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Orthogonal Algebra

g`(n) algebra:

[G a1
b1 ,G

a2
b2 ] = δa1

b2
G a2

b1 − δ
a2
b1
G a1

b2 , [G1,G2] = [P12,G1] = −[P12,G2],

so(n) algebra differs by the additional restriction Gab = −Gba:

[G a1
b1 ,G

a2
b2 ] = δa1

b2
G a2

b1 − δ
a2
b1
G a1

b2 + εa1a2Gb1b2 − εb1b2G
a2a1 ,

here εab = δab (εab = δab is used for so(n) and εab = (−1)aδab for
so(m, n −m). In abstract notations this algebra relation looks like:

[G1,G2] = [P12 − K12,G1] = −[P12 − K12,G2],

where the invariant operator K12 has components:

K a1a2
b1b2

= εa1a2εb1b2 .
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Symplectic Algebra

preserves the bilinear form [x, y] =
∑k

a=1(xay−a − x−aya), xa – coordinates and
pa = x−a – momenta of phase space. Generators

G a
b = xa∂b − εaεbx−b∂−a, εa = sign(a), a, b = ±1,±2, . . .±m,

are skew-symmetric:
Gab = −εaεbG−b,−a,

w.r.t. the metric

εab = εaδa,−b, εbc = −εbδb,−c , εabε
bc = δca

and form the algebra:

[Gab,Gcd ] = δbcGad − δadGcb + εcεbδb,−dGa,−c − εaεbδa,−cG−b,d .

Introducing a discrete parameter ε: (ε = +1 in orthogonal and ε = −1 in
symplectic case):

εab = εεba, Gab = −εGba, or K12(G1 + G2) = (G1 + G2)K12,

one describes both algebras uniformly.
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Yang-Baxter relation

The fundamental Yang-Baxter rquation:

Ra1a2
b1b2

(u)Rb1a3
c1b3

(u + v)Rb2b3
c2c3

(v) = Ra2a3
b2b3

(v)Ra1b3
b1c3

(u + v)Rb1b2
c1c2

(u).

In s`(n)-case the fundamental solution is given by

Ra1a2
b1b2

(u) = uδa1
b1
δa2
b2

+ δa1
b2
δa2
b1
, R(u) = uI + P.

In so(n) the fundamental solution looks more complicated

Ra1a2
b1b2

(u) = u(u − α)δa1
b1
δa2
b2

+ (u − α)δa1
b2
δa2
b1
− uδa1a2δb1b2 , α = 1− n/2

In symplectic sp(2m) case the fundamental solution looks quite similar:

Ra1a2
b1b2

(u) = u(u + β)δa1
b1
δa2
b2

+ (u + β)δa1
b2
δa2
b1
− uεa2εb2δ

a1 ā2δb1 b̄2
, β = 1 + m

In the frame of Quantum inverse scattering method the new solution can be
obtained by the fusion of fundamental ones:

T a01, a1...an
a0,n+1, b1...bn

(u) = Ra01a1
a02b1

(u)Ra02a2
a03b2

(u) . . .Ra0nan
a0,n+1bn

(u).

The irreducible parts of the Monodromy matrix T (u) obtained by
(anti)symmetrization of indices a1 . . . an correspond to higher spin solutions of
YBE.
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The RLL-equation as a defining relation

RLL Yang-Baxter equation:

Ra1a2
b1b2

(u)Lb1
c1

(u + v)Lb2
c2

(v) = La2
b2

(v)La1
b1

(u + v)Rb1b2
c1c2

(u),

used to define the Yangian algebra.
Being given by the L-operator, acting in fundamental and an arbitrary
representation in g`(n)-case one can rise the problem to determine R-operator,
acting in two arbitrary representation spaces (indexes run (infinite-dimensional)
range corresponding to an arbitrary representation).

In more complicated so(n) and sp(n) cases the more modest (the inverse)
problem stands: to determine the most general L-operator, acting in
fundamental and an arbitrary representation, if the fundamental R-matrix is
given. Here indexes run the finite range, corresponding to fundamental
representation.
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Yangian resolution

Yangian Y(a) is an infinite-dimensional Hopf algebra, associated with given
algebra a in following sense: let R(u) is fundamental R-matrix related to
algebra a, then ternary RTT-relation R(u-v)T(u)T(v)=T(v)T(u)R(u-v)
generates Yangian defining relations for:

Tij(u) =
∞∑
k=0

t
(k)
ij u−k , t

(0)
ij = δij .

The simplest example is g`(n)-algebra,

[t
(s+1)
ij , t

(p)
k` ]− [t

(s)
ij , t

(p+1)
k` ] = −(t

(s)
kj t

(p)
i` − t

(p)
kj t

(s)
i` ).

This case admits the linear resolution: the series for T can be truncated at
linear term:

Tij(u) = uδij + t
(1)
ij ,

where t
(1)
ij are generators of g`(n)-algebra.
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Orthogonal and Symplectic Yangians YO , YS

The fundamental R-matrix can be written in the universal form:

1
u2v2 R(u − v) = ( 1

v
− 1

u
)( 1

v
− 1

u
+ β

uv
)− ( 1

uv2 − 1
u2v

+ β
u2v2 )P − ε( 1

uv2 − 1
u2v

)K .

here β = ( n
2
− ε), ε = +1 for SO and ε = −1 for SP. Then the defining

relations for the generators (L(k))ab of the Yangians Y (G):

[L
(k)
1 , L

(j−2)
2 ]− 2[L

(k−1)
1 , L

(j−1)
2 ] + [L

(k−2)
1 , L

(j)
2 ] +

+β([L
(k−1)
1 , L

(j−2)
2 ]− [L

(k−2)
1 , L

(j−1)
2 ]) +

+ P
(
L

(k−1)
1 L

(j−2)
2 − L

(k−2)
1 L

(j−1)
2 + βL

(k−2)
1 L

(j−2)
2

)
−

−
(
L

(j−2)
2 L

(k−1)
1 − L

(j−1)
2 L

(k−2)
1 + βL

(j−2)
2 L

(k−2)
1

)
P +

+ε
(
K (L

(k−2)
1 L

(j−1)
2 − L

(k−1)
1 L

(j−2)
2 )− (L

(j−1)
2 L

(k−2)
1 − L

(j−2)
2 L

(k−1)
1 )K

)
= 0 ,
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Inner automorphysms of Yangian algebra

The RLL-relation has translational symmetry: u → u + a as well as is invariant
upon rescaling

L(u)→ f (u)L(u),

where f (u) = 1 + b1/u + b2/u
2 + . . . is scalar function. Consider

L(u)→ (u − a)k

uk
L(u),

at k = 1 one has

L(1) → L(1) − aIn, L(2) → L(2) − aL(1), L(3) → L(3) − aL(2), . . .

Taking a = 1
n
TrL(1) one can make L(1) traceless.
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Finite resolutions of YO and YS

Orthogonal and Symplectic Yangians also can be truncated at some finite order
k:

L(u) = I + u−1L(1) + . . .+ u−kL(k),

here L(0) = I unity operator.
We consider the linear:

L(u) = uI + G , G (1) = G ,

the quadratic:

L(u) = u2I + uG + H, G (1) = G , G (2) = H,

and the cubic evaluation:

L(u) = u3I + u2G + uH + J, G (1) = G , C (2) = H, G (3) = J.

It is convenient to assign the scale dimension to u: [u] = 1, then [G (k)] = k.
In contrast with the g`(n) case, generators G , H, J are not arbitrary, they are
subjected to the symmetry constraints and to the additional restrictions
following from the RLL-relation.
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Linear resolution

We start with the linear ansatz:

La
b(u) = uδab + G a

b.

Then defining RLL-relation takes the form:

(u(u + β)I12 + (u + β)P12 − uεK12)(u + v + G1)(v + G2) =

= (v + G2)(u + v + G1)(u(u + β)I12 + (u + β)P12 − uεK12),

here I12 = δa1
b1
δa2
b2

, P12 = δa1
b2
δa2
b1

, K12 = εa1a2εb1b2 . One can be rewritten it:

(u + β)
(

[G1,G2] + (G1 − G2)P12 − ε[K12,G2]
)
− εv [K12,G1 + G2]−

−εK12(G1 − β)G2 + εG2(G1 − β)K12 = 0.

It has to take place identically by powers of u and v , which implies three
restrictions on generators G :

−vC(1,1) = −εv [K12,G1 + G2] = 0, (1)

(u + β)C(1,2) = (u + β)
(

[G1,G2] + (G1 − G2)P12 − ε[K12,G2]
)

= 0, (2)

−C(1,3) = −ε
(
K12(G1 − β)G2 − G2(G1 − β)K12

)
= 0. (3)
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Linear resolution

The first constraint just tells that the Yangian generators must be
ε-antisymmetric (up to the unity matrix)

G = g + Ḡ , Ḡ ba = −εḠ ab,

like the generators of the Lie algebra so(n) or sp(2m). The scalar parameter g

singled out above is just the trace of generator G and can be treated as a
center of the algebra. It can be excluded by imposing the additional (unitarity)
condition.

The second constraint just states that the first Yangian generator G (1) = G
satisfies to so(n) or sp(2m) algebra relations. The finite-dimensional linearly
truncated Yangian differs from the corresponding so(n) or sp(2m) Lie algebra
by the additional third constraint, which specified unique (resolution)
representation.
In linear case this is the usual spinor representation in orthogonal case and its
(infinite-dimensional) analogue in the symplectic case.

David Karakhanyan Orthogonal and symplectic Yangians: linear and quadratic evaluations



Quadratic ansatz

In general case the number of constraints is (p + 1)2 − 1 = p(p + 2), here p is
the number of Yangian Y (p)(G) generators. L(u) = u2I + uG + H:

C(2,1) = [K12,G1 + G2] = 0,

C(2,2) = ([G1,G2] + (G1 − G2)P12 − ε[K12,G2]) = 0,

C(2,3) = K12(H1 + H2 + (G1 − β)G2)− (G2(G1 − β) + H1 + H2)K12 = 0,

C(2,4) = ([G1,H2] + (H1 − H2)P12 − ε[K12,H2]) = 0,

C(2,5) = ([H1,G2] + (H1 − H2)P12 − ε[K12,H1]) = 0,

C(2,6) = K12(H1(G2 + β) + (G1 − β)H2)− (H2(G1 − β) + (G2 + β)H1)K12 = 0.

C(2,7) =
(

[H1,H2]+(G2H1−H2G1)P12−εK12(G1−β)H2 +H2(G1−β)εK12

)
= 0,

C(2,8) = εK12(H1 − βG1 + β2)H2 − H2(H1 − βG1 + β2)εK12 = 0.

David Karakhanyan Orthogonal and symplectic Yangians: linear and quadratic evaluations



Symmetric and antisymmetric constraints

The set of defining equations above is equivalent to the following set of
equations with definite symmetry with respect to 1↔ 2:

AC(2,1) = 0, SC(2,1) = C(2,1) = [P12 − εK12,G1 + G2] = 0,

SC(2,2) = SC(2,1), AC(2,2) = [G1,G2]− 1

2
[P12 − εK12,G1 − G2] = 0,

AC
(2,3)
L = (1− εP12)C(2,3) =

(
[G1,G2]− β(G1 − G2)

)
K12 = AC(2,2)K12,

AC
(2,3)
R = C(2,3)(1− εP12) = K12

(
[G1,G2] + β(G1 − G2)

)
= K12AC

(2,2),

SC(2,3) = [P12 − εK12,H1 + H2 −
1

2
(G 2

1 + G 2
2 )] + {C(2,1),G1 + G2} = 0,

SC(2,4) = [G1,H2 −
1

2
G 2

2 ] + [G2,H1 −
1

2
G 2

1 ]−SC(2,3) − 1

2
{G1 − G2,SC(2,2)},

AC(2,4) = [G1,H2]− [G2,H1]− [P12 − εK12,H1 − H2] = 0,

David Karakhanyan Orthogonal and symplectic Yangians: linear and quadratic evaluations



AC
(2,6)
L = C(2,6)(1−εP12) = K12AC

(2,4), AC
(2,6)
R = (1−εP12)C(2,6) = AC(2,4)K12,

SC(2,6) =
1

2
(1 + εP12)C(2,6)(1 + εP12) = [P12 − εK12, {H1,G2}+ {G1,H2}],

SC(2,7) = SC(2,4)P12 −
ε

2
{K12,SC(2,4)} − ε

2
SC(2,6),

AC(2,7) = [H1,H2] +
1

4
[P12 − εK12, {G1,H2} − {G2,H1}]−

ε

4
{K12,AC

(2,4)},

AC
(2,8)
L = C(2,8)(1− εP12) = εK12

(
AC(2,7) +

ε− n

4
AC(2,4)),

SC(2,8) = [K12, {H1,H2} − βε(H1 + H2)]− β

2
{K12,SC(2,4)}+

βε

2
SC(2,6),

So one deduces that the independent constraints are: SC(2,1), SC(2,3), SC(2,6)

and SC(2,8) (”symmetric” constraints) and AC(2,2), C(2,4) = P12C
(2,5)P12 and

AC(2,7) (”algebra” constraints).
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Quadratic resolution

In quadratic case the Yangian algebra form two generators: G (1) = G and
G (2) = H. The appearance of the new generator H lifts the third constraint on
G 2 specifying the resolution representation in linear case and expresses the
symmetry restriction on new generator H instead. So, like in the first
constraint C(2,1) specifies the ε-symmetric part of G to be proportional to the
unity operator, C(2,3) fixes the ε-symmetric part of H:

H = h +
1

2
Ḡ 2 + H̄, K12(H̄1 + H̄2) = 0 = (H̄1 + H̄2)K12 ⇔ H̄ab = −εH̄ba.

One can rewrite the remaining set of p(p + 1) equations in terms of parameters
g , h and ”independent” (ε-antisymmetric) generators Ḡ and H̄:

C̄(2,2) = [Ḡ1 + P12 − εK12, Ḡ2] = 0,

C̄(2,4) = [Ḡ1 + P12 − εK12, H̄2] = 0,

C̄(2,5) = −P12C̄
(2,4)P12 = [H̄1, Ḡ2 + P12 − εK12] = 0,

C̄(2,7) = [H̄1, H̄2]− 1

4
[P12 − εK12, Ḡ

3
2 + 2{H̄2, Ḡ2} − 4gH̄2 − 2gḠ 2

2 + 4hḠ2]+

+
1

4
(Ḡ2Ḡ

2
1 − Ḡ 2

2 Ḡ1)P12 +
ε

4
(Ḡ 2

2 K12Ḡ2 − Ḡ2K̄12G
2
2 ) = 0,
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define the Yangian algebra between generators Ḡ and H̄ and the two higher
”symmetric” constraints:

2C̄(2,6) = −[K12, {H̄1, Ḡ1}+ {H̄2, Ḡ2} − (β + g)(Ḡ 2
1 + Ḡ 2

2 )] = 0,

and

2C̄(2,8) = [K12,
(
−H̄2

1 − H̄2
2 +

1

4
(Ḡ 4

1 + Ḡ 4
2 ) + (h + (g + ε)

β

2
)(Ḡ 2

1 + Ḡ 2
2 )
)

] = 0,

define restrictions:

{H̄, Ḡ}+ 2βH̄ = (β + g)(Ḡ 2 + βḠ)− c (2,6),

and

H̄2 = −1

4
Ḡ 4 − n

4
Ḡ 3 − β(β + g)H̄ − (h +

1

2
+
β

2
(n + g + 2ε)Ḡ 2+

+(
β

8
(n − ε)(n − 4ε) +

β2

2
(n + 2g − 3ε

2
) +

m2

2
)Ḡ +

1

2
c (2,8) − n + ε

4
m2,

specifying the particular Yangian resolution representation in quadratic case.
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Summary of the quadratic solution

Let us summarize: the quadratic (p = 2) resolution of the Yangian Y (G) is
determined by eight constraint. The four (p2) constraints C(2,2), C(2,4), C(2,5)

and C(2,7) contain commutator between generators and form the Yangian
algebra (like in g`(n) case). All these constraints are antisymmetric with
respect to auxiliary space index 1↔ 2 (their symmetric parts reduce to
lower-dimensional constraints). Remaining four (2p) constraints are symmetric:
two of them with the lower dimension C(2,1) and C(2,3) impose the restrictions
on ε-symmetric parts of generators G and H (relate them to the numerical
parameters and to the lower generator(s)). These restrictions correspond to (1)
of the linear case, which just declares the difference between so, sp and g`.
So Yangians Y

(p)
O and Y

(p)
S like Y (g`(n)) consist of p2 commutator algebra

relations, but obey also p symmetry constraint, which fix the ε-symmetric part
of each generator and p additional algebraic relations, which fix the
anticommutators of the highest generator with the remaining ones.
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Composite solutions (with the lower number of generators)

Along with the most general solution obtained above there exist also particular
ones, corresponding to the case when one or more highest dimensional Yangian
generators (H̄ in the case under consideration) are absent. There are two
possibilities: the first one is trivial, when the quadratic ansatz is in fact linear
(L(u) = (u + a)(u + b + G). The second degeneracy corresponds to the case of
the single generator Ḡ (H̄ = 0 or H̄ = aḠ , where a is (a dimensionful)
numerical parameter). So let us set:

H̄ = aḠ ,

then one has using C(2,3):

H = h +
1

2
Ḡ 2 + aḠ .

C(2,4) and C(2,5) then are reduced to C(2,2). The next constraint C(2,6) then tells:

2a = g + β,

and the further restrictions come from C(2,7) and C(2,8):
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The first leads to:

W = −Ḡ2(P12 − εK12)Ḡ2 − ε(P12 − εK12)Ḡ2 + (εḠ2 + 1)Ḡ1 = 0,

or in components:

W a2
dc1c2 = (Ḡ a2

d + εδa2
d )Ḡc1c2 + (Ḡ a2

c2 + εδa2
c2

)Ḡdc1 + (Ḡ a2
c1 + εδa2

c1
)Ḡc2d =

=
1

2

(
{Ḡ a2

d , Ḡc1c2}+ {Ḡ a2
c2 , Ḡdc1}+ {Ḡ a2

c1 , Ḡc2d}
)
,

so called cyclic constraint, while the last relation takes the form:

[K12, (Ḡ
2
1 + Ḡ 2

2 )2 + b(Ḡ 2
1 + Ḡ 2

2 )] = 0,

which is equivalent to (3).
Compare now at g`(n) case, the quadratic resolution of Y (g`(n)) is specified
by two unconstrained generators G (1), G (2) which obey some algebra. The
quadratic solution L1(u) = u2 + uG

(1)
1 + G

(2)
1 corresponds to the fusion of two

linear ones L13(u) = u + a + G
(1)
13 and L14(u) = u + b + G

(1)
14 at

G
(2)
1 = (a + G

(1)
13 )(b + G

(1)
14 ).
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Cubic ansatz

C(3,1) = ε[K12,G1 + G2] = 0,

C(3,2) = ([G1,G2] + (G1 − G2)P12 − ε[K12,G2]) = 0,

C(3,3) = εK12(H1 + H2 + (G1 − β)G2)− (G2(G1 − β) + H1 + H2)εK12 = 0,

C(3,4) = ([G1,H2] + (H1 − H2)P12 − ε[K12,H2]) = 0,

C(3,5) = ([H1,G2] + (H1 − H2)P12 − ε[K12,H1]) = 0,

C(3,6) = εK12(J1 + J2 + H1(G2 + β) + (G1 − β)H2)−

(H2(G1 − β) + (G2 + β)H1 + J1 + J2)εK12 = 0.

C(3,7) = [J1,G2] + (J1 − J2)P12 − εK12(J2 + H1(G2 + β) + (G1 − β)H2)−

−(H2(G1 − β) + (G2 + β)H1 + J2)εK12 = 0,

C(3,8) =
(

[H1,H2] + (J1 − J2 + G2H1 − H2G1)P12−

−εK12(J2 + (G1 − β)H2)− (H2(G1 − β) + J2)εK12

)
= 0,
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C(3,9) = [G1, J2] + (J1 − J2)P12 − ε[K12, J2],

C(3,10) =
(

[H1, J2] + (G2J1−J2G1)P12− εK12(G1−β)J2)−J2(G1−β)εK12

)
= 0,

C(3,11) =
(

[J1,H2]+(G2J1−J2G1)P12−εK12((G1−2β)J2 +(H1−βG1 +β2)H2)−

−(H2(H1 − βG1 + β2) + J2(G1 − 2β))εK12

)
= 0,

C(3,12) =
(
−εK12((G1− 3β)J2 +H1H2− 2β(G1− β)H2− βH1(G2 + β) + J1G2)−

−(J2(G1 − 3β) + H2H1 − 2β(G1 − β)H2 − βH1(G2 + β) + G2J1)εK12

)
= 0,

C(3,13) =
(

[J1, J2] + (H2J1 − J2H1)P12 − εK12(H1 − βG1 + β2)J2+

+J2(H1 − βG1 + β2)εK12

)
= 0,

C(3,14) =
(
−εK12((J1 − βH1 + β2G1 − β3)H2 + (H1 − 2βG1 + 3β2)J2)+

+(H2(J1 − βH1 + β2G1 − β3) + J2(H1 − βG1 + β2))εK12

)
= 0,

C(3,15) = −εK12(J1 − βH1 + β2G1 − β3)J2 + J2(J1 − βH1 + β2G1 − β3)εK12 = 0.
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The set of the independent constraints

The above set of equations is equivalent to:

SC(3,1) = C(3,1) = [P12 − εK12,G1 + G2] = 0,

AC(3,2) = [G1,G2]− 1

2
[P12 − εK12,G1 − G2] = 0,

SC(3,3) = [P12 − εK12,H1 + H2 −
1

2
(G 2

1 + G 2
2 )] = 0,

SC(3,4) = [G1,H2 −
1

2
G 2

2 ] + [G2,H1 −
1

2
G 2

1 ] = 0,

AC(3,4) = [G1,H2]− [G2,H1]− [P12 − εK12,H1 − H2] = 0,

SC(3,6) = [P12 − εK12, J1 + J2 +
1

2
({H1,G2}+ {G1,H2})] = 0,

AC(3,7) = [G1, J2]− [G2, J1]− [P12 − εK12, J1 − J2] = 0,

SC(3,7) = [G1, J2] + [G2, J1] + [P12 − εK12, J1 + J2] = 0,
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AC(3,8) = [H1,H2] + [P12 − εK12,
1

2
(J2 − J1) +

1

4
({G1,H2} − {G2,H1)}] = 0,

AC(3,10) = [H1, J2]− [H2, J1] +
1

2
[P12 − εK12, {G1, J2} − {G2, J1}] = 0,

SC(3,10) = [H1, J2] + [H2, J1] +
ε

2
[K12, {H1,H2} − βε(H1 + H2)] = 0,

SC′
(3,12)

= [K12, {H1,H2} − εβ(H1 + H2) + {G1, J2}+ {J1,G2}] = 0,

AC(3,13) = [J1, J2] +
1

4
[P12 − εK12, {H1, J2} − {H2, J1}] = 0,

SC(3,14) = ε[K12, {J1,H2}+ {J2,H1} − 2βε(J1 + J2) + 2β2ε(H1 + H2)] = 0,

SC(3,15) = ε[K12, {J1, J2}+
βε

2
{H1,H2}+

β2ε

4
(3β − 2ε)(H1 + H2)].
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The solution to the cubic constraints

Again, constraints AC(3,2), SC(3,4), AC(3,4), AC(3,7), SC(3,7), AC(3,8), AC(3,10),
SC(3,10) and AC(3,13) express the Yangian algebra Y (3)(G). The
lower-dimensional symmetric constraints: SC(3,1), SC(3,3) and SC(3,6) restrict
the ε-symmetric parts of the generators:

G = g + Ḡ , H = h +
1

2
Ḡ 2 + H̄, J = j +

1

2
{H̄, Ḡ} − β + g

2
Ḡ 2 + J̄.

Substituting this solution to the remaining independent p(p + 1) = 12
constraints:

ĀC
(3,2)

= [Ḡ1, Ḡ2]− 1

2
[P12 − εK12, Ḡ1 − Ḡ2] = 0,

S̄C
(3,4)

= [Ḡ1, H̄2] + [Ḡ2, H̄1] = 0,

ĀC
(3,4)

= [Ḡ1, H̄2]− [Ḡ2, H̄1]− [P12 − εK12, H̄1 − H̄2] = 0,
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S̄C
(3,7)

= [Ḡ1, J̄2] + [Ḡ2, J̄1] = 0,

ĀC
(3,7)

= [Ḡ1, J̄2]− [Ḡ2, J̄1]− [P12 − εK12, J̄1 − J̄2] = 0,

ĀC
(3,8)

= [H̄1, H̄2]+[P12−εK12,
1

8
(Ḡ 3

1−Ḡ 3
2 )−1

2
(J̄1−J̄2)−g

2
(H̄1−H̄2)+

h

2
(Ḡ1−Ḡ2)]+

+
1

8

(
Ḡ2[P12 − εK12, Ḡ2]Ḡ2 − Ḡ1[P12 − εK12, Ḡ1]Ḡ1

)
= 0,

S̄C
(3,10)

= [H̄1, J̄2] + [H̄2, J̄1] +
1

2
([Ḡ 2

1 , J̄2] + [Ḡ 2
2 , J̄1])− 1

2
{(Ḡ1 − Ḡ2), [H̄1, H̄2]}+

+
1

4
{(Ḡ 2

1 − Ḡ 2
2 ), [Ḡ1, H̄2]} − 1

4
[[Ḡ1, Ḡ2], [Ḡ1, H̄2]]+

+
β + g

2
([Ḡ 2

1 , H̄2] + [Ḡ 2
2 , H̄1]) +

ε

8
[K12, Ḡ

4
1 + Ḡ 4

2 − 4β(β + ε)(Ḡ 2
1 + Ḡ 2

2 )] = 0,

ĀC
(3,10)

= [H̄1, J̄2]− [H̄2, J̄1] + {(Ḡ1 + Ḡ2),
1

2
[H̄1, H̄2]}+

g(g + β)

2
[Ḡ1, Ḡ2]+

+{[Ḡ1, Ḡ2], j +
1

2
(J̄2 + J̄2) +

1

4
({H̄1, Ḡ1}+ {H̄2, Ḡ2})−

β + g

4
(Ḡ 2

1 + Ḡ 2
2 )}+

+[P12 − εK12,
1

2
(H̄2

1 − H̄2
2 )− g(J̄1 − J̄2)− g

2
({H̄1, Ḡ1} − {H̄2, Ḡ2})],
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ĀC
(3,13)

= [J̄1, J̄2]+
1

2
({Ḡ1, [H̄1, J2]}−{Ḡ2, [H̄2, J1]})+

1

4
[P12−εK12, {H̄1, J̄1}−{H̄2, J̄2}]+

+
1

8
[P12−εK12, {Ḡ 2

1 , J̄2}−{Ḡ 2
2 , J̄1}]+

β + g

2
([Ḡ 2

1 , J̄2]−[Ḡ 2
2 , J̄1])−h

2
[P12−εK12, J̄1−J̄2]+

+
1

4
[{Ḡ1, H̄1} − {Ḡ2, H̄2}] +

1

8
[P12 − εK12, {H̄1, {H̄2,G2}} − {H̄2, {H̄1,G1}}]+

+
1

16
[P12−εK12, {Ḡ 2

1 , {H̄2,G2}}−{Ḡ 2
2 , {H̄1,G1}}]+

h

4
[P12−εK12, {H̄2,G2}−{H̄1,G1}]−

−β + g

4
([Ḡ 2

1 , {H̄2,G2}]−[Ḡ 2
2 , {H̄1,G1}])+

β + g

8
[P12−εK12, {H̄2, Ḡ

2
1 }−{H̄1, Ḡ

2
2 })]+

+[P12 − εK12,
(β + g)h + j

4
(Ḡ 2

1 − Ḡ 2
2 ) +

j

4
(H̄1 − H̄2)] +

(β + g)2

4
[Ḡ 2

1 , Ḡ
2
2 ],

The remaining three constraints: SC(3,12), SC(3,14) and SC(3,15) impose the
algebraic restrictions on J̄2, {J̄, H̄} and {J̄, Ḡ}, which specify the particular
resolution representation.
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Second order evaluation

L(u) = u2 + uG + H,

G = g + Ḡ , H = h +
1

2
(Ḡ 2 + βḠ) + H̄.

Ḡ obeys the Lie algebra relation, H̄ transforms as the adjoint representation.

{Ḡ , H̄}+ 2βH̄ − g(Ḡ 2 + βḠ) = c (2.6),

[H̄1, H̄2]+
1

8
[W12, Ḡ1− Ḡ2]+

1

8
[P12−εK12, χ1−χ2−4g(H̄1−H̄2)α(Ḡ1− Ḡ2)] = 0

α = 4h + β2 + 1− 2εβ + m2ε/2,

H̄2 = c (2.8) +
1

4
Ḡ 4 − gβH̄ + βG 3 + (

5

4
β2 + h)Ḡ 2 + (

β3

2
+ 2hβ)Ḡ .
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Center of the Yangian Y(2)

Center is generated by
C(u) = Lt(u − β)L(u) =

= (u2 + ug + h)(h + (u − β)2 + (u − β)g) + (β − u)c (2.6) − c (2.8).

The elements g , h, c (2.6) and c (2.8) are central.
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Lie algebra resolution

Consider first the trivial case:

ρ(H̄) = aḠ , ρ(G) = G = g + Ḡ ,

and

L(u) = u2 + u(g + Ḡ) + h +
1

2
(Ḡ 2 + βḠ),

The sufficient condition is

Wa1b1a2b2 = Ḡ[a1b1
Ḡa2b2),

The all central elements then are expressed in terms of m2 = 1
n
tr(Ḡ 2):

g 2 = −β2 − m2

8
, 4h = 2β2 − 1 + 2βε− m2

2
.

The condition W12 = 0 implies that the graded-antisymmetric part of Ḡ 3 is
proportional to Ḡ :

χ = Ḡ 3 + (2β + ε)Ḡ 2 +
ε

2
(4β −m2)Ḡ − m2

2
= 0.
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Oscillator representation

are realized as follows:

cacb + εcbca = εba, ca = εabc
b, ⇒ c1c

b + εcbca = δba ,

cacb + εcbca = εab, cac
a =

n

2
= εcbcb.

Gab =
ε

2
εab − cacb = −εGba

(G 2 + βG)ab =
ε

4
(n − ε)εab =

ε

2
(β +

ε

2
)εab.

The metric for Sp(n) and O(n) (n = 2k) is convenient to choose as:

εab = εaδa,−b, a, b = −n

2
, . . . ,−1, 1, . . . ,

n

2
.

i , j , k = 1, 2, . . . , n
2
.
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Highest weight vector

of the Lie algebra representation |0〉 is realized as follows:

G−i,−j |0〉 = 0, G−i,j |0〉 = 0, i < j , G−i,i |0〉 = hi |0〉 = 0.

The algebra implies:

[Gab,G
m
cd ] = −εcbGm

ad + εadG
m
cb + εacG

m
bd − εdbGm

ca ,

so one deduces:

Gm
−i,−j |0〉 = 0, Gm

−i,j |0〉 = 0, i < j ,

Gm
−i,i |0〉 = h

(m)
+i |0〉 = 0, Gm

i,−i |0〉 = h
(m)
−i |0〉 = 0,

h
(1)
+1 = hi , h

(1)
−1 = −εhi ,

h
(m)
±i is calculated iteratively:

h
(m+1)
+i = (εhi − 2β + i − ε)h(m)

+i + (ε− 1)h
(m)
−i +

∑
k<i

εh
(m)
+k +

∑
k>i

(εh
(m)
−k + h

(m)
+k ),

h
(m+1)
−i = −εh(m)

−i hi + (1− i)h
(m)
−i +

∑
k<i

h
(m)
−k ,
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Linear resolution

So for any Lie algebra representation obeying:

G 2 + 2βG −m2 = 0,

has weights subjected to n
2
− 1 conditions

(hi − hi−1)(ε(hi + hi−1 − β + i − 1) = 0.

The oscillator (spinor) representation admits two solutions:

hi = −1

2
, i = 1, . . . ,

n

2
, c−i |0〉 = 0,

and

hi = −1

2
, i = 1, . . . ,

n

2
− 1, h n

2
= +

1

2
,

and the highest weight vector |0̃〉:

c−i |0̃〉 = 0, i = 1, . . . ,
n

2
− 1, c n

2
|0̃〉 = 0.

David Karakhanyan Orthogonal and symplectic Yangians: linear and quadratic evaluations



Representation corresponding to (quadratic) Lie algebra resolution

Any Lie algebra representation obeying

Wab,cd = GabGcd + GacGdb + GadGbc + GcdGab + GdbGac + GbcGad = 0,

has weights
(h1, . . . , h n

2
) = (1, . . . , h, 0 . . . , 0).
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Jordan-Schwinger representation

is realized as follows:

xa∂b − ε∂bxa = [xa, ∂b]−ε = εab, [xa, xb]−ε = 0 = [∂a, ∂b]−ε.

ρ : Y(2)(G) → H
ρ(Gab) = G̃ab = xa∂b − εxb∂a.

All conditions are fulfilled.

Wa1b1a2b2 = Ḡ[a1b1
Ḡa2b2),

The all central elements then are expressed in terms of m2 = 1
n
tr(Ḡ 2):

g 2 = −β2 − m2

8
, 4h = 2β2 − 1 + 2βε− m2

2
.

The condition W12 = 0 implies that the graded-antisymmetric part of Ḡ 3 is
proportional to Ḡ :

χ = Ḡ 3 + (2β + ε)Ḡ 2 +
ε

2
(4β −m2)Ḡ − m2

2
= 0.
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Weights corresponding to Jordan-Schwinger representation

[∂a, xb]−ε = εab, Gba = xa∂b − εxb∂a.

Highest weight vector |0〉
ψ(x) = (x−1)λ,

weights

h1 = −ελ = h, hi = 0, i = 2, . . . ,
n

2
.

(h1, . . . , n n
2

= (h, 0, . . . , 0).

In orthogonal case the canonical pairs are bosonic and λ is an arbitrary
number. In the symplectic case the canonical pairs are fermionic and ψ is either
constant or is proportional to the first power of x−1, so λ = 0 or λ = 1.
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Weights corresponding to the genera quadratic resolution

The highest weight |0〉 of the Yangian algebra Y (2)

[∂a, xb]−ε = εab, Gba = xa∂b − εxb∂a.

Highest weight vector |0〉

G−i,−j |0〉 = 0, G−i,j |0〉 = 0, i < j , G−i,i |0〉 = hi |0〉,

H−i,−j |0〉 = 0, H−i,j |0〉 = 0, i < j , H−i,i |0〉 = b̄hi |0〉.

6-th constraint implies:

2h̄i [hi + ε(i − 1− β)]− 2ε
i−1∑
k=1

h̄k − g(h
(2)
−i − εβhi ) = c (2.6),

while 8-th constraint gives:

c (2.8) = −1

4
h

(4)
−i − βh

(3)
−i − (

5

4
+ h)h

(2)
−i + εβ(

β2

2
+ 2h)hi−

−
∑
k<i

[1

4
(h

(3)
−k − h

(3)
−i + εhih

(2)
−k − εhkh

(2)
−i +

1

2
(−ε(hk − hi )(2h +

β

3
) + β(h

(2)
−k − h

(2)
−i )
]
.
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