 GALILEAN SUPERPARTICLES

1. From general $\mathrm{D}=4 \mathrm{~N}$-extended Poincaré to $\mathrm{d}=3 \mathrm{~N}$-extended Galilean superalgebras $(\mathrm{D}=\mathrm{d}+1)$
2. Example: $d=3 \quad N=4$ Galilean SUSY with $12+1$ central charges
3. $d=3 \mathrm{~N}=4$ Galilean superparticle models: action, phase space formulation and first quantization
4. Final remarks
based on

- J.L. "D=4 extended Galilei superalgebras with central charges", Phys. Lett. B694(2011), 478; arXiv:1009.0182
- S. Fedoruk, E. Ivanov, J.L., "From N=4 Galilean superparticle to three-dimensional nonrelativistic $\mathrm{N}=4$ superfields", JHEP05 (2018)019; arXiv:1803.03159

$\mathrm{D}=4$ extended Galilei superalgebras with central charges

Jerzy Lukierski

Institute for Theoretical Physics, University of Wrocław, pl. Maxa Borna 8, 50-204 Wrocław, Poland

article info

Article history:
Received 2 September 2010
Accepted 5 October 2010
Available online 20 October 2010
Editor: M. Cvetǐ

Keywords:

Nonrelativistic supersymmetries
Contractions of space-time algebras
Central charges in SUSY theories

Abstract

abstrat

We perform a nonrelativistic contraction of N -extended Poincare superalgebra with internal symmetry $\mathrm{U}(\mathrm{N})$ and general set of $\mathrm{N}(\mathrm{N}-1$) real central charges. We show that for even $\mathrm{N}=2 \mathrm{k}$ and particular choice of the dependence of $Z_{i j}$ on light velocity c one gets the N-extended Galilei superalgebra with unchanged number of central charges and compact internal symmetry algebra $U(k ; H)=U S p(2 k)$. The Hamiltonian positivity condition is modified only by one central charge. If we put all the central charges equal to zero one gets the $2 k$-extended Galilei superalgebra as the subalgebra of recently introduced extended Galilei conformal superalgebra (de Azcárraga, Lukierski (2009) [1] and Sakaguchi [2]). (C) 2010 Elsevier B.V. All rights reserved.

1. Introduction

contraction $\mathrm{c} \rightarrow \infty$ [7] if we perform the following c -dependent rescaling ($\mathrm{P}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}$ remain unchanged)

From $\boldsymbol{\mathcal { N }}=4$ Galilean superparticle to three-dimensional non-relativistic $\mathcal{N}=4$ superfields

Sergey Fedoruk, ${ }^{a}$ Evgeny Ivanov ${ }^{a}$ and Jerzy Lukierski ${ }^{b}$
${ }^{a}$ Bogoliubov Laboratory of Theoretical Physics, JINR,
Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
${ }^{b}$ Institute for Theoretical Physics, University of Wroctaw, pl. Maxa Borna, 50-204 Wroclaw, Poland
E-mail: fedoruk@theor.jinr.ru, eivanov@theor.jinr.ru, jerzy.lukierski@ift.uni.wroc.pl

Abstract: We consider the general $\mathcal{N}=4, d=3$ Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for $\mathcal{N}=4$ three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic κ-gauge transformations. The quantization of the model gives rise to the collection of free $\mathcal{N}=4, d=3$ Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic $\mathcal{N}=4$ supersymmetric theories.

1. From general $\mathrm{D}=4 \mathrm{~N}$-extended Poincaré to $\mathrm{d}=3$ N -extended Galilean superalgebras
$\mathrm{N}=$ extended Poincaré superalgebra with central charges generators

$$
\begin{aligned}
& \left\{Q_{\alpha}^{A}, \bar{Q}_{\dot{\beta} B}\right\}=2\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} P_{\mu} \delta_{B}^{A} \\
& \left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\}=2 \varepsilon_{\alpha \beta} Z^{A B}=2 \varepsilon_{\alpha \beta}\left(X^{A B}+i Y^{A B}\right) \\
& \left\{\bar{Q}_{\dot{\alpha} A}, \bar{Q}_{\dot{\beta} B}\right\}=2 \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{Z}_{A B}=2 \varepsilon_{\dot{\alpha} \dot{\beta}}\left(X^{A B}-i Y^{A B}\right)
\end{aligned}
$$

$\frac{N(N-1)}{2}$ complex $Z^{A B} \leftrightarrow N(N-1)$ real central charges $\left(X^{A B}, Y^{A B}\right)$.
Covariance relations:

$$
\begin{array}{cc}
{\left[M_{\mu \nu}, Q_{\alpha}{ }^{A}\right]=-\frac{1}{2}\left(\sigma_{\mu \nu}\right)_{\alpha}{ }^{\beta} Q_{\beta}^{A}} & {\left[P_{\mu}, Q_{\alpha}^{A}\right]=0} \\
{\left[T_{B}^{A}, Q_{\alpha}^{A}\right]=\delta_{B}^{C} Q_{\alpha}^{A}-\frac{1}{N} \delta_{B}^{A} Q_{\alpha}^{C}} & \underset{\left(A, Q_{\alpha}^{A}\right]=\alpha Q_{\alpha}^{A}}{(\alpha=1 \rightarrow A=U(1))}
\end{array}
$$

plus complex - conjugate relations for $\bar{Q}_{\dot{\alpha} A}$.
$\mathrm{D}=4$ Poincaré superalgebra $\rightarrow d=3$ Galilean superalgebra ($\mathrm{N}=2 \mathrm{k}$ even)
i) Bosonic space-time sector $(\mathrm{N}=0)$

$$
\begin{aligned}
& \begin{aligned}
M_{\mu \nu} & =\left(M_{i}, N_{i}\right) \quad \xrightarrow[N_{i}=c B_{i}]{c \rightarrow \infty} \\
P_{\mu} & =\left(P_{i}, P_{0}\right)
\end{aligned} \\
& P_{0}=m_{0} c+\frac{H}{c} \\
& \mathrm{~d}=3 \text { Galilean algebra } \\
& {\left[M_{i}, B_{j}\right]=\varepsilon_{i j k} B_{k}} \\
& {\left[H, B_{i}\right]=-P_{i}} \\
& {\left[P_{i}, B_{j}\right]=-M \delta_{i j}} \\
& M=m_{0}-\underset{\text { central change }}{\text { Barman }}
\end{aligned}
$$

ii) Internal sector $U(N)=S U(N) \oplus A$ (R-symmetries)

One splits generators of $S U(N)$ into symmetric Riemannian pair

$$
\begin{array}{ll}
h=T_{B}^{+A} \in U S p(4) & k=T_{B}^{-A} \in \frac{S U(N)}{U S p(4)} \\
T_{B}^{ \pm A}=\mp \Omega^{A C} T_{C}^{ \pm D} \Omega_{D B} & \longrightarrow \Omega^{A B}=-\Omega^{B A} \\
\Omega^{A C} \Omega_{C B}=\delta_{B}^{A}
\end{array} \Rightarrow \begin{gathered}
\text { symplectic } \\
\text { metric }
\end{gathered}
$$

NR contraction $c \rightarrow \infty$ after rescaling of internal sector

$$
\begin{array}{cccc}
T_{B}^{+A}=\mathbb{T}^{+A} \\
T_{B}^{-A}=c \mathrm{~T}_{B}^{-A} & \stackrel{B}{A}=c \mathbb{A} & {\left[h^{\prime}, h\right] \subset h \quad[h, k] \subset k} & \\
\hline \boldsymbol{c \rightarrow \infty} & {[h, k] \subset h} & {[h, k] \subset h} \\
& & & {[k, \mathbb{k}]=0}
\end{array}
$$

One gets inhomogeneous $\operatorname{USp}(N)$ as maximal Galilean R-symmetry
iii) Fermionic sector and central charges

We introduce new symplectic-covariant basis of supercharges

$$
Q_{\alpha}^{ \pm A}=\frac{1}{\sqrt{2}}\left(Q_{\alpha}^{A} \pm \varepsilon_{\alpha \beta} \Omega^{A B} \bar{Q}_{\dot{\beta} B}\right) \quad \bar{Q}_{\dot{\alpha} A}^{ \pm}=\frac{1}{\sqrt{2}}\left(\bar{Q}_{\dot{\alpha} A} \mp \varepsilon_{\dot{\alpha} \dot{\beta}} \Omega_{A B} Q_{\beta}^{B}\right)
$$

Such supercharges satisfy symplectic ($U S p(N)$) Majorana condition

$$
\left(Q_{\alpha}^{ \pm A}\right)^{+} \equiv \bar{Q}_{\dot{\alpha} A}^{ \pm}=\mp \varepsilon_{\dot{\alpha} \dot{\beta}} \Omega_{A B} Q_{\beta}^{ \pm B} \quad A, B=1 \ldots N=2 k
$$

Due to this constraint it is enough to consider only holomorphic sector described by $Q_{\alpha}^{ \pm A}$ (or antiholomorphic $\left.\bar{Q}_{\dot{\alpha}}^{ \pm A}\right) \leftarrow 2 \mathrm{~N}$ unconstrained N -extended $\mathrm{D}=4$ Poincaré superalgebra in holomorphic basis

$$
\begin{aligned}
\left\{Q_{\alpha}^{ \pm A}, Q_{\beta}^{ \pm B}\right\} & = \pm 2 \Omega^{A B} \varepsilon_{\alpha \beta} P_{0}+\varepsilon_{\alpha \beta}\left(Z^{A B}-\Omega^{A C} \bar{Z}_{C D} \Omega^{D B}\right) \\
& = \pm 2 \Omega^{A B} \varepsilon_{\alpha \beta} P_{0}+2 \varepsilon_{\alpha \beta}\left(X_{-}^{A B}+i Y_{+}^{A B}\right) \\
\left\{Q_{\alpha}^{+A}, Q_{\beta}^{-B}\right\} & =2 \Omega^{A B}\left(\sigma_{i} P_{i}\right)_{\alpha \beta}+\varepsilon_{\alpha \beta}\left(Z^{A B}+\Omega^{A C} \bar{Z}_{C D} \Omega^{D B}\right) \\
& =2 \Omega^{A B}\left(\sigma_{i} P_{i}\right)_{\alpha \beta}+2 \varepsilon_{\alpha \beta}\left(X_{+}^{A B}+i Y_{-}^{A B}\right)
\end{aligned}
$$

where

$$
\Omega^{A C} X_{ \pm}^{C D} \Omega^{D B}= \pm X_{ \pm}^{A B} \quad \Omega^{A C} Y_{ \pm}^{C D} \Omega^{D B}= \pm Y_{ \pm}^{A B}
$$

Rescalings of supercharges:

$$
\begin{equation*}
Q_{\alpha}^{+A}=c^{-\frac{1}{2}} Q_{\alpha}^{A} \quad Q_{\alpha}^{-A}=c^{\frac{1}{2}} S_{\alpha}^{A} \tag{scaleddifferently!}
\end{equation*}
$$

Rescalings of central charges $Z^{A B}=X^{A B}+i Y^{A B} \quad\left(X^{A B}=\tilde{X}^{A B}+\Omega^{A B} X\right)$

$$
\begin{array}{lll}
X_{-}^{A B} & =-m_{0} c \Omega^{A B}+\frac{1}{c} \mathbb{X}_{-}^{A B} & Y_{+}^{A B}=\frac{1}{c} \mathbb{Y}_{+}^{A B} \quad \leftarrow \quad \text { physical meaning of } \Omega \\
X_{+}^{A B}=\mathbb{X}_{+}^{A B} \quad Y_{-}^{A B}=\mathbb{Y}_{-}^{A B} & \leftarrow \quad \text { not rescaled! }
\end{array}
$$

where $\Omega^{A C} X_{ \pm}^{C D} \Omega^{D B}= \pm X_{ \pm}^{A B} \quad \Omega^{A C} Y_{ \pm}^{C D} \Omega^{D B}= \pm \boldsymbol{Y}_{ \pm}^{A B}$
Contraction limits in holomorphic basis: $\mathrm{d}=3$ Galilean superalgebra

$$
\begin{aligned}
\left\{\mathrm{Q}_{\alpha}^{A}, \mathrm{Q}_{\beta}^{B}\right\} & =\lim _{c \rightarrow \infty}\left[c \cdot\left\{2 \Omega^{A B} \varepsilon_{\alpha \beta}\left(P_{0}+X\right)\right\}+2 \varepsilon_{\alpha \beta}\left(\tilde{X}_{-}^{A B}+i Y_{+}^{A B}\right)\right] \\
& =2 \Omega^{A B} \varepsilon_{\alpha \beta}(H+\mathbb{X})+2 \varepsilon_{\alpha \beta}\left(\tilde{\mathbb{X}}_{-}^{A B}+i \mathbb{Y}_{+}^{A B}\right) \quad X=-m_{0} c+\frac{\mathrm{X}}{c} \\
\left\{\mathbb{Q}_{\alpha}^{A}, \mathbb{S}_{\beta}^{B}\right\} & =2 \Omega^{A B}\left(\sigma_{i} P_{i}\right)_{\alpha \beta}+2 \varepsilon_{\alpha \beta}\left(\mathbb{X}_{+}^{A B}+i \mathbb{Y}_{-}^{A B}\right) \quad P_{0}=m_{0} c+\frac{H}{c} \\
\left\{S_{\alpha}^{A}, \mathbb{S}_{\beta}^{B}\right\} & =\lim _{c \rightarrow \infty}\left[\frac{1}{c} 2 \Omega^{A B} \varepsilon_{\alpha \beta}\left(-P_{0}+X\right)\right]+2 \varepsilon_{\alpha \beta}\left(\tilde{X}_{-}^{A B}+i Y_{+}^{A B}\right)=4 m_{0} \varepsilon_{\alpha \beta} \Omega^{A B}
\end{aligned}
$$

Rescalings: $\tilde{X}_{-}^{A B}=\frac{1}{c} \tilde{\mathbb{X}}_{-}^{A B} \quad Y_{+}^{A B}=\frac{1}{c} \mathbb{Y}_{+}^{A B} ; \quad \begin{array}{r}\text { rescaled: }\end{array} \quad X_{+}^{A B}=\mathbb{X}_{+}^{A B} \quad \boldsymbol{Y}_{+}^{A B}=\mathbb{Y}_{+}^{A B}$

If $c \rightarrow \infty$ one obtains identical in form Galilean symplectic Majorana condition ($\mathrm{A}, \mathrm{B}=1,2 \ldots \mathrm{~N} ; \mathrm{N}=2 \mathrm{k}$) for \mathbb{Q} and \mathbb{S} supercharges

$$
\overline{\mathbb{Q}}_{\dot{\alpha} A}=-\varepsilon_{\dot{\alpha} \dot{\beta}} \Omega_{A B} \mathrm{Q}_{\beta}^{B} \quad \bar{S}_{\dot{\alpha} A}=\varepsilon_{\dot{\alpha} \dot{\beta}} \Omega_{A B} \mathbb{S}_{\beta}^{B}
$$

Second algebraic option: resolving Galilean symplectic Majorana condition by choosing as independent supercharges Hermitean-conjugate

$$
\left(\mathbb{Q}_{\alpha}^{A}, \mathbb{S}_{\alpha}^{A}\right) \rightarrow\left(\mathbb{Q}_{\alpha}^{i}, \overline{\mathbb{Q}}_{\dot{\alpha} i}^{i}\right),\left(\mathbb{S}_{\alpha}^{i}, \overline{\mathbb{S}}_{\dot{\alpha} i}^{i}\right) \quad i=1,2, \ldots \frac{N}{2}=k \quad\left(\text { for } \Omega=\left(\begin{array}{cc}
0 & -\mathbb{1}_{k} \\
\mathbb{1}_{k} & 0
\end{array}\right)\right)
$$

One passes from holomorphic superalgebra to Hermitean superalgebra:

$$
\begin{aligned}
& \left\{\mathrm{Q}_{\alpha}^{i}, \overline{\mathbb{Q}}_{\beta}^{j}\right\}=2 \delta^{i j}(H+\mathbb{X})+2 \varepsilon_{\alpha \beta}\left(\tilde{\mathbb{X}}_{-}^{i k+j}+i \mathbb{Y}_{+}^{i k+j}\right) \\
& \left\{\mathrm{Q}_{\alpha}^{i}, \mathrm{Q}_{\beta}^{j}\right\}=2 \varepsilon_{\alpha \beta}\left(\tilde{\mathbb{X}}_{-}^{i j}+i \mathbb{Y}_{+}^{i j}\right) \\
& \left\{\mathbb{Q}_{\alpha}^{i}, \overline{\mathbb{S}}_{\beta}^{j}\right\}=2 \delta^{i j}\left(\sigma_{r} P_{r}\right)_{\alpha \beta}+2 \varepsilon_{\alpha \beta}\left(\mathbb{X}_{+}^{i k+j}+i \mathbb{Y}_{-}^{i k+j}\right) \quad r=1,2,3 \\
& \left\{\mathbb{Q}_{\alpha}^{i}, \mathbb{S}_{\beta}^{j}\right\}=2 \varepsilon_{\alpha \beta}\left(\mathbb{X}_{+}^{i j}+i \mathbb{Y}_{-}^{i j}\right) \\
& \left\{\mathbb{S}_{\alpha}^{i}, \overline{\mathbb{S}}_{\dot{\beta}}^{j}\right\}=4 m_{0} \delta_{\alpha \dot{\beta}} \delta^{i j} \quad\left\{\mathbb{S}_{\alpha}^{i}, \mathbb{S}_{\beta}^{j}\right\}=0
\end{aligned}
$$

Proper basis for describing N -extended Galilean SUSY in QM!

Remarks:

1. One central charge is distinguished, implying the choice of $\Omega^{A B}$

$$
Z^{A B}=Z \Omega^{A B} \quad Z=X+i Y=-m_{0} c+\frac{\mathbb{X}}{c}+i \mathbb{Y}-\text { unique for } N=2
$$

We denote by $\tilde{X}^{A B}$ the central charges $X^{A B}$ without X.
The role of $-m_{0} c$ term in Z : to compensate the term $m_{0} c$ from P_{0}.
2. If only $Z \neq 0$ (one complex central charge), the R-symmetry $S U(N)$ is reduced to $U S p(N) \equiv U\left(\frac{N}{2} ; \mathbb{H}\right)$ (quaternionic unitary group)
3. For $N=2 \mathbb{k}$ one can introduce k complex quasi-triangular central charges $Z_{1} \ldots Z_{k}$

$$
Z^{A B}=\left(\begin{array}{cc|c|c}
0 & Z_{1} & 0 & 0 \\
-Z_{1} & 0 & 0 & \\
\hline 0 & \ddots & 0 \\
0 & & 0 & Z_{k}
\end{array}\right) \Rightarrow \underbrace{\text { one gets R-symmetry: }}_{\mathrm{k} \text { times }} \begin{aligned}
& \text { USp(2) } \ldots \otimes \boldsymbol{U} \boldsymbol{S}(2)
\end{aligned}
$$

For $N \geq 4$ necessary to consider also off-diagonal central charges.
2. Example: $\mathrm{d}=3 \mathrm{~N}=4$ Galilean SUSY with $12+1$ real central charges (cc).
a) $\mathrm{d}=3 \mathrm{~N}=1$ Galilean superalgebra with 1cc (Puzalowski 1978)

$$
\begin{array}{cll}
\text { Hermitean } & \left\{\mathbb{S}_{\alpha}, \overline{\mathbb{S}^{\dot{\beta}}}\right\}=4 m_{0} \delta_{\alpha}^{\dot{\beta}} & {\left[\mathbb{B}_{i}, \mathbb{S}_{\alpha}\right]=0} \\
\text { basis } & {\left[J_{i}, \mathbb{S}_{\alpha}\right]=\left(\sigma_{i}\right)_{\alpha}{ }^{\beta} \mathbb{S}_{\beta}} & {\left[J, \overline{\mathbb{S}}^{\dot{\alpha}}\right]=-\overline{\mathbb{S}} \dot{\beta}\left(\sigma_{i}\right)_{\dot{\beta}}^{\dot{\alpha}}}
\end{array}
$$

b) $\mathrm{d}=3 \mathrm{~N}=2$ Galilean superalgebra (Bergman, Thorn 1995) with 3cc

$$
\begin{array}{cl}
& \left\{\mathrm{Q}_{\alpha}, \overline{\mathbb{Q}}^{\beta}\right\}=2 \delta_{\alpha}^{\dot{\beta}}(H+\mathbb{X}) \\
\text { Hermitean } & \left\{\mathrm{Q}_{\alpha}, \overline{\mathbb{S}}^{\dot{\beta}}\right\}=2\left(\sigma_{i} P_{i}\right)_{\alpha}^{\dot{\beta}}+2 i \mathbb{Y} \boldsymbol{\delta}_{\alpha}^{\dot{\beta}} \quad i=1,2,3 \\
\text { basis } & \left\{\mathrm{S}_{\alpha}, \overline{\mathbb{S}}^{\dot{\beta}}\right\}=4 m_{0} \delta_{\alpha}^{\dot{\beta}} \\
& {\left[B_{i}, \mathrm{Q}_{\alpha}\right]=\left(\sigma_{i}\right)_{\alpha}{ }^{\beta} \mathrm{S}_{\beta} \quad\left[B_{i}, \mathbb{S}_{\alpha}\right]=0}
\end{array}
$$

Hermitean basis $\left(\mathbb{Q}_{\alpha}, \overline{\mathbb{Q}}_{\alpha}, \mathbb{S}_{\alpha}, \bar{S}_{\dot{\beta}}\right)$ is related with holomorphic one $\left(\mathbb{Q}_{\alpha}^{A}, \mathbb{S}_{\alpha}^{A}\right)$ (A=1,2) by the use of $\boldsymbol{U S p} \boldsymbol{S}(N)$ subsidiary condition

$$
\mathbb{Q}_{\alpha}=\mathbb{Q}_{\alpha}^{1} \quad \overline{\mathbb{Q}}_{\dot{\alpha}}=-\varepsilon_{\dot{\alpha} \dot{\beta}} \mathrm{Q}_{\beta}^{2} \quad \mathbb{S}_{\alpha}=\mathbb{S}_{\alpha}^{1} \quad \overline{\mathbb{S}}_{\dot{\alpha}}=\varepsilon_{\alpha \dot{\beta}} S_{\alpha}^{2}
$$

c) $d=3 N=4$ Galilean SUSY with $12+1=13$ cc

The relativistic $N=4$ central charges matrix can be introduced as representation of $U S p(2) \otimes U S p(2)=S U(2) \otimes S U(2) \simeq O(4)$ internal Rsymmetries

$$
Z^{A B}=\left(\begin{array}{c|c}
\mathbb{Z}_{1} \varepsilon_{a b} & \mathbb{Z}_{a \tilde{b}} \\
\hline-\mathbb{Z}_{\tilde{a} b} & \mathbb{Z}_{2} \varepsilon_{\tilde{a} \tilde{b}}
\end{array}\right) \quad \begin{array}{ll}
& A=(a, \tilde{a}) \\
& B=(b, \tilde{b})
\end{array}
$$

where $a=(1,2)$ and $\tilde{a}=(\tilde{1}, \tilde{2})$ describe two independent $U S p(2) \simeq S U(2)$ spinorial indices. The supercharges are

$$
\begin{array}{ccc}
\mathbb{Q}_{\alpha}^{A}=\left(\mathbb{Q}_{\alpha}^{a}, \mathrm{Q}_{\alpha}^{\tilde{a}}\right), \mathbb{S}_{\alpha}^{A}=\left(\mathbb{S}_{\alpha}^{a}, \mathbb{S}_{\alpha}^{\tilde{a}}\right) & \longrightarrow & \text { Hermitean basis: } \\
\text { holomorphic basis: } & \left(\mathbb{Q}_{\alpha}, \overline{\mathbb{Q}}_{\alpha}, \tilde{\mathbb{Q}}_{\alpha}, \overline{\tilde{\mathbb{Q}}}_{\alpha} ; \mathbb{S}_{\alpha}, \overline{\boldsymbol{S}}_{\alpha}, \tilde{S}_{\alpha}, \overline{\tilde{S}}_{\alpha}\right) \\
& \mathbb{Q}_{\alpha}=\mathbb{Q}_{\alpha}^{1} \overline{\mathrm{Q}}_{\alpha}=-\varepsilon_{\alpha \beta} \mathrm{Q}^{\beta 2} \\
\tilde{\mathbb{Q}}_{\alpha}=\mathbb{Q}_{\alpha}^{1} \tilde{\tilde{\mathbb{Q}}}_{\alpha}=-\varepsilon_{\alpha \beta} \mathrm{Q}^{\beta \tilde{2}}
\end{array} \text { etc. }
$$

i) $\mathrm{N}=4 \mathrm{NR}$ superalgebra in holomorphic basis

$$
\begin{gathered}
\left\{\begin{array}{l}
\left.Q_{\alpha}^{a}, Q_{\beta}^{b}\right\}=2 \varepsilon^{a b} \varepsilon_{\alpha \beta}\left(H+\mathbb{X}_{1}\right) \\
\left.Q_{\alpha}^{\tilde{a}}, Q_{\beta}^{\tilde{b}}\right\}=2 \varepsilon^{a b} \varepsilon_{\alpha \beta}\left(H+\mathbb{X}_{2}\right)
\end{array} \quad \begin{array}{c}
\text { quasidiagonal two } \\
\text { central charges }
\end{array}\right. \\
\left\{Q_{\alpha}^{a}, Q_{\beta}^{\tilde{b}}\right\}=2 \varepsilon_{\alpha \beta} W^{a \tilde{b}} \quad W^{a \tilde{b}}=\mathbb{X}_{-}^{a \tilde{b}}+i \mathbb{Y}_{+}^{a \tilde{b}} \quad \longleftarrow \quad \begin{array}{c}
\text { off-diagonal four } \\
\text { central charges }
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\left\{Q_{\alpha}^{a}, S_{\beta}^{b}\right\}=2 \varepsilon^{a b}\left(\left(\sigma_{i}\right)_{\alpha \beta} P_{i}+i \varepsilon_{\alpha \beta} \mathbb{Y}_{1}\right) \\
\left\{Q_{\alpha}^{\tilde{a}}, S_{\beta}^{\tilde{b}}\right\}=2 \varepsilon^{\tilde{a} \tilde{b}}\left(\left(\sigma_{i}\right)_{\alpha \beta} P_{i}+i \varepsilon_{\alpha \beta} \mathbb{Y}_{2}\right) \text { quasi-diagonal two cc }_{\text {off-diagonal four cc }} \\
\left\{Q_{\alpha}^{a}, S_{\beta}^{\tilde{b}}\right\}=\left\{S_{\alpha}^{a}, Q_{\beta}^{\tilde{b}}\right\}=2 i \varepsilon_{\alpha \beta} V^{a \tilde{b}} \quad V^{a \tilde{b}}=\mathbb{X}_{+}^{a \tilde{b}}+i \mathbb{Y}_{-}^{a \tilde{b}} \\
\left\{S_{\alpha}^{a}, S_{\beta}^{b}\right\}=-4 m_{0} \varepsilon^{a b} \varepsilon_{\alpha \beta} \quad\left\{S_{\alpha}^{\tilde{a}}, S_{\beta}^{\tilde{b}}\right\}=-4 m_{0} \varepsilon^{\tilde{a} b} \varepsilon_{\alpha \beta} \quad \leftarrow 13^{\text {th cc }} \\
\left\{S_{\alpha}^{a}, S_{\beta}^{\tilde{b}}\right\}=0
\end{gathered}
$$

ii) Hermitean basis: $\left(Q_{\alpha}, \bar{Q}_{\alpha}, \tilde{Q}_{\alpha}, \overline{\tilde{Q}}_{\alpha}\right) ; \mathbb{X}_{1}, \mathbb{X}_{2}, W^{a \bar{b}}-$ c.c:

$$
\begin{gathered}
\left(\begin{array}{ll}
Q_{\alpha} \equiv Q_{\alpha}^{1} & \bar{Q}_{\alpha}=-\varepsilon_{\alpha \beta} Q_{\alpha}^{2} \\
\tilde{Q}_{\alpha}=Q_{\alpha}^{\tilde{1}} & \tilde{\tilde{Q}}_{\alpha}=-\varepsilon_{\alpha \beta} Q_{\alpha}^{\tilde{2}}
\end{array}\right) \\
\left(S_{\alpha}, \tilde{S}_{\alpha}, \bar{S}_{\alpha}, \overline{\tilde{S}}_{\alpha}\right) ; \\
Y_{1}, Y_{2}, V^{a \tilde{b}}-c . c \\
\left(\begin{array}{ll}
\tilde{S}_{\alpha}=S_{\alpha}^{1} & \bar{S}_{\alpha}=-\epsilon_{\alpha \beta} S_{\alpha}^{2} \\
\tilde{S}_{\alpha}=S_{\alpha}^{\tilde{1}} & \tilde{S}_{\alpha}=-\epsilon_{\alpha \beta} \tilde{S}_{\alpha}^{\tilde{2}}
\end{array}\right)
\end{gathered}
$$

General $N=2$ SUSY QM relation as subsuperalgebra:

$$
\begin{aligned}
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\} & =2 \delta_{\alpha \beta}\left(H+\mathbb{X}_{1}\right) \\
\left\{\tilde{Q}_{\alpha}, \tilde{\tilde{Q}}_{\dot{\beta}}\right\} & =2 \delta_{\alpha \beta}\left(H+\mathbb{X}_{2}\right) \\
\left\{Q_{\alpha}, \tilde{\tilde{Q}}_{\beta}\right\} & =-2 \delta_{\alpha \beta} W^{1 \tilde{2}} \quad\left\{\tilde{Q}_{\alpha}, \bar{Q}_{\alpha}\right\}=2 \delta_{\alpha \dot{\beta}} W^{2 \tilde{1}} \\
\left\{Q_{\alpha}, \tilde{Q}_{\beta}\right\} & =2 \varepsilon_{\alpha \beta} W^{1 \tilde{1}} \quad\left\{\bar{Q}_{\alpha}, \overline{\tilde{Q}}_{\bar{\beta}}\right\}=2 \varepsilon_{\dot{\alpha} \dot{\beta}} W^{2 \tilde{2}} \\
& \left\{Q_{\alpha}, \bar{S}_{\dot{\beta}}\right\}=2\left(\sigma_{i}\right)_{\alpha \dot{\beta}} P_{i}-i \delta_{\alpha \dot{\beta}} Y_{1} \\
& \left\{\tilde{S}_{\alpha}, \tilde{\tilde{Q}}_{\dot{\beta}}\right\}=-2\left(\sigma_{i}\right)_{\alpha \dot{\beta}} P_{i}-i \delta_{\alpha \dot{\beta}} Y_{2} \\
& \left\{Q_{\alpha}, S_{\beta}\right\}=2 i \epsilon_{\alpha \beta} Y^{1 \tilde{1}} \quad\left\{\overline{\tilde{Q}}_{\alpha}, \tilde{\tilde{S}}_{\beta}\right\}=2 i \epsilon_{\alpha \beta} Y^{2 \tilde{2}} \\
& \left\{Q_{\alpha}, \bar{S}_{\dot{\beta}}\right\}=2 i \delta_{\alpha \dot{\beta}} Y^{1 \tilde{2}} \quad\left\{\tilde{\tilde{S}}_{\dot{\alpha}}, Q_{\beta}\right\}=2 i \delta_{\alpha \beta} Y^{21}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{S_{\alpha}, \overline{\boldsymbol{S}}_{\dot{\beta}}\right\}=4 \delta_{\alpha \dot{\beta}} m_{0} \\
& \left\{\tilde{S}_{\alpha}, \overline{\tilde{S}}_{\dot{\prime}}\right\}=4 \boldsymbol{\delta}_{\alpha \dot{\beta}} m_{0} \\
& \left\{\boldsymbol{S}_{\alpha}, \overline{\tilde{S}}_{\beta}\right\}=\left\{\tilde{\boldsymbol{S}}_{\alpha}, \overline{\boldsymbol{S}}_{\beta}\right\}=0
\end{aligned}
$$

Hermitean form of Galilean superalgebra permits to obtain two generalized positivity conditions for \boldsymbol{H} (any Ψ belongs to Hilbert space.)

$$
\langle\Psi|\left(H+X_{r}\right)|\Psi\rangle \geq 0 \quad r=1,2
$$

General features of $\mathrm{d}=3 \mathrm{~N}$-extended Galilean SUSY:

i) We derived NR superalgebra which is $d=3$ NR counterpart of Haag-Łopuszański-Sohnius classification of $\mathrm{D}=4$ Poincaré superalgebras
ii) The central charges $Z^{A B}=X^{A B}+i Y^{A B}$ after contraction enter as
$\{Q, Q\} \simeq \mathbb{H}+\frac{N(N-1)}{2}$ real central charges $W^{A B}=\mathbb{X}_{-}^{A B}+i Y_{+}^{A B}$
$\{Q, S\} \simeq \sigma_{i} P_{i}+\frac{N(N-1)}{2}$ real central charges $V^{A B}=X_{+}^{A B}+i Y_{-}^{A B}$
$\{S, S\} \simeq m_{0} \leftarrow \quad$ additional Bargmann mass central charge
We have k^{2} central charges $\mathbb{X}_{-}^{A B}\left(Y_{-}^{A B}\right)$ and $k(k-1)$ of $X_{+}^{A B}\left(\mathbb{Y}_{+}^{A B}\right)$

$$
\left(2 k^{2}+2 k(k-1)=N(N-1) \quad N=2 k\right)
$$

iii) Special feature of $\mathrm{N}=4$ (6 complex c.c.)

We have 2 complex quasi-diagonal central charges Z_{1}, Z_{2} and 4 complex off-diagonal ones described by complex fourvector $Z_{A} \quad(A=1,2, \ldots 4)$

$$
X^{a \tilde{b}}=\left(\sigma_{A}^{E}\right)^{a \tilde{b}} Z_{A} \quad \sigma_{\mu}^{E}=\left(\sigma_{i},-i I_{2}\right) \quad Z_{A}=n_{A}+i v_{A}
$$

where σ_{μ}^{E} are $\mathrm{D}=4$ Euclidean σ-matrices and n_{A}, v_{A} are two real $\mathrm{O}(4)$ internal fourvectors \Rightarrow new type of KK theory?
3. $\mathrm{N}=4 \mathrm{~d}=3$ Galilean superparticle models: action, phase space formulation, first quantization

One performs the following steps:
i) Maurer-Cartan (MC) one-form $\omega\left(g_{r}\right)$ for the coset G

$$
G=\frac{\mathcal{G}}{\boldsymbol{H}} \quad \begin{aligned}
& \mathcal{G}-N=4 d=3 \text { Galilean supergroup with generators } \\
& \boldsymbol{H}-\boldsymbol{U} \boldsymbol{S} \boldsymbol{p}(4) \times \boldsymbol{O}(3) \times \boldsymbol{A}-\text { stability group }\binom{\text { standard }}{\text { choice }}
\end{aligned}
$$

All central charges are located in G. One gets

$$
\begin{aligned}
& G^{-1} d G=i \sum_{r} \omega\left(g_{r}\right) \cdot \hat{g}_{r} \quad \omega\left(g_{r}\right)-\text { linear representation } \\
& \hat{\boldsymbol{g}}_{r}=(\underbrace{\boldsymbol{H}, B_{i}, P_{i}, M,}_{\frac{\text { Galiei algebra }}{O(3)}} \mathbb{T}_{\substack{-A \\
\hline \\
\frac{S U(4)}{U S p(4)}}}^{\mathbb{S}^{-A}}, \underbrace{\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{Y}_{1}, \mathbb{Y}_{2}, \mathbb{X}^{a \tilde{b}}, \mathbb{Y}^{a \tilde{b}}}_{\begin{array}{c}
12 \text { central charges } \\
\mathrm{M}-13^{\text {th }} \mathrm{cc}
\end{array}}, \underbrace{Q_{\alpha}^{a}, Q_{\alpha}^{\tilde{a}}, S_{\alpha}^{a}, S_{\alpha}^{\tilde{a}}}_{\text {all supercharges }})
\end{aligned}
$$

One gets the model of classical mechanics if all group parameters g_{r} of coset G are promoted to $d=1$ fields: $g_{r} \rightarrow g_{r}(\tau) ; \tau$ - evolution parameter
Important: one can in H-covariant way eliminate some of $d=1$ fields by imposing algebraic inverse Higgs constraints.

The coset element G in our $\mathrm{d}=3 \mathrm{~N}=4 \mathrm{NR}$ model can be written as

$$
G=G_{(1)} G_{(2)} G_{(3)} G_{(4)} G_{(5)} G_{(6)} \equiv \hat{G} G_{(6)},
$$

where explicitly

$$
\begin{aligned}
G_{(1)} & =\exp i\left\{t \boldsymbol{H}+x^{i} P^{i}\right\}, \\
G_{(2)} & =\exp i\left\{\xi_{a}^{\alpha} \mathrm{Q}_{\alpha}^{a}+\xi_{\tilde{a}}^{\alpha} \mathrm{Q}_{\alpha}^{\tilde{a}}\right\}, \\
G_{(3)} & =\exp i\left\{\theta_{a}^{\alpha} \mathbb{S}_{\alpha}^{a}+\theta_{\tilde{a}}^{\alpha} \mathrm{S}_{\alpha}^{\tilde{a}}\right\}, \\
G_{(4)} & =\exp i\left\{\boldsymbol{k}^{i} \boldsymbol{B}^{i}\right\}, \\
G_{(5)} & =\exp i\left\{s \mathbb{M}+h_{1} \mathbb{X}_{1}+h_{2} \mathbb{X}_{2}+h_{a \tilde{b}} \mathbb{X}^{a \tilde{b}}+f_{1} \mathbb{Y}_{1}+f_{2} \mathbb{Y}_{2}+f_{a \tilde{b}} \mathbb{Y}^{a \tilde{b}}\right\}, \\
G_{(6)} & =\exp i\left\{u_{a}^{b} \mathbb{T}^{-a}{ }_{b}+u_{\tilde{a}}^{\tilde{b}} \mathbb{T}^{-\tilde{a}}{ }_{\tilde{b}}+\boldsymbol{u}_{a}^{\tilde{b}} \mathbb{T}_{\tilde{\tilde{b}}}^{-a}\right\} .
\end{aligned}
$$

The factors $G_{(1)}, G_{(4)}$ are parametrized by $d=3$ Galilei group parameters, $G_{(5)}$ by the central charge parameters dual to central charges, $G_{(6)}$ represents the Abelian 5-dimensional coset IUSp(4)/USp(4) and $G_{(2)}, G_{(3)}$ collect parameters of the fermionic (odd) sector.
We can write the MC one-forms in the following way

$$
\hat{G}^{-1} d \hat{G}:=i \sum_{K} \hat{\omega}_{(K)} T_{(K)}
$$

where $T_{(K)}$ stand for all coset G generators, and $\hat{\omega}_{(K)}$ denote the
corresponding MC one-forms:

$$
\begin{aligned}
& \hat{\omega}_{(Q) a}^{\alpha}=d \xi_{a}^{\alpha}, \hat{\omega}_{(Q) \tilde{a}}^{\alpha}=d \xi_{\tilde{a}}^{\alpha}, \\
& \hat{\omega}_{(S) a}^{\alpha}=d \theta_{a}^{\alpha}+\frac{1}{2} k_{i}\left(\sigma_{i}\right)_{\beta}^{\alpha} d \xi_{a}^{\beta}, \\
& \hat{\omega}_{(S) \tilde{a}}^{\alpha}=d \theta_{\tilde{a}}^{\alpha}+\frac{1}{2} k_{i}\left(\sigma_{i}\right)_{\beta}^{\alpha} d \xi_{\tilde{\tilde{a}}}^{\beta}, \\
& \hat{\omega}_{(H)}^{\alpha}=d t+i\left(\xi_{a}^{\alpha} d \xi_{\alpha}^{a}+\xi_{\tilde{a}}^{\alpha} d \xi_{\alpha}^{\tilde{a}}\right), \\
& \hat{\omega}_{(B) i}=d k_{i}, \\
& \hat{\omega}_{(P) i}=\left[d x_{i}+2 i\left(\sigma_{i}\right)_{\alpha \beta}\left(\theta^{b \alpha} d \xi_{b}^{\beta}+\theta^{\tilde{b} \alpha} d \xi_{\tilde{b}}^{\beta}\right)\right]+k_{i} \hat{\omega}_{(H)}, \\
& \hat{\omega}_{(M)}=d s+k_{i} \hat{\omega}_{(P) i}-\frac{1}{2} k^{2} \hat{\omega}_{(H)}-2 i\left(\theta_{a}^{\alpha} d \theta_{\alpha}^{a}+\theta_{\tilde{a}}^{\alpha} d \theta_{\alpha}^{\tilde{a}}\right), \quad \longleftarrow S_{0} \\
& \hat{\omega}_{(X) 1}=d h_{1}+i \xi_{a}^{\alpha} d \xi_{\alpha}^{a} \\
& \hat{\omega}_{(X) 2}=d h_{2}+i \xi_{\tilde{a}}^{\alpha} d \xi_{\alpha}^{\tilde{a}} \\
& \hat{\omega}_{(X) a \tilde{b}}=d h_{a \tilde{b}}+i\left(\xi_{a}^{\alpha} d \xi_{\alpha \tilde{b}}-\xi_{\tilde{b}}^{\alpha} d \xi_{\alpha a}\right), \\
& \hat{\omega}_{(Y) 1}=d f_{1}+2 \theta^{\alpha a} d \xi_{a \alpha}, \\
& \hat{\omega}_{(Y) 2}=d f_{2}+2 \theta^{\alpha \tilde{a}} d \xi_{\alpha \tilde{a}}, \\
& \hat{\omega}_{(Y) a \tilde{b}}=d f_{a \tilde{b}}-2\left(\theta_{a}^{\alpha} d \xi_{\alpha \tilde{b}}-\theta_{\tilde{b}}^{\alpha} d \xi_{\alpha a}\right),
\end{aligned}
$$

where $\boldsymbol{k}^{2}:=\boldsymbol{k}_{i} \boldsymbol{k}_{i}$. Using as action $\left.\boldsymbol{S}_{0}=\int \hat{\boldsymbol{\omega}}_{(} \boldsymbol{M}\right)$ one gets $\mathrm{d}=3 \mathrm{~N}=4 \mathrm{NR}$ superparticle model.

Simple example: geometric model of Galilean particle with mass m_{0} :

$$
G=\frac{\mathrm{d}=3 \text { Galilei group }}{O(3)}
$$

8 generators: $\boldsymbol{H}, \boldsymbol{P}_{i}, \boldsymbol{B}_{\boldsymbol{i}}, \boldsymbol{M}$
8 group parameters: t, x_{i}, k_{i}, s

MC one-forms:

$$
\begin{array}{ll}
\omega_{(H)}=d t \quad \omega_{\left(B_{i}\right)}=d k_{i} \quad \omega_{\left(P_{i}\right)}=d x_{i}+k_{i} d t & t=t(\tau) \quad x_{i}=x_{i}(\tau) \\
\omega_{(M)}=d s+k_{i} \omega_{\left(P_{i}\right)}-\frac{1}{2} k^{2} d t & k_{i}=k_{i}(\tau) \quad s=s(\tau)
\end{array}
$$

Inverse Higgs mechanism: $\boldsymbol{\omega}_{\left(P_{i}\right)}=\mathbf{0} \rightarrow \boldsymbol{k}_{\boldsymbol{i}}=-\frac{d x_{i}}{d t}=-\boldsymbol{v}_{\boldsymbol{i}}$
Action: $\quad \mathcal{S}_{0}=-m_{0} \int \omega_{(M)}=-m_{0} \int d \tau\left(\dot{s}-\frac{1}{2} k^{2} \dot{t}\right) \quad \dot{\boldsymbol{a}}=\frac{d a}{d \tau} \quad k_{i}=\frac{d x_{i}}{d \tau} \cdot \frac{d \tau}{d t}$

$$
\begin{aligned}
\frac{d x_{i}}{d t}=\frac{d x_{i}}{d \tau} \frac{d \tau}{d t} & =\frac{m_{0}}{2} \int d \tau\left(\frac{\dot{x}_{i}}{\dot{t}}\right)^{2} \cdot \dot{t}=\frac{m_{0}}{2} \int d \tau \frac{\dot{x}_{i}^{2}}{\dot{t}}
\end{aligned} \begin{gathered}
\tau \text { - evolution } \\
=\frac{\dot{x}_{i}}{\dot{t}}
\end{gathered} \quad \begin{array}{ll}
\text { parameter } \\
\int d \tau \dot{s}=0 & p_{i}=\frac{\partial L}{\partial \dot{x}_{i}}=m_{0} \frac{\dot{x}_{i}}{\dot{t}} \\
& p_{0}=\frac{\partial L}{\partial \dot{t}}=-\frac{m_{0}}{2} \frac{\dot{x}_{i}^{2}}{\dot{t}^{2}}
\end{array}
$$

One gets NR energy-momentum dispersion relation for Schrödinger free particle!
Quantization: $p_{i}=i \frac{\partial}{\partial x_{i}} \quad p_{0}=-i \frac{\partial}{\partial t} \Rightarrow i \frac{\partial}{\partial t} \psi=-\frac{\Delta}{2 m_{0}} \psi \quad$ free Schrödinger eq.

Our general model: linear combination of MC forms associated with all $12+1$ central charges

$$
\begin{aligned}
& \qquad \begin{array}{ll}
S=S_{0}+S_{1}+S_{2} & S_{1}=\sum_{i=1}^{2} \int\left(m_{i} \hat{\omega}\left(X_{i}\right)+\mu_{i} \hat{\omega}\left(Y_{i}\right)\right. \\
S_{2}=\sum_{a, \tilde{b}} \int\left(n^{a \tilde{b}} \hat{\omega}\left(X^{a \tilde{b}}\right)+\nu^{a \tilde{b}} \hat{\omega}\left(Y^{a \tilde{b}}\right)\right. & \text { quasidiagonal c.c. } \\
\text { off-diagonal c.c. }
\end{array} \\
& \text { Two subclasses of models: }
\end{aligned}
$$

i) $S=S_{0}+S_{1} \quad m_{1}=-\frac{\left(\mu_{1}\right)^{2}}{2 m_{0}}$ and/or $m_{2}=-\frac{\left(\mu_{2}\right)^{2}}{2 m_{0}} \Rightarrow$
\Rightarrow necessary conditions for getting first class constraints
Odd (fermionic) coordinates: generated by all possible supercharges in G;
16 real Grassmann variables: $\boldsymbol{\theta}_{\alpha}, \tilde{\boldsymbol{\theta}}_{\alpha}, \boldsymbol{\xi}_{\alpha}, \tilde{\boldsymbol{\xi}}_{\alpha}, \overline{\boldsymbol{\theta}}_{\alpha}, \overline{\tilde{\boldsymbol{\theta}}}_{\dot{\alpha}}, \overline{\boldsymbol{\xi}}_{\alpha}, \overline{\boldsymbol{\xi}_{\alpha}}$
One gets: 8 first class constraints $\longrightarrow 8$ wave equations for Ψ 8 second class constraints $\longrightarrow 4$ wave equations for Ψ (Gupta-Bleuler quantization!)
Superfield solution Ψ of all 12 wave equations depends on arbitrary doubly chiral superfield $\chi^{(2)}\left(x_{i}, t ; \theta_{\alpha}, \tilde{\theta}_{\alpha}\right)$, which is determined by the initial values of Ψ at $\tau=0$.
ii) $\quad S=S_{0}+S_{2}$ off-diagonal central charges

$$
\left(\frac{v_{A}^{2}}{2 m_{0}}\right)^{2}=n_{A}^{2} \Leftarrow
$$

required for first class constraints n_{A}, v_{A} - two $O(4)$
fourvectors

One gets 16 constraints which follow from the definition of 16 odd (fermionic) momenta - one gets:

4 first class constraints $\Rightarrow 4$ wave equations 12 second class constraints $\Rightarrow 6$ wave equations
$\mathrm{N}=4$ SUSY wave function Ψ :
(Gupta-Bleuler quantization again used)

Form of the solution describing SUSY wave function:

$$
\Psi=\hat{R}\left(\tilde{\chi}, \bar{\theta}_{\alpha}, \overline{\tilde{\theta}}_{\alpha}, \bar{\zeta}_{\alpha}, \overline{\tilde{\zeta}}_{\alpha} ; \frac{\partial}{\partial \theta_{\alpha}}, \frac{\partial}{\partial \tilde{\theta}_{\alpha}}, \frac{\partial}{\partial \tilde{\zeta}_{\alpha}}\right) \chi^{(3)}\left(x_{i}, t ; \theta_{\alpha}, \tilde{\theta}_{\alpha}, \overline{\tilde{\zeta}}_{\alpha}\right) \quad \begin{gathered}
\chi^{(3)-\text { arbitrary }} \text { triply chiral } \\
\text { superfield }
\end{gathered}
$$

polynomial dependence
All component fields $\psi_{A}\left(x_{i}, t\right)$ of the wave function Ψ satisfy free Schrödinger wave eq., due to the presence of S_{0} in the action.

4. Final remarks

i) One can choose the actions as nonlinear functions of MC one-forms, e.g. as $S_{0}+S_{2}^{\prime}$, where (by analogy with free relativistic particle)

$$
S_{2}^{\prime}=\int\left(k_{1} \sqrt{\omega^{a \tilde{b}}(X) \omega_{a \tilde{b}}(X)}+k_{2} \sqrt{\omega^{a \tilde{b}}(Y) \omega_{a \tilde{b}}(Y)}\right)
$$

with additional dynamical bosonic internal coordinates $h_{a \tilde{b}}, f_{a \tilde{b}}$, associated by duality with central charges $X^{a \tilde{b}}, Y^{a \tilde{b}}$. Model after quantization leads to SUSY field KK theory and is under consideration.
ii) Other generalization is to introduce the NR couplings to EM, YM and gravitational (super)backgrounds. Because component fields contain many spins which have different couplings to such backgrounds, one expects to obtain spin-dependent modifications of the Schrödinger eq.
iii) An important task for the future is to study $d=3 \mathrm{NR} N=4 \mathrm{SUSY}$ YM theory with nonvanishing central charges. It is also interesting to obtain it as consistent $N R$ contraction limit $c \rightarrow \infty$ of relativistic $\mathrm{D}=4$ $\mathrm{N}=4$ SUSY YM field theory with central charges.
THANK YOU!

