Integrable Systems

Near Horizon Extremal Myers-Perry Black Holes

Hovhannes Demirchian Coauthors: A. Nersessian, S. Sadeghian, M. M. Sheikh-Jabbari August, 2018

Byurakan Astrophysical Observatory

Introduction

Near Horizon limit of an Extremal Myers-Perry Black Hole

Fully non-isotropic NHEMP

Fully isotropic NHEMP

Partially isotropic NHEMP

NH limit of Extremal Vanishing Horizon MP BH (NHEVHMP)

Introduction

Myers-Perry (MP) Black Hole is the higher dimensional generalization of the rotating Kerr BH.

- In d = 4 dimensions the MP BH reduces to the Kerr BH.
- Setting all rotation parameters a_i to 0 will reduce the d dimensional MP BH to d dimensional Schwarzschild (non-rotating) BH. Now, also setting M = 0 yields the flat space metric.
- The form of MP metrics differs slightly for odd and even dimensions.

• Event horizon of Kerr BH is described by

$$r_H = M + \sqrt{M^2 - a^2}$$

- It follows that BHs with a > M are not physical.
- *r_H* is real only for *a* ≤ *M*. Black holes with *a* = *M* are called extremal (BHs with biggest possible angular momentum *J* = *M*² for given BH mass)
- This discussion can be generalized for MP black hole

Near Horizon Limit (NHL) is a vacuum solution of Einstein equations, which describe the space-time near the event horizon of extremal Kerr BH.

• Naturally, one can assume that NHL can be obtained by redefining the radial coordinate *r* in the metric of the extremal Kerr BH

$$r \longrightarrow r_H + \epsilon r_H r$$
 with $\epsilon \longrightarrow 0$

• But this redefinition gives rise to a degenerate metric. The problem can be resolved by taking additional limits

$$t \longrightarrow \frac{\alpha t}{\epsilon}, \qquad \phi_i \longrightarrow \phi_i + \frac{\beta_i t}{\epsilon}$$

Near Horizon limit of an Extremal Myers-Perry Black Hole

NHEMP geometry slightly differs in odd and even dimensions. For that reason we introduce a unified description for arbitrary dimensions

$$\frac{ds^2}{r_H^2} = A(x;\sigma) \left(-r^2 d\tau^2 + \frac{dr^2}{r^2} \right) + \sum_{I=1}^{N_\sigma} dx_I dx_I + \sum_{i,j=1}^N \tilde{\gamma}_{ij}(x,\sigma) x_i x_j D\varphi^i D\varphi^j$$

where

$$N_{\sigma} = N + \sigma, \qquad \sigma = \begin{cases} 0 & \text{when} & D = 2N + 1 \\ 1 & \text{when} & D = 2N + 2 \end{cases}$$

$$\frac{ds^2}{r_H^2} = A(x;\sigma) \left(-r^2 d\tau^2 + \frac{dr^2}{r^2} \right) + \sum_{I=1}^{N_\sigma} dx_I dx_I + \sum_{i,j=1}^N \tilde{\gamma}_{ij}(\sigma) x_i x_j D\varphi^i D\varphi^j$$

• Latitudinal coordinates x_l and rotation parameters m_l are restricted:

$$\sum_{l=1}^{N_{\sigma}} \frac{x_l^2}{m_l} = 1, \qquad \sum_{l=1}^{N_{\sigma}} \frac{1}{m_l} = \frac{1+2\sigma}{1+\sigma}.$$

- One additional latitudinal coordinate in even dimensions
- Part of the metric is similar to AdS_2

NHEMP

The conformal SO(2,1) symmetry

 $\{H, D\} = H, \quad \{H, K\} = 2D, \quad \{D, K\} = K, \qquad \mathcal{I} = HK - D^2$

allows us to redefine r and its canonical conjugate momentum p_r so the Hamiltonian takes formally non-relativistic form¹

$$H=\frac{1}{2}p_R^2+\frac{2\mathcal{I}(x,p_x,p_\varphi)}{R^2}.$$

• $R = \sqrt{2K}$, $p_R = \frac{2D}{\sqrt{2K}}$ are the "radius" and its canonical conjugate momentum

• *I* is the Casimir element of SO(2,1)

¹Hakobyan, Krivonos, Lechtenfeld, Nersessian. "Hidden symmetries of integrable conformal mechanical systems". In: *Phys. Lett.* A374 (2010), pp. 801–806. arXiv: 0908.3290 [hep-th].

Some important consequences...

- The radial part of the Hamiltonian is separated.
- We just need to study Casimir of *SO*(2, 1), which is called angular mechanics.
- The variables φ_i are cyclic. Thus their canonically conjugate momenta p_{φ_i} are first integrals (in total *N* for both odd and even dimensions).

Fully non-isotropic NHEMP

Here we assume that none of the rotation parameters m_l are equal to each other

• Angular mechanics is

$$\mathcal{I} = A(x) \left[\sum_{a,b=1}^{N_{\sigma}-1} h^{ab}(x) p_a p_b + \sum_{i=1}^{N} \frac{p_{\varphi_i}^2}{x_i^2} + g_0(p_{\varphi}) \right]$$

• Separation of variables takes place in ellipsoidal coordinates

$$x_l^2 = (m_l - \lambda_l) \prod_{J \neq I}^{N_\sigma} \frac{m_l - \lambda_J}{m_l - m_J}$$

Counting first integrals

• $N_{\sigma}-1$ first integrals follow from the angular mechanics

$$F_{a}(x,\sigma) = K^{bc}_{(a)}(x,\sigma) \ p_{b}p_{c} + L^{ij}_{(a)}(x,\sigma) \ p_{\varphi_{i}}p_{\varphi_{j}} + A_{(a)}(x,\sigma)m_{0}^{2}r_{H}^{2}$$

of first integrals $N_{\sigma} - 1$

• This expression can be extended for $F_{N_{\sigma}}$ which we find to be the trivial first integral m_0 (mass of the particle) generated by the inverse metric (acting as a second rank killing tensor).

of first integrals N_{σ}

• We had N first integrals p_{φ_i} from the beginning.

of first integrals $N_{\sigma} + N$

• In addition we had 3 generators of SO(2, 1), each of which are in involution with the $N_{\sigma} + N$ first integrals described above

of first integrals $N_{\sigma} + N + 1$

Thus fully non-isotropic NHEMP is integrable for arbitrary higher dimensions.

Fully isotropic NHEMP

Separation of variables

Here we assume that all of the rotation parameters m_l are equal to each other. The angular mechanics is

$$\mathcal{I}_{N} = \sum_{i,j=1}^{N} (\eta^{2}(x)\delta_{ij} - x_{i}x_{j})p_{i}p_{j} + \sum_{i=1}^{N} \frac{\eta^{2}(x)p_{\varphi_{i}}^{2}}{x_{i}^{2}} + \omega(p_{\varphi_{i}})\sum_{i=1}^{N} x_{i}^{2},$$

• In odd dimensions

$$\eta^2 = N, \qquad \omega = 0$$

The system is a generalization of Higgs oscillator, known as Rossochatius system.

• This is not the case in even dimensions.

Separation of variables

• Both of the systems admit separation of variables by recursively introducing spherical coordinates

$$x_{N_{\sigma}} = \sqrt{N_{\sigma}} \cos \theta_{N_{\sigma}-1}, \quad x_{a} = \sqrt{N_{\sigma}} \tilde{x}_{a} \sin \theta_{N_{\sigma}-1}, \quad \sum_{a=1}^{N_{\sigma}-1} \tilde{x}_{a}^{2} = 1,$$

As a result we get recurrent formula for the constants of motion

$$\mathcal{I}_{odd} = F_{N-1},$$

$$\mathcal{I}_{even} = 2Np_{\theta_N}^2 + \nu \sin^2 \theta_N + (2N\cot^2 \theta_N + 1)F_{N-1},$$

where

$$F_a = p_{\theta_a}^2 + \frac{p_{\varphi_{a+1}}^2}{\cos^2 \theta_a} + \frac{F_{a-1}}{\sin^2 \theta_a}, \quad F_0 = p_{\varphi_1}^2$$

Counting first integrals

- Spherical mechanics result in $N_{\sigma} 1$ first integrals, just like in the fully non-isotropic case.
- Even dimensional case contains the odd dimensional system as a subsystem.
- In addition to this ... there are hidden symmetries, which
 - make the odd dimensional Rossochatius system maximally superintegrable
 - make the even dimensional system superintegrable (lacking one constant of motion to be maximally superintegrable)

Partially isotropic NHEMP

Let's discuss the simplest mixed case in odd (2N + 1) dimensions. We have *p* non-equal rotation parameters and *l* equal rotation parameters such that p + l = N

 $m_1 \neq m_2 \neq \ldots \neq m_p \neq \kappa, \quad m_{p+1} = m_{p+2} = \ldots = m_N \equiv \kappa.$

- Non of the BH rotation parameters is 0.
- Separation of variables is achieved by introducing a mixture of spherical and ellipsoidal coordinates.

First we separate the latitudinal coordinates corresponding to equal set of rotation parameters by introducing spherical coordinates for them:

$$x_{p+1} = y \prod_{i=1}^{l-1} \sin \theta_i, \qquad x_{p+a} = y \cos \theta_{a-1} \prod_{i=a}^{l-1} \sin \theta_i, \quad x_{p+l} = y \cos \theta_{l-1}.$$

- y is the radius of spherical subsystem: $\sum_{a=1}^{l} x_{p+a}^2 = y^2$
- It behaves very much like the latitudinal coordinates corresponding to the set of non-equal rotation parameters.

Separation of variables

After introducing this coordinate transformation into the initial metric, we can derive the angular mechanics

$$\mathcal{I} = A \left[\sum_{a,b=1}^{p} h^{ab} p_{a} p_{b} + \sum_{a=1}^{p+1} \frac{g_{a}^{2}}{y_{a}^{2}} + g_{0} \right],$$

where

$$y_a = (x_1, \dots, x_p, y), \qquad \widetilde{m}_a = (m_1, \dots, m_p, \kappa)$$
$$g_a^2 = (p_{\varphi_1}^2, \dots, p_{\varphi_p}^2, \mathcal{I}_l), \qquad \mathcal{I}_l = F_{l-1}$$

- The form exactly corresponds with the fully non-isotropic NHEMP angular mechanics in *p* dimensions and can be separated in ellipsoidal coordinates.
- This system contain isotropic system as a subsystem

If l = 1 the spherical subsystem is trivial and does not produce new integrals of motion. This is the fully non-isotropic integrable case. If $l \ge 2$ then

• The *l* - 1 dimensional spherical subsystem is maximally superintegrable

of first integrals 2(I-1)-1

• The non-isotropic system contains p integrals of motion

of first integrals p + 2(l-1) - 1 = (N-1) + l - 2

In the fully isotropic (p = 0, l = N), the angular mechanics is maximally superintegrable with 2N - 3 first integrals

This discussions can be generalized to the even dimensions, where we have an additional latitudinal coordinate (so p + l = N + 1) and a rotation parameter $m_{N+1} = 1$.

Why is fully isotropic NHEMP in even dimensions not maximally superintegrable

- Non of the other rotation parameters except m_{N+1} can be 1. So we always have $p \geq 1$
- As a result I can never be N + 1 and we will lack one constant of motion from being maximally superintegrable.

NH limit of Extremal Vanishing Horizon MP BH (NHEVHMP)

NHEVHMP is obtained from the extremal MP metric by taking one of the rotation parameters equal to 0 and obtaining the NH limit. This results into a well defined solution of vacuum Einstein equations.

$$\frac{ds^2}{r_0^2} = F_0(x)ds_{AdS_3}^2 + \sum_a^{N-1} dx_a^2 + \sum_{a,b}^{N-1} \tilde{\gamma}_{ab}(x) x_a x_b d\varphi_a d\varphi_b,$$

• Notice $ds_{AdS_3}^2$ term in the metric.

• The isometry contains $SO(2,1) \times SO(2,1)$ part.

- Although we have two conformal groups, they give rise to the same Casimir element. Thus we have a single angular mechanics and no additional constants of motion compared to non-EVH case.
- The rest of the discussion is the same for fully isotropic, fully non-isotropic and generic cases.

Thank you!

Equations

NHEMP geometry

$$\frac{ds^2}{r_H^2} = A(x;\sigma) \left(-r^2 d\tau^2 + \frac{dr^2}{r^2} \right) + \sum_{I=1}^{N_\sigma} dx_I dx_I + \sum_{i,j=1}^N \tilde{\gamma}_{ij}(x,\sigma) x_i x_j D\varphi^i D\varphi^j$$

where

$$N_{\sigma} = N + \sigma, \qquad \sigma = \left\{ egin{array}{ccc} 0 & \mbox{when} & D = 2N+1 \ 1 & \mbox{when} & D = 2N+2 \end{array},
ight.$$

$$A(x) = \frac{\sum_{I=1}^{N_{\sigma}} x_I^2 / m_I^2}{\frac{\sigma}{1+\sigma} + 4\sum_{i
$$\tilde{\gamma}_{ij} = \delta_{ij} + \frac{1}{\sum_{I}^{N_{\sigma}} x_I^2 / m_I^2} \frac{\sqrt{m_i - 1} x_i}{m_i} \frac{\sqrt{m_j - 1} x_j}{m_j}$$$$

$$F_{a}(x,\sigma) = K_{(a)}^{bc}(x,\sigma) p_{b}p_{c} + L_{(a)}^{ij}(x,\sigma) p_{\varphi_{i}}p_{\varphi_{j}} + A_{(a)}(x,\sigma)m_{0}^{2}r_{H}^{2}$$

where

$$\begin{split} \mathcal{K}_{(a)}^{bc} &= \left(\sum_{\alpha=0}^{N_{\sigma}-a-1} (-1)^{N_{\sigma}+\alpha-s} \mathcal{A}_{\alpha} m_{b}^{N_{\sigma}-\alpha-s} + x_{b}^{2} \sum_{\alpha=1}^{N_{\sigma}-a-1} (-1)^{\alpha} \mathcal{M}_{N_{\sigma}-\alpha-s-1}^{\neq b} m_{b}^{\alpha} \right) \delta^{bc} + \mathcal{M}_{N_{\sigma}-s-1}^{\neq b,c} \mathcal{X}_{b} \mathcal{X}_{c} \\ \mathcal{L}_{(a)}^{ij} &= \left((1-\delta_{a}^{1}) \sum_{\alpha=1}^{N_{\sigma}-s} (-1)^{N_{\sigma}+\alpha} \mathcal{A}_{\alpha-1} m_{i}^{N_{\sigma}-s-\alpha+1} - \delta_{a}^{1} \mathcal{A}_{N_{\sigma}-1} \right) \frac{\delta^{ij}}{x_{i}^{2}} \\ &+ (-1)^{s-1} \mathcal{A}_{N_{\sigma}-s} \frac{\sqrt{m_{i}-1}}{m_{i}} \frac{\sqrt{m_{j}-1}}{m_{j}} \end{split}$$