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In this talk there will be presented twistorial formulation of the D = 4 continuous spin
particle.

The unitary irreducible representations of the Poincaré group are defined by values of the
Casimir operators P™Py and W™Wp,, Wy = %amnMPan'. In case of continuous spin
representations these operators take the following value

|[E. Wigner, 1947; V.Bargmann, E. Wigner, 1948]
P™Pm =0, WM"Wpy=—y?,

where the constant p € R, u # 0 is a dimensionful parameter.

In contrast to other physical states having a positive or zero mass,

continuous spin representation includes an infinite number of massless spin states.
Confusion in the name of this representation:

helicity in continuous spin representations takes standard discrete values 0,1/2,1,..., cc.

This property of the continuous spin particles is very attractive at the present time by
reason of the intensive development of higher-spin theory [M. Vasiliev, 1989, and others].
Lately a lot of research has been carried out on the continuous spin particles

(see, for example, [X. Bekaert, N. Boulanger, J. Mourad, 2006; P. Schuster, N.Toro, 2013;
V. Rivelles, 2015; R.Metsaev, 2017; X. Bekaert, E. Skvortsov, 2017;

M. Khabarov, Yu. Zinoviev, 2018; K. Alkalaev, M. Grigoriev, 2018]).



Space-time formulation

Up to now, all the considered formulations of the continuous spin particles have been the
space-time ones. The fields of the continuous spin in this formulation are described by the
function ®(X,y) defined on the space which is parametrized by commuting four-vector x™
(the position coordinates on Minkowski space) and additional commuting vector variables
y™. The conditions describing the irreducible representation with continuous spin have the
form [E. Wigner, 1947; V.Bargmann, E. Wigner, 1948]
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The Wigner-Bargmann space-time field formulation of the continuous spin massless particle
is reproduced by means of the one-dimensional dynamical model with the following
Lagrangian in the first-order formalism

Lsp.—time = PmX™ +wWmy™ + epmp™ + e1pmw™ + € (Wme + M2> +es3 (pmym - 1) :
Here the quantities pm(7) and Wm(7) are the momenta for x™(7) and y™(7);
their nonvanishing Poisson brackets are {x™,pn} = 7', {y™, wn} = 7.

The variables e(7), e1(7), €2(7), e3(7) in the Lagrangian are the Lagrange multipliers for
the constraints

T:=pmp™ =~ 0, Ty =pmW™ = 0, Toi=wmW™+4x% =~ 0, T3:=pmy" —1 ~ O.

All these constraints are first class and
the Wigner-Bargmann equations arise as result of quantization of the particle model.



Twistorial formulation of continuous spin particle

We turn to constructing the twistorial formulation of the space-time system. To obtain this,
we will follow the standard prescriptions of the twistor approach [R.Penrose, 1967].

The first step in this twistor program is to resolve the constraint pmp™ = 0.
Introducing commuting Weyl spinor 7a, 75 = (7a)*, we represent light-like vector
Pm = Pas (Pnp = \% Pm(Um)aB) by the Cartan-Penrose relation

Pas = TaTe -

As a result of %o = 0, the constraint pmp™ ~ 0 is satisfied automatically. In the twistor
formulation, the spinor 7o determines half of the components of the Penrose twistor.

The second step for obtaining the twistor formulation consists in a spinor representation of
the four-vector components Wm = W o4 which should resolve the constraints pmw™ = 0,
wmw™ ~ —p2. For this, it is necessary to introduce in addition one more commuting Weyl
Spinor pa, ps = (pa)*. Then we represent Wy in the form

Waa = TapPa + PaTs -

This expression solves the constraint pmw™ = 0.

The constraint wmw™ ~ —p2 leads to the necessity of imposing in twistor space the
following constraint: ]
M = 7% paid —M? = 0,
where the real constant M is defined by
M2 = p2/2.



As the next step we introduce canonically conjugated momenta for 7o, g and pa, pa-
To do this, we define the momenta w®, @* and n®, 7 by the following incidence relations:
w® = ﬁdxda +ﬁdyda7 (I}d — daﬂ_a _'_ydzozpa7
na _ ﬁdyda , ﬁéz _ ydaﬂ,a
and find that, up to total derivative terms, they satisfy the relation
PacX ¥ + WaaY 4 = Tal® + 7a®® + pan® + pail® -
Thus, (w®, Ta), (@%,74), (1%, pa), (7%, ps) are canonically conjugated pairs of the
twistorial variables which obey the following Poisson brackets:

{w*, ms} = {n",ps} =65, {U‘f"vﬁa} = {ﬁdvﬁs} =95

In new variables, the last constraint pmy™ = 1 and the incidence relations lead to the
twistorial constraints

N + Fa* =20, N%7Te — 7af® ~ 0.
The sum and difference of last two constraints give equivalent constraints
F = n%ma—1=~0, F = 7ai®—1~0.

Moreover, the incidence relations imply also one more twistor constraint

U = g — 7a@ + 1%pa — pai® = 0.

This finishes the twistorial formulation of the continuous spin particle model.



The continuous spin particle in the twistorial formulation is described by eight complex
variables ma, w%, pa, n®, which are subjected four first class (abelian) constraints

M = 7% pai® —M? = 0,

F = n%a—120, F = aai7" —1~0,

U = wme — 760 +1%pa — paii® ~ 0.
The twistorial model has Nphys = 8 of physical degrees of freedom as the model in the
space-time formulation.
The corresponding twistorial Lagrangian is
Listor = Ta@® + Ta®@® + paf® + pai™ + IM + KU + £F + LF.
Some comments about our twistorial formulation of the continuous spin particle:

e In terms of the matrix
IMa® ]l := (Ma®,Ma?) = (7a, pa)

(b =1,2) the constraint M = 0 is equivalent to detll = M exp(i¢), where ¢ defines the
phase of the contraction m®pe. So the matrix M—1/2M,P at ¢ = 0 describes group manifold
SL(2,C) parametrizing the spinor Lorentz harmonics.

o The constraints F ~ 0, F ~ 0 generate local transformations §M = Il ( 8 8 ) , where

n = n(7) is the local infinitesimal complex parameter. Thus, configuration space of the
model is described by the matrix I defined up to local transformations g — gN, where the
matrices N = ( é 2 ) for any n € C form the Borel subgroup B (2,C) of SL(2,C). The

coset SL(2,C)/B+(2,C) is the two-dimensional complex affine plane.



Quantization of twistorial model

Before the quantization is performed, we fix some gauges and pass to an appropriate phase
variable, in which the constraints have a simple form.

The constraint M ~ 0 involves only the norm |7%pq|. Gauge fixing condition for this
constraint is the generator of conformal transformations of twistor components:

R = W7o + 7a@% + 1%pa + pail™ ~ 0.

The constraint U =~ 0 is the generator of phase transformations in twistor space. As result,

the condition o
K= In(7_r f‘?) ~ 0
paT

Second class constraints M =~ 0 and K = 0 are equivalent to the constraints
N = %0 —-M = 0, N = paa®—M = 0.

In addition, the sum and difference of the second class constraints ¢/ ~ 0 and R ~ 0 are

fix gauge.

V= w%rq +1%a =0, Vo= 7a@Y + pai® ~ 0.

Residual two first class constraints are
F =n%q—1%0, F o= 4% —1~0.

Let us pass to the variables in which the constraints have a simple form.



We use the following expansion of the matrix ||[Mo?] = (7, pa):

e = A (2 (5 1)

Za:ﬂ—ﬂ/m’ S:T('apa/M7 t:pl/ﬂ—l

are four dimensionless complex variables.

where

In new variables the second constraints take the form
s—1~0, s—1~0,

—24pS — 2sps < 0, —Z4P% — 25ps = 0.

First class constraints take the form

pt-l-lst, ﬁt—l-lzo

We take account of the second class constraints by introducing the Dirac bracket for them
and remove the variables s, S, ps, Ps from the phase space of the model.



We will perform quantization in the coordinate representation when the wave function is

V= W(zq4,Z4,t,1).

The wave function of physical states is subjected to the first class constraints

0 0 .

ot ot
The solution of these equations, with taking into account the conditions of the second class
constraints, is

Vo= 6(s—1)6(E —1)e 1+ (z,,74),
where \TI(ZQ7 Zg) is the function on the two-dimensional complex affine plane parametrized

0
by two complex coordinates z,, € C2 = C?\(0,0).

Restoring the dependence of the wave function on twistor variables, we obtain the twistor
wave function in the form

-(Pl ﬁl)
. —i(=+=)
W(ma, Faipaspa) = 6 (7Ppg=M) 8 (pg7” =M) e \T1 T/ ¥(ra,7s),

where W(mqo, Ta) is an arbitrary function on 7ma, 4.



Let us analyze spin (helicity) content of the twistor wave function.

The Poincaré algebra operators in the twistor formulation have the form
0 o 0 0

Ma =T(a 57 TPla 377 ":_di""__di-v Pag = Tats.
B =T ) P( apﬁ) aB = ™( 978) P( 8ﬁ3) TaTg

We see that PA“P,4 = 0.

The Pauli-Lubanski operator W4 = MdB [Pg — Mag [Pg , takes the form

— _ﬁ_. —_— B T
2 {(‘ P5)7 e 550 (77 pg)Ta

1
Waa = TaTs A"I‘E apa

TaPe (7?5 %) — PaTé (7‘(‘6 %)

1 1o} _ 0
N= == Mg — — Ty | -
2 omg 87rB

The action of the Pauli-Lubanski operator on the twistorial wave function is

where

—f (ﬂ @)
WadWZ(S(ﬂﬁpB—M)é(ﬁBﬁ'B—M)e 1 ™ Dad@~
where the operator D,, acting on the reduced twistor field ¥, takes the form
€1To falﬁ'd>

Doa = maTa N +iM (
Ust 1

Using DD, 4 W = —2M2 ¥ we obtain that
WYW oo W = —2M2 Wy, = — W .

So the twistor field describes a massless particle of continuous spin.



The states with fixed helicities are the eigenvectors of the helicity operator A = J F/[Po

(JT is the total angular momentum). In terms of the Pauli-Lubanski vector this operator is
. Wo _ Waad5®
Po ﬂgﬁﬁﬁgﬁ
The above representation of the twistor field is unsuitable for helicity expansion.

For finding helicity expansion we extract from ¥ the exponential multiplier:
—iM(mg w479 Tp)
- _ my iy (g7 558) & _
YU(mo, Tg) = € Y1870 I (g, 7).
As result, we obtain the following representation of the twistorial field
W(ma, Tai pas pa) = 6 (705 —M) 8 (57" —M) e~ W0/PO (g, 7).

where pp and Wy have the resolved in terms of spinors representations.

The action of the Pauli-Lubanski vector takes the form ]
WeaaV = 4 (ﬂﬁpg = M) 1 (ﬁBﬁ'B = M) e_'WO/pO 6&& \1}7
where the operator Iﬁad (a rather cumbersome expression for this operator) satisfies the
property > Dgg = PoA. As a result, the helicity operator acts on the twistorial field in the
a=d&
following way: . )
A = 5 (85 —M) 5 (577 — M) e Wo/Po p
Thus, the eigenvalues of the helicity operator A is defined by the action of the operator A on

the reduced twistorial function W(r, 7) living on the two-dimensional complex affine plane
parametrized by 7.



The eigenvectors of the operator A = —% (WB % -7y %) are homogeneous functions.

The homogeneous components of the function \Tl(7r, 7) are determined by the Mellin
transform

i - - N -
Fwn2)(r, 74) = E/d)\d)\ ATMA T2 YA 70, ATg),
where x = (ng,Nnz) are the pair of complex numbers whose difference is equal to an integer
number. The functions F(":"2) (7, 74) are homogeneous of bi-degree (n; — 1,ny; — 1):
F(wn2)(ar, a7,) = am a2 (r, 7).

which is equivalent to the fulfillment of the equations

ﬂai F(n2) — (ny — 1)F(n2) | ﬁ-di F(n2) — (n, — 1)F(Mn2)
OTa O &
On such components, the helicity operator takes the values s = —n/2:

AEMLN2) — 0 e(nng)
2

As a result this, the twistorial wave function of the continuous spin particle describes an
infinite number of massless states whose helicities are equal to integer or half-integer values
and run from —oo to 4o0:

. > 1 7 ("+iV L—H'/)
V(na,Ta) = Y, FVwa, ),  F(ma,Fa) = -5 / dvF\ 27 2 J(ma,7s).
47
— 00

nN=—oo

Precisely these twistorial fields (") describe massless states with helicities s = —n/2.



Twistor transform for fields of continuous spin particles

Let us establish the connection of obtained twistor fields with the corresponding fields of the
space-time formulation.

The twistorial variables 7o, pa, on which the wave function depends, play a role of
momentum variables. Therefore, we can consider the twistor wave function as a wave
function in the momentum space. For this reason, up to the normalization multiplier the
space-time wave function can be determined by means of the integral transformation

R Ly Qo Ly oo
o(xy) = [dindipelPax™ Maay™ y(m 7:p,p),
where the momenta P4 and Wy 4 are composite: Poa = TaTa, Was = TaPa + PaTa-

In the integral we perform integration over the 4-dimensional complex space with the
integration measure d47d%p := % dn® Adme AdTg AdTE A % dp® Adpg A dﬁB AdpP.

Using explicit form of twistor fields we obtain the space-time fields of continuous spin
particles

®(x,y) :/d47rd4pe|pwix Waay % 5 (ﬂﬁpﬁ _ M> P (,BBFrB - M> e \T1 T/ (r 7).

We can check that this integral representations for the space-time fields are the solution of
the Wigner-Bargmann equations.

Thus, we have constructed the integral relationship between the space-time fields and
twistor ones, which is a generalization of the Penrose field twistor transform.
The twistor function W(x, %) plays the role of the prepotential for the space-time field ®.



Conclusion

We constructed the new Lagrangian model which describes a relativistic massless particle of
the continuous spin. This model is characterized by the following:

@ We present the classical Lagrangian which describes in space-time formulation the
relativistic particle corresponding to the irreducible massless representation of the
Poincaré group with continuous spin.

@ We construct the classical twistor Lagrangian with twistor constraints and coordinate
twistor transform which give the links between phase variables of space-time
formulation and twistors.

@ There are found the twistor fields of the continuous spin massless particles which
depend only on twistor variables and have the helicities expansion.

@ There are presented field twistor transform which expresses space-time fields in terms
of twistor fields by the integral transformation.

@ Obtained in the such way space-time field is the exact solution of the
Wigner-Bargmann equations.



Conclusion

Let us note some comments on the constructed model.

i)

ii)

iii)

Mass parameter p determining the irreducible Poincaré representations has a role
similar to the mass in the massive Poincaré representations: spin (helicity) contents of
the continuous spin representations are the same for different values of p.

In the limit p# — O our twistorial model produces the massless higher spin particle. So,
in the limit 4 — 0 (M — 0) the constraints 7%po, = M = 0 and c.c. imply 7o ~ po and
Wqaa ~ Pac. As result, the integrand in obtained field twistor transform coincides with
higher spin field in unfolded formulation [M.A. Vasiliev, 2002]

A = yaa _
‘Uhsp(xy 7"77_") = glTaTaX ‘Uhsp(ﬂ', 7T) »

where the function \Tlhsp(w, 7) of two complex variables m, defines an infinite tower of
the massless states with arbitrary helicities.

There is a mixed Shirafuji formulation of massless particles which uses both space-time
vector variables and twistorial ones, with a specific term moTeX®® in the Lagrangian.
This formulation of the continuous spin particle will make it possible to find additional
relations of this system with a higher spin particle in the unfolded formulation.

Another important task is the construction of the Lagrangian field theory of continuous
spin. An effective way of realizing this task is to use BRST quantization methods.
Some aspects of BRST-BFV formulations of the field theories in the case of continuous
spin particles were studied in [A.K.H. Bengtsson, 2013; R.Metsaev, 2018;

I. Buchbinder, V. Krykhtin, H. Takata, 2018].
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