On supersymmetric Calogero-Moser type systems

M. Feigin

joint work with G. Antoniou

University of Glasgow
School of Mathematics and Statistics
Supersymmetry in Integrable Systems, Dubna
August 13, 2018

Overview

(1) Preliminaries

- History
- $D(2,1 ; \alpha)$ superalgebra
- Root systems
(2) $\mathcal{N}=4$ Calogero-Moser systems related to root systems
- $1^{\text {st }}$ representation
- Hamiltonian
- $2^{\text {nd }}$ representation
- Hamiltonian
- Gauge relation
(3) Supersymmetric \vee-systems
- V-systems
- Supersymmetric extension

Motivation and history

The goal is to construct $\mathcal{N}=4$ supersymmetric Calogero-Moser system. Motivation:

```
History
    D(2,1; \alpha) superalgebra
    Root systems
```


Motivation and history

The goal is to construct $\mathcal{N}=4$ supersymmetric Calogero-Moser system. Motivation:

- Conjectural relation to Reissner-Nordström black hole (Gibbons, Townsend'99)

Motivation and history

The goal is to construct $\mathcal{N}=4$ supersymmetric Calogero-Moser system. Motivation:

- Conjectural relation to Reissner-Nordström black hole (Gibbons, Townsend'99)
- Relation of conformal blocks with Calogero-Moser-Sutherland theory (Isachenkov, Schomerus'16)

Motivation and history

The goal is to construct $\mathcal{N}=4$ supersymmetric Calogero-Moser system. Motivation:

- Conjectural relation to Reissner-Nordström black hole (Gibbons, Townsend'99)
- Relation of conformal blocks with Calogero-Moser-Sutherland theory (Isachenkov, Schomerus'16)
Ansatz for $\mathcal{N}=4$ supercharges:

$$
Q^{a}=p_{l} \psi^{a l}+W_{l} \psi^{a l}+F_{l m n} \psi^{l m n}, \quad a=1,2
$$

where $\Psi^{I m n}$ is cubic in fermionic variables $\psi^{b k}, \bar{\psi}_{b}^{k}(b=1,2)$, and $W=W(x), F=F(x)$ are some functions.

Some previous works:

- Wyllard'00, su($1,1 \mid 2$) symmetry. Supercharges depend on two potentials W, F. Calogero-Moser system at a particular coupling parameter when $W=0$
- Bellucci, Galajinsky, Latini'05 F satisfies WDVV; study of 2-3 particles systems
- Galajinsky, Lechtenfeld, Polovnikov'07,'09 Extension of ansatz for other root systems; study of 3-4 particle systems, $W=0$ solutions
- Fedoruk, Ivanov, Lechtenfeld'10 $D(2,1 ; \alpha)$-symmetry, one particle spin system
- Krivonos, Lechtenfeld'11 N particles; extra bosonic variables
- F, Silantyev'12 A class of algebraic solutions with $W \neq 0$
- Krivonos, Lechtenfeld, Sutulin'18 Supercharges for any \mathcal{N} -Calogero-Moser system with many fermionic variables
$\mathcal{N}=4$ Calogero-Moser systems related to root systems Supersymmetric V-systems

Ansatz

Consider N quantum particles on a line with coordinates and momenta $\left\{x_{j}, p_{j} \mid j=1, \ldots, N\right\}$. To each particle we associate four fermionic variables

$$
\left\{\psi^{a j}, \bar{\psi}_{a}^{j} \mid a=1,2, j=1, \ldots N\right\} .
$$

Ansatz

Consider N quantum particles on a line with coordinates and momenta $\left\{x_{j}, p_{j} \mid j=1, \ldots, N\right\}$. To each particle we associate four fermionic variables

$$
\left\{\psi^{a j}, \bar{\psi}_{a}^{j} \mid a=1,2, j=1, \ldots N\right\} .
$$

We impose the following (anti)-commutator relations:
$\left[x_{j}, p_{k}\right]=i \delta_{j k}, \quad\left\{\psi^{a j}, \bar{\psi}_{b}^{k}\right\}=-\frac{1}{2} \delta^{j k} \delta_{b}^{a}, \quad\left\{\psi^{a j}, \psi^{b k}\right\}=\left\{\bar{\psi}_{a}^{j}, \bar{\psi}_{b}^{k}\right\}=0$.
One can think of p_{k} as $p_{k}=-i \frac{\partial}{\partial x_{k}}$.

Let $\mathcal{N}=4$ supercharges be

$$
\begin{aligned}
Q^{a} & =p_{l} \psi^{a l}+i W_{l} \psi^{a l}+i F_{l m n}\left\langle\psi^{b l} \psi_{b}^{m} \bar{\psi}^{a n}\right\rangle, \\
\bar{Q}_{a} & =p_{l} \bar{\psi}_{a}^{\prime}-i W_{l} \bar{\psi}_{a}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{a}^{n}\right\rangle,
\end{aligned}
$$

where $W=W(x), F=F(x), W_{l}=\frac{\partial W}{\partial x_{l}}, F_{l m n}=\frac{\partial^{3} F}{\partial x_{l} \partial_{m} \partial_{n}} ; a=1,2$,
\langle,$\rangle is the Weyl anti-symmetrisation, \psi_{b}^{k}=\epsilon_{b a} \psi^{a k}, \bar{\psi}^{b k}=\epsilon^{b a} \bar{\psi}_{a}^{k}$ with $\epsilon_{12}=-\epsilon_{21}=\epsilon^{21}=-\epsilon^{12}=1, \epsilon_{11}=\epsilon_{22}=\epsilon^{11}=\epsilon^{22}=0$.

Let $\mathcal{N}=4$ supercharges be

$$
\begin{aligned}
Q^{a} & =p_{l} \psi^{a l}+i W_{l} \psi^{a l}+i F_{l m n}\left\langle\psi^{b l} \psi_{b}^{m} \bar{\psi}^{a n}\right\rangle, \\
\bar{Q}_{a} & =p_{l} \bar{\psi}_{a}^{\prime}-i W_{l} \bar{\psi}_{a}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{a}^{n}\right\rangle,
\end{aligned}
$$

where $W=W(x), F=F(x), W_{l}=\frac{\partial W}{\partial x_{l}}, F_{I m n}=\frac{\partial^{3} F}{\partial x_{l} \partial_{m} \partial_{n}} ; a=1,2$,
\langle,$\rangle is the Weyl anti-symmetrisation, \psi_{b}^{k}=\epsilon_{b a} \psi^{a k}, \bar{\psi}^{b k}=\epsilon^{b a} \bar{\psi}_{a}^{k}$ with $\epsilon_{12}=-\epsilon_{21}=\epsilon^{21}=-\epsilon^{12}=1, \epsilon_{11}=\epsilon_{22}=\epsilon^{11}=\epsilon^{22}=0$. Imposing $\mathcal{N}=4$ supersymmetry one obtains:

- (generalised) Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations for F,

$$
F_{r j k} F_{k m n}=F_{r m k} F_{k j n}, \quad(r, j, k, m, n=1, \ldots, N) .
$$

- twisted period equations for W,

$$
\partial_{k l} W+F_{k l j} \partial_{j} W=0, \quad(k, l, j=1, \ldots, N) .
$$

Let $\mathcal{N}=4$ supercharges be

$$
\begin{aligned}
Q^{a} & =p_{l} \psi^{a l}+i W_{l} \psi^{a l}+i F_{l m n}\left\langle\psi^{b l} \psi_{b}^{m} \bar{\psi}^{a n}\right\rangle, \\
\bar{Q}_{a} & =p_{l} \bar{\psi}_{a}^{\prime}-i W_{l} \bar{\psi}_{a}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{a}^{n}\right\rangle,
\end{aligned}
$$

where $W=W(x), F=F(x), W_{l}=\frac{\partial W}{\partial x_{l}}, F_{I m n}=\frac{\partial^{3} F}{\partial x_{l} \partial_{m} \partial_{n}} ; a=1,2$,
\langle,$\rangle is the Weyl anti-symmetrisation, \psi_{b}^{k}=\epsilon_{b a} \psi^{a k}, \bar{\psi}^{b k}=\epsilon^{b a} \bar{\psi}_{a}^{k}$ with $\epsilon_{12}=-\epsilon_{21}=\epsilon^{21}=-\epsilon^{12}=1, \epsilon_{11}=\epsilon_{22}=\epsilon^{11}=\epsilon^{22}=0$. Imposing $\mathcal{N}=4$ supersymmetry one obtains:

- (generalised) Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations for F,

$$
F_{r j k} F_{k m n}=F_{r m k} F_{k j n}, \quad(r, j, k, m, n=1, \ldots, N) .
$$

- twisted period equations for W,

$$
\partial_{k l} W+F_{k l j} \partial_{j} W=0, \quad(k, I, j=1, \ldots, N)
$$

We set $W=0$.

$D(2,1 ; \alpha)$ superalgebra

[Frappat, Sorba, Sciarrino "Dictionary on Lie superalgebras", 1996] $D(2,1 ; \alpha)$ has 8 odd generators $Q^{a b c}$, and 9 even ones $J^{a b}, I^{a b}$, $T^{a b}(a, b, c=1,2)$. The latter form mutually commuting $s /(2)$ subalgebras; $\left[T^{a b}, I^{c d}\right]=\left[I^{c d}, J^{e f}\right]=\left[T^{a b}, J^{e f}\right]=0$.
The (anti)-commutation relations of $D(2,1 ; \alpha)$ read

$$
\begin{gathered}
\left\{Q^{a c e}, Q^{b d f}\right\}=-2\left(\epsilon^{e f} \epsilon^{c d} T^{a b}+\alpha \epsilon^{a b} \epsilon^{c d} J^{e f}-(1+\alpha) \epsilon^{a b} \epsilon^{e f} I^{c d}\right) \\
{\left[T^{a b}, T^{c d}\right]=-i\left(\epsilon^{a c} T^{b d}+\epsilon^{b d} T^{a c}\right)} \\
{\left[J^{a b}, J^{c d}\right]=-i\left(\epsilon^{a c} J^{b d}+\epsilon^{b d} J^{a c}\right), \quad\left[I^{a b}, I^{c d}\right]=-i\left(\epsilon^{a c} I^{b d}+\epsilon^{b d} I^{a c}\right)} \\
{\left[T^{a b}, Q^{c d f}\right]=i \epsilon^{c(a} Q^{b) d f}, \quad\left[J^{a b}, Q^{c d f}\right]=i \epsilon^{f(a} Q^{|c d| b)},} \\
{\left[I^{a b}, Q^{c d f}\right]=i \epsilon^{d(a} Q^{|c| b) f},}
\end{gathered}
$$

where we symmetrise over two indices inside (...) with indices inside $|\ldots|$ being unchanged.
$\mathcal{N}=4$ Calogero-Moser systems related to root systems Supersymmetric V-systems

Root systems

Let $V=\mathbb{R}^{N}, u, \gamma \in V$ and $($,$) the standard bilinear form in V$.

Definition

Let R be a set of non-zero vectors in V s.t
(1) $R \cap \mathbb{R} \gamma=\{-\gamma, \gamma\}$,
(2) $s_{\gamma} R=R$,
$\forall \gamma \in R$. The set R is called a (Coxeter) root system with associated finite Coxeter group $W=\left\langle s_{\gamma} \mid \gamma \in R\right\rangle$.
$\mathcal{N}=4$ Calogero-Moser systems related to root systems Supersymmetric V-systems

Root systems

Let $V=\mathbb{R}^{N}, u, \gamma \in V$ and $($,$) the standard bilinear form in V$.

Definition

Let R be a set of non-zero vectors in V s.t
(1) $R \cap \mathbb{R} \gamma=\{-\gamma, \gamma\}$,
(2) $s_{\gamma} R=R$,
$\forall \gamma \in R$. The set R is called a (Coxeter) root system with associated finite Coxeter group $W=\left\langle s_{\gamma} \mid \gamma \in R\right\rangle$.

Let W be irreducible: $A_{N}, B_{N}, D_{N}, E_{6,7,8}, F_{4}, H_{3,4}, I_{2}(m)$.

Root systems

Let $V=\mathbb{R}^{N}, u, \gamma \in V$ and $($,$) the standard bilinear form in V$.

Definition

Let R be a set of non-zero vectors in V s.t
(1) $R \cap \mathbb{R} \gamma=\{-\gamma, \gamma\}$,
(2) $s_{\gamma} R=R$,
$\forall \gamma \in R$. The set R is called a (Coxeter) root system with associated finite Coxeter group $W=\left\langle s_{\gamma} \mid \gamma \in R\right\rangle$.

Let W be irreducible: $A_{N}, B_{N}, D_{N}, E_{6,7,8}, F_{4}, H_{3,4}, I_{2}(m)$. We fix $(\gamma, \gamma)=2$ for all $\gamma \in R$.
For example,

$$
B_{N}=\left\{ \pm\left(e_{i} \pm e_{j}\right),(1 \leq i<j \leq N), \pm \sqrt{2} e_{i},(1 \leq i \leq N)\right\} .
$$

Root systems

Let $V=\mathbb{R}^{N}, u, \gamma \in V$ and $($,$) the standard bilinear form in V$.

Definition

Let R be a set of non-zero vectors in V s.t
(1) $R \cap \mathbb{R} \gamma=\{-\gamma, \gamma\}$,
(2) $s_{\gamma} R=R$,
$\forall \gamma \in R$. The set R is called a (Coxeter) root system with associated finite Coxeter group $W=\left\langle s_{\gamma} \mid \gamma \in R\right\rangle$.

Let W be irreducible: $A_{N}, B_{N}, D_{N}, E_{6,7,8}, F_{4}, H_{3,4}, I_{2}(m)$.
We fix $(\gamma, \gamma)=2$ for all $\gamma \in R$.
For example,
$B_{N}=\left\{ \pm\left(e_{i} \pm e_{j}\right),(1 \leq i<j \leq N), \pm \sqrt{2} e_{i},(1 \leq i \leq N)\right\}$.
Let also $R=R_{+} \cup\left(-R_{+}\right)$.

$1^{\text {st }}$ representation of $D(2,1 ; \alpha)$

Let

$$
F=\frac{\lambda}{2} \sum_{\gamma \in R_{+}}(\gamma, x)^{2} \log (\gamma, x), \quad \lambda \in \mathbb{C} .
$$

Let $\left\{e_{k}\right\}_{k=1}^{N}$ be the standard basis of V with the corresponding coordinates $\left\{x_{k}\right\}_{k=1}^{N}$.

$1^{\text {st }}$ representation of $D(2,1 ; \alpha)$

Let

$$
F=\frac{\lambda}{2} \sum_{\gamma \in R_{+}}(\gamma, x)^{2} \log (\gamma, x), \quad \lambda \in \mathbb{C} .
$$

Let $\left\{e_{k}\right\}_{k=1}^{N}$ be the standard basis of V with the corresponding coordinates $\left\{x_{k}\right\}_{k=1}^{N}$. Recll the following

Lemma

For any irreducible Coxeter root system R in a Euclidean space V and for any $u, v \in V$

$$
\sum_{\gamma \in R_{+}}(\gamma, u)(\gamma, v)=h(u, v)
$$

where h is the Coxeter number of W.

$1^{\text {st }}$ representation of $D(2,1 ; \alpha)$

Let

$$
F=\frac{\lambda}{2} \sum_{\gamma \in R_{+}}(\gamma, x)^{2} \log (\gamma, x), \quad \lambda \in \mathbb{C} .
$$

Let $\left\{e_{k}\right\}_{k=1}^{N}$ be the standard basis of V with the corresponding coordinates $\left\{x_{k}\right\}_{k=1}^{N}$. Recll the following

Lemma

For any irreducible Coxeter root system R in a Euclidean space V and for any $u, v \in V$

$$
\sum_{\gamma \in R_{+}}(\gamma, u)(\gamma, v)=h(u, v)
$$

where h is the Coxeter number of W.

Corollary

$$
x_{k} F_{k l m}=\lambda h \delta_{l m}
$$

Re-denote generators:

$$
\begin{gathered}
Q^{a}=-Q^{21 a}, \quad \bar{Q}^{a}=-Q^{22 a}, \quad S^{a}=Q^{11 a}, \quad \bar{S}^{a}=Q^{12 a}, \\
K=T^{11}, \quad H=T^{22}, \quad D=-T^{12}=T^{21}
\end{gathered}
$$

1st ansatz

Consider the following anzatz for the supercharges:

$$
\begin{aligned}
Q^{a} & =p_{r} \psi^{a r}+i F_{r j k}\left\langle\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}\right\rangle, \\
\bar{Q}_{c} & =p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}\right\rangle,
\end{aligned}
$$

where Weyl anti-symmetrization can be simplified to

$$
F_{r j k}\left\langle\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}\right\rangle=F_{r j k}\left(\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}-\frac{1}{2} \psi^{a r} \delta^{j k}\right)
$$

and

$$
F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}\right\rangle=F_{l m n}\left(\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}-\frac{1}{2} \bar{\psi}_{c}^{\prime} \delta^{n m}\right)
$$

1st ansatz

Consider the following anzatz for the supercharges:

$$
\begin{aligned}
Q^{a} & =p_{r} \psi^{a r}+i F_{r j k}\left\langle\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}\right\rangle, \\
\bar{Q}_{c} & =p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}\right\rangle,
\end{aligned}
$$

where Weyl anti-symmetrization can be simplified to

$$
F_{r j k}\left\langle\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}\right\rangle=F_{r j k}\left(\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}-\frac{1}{2} \psi^{a r} \delta^{j k}\right)
$$

and

$$
F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}\right\rangle=F_{l m n}\left(\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}-\frac{1}{2} \bar{\psi}_{c}^{\prime} \delta^{n m}\right)
$$

Note that under Hermitian conjugation \dagger defined by

$$
\psi_{a}^{j}=\bar{\psi}^{a j}, \psi^{a j \dagger}=\bar{\psi}_{a}^{j}, p_{j}^{\dagger}=-p_{j}, x_{j}^{\dagger}=x_{j}, i^{\dagger}=-i,(A B)^{\dagger}=B^{\dagger} A^{\dagger}
$$

we have $Q^{a \dagger}=\bar{Q}_{a}$.

Let also

$$
\begin{gathered}
K=x^{2}, \quad D=-\frac{1}{4}\left\{x_{j}, p_{j}\right\}=-\frac{1}{2} x_{j} p_{j}+\frac{i N}{2}, \\
J^{a b}=J^{b a}=i \psi^{a j} \bar{\psi}^{b j}+i \psi^{b j} \bar{\psi}^{a j}, \\
I^{11}=-i \psi_{a}^{j} \psi^{a j}, \quad I^{22}=i \bar{\psi}^{a j} \bar{\psi}_{a}^{j}, \quad I^{12}=-\frac{i}{2}\left[\psi_{a}^{j}, \bar{\psi}^{a j}\right], \\
S^{a}=-2 x_{j} \psi^{a j}, \quad \bar{S}_{a}=-2 x_{j} \bar{\psi}_{a}^{j} .
\end{gathered}
$$

Let also

$$
\begin{gathered}
K=x^{2}, \quad D=-\frac{1}{4}\left\{x_{j}, p_{j}\right\}=-\frac{1}{2} x_{j} p_{j}+\frac{i N}{2}, \\
J^{a b}=J^{b a}=i \psi^{a j} \bar{\psi}^{b j}+i \psi^{b j} \bar{\psi}^{a j}, \\
I^{11}=-i \psi_{a}^{j} \psi^{a j}, \quad I^{22}=i \bar{\psi}^{a j} \bar{\psi}_{a}^{j}, \quad I^{12}=-\frac{i}{2}\left[\psi_{a}^{j}, \bar{\psi}^{a j}\right], \\
S^{a}=-2 x_{j} \psi^{a j}, \quad \bar{S}_{a}=-2 x_{j} \bar{\psi}_{a}^{j} .
\end{gathered}
$$

Remark

If $\alpha=-1$ then this ansatz for su($1,1 \mid 2$) subalgebra generated by Q, S, J, K, D is a particular case of ansatz from [Galajinsky, Lechtenfeld, Polovnikov'09].

Hamiltonian

Theorem

For any $a, b \in\{1,2\}$ we have $\left\{Q^{a}, \bar{Q}_{b}\right\}=-2 H \delta_{b}^{a}$, where the Hamiltonian H is given by

$$
H=\frac{p^{2}}{4}-\frac{\partial_{r} F_{j l k}}{2}\left(\psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-\psi_{b}^{r} \bar{\psi}^{b j} \delta^{l k}+\frac{1}{4} \delta^{r j} \delta^{l k}\right)+\frac{1}{16} F_{r j k} F_{l m n} \delta^{n m} \delta^{j l} \delta^{r k}
$$

Hamiltonian

Theorem

For any $a, b \in\{1,2\}$ we have $\left\{Q^{a}, \bar{Q}_{b}\right\}=-2 H \delta_{b}^{a}$, where the Hamiltonian H is given by

$$
H=\frac{p^{2}}{4}-\frac{\partial_{r} F_{j l k}}{2}\left(\psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-\psi_{b}^{r} \bar{\psi}^{b j} \delta^{l k}+\frac{1}{4} \delta^{r j} \delta^{l k}\right)+\frac{1}{16} F_{r j k} F_{l m n} \delta^{n m} \delta^{j l} \delta^{r k}
$$

Theorem

Let

$$
\lambda=-\frac{2 \alpha+1}{h}
$$

where h is the Coxeter number of the root system R. Then $D(2,1 ; \alpha)$ relations are satisfied.

Proposition

The Hamiltonian H has the following form:

$$
4 H=-\Delta+\sum_{\gamma \in R_{+}} \frac{\lambda(\lambda+1)(\gamma, \gamma)}{(\gamma, x)^{2}}+\Psi
$$

where

$$
\Psi=2 \lambda \sum_{\gamma \in R_{+}} \frac{\gamma_{r} \gamma_{j} \gamma_{k} \gamma_{I}}{(\gamma, x)^{2}} \psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-4 \lambda \sum_{\gamma \in R_{+}} \frac{\gamma_{r} \gamma_{j}}{(\gamma, x)^{2}} \psi_{b}^{r} \bar{\psi}^{b j}
$$

with $\gamma_{k}=\left(\gamma, e_{k}\right)$.
The bosonic part is Olshanetsky-Perelomov generalised Calogero-Moser Hamiltonian associated with R. E.g. for $R=B_{N}$ we have $-\Delta+\sum_{i<j} \frac{2 \lambda(\lambda+1)}{\left(x_{i} \pm x_{j}\right)^{2}}+\sum_{i} \frac{\lambda(\lambda+1)}{x_{i}^{2}}$

2nd ansatz

Now let the supercharges be of the form (no antisymmetrisation in the third order terms)

$$
\begin{aligned}
Q^{a} & =p_{r} \psi^{a r}+i F_{r j k} \psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k} \\
\bar{Q}_{c} & =p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}
\end{aligned}
$$

Let also

$$
\begin{gathered}
K=x^{2}, \quad D=-\frac{1}{2} x_{j} p_{j}+\frac{i}{2}(\alpha+1) N, \\
J^{a b}=J^{b a}=i \psi^{a j} \bar{\psi}^{b j}+i \psi^{b j} \bar{\psi}^{a j}, \\
I^{11}=-i \psi_{a}^{j} \psi^{a j}, \quad I^{22}=i \bar{\psi}^{a j} \bar{\psi}_{a}^{j}, \quad I^{12}=-\frac{i}{2}\left[\psi_{a}^{j}, \bar{\psi}^{a j}\right], \\
S^{a}=-2 x_{j} \psi^{a j}, \quad \bar{S}_{a}=-2 x_{j} \bar{\psi}_{a}^{j} .
\end{gathered}
$$

Hamiltonian

Theorem

For any $a, b \in\{1,2\}$ we have $\left\{Q^{a}, \bar{Q}_{b}\right\}=-2 H \delta_{b}^{a}$, where the Hamiltonian H is

$$
H=\frac{p^{2}}{4}-\frac{\partial_{r} F_{j l k}}{2}\left(\psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-\psi_{b}^{r} \bar{\psi}^{b j} \delta^{l k}\right)+\frac{i}{4} \delta^{n m} F_{r m n} p_{r}
$$

Note: This ansatz leads to the terms of the form $\frac{1}{x} p$.

Hamiltonian

Theorem

For any $a, b \in\{1,2\}$ we have $\left\{Q^{a}, \bar{Q}_{b}\right\}=-2 H \delta_{b}^{a}$, where the Hamiltonian H is

$$
H=\frac{p^{2}}{4}-\frac{\partial_{r} F_{j l k}}{2}\left(\psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-\psi_{b}^{r} \bar{\psi}^{b j} \delta^{l k}\right)+\frac{i}{4} \delta^{n m} F_{r m n} p_{r}
$$

Note: This ansatz leads to the terms of the form $\frac{1}{x} p$.

Theorem

Let

$$
\lambda=-\frac{2 \alpha+1}{h},
$$

where h is the Coxeter number of the root system R. Then $D(2,1 ; \alpha)$ relations are satisfied.

Proposition

The Hamiltonian H has the form

$$
4 H=-\Delta+\sum_{\gamma \in R_{+}} \frac{2 \lambda}{(\gamma, x)} \partial_{\gamma}+\Psi
$$

where $\partial_{\gamma}=\left(\gamma, \partial_{x}\right)$ and

$$
\Psi=2 \lambda \sum_{\gamma \in R_{+}} \frac{\gamma_{r} \gamma_{j} \gamma_{I} \gamma_{k}}{(\gamma, x)^{2}} \psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-4 \lambda \sum_{\gamma \in R_{+}} \frac{\gamma_{r} \gamma_{j}}{(\gamma, x)^{2}} \psi_{b}^{r} \bar{\psi}^{b j} .
$$

E.g. for $R=B_{N}$ the bosonic part is

$$
-\Delta+\sum_{i<j} \frac{2 \lambda}{x_{i} \pm x_{j}}\left(\partial_{i} \pm \partial_{j}\right)+\sum_{i} \frac{2 \lambda}{x_{i}} \partial_{i}
$$

The fermionic term Ψ is the same as in the $1^{\text {st }}$ representation.

Gauge relation

Denote by H_{1} the Hamiltonian from the $1^{\text {st }}$ representation and denote by H_{2} the one from the $2^{\text {nd }}$ representation (multiplied by 4):

$$
\begin{gathered}
H_{1}=-\Delta+\sum_{\gamma \in R_{+}} \frac{\lambda(\lambda+1)(\gamma, \gamma)}{(\gamma, x)^{2}}+\Psi, \\
H_{2}=-\Delta+\sum_{\gamma \in R_{+}} \frac{2 \lambda}{(\gamma, x)} \partial_{\gamma}+\Psi .
\end{gathered}
$$

Proposition

Let δ be the function $\delta=\prod_{\beta \in R_{+}}(\beta, x)^{\lambda}$. Then H_{1} and H_{2} are related by the gauge transformation

$$
\delta^{-1} \circ H_{2} \circ \delta=H_{1} .
$$

V-systems

Let $V \cong \mathbb{C}^{N}$ and $\mathcal{A} \subset V$ be a finite set of non-collinear covectors. Define a bilinear form $G_{\mathcal{A}}$ on V by

$$
G_{\mathcal{A}}(u, v)=\sum_{\gamma \in \mathcal{A}} \gamma(u) \gamma(v), \quad u, v \in V
$$

and assume that $G_{\mathcal{A}}$ is non-degenerate. Then $V \cong V^{*}$ and $\gamma \in V^{*}$ corresponds to $\gamma^{\vee} \in V$ s.t $G_{\mathcal{A}}\left(\gamma^{\vee}, u\right)=\gamma(u)$ for any $u \in V$.

Definition (Veselov '99)

\mathcal{A} is a \vee-system if for any $\gamma \in \mathcal{A}$ and $\pi \subset V^{*}, \operatorname{dim} \pi=2$

$$
\sum_{\beta \in \mathcal{A} \cap \pi} \beta\left(\gamma^{\vee}\right) \beta=\mu \gamma
$$

for $\mu=\mu(\gamma, \pi) \in \mathbb{C}$.

Proposition (Veselov '99)

Any Coxeter system R_{+}is a \vee-system.

Proposition (Veselov '99)

Any Coxeter system R_{+}is a \vee-system.
Consider the following function $F=F_{\mathcal{A}}\left(x_{1}, \ldots, x_{N}\right)$:

$$
F=\frac{\lambda}{2} \sum_{\gamma \in \mathcal{A}} \gamma(x)^{2} \log \gamma(x), \quad \lambda \in \mathbb{C}^{*}
$$

Proposition (Veselov '99)

Any Coxeter system R_{+}is a \vee-system.
Consider the following function $F=F_{\mathcal{A}}\left(x_{1}, \ldots, x_{N}\right)$:

$$
F=\frac{\lambda}{2} \sum_{\gamma \in \mathcal{A}} \gamma(x)^{2} \log \gamma(x), \quad \lambda \in \mathbb{C}^{*}
$$

Theorem (Veselov'99; FV'07)

F satisfies $W D V V$ equations if and only if \mathcal{A} is a \vee-system.

Supersymmetric extension of \vee-systems

Let us apply a linear transformation to \mathcal{A} so that the bilinear form becomes the standard one in V :

$$
G_{\mathcal{A}}(u, v)=(u, v), \quad u, v \in V .
$$

We identify V and V^{*} so that $\gamma(u)=\left(\gamma^{\vee}, u\right)=(\gamma, u)$ for any $\gamma \in \mathcal{A}, u \in V$.

Supersymmetric extension of \vee-systems

Let us apply a linear transformation to \mathcal{A} so that the bilinear form becomes the standard one in V :

$$
G_{\mathcal{A}}(u, v)=(u, v), \quad u, v \in V .
$$

We identify V and V^{*} so that $\gamma(u)=\left(\gamma^{\vee}, u\right)=(\gamma, u)$ for any $\gamma \in \mathcal{A}, u \in V$.
Consider the 1st ansatz: $Q^{a}=p_{r} \psi^{a r}+i F_{r j k}\left\langle\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}\right\rangle$, $\bar{Q}_{c}=p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}\right\rangle$.

Supersymmetric extension of V -systems

Let us apply a linear transformation to \mathcal{A} so that the bilinear form becomes the standard one in V :

$$
G_{\mathcal{A}}(u, v)=(u, v), \quad u, v \in V .
$$

We identify V and V^{*} so that $\gamma(u)=\left(\gamma^{\vee}, u\right)=(\gamma, u)$ for any $\gamma \in \mathcal{A}, u \in V$.
Consider the 1st ansatz: $Q^{a}=p_{r} \psi^{a r}+i F_{r j k}\left\langle\psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k}\right\rangle$,
$\bar{Q}_{c}=p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n}\left\langle\bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}\right\rangle$.

Theorem

We have $\left\{Q^{a}, \bar{Q}_{b}\right\}=-\frac{1}{2} H_{1} \delta_{b}^{a}$, where the Hamiltonian H_{1} is

$$
H_{1}=-\Delta+\frac{\lambda}{2} \sum_{\gamma \in \mathcal{A}} \frac{(\gamma, \gamma)^{2}}{(\gamma, x)^{2}}+\frac{\lambda^{2}}{4} \sum_{\gamma, \beta \in \mathcal{A}} \frac{(\gamma, \gamma)(\beta, \beta)(\gamma, \beta)}{(\gamma, x)(\beta, x)}+\Psi
$$

where $\Psi=\sum_{\gamma \in \mathcal{A}} \frac{2 \lambda \gamma_{r} \gamma_{j} \gamma_{l} \gamma_{k}}{(\gamma, x)^{2}} \psi^{b r} \psi_{b}^{j} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d k}-\sum_{\gamma \in \mathcal{A}} \frac{2 \lambda \gamma_{r} \gamma_{j}(\gamma, \gamma)}{(\gamma, x)^{2}} \psi_{b}^{r} \bar{\psi}^{b j}$.
All the relations of $D(2,1 ; \alpha)$ are satisfied if $\lambda=-(2 \alpha+1)$.

Consider the 2nd ansatz:

$$
\begin{aligned}
Q^{a} & =p_{r} \psi^{a r}+i F_{r j k} \psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k} \\
\bar{Q}_{c} & =p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}
\end{aligned}
$$

Consider the 2nd ansatz:

$$
\begin{aligned}
Q^{a} & =p_{r} \psi^{a r}+i F_{r j k} \psi^{b r} \psi_{b}^{j} \bar{\psi}^{a k} \\
\bar{Q}_{c} & =p_{l} \bar{\psi}_{c}^{\prime}+i F_{l m n} \bar{\psi}_{d}^{\prime} \bar{\psi}^{d m} \psi_{c}^{n}
\end{aligned}
$$

Theorem

We have $\left\{Q^{a}, \bar{Q}_{b}\right\}=-\frac{1}{2} H_{2} \delta_{b}^{a}$, where the Hamiltonian H_{2} is

$$
H_{2}=-\Delta+\lambda \sum_{\gamma \in \mathcal{A}} \frac{(\gamma, \gamma)}{(\gamma, x)} \partial_{\gamma}+\Psi .
$$

All the relations of $D(2,1 ; \alpha)$ are satisfied if $\lambda=-(2 \alpha+1)$.

Proposition

We have gauge relation

$$
\delta^{-1} \circ H_{2} \circ \delta=H_{1},
$$

where $\delta=\prod_{\beta \in \mathcal{A}}(\beta, x)^{\frac{\lambda}{2}(\beta, \beta)}$.

Thank you for your attention!

