Quaternion-Kähler deformations of $\mathcal{N}=4$ supersymmetric mechanics

Evgeny Ivanov (BLTP JINR)

SIS'18, August 13-16, 2018, Dubna

Based on joint works with Luca Mezincescu (Miami)

Outline

Motivations

Deformations of $\mathcal{N}=4$ SQM: first type

QK $\mathcal{N}=4$ SQM as a deformation of HK SQM models

Generalizations

Summary and Outlook

Outline

Motivations

Deformations of $\mathcal{N}=4$ SQM: first type

QK $\mathcal{N}=4$ SQM as a deformation of HK SQM models

Generalizations

Summary and Outlook

Outline

Motivations

Deformations of $\mathcal{N}=4$ SQM: first type

QK $\mathcal{N}=4$ SQM as a deformation of HK SQM models

Generalizations

Summary and Outlook

Outline

Motivations

Deformations of $\mathcal{N}=4$ SQM: first type

QK $\mathcal{N}=4$ SQM as a deformation of HK SQM models

Generalizations

Summary and Outlook

Outline

Motivations

Deformations of $\mathcal{N}=4$ SQM: first type

QK $\mathcal{N}=4$ SQM as a deformation of HK SQM models

Generalizations

Summary and Outlook

Motivations

Supersymmetric Quantum Mechanics (SQM) (Witten, 1981) is the simplest ($d=1$) supersymmetric theory:

- Catches the basic features of higher-dimensional supersymmetric theories via the dimensional reduction;
- Provides superextensions of integrable models like Calogero-Moser systems, Landau-type models, etc;
- Extended $\mathcal{N}>2, d=1$ SUSY is specific: dualities between various supermultiplets, nonlinear "cousins" of off-shell linear multiplets, etc.
- $\mathcal{N}=4$ SQM: $\left\{Q_{\alpha}, \bar{Q}^{\beta}\right\}=2 \delta_{\alpha}^{\beta} H, \alpha=1,2, \quad$ is of special interest. In particular, a subclass of $\mathcal{N}=4$ SQM models have as their bosonic target, Hyper-Kähler (HK) manifolds.
- Being motivated by an interest in theories with the "curved" rigid supersymmetries (see, e.g., Festuccia, Seiberg, 2011), it is important to study various non-trivial deformations of SQM models.

Deformations of $\mathcal{N}=4$ SQM: first type

The first type of deformed SQM amounts to choosing some semi-simple supergroups instead of higher-rank $d=1$ super-Poincare:
A. Standard extension:

$$
(\mathcal{N}=2, d=1) \quad \Rightarrow \quad(\mathcal{N}>2, d=1 \text { Poincaré })
$$

B. Non-standard extension:

$$
(\mathcal{N}=2, d=1) \equiv u(1 \mid 1) \quad \Rightarrow \quad s u(2 \mid 1) \subset s u(2 \mid 2) \subset \ldots
$$

In the case B, the closure of supercharges contains, besides H, also internal symmetry generators.

- The deformed $\mathcal{N}=4$ SQM is associated with $s u(2 \mid 1)$ (Bellucci \& Nersessian, 2003, 2004; Smilga, 2004; Römelsberger, 2006, 2007; I. \& Sidorov, 2014, 2016; I., Sidorov \& Toppan, 2015).
- Recently, su(2|1) invariant versions of super Calogero-Moser systems were constructed and quantized (Fedoruk \& I., 2017; Fedoruk, I., Lechtenfeld \& Sidorov, 2017).
- The analogous deformations of $\mathcal{N}=8$ SQM are associated with $s u(2 \mid 2)$ and $s u(4 \mid 1)$ (1., Lechtenfeld \& Sidorov, 2016, 2018).
This type of deformations, with focus on the su(4|1) case, will be discussed in the talk by Stepan Sidorov, so I will concentrate on another type.

QK $\mathcal{N}=4$ SQM as a deformation of HK SQM models

Another type of deformations of $\mathcal{N}=4$ SQM models proceeds from the general Hyper-Kähler (HK) subclass of the latter. The deforrmed models are $\mathcal{N}=4$ supersymetrization of the Quaternion-Kähler (QK) $d=1$ sigma models (I. \& Mezincescu, 2017).

Both HK and QK $\mathcal{N}=4$ SQM models can be derived from $\mathcal{N}=4, d=1$ harmonic superspace approach (I. \& Lechtenfeld, 2003).

HK manifolds are bosonic targets of sigma models with rigid $\mathcal{N}=2, d=4$ SUSY (Alvarez-Gaume, Freedman, 1980, 1981). After coupling these models to local $\mathcal{N}=2, d=4$ SUSY in the supergravity framework the target spaces are deformed into the so called Quaternion-Kähler (QK) manifolds (Bagger, Witten, 1983).

Both types of the manifolds are $4 n$ dimensional, but their holonomy groups are in $S p(n)$ and $S p(1) \times S p(n)$, respectively.

Harmonic $\mathcal{N}=4, d=1$ superspace

- Ordinary $\mathcal{N}=4, d=1$ superspace:

$$
\left(t, \theta^{i}, \bar{\theta}_{k}\right), \quad i, k,=1,2
$$

- Harmonic extension:

$$
\left(t, \theta^{i}, \bar{\theta}_{k}\right) \quad \Rightarrow \quad\left(t, \theta^{i}, \bar{\theta}_{k}, u_{j}^{ \pm}\right), u^{+i} u_{i}^{-}=1, u_{i}^{ \pm} \in S U(2)_{A u t}
$$

- Analytic basis:

$$
\begin{aligned}
\left(t_{A}, \theta^{+}, \bar{\theta}^{+}, u_{k}^{ \pm}, \theta^{-}, \bar{\theta}^{-}\right) & \equiv\left(\zeta, u^{ \pm}, \theta^{-}, \bar{\theta}^{-}\right) \\
\theta^{ \pm}=\theta^{i} u_{i}^{ \pm}, \bar{\theta}^{ \pm}=\bar{\theta}^{k} u_{k}^{ \pm}, t_{A} & =t+i\left(\theta^{+} \bar{\theta}^{-}+\theta^{-} \bar{\theta}^{+}\right)
\end{aligned}
$$

- Analytic superspace and superfields:

$$
D^{+}=\frac{\partial}{\partial \theta^{-}}, \bar{D}^{+}=-\frac{\partial}{\partial \bar{\theta}^{-}}, \quad D^{+} \Phi=\bar{D}^{+} \Phi=0 \Rightarrow \Phi=\Phi\left(\zeta, u^{ \pm}\right)
$$

- Harmonic derivatives:

$$
\begin{aligned}
& D^{ \pm \pm}=u_{\alpha}^{ \pm} \frac{\partial}{\partial u_{\alpha}^{\mp}}+\theta^{ \pm} \frac{\partial}{\partial \theta^{\mp}}+\bar{\theta}^{ \pm} \frac{\partial}{\partial \bar{\theta}^{\mp}}+2 i \theta^{ \pm} \bar{\theta}^{ \pm} \frac{\partial}{\partial t_{\mathrm{A}}}, \\
& {\left[D^{+}, D^{++}\right]=\left[\bar{D}^{+}, D^{++}\right]=0 \quad \Rightarrow \quad D^{++} \Phi\left(\zeta, u^{ \pm}\right) \text {is analytic }}
\end{aligned}
$$

Basic $\mathcal{N}=4, d=1$ multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$

- Described off-shell by an analytic superfield $q^{+a}(\zeta, u)$:

$$
(4,4,0) \quad \Longleftrightarrow \quad q^{+a}(\zeta, u) \propto\left(f^{i a}, \chi^{a}, \bar{\chi}^{a}\right), a=1,2
$$

$$
\text { (a) } D^{+} q^{+a}=\bar{D}^{+} q^{+a}=0
$$

(Grassmann analyticity),
(b) $D^{++} q^{+a}=0$
(Harmonic analyticity),

$$
(a)+(b) \quad \Longrightarrow \quad q^{+a}=f^{k a} u_{k}^{+}+\theta^{+} \chi^{a}-\bar{\theta}^{+} \bar{\chi}^{a}-2 i \theta^{+} \bar{\theta}^{+} \dot{f}^{k a} u_{k}^{-}
$$

- Free off-shell action:

$$
S_{\text {free }} \sim \int d t d^{4} \theta d u q^{+a} q_{a}^{-} \sim \int d t\left(\dot{f}^{i a} \dot{f}_{i a}-\frac{i}{2} \bar{\chi}^{a} \dot{\chi}_{a}\right), \quad q^{-a}:=D^{--} q^{+a}
$$

- Nonlinear $d=1$ sigma model action:

$$
S_{\text {free }} \sim \int d t d^{4} \theta d u \mathcal{L}\left(q^{+a}, q^{-b}, u^{ \pm}\right)
$$

- In bosonic sector: HKT ("Hyper-Kähler with torsion") sigma model. In components, the torsion appears in a term quartic in fermions.

How to construct general HK $\mathcal{N}=4, d=1$ sigma models? No torsion in this case, the geometry involves only Riemann curvature tensor. The answer was given in Delduc, I., 2010.

- The basic superfields are real analytic, $q^{+A}(\zeta, u)=f^{i A} u_{i}^{+}+\ldots, i=1,2, A=1, \ldots 2 n$, it encompasses just $4 n$ fields $f^{i A}(t)$ parametrizing the target bosonic manifold, $\widetilde{\left(q_{A}^{+}\right)}=\Omega^{A B} q_{B}^{+}$, with $\Omega^{A B}=-\Omega^{B A}$ a constant symplectic metric.
- The linear constraint $D^{++} q^{+A}=0$ is promoted to a nonlinear one

$$
D^{++} q^{+A}=\Omega^{A B} \frac{\partial L^{+4}\left(q^{+C}, u^{ \pm}\right)}{\partial q^{+B}}
$$

- The superfield action is bilinear as in the free case,

$$
S_{H K} \sim \int d t d^{4} \theta d u \Omega^{A B} q_{B}^{+} q_{A}^{-}=\int d t\left[g_{i A k B}(f) \dot{f}^{i A} \dot{f}^{k B}+\ldots\right]
$$

the whole interaction appears only on account of nonlinear deformation of the q^{+A}-constraint.

- L^{+4} is an analytic hyper-Kähler potential (Galperin, I., Ogivetsky, Sokatchev, 1986): every L^{+4} produces the component HK metric $g_{i A k B}(f)$ and, vice versa, each HK metric originates from some HK potential L^{+4}.

From $\mathcal{N}=4 \mathrm{HK}$ SQM to its QK deformation

The harmonic superspace approach supplies the most natural arena for defining $\mathcal{N}=4$ QK SQM. Basic new features of these models as compared to their HK prototypes are as follows.

1. QK SQM model corresponding to $4 n$ dimensional QK manifold requires $n+1$ multiplets $(4,4,0)$ described by analytic superfields $q^{+a}\left(\zeta, w^{ \pm}\right),(a=1,2), Q^{+r}\left(\zeta, w^{ \pm}\right),(r=1, \ldots 2 n)$. An extra superfield $q^{+a}\left(\zeta, w^{ \pm}\right)$is $d=1$ analog of $\mathcal{N}=2, d=4$ "conformal compensator".
2. QK SQM actions are invariant under local $\mathcal{N}=4, d=1$ supersymmetry realized by the appropriate transformations of super coordinates, including harmonic variables $w_{i}^{ \pm}$.
3. For ensuring local invariance it is necessary to introduce a supervielbein $E\left(\zeta, \theta^{-}, \bar{\theta}^{-}, w^{ \pm}\right)$which is a general $\mathcal{N}=4, d=1$ superfield.
4. Besides the $\left(q^{+}, Q^{+}\right)$superfield part, the correct action should contain a "comological term" involving the vielbein superfield only.

Minimal local $\mathcal{N}=4, d=1$ SUSY

By analogy with the $\mathcal{N}=2, d=4$ case we postulate that local $\mathcal{N}=4, d=1$ SUSY preserves Grassmann analyticity,

$$
\begin{aligned}
& \delta t=\Lambda(\zeta, w), \delta \theta^{+}=\Lambda^{+}(\zeta, w), \delta \bar{\theta}^{+}=\bar{\Lambda}^{+}(\zeta, w) \\
& \delta w_{i}^{+}=\Lambda^{++}(\zeta, w) w_{i}^{-}, \delta w_{i}^{-}=0 \\
& \delta \theta^{-}=\Lambda^{-}\left(\zeta, w, \theta^{-}, \bar{\theta}^{-}\right), \quad \delta \bar{\theta}^{-}=\bar{\Lambda}^{-}\left(\zeta, w, \theta^{-}, \bar{\theta}^{-}\right)
\end{aligned}
$$

The explicit structure of the minimal set of analytic parameters is as follows

$$
\begin{aligned}
\Lambda & =2 b+\ldots \\
\Lambda^{+} & =\lambda^{i} w_{i}^{+}+\ldots \\
\Lambda^{++} & =\tau^{(i k)} w_{i}^{+} w_{k}^{+}+\ldots \\
\Lambda^{-} & =\lambda^{i} w_{i}^{-}+\ldots
\end{aligned}
$$

Here, $b(t), \tau^{(i k)}(t)$ and $\lambda^{i}(t), \bar{\lambda}^{i}(t)$ are arbitrary local parameters, bosonic and fermionic, respectively. The local $\mathcal{N}=4, d=1$ supergroup obtained is isomorphic to the classical (having no central charges) "small" $\mathcal{N}=4$ superconformal symmetry.

How to generalize $(4,4,0)$ superfields $q^{+A}(\zeta, w)$ to local SUSY?

- The simplest possibility is to keep the linear constraint

$$
D^{++} q^{+a}=0, \quad D^{++} Q^{+r}=0 .
$$

- It is covariant under the transformations

$$
\begin{aligned}
& \delta D^{++}=-\Lambda^{++} D^{0}, \delta q^{+a}=\Lambda_{0} q^{+a}, \delta Q^{+r}=\Lambda_{0} Q^{+r} \\
& \Lambda^{++}=D^{++} \Lambda_{0} .
\end{aligned}
$$

- To construct invariant actions, one needs the transformations of the integration measures $\mu_{H}:=d t d w d^{2} \theta^{+} d^{2} \theta^{-}, \mu^{(-2)}:=d t d w d^{2} \theta^{+}$,

$$
\delta \mu^{(-2)}=0, \quad \delta \mu_{H}=\mu_{H} 2 \Lambda_{0},
$$

and that of harmonic derivative D^{--},

$$
\delta D^{--}=-\left(D^{--} \Lambda^{++}\right) D^{--} .
$$

Simplest invariant action

The basic part of the total invariant action of the analytic superfields $q^{+a}(\zeta, w), a=1,2$, and $Q^{+r}(\zeta, w), r=1,2, \ldots 2 n$, can be written as

$$
\begin{aligned}
& S_{(2)}=\int \mu_{H} E \mathcal{L}_{(2)}(q, Q), \quad \mathcal{L}_{(2)}(q, Q)=\gamma q^{+a} q_{a}^{-}-Q^{+r} Q_{r}^{-}, \\
& q_{a}^{-}:=D^{--} q_{a}^{+}, \quad Q_{r}^{-}:=D^{--} Q_{r}^{+},
\end{aligned}
$$

and $\gamma= \pm 1$. The new object is vielbein E which is harmonic-independent, $D^{++} E=D^{--} E=0$, and transforms as

$$
\delta E=\left(-4 \Lambda_{0}+2 D^{--} \Lambda^{++}\right) E, \quad D^{++}\left(-4 \Lambda_{0}+2 D^{--} \Lambda^{++}\right)=0 .
$$

One more important term in the action is the "cosmological term":

$$
S_{\beta}=\beta \int \mu_{H} \sqrt{E}, \quad \delta S_{\beta}=\beta \int \mu_{H} D^{--} \Lambda^{++} \sqrt{E}=0 .
$$

The simplest locally $\mathcal{N}=4$ supersymmetric action so reads

$$
S_{H P} \sim S_{(2)}+S_{\beta}=\int \mu_{H}\left[E \mathcal{L}_{(2)}+\beta \sqrt{E}\right] .
$$

Why should the "cosmological" term S_{β} be added?

$$
\begin{aligned}
& E=E_{\text {bos }}+E_{\text {ferm }}, \\
& E_{\text {bos }}=e+\theta^{+} \theta^{-} M-\bar{\theta}^{+} \bar{\theta}^{-} \bar{M}+\theta^{+} \bar{\theta}^{-}(\mu-i \dot{e})+\bar{\theta}^{+} \theta^{-}(\mu+i \dot{e}) \\
& +4 i\left(\theta^{+} \bar{\theta}^{+} w_{i}^{-} w_{k}^{-}-\theta^{+} \bar{\theta}^{-} w_{i}^{-} w_{k}^{+}-\theta^{-} \bar{\theta}^{+} w_{i}^{-} w_{k}^{+}+\theta^{-} \bar{\theta}^{-} w_{i}^{+} w_{k}^{+}\right) L^{(i k)} \\
& +4 \theta^{+} \bar{\theta}^{+} \theta^{-} \bar{\theta}^{-}\left[D+2 L^{(i k)} w_{i}^{+} w_{k}^{-}\right], \\
& E_{\text {ferm }}=\left(\theta^{-} w_{i}^{+}-\theta^{+} w_{i}^{-}\right) \phi^{i}-\left(\bar{\theta}^{-} w_{i}^{+}-\bar{\theta}^{+} w_{i}^{-}\right) \bar{\phi}^{i}+4 i \theta^{-} \bar{\theta}^{-}\left(\theta^{+} w_{i}^{+} \sigma^{i}-\bar{\theta}^{+} w_{i}^{+} \bar{\sigma}^{i}\right) \\
& +2 i \theta^{+} \bar{\theta}^{+}\left[\theta^{-} w_{i}^{-}\left(2 \sigma^{i}-\dot{\phi}^{i}\right)-\bar{\theta}^{-} w_{i}^{-}\left(2 \bar{\sigma}^{i}-\dot{\phi}^{i}\right)\right] .
\end{aligned}
$$

The fields ($e, \phi^{i}, \bar{\phi}^{i}, L^{i k}$) are gauge fields of $\mathcal{N}=4, d=1$ supergravity, ($D, \sigma^{i}, \bar{\sigma}^{i}$) are additional fields, Lagrange multipliers. So we deal with a kind of non-minimal $\mathcal{N}=4, d=1$ supergravity in the present case.

- Pass to the bosonic limit:

$$
q^{+a} \Rightarrow f^{i a} w_{i}^{+}-2 i \theta^{+} \bar{\theta}^{+}+\dot{f}^{i a} w_{i}^{-}, Q^{+r} \Rightarrow F^{i r} w_{i}^{+}-2 i \theta^{+} \bar{\theta}^{+} \dot{F}^{i r} w_{i}^{-}, E \Rightarrow E_{\text {bos }}
$$

- In this limit,

$$
\begin{aligned}
& L_{H P} \Rightarrow \frac{1}{2} e\left(\dot{F}^{i r} \dot{F}_{i r}-\gamma \dot{f}^{i a} \dot{F}_{i a}\right)+L_{i k}\left[F^{(i r} \dot{F}_{r}^{k)}-\gamma f^{(i a} \dot{f}_{a}^{k}\right] \\
& +\frac{1}{4} D\left(\gamma f^{i a} f_{i a}-F^{i r} F_{i r}+\beta \frac{1}{\sqrt{e}}\right) \\
& +\frac{\beta}{4} \frac{1}{e^{3 / 2}}\left[L^{i k} L_{i k}-\frac{1}{8}\left(M \bar{M}+\mu^{2}+\dot{e}^{2}\right)\right] .
\end{aligned}
$$

- The auxiliary fields M, \bar{M} and μ fully decouple and can be put equal to zero by their equations of motion. Also, $e(t)$ is an analog of $d=1$ vierbein, so it is natural to choose the gauge

$$
e=1 .
$$

- Then the bosonic Lagrangian becomes

$$
\begin{aligned}
& L_{H P} \Rightarrow \frac{1}{2}\left(\dot{F}^{i r} \dot{F}_{i r}-\gamma \dot{f}^{i a} \dot{f}_{i a}\right)+L_{i k}\left[F^{(i r} \dot{F}_{r}^{k)}-\gamma f^{\left(i a \dot{f}_{a}^{k}\right)}\right] \\
& +\frac{1}{4} D\left(\gamma f^{i a} f_{i a}-F^{i r} F_{i r}+\beta\right)+\frac{\beta}{4} L^{i k} L_{i k} .
\end{aligned}
$$

- At $\beta \neq 0 L^{\text {ik }}$ can be eliminated by its algebraic equation of motion, while D serves as the Lagrange multiplier giving rise to the constraint relating $f^{i a}$ and $F^{i r}$:

$$
\left.L^{i k}=-2 \frac{1}{\beta}\left[F^{(i r} \dot{F}_{r}^{k)}-\gamma f^{(i a} \dot{f}_{a}^{k}\right)\right], \quad \gamma f^{i a} f_{i a}-F^{i r} F_{i r}+\beta=0 .
$$

- Assuming that $f^{\text {ia }}$ starts with a constant (compensator!), one uses local $S U(2)$ freedom, $\delta f^{i a}=\tau_{1}^{i} f^{\prime a}$, to gauge away the triplet from $f^{i a}$,

$$
f^{(i a)}=0 \rightarrow f_{a}^{i}=\sqrt{2} \delta_{a}^{i} \omega .
$$

- Then the constraint can be solved as

$$
\begin{aligned}
& \text { (a) } \gamma=1 \Rightarrow \beta<0, \quad \omega=\frac{|\beta|^{1 / 2}}{2} \sqrt{1+\frac{1}{|\beta|} F^{2}}, \\
& \text { (b) } \gamma=-1 \Rightarrow \beta>0, \quad \omega=\frac{\beta^{1 / 2}}{2} \sqrt{1-\frac{1}{\beta} F^{2} .}
\end{aligned}
$$

- The final form of the bosonic action for $\gamma=1$ is

$$
L_{H P}=\frac{1}{2}\left[(\dot{F} \dot{F})+\frac{2}{|\beta|}\left(F_{r(i} \dot{F}_{j)}{ }^{r}\right)\left(F_{s}^{(i} \dot{F}^{s j)}\right)-\frac{1}{|\beta|} \frac{1}{1+\frac{1}{|\beta|} F^{2}}(F \dot{F})(F \dot{F})\right] .
$$

The option $\gamma=-1$ is recovered by the replacement $|\beta| \rightarrow-|\beta|$.

- These actions describe $d=1$ nonlinear sigma models on non-compact and compact maximally "flat" $4 n$ dimensional QK manifolds, respectively:

$$
\widetilde{\mathbb{H}}^{\mathrm{n}}=\frac{S p(1, n)}{S p(1) \times \operatorname{Sp}(n)}, \quad \mathbb{H}^{\mathrm{H}} \mathbb{P}^{\mathrm{n}}=\frac{S p(1+n)}{\operatorname{Sp}(1) \times \operatorname{Sp}(n)} .
$$

- Thus $\mathcal{N}=4$ mechanics constructed is just superextensions of these QK $d=1$ sigma models.

Fermionic sector

- What about fermionic fields? One can choose the gauge in which the $d=1$ "gravitino" field equals zero. In this gauge, the fermionic fields from q^{+a} are expressed in terms of those from Q^{+r} by the constraint which is a fermionic counterpart of the bosonic constraint:

$$
\chi^{a}=-\frac{\gamma}{\sqrt{2} \omega} \delta_{i}^{a} F^{i r} \chi_{r}, \quad \bar{\chi}^{a}=-\frac{\gamma}{\sqrt{2} \omega} \delta_{i}^{a} F^{i r} \bar{\chi}_{r}
$$

- Then the fermionic part of the total Lagrangian is given by

$$
\begin{aligned}
L_{H P}^{f}= & -\frac{i}{4} G^{[s r]}\left(\dot{\chi}_{s} \bar{\chi}_{r}-\chi_{s} \dot{\bar{\chi}}_{r}\right)+\frac{i \gamma}{4 \omega^{2}} F^{i(s} \dot{F}_{i}^{r)} \chi_{s} \bar{\chi}_{r} \\
& -\frac{1}{2 \beta}\left(G^{[s r]} G^{[f g]}+G^{[s]} G^{[g r]}\right) \chi_{s} \chi_{r} \bar{\chi}_{f} \bar{\chi}_{g}
\end{aligned}
$$

where

$$
G^{[s]}:=\Omega^{[s r]}+\frac{\gamma}{2 \omega^{2}} F^{i[s} F_{i}^{r]}
$$

The second term involves the $S p(n)$ part of spin connection, while the last term can be expressed through the curvature of this connection.

Generalizations

- The basic step in generalizing to $\mathcal{N}=4$ mechanics with an arbitrary QK manifold is to pass to nonlinear harmonic constraints

$$
\begin{aligned}
& D^{++} q^{+a}-\gamma \frac{1}{2} \frac{\partial}{\partial q_{a}^{+}}\left[\hat{\kappa}^{2}\left(w^{-} \cdot q^{+}\right)^{2} \mathcal{L}^{+4}\right]=0 \\
& D^{++} Q^{+r}+\frac{1}{2} \frac{\partial}{\partial Q_{r}^{+}}\left[\hat{\kappa}^{2}\left(w^{-} \cdot q^{+}\right)^{2} \mathcal{L}^{+4}\right]=0, \\
& \mathcal{L}^{+4} \equiv \mathcal{L}^{+4}\left(\frac{Q^{+r}}{\hat{\kappa}\left(w^{-} q^{+}\right)}, \frac{q^{+a}}{\left(w^{-} q^{+}\right)}, w_{i}^{-}\right), \quad \hat{\kappa}:=\frac{\sqrt{2}}{|\beta|^{1 / 2}} .
\end{aligned}
$$

- The invariant superfield action is the same as in the $\mathbb{H} \mathbb{P}^{n}$ case

$$
\begin{aligned}
& \mathbb{S}_{Q K} \sim\left[\tilde{S}_{(2)}+S_{\beta}\right]=\int \mu_{H}\left[E \tilde{\mathcal{L}}_{(2)}+\beta \sqrt{E}\right], \\
& \tilde{\mathcal{L}}_{(2)}=\gamma q^{+a} q_{a}^{-}-Q^{+r} Q_{r}^{-}, \quad q_{a}^{-}=D^{--} q^{+a}, \quad Q_{r}^{-}=D^{--} Q^{+r} .
\end{aligned}
$$

- The bosonic action precisely coincides with $d=1$ reduction of the general QK sigma model action derived from $\mathcal{N}=2, d=4$ supergravity-matter action in I., Valent, 2000. This coincidence proves that we have constructed most general QK $\mathcal{N}=4$ mechanics.
- One more possibility is to consider the following generalization of the $\mathbb{H I P}^{\mathrm{n}}$ action

$$
\begin{gathered}
S^{l o c}(q, Q)=\int \mu_{H} \sqrt{E} \mathcal{F}\left(X, Y, w^{-}\right), X:=\sqrt{E}\left(q^{+a} q_{a}^{-}\right), Y:=\sqrt{E}\left(Q^{+r} Q_{r}^{-}\right) \\
D^{++} q^{+a}=D^{++} Q^{+r}=0 \Rightarrow D^{ \pm \pm} X=D^{ \pm \pm} Y=0
\end{gathered}
$$

- When $E=$ const, it is reduced to the particular form of the HKT action $\int \mu_{H} \mathcal{F}\left(q^{+A}, q^{-B}, w^{ \pm}\right)$, while for $\mathcal{F}\left(X, Y, w^{-}\right)=\gamma X-Y+\beta$ just to $\mathbb{H}_{\mathbb{P}^{n}}$ action. So the target geometry associated with $S^{100}(q, Q)$ is expected to be a kind of QKT, i.e. "Quaternion-Kähler with torsion". To date, not too much known about such geometries...

Summary and Outlook

- $\mathcal{N}=4, d=1$ harmonic superspace methods allow one to construct a new class of deformed $\mathcal{N}=4$ supersymmetric mechanics models, those with $d=1$ Quaternion-Kähler sigma models as a bosonic core. The basic distinguishing feature of these models is local $\mathcal{N}=4, d=1$ supersymmetry.
- The superfield and component actions are now known for both general $\mathcal{N}=4$ QK mechanics, and the maximally "flat" $\mathbb{H P}^{n}$ mechanics.
- A few generalizations of QK mechanics can be constructed, in particular "Quaternion-Kähler with torsion" (QKT) models.
- Some further lines of study:
(a) To construct the Hamiltonian formalism for the new class of $\mathcal{N}=4$ mechanical systems, to perform quantization, at least for the simplest case of $\mathbb{H} \mathbb{P}^{n}$ mechanics, to find the energy spectra.
Last news (I \& Mezincescu, 2018, in preparation): Noether currents were calculated and shown to be vanishing on-shell (like in the case of spinning particles, see, e.g., Pashnev \& Sorokin, 1991),

$$
Q^{i}=\bar{Q}^{i}=H=J_{k l}=0 .
$$

(b) To explicitly construct some other $\mathcal{N}=4$ QK SQM models, e.g. associated with symmetric QK manifolds ("Wolf spaces").
(c) To construct locally supersymmetric versions of other off-shell $\mathcal{N}=4, d=1$ multiplets (such as $(3,4,1),(1,4,3)$, etc) and of the associated SQM systems (Landau-type, Calogero-Moser-type and others).
(d) Links between the two types of SQM deformations?

囯 E. Ivanov, L. Mezincescu, Quaternion-Kähler $\mathcal{N}=4$ supersymmetric mechanics, JHEP 1712 (2017) 016.

E- E. Ivanov, L. Mezincescu, QK $\mathcal{N}=4$ quantum mechanics: Hamiltonian formalism and supercharges (in preparation).

