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Introduction



What is Myers-Perry Black Hole?

Myers-Perry (MP) Black Hole is the higher dimensional
generalization of the rotating Kerr BH.

• In d = 4 dimensions the MP BH reduces to the Kerr BH.

• Setting all rotation parameters ai to 0 will reduce the d
dimensional MP BH to d dimensional Schwarzschild
(non-rotating) BH. Now, also setting M = 0 yields the flat
space metric.

• The form of MP metrics differs slightly for odd and even
dimensions.
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What is Extremal MP Black Hole?

• Event horizon of Kerr BH is described by

rH = M +
√

M2 − a2

• It follows that BHs with a > M are not physical.

• rH is real only for a ≤ M. Black holes with a = M are called
extremal (BHs with biggest possible angular momentum
J = M2 for given BH mass)

• This discussion can be generalized for MP black hole
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What is Near Horizon Limit?

Near Horizon Limit (NHL) is a vacuum solution of Einstein
equations, which describe the space-time near the event horizon of
extremal Kerr BH.

• Naturally, one can assume that NHL can be obtained by
redefining the radial coordinate r in the metric of the extremal
Kerr BH

r −→ rH + εrHr with ε −→ 0

• But this redefinition gives rise to a degenerate metric. The
problem can be resolved by taking additional limits

t −→ αt
ε
, φi −→ φi + βi t

ε
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Near Horizon limit of an Extremal
Myers-Perry Black Hole



NHEMP

NHEMP geometry slightly differs in odd and even dimensions. For
that reason we introduce a unified description for arbitrary
dimensions

ds2

r2H
= A(x ;σ)

(
−r2dτ2 + dr2

r2

)
+

Nσ∑
I=1

dxIdxI +
N∑

i ,j=1
γ̃ij(x , σ)xixjDϕiDϕj ,

where

Nσ = N + σ, σ =

 0 when D = 2N + 1
1 when D = 2N + 2
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NHEMP

ds2

r2H
= A(x ;σ)

(
−r2dτ2 + dr2

r2

)
+

Nσ∑
I=1

dxIdxI +
N∑

i ,j=1
γ̃ij(σ)xixjDϕiDϕj

• Latitudinal coordinates xI and rotation parameters mI are
restricted:

Nσ∑
I=1

x2
I

mI
= 1,

Nσ∑
I=1

1
mI

= 1 + 2σ
1 + σ

.

• One additional latitudinal coordinate in even dimensions

• Part of the metric is similar to AdS2
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NHEMP

The conformal SO(2, 1) symmetry

{H,D} = H, {H,K} = 2D, {D,K} = K , I = HK − D2

allows us to redefine r and its canonical conjugate momentum pr

so the Hamiltonian takes formally non-relativistic form1

H = 1
2p2

R + 2I(x , px , pϕ)
R2 .

• R =
√
2K , pR = 2D√

2K are the “radius" and its canonical
conjugate momentum

• I is the Casimir element of SO(2, 1)
1Hakobyan, Krivonos, Lechtenfeld, Nersessian. “Hidden symmetries of integrable conformal
mechanical systems”. In: Phys. Lett. A374 (2010), pp. 801–806. arXiv: 0908.3290 [hep-th].
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NHEMP

Some important consequences...

• The radial part of the Hamiltonian is separated.

• We just need to study Casimir of SO(2, 1), which is called
angular mechanics.

• The variables ϕi are cyclic. Thus their canonically conjugate
momenta pϕi are first integrals (in total N for both odd and
even dimensions).
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Fully non-isotropic NHEMP



Separation of variables

Here we assume that none of the rotation parameters mI are equal
to each other

• Angular mechanics is

I = A(x)

Nσ−1∑
a,b=1

hab(x)papb +
N∑

i=1

p2
ϕi

x2
i

+ g0(pϕ)


• Separation of variables takes place in ellipsoidal coordinates

x2
I = (mI − λI)

Nσ∏
J 6=I

mI − λJ
mI −mJ
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Counting first integrals

• Nσ − 1 first integrals follow from the angular mechanics

Fa(x , σ) = Kbc
(a)(x , σ) pbpc + Lij

(a)(x , σ) pϕi pϕj + A(a)(x , σ)m2
0r2H

# of first integrals Nσ − 1

• This expression can be extended for FNσ which we find to be
the trivial first integral m0 (mass of the particle) generated by
the inverse metric (acting as a second rank killing tensor).

# of first integrals Nσ
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Counting first integrals

• We had N first integrals pϕi from the beginning.

# of first integrals Nσ + N

• In addition we had 3 generators of SO(2, 1), each of which are
in involution with the Nσ + N first integrals described above

# of first integrals Nσ + N + 1

Thus fully non-isotropic NHEMP is integrable for arbitrary higher
dimensions.
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Fully isotropic NHEMP



Separation of variables

Here we assume that all of the rotation parameters mI are equal to
each other. The angular mechanics is

IN =
N∑

i ,j=1
(η2(x)δij − xixj)pipj +

N∑
i=1

η2(x)p2
ϕi

x2
i

+ ω(pϕi )
N∑

i=1
x2

i ,

• In odd dimensions

η2 = N, ω = 0

The system is a generalization of Higgs oscillator, known as
Rossochatius system.

• This is not the case in even dimensions.
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Separation of variables

• Both of the systems admit separation of variables by
recursively introducing spherical coordinates

xNσ =
√

Nσ cos θNσ−1, xa =
√

Nσ x̃a sin θNσ−1,
Nσ−1∑
a=1

x̃2
a = 1,

• As a result we get recurrent formula for the constants of
motion

Iodd = FN−1,

Ieven = 2Np2
θN + ν sin2 θN +

(
2N cot2 θN + 1

)
FN−1,

where

Fa = p2
θa +

p2
ϕa+1

cos2 θa
+ Fa−1

sin2 θa
, F0 = p2

ϕ1
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Counting first integrals

• Spherical mechanics result in Nσ − 1 first integrals, just like in
the fully non-isotropic case.

• Even dimensional case contains the odd dimensional system as
a subsystem.

In addition to this ... there are hidden symmetries, which

• make the odd dimensional Rossochatius system maximally
superintegrable

• make the even dimensional system superintegrable (lacking
one constant of motion to be maximally superintegrable)
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Partially isotropic NHEMP



Separation of variables

Let’s discuss the simplest mixed case in odd (2N + 1) dimensions.
We have p non-equal rotation parameters and l equal rotation
parameters such that p + l = N

m1 6= m2 6= . . . 6= mp 6= κ, mp+1 = mp+2 = . . . = mN ≡ κ.

• Non of the BH rotation parameters is 0.

• Separation of variables is achieved by introducing a mixture of
spherical and ellipsoidal coordinates.
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Separation of variables

First we separate the latitudinal coordinates corresponding to equal
set of rotation parameters by introducing spherical coordinates for
them:

xp+1 = y
l−1∏
i=1

sin θi , xp+a = y cos θa−1

l−1∏
i=a

sin θi , xp+l = y cos θl−1.

• y is the radius of spherical subsystem:
∑l

a=1 x2
p+a = y2

• It behaves very much like the latitudinal coordinates
corresponding to the set of non-equal rotation parameters.
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Separation of variables

After introducing this coordinate transformation into the initial
metric, we can derive the angular mechanics

I = A

 p∑
a,b=1

habpapb +
p+1∑
a=1

g2
a

y2
a

+ g0

 ,
where

ya = (x1, . . . , xp, y), m̃a = (m1, . . . ,mp, κ)
g2

a = (p2
ϕ1 , . . . , p

2
ϕp , Il), Il = Fl−1

• The form exactly corresponds with the fully non-isotropic
NHEMP angular mechanics in p dimensions and can be
separated in ellipsoidal coordinates.

• This system contain isotropic system as a subsystem 18



Counting first integrals

If l = 1 the spherical subsystem is trivial and does not produce new
integrals of motion. This is the fully non-isotropic integrable case.
If l ≥ 2 then

• The l − 1 dimensional spherical subsystem is maximally
superintegrable

# of first integrals 2(l − 1)− 1

• The non-isotropic system contains p integrals of motion

# of first integrals p + 2(l − 1)− 1 = (N − 1) + l − 2

In the fully isotropic (p = 0, l = N), the angular mechanics is
maximally superintegrable with 2N − 3 first integrals
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Counting first integrals

This discussions can be generalized to the even dimensions, where
we have an additional latitudinal coordinate (so p + l = N + 1)
and a rotation parameter mN+1 = 1.

Why is fully isotropic NHEMP in even dimensions not maximally
superintegrable

• Non of the other rotation parameters except mN+1 can be 1.
So we always have p ≥ 1

• As a result l can never be N + 1 and we will lack one constant
of motion from being maximally superintegrable.
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NH limit of Extremal Vanishing
Horizon MP BH (NHEVHMP)



NHEVHMP

NHEVHMP is obtained from the extremal MP metric by taking
one of the rotation parameters equal to 0 and obtaining the NH
limit. This results into a well defined solution of vacuum Einstein
equations.

ds2

r20
= F0(x)ds2AdS3 +

N−1∑
a

dx2
a +

N−1∑
a,b

γ̃ab(x) xaxbdϕadϕb,

• Notice ds2AdS3
term in the metric.

• The isometry contains SO(2, 1)× SO(2, 1) part.
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NHEVHMP

• Although we have two conformal groups, they give rise to the
same Casimir element. Thus we have a single angular
mechanics and no additional constants of motion compared to
non-EVH case.

• The rest of the discussion is the same for fully isotropic, fully
non-isotropic and generic cases.
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Thank you!
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Equations



NHEMP geometry

ds2

r2H
= A(x ;σ)

(
−r2dτ2 + dr2

r2

)
+

Nσ∑
I=1

dxIdxI +
N∑

i ,j=1
γ̃ij(x , σ)xixjDϕiDϕj ,

where

Nσ = N + σ, σ =

 0 when D = 2N + 1
1 when D = 2N + 2

,

A(x) =
∑Nσ

I=1 x2
I /m2

I
σ

1+σ + 4
∑N

i<j
1

mi
1

mj

,

γ̃ij = δij + 1∑Nσ
I x2

I /m2
I

√
mi − 1xi

mi

√
mj − 1xj

mj
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First integrals of fully-non isotropic NHEMP

Fa(x , σ) = Kbc
(a)(x , σ) pbpc + Lij

(a)(x , σ) pϕi pϕj + A(a)(x , σ)m2
0r2H

where

Kbc
(a) =

(
Nσ−a−1∑
α=0

(−1)Nσ+α−aAαmNσ−α−a
b + x2b

Nσ−a−1∑
α=1

(−1)αM 6=b
Nσ−α−a−1mαb

)
δ

bc + M 6=b,c
Nσ−a−1xbxc

Lij
(a) =

(
(1 − δ

1
a )

Nσ−a∑
α=1

(−1)Nσ+αAα−1mNσ−a−α+1
i − δ

1
a ANσ−1

)
δij

x2i

+ (−1)a−1ANσ−a

√
mi − 1

mi

√
mj − 1

mj
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