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The statement of the problem

The Schridinger equation for the problem of penetration of A identical spinless

quantum particles in Oscillator units

A j—1 A

S IS R0+ D V) — E| Wi, x4 E) =0,

i=1 0 j=2 i=1 i=1

The problem under consideration is to find the
solutions of SE that are totally symmetric (or
antisymmetric) with respect to the permutations
of A particles, i.e. the permutations of
coordinates X; <> X; at i,j = 1,..., A, or symmetry
operations of permutation group Sp.

Barrier potential in configuration space A = 2




SET OF CO-ORDINATE SYSTEMS WHICH DIAGONALIZE THE KINETIC
ENERGY OF RELATIVE MOTION*

By DoxaLp W. JepseNt AND JosEpH O. HIRSCHFELDER

UNIVERSITY OF WISCONSIN NAVAL RESEARCH LABORATORY, MADISON, WISCONSIN
Communicated December 15, 1958

A simple scheme is given whereby one can write down any one of a large number
of possible sets of co-ordinates, to use in an N-particle problem, which have the
property of expressing the relative kinetic energy of the system in diagonal form.
This gives a Schrédinger equation without cross-derivatives. These sets of co-
ordinates can be visualized in terms of certain “mobile” models. It s easy to
construct a “mobile” which leads to a co-ordinate set iate to
physlcal problem
«As E. P. Wigner has pointed out to us in private correspondence, if the masses of the four

particles are equal, then there is a co-ordinate system which treats each of the four particles in
the same manner:

(@ = %" ndm—n—r,

%‘[n —n+n-n]

(@
(@ = ‘/7’_" ==,

@ =Y lr 4r il

Comparing with our co-ordinates of Fig. 4, b,

(Q)e = 03,

(Q2)e = —(Qu + @)/ V2,
(Q: = QU/V2,
Q..

There are similar relations between the Wigner co-ordinates and our co-ordinates of Fig. 4, d.
Wigner states that if the number of particles is a power of 2 and the masses are equal, there is
co-ordinate system of high symmetry in which all particles are treated equally. Unfortunately
the form of the potential energy in the collision of diatomic molecules would make these Wigner
co-ordinates inconvenient.
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GROUP THEORY OF HARMONIC OSCILLATORS
(II). States with Permutational Symmetry
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Abstract: This article continues the analysis of the problem of  particles in a common harmonic

oscillator potential that was initiated in two previous papers under the same general title. The
first objective of the paper is to give an analytic procedure for the explicit construction of the
states in the Us,D #3x U, %3 D @y Ry Uy D Upy D ...D Uy chain of subgroups,
where the 3n dimensional unitary group Us, is the symmetry group of the Hamiltonian while
@, is the symmetry group of the harmonic oscillator, #, is the ordinary rotation group, and
U, is the unitary group in  dimensions associated with the particle indices. The second and main
objective of this paper is to construct states with definite permutational symmetry. After taking
out the centre-of-mass motion the states given in terms of n—1 relative Jacobi vectors will be a
basis for irreducible representations of the unitary group U,_, and its orthogonal subgroup
0,-,. The characterization of the states is completed with the help of the irreducible representa-
tions of the symmetric group S,,, which, through its representations Din'1, 1)(S,,), is a subgroup
of O, This implies that the states transform irreducibly under the groups in the chain
Uy Up-y 2 Opy D S, rather than under those in the chain UpD UpyD...D Uj. The
states classified in this way contain as particular cases, those of both the shell and the cluster
model. Explicit expressions are given for two, three and four particles.

GROUP THEORY (i1I) 261

referred to the system § = (&,é,¢é;) of coordinates. We shall use rather the system

n

(#,€,€3) which, in turn, ds to relative
7' = 3@ +n’—n?—n*),
W =30 +nt —n’ 1),
L]

> =30+t = ). (6.9)




Symmetrized coordinates for system of A identical particles

&o X1 X o

£ Xo Xo &1

& X3 X3 &

. = C o ) ° = C N 2
£A72 XA—1 XA—1 £A72
i Xa XA §a—1

i1 1 1 - 1 A

1 a a a -+ a &

1 a a a - a a a =1/(1-VA) <0,

C:L 1 a a a -+ a a , ai=a +VvVA>0,
VA c'=cC.
1 a a a -+ a a
1 a a a -+ a a

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar, L.L. Hai, V.L. Derbov and P.M.
Krassovitskiy, Physics of Atomic Nuclei 77, pp. 389-413 (2014); Lecture Notes in
Computer Science 8136, 155-168 (2013).
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Abstract
We present an extension of the spin-adapted configuration-interaction method (SACI) for the
computation of four electrons in a quasi two-dimensional quantum dot. By a group-theoretical
decomposition of the basis set and working with relative and center-of-mass (cm) coordinates we
obtain an analytical identification of all spurious cm states of the Coulomb-interacting electrons.

find a substantial reduction in the basis set used for numerical computations. At the same
time we increase the aceuracy compared t0 the standard SACI due to the absence of distortions

caused by an unbalanced cut-off of cm excitations.

Keywords: few-electron quantum dot, variational principle, block-diagonal basis

find: all class operators equation (A.2) have diagonal repre-
sentations, see table A2. This proves:

Prop. All basis states of the irreps of the subgroup Dy, in the
chosen representations are basis states of irreducible repre-
sentations of the bigger group § (4).

‘This remarkable result allows in table A3, up to certain
ambiguities. to almost avoid the use and projection with
Young operators for the bigger group S (4). In tables Ad, AS
we use it in relation with the full scheme of groups including
SU(3) > O(3. R) and subgroups to assign orbital symmetry
o the oscillator states.

Of two states separated by, one and only one can belong to
the listed tableau. The states [4], [I] are identified as cigenstates
under the transposition 7' (2, 3) with eigenvalue 1 respectively.
If a state is not reproduced under T'(2.3), it necessarily
belongs to f=[22] and spin § = 0. We conclude that the
states equation (A.1) yield all the bases of the orbital Young
tableaus.

Appendix B. Symmetrized relative coordinates for
>4 electrons and their permutations

The efficiency of the tetrahedral coordinates raises the
question if similar relative coordinates exist for n >

generalization of the tetrahedral coordinates from [13], new
symmetrized coordinates for n particles were proposed
by Gusev 7 al [8]. The matrix that gives the 1 new coordinates

(g Ty M1 in terms of the old ones (x1, x2....xy) reads
T 11
a
b

a=[1-val" b=a+ i ®.1)

The em coordinate is included as 7, We shall explore
the properties of these coordinates under the action of




SE in the symmetrized coordinates

62 A—1 a2 ) A
[852+ | 5 (O] + 3 VOtt&n s 0-1)) — E| W60, nai E) =0,
0 = i=1

ot
which is invariant with respect to permutations & <+ & at i,j = 1,...,A— 1 (instead of
Jacobi coordinates) as follows from the invariance SE with respect to permutation
Xi <> Xxjat i,j=1,...,Ais preserved.




Galerkin expansion in the symmetrized coordinates

Galerkin expansion in the symmetrized coordinates

Jmax

w’b(go)(&)v co0s) ’EA*1) = Z ¢](§1 PREEE) 5/4*1 )Xl'l‘o(’go)a

J=1

Here x;(&) are unknown functions

Xiio (60) :/df1---de71¢i(§17~~7§A—1)‘Uio(§O»---7§A71),




Symbolic-numerical algorithm for generating cluster eigenfunctions:
identical particles with pair oscillator interactions in 1D Euclidian space

Eq for (A — 1)-dimensional oscillator with known eigenfunctions ®;(&1,...,{a—1) and

eigenenergies E;

A—1 82 A1
|:Z |:_87€2+(§l)2:| _E]} ¢/(£1555A71):0; Ejzzzlk+A_17
i=1 0 k=1

where the indices ik, k = 1,..., A— 1 take integer values ix = 0,1,2,3,....

We define the SCR in the form of linear combinations of the conventional oscillator

eigenfunctions ®p, ;... (&1, -, Eam1):

(&1, 6a1) = Z 5[0,'1),,-2“,_,,';‘_1]‘5[;1,ig,...,iA,1](§1,--~,§A71),

A—1
2 i +A-1=E
k=1

exp(—&4/2)Hj ()

At
Blis o osig_ &ty s €amt) = H b (&), (&) =
k=1

where Hj (&) are Hermite polynomials.




Step 1. Symmetrization with respect to permutation of A — 1 particles

The states, symmetric with respect to permutation of A— 1 particles i = [i1, 2, ..., ia_1]

30) | 1//Ns, [i{,B,...,ia_1] is a multiset permutation of [i, iz, ..., ia_1],
[ifi35-5ia_41 7 0, otherwise.
Here Ng = (A—1)!/ Hﬁ; vk! is the number of multiset permutations of
[i1, 2y ..y ia—1], Nu < A—1 is the number of different values i, in the multiset
i1, ko, ...,Iia_1], and vk is the number of repetitions of the given value iy.
g

The states, antisymmetric with respect to permutation of A — 1 particles

®i(&1)  ®(&) - Py (&)
1 (&) (&) o Py, (&)
OF (&1, pmt) = ——=
J )0y GA—=1) — (A—1)I o ; )
P (am1) Pp(8a1) - Dy (an)
ie., ﬁ[(i:’)viéy»-wi,’\_J =€iri,..., ,-;H/\/(A —1)! where Eif ip,...ip_, 18 a totally antisymmetric
tensor.




Step 2. Symmetrization with respect to permutation of A particles

Case A=2 (&1 = (X2 — x1)/V/2)

Function being even (or odd) with respect to & appears to be symmetric (or
antisymmetric) with respect to permutation of two particles, i.e. Xo <> Xj.

Case A>3
The functions, symmetric (or antisymmetric) with respect to permutations in
Cartesian coordinates X; <> X, i,/ = 1,..., A become symmetric (or antisymmetric)

with respect to permutations of symmetrized coordinates & <+ &, at
ij=1.,A-1
q)(...,X,', ceey Xjy ) = :|:¢(,X], ceey Xiy ) = q)(...,f,‘/, ...,fj/, ) = ﬂ:q)(...,gj/, ...,6,‘/7 )

Here and below we use the above property of the symmetrized coordinates

A—1
. 1
Xj =X — X =&i—1 — &1 =&im1,jm1, L[=2,.,A, X1 = VA Zfi'-

i’=0




Step 2. Symmetrization with respect to permutation of A particles

However, the converse is not true, because we deal with a projection map:

1 ai dp da - a ao
& 1 a a1 a -+ a a X
€2 1 a a a --- a ao X2
. . . . . . Xa_1
£A71 1 Qo o ao e a ao X
1 a a a --- a ai

Thus, the functions, symmetric (or antisymmetric) with respect to permutations of
symmetrized coordinates (i.e. by permutations X; <> X; at i,j = 2, ..., A), are divided
into two types, namely,

the physical symmetric (antisymmetric) solutions, symmetric (or antisymmetric)
with respect to permutations Xy <> Xj;1 at j=1,...,A—1

¢(X1 s ooy Xig1, ) = :|:¢(X,'+1 ey X1, ),

and the nonphysical solutions, ®(X1, ..., Xit1, ...) # £P(Xit1, ..., X1, ...), which should be
eliminated.

This step is equivalent to only one permutation Xi <> Xz, that simplifies its practical
implementation.




Profiles of the first eight
oscillator partial
symmetric (upper panels)
and symmetric (lower
panels) eigenfunctions
of (61, &) at A=3in
coordinate frame (&1, &2).
The curves are nodes of
the eigenfunctions
¢[B;1 A (61 ) 62)
Red line correspond to
pair collision X = X3, and
blue lines correspond to
pair collisions X1 = Xo
and Xy = X3 of projection
(X1, X2, X3) — (&1, &2).-
From our construction
follows: eigenfunctions of
the A identical particle
system in one dimension
6 are degenerate like in:
O, (61, €2) = Cim(p®)>™2 exp(—p /2) cos(3m(y + 7/12)) 3" (p%), J.M. Lévy-Leblond,
(&1 =pcosp, & = psinp, k=0,1,..., m=0,1,....) Phys. Lett. A 26, 540
(1968).




5 8
O 1 1(€1,2) = Cim(0%)°™2 exp(—¢2/2) sin(3m(p + 7/ 12))L" (),
(&1 = pcosp, & = psing, k=0,1,..., m=1,2,...)

Profiles of the first eight
oscillator partial
antisymmetric (upper
panels) and
antisymmetric (lower
panels) eigenfunctions
Of 1(&1,&) at A=3in
coordinate frame (1, &2).
The curves are nodes of
the eigenfunctions

®fi (&1, &2)-

Our result about
degeneracy of the basis
disagrees with: Zh.Wang
et al., arXiv:1108.1607v4
[math-ph|, Commun.
Theor. Phys. 58 (2012)
639-644. The latter can
be presented as a linear
combination of the above
S (A)-type functions.




Profiles of the first six
oscillator symmetric
3 eigenfunctions

OF L, (1,6, &) at

%ﬁ A =4 in coordinate
R frame (&1, &2, &3).

6

g\‘ /A
o 28T :
P oo Profiles of the first six

I “('/‘ oscillator antisymmetric

84t 3 eigenfunctions
" ¢f}1,i2,i3](£1a§27§3) at

> . A = 4 in coordinate
?;‘Q.G:,é‘ N frame (1, &2, &3).

- 2 ae




[C4OP4 77)+C44P4 () cos(4)]

o%®

[eso P2 (u)+cs4P“ (n) cos(4)] [e72P5 () sin(2¢0) + %P?(n) sin(6¢)]

[032P (m) sin(2¢)

QO

LY SO

[cs0 Pg (n)+Caa Pg () cos(4¢ )+casP§<n ) cos(8)] [c92P3 (1) sin(2¢p) + Cog P§ (1) sin(6¢)]

Qoo

octahedral symmetry tetrahedral symmetry




The close-coupling Galerkin equations in symmetrized coordinates

Jmax

2
[ :;.2 +Ei — E:| Xip (§0) + > (Vii(£0))xiip (€0) = 0,

j=1

Vii(&) = /d€1 dEa_1Pi(&1, -0, €At (Z V(x(&05 > Ea— 1))> ®;(&1, -5 64-1),

k=1

Scattering problem (with real eigenvalues E)

X (g)Ty, >0,
Xt _ { &) (€o)+x( )(¢0)Ry, £<0, A
o { X&) X (€)Rv, >0, |
= (fO)Tw £0<0, ?

where R, and T, are the reflection and transmission
N, x N, matrices, N, is number of open channels, v
denote the initial direction of the particle motion,
Open channels ip = 1, ..., No:

(5 )= exP<i£(p’b§0)> Si

Ilg - m Jlo

Closed channels ic = No +1,..., N: xij,(§0) = O

Metastable states (with complex
eigenvalues E = RE +1SE,
SE < 0)

Siegert boundary conditions

dx(&o) t t
=R
déo 50256 (&0)x(&o),

t = min, max.
Risio (&Tax) = iy
Risio (£(er") = —Rigip (ggux)v

< Pi, = \/E_iEfo:




The total transmission probabilities

2
The repulsive barrier is chosen to be a Gaussian potential V(X)) = —2= exp(—%). J

1 9 17 25 33 41 2 6 10 14 18 3 7 11 15 19 4 8 12 16
08 08 \f"\/'—" - 08 YV e 084 4=2
06 VYYT r I [ [ " 06 o2 06 v e 06 s
04 0,4 04 A=4 04
0,2 A=2 ¢=1/10 0,2 0—1/10 0,2 o=1/10 0,2 =110
08 08 08 a=5 067 o=5
0,6 0,6 0,6 0,4
0,4 0,4 0,4 02
wr 02 .02 £s02 ws
E = = =
= 08 =08 a=t0f — 08 o=10[ 04 a=10
0,6 0,6 04 g
0,4 0,4 0,2
W T s
A (Y
08 0T 08 = = 06 =
E J J l< 1 l l l gi l 1 o » 0 B
0,4 ’ 0.2 I I
g 0,2
0.2 LAl Al 0.2 I I ll IJI.AI
o 17 25 3 41 6 10 e 18 15 1o 4 8 12 16

The total transmission probabilities |T|3; vs energy E (in oscillator units) from the
symmetric ground state of the system of A= 2,3,4,5 of particles, coupled by the
oscillator potential through the repulsive Gaussian potential barriers

V(x) = exp(——’z) at 0 =0.1 and @ = 2,5,10, 20.

27r<7




Sub-barrier transmission

&)

O RN W NGO N

(A =N WA D

A=2 d
0=1/10 d
a=10 - 0=1/10 +
= 2] a=10 = 104 a=i0
E=5.3926 2 | emame ii 08
ITI?,=0.9594 ITI;,=0.9822 061 E=e.8776
@8 IT|;,=0.0027
/A WA\ o2
8 -4 -4 0.0- % 3
& &

The probability densities |W(&, &1)[? of functions and their components |x;(£)|? of
functions of symmetric ground state for A = 2 identical particles.




Sub-barrier transmission

A=3,0=1/10, =20

EM
8. 175—15 1

Il B [T [ m
T | 8176 | 0.775 | 1 (3)
8.306 | 0.737 | 2 .0(-3)
3 [ T1.111 | 0.495 | 3 | IL.I10—45.6(-3)
4 -5(-3)
5 (=3)
6 (=3)

11.229 0.476
3 12.598 0.013

12 598 —16. 4
12.599—16.3

A=4,0=1/10, =20

] B [ITE [ m e
T [ 10.121 | 0820 | T | 10.119—14.0(3)
2 | 10.123—:4.0(-3)
2 | 11.896 | 0.349 | 3 | 11.896—16.3(—5)
3 | 12.713 | 0.538 | 4 | 12.710—4.5(-3)
12.717 | 0.538 | 5 | 12.720—14.5(-3)

| E T, | m B
T [ 11794 | 1.6(—4) | 1 [ 11. TOA—11. 3(=3)
2 | 11.794—141.3(-3)
2 | 14.166 0.014 3 | 14.166—1.1(-3)
4 | 14.166—11.1(-3)
3 | 14.764 0.666 5 | 14.764—16.6(-6)
14.774 0.666 6 14.774—125.6(—6) [



Classification of the metastable states

The narrow barriers are approximated
by walls X,'(Eo, ~~~,£A71) =0.

The problem is solved in Cartesian
coordinates in one of 2" — 2 subdomains
Q= {X1,...,Xr,|0,'X,' >0,i= 1,...,/’1},
where o; = 1 indicates the location of
the /-th particle.

As a truncated oscillator basis we use
the odd harmonic oscillator functions
centered at the crossing point of walls.

To calculate the eigenfunctions WP (x), S-symmetric (or A-antisymmetric) under the
permutations of particles in the entire domain of definition R” it is necessary and
sufficient to ensure that the function in one of the wells WP(x) is symmetric
(antisymmetric) with respect to the permutation of the coordinates x; with similar o;.




Isosurfaces of first symmetric and antisymmetric doublet states of three identical
particles




Over-barrier transmission

A=2
a=1/10
=2
10| E=9.6479

T =0.3779

A=2
15] o=1110

5 qo]Estassa |
<m0 47&5/

19 17 25 33 41 ES |T|$1 EA’/I

L= 0 VH 58228 | 0.3794
a1l R 4 9.6479 | 0.3779 9.614—10.217
Sl 13.5548 | 0.4765 13.505—20.144
, e 13.9648 | 0.8536(|T|35) | 14.018—10.286
red lines are threshold| 17 4519 | 4874 17.445-40.103

energies




Over-well transmission

e 17 25 3 4
E

o

5
715 19 28 27
E

37

EP EV(A=2) | EP EM(A=3) | E" EV(A = 4)
-0.3588 {-0.2605,1.5082} | {-0.1938, 1.7084 2.7046}

1 14348—0.2572 | 2 5.3307—10.0620 | 3 5.7747—10.0742
4.6764—10.0058 5.7911—10.0621 6.4441—40.1050

5 8.5158—10.0506 | 6 6.9922—10.0751 6.7934—10.0033
8.7675—10.1261 7.9457—10.0565 | 7 8.3668—20.0651

9 12.6009—0.1215 | 8 8.9601—10.0588 8.7797—10.0080
12.7330—10.0142 9.4950—10.2251 | 9 9.4050—10.1995

13 16.6841—20.0364 9.8617—10.0852 9.9926—10.1225
16.7050—20.0914 | 10  11.4173—:0.1678 10.0755—10.0676




Over-well transmission

708 a2 = A2
604 0=110 — 15 o=t10

L2 w2

E=4.7510

T <0766 E=16.6830

T 203444




Resume

o Quantum tunnelling of a cluster comprised of several identical particles, coupled
via the oscillator-type potential, through short-range repulsive barrier potentials
is studied in the s-wave approximation of the symmetrised-coordinate
representation.

o A procedure is described that allows construction of states, symmetric or
asymmetric with respect to permutations of A identical particles, from the
harmonic oscillator basis functions expressed via the newly introduced
symmetrized coordinates [Lecture Notes in Computer Science 8136, 155-168
(2013).].

o The description of quantum tunneling (and channeling) of clusters of several
identical particles through the barriers and wells in a coupled-channel
approximation of symmetrized-coordinate representation of harmonic oscillator
basis symmetric or antisymmetric w.r.t. the permutation of particles is
presented.

o Efficiency of the proposed approach and computer codes (KANTBP, KANTBP
3.0 & KANTBP 4M) is demonstrated by analysis of metastable states with
complex values of energy of composite systems leading to a quantum
transparency effect of the barriers and wells in dependence on number of
identical particles and type of symmetry of their states.

o The proposed model can be used as a benchmark to test different methods of
calculating the metastable states of composite systems of several identical
particles and confinement induced resonances in optical traps.
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