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Our goal and previous studies

The main goal of this talk is the the symmetry algebra of the nonlocal rational
Calogero-type Hamiltonians using the Dunkl operator approach. J

Our publications on the subject:

T. H., O. Lechtenfeld, A. Nersessian, Superintegrability of generalized Calogero models
with oscillator or Coulomb potential, Phys. Rev. D 90, 101701(R) (2014)

M. Feigin, T. H., On the algebra of Dunkl angular momentum operators; JHEP 11 107
(2015)

T. H., A. Nersessian, Runge-Lenz vector in Calogero-Coulomb problem, Phys. Rev. A
92, 022111 (2015)

F. Correa, T. H., O. Lechtenfeld, A. Nersessian, Spherical Calogero model with
oscillator/Coulomb potential: quantum case; Phys. Rev. D 93, 125009 (2016)

T. H., A. Nersessian, Integrability and separation of variables in Calogero-Coulomb-
Stark and two-center Calogero-Coulomb systems, Phys.Rev. D 93 045025 (2016)
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Generalized Calogero-Moser model with Coulomb potential = Ratinal Calogero-type models

Calogero-Moser model

The Calogero-Moser model (”free” Calogero model) describes 1d particles interacting
with 1/72 potential [Calogero (1969,1971), Moser (1975)],

H= ZP—HLZ ﬂh

i<j

Properties:

m [s integrable by the Lax and matrix model methods with N Liouville integrals.

m Is maximally superintegrable both in classical [Wojciechowsk (1983)] and quantum
[Kuznetsov (1995)] cases with N — 1 additional constants of motion.

m The quantum model can be solved using the exchange (Dunkl) operator
formalism [Polychronakos (1992); Brink, Hansson, Vasiliev (1992)].

m Superintegrability is preserved in the presence of the oscillator and Coulomb
potentials.
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Generalized Calogero-Moser model with Coulomb potential = Coxeter group extensions

Coxeter group extension

Calogero-Moser model associated with finite reflection (Coxeter) group:

Properties:

m [t describes as a single N-dimensional particle

z:(‘Tl?"'ZN)y p:(p17"~apN)7 T:\/E'

m R4 is a system of positive roots of the finite reflection group W.

m Coupling constants g, form a W-invariant discrete function.




Generalized Calogero-Moser model with Coulomb potential = Coxeter group extensions

Finite reflection groups

A finite reflection group (Coxeter group) W is generated by reflections s, across the
selected hyperplanes (z,a) = 0 in RY:

W= Sa; Sas - - - Say we W
2
Sa(z) = 2— %a, a€ER

m The set of vectors a form the root system R. Two vectors +« describe the same
reflection.

m W-invariance of the root system: if @ € R then w(a) € R since
wsqw ' = Sw(a) we W,

m The reflection-invariance of the coupling constant,

Juw(a) = Jo-




Generalized Calogero-Moser model with Coulomb potential = Coxeter group extensions

Calogero-Coulomb model

The Calogero-Coulomb model [Khare (1996), Khare & Ghosh (1999)],

2
= S OEN 0 e

. )2
2 i< (i — =)
Properties:
m It is integrable [Calogero (1973)], [Khare (1996), Khare & Ghosh (1999)]

m The eigenfunctions have been calculated explicitly [Khare (1996)]

m The system is superintegrable with an analog of Runge-Lenz vector [T.H.,
Lechtenfeld & Nersessian (2014); T.H. & Nersessian (2015)]

m The superintegrability is preserved for the systems defined on hypersphere
[Correa, T.H., Lechtenfeld & Nersessian (2016)]

m Admits integrable extensions for Stark potential and two-center Coulomb system
[T.H. & Nersessian (2016)]
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Dunkl operator approach ~ Dunkl operators and its properties

Dunkl operators

Define the Dunkl operators as a deformations of derivative [Dunkl (1988)]:

Vi=0;— E go‘aisa, where a; = (a, &), ZTo = (2, @)
T
a€ER

m They provide the deformed momentum operator (Dunkl momentum)
i = —1V;
m With coordinates they define Cherednik algebra with commutation rules:
[mi,m] =0, [mi, 4] = =Sy,

2ga i
Si =05+ Y 7‘%&21 L Sar-
aER 4

m The reflection-invariant element:

S=— Z JaSa : [S, sa] = 0.




Dunkl operator approach ~ Dunkl operators and its properties

Dunkl operators for Ax_1 root system

In case of the simplest Ay_1 Coxeter root system:

N(N—1)
2

m There are positive roots

Ry = {ei— ejli> g},

m The Weyl group coincides with the symmetric group of permutations: W= Sy_1,

m The Dunkl operator
9
Vi=0;— E — S,
— T — T J
J#i

—95ij, for 17&]7

m s; are pairwise permutations z; <+ z;, Sy = T
1-— Zk#isik, for i =j.

m The invariant element is S=5Y.._.5;

i<j




Dunkl operator approach ~ Dunkl operators and its properties

Nonlocal Calogero Hamiltonians

The nonlocal Calogero model is [T.H, Lechtenfeld, Nersessian (2014)]:

2
_ﬂ' Y ga ga — Sa)
o= —y=5+ 2
a€ER ¢
2
P 9(g — si) -
=5 + m in Ay_1 case

m On (anti)symmetric wavefunctions it reduces to the Calogero model,

"7/1(5&33) = iw(z%
with +(—) sign for bosons (fermions).

m The Dunkl momenta are (commuting) integrals [Polychronakos (1992)],

7‘[0 = — [7‘[0771'1'] = 0.

The nonlocal Calogero-oscillator and Calogero-Coulomb [T.H, Lechtenfeld, Nersessian
(2014)] models:

HW7H0+# 7-[7:7'[0*%
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Dunkl operator approach ~ Dunkl angular momentum tensor

Dunkl angular momentum tensor

Define the Dunkl angular momentum operator [Feigin (2003), Feigin & T.H. (2015)],

Lij = TyTj — TjTr;.

m The nonlocal Calogero Hamiltonian (with/without central potential V(r))
preserves it:
[Ho, Lig] = [Hew, Lij] = [Hy, Ly] = 0

m L;; satisfy so(N) relations deformed with §;; — Sy

[Lijs Lit) = LSy + 1LjiSki — 1LitSkj — 1 LjSis.

m Their Casimir element is an analog of angular momentum square:
I=I"+8S5-N+2), L'=> L
i<j

[Lij,Z] = 0.
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Dunkl operator approach ~ Dunkl angular momentum tensor

Structure of deformed so(N) and iso(N) algebras

m The essential different between deformed so(N) is not a Lie algebra: the relation
[Lij, Lit] = 2L Sy + 1LjiSki — 1LaSkj — 1L S (a)

does not imply the Jacobi identity.

m There is a crossing relations among L;:

Lij(Li + 25k) + Lig(La + 2Su) + Lii(Lj +1Sz) = 0 (b)

m Appart from (a) and (b), there is no other relation between the deformed so(N)
generators [Feigin (2003), Feigin & T.H. (2015)]

m The symmetry of Ho is generated by m;, Li; forming deformation of Euclidean
ISO(N) generators:
[Lij7 7Tk] = 'L'TriSkj - ’L7TjSki

Lime + Ljgm; + Lyggm; = 0
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Dunkl operator approach ~ Dunkl angular momentum tensor

Nonlocal Calogero-oscillator system |

The nonlocal Calogero-oscillator model is [Polychronakos (1992); Brink, Hansson,
Vasiliev (1992)]:

2 Q..
H, = pf + M + ﬁ in Ay_1 case
2 i<j (x, B xj)Q 2

The symmetries are generated by the Dunkl-operator deformation of the SU(N)
generators [Feigin & T.H. (2015)]; extension to sphere: [Correa, T. H., Lechtenfeld &
Nersessian, (2016)]:
(Mo, Lig] =0, [Hu, I] = 0.
m The additional integrals are provided by the Dunkl-deformed Fradkin tensor:
[ij = x;xj + WM (UJ = 1)
m The commutation relations with the Dunkl angular momenta generators,

[Lij, In)) = —LieSjt — 2SSl + 1LjSu + 1.Su Ly
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Dunkl operator approach ~ Dunkl angular momentum tensor

Nonlocal Calogero-oscillator system |l

m The commutations between deformed Fradkin tensor components,
(L, In] = Z(Sleik + LaSje + LS + Siijl) + Sy, Swi] -

m This set contains "Liouville” (commuting) integrals, including the Hamiltonian
[Mathieu & Xudous (2001)], for 1/sin? [Bernard, Gaudin, Haldane & Pasquier (1993)]

Di = I“ + Z sgn(i — j)Sij
i
[Di, Dj] =0

m The integrals of local Calogero-Coulomb model are symmetric polynomials on
Lij, Iij, sij, for example:

Dy = Z(Di)k7 I = Z(fij)k

m In particular,
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Dunkl operator approach ~ Dunkl angular momentum tensor

Generalized Polychronakos-Frahm chain

12A%
m Freeze particle positions of H,, at potential minimum z = z°: Er
Zi

[Polychronakos (1993)]
m Consider fi-decomposition (¢ = w = 1) [Frahm (1993); Mathieu & Xudous (2001)]

282
Hw_v+hH1—T, V:Z Z
[ i<j
m The first-order term describes full exchange Calogero-chain model
1
H —
=2 @ (20— 02"
i<j B J

m Upon adding internal SU(n) spin degrees of freedom and replacing coordinate
exchanges to spin exchange (k=1,...,n)

we get Polychronakos-Frahm chain with onsite SU(n) spins J:

JZ-J
HPF:Z@’] L -y

1<j
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Dunkl operator approach ~ Dunkl angular momentum tensor

Symmetries of generalized Calogero chain

m Symmetries of the generalized Calogero chain H; correspond to A = 0 limit of
generalized Calogero-oscillator system H,,

0 0.0 0.0 0_0
Ly = x;m; — xjm;, I0 —zlac] + T
o
_ Sii
0 0 i
. — 1
e

[H, 1]] [H1, ’LJ] [Hi,s4) =0

m Their commutations are inherited from the commutations of the deformed su(N)
formed by Ly and I;;. The result in a degenerate deformed su(N) algebra.

m Symmetrization simplifies the expression, like

S
7= E Z]szjf3H1+2S+E :Lz:lfjsw+§ +$0)
-

i<j i<j 0,9, k,1 Z

m Problem: This set of integrals does not contain the chain Hamiltonian Hj.




Dunkl operator approach ~ Dunkl angular momentum tensor

Liouville integrals

m Take /i decomposition of “diagonal” integral
D; = D} + hD} — h*0;
DY = I+ sen(i—j)sy,  Di = Iy = —o{di, 7}
i
and its symmetric polynomial
Dy =Y (Di)" =D} +hDi + KD} + ...
m Their first-order terms D; define nontrivial commuting integrals
k-1
Dp =Y > (D)D), DL, DI =0
i =0
m The first term of this set is chain Hamiltonian: Di = —2H'

m Problems: Is the set of integrals L%, I%, Di complete? What are the

s Lijy
commutations between them?
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Dunkl operator ap

Dunkl Runge-Lenz vector

Define the Dunkl-operator deformation of Runge-Lenz vector [Feigin & T.H. (in
preparation)]

T

N
1 ? i
A; = 3 jgzl {Lij, m} + g[m, S —

m It extends pervious construction for the root system R = Ay_1 [T.H. &
Nersessian (2015)]. Possesses extensions to const. curv. spaces [Correa, T.H.,
Lechtenfeld & Nersessian (2016)].

m It is an integral of motion of nonlocal Calogero-Coulomb Hamiltonian:

[HW7 Al] =0

m Explicit expressions via coordinate and Dunkl momentum:

S R

_ (.2 7 N+3
A= (ﬂ' — ;)xlf (rprsz)m

A

<.




Dunkl operator approach ~ Dunkl Runge-Lenz vector and its properties

Properties of Runge-Lenz vector

It behaves as a vector under the Dunkl rotations

[As, Lit) = vArSi — 1415k

Useful relation:

AA; :(7r2 - %)xﬂj(wQ - %) + (rpr - z%)wﬂrj(rpr - z%)
— (772 - l)xmj(rpr - z#) - (rpr - z%)mxj(wz - l)
T r
Its consequences:

m The commutation rule between the components:
[Ai, Aj] = —20H Ly

m Expression for deformed Runge-Lenz vector square:

A2 =% 4 om (T — S+ W12




Dunkl operator approach ~ Dunkl Runge-Lenz vector and its properties

Deformed so(N+ 1) symmetry

Extend L; by encapsulating A; into extra (N + 1)th dimension:

Lij = Lij for i,j < N
i i A i 0
iN+1 = —LN41i = = F/—, N+1N+1 =
/—2H,

Do not change the root system R and reflection group W so that:

Sij = Sij for ’i,j S N
SiN-H = S'N+1i =0 S’N+1 N+1 =1
S=8
Then all commutators between L;; and A; are unified into deformed so(N+ 1) algebra:

[Lij, Lia) = 1 LSy + 1LjtSki — 2LiSkj — 1 LSy
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Dunkl operator approach ~ Dunkl Runge-Lenz vector and its properties

Deformed so(N+ 1) Casimir

m The Casimir element of Dunkl-deformed so(N + 1) algebra is given by the
standard formula:

¥ (N=1)?

-, - P
I=L+8E-N+1)= -5 n

m As a result, the nonlocal Calogero-Coulomb Hamiltinain is expressed via it,

2772

Hy=——m77
R 7+ (N—41)2

m In the absence of Calogero interaction, it reduces to the well-known relations
between the Coulomb Hamiltonuin and the Casimir element of its so(N + 1)
symmetry generators.
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Dunkl operator approach ~ Dunkl Runge-Lenz vector and its properties

Crossing relations

We have:
The following relation for three vectors u = z, 7, A:
Liur, + Lju; + Liu; = 0,

which reduces at g, =0 and N =3 to

- - -

L-z=L-p=L-A4

The crossing relation for the deformed so(N) algebra,

Lij( Lyt + 2Sw) + Lijw(La + 1Sa) + Lii(Lj 4+ 1S5) =0

As a result, we get the crossing relation for the so(N+ 1) case:

Lij(Lig + 2Sw) + Lig(La + 1S0) + Lig(Lj +1S3) = 0
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Dunkl operator approach ~ Dunkl Runge-Lenz vector and its properties

Graphical description of crossing relation

Graphical representation:

Each term is a products of two operators, with index [ is on the right. The change of
the operator order affects the right-hand side only:

J ! J ! J l J ! J l J !
[ ] [ ] o, /. B *—>e _ [ ] [ ] .K. _ L] L ]
I I + .x. *—>0 I ° + ./ L] *—>0

The change of the operator order does not affect here:

o/x\o = 0(-*0- ce 0(-.-\0 —+ ./AO\. —+
i j l k i j l k i j l k

+ [ first-order terms in Ly ]
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Dunkl operator approach ~ Dunkl Runge-Lenz vector and its properties

PBW basis in deformed so(/N + 1) algebra

m Applying successively the commutation and crossing relations among L-j and SZ‘]‘
one can prove that the monomials

L oo Lk w, W=8a83...5y € W
b <dy <Js = v <Js *)

are (linearly) independent and form the Poincaré-Birkhoff-Witt (PBW) basis of
deformed so(N + 1) algebra.

m The condition (*) means that the monomial diagram does not contain
intersecting bonds (is, js)-

m An example of nonintersecting monomial:

-Z/%Q 2114 -Z/23 2134 Z/34 =
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Dunkl Run,

Thank you!
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